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Abstract. Three-dimensional point clouds captured by sensors can quantify plant
phenotype, which plays an important role in agricultural intelligence. Many
scanned objects in agriculture and forestry are tall and obscured by leaves, so
point clouds captured by either terrestrial or airborne methods may be incom-
plete. In order to obtain a more complete point cloud, this paper proposes a point
cloud registrationmethod based on the fast point feature histogram (FPFH), which
aligns point clouds collected from different viewpoints. Thismethod calculates the
FPFH feature of each point and the Bhattacharyya distance between point pairs.
Effective strategies pick out reliable sets of point pairs. Singular value decom-
position is used to obtain the transformation relationship between point clouds.
Experimental results show that the proposed method has high accuracy for plant
point cloud registration in real scenes, and the root-mean-square error is smaller
than that of common registration methods of SAC-IA and NDT.

Keywords: Fast point feature histogram · Bhattacharyya distance · Random
sample consensus · Point cloud registration

1 Introduction

Plant phenotype is an objective expression of plant growth and plays an important role
in plant research and agricultural production. In traditional agricultural and forestry
research, plant phenotypic analysis relies on manual observation and measurement of
plants. This approach is time-consuming, labor-intensive, and relies heavily on sub-
jective experience. The integration of modern information technology and agriculture
has promoted the formation of new production modes such as agricultural information
intelligent perception, precise monitoring, and quantitative decision-making, which has
promoted the development of precision agriculture [1]. Using modern information tech-
nology to obtain the phenotype of plants and crops without damage and quantify the
growth state of crops is one of the important steps to achieve precision agriculture [2].

With the wide application of computer vision in the field of agriculture and forestry,
plant disease detection [3] and fruit maturity judgment [4] can be achieved by using
two-dimensional (2D) images to obtain plant information. Since the three-dimensional
(3D) model has more information than the 2D image, it is a potential direction to use
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the 3D point cloud model to monitor and manage agricultural production [5]. Wu et al.
[6] used point clouds to generate the skeleton of maize plants, and estimated phenotypes
such as plant height, leaf length, leaf inclination, and azimuth. Rueda-ayala et al. [7]
estimated the plant height, biomass, and volume of sweet wheat grass and ryegrass
through the point cloud of grassland. Cabo et al. [8] automatically identified tree stems
by analyzing point clouds, and then estimated tree height and trunk diameter. The plant
surface morphological information obtained through point clouds has many uses, such
as judging the growth state of plants, predicting crop yield, calculating volume, and so
on.

At present, most of the methods for the 3D reconstruction of plants are based on
optical non-contact sensors. Wang et al. [9] used the terrestrial laser scanning (TLS)
method to obtain the point cloud of corn plants, which is fast and simple to operate, but
the scanning equipment is expensive. Vázquez-Arellano et al. [10] used a time-of-flight
(TOF) camera to sequentially collect point clouds of corn seedlings in the experimental
field for registration, and the registration algorithm used iterative closest point (ICP). The
point cloud registrationmethod in this paper relies on point cloudswhose initial poses are
roughly aligned and overlapped, and the price of the capture device is high. Chen et al.
[11] used an RGB camera to take multiple photos of kale, wheat, and physalis placed
on a turntable, calculated camera internal parameters and pose information according
to incremental SFM, used MVSNet to generate a depth map, and finally generated 3D
points cloud. The point cloud generated by this method is dense, but the method using
the turntable is only suitable for low plants and not suitable for outdoor scenes. Ni et al.
[12] used a binocular camera to capture two images of stereo plants, used the efficient
large scale stereo matching (ELAS) algorithm to calculate the disparity map, and then
obtained the 3D point cloud model of the plant through triangulation. When processing
images were taken at close range, the texture of leaves can be clearly displayed, but the
reconstruction effect is poor in the case of long-distance. Guan et al. [13] developed an
imaging system consisting of an RGB camera and a PMD camera. Using the DBSCAN
algorithm, the point cloud of the soybean plant canopy is extracted from the original
single-view point cloud, and the point cloud models based on the side view and the top
view are generated. But they are not spliced together, so the phenotypic information is
not comprehensive enough.

The methods in the above-mentioned articles are almost all applied to obtain 3D
point cloud models of low plants. However, for tall plants and trees, due to the limited
field of view of the sensor, the above method cannot obtain a high-integrity point cloud
model from top, bottom, and side views. To solve this problem, point clouds captured
from multiple angles and efficient point cloud registration algorithms are required.

Among the point cloud registration algorithms, themost classic is the iterative closest
point (ICP) proposed by Besl et al. [14]. In this method, the point pair with the closest
Euclidean distance is used as the matching point, and the transformation matrix between
the two point clouds is calculated by the least square method. Then, the matching points
are repeatedly selected and calculated iteratively until the error is less than the threshold,
and the transformation matrix is regarded as optimal. However, the disadvantage of this
method is that it requires an initial value and is sensitive to noise, and it is easy to
encounter local optimization [15].
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In order to improve the accuracy of registration, many scholars divide the registration
into two steps, that is, first use geometric features to obtain rough transformation, and
then use ICP for fine registration. Accurately computing transformation matrices relies
on accurate descriptions and correct matching of features [16]. At present, representative
local feature algorithms include 3D shape context (3DSC) proposed by Frome et al. [17],
the signature of histograms of orientations (SHOT) proposed by Salti et al. [18], point
feature histogram (PFH) [19], and fast point feature histogram (FPFH) [20] proposed
by Rusu et al.

FPFH is a 3D feature descriptor based on PFH. It uses the normal vector to calculate
the relationship between the query point and the points in its neighborhood. It represents
the features of the point neighborhood in the form of a histogram. Since FPFH has a
fast operation speed, only 33 dimensions, and occupies less operation space, this paper
proposes a point cloud registration algorithm based on FPFH features. This method is
used to register point clouds from different viewpoints to obtain a more complete point
cloud model. The method is applied to the multi-source real plant point cloud with a low
overlap rate, and a more complete three-dimensional point cloud model of the plant can
be obtained, and the error is at the millimeter level. This method is of great significance
to agricultural intelligence. The remainder of the paper is organized as follows. The
second section will introduce the detailed method and mathematical model. The third
section contains experimental verification and a discussion of the results. Finally, the
conclusion of this paper is given in the fourth section.

2 Methodology

The purpose of registration is to unify the two point clouds into the same coordinate
system. The two point clouds to be registered are marked as a source point cloud and a
target point cloud, respectively. This paper proposes a point cloud registration method
based on FPFH: (1) Preprocess the two point clouds, including subsampling the point
cloud with a voxel grid and statistical filtering to remove outliers; (2) Estimate each
point cloud normals of points and compute their FPFH features. Histogram similarity is
evaluated according to Bhattacharyya distance. Iteratively compares the FPFH features
in the source point cloud and the target point cloud to obtain an initial set of matching
point pairs; (3) Improve the accuracy of matching point pairs. For the special case where
multiple points match one point, only the corresponding point with the closest distance
is selected. Then, sort the remaining matching point pairs and pick the top matching
point pairs. At the same time, the distance threshold is used to filter the points that are
too concentrated; (4) The random sample consensus (RANSAC) is used to remove the
wrong matching point pairs, and the calculation of singular value decomposition (SVD)
is performed on the remaining matching point pairs to obtain the rotation matrix and
translation vector. The specific implementation of this process is shown in Fig. 1.

2.1 Point Normal Estimation

Since a single point cannot reflect the geometric surface features around it, the features of
a point need to be considered by combining the neighboring points within a certain range
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Fig. 1. The pipeline of pairwise point clouds registration.

around it. Typically, geometric surface features are represented based on the normals of
points within a neighborhood.

Themethod of calculating the normal vector of the point cloud surface in this paper is
to estimate the normal vector for the points in the neighborhood. Converts the problem
of solving the normals of a point on the surface of the point cloud into the problem
of estimating the normals of the tangent planes. By minimizing the objective function
containing the normal vector, using the idea of the least-squares method, the result of the
dot product of the vector formed by the point and each of its neighbors and the normal
vector is zero.

First, the plane is represented as a point x and a normal vector−→n , as shown in Fig. 2.
The points in the neighborhood are represented by pi ∈ Pn.

Fig. 2. Estimate the normal vector of a point

Calculate the centroid p of the neighborhood points in the given radius rn and assign
it to x, which can be shown as

x = p = 1

n

∑n

i=1
pi. (1)

The vector from the centroid to the neighborhood point is defined as

yi = pi − p. (2)

The distance di from the neighboring point pi to the plane is equal to the projection
of (pi − x) onto the normal vector −→n , which is expressed as

di = (pi − x) · −→n . (3)
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The least-square plane estimation problem is constructed. To find a plane passing
through the centroid p with a normal vector −→n , the objective function is

min
x,−→n ,‖−→n ‖=1

∑n

i=1

[
(pi − x)T−→n

]2
. (4)

Substituting the centroid p into the above formula can be simplified to

min−→n ,‖−→n ‖=1

−→n T
(
YYT

)−→n . (5)

where YYT = ∑n
i=1 yiyi

T is the 3 × 3 covariance matrix, represented by C. And by the
definition of yi, there are

C = YYT =
∑n

i=1
yiyi

T =
∑n

i=1
(pi − p)(pi − p)T . (6)

The relationship between the eigenvalue λe and the eigenvector
−→ve of the covariance

matrix is

C−→ve = λe
−→ve , e ∈ {0, 1, 2}. (7)

The eigenvalue λe and its corresponding eigenvector −→ve are obtained by singular
value decomposition. If 0 ≤ λ0 ≤ λ1 ≤ λ2, according to the principle of principal
component analysis (PCA), the eigenvector −→v0 corresponding to λ0 is approximately in
the direction of the normal vector −→n or −−→n .

The ambiguity of normal vector cannot be solved mathematically. Therefore, we set
a viewpoint Vp as the judgment basis to make the standard selection of normal direction
consistent [21].All normal directions should conform to the judgment formula, expressed
as

−→n · (
Vp − pi

)
> 0. (8)

2.2 The Calculation of FPFH

Both PFH and FPFH construct multi-dimensional histograms to describe point feature
information. FPFH is the optimization algorithm of PFH. The main differences are the
selection method, the calculation of point features, and the dimension of the histogram.
The neighborhood influence range of PFHandFPFH is shown inFig. 3.When calculating
PFH, all of pq’s neighbors enclosed in the sphere with a given radius rp are selected and
the relationship between the pairwise is calculated. The calculation of FPFH is to first
calculate the relationship between point pq and its neighborhood points within a given
radius rf . And then compute the relationship between these neighborhood points and
their neighborhood points. Therefore, the computational complexity of FPFH is lower
than that of PFH [20].
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Fig. 3. The influence region of PFH (left) and FPFH (right)

The calculation of FPFH first defines the space within the given radius rf as the
neighborhood of the query point pq. The query point pq is then paired with the points
in the neighborhood. In order to represent the relationship between each point pair in
the local coordinate system, Darboux coordinate frame corresponding to the point pair
is established, as shown in Fig. 4.

Fig. 4. Darboux coordinate frame

Specifically, Darboux coordinate frame u − v − w is defined as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = ns

v = pt − ps
‖pt − ps‖ × u

w = u × v,

(9)

where ps and pt are the coordinates of source point and target point, and ns and nt are
their estimated normals respectively; pt − ps is the vector between the source point and
target point. The direction of the normal ns is defined as the direction of the u axis. The
direction of the v axis is the direction of the cross product of pt − ps and u. The w axis
is the cross product of the u- and v- axes. Therefore, u− v −w is a cartesian coordinate
system with three perpendicular axes.
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Four features describing the relationship between two points are defined, which
reduces the number of values representing the two points and their normals from 12 to
4. They are expressed as

⎧
⎪⎪⎨

⎪⎪⎩

α = v · nt
φ = u · pt−ps

d
θ = arctan(w · nt, u · nt)
d = ‖pt − ps‖,

(10)

where α is the dot product of the normal nt and the v axis, φ is the dot product between
the u axis and the normalized pt − ps, θ is the angle between the projection of the
target normal nt on the u − v plane and the u axis, d is the Euclidean distance from
ps to pt . In some cases, the fourth feature, d , is not very important when the distance
between adjacent points increases from the viewpoint. Therefore, d is omitted from the
calculation of FPFH [20]. These three angular features, {α, φ, θ}, adopted by FPFH is
spread over as much as possible of the available histogram range without exhibiting a
bias for certain regions [22].

The calculation of FPFH of query point pq is divided into the following steps: (1)
Calculate the α, φ, θ of query point pq, denoted as SPFH (pq); (2) Calculate the α, φ, θ

of K neighborhood points pqi(i = 1, 2, · · · ,K), denoted as SPFH (pqi); (3) Each of the
three angular features has 11 dimensions, so a histogram with a horizontal coordinate
of 33 dimensions can be obtained. The SPFH (pq) and the SPFH (pqi) with weights are
counted into the histogram to obtain the FPFH (pq), which is expressed as

FPFH
(
pq

) = SPFH
(
pq

) + 1

K

∑K

i=1

1

ωi
SPFH

(
pqi

)
. (11)

where K is the number of neighborhood points of pq; ωi is the weight value inversely
proportional to the Euclidean distance between pq and pqi, which means that the farther
the distance between pqi and pq, the less influence pqi has on the FPFH

(
pq

)
.

2.3 Find the Matching Point Pairs

Sample Consensus Initial Alignment (SAC-IA) is a classical and common point cloud
registration algorithm that calculates transformationmatrix according to local descriptors
[20]. The algorithm selects multiple sampling points from the source point cloud, finds
one or more similar points in the target point cloud, and then randomly selects a point
from the similar points as the corresponding point. According to the different selected
point pairs, the transformation matrix is calculated, and an error metric is computed
to evaluate the transformation. Finally, a good transformation is found among all the
transformations.However, due to themethod of selectingmatching pairs and the standard
of evaluating similarity, the stability of registration is poor in the case of low overlap
rate and high noise, and the wrong results may occur. Therefore, the method proposed
discards SAC-IA.

In statistics, there aremetrics for evaluating the correlation of probability distribution
functions, such as Bhattacharyya distance, Hellinger distance, Kullback-Leibler diver-
gence, correlation. Several comparative experiments of these metrics are presented in
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Sect. 3. Because of the symmetry and lower computational complexity of Bhattacharyya
distance, the method proposed uses Bhattacharyya distance as the metric to evaluate
FPFH similarity.

For discrete probability distributions p and q over the same domainX , Bhattacharyya
distance DB(p, q) is defined as

DB(p, q) = −ln(BC(p, q)), (12)

where

BC(p, q) =
∑

x∈X
√
p(x)q(x) (13)

The FPFH histogram is essentially a combination of three 11-dimensional his-
tograms. Therefore, when comparing the similarity of FPFH, the similarity of the three
histograms is compared respectively. The three Bhattacharyya distances are calculated
separately, and their sum is used to evaluate the similarity between the two FPFH. The
FPFH similarity of the two points p1 and p2 is calculated as

DB−FPFH (p1, p2) = DB−α(p1, p2) + DB−φ(p1, p2) + DB−θ (p1, p2). (14)

Since the range of BC(p, q) is [0, 1], the range ofDB(p, q) is [0, +∞), and the range
of DB−FPFH (p1, p2) is also [0, +∞). The closer the Bhattacharyya distance is to zero,
the more similar the histograms of the two points are, which means the more similar the
neighborhood features of the two points are.

The points in the source point cloud respectively find the point with the smallest
Bhattacharyya distance from the target point cloud as the matching point pair. These
match point pairs form the initial set of matched point pairs.

2.4 Strategies to Improve the Accuracy of Matching Pairs

In order to filter some matching point pairs and improve the estimation accuracy of
the transformation matrix, some strategies are added to our algorithm, as shown in
Algorithm 1.

In the set of matching point pairs, it is inevitable that multiple points will choose
the same point as their most similar point. When this happens, the point that has been
selected multiple times is reversed to select its most similar point. The reconstituted
match pair is then put into the collection, while the remaining point pairs are deleted.

Then, the matching point pairs are sorted according to distance, and the topmatching
point pairs are selected. At the same time, the distribution range of selected points is
enlarged by setting a distance threshold to eliminate the points whose distribution is
too concentrated. Finally, RANSAC is used to weed out incorrect matching pairs. The
remaining set of matching point pairs is used for subsequent calculations.
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2.5 Calculation of Transformation

According to the matching point pairs, the singular value decomposition method is used
to calculate the transformation between the two point clouds. The matching point pair
set after filtering is expressed as

P = {p1, . . . , pm},P′ =
{
p

′
1, . . . , p

′
m

}
. (15)

All point pairs conform to

pk = Rp
′
k + t. (16)

where R is the rotation matrix and t is the translation vector. The error ek is constructed
as

ek = pk −
(
Rp

′
k + t

)
. (17)

To obtain R, t, it is necessary to minimize the sum of error squares, which can be
expressed as

E2 =
∑m

k=1

∥∥(
pk − (

Rp′
k + t

))∥∥2. (18)
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According to the least-squares fitting of the two point sets P and P
′
, (18) can be

simplified as

(19)

t = p − Rp
′
, (20)

where p and p
′
are the centroids of the two point sets P and P

′
, respectively; qk and q

′
k

qk = pk − p, q
′
k = p

′
k − p

′
. (21)

Singular value decomposition is used to estimateR. Finally, t is solved by substituting
R into Eq. (20).

3 Experiment and Analysis

The experimental data include the public point cloud data and the plant point cloud data
captured in the real scene. The experiments were implemented on a computer with 8 GB
RAM and an Intel Core i5–10500 CPU. The programwas developed based on C++ and a
third-party open-source library, Point Cloud Library (PCL), which contains many point
cloud basic processing functions.

3.1 Registration Experiment of Public Dataset

In order to verify the accuracy and validity of the method using Bhattacharyya distance,
the methods using the similarity criteria of Hellinger distance, Kullback-Leibler diver-
gence, and correlation were compared. The registration results of the public point cloud
models from different perspectives are shown in Figs. 5, 6 and 7. The initial input point
cloud models are selected from the dataset of Stanford 3D scanning repository.

It can be seen that these methods can generally register point clouds from different
perspectives. In comparison, the proposedmethod has better alignment in details without
obvious double shadow or offset. In the registration of Bunny 0° and 45° models, except
for the proposed method, the alignment at the ear region is poor. In the registration of
Bunny 45° and 90° models, the results of the registration method based on correlation
show an overall deviation. In the registration of Armadillo 270° and 300° models, the
results of the methods based on Hellinger distance, Kullback-Leibler divergence and
correlation do not fit well in the claw and head of the model.

The registration error of each method is then quantitatively evaluated by the root
mean square error (RMSE) criterion, as shown in Eq. (22).

RMSE =
√

1

M

∑M

l=1
‖Rpl + t − ql‖2 (22)

whereR and t are the true values of the rotationmatrix and translation vector respectively,
pl and ql are the points of the initial point cloud and the point cloud transformed by the
registration algorithm respectively, and M is the number of points in the point cloud.
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Fig. 5. Initial input of Bunny 0° and 45° and registration results using methods based on differ-
ent metrics. (a) Bunny 0° and 45°; (b) Hellinger distance; (c) Kullback-Leibler divergence; (d)
Correlation; (e) The proposed method.

Fig. 6. Initial input of Bunny 45° and 90° and registration results usingmethods based on different
metrics. (a) Bunny 45° and 90°; (b) Hellinger distance; (c) Kullback-Leibler divergence; (d)
Correlation; (e) The proposed method.

Fig. 7. Initial input of Armadillo 270° and 300° and registration results using methods based
on different metrics. (a) Armadillo 270° and 300°; (b) Hellinger distance; (c) Kullback-Leibler
divergence; (d) Correlation; (e) The proposed method.

The RMSEs of each experiment are listed in Table 1. It can be seen that the RMSE of
the method proposed is lower than that of other methods. The results are consistent with
those in Figs. 5, 6 and 7, which illustrates that the proposed method is more accurate
and effective when applied to the classic data set.

3.2 Registration Experiment of Noisy Plant Point Cloud

In order to verify the accuracy and anti-noise performance of the proposed method in
registering low overlap plant point clouds, the proposed method was compared with
typical point cloud registration algorithms SAC-IA and normal distributions transform
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Table 1. Quantitative evaluation of classical data set registration experiments.

Data Method RMSE (mm)

Bunny 0° and 45° Hellinger distance 1.051941

Kullback-Leibler divergence 2.087637

Correlation 1.283986

The proposed method 0.389935

Bunny 45° and 90° Hellinger distance 5.387755

Kullback-Leibler divergence 11.445916

Correlation 13.663601

The proposed method 0.791662

Armadillo 270° and 300° Hellinger distance 2.238819

Kullback-Leibler divergence 2.066865

Correlation 2.826190

The proposed method 0.298217

(NDT). Experimental data are plant point clouds captured by RGB camera and modeled
by COLMAP which is an open-source 3D reconstruction algorithm. At the same time,
Gaussian noise with zero mean and variance of 3mr was added to the point cloud model
to make the experiment closer to the real application scenario. The resolution of the
point cloud is denoted as mr and is defined as

mr = 1

n

∑n

i=1
‖pi − pin‖, (23)

where pin is the nearest point of pi, and n is the number of points.
The inputs of the experiment and registration results of different methods are shown

in Fig. 8. The inputs are point clouds with Gaussian noise, and their overlap rate is about
8%. The comparison of registration results shows that SAC-IA failed to register the two
point clouds, and mistakenly spliced the point cloud of the trunk with that of the crown.
Although NDT can roughly identify the transformation of the two point clouds, the
registration result of the branch part still appears double shadow. The proposed method
can register the two point clouds accurately, and the noise resistance and accuracy are
better than the other two methods.

The RMSEs obtained from different methods are shown in Table 2. It can be seen
that the RMSE obtained by the proposed method is 0.0168, which is the smallest than
that of SAC-IA (1.5362) and NDT (0.0558). This indicates that the proposedmethod can
obtain satisfactory registration of low overlapping plant point clouds, where the noise
influence is effectively suppressed.

3.3 Registration Experiment of Multi-source Plant Point Cloud

Multi-source point clouds in real scenes have more noise, and the density between point
clouds is diverse, which requires higher discrimination and robustness of registration



Low Overlapping Plant Point Cloud Registration 115

Fig. 8. The input of the experiment and the registration results of plant point clouds with different
methods. (a) Input; (b) SAC-IA; (c) NDT; (d) The proposed method.

Table 2. Quantitative results of plant point cloud registration experiment with Gaussian noise.

Method RMSE (m)

SAC-IA 1.5362

NDT 0.0558

The proposed method 0.0168

methods. The experiment in this section is to verify the effectiveness of the proposed
method in registering plant point clouds captured by different sensors in real application
scenes. Experimental data were captured by the RGB camera of unmanned aerial vehicle
(UAV) and mobile phone respectively. As inputs, the point cloud captured on the ground
by mobile phone and that captured by UAV is shown in Fig. 9. The overlap between the
two point clouds is about 25%.

Fig. 9. The input of the experiment and the registration results of plant point clouds with different
methods. (a) Input; (b) SAC-IA; (c) NDT; (d) The proposed method.

The proposed method was compared with SAC-IA and NDT, and the results are
also shown in Fig. 9. The registration result of SAC-IA is shown in Fig. 9b. The position
relation of the two point clouds is roughly correct, but the rotation angle has deviated. As
shown in Fig. 9c, NDT gives a wrong transformation when registering the multi-source
plant point cloud. The alignment result of the proposed method is more accurate, as
shown in Fig. 9d. The branches in the point cloud are fitted without obvious position
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and angle deviation. After manual measurement, the error at the maximum offset of the
results of the proposed method is less than 1 cm, which is within the acceptable range.

According to the experimental results, in real application scenes, the proposed
method can effectively register multi-source plant point clouds with a low overlap rate,
and the error is within millimeter level. By splicing the point clouds captured by both
terrestrial and airbornemethods, more complete tree point clouds can be obtained, which
lays a foundation for extracting more plant phenotypes.

4 Conclusion

Aiming at the difficulty of obtaining the complete point cloud model of tall plants,
a method of point cloud registration in a real scene is proposed. The FPFH features
are calculated according to the normal vector of the point cloud, and the similarity of
features is evaluated by Bhattacharyya distance to obtain the initial matching pairs.
Then, a filtering algorithm based on RANSAC is used to obtain the matching pairs with
high accuracy. Finally, the transformation of the point cloud is obtained by singular
value decomposition. The experimental results show that the proposed method is more
accurate and helps to improve the success rate of point cloud registration for tall plants.

However, when using the proposed method, different application objects need to
have different parameters. Therefore, providing the adaptive ability of parameters in the
method will be our future research content.
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