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Drought stresses plants and associated factors (e.g. soil microorganisms),
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Abstract

Climate change is expected to amplify drought frequency and intensity, with a
significant alteration of the ecosystems. It affects the livelihoods, communities,
and productivity of many important crops globally, including cereals. These
crops are vulnerable to drought stress due to disturbed growth, nutrient acquisi-
tion, and cell functioning and biochemistry, which decrease yields and grain
quality. Thus, understanding plants’ drought stress tolerance mechanisms could
be an effective strategy for ensuring continuous productivity.

inducing adjusted responses involving plant-soil signalling via phytohormones.
The coordination of plant responses to drought by phytohormones is of great
interest owing to the plants’ sessility, and their subsistence relies mainly on their
aptitude to quickly regulate their growth and physiology processes and to allevi-
ate drought stress effects. Phytohormones are typically involved in these pro-
cesses. Research interest has recently been focused on understanding
phytohormones’ multiple functions that are critical regulators of plant function-
ing, including cell expansion and division, endogenous level of metabolites, and
gene expression. Phytohormones, especially abscisic acid (ABA), salicylic acid
(SA), jasmonate (JA), ethylene (ET), auxin (IAA), cytokinins (CKs),
brassinosteroids (BRs), gibberellins (GAs), and strigolactones (SLs) are known
to be involved in plants’ tolerance to drought. Some reduce water loss through
regulating stomata opening, while others induce root development, accumulation
of osmolytes, and antioxidant enzymes to protect plant cells from stress-related
damages. Some of these signalling molecules could be either produced by plants
suffering from water deficiency or induced by the presence of microorganisms.
Besides, they could also be exogenously applied to vegetative tissues and soil.
Despite several studies on phytohormone effects, their mechanisms and possible
crosstalk are still a subject of debate. Thus, this chapter presents an overview of
the different roles of phytohormones in regulating cereals’ adaptive responses to
drought stress severity and the potential factors to alter their effectiveness in
mitigating this constraint in cereals.
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Abbreviations

13-LOX 13-Lipoxygenase
9’-c-n 9’-Cis-neoaxanthin
α-LeA α-Linolenic acid
AAO ABA Aldehyde oxidase
ABA Abscisic acid
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ACC 1-aminocyclopropane-1-carboxylic acid
ACO 1-aminocyclopropane-1-carboxylic acid oxidase
ACS 1-aminocyclopropane-1-carboxylic acid synthase
AMF Arbuscular mycorrhizal fungi
AOC Allene oxide cyclase
AOS Allene oxide synthase
APX Ascorbate peroxidase
BA Benzyladenine
BR Brassinosteroid-Insensitive receptor
BRs Brassinosteroids
CAT Catalase
CCD Carotenoid cleavage dioxygenase
CDK Cyclin-dependent kinase
CDPK Calcium-dependent protein kinase
Ch Chitosan
CKs Cytokinins
CKX Cytokinin oxidase/dehydrogenase
CP Cytochrome P450
CPKs/CDPKs Calcium-dependent protein kinase
CPS Copalyl diphosphate synthase
DMAPP Dimethylallyl pyrophosphate
DREB/CBF Dehydration-Responsive Element Binding proteins/C-repeat

Binding Factor
EDS Enhanced disease susceptibility
EIL Ethylene insensitive-like protein
EL Electrolyte leakage
EPS Exopolysaccharides
EPS1 Enhanced Pseudomonas susceptibility 1
ERF Ethylene response factor
ET Ethylene
ETR Ethylene receptor
Fv/Fm Photosystem II efficiency
GA2ox Gibberellin 2-oxidases
GAs Gibberellins
GB Glycine betaine
GPX Glutathione peroxidase
GR Glutathione reductase
GST Glutathione S-transferase
HSP Heat shock proteins
IAA Indole-3-Acetic acid
IC Isochorismate
ICS Isochorismate synthase
iP N6-(Δ2-isopentenyl)-adenine
IPA Indole-3-pyruvate
IPT Isopentenyl transferase
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JA Jasmonic acid
JA-Ile Jasmonoyl isoleucine
JAZ Jasmonate ZIM-domain
JIH Jasmonoyl-l-isoleucine hydrolase
JMT Jasmonic acid carboxyl methyltransferase
LEA Late embryogenesis abundant
MAPKKK/MPK Mitogen-activated protein kinase
MDA Malondialdehyde
MeJA Methyl jasmonate
MJE Methyl jasmonate esterase
NCED 9-cis-epoxycarotenoid dioxygenase
NCEI Neoxanthin synthase
NPR Non-expressor of pathogenesis-related gene
NSY Neoxanthin synthase
NXS Neoxanthin synthase
OPDA (cis)-12-oxophytodienoic acid
OPR 12-oxophytodienoate reductase
PAL Phenylalanine ammonia-lyase
PEG Polyethylene glycol
PGPF Plant growth-promoting fungi
PGPR Plant growth-promoting rhizobacteria
POD Peroxidase
PP2C 2C protein phosphatase
ROS Reactive oxygen species
SA Salicylic acid
SDR Short-chain dehydrogenase/reductase-like
SLs Strigolactones
SOD Superoxide dismutase
SWE Seaweed extract
TAA Tryptophan aminotransferase of Arabidopsis
TF Transcription factor
Trp Tryptophan
tz Trans-zeatin
WUE Water use efficiency
ZEP Zeaxanthin epoxidase enzyme

13.1 Phytohormones: Key Mediators of Cereal Responses
to Drought Stress

Alarming environmental challenges have mounted and become more evident due to
exacerbating water scarcity, industrialization, and extreme weather events.
According to FAO (2018), up to 60% of the global population will suffer from



water deficiency by 2025. Drought has recently received great importance since it is
among the critical constraints that control and reduce the agricultural production of
global crops (Iqbal et al. 2020; Meza et al. 2020). This constraint results in wide
morphological, biochemical, and genetic disturbances and changes in plants and
subsequently affects development, productivity, and yield (Ullah et al. 2018a;
Boutasknit et al. 2021; Lahbouki et al. 2022). Thus, the impact of droughts threatens
complex global food security and may reduce agricultural yields, including cereals
(up to 10% decrease) (Lesk et al. 2016; Fu et al. 2021). To address this global issue,
research in agriculture has targeted improving genetic resources and agricultural
practices to enhance water use efficiency (WUE) (Haile et al. 2020; Ahluwalia et al.
2021). Additionally, this worrying scenario requires the urgent implementation of
sustainable measures to improve crop yield and quality. Increasing attention has
been focused on applying beneficial biostimulants to minimize the effect of drought.
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Cereal crops, mainly rice, wheat, maize, sorghum, barley, and pearl millet
provide more than 50% of the population’s caloric requirements, particularly in
developing countries in South Asia, sub-Saharan Africa, and Latin America
(Olugbire et al. 2021). Cereal crops are known as an excellent source of total calories
(48%) and total protein (42%) that contribute to more than two-thirds of dietary
energy intake worldwide (Curiel et al. 2020). Cereals have been considered staple
foods for most human populations for about 10,000 years due to specific
characteristics such as ease of growth, development, storage, and transport (Wendin
et al. 2020). In addition, cereals are classified as essential materials for producing
animal feed and biofuels (Olugbire et al. 2021). However, cereal crops have experi-
enced yield losses of up to 40% globally in wheat and maize caused by drought stress
effects (Daryanto et al. 2016; Fu et al. 2021). Cereals are mostly grown in (semi-)
arid areas and are often exposed to intense and prolonged drought episodes. Hence,
understanding drought-responsive mechanisms in cereals and molecular signalling
pathways is a time-demanding task.

Phytohormones are considered regulators of plant growth and development since
they act through several pathways such as additive, synergistic, or antagonistic
pathways to enhance growth under normal and stressful conditions (Sadiq et al.
2020; Li et al. 2021). These molecules also develop potential phenological and
biochemical processes to keep the cells’ relative water content (RWC) and water
potential constant (Yadav et al. 2021). In response to drought stress conditions,
several processes are elaborated by various phytohormones, such as abscisic acid
(ABA), which plays a significant role in stomatal behaviour by responding to water
deficiency (Li et al. 2021). Other phytohormones intervene in coordinating plant
responses under drought conditions to different degrees, namely, salicylic acid (SA),
jasmonic acid (JA), ethylene (ET), auxins (IAA), cytokinins (CKs), brassinosteroids
(BRs), gibberellins (GAs), and strigolactones (SLs) (Tardieu et al. 2018; Ilyas et al.
2021; Yadav et al. 2021). These molecules act as chemical regulators of plant
responses to multiple environmental stresses. Once the perception of the stress signal
is established, a series of chemical reactions are released and activated in a network
of interactions to enhance specific protective mechanisms, including stomatal



closure, osmolyte accumulation, and antioxidant defense, in an attempt to escape
water deficiency (Gupta et al. 2020; Yadav et al. 2021).
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13.2 Correlations Between Phytohormones and Drought Stress
Tolerance in Cereals

Phytohormones have essential roles in controlling multiple plants’ acclimatization
processes in response to water deficiency. ABA is the primary hormone that
strengthens plant water stress tolerance via many processes such as stomatal
movements, root expansion, and stimulation of ABA-dependent pathways (Cardoso
et al. 2020; Nawaz and Wang 2020; Wang et al. 2021a). Additionally, JA, SA, ET,
IAA, GAs, CKs, SLs, and BRs are also necessary to meet the challenges of water
deficiency. These molecules commonly are in cross-talk to ensure plant survivability
under drought stress (Ullah et al. 2018a). Various investigations have highlighted the
impact of water stress on phytohormones and vice versa, usually concluding that
there is a high correlation between drought stress and phytohormone production. For
instance, Bano et al. (2012) compared the effects of ABA and drought stress
application at pre-sowing and 55 days after sowing in two drought tolerance
contrasting wheat varieties. The drought-resistant variety developed a great defense
mechanism to mitigate reactive oxygen species (ROS) effects through stimulation of
the antioxidant enzyme activity. Under water deficiency, ABA induced a significant
increase in superoxide dismutase (SOD) and peroxidase (POD) activity, with a
significant decrease in this activity in re-watering. For both wheat cultivars, ABA
treatment significantly enhanced RWC under drought conditions. Furthermore, the
sensitive variety was more responsive to ABA treatment and showed low
concentrations of endogenic ABA.

On the other hand, the tolerant cultivar presented a great recovery from water
stress at re-watering. In addition, the grain weight was significantly improved by
ABA treatment for tolerant cultivars under water deficiency (Nayyar and Walia
2003; Bano et al. 2012). Drought stress decreased GA and IAA and increased
ABA and proline in two wheat cultivars (Bano and Yasmeen 2010). ABA and
benzyladenine (BA) application at the anthesis stage induced osmoregulation by
proline production. BA was more effective at the early stages of grain filling, while
ABA was more effective at the later stages (Bano and Yasmeen 2010).

Similarly, leaf GA and IAA content significantly decreased under drought stress
(Xie et al. 2003). The correlation analyses between yields, starch, and protein
content in grains and levels and ratios of four hormones indicated that the changes
were associated with IAA and GA reduction and ABA increase, especially in grains.
The overall results of these studies suggested that the varying concentrations of
endogenic hormones under post-anthesis drought conditions could alter grain starch
and protein content by regulating the activity and processes of the enzyme, which
might be attributed to synthesis decrease (Xie et al. 2004) or a degradation decrease
(Davenport et al. 1980) of IAA and GA. Foliar application of glycine betaine
(GB) improved drought tolerance and yield of maize and sorghum, but not wheat



¼

(Agboma et al. 1997). In contrast, drought significantly decreased maize and
sorghum’s grain numbers and yields. Foliar application of GB minimally enhanced
biomass production in the three crops and significantly increased maize (P ¼ 0.001)
and sorghum (P 0.003) grain yield.
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13.3 Hormones’ Signalling for Drought Stress Response
and Tolerance

The evolution has enabled plants to develop multiple strategies to manage water
scarcity. They have established mechanisms, including altered molecular, biochem-
ical, and physiological processes (Bhargava and Sawant 2013; Seleiman et al. 2021).
Such response mechanisms occur via plant hormone signalling pathways (Ilyas et al.
2021). Phytohormones are indispensable molecules that participate in various
biological processes. Besides, they are vital to stress signalling pathways. The
abiotic stress signalling in plants depends on the nature, intensity, and length of
exposure.

In the signalling cascade, phytohormones are instrumental in orchestrating plant
development, growth, and tolerance mechanisms (Tiwari et al. 2017; Tardieu et al.
2018; Jogawat et al. 2021).

Here, we will focus on the signalling pathways related to each of the nine
hormones involved in drought tolerance in cereals.

13.3.1 Abscisic Acid (ABA)

ABA is a sesquiterpenoid phytohormone often labelled as “stress hormone” due to
its discrete association with plant abiotic stress mitigation (Zhao et al. 2021).
Therefore, this molecule is the hormone of abscission and is probably the most
studied of plant hormones (Chen et al. 2021b). ABA is formed via the carotenoid
pathway (Fig. 13.1). Zeaxanthin is transformed to all-trans-violaxanthin by
antheraxanthin. This reaction is activated by the zeaxanthin epoxidase enzyme
(ZEP; EC 1.14.13.90) (Agrawal et al. 2001), followed by the conversion of trans-
violaxanthin to 9-cis-violaxanthin and 9-cis-neoxanthin. Neoxanthin synthase
(NXS; EC 5.3.99.9) is involved in these reactions (North et al. 2007). The final
reaction to ABA production takes place in chloroplasts and is catalyzed by
9-cis-epoxycarotenoid dioxygenase (NCED; EC 1.13.11.51) (Iuchi et al. 2001).
The first-ever NCED gene was studied in the maize vp14 mutant and is activated
under water deficiency in the course of seed maturation (Tan et al. 1997). ABA
orchesters diverse physiological functions and developmental phases, such as seed
development and dormancy (Sano and Marion-Poll 2021), stomatal opening (Hasan
et al. 2021), embryo morphogenesis (Kruglova et al. 2021), and biosynthesis of
storage lipids and proteins (Ali et al. 2022). Furthermore, ABA is also implicated in
controlling the expression of genes implicated in the ABA signalling pathways
(Some et al. 2021). The role of ABA as a crucial messenger in mitigating stress
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Fig. 13.1 Schematic diagrams of the major plant hormone generation and signalling pathways. (a)
Abscisic acid, (b) jasmonates, (c) salicylic acid, (d) ethylene, (e) indole-3-acetic acid, (f) cytokinins,
(g) gibberellins, (h) brassinosteroids, and (i) strigolactones. 13-LOX 13-lipoxygenase, 9’-c-n 9’-
-cis-neoaxanthin, AAO ABA aldehyde oxidase, ACO 1-aminocyclopropane-1-carboxylic acid oxi-
dase, ACS 1-aminocyclopropane-1-carboxylic acid synthase, AOC allene oxide cyclase, AOS allene
oxide synthase, a-t-n all-trans-neoxanthin, a-t-v all-trans-violaxanthin, CCD carotenoid cleavage
dioxygenase, CP450 cytochrome P450, CPS copalyl diphosphate synthase, D27 dwarf27, DET2
DEETIOLATED2 gene, DMAPP dimethylallyl pyrophosphate, DWF4 dwarf4, EDS5 enhanced



and improving plant tolerance has received much attention (Wilkinson and Davies
2002). To cope with drought stress, cellular ABA content tends to rise, leading to the
plant hormone binding to the receptors of pyrabactin resistance (PYR/PYL/RCARs),
which inactivates type 2C protein phosphatases (PP2Cs) (Siodmak and Hirt 2021).
The protein kinases, SnRK2s, are auto-stimulated after dissociation from PP2Cs,
which triggers ABA responses. In addition, calcium-dependent protein kinases
(CDPKs) play a role in ABA signalling. CDPKs were described in rice
(29 CDPKs), wheat (20), and maize (35) (Schulz et al. 2013). Under drought stress,
implicated signalling pathways and gene expression levels (more than 10% of
protein-encoding genes) are de-regulated in response to increased endogenous
ABA levels (Nemhauser et al. 2006; Canales et al. 2021), which results in limiting
water loss through the reduction of leaf expansion and stomatal opening (Wilkinson
et al. 2012). Another attribute to ABA resides in its implication in robustness and
development of root architecture (Wilkinson et al. 2012; Benderradji et al. 2021). In
addition, ABA interferes in synthesizing dehydrins and Late Embryogenesis Abun-
dant (LEA) proteins (Sun et al. 2021). Tolerance is indeed conferred on plants owing
to the upregulation by ABA of production of osmoprotectants, maintenance of cell
turgor, and stimulation of antioxidant defense (Chaves et al. 2003). In a study
conducted by Dominguez and Carrari (2015) on drought-tolerant Zhengdan
958 and drought-sensitive Xundan 20 maize hybrids, exogenous S-ABA helped
mitigate drought stress by enhancing Asr1 (ABA, stress, ripening) gene expression
levels.
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13.3.2 Jasmonates (JAs)

JAs are a group of hormones formed by cyclopentanone that include free jasmonic
acid (JA) (the most common form) and methyl jasmonate (MeJA) (Fig. 13.1). These
plant hormones are very abundant across different plant species. JAs are crucial for
plant development and survival. They are required for senescence, flowering,
fruiting, direct and indirect defense responses, and secondary metabolism
(Wu et al. 2008; Fahad et al. 2015). JAs are synthesised from α-linolenic acid
(α-LeA) through the galactolipase (Li et al. 2021a). JA formation is initiated by
oxygenation of 13-lipoxygenase, the 13(S)-hydroperoxy-octadecatrienoic acid is
transformed to an epoxide by a 13-allene oxide synthase and cyclized to the

⁄�

Fig. 13.1 (continued) disease susceptibility 5, EPS1 enhanced pseudomonas susceptibility 1, ICS
isochorismate synthase, IPA indole-3-pyruvate, IPT isopentenyl transferase, JA-Ile jasmonoyl
isoleucine, JIH1 jasmonoyl-l-isoleucine hydrolase 1, JMT jasmonic acid carboxyl
methyltransferase, KAO ent-kaurenoic acid oxidase, KS ent-kaurene synthase, MeJA methyl
jasmonate, MJE methyl jasmonate esterase, NCED 9-cis-epoxycarotenoid dioxygenase, NCEI
neoxanthin synthase, NSY neoxanthin synthase, OPDA cis-oxo-phytodienoic acid, OPR3
12-oxophytodienoate reductase 3, PBS5 phosphate-buffered saline 5, SDR short-chain dehydroge-
nase/reductase-like, TAA tryptophan aminotransferase of Arabidopsis, Trp tryptophan, tz trans-
zeatin



cyclopentenone (cis)-12-oxophytodienoic acid (OPDA) by an allene oxide cyclase.
In this step, the enantiomeric structure of the naturally occurring (þ)-7-iso-JA
((3R,7S)-JA) is established (Wasternack et al. 2013). JAs act as a plant defense
activator when subjected to abiotic stresses, including drought (Pauwels et al. 2009;
Seo et al. 2011). JA ZIM-domain (JAZ) proteins play a significant role in the JA
signalling pathway. JAI3/JAZ proteins bind to transcription factors (TFs) under
normal conditions. Under stress conditions, however, JA and its derivatives accu-
mulate, and JAZ proteins degrade, leading to the activation of TFs, which upregulate
the genes implicated in stress responses (Liu et al. 2017; Han and Luthe 2021).
Furthermore, JA induces the development of roots and ROS scavenging and the
closure of stomata via the JA precursor, OPDA (Wang et al. 2021b). Allagulova
et al. (2020) indicated that dehydrins might participate in the methyl jasmonate
(MeJA)-induced protecting effect in wheat plants subjected to drought stress.
Treated plants with 0.1 μM of exogenous MeJA decreased membrane structure
lesions. Furthermore, TADHN dehydrin transcripts and dehydrin protein expression
increased during dehydration.
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13.3.3 Salicylic Acid (SA)

SA is a naturally occurring phenolic compound implicated in pathogenesis-
associated protein expressions (Chen et al. 2012). It plays a crucial role in regulating
plant growth (Bernal-Vicente et al. 2018), ripening and development (Changwal
et al. 2021), and in triggering plants’ responses to abiotic stresses; including drought
(Miura et al. 2013), salt (Khodary 2004), and heat (Fayez and Bazaid 2014). Two
routes are involved in the biosynthesis of SA: the isochorismate (IC) and the
phenylalanine ammonia-lyase (PAL) pathways, with the IC pathway being the
major one (Fig. 13.1) (Uppalapati et al. 2007). While low concentrations of SA
can increase the antioxidant machinery, high concentrations can lead to cell death
and vulnerability under abiotic constraints (Prakash et al. 2021). SA triggers the
expression of genes encoding chaperones, heat shock proteins (HSP), antioxidants,
and genes involved in the biosynthesis of cytochrome P450 and secondary
metabolites, sinapyl alcohol dehydrogenase, and cinnamyl alcohol dehydrogenase
(Jumali et al. 2011).

SA responses to the environment occur through the nonexpressor of
pathogenesis-related genes, NPR1, expressing PR genes (Maier et al. 2011).
Activated genes like WRKYs and TGAs improve plants’ tolerance against biotic
and abiotic stresses (Chen et al. 2012; Ullah et al. 2018b). SA content in barley roots
was enhanced ca. 2x under water stress (Bandurska 2005). SA-inducible pathogene-
sis-related genes PR1 and PR2were incited in response to water deficits (Miura et al.
2013). NPR1 protein acts as a regulator of the SA-controlled signalling pathway,
especially under pathogen infection. SA accumulation implicates antimicrobial
NPR1 proteins in the defense process, leading to the import of monomeric NPR1
to the nucleus, where it binds with SA and generates a conformational change that
conducts to the C-terminal activation domain that triggers transcription. Another



work on two wheat varieties, drought-tolerant Kundan and drought-sensitive Lok1,
subjected to 75 and 50% reduction of RWC and recovery, revealed that SA-induced
thioredoxins activated defense responses against ROS, leading to drought tolerance
(Sharma et al. 2017).
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13.3.4 Ethylene (ET)

ET constitutes a simple hydrocarbon gaseous molecule that acts as a plant hormone.
ET is implicated in specific stages of plant growth and development, particularly
fruit ripening (Liu et al. 2021), flower senescence (Naing et al. 2021) and the
abscission of petals and leaves (Yang et al. 2021). The primary precursor of ET is
1-aminocyclopropane-1-carboxylic acid (ACC) (Fig. 13.1). ACC synthase is the
enzyme that catalyzes the conversion of S-adenosyl-L-methionine to ACC, which is
later converted to ET by the action of ACC oxidase (Bleecker and Kende 2000). One
of the prominent roles of ET is the regulation of drought tolerance in plants.
APETELA2/Ethylene-Responsive Element-Binding Protein (AP2/EREBP) genes
have been found to respond to drought (Dong et al. 2021). The expression of
GmERF3, an ethylene response factor (ERF), was shown to be induced under
drought and salt stresses, conferring tolerance to plants (Zhang et al. 2009; Ilyas
et al. 2021). Another ERF gene, AtERF019, acted positively in delaying senescence
(Scarpeci et al. 2017), whereas transgenic plants have shown improved tolerance to
drought by lowering transpiration rate and regulating stomatal regulation aperture
and cuticle-thinning.

Environmental stress leads to ET accumulation, which improves the survival of
plants under adverse environmental conditions (Gamalero and Glick 2012; Salazar
et al. 2015). SUB1A, an ethylene-response-factor-like gene and an ETS2 Receptor
Factor present in limited rice accessions, attributed submergence tolerance to rice
(Xu et al. 2006; Fukao et al. 2011). Genotypes with the SUB1A gene could recover
after desubmergence via the establishment of new leaves (Fukao et al. 2006). These
findings suggest that SUB1A also may help the process of enduring several abiotic
stresses. Under drought stress, EIN2 downstream signalling components are kept
inactive by the action of a Raf-like kinase and critical negative regulator of ET,
CTR1 kinase-dependent phosphorylation (Eppel and Rachmilevitch 2016). Besides,
Dubois et al. (2013) highlighted SIERF5, AtERF5, and AtER6 as central regulators of
salt and drought stresses. It is worth mentioning that AtERF6 stimulates the expres-
sion of different osmotic stress-responsive genes such as STZ, MYB51, and
WRKY33.

13.3.5 Auxins

Indole-3-acetic acid (IAA) is the most common phytohormone of the auxin family
involved in signalling and several aspects of plant growth and responses to environ-
mental conditions (Jin et al. 2021). Auxins are deemed as the first phytohormones to



be characterized (Masuda and Kamisaka 2000), being IAA the most abundant and
versatile (Zhao 2010), yet the mechanisms governing IAA biosynthesis, transport,
and signalling pathways are still to be elucidated (Wang et al. 2015). This is due to
the complexity of the process itself. Available data suggest that the amino acid
tryptophan (Trp) acts as a precursor or the major IAA precursor (Fig. 13.1). The
conversion of tryptophan to IAA has also been reported (Bartel 1997). Coleoptile
tips excised tissues with l4C-Trp-seeds (kernels) of maize (Zea mays L. cv. Golden
Cross Bantam 70) have shown label incorporation, demonstrating the conversion of
tryptophan into IAA (Koshiba et al. 1995). Moreover, IAA can release from IAA
conjugates through the hydrolysis of IAA-amino acids, IAA-sugar, and IAA-methyl
ester (Bartel 1997; Qin et al. 2005).
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IAA acts as a plant growth regulator. It induces cell elongation (Rayle and
Cleland 1992), differentiation of cell and vascular tissues (Ding and Friml 2010;
Casanova-Sáez et al. 2021) and axial elongation (Campanoni and Nick 2005). It acts
as a mediator of apical dominance (Booker et al. 2003). The role of IAA extends to
influencing gametogenesis (Zhao 2010), embryogenesis (Cheng et al. 2007), seed-
ling growth (Hu et al. 2017), vascular patterning (Berleth et al. 2000), and flower
development (Cheng and Zhao 2007).

IAA plays an integral part in plant adaptation to drought, heavy metal, salinity,
and fungal stresses by increasing root and shoot growth at the transcriptional level
(Yuan et al. 2013; Tiwari et al. 2020). In tobacco, it has been shown that auxin-
inducible glutathione S-transferase (GST), PjGSTU1 from Prosopis juliflora confers
drought tolerance (George et al. 2010; Cicero et al. 2015). In Arabidopsis, increased
endogenous levels of IAA-inducing drought tolerance were attained by the activa-
tion of flavin monooxygenase encoding genes involved in the tryptophan-dependent
IAA biosynthesis pathway (Niyogi and Fink 1992). Similar results were obtained by
overexpressing YUCCA7 in Arabidopsis (Lee et al. 2012). Induction of the
OsGH3–2 gene encoding an enzyme for IAA activation in rice subjected to water
deficit exhibited drought resistance (Ahammed et al. 2013). Furthermore, the OsPIN
gene family, particularly OsPIN2 and OsPIN5b, was upregulated under drought
stress (Lu et al. 2015) and TLD1/OsGH3.13—an IAA amino synthetase encoding
gene—overexpression stimulated LEA, leading ultimately to drought tolerance (Rao
et al. 2014).

13.3.6 Cytokinins (CKs)

Natural forms of CKs occur as N6 substituted adenine derivatives, with distinct
substitutions attached to the N6 position of the adenine ring (Fig. 13.1). N6-(Δ2-
isopentenyl)-adenine (iP), trans-zeatin (tZ), cis-zeatin, and dihydrozeatin are the
most common forms. The significant derivatives are tZ, iP, and their sugar
conjugates (Sakakibara 2021). CKs are biosynthesized in roots. The addition of
the prenyl group derived from the prenol phosphate, named dimethylallyl diphos-
phate, to the N6-terminus of ADP/ATP constitutes the first step catalyzed by
isopentenyl transferase (IPT), a multigene family that is encoded in most plants



(Kakimoto 2001; Sakakibara 2021). Cytochrome P450 enzymes, CYP735A1 and
CYP735A2, participate in the hydroxylation of the isoprenoid side chain, which
converts the resulting iP-ribotides into tZ-type CKs (Wheeldon and Bennett 2021).
CKs then move the xylem upward to other plant parts, functioning as long-distance
messengers to regulate plant growth and development (Aloni et al. 2006; Dun et al.
2006). Prominent roles include cell division (Riou-khamlichi et al. 1999), sink/
source relations and nutrient uptake (Roitsch and Ehneß 2000), phyllotaxis
(Reinhardt 2004), and gametophyte and embryonic development (Wybouw and
De Rybel 2019).
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CKs regulate protective responses in plants under abiotic stresses from roots to
shoots (Wu et al. 2021). The local stress sensed by roots might implicate changes in
the levels of CKs in different plant organs, leading to the plant’s drought adaptation,
thanks to an enhanced apical dominance stimulated by reduced CK levels (O’Brien
and Benková 2013). It has been reported that deregulation of CKs (up- or
downregulation) leads to drought tolerance. Enhanced endogenous CK levels were
registered in transgenic plants expressing an IPT gene, resulting in delayed senes-
cence by suppressing drought-induced leaf senescence. Overexpression of CK
oxidase/dehydrogenase (CKX; EC. 1.5. 99.12), which catalyzes CK breakdown,
improved drought tolerance possibly due to endogenous plant hormone concentra-
tion reduction (Prerostova et al. 2018).

A suggested model, under environmental stresses, revealed that IPT gene expres-
sion decreases, leading to a decrease in CKs accumulation. Consequently, the
triggered expression of stress-responsive genes, following the alleviation of the
inhibitory effect of CK signalling, leads to an enhanced plant tolerance. Results
displaying altered activity of CK metabolic enzymes in mutant and transgenic cells
and tissues corroborate it (Nishiyama et al. 2011). CKs are believed to negatively
regulate the branching and growth of roots (Tessi et al. 2021). CKs are degraded
under drought stress, thereby enhancing primary root growth and branching (Werner
et al. 2010). Batool et al. (2019) reported that two wheat (Triticum aestivum L.)
genotypes, Heshangtou and Longchun 8275, were subjected to a cascade of water
deficit treatments ranging from 80 to 45% reduced CK concentration and closed
stomata, resulting in less gas exchange. These changes improved antioxidant
machinery and osmotic regulation, leading to enhanced WUE. Altogether, these
findings pointed out the CK implication in the root-to-shoot signaling process under
environmental stress.

13.3.7 Gibberellins (GA)

GAs form a large group of naturally tetracyclic diterpenoid carboxylic acids based
on their ent-gibberellin carbon skeletal structure. GAs range from GA1 to GA136
and are present in 128 vascular plant species (Sponsel and Hedden 2010). The
biosynthesis of GAs occurs in the plastid from trans-geranylgeranyl diphosphate,
via the methylerythritol phosphate pathway (Kasahara et al. 2002), through the
plastid-localized sequential action of two terpene cyclases (Fig. 13.1). The following



step is the oxidation by cytochrome P450 monooxygenases, which occurs in the
endoplasmic reticulum, and then by soluble 2-oxoglutarate-dependent dioxygenases
(Yamaguchi 2008). The dioxygenases involve the GA 20-oxidase and GA 3-oxidase
families of isozymes, whereas the GA 2-oxidases (GA2ox), another class of
dioxygenases, lead to the formation of inactive products in order to enable GA
turnover. Drought tolerance is promoted by reducing the endogenous GA level in
plants (Colebrook et al. 2014; Zhou et al. 2020). Arabidopsis gibberellin methyl
transferase1 (AtGAMT1) gene was shown to encode an enzyme that catalyzes the
methylation of active GA—generating GA methyl esters—resulting in drought
tolerance improvement. The overexpression of the SiDREB gene was shown to
suppress GA biosynthesis genes and increase drought tolerance (Nir et al. 2014;
Ullah et al. 2018b).
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Besides, GA2ox genes are considered to be the most receptive genes to abiotic
stress (Ben Saad et al. 2020; Li et al. 2021b). A previous study suggested that
restrained plant growth due to exposure to abiotic stress can be partially mediated by
DELLA (Asp-Glu-Leu-Leu-Ala) protein—a negative regulator of GA signaling—
acting downstream of the GA receptor (Yoshida et al. 2014). Upregulation of
specific GA2ox genes by dehydration-responsive element binding proteins/C-repeat
binding factor (DREB/CBF) family belonging to APETALA2 (AP2) family TFs
regulates the expression of stress-responsive genes (Martin et al. 2021). The most
significant role of GAs under abiotic stress appears to be associated with cell
elongation, as they stimulate DELLA proteins to regulate gene expressions under
water scarcity (Krugman et al. 2011). The genotypes of wheat drought-resistant,
Y12-3, and drought susceptible, A24-39, subjected to 7-day drought stress, showed
shifts in the expression of gibberellin-related genes.

13.3.8 Brassinosteroids (BRs)

BRs are a group of polyhydroxy steroidal plant hormones. Over 70 BRs have been
characterized in plants. The most bioactive BRs are brassinolide,
28-homobrassinolide, and 24-epibrassinolide, and they are ubiquitous in the whole
plant (Bajguz and Hayat 2009). The first steps in the biosynthesis of BRs are
arguably the conversion of campesterol into campestanol, which is later converted
to castasterone (Fig. 13.1). These reactions can occur via early or late C-6 oxidation.
Finally, castasterone is transformed into brassinolide, which is the first isolated
brassinosteroid. Further investigation into the BRs biosynthesis pathways revealed
transformations between teasterone and typhasterol via 3-dehydroteasterone. Avail-
able data indicates that early and late C-6 oxidation pathways occur in many plants
(Hu et al. 2021). BRs act in stem and root growth (Wei and Li 2016), floral initiation
(Clouse 2008), and the development of flowers and fruits (Ali et al. 2021). BRs can
mitigate abiotic stresses such as high-temperatures (Chen et al. 2021a), salinity
(Vázquez et al. 2019), drought (Farooq et al. 2009; Chen et al. 2021b), flooding
(Wani et al. 2016), metals/metalloids (Kour et al. 2021), and organic pollutants
(Ahammed et al. 2013) by modulating antioxidant machinery components. BRs bind



to BR-Insensitive 1 (BRI1) Leucine-Rich Repeat (LRR)-RLK family members on
the plasma membrane in response to environmental stress. A ligand elicits BRI1 to
act together with the co-receptor BRI1 Associated Receptor Kinase 1, primordial for
early BR signalling events (He et al. 2000; Anwar et al. 2018). This is followed by
the initiation of a signalling cascade of phosphorylation governing multiple
BR-regulated gene expression through BRI1-EMS-SUPPRESSOR1 (BES1) and
Brassinazole Resistant1 (BZR1) TFs (Fàbregas et al. 2018). WRKY TFs were
implicated in plant growth and response to water deficit stress. AtDWF4 gene confers
better growth, yield, and tolerance against drought in Brassica napus (Sahni et al.
2016). Farooq et al. (2009) corroborate the role of BRs in rice subjected to 50% field
capacity (FC) water limitation after exogenous application of BRs,
28-homobrassinolide and 24-epibrassinolide, which the cv. Basmati showed drought
tolerance by modulating leaf water economy and growth promotion.
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13.3.9 Strigolactones (SLs)

SLs are a group of terpenoid lactones that are derived from carotenoids (Fig. 13.1).
They play a crucial role in developing the overall root architecture (Xu et al. 2021).
SLs play a crucial role in the germination of seeds and plant-microorganism
interactions (Mitra et al. 2021). Treatment of strigolactone-response mutant
(MAX2) Arabidopsis thaliana seedlings with GR24 (a synthetic and biologically
active strigolactone) did not repress the lateral root formation, suggesting that the
negative effect of strigolactones on lateral root formation is MAX2-dependent
(Kapulnik et al. 2011). While SLs are synthesized and exuded essentially in roots,
they can be produced in other plant parts (Bradley and Lumba 2021). Moreover,
cytochrome P450 and MAX (more axillary growth) genes were displayed to operate
SL biosynthesis (Yoneyama and Brewer 2021). A new class of Fe-containing
protein, D27, was also identified as an SL biosynthetic element (Lin et al. 2009).

SLs are generally influenced by environmental stimuli and act on shoot and root
architecture depending on nutritional conditions (Raza et al. 2021). SLs act in
drought acclimatization in plant shoots, while their biosynthesis is suppressed in
roots. Since SLs are transported acropetally, their downregulation can indicate
affected shoots (Visentin et al. 2016). SLs act as signalling molecules in nodulation
during the legume-rhizobium interactions (Soto et al. 2010; Foo and Davies 2011).
In barley, the HvD14 gene has been shown to encode α/β hydrolase implicated in SL
signalling and is an orthologue to D14 described in rice. All these results highlight
the potential of SLs to mitigate drought stress (Marzec et al. 2020).
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Fig. 13.2 Schematic presentation of potential crosstalk between phytohormone signalling in
cereals under drought stress conditions. ABA is the key operating phytohormone against drought
stress due to its ability to adapt to stress signals and address downstream stress responses. Stress
adaptation regulation is directly controlled by synergistic/antagonistic crosstalk between ABA and
other phytohormones. CDK cyclin-dependent kinase, CKX cytokinin oxidase/dehydrogenase,
COP1 E3 ubiquitin ligase constitutive photomorphogenic 1, CTR1 constitutive triple response,
EIL ethylene insensitive-like protein, EIN2 membrane protein ethylene insensitive 2, ERF ethylene
response factors, ETR ethylene receptor, HOOKLESS ethylene response gene, MAPKKK/MPK
mitogen-activated protein kinase, MFT mother of FT and TFL1, MYC2 helix-loop-helix (bHLH)
transcription factor, NPR1 non-expressor of pathogenesis-related gene 1, PIN1/3/7 efflux proteins
PIN FORMED 1/3/7, RHA2A-E3 ubiquitin-protein ligase, Type A RR response regulator, WUS
homeodomain transcription factor Wuschel

13.4 Hormone Signalling Crosstalk in Cereal Under Drought
Stress Conditions

ABA, JA, ET, and SA are primal actors in drought stress mitigation, where ABA
plays a leading role in controlling osmotic stress (Lata and Prasad 2011) (Fig. 13.2).
GA, BRs, IAA, SLs, and CKs also act with stress-related gene factors and other
phytohormones to sustain plant growth under drought stress. Increasing ABA level
under water deficiency was closely linked with ABA-gene activation (Du et al.
2010), thereby inducing drought resistance through stomatal closure and osmolyte
accumulation (Tiwari et al. 2017). SA and JA were also shown to be critical factors
in water stress signalling based on their increase during this stress and their overall



beneficial controlling role in drought resistance mechanisms such as stomatal closing
(Savchenko et al. 2014; Tiwari et al. 2016). JA or MeJA (methyl-JA) is converted
into an active form JA-Ile ((+)-7-iso-Jasmonoyl-L-isoleucine) after their exogenous
supplementation to plants. JA-Ile gets bounded by the SCF-COI complex receptor,
which has the COI1 (coronatine insensitive1) F-box protein (Fonseca et al. 2009).
This action induces the degradation of JAZ (Jasmonate ZIM-domain) repressors,
leading to the JA response gene activation by MYC2 (helix-loop-helix transcription
factor 2) (Thines et al. 2007). In the absence of JA, JAZ blocks MYC2, which is then
incapable of activating JA-inducible gene transcription. During the stress response,
GA in interaction with SA and its exogenous supplementation induced the NPR1
expression and SA-related genes implicated in SA effect.
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ABA also regulates the BR signalling pathway through BIN2 or its upstream
components via the protein phosphatase 2C (PP2C) gene family (Zhang et al. 2009).
Under drought stress, ABA also restrains BR-induced responses in plants (Divi et al.
2010). CKs regulate the drought stress responses that reduce the biosynthesis and
transport of CKs (Tran et al. 2010). Both auxins and BRs, with the presence of
MeJA, activate ACO (1-aminocyclopropane-1-carboxylic acid oxidase) enzymes
that increase ethylene production (Arraes et al. 2015).

13.5 Factors Modifying the Phytohormonal Activity
in Conferring Drought Tolerance in Cereal

Plants are deeply influenced by environmental factors such as light, temperature,
infection by microorganisms (beneficial or pathogenic), low nutrients, precipitation,
and contamination with metals. These external stimuli affect phytohormone levels in
all plant tissues. Therefore, phytohormones are considered a challenge that limits an
accurate understanding of plant physiology changes and reaches the mechanistic
insight of the implication of phytohormones in regulating drought stress tolerance.
Nevertheless, applying natural and chemical substances, minerals, organic
amendments, and beneficial microorganisms is the most effective approach for
inducing the resistance of plants to drought stress.

13.5.1 Substances, Minerals, and Organic Amendments

Applying priming agents such as injuries or exogenous substances could prepare the
plant to respond faster and more effectively against future stresses. A recent study
reported that primed wheat plants with polyethylene glycol (PEG) solution
maintained higher water potential, increased net photosynthetic rate and proline
and GB levels for better dehydration resistance, and activated ABA receptor PYL4
gene that regulates stomatal closure (Wang et al. 2021a) (Table 13.1). The applica-
tion of other polymers, such as chitooligosaccharides, chitosan (Ch) and Ch
nanoparticles, stimulated plant growth and alleviated water stress in cereals (Zou
et al. 2015; Behboudi et al. 2018; Hafez et al. 2020; El Amerany et al. 2020; Almeida
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Table 13.1 Effect of external stimuli on phytohormones and drought tolerance in cereals

Plant
speciesFactors Effects Reference

PEG priming Wheat Induction of phytohormone
signalling (ABA), stress defense,
and cell elongation gene
expression

Wang et al.
(2021a)

Zinc foliar application Maize Increased IAA and GA level
Higher RWC and antioxidant
enzyme activity (CAT and SOD)

Moghadam
et al. (2013)

Formulated Fertilizer
Synergist: 18% N + 2.7%
P + 8.3% K + urease and nitration
inhibitors + bioactive substances

Rice Induction of ABA accumulation
in roots and leaves
Net photosynthetic rate
improvement

Wang et al.
(2007)

Humic acid Rice Increase of endogenous ABA
level in leaves and roots

García et al.
(2014)

Arbuscular mycorrhizal fungi
Rhizophagus irregularis

Maize Decreased ABA content in roots Li et al.
(2016)

Rhizophagus irregularis, strain
EEZ 58 + salicylic acid

Maize Increased IAA, SA, JA, and
JA-ile levels in roots

Quiroga
et al. (2018)

Glomus microaggregatum,
Rhizophagus irregularis,
Funneliformis mosseae,
F. geosporum, and
Claroideoglomus claroideum

Rice Increased IAA and ABA levels in
leaves

Chareesri
et al. (2020)

PGPR
Azospirillum lipoferum strain
USA 59b

Maize Enhanced ABA and GA level
increased plant length, leaf area,
shoot and root dry biomasses

Cohen et al.
(2009)

Azospirillum sp. Wheat IAA produced by bacteria
enhanced plant growth and yield
plant water potential and content
adjustment

Arzanesh
et al. (2011)

Pseudomonas fluorescent (Ps
fluorescent) strain 153 and
169 and Ps putida strain 4 and
108

Maize Improved GA, IAA, Cks, and
ABA in plant tissue
Increased proline content in
leaves

Ansary
et al. (2012)

Rhizobium leguminosarum,
Mesorhizobium ciceri, and
Rhizobium phaseoli (MR-2)

Wheat IAA produced by bacteria
improved plant growth and
drought tolerance index

Hussain
et al. (2014)

Rhizobacteria (Bacillus pumilus
(B. pumilus); Ps sp.; B. cereus;
Proteus sp.; B. pumilus + Ps sp.;
Proteus sp. + Ps sp.) applied
individually or combined with L-
tryptophan

Maize Increased IAA, ABA, and GA
levels in leaves
Higher osmotic potential, protein,
and photosynthetic pigment
content

Yasmin
et al. (2017)

Azospirillum lipoferum + Ps
putida + super absorbent polymer

Maize Increased ABA level and proline
Downregulation of the
antioxidant enzymes (CAT and
GPX)

Moslemi
et al. (2011)
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et al. 2020). Polymers’ effects are due either to their structures containing free amino
groups-NH2 that could interact with ROS or to their ability to decrease the concen-
tration of malondialdehyde (MDA) and electrolyte leakage (EL) and to improve the
photosynthetic efficiency, diameter of vascular bundle, RWC, and antioxidant
enzymes (i.e., POD, SOD, and CAT) activity (Hidangmayum et al. 2019; E
Amerany et al. 2020). However, the effects of these polymers on hormone levels
in cereals have not yet been investigated. Zhang et al. (2018) reported that the
exogenous supplementation of Ch improved ABA, CKs, and GA levels under
drought stress conditions but reduced IAA in white clover (Trifolium repens L.).
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The application of mineral nutrients (i.e., zinc and ZnO nanoparticles) either to
leaves or roots and organic amendments (i.e., formulated fertilizer synergist, biochar,
vermicompost, humic acid, and compost) has been commonly applied in agriculture
to increase seedling growth and to alleviate drought stresses in cereals (Wang et al.
2007; Moghadam et al. 2013; García et al. 2014; Sun et al. 2020; Ding et al. 2021).
Their effects are related to the modulation of phytohormone levels implicated in
stress tolerance (Table 13.1). The mineral imbalance in the soil (starvation or
accumulation) negatively affected the hormonal interaction between the above-
ground and underground parts of plants (Battal 2004). It has been shown that
phosphate starvation increased ABA production in roots and inhibited the transloca-
tion of CKs from roots to shoots of barley plants, which therefore inhibited roots
extension and vacuolar invertase activity and reduced ATP content (Werner et al.
2008; Vysotskaya et al. 2016; Vysotskaya et al. 2020). The excess supply of
phosphate increased the ethylene response, which reduced the acquisition of other
nutrients (Fe, Zn, Mn, Ca) and the number of meristematic cortical cells and
inhibited the growth of the primary root (Shukla et al. 2017).

Organic amendments are considered essential components of soil organic carbon
and are well known as biostimulants that may achieve phytohormone-like effects to
stimulate nutrient absorption (Canellas et al. 2020). For instance, the application of
humic acid to rice seedlings activated plasma membrane H+-ATPase and increased
the activity of calcium-dependent protein kinases (CPKs/CDPKs) implicated in
phytohormone production and signalling (Ramos et al. 2015; Xu and Huang
2017). Additionally, the application of seaweed extract (SWE) that contains
osmoprotectants (i.e., GB) and phytohormones mixtures (IAA, GA, and CKs)
decreased the oxidative damage of wheat grown under limited water supply by
inducing the biosynthesis of ascorbate and CAT (Kasim et al. 2015). Shemi et al.
(2021) reported that the individual application of GB, Zn, or SA increased the
growth of maize seedlings under drought conditions due to their ability to stabilize
chlorophyll pigments, maintain water equilibrium, decrease ROS and MDA content,
and increase gas exchanges, RWC, and antioxidant enzymes (SOD, CAT, POD,
glutathione reductase (GR), and ascorbate peroxidase (APX)). Although there is
scarce information about SWE functioning to alleviate drought, they could posi-
tively affect the expression of genes responsible for host hormonal biosynthesis, like
auxin (Ali et al. 2021).
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13.5.2 Beneficial Microorganisms

Other strategies plants adopt to deal with (a)biotic stresses, especially drought, are
interaction with beneficial soil microbes, including plant growth-promoting fungi
(e.g. arbuscular mycorrhizal fungi (AMF)) and rhizobacteria. Significantly, the ‘cry-
for-help’ strategy suggests that plants recruit beneficial microorganisms to resist
environmental stresses by changing their root exudation chemistry (Rizaludin et al.
2021). These microorganisms have been described as effective biofertilizers for host
plant growth-boosting, encompassing all the dynamic processes of growth, metabo-
lism, and defense (Ait-El-Mokhtar et al. 2020; Anli et al. 2020; Ben-Laouane et al.
2021; Boutasknit et al. 2020; El Amerany et al. 2020; Hossain and Sultana 2020).

13.5.2.1 Plant Growth-Promoting Fungi (PGPF)
PGPF are nonpathogenic saprotroph fungi that have shown increasing interest in
recent years due to their benefits, especially in promoting crop production and
potentiating tolerance against stresses (Hossain and Sultana 2020; Cornejo-Ríos
et al. 2021). These fungi could alter the physiology and biochemical processes of
the host plants through various strategies, including the conversion of the insoluble
phosphate to a soluble form, mineralization of organic substrate, production of
enzymes, volatile compounds (i.e., sesquiterpenes and diterpenes), and
phytohormones (Hossain and Sultana 2020). Several studies reported that
Trichoderma atroviride ID20G application to maize seedlings reduced the injurious
effects of water stress by stimulating photosystem II efficiency (Fv/Fm), pigment
contents, and antioxidant enzyme activity (Guler et al. 2016). While no report related
to phytohormone changes in cereals under water deficiency, either Phoma glomerata
LWL2 or Penicillium sp. LWL3 application to cucumber seedlings mitigated water
deficit by impairing polyphenol oxidase activity and reducing glutathione and
endogenous SA, JA, and ABA levels that could impact GAs and IAA secretion
(Waqas et al. 2012).

Arbuscular mycorrhizal fungi (AMF) could form symbiotic interactions with
more than 70% of terrestrial plants (Cosme et al. 2018). Many reports showed that
AMF-inoculated plants increased height, number and length of lateral roots, leaf
area, number of flowers and fruits, and dry matter production (Elhindi et al. 2017;
Boutasknit et al. 2021; Vosnjak et al. 2021). For instance, the plant weight of rice
was ten times higher in Glomus intraradices inoculated plants than in
non-inoculated plants (Ruíz-Sánchez et al. 2011). Moreover, the mutualistic rela-
tionship between plants and AMF is regulated by phytohormones. Some SLs are
involved even before physical contact between the fungi and the host plants, whereas
others are accumulated only at a late stage of mycorrhization (i.e., CKs) (Mitra et al.
2021). In addition, some phytohormones are accumulated to regulate root system
architecture and fungal development (i.e., IAA, ABA, and JA) (Akiyama and
Hayashi 2006; Hause et al. 2007). In rice, the overexpression of OsNAC14, a TF
that is implicated in drought stress tolerance, induced SL biosynthesis (Shim et al.
2018). Nevertheless, the effect of CKs on the establishment of mycorrhization and
water stress tolerance is still not well understood; specific authors pointed out that



the accumulation of these hormones was positively correlated with the photosynthe-
sis rate increase and fungal growth (Werner et al. 2001). Inoculation of Catalpa
bungei with Rhizophagus intraradices reduced the content of zeatin in well-watered
plants and those exposed to water deficiency (Chen et al. 2020). These findings
showed that mycorrhization rate and the level of other hormones, IAA and ABA,
were not adversely affected. Also, the level of phytohormones might vary between
plant cultivars. For instance, in maize, while cv. B73 inoculated with R. irregularis
reduced ABA levels, however, PR34B39 cv increased them (Table 13.1). Further-
more, a metabolomic study revealed that the inoculation of durum and bread wheat
roots with Funneliformis mosseae under drought stress increased the levels of
brassinosteroids (6 alpha-hydroxy-castasterone and brassinolide-23-O-glucoside),
hydrolyzable abscisic acid (D-glucopyranosyl abscisate), a hormone similar to
IAA (indole-3-acetyl-methionine), gibberellins (gibberellin A29-catabolite and gib-
berellin A34-catabolite), and jasmonate derivative (tuberonic acid glucoside) in
roots (Bernardo et al. 2019).

13 Cereals and Phytohormones Under Drought Stress 333

13.5.2.2 Plant Growth-Promoting Rhizobacteria (PGPR)
The PGPR are beneficial bacteria that positively influence the growth and yield of
different crops (Oleńska et al. 2020). They could fix and convert atmospheric N to
ammonia, transform soil macromolecules into easily available compounds for
plants, solubilize soil phosphate, release organic acids, and produce
exopolysaccharides (EPS) and phytohormones (i.e., CKs, IAA, GA3, and zeatin)
to alleviate drought stresses (Martínez-Viveros et al. 2010; Vardharajula et al. 2011;
Zaheer et al. 2019). EPS are organic polymers made by bacteria to contact the host
plants (Naseem et al. 2018). Despite the vital role of EPS in drought stress tolerance,
their role in modulating phytohormone levels is unknown. A previous study showed
that applying one or multiple rhizobacterial strains, individually or combined with
either L-tryptophan or super absorbent polymer, significantly increased plant perfor-
mance (Table 13.1). This positive effect is due to increased osmotic potential,
proline and sugar content, antioxidant enzyme activity, ABA, GAs, CKs, and IAA
levels (Table 13.1).

13.6 Metabolic Engineering of Phytohormones: New Strategies
in Cereal to Mitigate Drought Stress

Using the most tolerant plant species to water stress and increasing cereal resistance
through making crosses between inbred lines or applying a transgenic approach are
considered the best-applied strategies for improving cereal productivity and
minimizing land consumption of freshwater resources (Parmar et al. 2017). These
advanced lines are characterized by deregulating genes of interest and stimulating
regulatory factors (proteins) involved in the biosynthesis of metabolites, especially
phytohormones, to ensure drought tolerance.
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13.6.1 Breeding

Developing new drought-tolerant cereal lines using natural breeding becomes an
important strategy. This technique provides changes in plant traits and creates plants
with desirable characteristics based on crossing lines selected based on their high
WUE or lines with contrasting phytohormone levels (Bruce et al. 2002). Despite the
applicability of this approach to a broad type of plant species, however, it did not
meet the general need yet, owing to the long time it takes to minimize linkage drag
through phenotypic screening. Successful findings were reported in maize. For
example, Pekić et al. (1995) reported that crossing maize lines “Polj17” (high
ABA level) x F-2 (low ABA level) increased yield and ABA level in both leaves
and kernels and reduced transpiration in the offspring compared to the parents.
Moreover, the maize inbred line “RIL70”, from crossing Ph4CV � F9721, was
more tolerant to stress than parental lines due to its ability to detoxify stress signals
through increasing photosynthetic rate, cell wall biosynthesis, and the early expres-
sion of aquaporin-related genes. Min et al. (2016) reported that ABA level and bZIP
gene expression involved in ABA synthesis and ABRE TFs were induced in the
“RIL93” line (drought-sensitive) compared to the “RIL70” line.

13.6.2 Genetic Engineering

Genetic engineering is of the utmost importance for cereal growers since it offers a
fast and exact way to attain the same objective as breeding crops for certain desirable
traits in one generation rather than multiple. To achieve this goal, new cultivars are
created by employing wild genes involved in drought tolerance, selecting marker-
assisted breeding, and isolating trait locus genes (Khan et al. 2019). Plants could
alleviate the deleterious effects of drought stress by stimulating the expression of
TFs, i.e., NAC, MYB, bZIP, HDG, and WRKY, that activate phytohormone biosyn-
thesis genes at the transcriptional level and deregulate the expression of stress-
related genes (He et al. 2016; Shim et al. 2018). In rice, Shim et al. (2018) reported
that overexpression of OsNAC14 induced SL biosynthesis and diminished DNA
damage and the expression of drought-responsive marker genes (OsDIP1, Dehydra-
tion Stress-Inducible Protein 1, and OsRbcS, Small Subunit of Rubisco).
Overexpression of OsMYB6 in rice could play a pivotal role in minimizing drought
stress injuries because it elevated the expression of the NAC gene (SNAC1) (Tang
et al. 2019). Overexpression of OsHBP1b in rice plants boosted plant growth and
development and increased callose and antioxidant enzyme levels (Das et al. 2019).

Transgenic wheat plants over-expressing AtHDG11 and TaWRKY2 showed better
growth than wild type plants. These transgenic plants are characterized by lower
stomatal density, higher WUE, and accumulation of osmotically active molecules
(i.e., proline, chlorophyll, and sugars, CAT, and SOD) to detoxify ROS molecules
(Li et al. 2016; Gao et al. 2018). Exogenous application of phytohormones, such as
BRs, induced OsDof12-type TFs in rice plants; however, the overexpression of
OsDof12 in plants negatively regulated BRs signalling genes and affected plant



cell architecture (Wu et al. 2015). Overexpression of JERF1, involved in ET
biosynthesis, in rice exhibited better shoot and root development and a higher
level of ABA (Table 13.2).
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13.7 Conclusion and Future Perspectives

Drought stress is a constant factor that alters cereals’ growth, physiology, and
metabolism. Substantial progress has been achieved recently to understand the
mechanisms and the role of signalling molecules, such as phytohormones, on plant
growth and yield and plant tolerance to environmental stress. As phytohormones
upregulate various plant functioning processes, they can control the same traits to
manage the adaptation of plants to stressful conditions. Under drought stress, the
growth and development of plants are controlled by phytohormones including CKs,
IAA, ET, GAs, ABA, JAs, BRs, SA, and SL through signalling cross-talk pathways
orchestrated by ABA. These compounds are implicated in the drought adaptation
process through stimulating stomatal closure, increasing WUE, metabolite adjust-
ment, and expression of TFs and stress-responsive genes. The phytohormones’
cross-talk under water deficiency is carried out at different levels such as hormone
activation, transcriptional activation, gene expression, and developmental variations.
Despite the significant role of phytohormones in alleviating drought stress, their
production and signalling pathways may be hindered owing to the vast difference in
plant physiological characteristics and the duration and severity of stress. Therefore,
many methods and technologies have been used to retrieve cereals from the negative
impact of drought and deregulate the phytohormone concentration involved in
tolerance to improve the yield. Selection of drought-tolerant species, exogenous
application of minerals and organic amendments, inoculation with beneficial
microorganisms (AMF, PGPF, and PGPR), and use of natural breeding/genetic
engineering are factors and techniques that could help to boost cereals under future
environmental stresses. With the development of omics-based research in recent
decades, many gaps still need to be investigated, especially in the molecular
mechanisms related to the cross-talk among phytohormones at cellular and transcrip-
tional levels and their transport systems, receptors, mediators, and targets in plants.
These aspects are highly complicated, particularly under drought stress. It is worth
mentioning that genome-wide studies targeting phytohormone signalling responses
under adverse environmental situations are needed and will significantly contribute
to a better understanding of hormone interaction with the crosstalk network and
developing ultimately effective strategies for improving cereal stress tolerance.
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