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Abstract. To address the problemof incompleteMulti-viewStereo (MVS) recon-
struction, the initial depth and loss function of the depth residual iterative network
are investigated, and a new multi-view stereo reconstruction network integrating
depth normal consistency and depth map thinning is presented. Firstly, downsam-
pling the input image to create an image pyramid and extracting a feature map
from the image pyramid; Then, constructing a cost volume from the 2D feature
map, adding the depth normal consistency to the initial cost volume to optimize
the depth map. On the DTU data set, the network is tested and compared to tra-
ditional reconstruction approaches and MVS networks based on deep learning.
The experimental results show that the proposed MVS reconstruction network
was produced the better results in completeness and increased the quality of MVS
reconstruction.

Keywords: Normal-depth consistency · Feature loss · Cost volume · Depth map
refinement · MVS

1 Introduction

MVS (Multi-view Stereo) is a popular topic in computer vision, it has been widely
employed in virtual reality, automatic driving, digital libraries, and cultural relics restora-
tion [1]. To calculate the correspondence of high-density 3D point clouds and recover
3D point information, traditional MVS algorithms [2, 3] typically use artificially built
rules and indicators. Approaches provide satisfactory accuracy, but reconstruction com-
pleteness still needs to be improve. Recently, a deep learning method [4, 5] employs a
Deep Neural Network to infer the depth map of each view, this approach can extract
identifying features and encode the scene’s global and local information, allowing it to
learn high brightness or reflection information and provide robust feature matching.

MVS reconstruction based on depth learning has yielded satisfactory results. The
MVSNet network introduced by Yao et al. [6] is the most well-known. The most impor-
tant stage is to create a cost volume based on plane scanning, regularize it with a 3D
CNN network, and achieve effective depth reasoning accuracy. However, because of the
network’s high memory comsumption, it is not applicable to in large-scale scenarios. To
address this issue, Yao et al. [7] presented R-MVSNet, a cyclic network that employs
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Gate Recurrent Unit (GRU) instead of 3D CNN to regularize the cost volume, reducing
storage consumption at the cost of the increased average error of estimated depth and
running time. Chen et al. [8] proposed the Point-MVSNet network, which iteratively
predicts the depth residue as well as visual brightness using edge convolution of the k
closest neighbors of each 3D point. The network accuracy improves, but the running
time increases linearly as the number of iteration layers increases. A pyramid residual
network has recently been utilized to iteratively infer depth reconstruction of multi-view
stereo [9, 10] with promising results. The depth residual network tackles the problem
of decreasing operating efficiency as the network deepens. The network performance
and speed are excellent, but because it uses the coarsest depth as the residual depth to
estimate the next level of depth, the depth map generated at the coarsest level is criti-
cal to the final reconstruction. The initial depth discontinuity can lead to a loss in the
completeness of the entire network since errors at the coarsest level might spread to the
final level and cause details to be lost. This research offers a depth reasoning supervision
network to tackle the issues by making the estimated depth map continuous.

2 Related Work

Voxels [11], level sets [12], polygonal meshes [13], and depth maps [14] are commonly
used in traditional MVS approaches to represent the three-dimensional geometry of
objects or scenes. Due to its great accuracy and excellent performance in many settings,
the COLMAP algorithm proposed by Schonberger et al. [15] is representative of classic
MVS. However, it runs for a long period and is inefficient. Although the classic 3D
reconstruction still remains the main part of the research, more and more researchers
begin to focus on theMVSmethod based on volume and depth.Most objects or sceneries
can be modeled using volume representation. The volume-based method separates the
entire body into small voxels and then applies a photometric consistency measure to
determine if the voxel belongs to the surface, given a set volume of an item or scene.
These approaches have limitations in modeling scenes. They do not impose constraints
on the geometry of objects. The MVS method based on the depth map, on the other
hand, allows for more degrees of freedom in scene modeling.

Deep learning-based algorithms are commonly utilized to tackle stereomatching dif-
ficulties and obtain good results in three-dimensional vision challenges. These learning-
based approaches, on the other hand, are not well suited to multi-view reconstruction
challenges. Kar et al. [16] proposed a learnable method for projecting pixel features
upwards into three-dimensional objects and classifying whether a voxel is filled by a sur-
face. These networks, however, are incapable of handling large-scale scenarios because
the used volume representation requires a lot of memory. MVSNet proposed by Yao
et al. [6], was the first multi-view 3D reconstruction using a depth map. MVSNet esti-
mates multi-view depth based on the cost volume generated by differential homography
transformation, which is inspired by the binocular stereo matching estimation approach.
MVSNet takes a reference image and several source images as inputs, transform the
features of several source images into reference images to construct cost volume, reg-
ularizes them with 3D CNN to obtain probability, and uses argmax to select the depth
with the highest probability as the depth of points. The key to MVSNet is to build low-
cost volume using differentiable transformations. Because the network learns the depth
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map of each view using 3D CNN regularization and derives 3D geometry from many
views by fusing the estimated depth map, the network storage capacity will expand,
making it harder to utilize the remaining information in high-resolution images. Yao
et al. [7] proposed the R-MVSNet circular network for large-scale scene reconstruction
to address this problem. The cost volume is first built in the sameway asMVSNet [6] and
then regularized sequentially using GRUs rather than 3D CNN. This approach requires
less memory, but it takes longer to execute. Chen et al..[8] presented Point-MVSNet, a
framework for predicting depth from coarse to fine on point clouds that allows infor-
mation from k nearest neighbors to be obtained in 3D space while repeatedly refining
the depth map to greatly minimize running time. It works in the same way as Cascade
MVSNet [17], but it minimizes the searching range of cost volume and estimate the
high- resolution depth of huge scenes with reduced GPU consumption and improved
estimation fidelity.

This study differs from the previously discussed network iterative depth map refine-
ment from coarse to fine. First, thesemethods ignore the impact of the initial depthmap’s
edge discontinuity on the output, but our network includes a depth normal consistency
module after the coarsest depth. Depth normal consistency method [18] that has been
formalized because the normal of a surface can represent identical properties on the
same plane, it can be used as a constraint to better communicate semantic information,
which is similar to using the normal as a depth function and applying a hard constraint to
it. Second, typical multi-view stereo reconstruction supervises the learning and training
model with a pixel-by-pixel loss function, which produces a big mistake when the same
shot moves one pixel or uses various resolutions. Inspired by multi-scale loss functions
[18, 19], we use feature loss function to multi-view stereo reconstruction to optimize
the training of a deep iterative network, thus improving the reconstruction completeness
and robustness.

3 Main Methods

This paper focuses on the study of the depth normal consistency and feature loss function.
Depth normal consistency ensures that depth estimation matches geometric prediction
results and eliminates the problem of a discontinuous edge at the beginning of the depth
measurement. The similarity of object features is taken into account by the feature loss
function, which improves the accuracy of the final estimated depth. The main modules
of this network are the feature pyramid, cost volume pyramid, depth normal consistency,
and loss function, as shown in Fig. 1.

3.1 Feature Pyramid

In this paper, the input source image and reference image are down-sampled to different

scales, and an L + 1 level image pyramid
{
ILi

}N
i=0, i ∈ {1, 2, ...,N } is constructed. The

undersampled original image I0i = Ii is represented by the lowest layer of the image
pyramid. After downsampling, the image’s resolution gradually decreases. The smaller
the image and the lower the resolution, and vice versa. After the acquisition of the
image pyramid, the feature extraction network CNN is used to compute features at each
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Fig.1. Overall framework of the network in this article

image scale to build the feature pyramid. There are nine convolutional layers in the
CNN. LeakyReLU activation layer is inserted after each convolutional layer. The last

layer of the feature pyramid is formulized by
(
f Li

)N
i=0, f

L
i ∈ RH/2L∗W/2L∗F , F = 16, W

and H are length and width of the feature map. With less computing effort, the feature
pyramid combines feature maps with strong low-resolution semantic information and
weak high-resolution semantic information.

3.2 Cost Volume Pyramid

The cost volume pyramid is mainly composed of the cost volume of rough depth map
reasoning and the cost volume ofmulti-scale depth residual reasoning. A cost volume for
the L-level feature map with the lowest resolution is first established. The cost volume of
the reference map is created by uniformly samplingM parallel planes in the depth range,
assuming that the depth rangemeasured on the reference imageof the scene isdmin−dmax.
The sampling depth is d = dmin+ (dmaxx − dmin)/M ,m∈ {0, 1, 2, ...,M − 1} represent
depth plane, and its normal n0 is the reference camera’s main axis. Given the reference
image set Iref and the camera parameter {K i,Ri, ti}, i = Iref ∪ A, the differentiable
homography matric between the first source view and reference view with depth d is
defined as

Hi(d) = KL
i Ri

(

I−
(
t0−ti

)
nT0

d

)

R−1
0

(
KL
0

)
(1)

where KL
i and KL

0 is K i and K0 calibration internal parameter matrix at the L layer, and
I is the identity matrix, which K i,Ri, ti represents the camera’s intrinsic characteristics

and external items. This study reconstructs the feature map
{
f Li

}N
i=1 corresponding to

the reference view f L0 using differentiable bilinear interpolation, then produces the cost
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volume prediction, given the source view and the L-level feature pyramid
{
f
L
i,d

}N

i=1
. The

feature variance of N + 1 views is defined as the cost volume of all pixels at depth d.

CL
d = 1

N + 1

∑N

i=0

{
f
L
i,d − f

L
d

}
(2)

where f
L
d is the depth of the reference image and the mean value of all feature maps

is d. A multi-scale 3D CNN network is used to regularize the cost volume, and the
probability distribution of depth estimation at different depth samples is obtained to
eliminate the influence of non-ideal Lambertian volume. The second stage is the cost
volume prediction using multi-scale depth residuals, which will be covered in depth
normal consistency Sect. 3.3.

3.3 Depth Normal Consistency

Due to interference factors such as the environment, noise, andmutual occlusion between
objects, the depthmapof the reference image at the coarsest level is discontinuous, affect-
ing the depth map D0 of the inferred reference view and resulting in low reconstruction
completeness. This research suggests employing depth normal consistency to improve
the continuity of the predicted depth map DL+1 so that multi-scale 3D convolution
gives useful context information for depth residual estimate, based on the orthogonality
between normal and local surface tangent, as illustrated in Fig. 2.

First step: To get the normal of each central point, one must first figure out where
it is neighbor and how much weight it has. In this work, eight nearby sites are chosen
to deduce the normal vector of the central point Pi, forming a set of neighborhood
coordinates of the central points to. The central point Pi(P is the camera coordinate
system coordinate, and P is the pixel coordinate system coordinate) can be identified
if the depth Zi and camera internal parameter matrix K are known. Because PiPix and
PiPiy orthogonality, the central point normal vector Ni may be computed using a cross
product as follows:

Ni = PiPix × PiPiy (3)

In order to increase the credibility, the normal vector in this paper is averaged over 8

neighborhoods Ni = 1
8

8∑

i=1
Ni.

Second step: The final optimized depth map can be produced from the normal depth
map and the beginning depth map. Each pixel pi(xi, yi) should be refined to the depth of
its neighbor pixel points Pneighbor . Assume that the camera’s internal parameter matrix
is K, the depth is Zi, the camera coordinate system’s corresponding point is P, the normal
vector Ni

(
nx,ny,nz

)
infers the depth of nearby points Pi, and the calculation algorithm

is

(
K−1Zi−K−1DneighborPneighbor

)
⎡

⎢
⎣

nx
ny
nz

⎤

⎥
⎦= 0 (4)
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Weights are used to make the depth more consistent with geometry due to the disconti-
nuity of normal vectors on some edges or irregular surfaces. The weightWi = e−∂1 |∇Ii|
are determined by the gradient between Pi and Pneighbor , with the bigger the gradient,
the lower the depth optimization’s dependability. Because this study calculates the depth

of eight neighborhoods, the weight is determined as W
′
i = Wi/

8∑

i=1
Wi. The weighted

total of depth in eight distinct directions is the depthDneighbor after adding depth normal
consistency refinement, and the calculation formula is as follows:

Dneighbor=
8∑

i=1

W
′
i Dneighbor (5)

This improves the continuity of the initial depth map.
The depthD0 of the reference image is determined iteratively, starting with the depth

estimation of the L + 1 layer to obtain the depth map DL of the preceding layer, and
ending with the depth D0 of the lowest reference image. Firstly, DL+1 is up-sampled
upper layer by bicubic interpolation, and sample ↑ D̃neighbor is obtained. Then the cost
volume is constructed and the residual depth chart �DL of DL is obtained by regression
method, and the iteration depth of layer L is DL =↑ D̃neighbor + �DL. In this fashion,
the depth of the following layer is refined iteratively until the final refined depth D0 is
attained.

Fig. 2. Normal depth consistency

3.4 Loss Function

The loss function is used to evaluate the difference between predicted value of the model
and its actual value, and it is crucial to the model’s performance. The loss function
is mostly used to restrict the pixel layer information in supervised learning MVS to
ensure texture detail matching. Pixel-level constraints, on the other hand, contain several
limits, such as illumination and image translation, which will result in pixel alterations.
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Supervised learning technique is used to train the loss function in this paper. Because
the human visual system perceives a scene through features rather than single pixels,
and semantic information can mitigate obstacles in non-ideal areas (such as low texture,
etc.) to some extent, this paper uses the weighted sum of pixel loss and feature loss as
the loss function, with the following calculation formula.

Loss = β1Lxsss + β2Ltzss (6)

Feature loss helps stabilize training, improve the network robustness, and improve the
reconstruction accuracy.

3.4.1 Pixel Loss

The difference between the predicted image pixel and the actual image pixel is calculated
by the pixel loss. The pixel loss in this paper takes into account both the thinned initial
depth map and the residual iterative depth map at the same time, and the difference
between the true and estimated depths is calculated using the norm. The loss function is
defined as the weighted sum of the residual iterative loss for each training sample, and
the computation procedure is

Lxsss=
L∑

i=0

∑

m∈�

∥∥∥DL
GT (p)−DL(p)

∥∥∥1 (7)

3.4.2 Loss of Features

For two identical images, such as the same image moving one pixel or using different
resolutions, feature loss is utilized. Despite the similarity of the images, the pixel loss
will produce a big error value, but the feature loss can sense the image from a higher
dimension, minimizing the error output. The feature loss is calculated in this research
using the features extracted by the pre-trained VGG16 network. Because the VGG16
network’s model parameters are enormous, the transfer learning approach is used to
transfer the taught weights to this network as the model’s initial parameters, avoiding
the need to train a significant quantity of data from scratch and thereby enhancing the
model’s training speed. In this paper, the VGG16 layer 4, 8 and 11 feature map outputs
are taken and for each feature, the feature loss is constructed based on the concept of
crossed multiple views, using the corresponding pixel p

′
i in Fsrc. The feature matching

expression from the reference image feature Fref to the source image feature Fsrc is
estimated. The loss LF is calculated as

F
′
src = Fsrc

(
p

′
i

)

LF = 1

m

∑ (
Fref − F

′
src

)
× M

(8)

The final feature loss is the weighted sum of features of different scales, and the features
of the 4th, 8th, and 11th layers of the network are taken as the feature loss of this study,
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whereM denotes the total number of masks andM indicates the total number of effective
points in each mask.

Ltzss = ∂1LF4 + ∂2LF8 + ∂3LF11 (9)

LF4 represents the feature loss of layer 4 in the pre-trained network VGG16, ∂1,∂2,∂3 is
the weight coefficient, the value of the weight coefficient can be adjusted to control the
degree of influence of the initial depth map and iterative refinement depth map on the
network training, in this paper ∂1,∂2,∂3 is set to 0.1, 0.5, 0.5.

4 Experiment and Result Analysis

4.1 Datasets and Parameters Setting

The DTU dataset [5] contains 124 different scences, each one was taken at 49 or 64 dif-
ferent angles. The image resolution is 1600× 1200, and there are seven different lighting
conditions ranging from orientation to diffusion. The network is implemented on a Linux
system, with Pytorch 1.4. 0, Python 3.6, and Python 2.7 as deep learning frameworks,
a GPU of NVIDIA RTX 3090Ti, and point cloud visualization using OpenCV. There
were 27097 (49 × 7 × 49) images trained and 7546 (49 × 7 × 22) images evaluated
in this study. The depth map is also set to 1600 1152, as is the resolution of the train-
ing and testing input images. Each reference image is evenly sampled on these virtual
planes with a sampling interval of 1 and batch size of 1 on 192 depth virtual planes
that are up-sampled from 425 mm to 935 mm. Using the Adam optimizer, iteratively
train 28 epochs. The first epoch’s learning rate is set to 0.001, while the sixth, twelveth,
eighteenth, and twentieth epochs are multiplied by 0.2. Each training uses one reference
image and two source images, for a total of three views each iteration.

4.2 Results and Analysis

The trained network is tested with the DTU test set, and the training process is the
same as in CVP-MVSNet [9]. The network reconstruction performance is evaluated
using three quantitative indicators provided by the DTU data set: calculation accuracy,
completeness, and overall. The lower the value for these three indexes, the better the
algorithm reconstruction quality.

This work compares classic approaches like Furu [20], Tola [21], Camp [3], Gipuma
[22], Colmap [15] with learning-based SurfaceNet [23] MVSNet [6], P-MVSNet [24],
Point-MVSNet [8], and CVP-MVSNet [9]. In terms of completeness and integrity, the
approach presented in this work outperforms the old algorithm, as demonstrated in Table
1. The overall improved by 11.4% and the completeness by 19.3% when compared to
MVSNet [6], while the overall index climbed by 2.8% and the completeness increased by
7.7% when compared to Point-MVSNE [8]. The overall index increased by 0.3%, while
the completeness increased by 7.2%as compared toCVP-MVSNE [9]. Figure 3 depicts a
portion of the scene depthmap and reconstruction representations. The suggestedmethod
not only entirely reconstructs the target object, but also has superior reconstruction
fidelity than existing methods, according to experimental results.
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Table 1. Comparison of test results of different methods

Method Overall (mm) Accuracy (mm) Completeness (mm)

Furu 0.777 0.613 0.941

Tola 0.766 0.342 1.190

Camp 0.695 0.835 0.554

Gipuma 0.578 0.283 0.873

Colmap 0.532 0.400 0.664

SurfaceNet 0.745 0.450 1.040

MVSNet 0.462 0.396 0.527

P-MVSNet 0.420 0.406 0.434

Point-MVSNet 0.376 0.342 0.411

CVP-MVSNet 0.351 0.296 0.406

CVP-MVSNet* 0.389 0.426 0.352

Our 0.348 0.362 0.334

Note: the lettering indicates the optimal value, CVP-MVSNet* is the experimental result of using
CVP-MVSNet’s method on our equipment.

Fig. 3. Example of test results (From left to right) depth map of scan1; depth map of scan9;
reconstruction effect map of scan1; construction effect map of scan9.

4.3 Ablation Test

Ablation tests and qualitative analysis are carried out for the depth normal consistency
module and feature loss module suggested in this study in order to prove the usefulness
of this network. The depth normal consistency module and feature loss module are
introduced to the system foundation of this article basedonCVP-MVSNet [9]. To analyze
the advantages of these two modules, four groups of ablation tests were conducted. To
assess the quality of the reconstruction, accuracy and completeness indicators are used,
while completeness indicators are used to assess its overall performance. Memory use,
running time, and model parameters are all kept track of. Table 2 shows the results
of the experiment. S stands for the unrefined initial depth module in CVP-MVSNet
[9], P for the pixel loss function module, F for the initial depth module corrected by
depth normal consistency, and T for the feature loss function module in this article.
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For cycling an epoch, the running time is the average of the running times of a single
model parameter. The depth normal consistency module is added to the original network
CVP-MVDNet [9], and the overall is decline by 1.5%, the completeness is improved
by 5.9%, the memory is increased by 398M, and the model parameters are increased by
27063, as shown in Table 2. This is because the normal consistency of depth enhances the
quality of the estimated initial depth map, allowing the images at the margins and non-
ideal locations to be reconstructed as well, resulting in more complete reconstruction
results. The completeness of the original network is improved by 4.4%, the memory is
increased by 315M, and the model parameters are increased by 11836 by adding the
feature loss module, which is attributed to the fact that the feature loss module retains
low-level semantic information such as geometry and texture,which is useful for network
supervision and training; by adding the normal depth consistency module and feature
loss module to the original network, the completeness is improved by 7.2%, the memory
is increased by 315M, and the model parameters are increased in this study, combining
two modules yields not only clear and high-quality reconstruction results, but also the
ability to reconstruct some edges or small sections, as well as a higher reconstruction
completeness and efficiency.

Table 2. Comparison of ablation test results

Method Overall (mm) Accuracy
(mm)

Completeness
(mm)

GPU/M Time/s Parameters

S + P 0.351 0.296 0.406 3641 0.052 55185

S + P + F 0.366 0.385 0.347 4012 0.053 55864

S + P + T 0.370 0.378 0.362 3956 0.064 56436

S + P + F +
T

0.348 0.362 0.334 4275 0.064 56842

Furthermore, this article compares non-ideal images with CVP-MVSNet [9] to
demonstrate the superiority of this method. First, as illustrated in Fig. 4, from the DTU
data set, this paper picks 13 scenes with uneven texture distribution for comparative
studies. The network reconstruction capabilities of this study is superior than the CVP-
MVSNet [9] approach, and there are many points reconstructed at the edge in this paper.
Finally, for a comparative experiment, scene 24 with repeating texture is picked from the
DTU data set. The points reconstructed via the CVP-MVSNet [9] approach are missing
in the lower-left corner of the highest chimney. In comparison to thismethod, the network
reconstruction points in this study are dense, allowing for the restoration of more details
and a superior overall reconstruction result. The suggested algorithm’s reconstruction
in the fine structure is cleaner and has less various points, as evidenced by comparison
testing of these scenes.
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Fig. 4. Comparison of test results of scenes (From left to right) The two images on the left is a
comparison of scene13CVP-MVSNetwith our results; The two images on the right is a comparison
of scene24 CVP-MVSNet with our results.

5 Conclusion

A multi-view stereo reconstruction network with depth normal consistency and depth
map refinement is presented based on the depth residual iterative network to alleviate the
problem of low reconstruction completeness caused by anomalous and discontinuous
initial depth. The normal depth consistency module is used in this paper to improve the
quality of the final iterative depth map by refining the initial depth. Simultaneously, the
feature loss module is presented to reduce output error ofthe pixel-level loss function
and the non-optimal model training owing to image resolution or movement, thereby
improving the completeness of multi-view stereo reconstruction. The proposed network
has the best completeness according to experimental results on DTU data sets.

The parameters of deep learning neural networks become increasingly complex as
the number of layers increases, leading expensive experimental equipments. Futurework
will focus minimizing running time andmemory consumption, and design a lightweight,
real-time 3D reconstruction system.
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