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Abstract. Weakly-supervised semantic segmentation (WSSS) receives increas-
ing attentions from the community in recent years as it leverages the weakly
annotated data to solve the problem of lacking of fully annotated data. Among
them, the WSSS method based on image-level annotation is the most direct and
effective while the image-level annotation is easy to obtain. Most advanced meth-
ods use class activation maps (CAM) as initial pseudo-labels, however, they only
identify local regions of the target, while ignoring the context information among
local regions. To solve this problem, this paper proposes a deformable convolu-
tion based self-attention module (DSAM), which introduces a pixel relationship
matrix, to learn the contextual information of the image. A regularization loss is
introduced to narrow the distance between the DSAM and the CAM. Compared to
the base CAMmethod, our method can identify more target features and robustly
improve the performance of WSSS without training the classifier multiple times.
Our proposed method achieves the mIoU of 65.5% and 66.8% on the Pascal VOC
2012 val and test sets, respectively, demonstrating the feasibility of the method.

Keywords: Deformable convolution · Self-attention · Convolutional neural
network · Weakly-supervised semantic segmentation

1 Introduction

Recently, the semantic segmentation model [1–3] based on deep learning has achieved
significant progress due to the power of feature learning. However, fully supervised
learning [4, 5] has the major limitation of relying on pixel-level annotations, which is
especially expensive for annotating and organizing pixel-based semantic segmentation.
Hence, current research attempt to use some of the more accessible annotations rather
than pixel-level annotations, such as bounding-box [6], graffiti [7], dot [8], image-level
label [9], etc. These different types of weak labels are used for semantic segmentation.
Among them, image-level tags require the least amount of annotationwork and have been
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popularly used. This paper mainly studies weakly-supervised semantic segmentation
based on image-level labels.

Weakly-supervised semantic segmentation (WSSS) methods with image-level su-
pervised labels mainly learn visual features to generate pseudo labels of pixels, such
as Class Activation Maps (CAM) [10], which adds a global average pooling (GAP)
on top of a fully convolutional network to obtain the class localization map. However,
this network structure only recognizes the most discriminative object regions and tends
to obtain incorrect pixel labels for boundary pixels of objects or different regions. To
solve this problem, Alexander Kolesnikov et al. [11] improve the CAM through three
principles of “seed”, “expand” and “constrain”. Yunchao Wei et al. [12] proposed an
adversarial erasing (AE)method, which completes pseudo-pixel-level labels by stitching
erased images. Jiwoon Ahn et al. [13] proposed the AffinityNet network structure to
effectively exploit the semantic similarity between adjacent coordinate pixel pairs in an
image. These methods can improve the quality of CAM effectively, but they also mark
the background area.

The latest research trend is to add auxiliary tasks such as consistency regulariza-
tion, sub-category classification, and cross-image semantic mining, and jointly train
with the classification network to make the network focus on more pixels [14–16].
Yude Wanget et al. [14] adopted the idea of sharing weights in Siamese networks,
and proposed a SEAM network framework. Yu-Ting Chang et al. [15] clustered image
features, generated pseudo-subclass labels for each parent class label. Guolei Sun et al.
[16] took the cross-image as the starting point, and proposed a co-attention module and
an adversarial attention module. Tong Wu et al. [17] proposed EDAM, which learns
collaborative features for the same set of input images. However, these methods involve
a complex training phase or require the introduction of additional information, such as
saliency maps.

Fig. 1. Visualizations of CAMs. (a) input image. (b) conventional CAMs. (c) the Deform-CAM

To address the above problems, this paper proposes a novel framework called
Deform-CAM that introduces a deformable convolution based self-attention module
(DSAM) to CAM to learn the contextual information of the image and hence generate
more robust pixel classification results, as shown in Fig. 1. The main characteristics of
DSAM is to generate an image pixel relationship matrix based on the learned pixel con-
text features using the self-attention mechanism. By minimizing the distance between
the pixel relationship matrix and the CAM, the background noise is reduced and the



Deform-CAM: Self-attention Based on Deformable Convolution 147

target boundary is refined, leading to higher performance of semantic segmentation.
Experiments on public datasets demonstrate the effectiveness of our method.

Our main contributions are as follows:

1. We propose a deformable convolution self-attention module DSAM to explore
the context information of image pixels with the self-attention mechanism, which
effectively reduces the background noise and refines the target boundary.

2. Wepropose anovelWSSS framework calledDeform-CAMthat combines theDSAM
and CAM. The proposed Deform-CAM effectively improve the quality of CAM
without complex training and the introduction of additional information.

2 Methodology

This section details the proposed Deform-CAM method. Figure 2 shows the network
structure of Deform-CAM. Besides the backbone network, our network structure con-
tains two branches: one branch is traditional CAM, and the other branch introduces
DSAM to learn the correlation between image pixels. The feature maps of the stage3
and stage4 output by the backbone network, and the original image are concatenated
to form the input of DSAM, which ensures that the features are more abundant. Then,
DSAMuses deformable convolution to add offsets to reduce the influence of background
noise at the target boundary, and applies a self-attention mechanism to explore the syn-
ergistic information between feature maps at different stages and the original image,
which we call the pixel relationship matrix. Finally, the gap between the pixel relation
matrix and the CAM is reduced via minimizing a contrastive loss. Compared to the
based CAM, the proposed Deform-CAM method covers more target area and reduces
the boundary noise.

Fig. 2. The network architecture of the proposed Deform-CAMmethod. Stage1-Stage4 represent
the four stages of the backbone network respectively.
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2.1 Class Activation Maps

First, we introduce the traditional methods of generating attention maps, CAMs. For the
input image I ∈ R3×H×W , the image I is passed to themulti-label classification network.
Under the action of the feature extractor, the extracted image feature F(I) ∈ RC×H×W

is obtained after passing through the final classifier, a set of CAMs of class activation
maps can be obtained. The formula for CAMs is as follows.

Ac = Wc ∗ F(I), (1)

whereAc ∈ RN×H×W are the resultingCAMs.Wc is theweight of the last fully connected
layer in class c.

2.2 Deformable Convolution Based Self-attention Module

In Fig. 3, we introduce the structure of the Deformable Convolution based Self-Attention
Module (DSAM). DSAM consists of three parts, deformable convolution, pixel relation-
ship matrix and channel attention module. The pixel relationship branch and the channel
relationship branch are two parallel branches to capture the context information of pixels
and channels, respectively.

Since the self-attention mechanism can well capture the contextual information of
pixels, this paper performs self-attention processing on the underlying features of the
backbone network. In addition to building the affinitymatrix between pixels, this module
can also extract high-level features of the image. The self-attention module formula is
as follows:

yi = 1

C(xi)

∑

∀j
eθ(xi)Tφ(xj) · g(

x
∧

j
) + xi, (2)

where i, j represent the position index, x is the input feature,y represents the obtained
pixel relationship matrix, and g

(
x̂j

)
gives the representation of the input feature xj of

each location, all the signal are all aggregated to position j, and the three embedding
functions θ, φ, g can be implemented by a 1 × 1 convolutional layer. The response is
normalized by a factor C(xi).

To obtain a richer pixel relationship map, we concatenate the original image I ∈
R3×H×W to the input feature map to integrate the underlying features of the image.
Meanwhile, in order to reduce the influence of background noise, we use another branch
of CAM as pixel-level supervision to perform training modification on the pixel relation
matrix.

Although the affinity between pixels is more obvious, the traditional convolution
kernel has limitations that it cannot accurately locate the target during the convolution
process and it also makes the target boundary challenging to distinguish. On this basis,
we add the deformable convolution. By adding a learnable offset, it is not limited to the
regular grid points of traditional convolution so that it can focus on the image texture
boundary. The deformable convolution formula is as follows:

y(p) =
K∑

k=1

wk · x(p + pk + �pk) · �mk , (3)
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where x(p) and y(p) represent the feature at position p in the input feature x and the
output feature y, respectively. K is the convolution kernel of K sampling locations, and
wk and pk represent the weight and pre-specified offset of the k-th location. �pk and
�mk are the learnable offset and modulation scalar for the k-th position. The range of
�mk is [0, 1]. When computing p + pk + �pk , we used bilinear interpolation.

Fig. 3. The structure of DSAM

Since the channel map of each high-level feature can be viewed as the response
of a specific class, we exploit the interdependence between channels to emphasize the
irrelevant feature maps, thereby reducing the noise effect. Therefore, we introduce the
channel attention module, and we directly perform a global average pooling operation
on the feature map I ∈ RC×H×W obtained by deformable convolution. By the above
operations, we can get the attention vector I2 ∈ RC1×1×1 that contains the semantic
dependencies between channels. Each vector in I2 aggregates the contextual information
of the image. The channel attention formula is:

Yc = 1

H × W

H∑

i=1

W∑

j=1

Xc(i, j), (4)

where i, j represent the position index, H ,W represent the size of the feature map, Xc

represents the input featuremapX of the c-th channel,Yc represents the channel attention
vector of the c-th channel.

Compared with the traditional self-attention module, the DSAM adds deformable
convolution and applies the residual structure, so that the edge texture information of
different targets can be adaptively learned. In the pixel relationship matrix, we use the
ReLU activation function with L1 normalization to mask irrelevant pixels, generating an
affinity attentionmap that is smoother in relevant regions.Achannel attentionmechanism
is also introduced to further subdivide the pixel relationship through the inter-channel
interdependence to reduce the interference of background noise.
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2.3 Loss Design of Deform-CAM

In this paper, only image-level labels are used in our experiments, as well as in the loss
design. We perform the GAP processing at the end of the network, using a multi-label
classification loss for classification. The classification loss can be expressed as:

Lcls = −log(σ (G(Ac))), (5)

Ldeform−cls = −log
(
σ
(
G

(
Adeform−c

)))
, (6)

where A is the class activation map,G(·) represents the global average pooling. σ(·) rep-
resents activation function. These two classification losses can improve the performance
of object localization. In order to maintain the consistency of the output, the relationship
between pixels needs to be aggregated on the original CAM to minimize the effect of
background noise. We added reconstruction regularization to make it correspond the
original CAM and the modified CAM. The loss can be easily defined as.

Lre = ∣∣Acls − Adeform−cls
∣∣ . (7)

In short, the final loss can be expressed as:

Lall = Lcls + Ldeform−cls + α · Lre, (8)

where α is the balance of weights for different losses. Coarse localization of target is
performed using classification losses Lcls and Ldeform−cam. The reconstruction loss Lre
is used to bridge the gap between pixel-level and image-level supervised processes and
integrate DSAM with the network. We give details of the network training setup and
study the effectiveness of each modules in the experimental section.

3 Experiments

3.1 Implementation Details

In this section, we present the implementation details of our method. In the official PAS-
CAL VOC 2012 dataset, there are 1464 images for training, 1449 for validation, and
1456 for testing. We set up one background class and 20 foreground classes to evaluate
our method. Following the commonly used experimental protocol for semantic seg-
mentation, we extract additional annotations from SBD [18] to construct an augmented
training set containing 10582 images. However, during network training we only use
image-level labels.

In the experiments, we use ResNet38with output stride= 8 as the backbone network.
During training, we crop all images to 448× 448 as network input. The model is trained
on Tesla V100-PCIE-32 GB. batch_size is set to 8, epoch is 15, the learning rate is 0.01,
and the learning rate policy uses lritr = lrinit(1− itr

/
(max−itr)

)γ , where γ = 0.9.
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3.2 Ablation Studies

Weconducted ablation experiments onDSAM, themainmodule ofDeform-CAM.Here,
we still used the mIoU as the evaluation index. As shown in Table 1, the CAM accuracy
of the baseline is 48.1%. After the adjustment of the DSAM module, we improved the
accuracy to 50.5%. Based on the baseline, we can see that adding the pixel relationship
matrix (PRM) can enrich the semantic information between pixels, and the accuracy
is improved by 1.2%. By applying the deformable convolution (DC) again to refine
the image boundaries and reduce the background noise at the boundaries, the accuracy
is further improved by 0.5%. Finally, by adding the channel attention (CA) branch
to enhance intra-class features between channels, the generated pseudo-labels achieve
50.5% accuracy on the PASCAL VOC validation set.

Table 1. The ablation study for each part of DSAM. CAM: Class Activation Maps. PRM: pixel
relationship matrix. DC: deformable convolution. CA: channel attention.

CAM PRM DC CA mIoU
√

48.1%√ √
49.3%√ √ √
49.8%√ √ √ √
50.5%

Table 2 shows the ablation results of the network loss. Baseline accuracy is 48.1%.
When applying the classification loss only to the output of the DSAM module, the
accuracy instead drops to 47.3%, this is because the DSAM module can acquire more
target areas, but it introduces some background noise for some classes, which will
affect the quality of the CAM. By reconstructing the regularization loss Lre, the network
expands the correct local features, increasing the accuracy by 0.5%. When we introduce
classification loss and reconstruction loss together, the accuracy rises to 50.5%, not only
the noise information is reduced, but the features on the boundary are also more precise.

Table 2. The ablation study of the network loss.

Lcls Ldeform Lre mIoU
√

48.1%√ √
48.6%√ √
47.3%√ √ √
50.5%
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Table 3. Performance comparisons of our method with other methods on PASCAL VOC 2012
dataset. *: the segmentation results with post-processing. Indicate: I-image-level, S-external
saliency maps.

Method Backbone Sup val test

AffinityNet [13] ResNet-38 I 61.7 63.7

SEAM [14] ResNet-38 I 64.5 65.7

RRM [19] ResNet-38 I 62.6 62.9

BES* [20] ResNet-101 I 65.7 66.6

OOA [21] ResNet-101 I 65.2 66.4

IRNet [22] ResNet-50 I 63.5 64.8

CIAN [23] ResNet-101 S 64.1 64.7

CDA [24] ResNet-38 I 64.2 65.8

H-DSRG [25] ResNet-38 I 64.6 65.2

Ours ResNet-38 I 65.5 66.8

3.3 Comparison with Existing State-of-the-Art Methods

To further improve the accuracy of pseudo-pixel-level annotations, we follow thework of
IRNet [22] and add a boundary branch to themodified CAM.According to our generated
CAM, the boundary branch is trained, and the semantic segmentation task is completed
by generating random seeds and performing a randomwalk strategy. The final generated
pseudo-labels achieve 66.5% accuracy on the val set of PASCAL VOC 2012.

In Table 3, the mIoU comparison between our method and previous methods is
shown. We can find that on the validation set, the accuracy of our method is almost the
same as that of BES [20] using denseCRF post-processing. And on the test set, we are
even higher than that. Compared with other baseline methods, Deform-CAM achieves
significant performance improvements on both val and test sets under the same training
settings. Notably, our accuracy gains do not come from large network results, but through
an efficient combination of variable convolution, pixel relations, and channel attention.
Figure 4 shows qualitative results on the val set, we can find that compared to IRNet, our
proposed method can identify more accurate regions in columns 1 and 7. In columns 2
and 3, we can better identify the boundary details. And from columns 4 to 6, we can see
that our network did not segment the background region. In conclusion, our results are
closer to the GT than IRNet, illustrating that the proposed method achieves good results
on both large and small objects.
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Fig. 4. Qualitative segmentation results on PASCAL VOC 2012 val set. From top to bottom: input
images, ground-truths, IRNet [22] and our segmentation results.

4 Conclusion

This paper designs a Deform-CAM network structure to leverage image-level labels to
close the supervision gap between FSSS and WSSS. DSAM expands the correct local
feature range through deformable convolution and an efficient combination of pixel-to-
pixel relationships. Our Deform-CAM is implemented with an efficient reconstruction
loss network structure, and the generated CAM not only has less background noise, but
also better approximates the shape of GT. According to the generated pixel-level pseudo-
labels, combined with the random walk strategy, a good improvement is achieved on the
PASCAL VOC 2012 dataset, proving the effectiveness of Deform-CAM.
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