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Abstract. Single image deraining is an important preprocessing task, as rain
streaks awfully reduce the image quality and hinder the subsequence outdoor mul-
timedia issues. In this paper, we explore the multi-resolution representation for rain
streaks through parallel hierarchical structure and multi-scale feature extraction
and fusion, termed Multi-resolution Parallel Aggregation Network (MPA-Net) in
end-to-end manner. Specially, considering the significant role of multi-resolution,
we employ the first stage to capture the high-resolution features, progressively
introduce high-to-low resolution streams to produce more stages, and then con-
nect all stages in parallel. In each stage, Densely Connected Residual (DCR) block
is involved to guide the feature extraction. Besides, Cross-Scale Feature Fusion
(CSFF) is first introduced to receive and consolidate the correlated features from
different scales followed with Squeeze-and-Excitation (SE) blocks, leading to rich
the resolution representations. Extensive experiments demonstrate that our method
outperforms the recent comparing approaches on the frequent-use synthetic and
real-world datasets.

Keywords: Single image deraining - Multi-resolution parallel - Cross-Scale
Feature Fusion

1 Introduction

Images taken from the rainy conditions significantly suffer from degradation, which
surely subject to blurring, color distortion and content obstruction. The visibility poor
quality severely effects the performance of subsequent multimedia applications. Image
deraining thus has become a vital component in the vision tasks and attracts increasing
attention in the multimedia area.

In general, the deraining purpose is to recover the clear background B from the
obtained rainy image O = B + R with the rain layer R. Since the background and rain
layer are usually unknown, the deraining can be considered as a highly ill-posed problem
theoretically. To make the problem be well solved, various algorithms have been designed
for single image deraining, and previous researches can be mainly classified into two
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categories, including model-based and data-driven methods. Along the model-based line,
prior-based model approaches treat rain removal as an optimization problem and typical
methods contain Gaussian Mixture Model (GMM) [1], Discriminative Sparse Coding
(DSC) [2, 3], low-rank representation [4], image decomposition [5] and filter-based
deraining approaches [6-9]. The model-based ways try to make prior and subjective
hypotheses on rain streaks, while those methods perform well only in some specific
conditions.

Another appealing solution is a data related driven method that considers the derain-
ing question as a non-linear function and searches the suitable parameters to apart the
rainy part from the background image [10]. Inspired by the deep learning, numerous data-
driven learning methods have emerged for deraining and verified remarkable restoration
performance. Fu et al. [11] first employ the related network with multi-layer convolu-
tional neural network to get and remove the rain layer, and then introduce Deep Detail
Network [12] that straightly wipe off the rain streaks by decreasing the mapping range.
The RESCAN [13] presents a recurrent neural network and convolutional way to apply
the contextual information for single image deraining. In [14], Progressive Resnet Net-
work (PReNet) carries out the recursive computer to effectively produce the derained
images progressively. Based on the recurrent network, the work of Spatial attentive net-
work (SPANet) [15] is able to get the spatial contextual details and obtain the spatial
related information in a local-to-global manner. Jiang et al. [16] explore the multi-scale
collaborative to represent the rain streaks and hierarchical deep features. In [17], the
convolution dictionary is employed to represent the rain streaks and a proximal gradient
descent technique is utilized to simply the deraining model. The above deep learning-
based strategies, however, have evident deficiencies in utilizing the comprehensive rain
information and representations. Few efforts have been used to preserve the desired fine
spatial details and strong contextual information.

In this paper, we proposed a novel parallel architecture namely Multi-resolution
Parallel Aggregation Network (MPA-Net), that maintains the multi-resolution feature
representations and minimizes the detailed loss for single image deraining. Our main
contributions are summarized as follows.

We conduct an end-to-end MPA-Net to handle the single image deraining prob-
lem, which can generate a spatially-precise and detailed output by using a novel multi-
resolution parallel feature extraction structure, while receiving and consolidating rich
contextual information from different scales.

To better illustrate the rain features from different scales, Cross-Scale Feature Fusion
(CSFF) is first constructed to effectively exchange and combine the cross scales informa-
tion, so that the rain streaks distribution can be integrated to characterize in a collaborative
manner.

Comprehensive experiments are performed on six challenging datasets (4 synthetic
and 2 real-world datasets) and the deraining results demonstrate that our designed method
outperforms existing state-of-the-art approaches.

2 Proposed Method

‘We briefly introduce the proposed MPA-Net, which can properly remove the rain streaks
and maximally restore the details in the rainy images. The details of MPA-Net can be
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described include the overall architecture, the feature extraction and fusion modules, as
well as the loss function.

2.1 Overall Architecture of MPA-Net

We design an end-to-end deraining network to restore rainy image using the multi-
resolution parallel framework, which is composed of Densely Connected Residual
(DCR) blocks and CSFF with Squeeze-and-Excitation (SE) blocks, as illustrated in
Fig. 1. In detail, MPA-Net has a parallel multi-resolution structure that the first stage
deals with the original scale, and the other two use strided convolutions to down-sample
the original input image into the changed scales as 1/2 and 1/4. Next the DCR blocks
are involved in each parallel stage to extract and transport the image features. Using
the features from different scales, the CSFF then performs the deep feature extraction
and fusion after concatenating the multi-resolution feature information. Following the
CSFF, SE block is added to adaptively rescale channel-wise features and strengthen the
feature hierarchy encoding quality.

Stage I: 1%

DCR Block
SE Block
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Fig. 1. The overview structure of the proposed MPA-Net framework.

Parallel Multi-resolution Pipeline is the main architecture of MPA-Net, that starts
the original resolution as the first stage, progressively involves high-to-low resolution
stages to produce more streams and connects all stages in parallel. Hence the later stage
contains part of features from the previous stage and an extra low resolution one. As
a novel feature extraction model, this structure is effectively used for extracting the
fine-to-coarse features with semantically-richer as well as the coarse-to-fine one with
spatially-precise feature representations. Let Sy, is the stage in the s th stage and r is the
resolution index and the latter resolution is 1/2"~! of the resolution of the first stage, and
the 3 parallel example stages are given as follows:

Sl] _)521 _)SSI
NSy, = S, (D)
\S33



6 M. Qi and Y. Huang

2.2 Feature Extraction and Aggregation Module

Our proposed MPA-Net contains two basic backbone blocks: (a) Densely Connected
Residual (DCR) block is employed to lead the rain feature extraction and representation,
(b) Squeeze-and-Excitation (SE) block is used to aggregate different scale characteristics
after CSFF.

Densely Connected Residual Block [18, 19] applies the DenseNet [20] to direct
receive and transport features through all the preceding layers and utilities the Residual
Net [21] to ensure the features can transport to the deeper layers in a lower computer
cost. Based on the advantages of DenseNet and Residual Net, DCR block can obtain a
precise negative rain feature to map the corresponding rainy image. Specifically, each
DCR block consists of three convolution layers followed by leaky-ReLU with a = 0.2
as the activation function, shown in Fig. 1(b).

The Squeeze-and-Excitation Block [22] explores the spatial and channel compo-
nents, seeking to improve the feature representation capability. As depicted in Fig. 1(c),
the SE block is involved to effectively aggregate different scale characteristics. In squeeze
step, a global embedding process carries out to exploit feature contextual information.
Making full use of aggregated information, the excitation operation is applied to capture
feature dependencies efficiently.

2.3 Cross-Scale Feature Fusion

As shown in deraining process, it is an efficient way to get various rain streak components
by combining features from different scales. Existing deraining methods usually process
each scale separately or just exchange information only in an adjacent manner. Apart
from the mentioned methods, the proposed method explores a novel CSFF mechanism
to fuse the comprehensive feature information. Here is a scheme showing the example
of CSFF unit, which sets the third stage into 3 exchange blocks. Each CSFF unit has 3
parallel convolution layers with an exchange unit across the parallel units, which can be
expressed as:

SN SN SN
S, > C 8L 5 C 58, > C) 2
S/ NSu /NSy S
where % denotes the convolution layer in the b th block and the sth stage for the rth
resolution, and the corresponding exchange unit is Cf? .
The operation generated reliable feature representations by fusing the multi-scale fea-

tures produced in the parallel stages. Mathematically, each output is a feature aggregation
arriving multiple parallel streams, can be defined as:

53 =L (C(51.2,0. 52,22, $32,2)5 1)
53 = [ (C(52.2.0. 51,21, $3,2,1); 14) 3)

53 =12.0(Cs12,2, 8221, 832,0); T)
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where n, i, T are the hyperparameters of the network respectively, and C is the feature
map.
According to the final fused features, we can formulate the derained result as:

Four :f3><3(f1><l (C<S?7f(S%)T27f(S§>T4, Se>; 91>; 92) + Fo “4)

where se represents the SE block, 1 means the up sampling. f;, x, (-) denotes a convolution
of size n x n and {61, 6>} indicates the hyperparameters of the network.

2.4 Loss Function

Generally, the derained output of proposed MPA-Net should be equal to the clean image
in certain level. Thus, we adopt two classical loss function provides an efficient way to
refine the difference between the derained image and the corresponding clean ground-
truth image in the per-pixel level. Besides using per-pixel loss, Lssiys is used to value
the structural similarity for the derained process. Finally, the total loss function can be
formulated as:

L =Li + ALssim )

where \ is the weight parameter.

3 Experimental Results

In this section, we describe the experiment datasets and implementation message in
details. Then comprehensive deraining researches are employed to demonstrate the effec-
tiveness of the designed MPA-Net against the current deraining approaches. In addition,
ablation studies are conducted to validate the efficiency of our designed model.

3.1 Experiment Settings

Datasets. We carry out rain removal experiments on four updated synthetic datasets:
Rain200L/H [23], Rain800 [24], and Rain1400 [12], with numerous rain streaks of
diverse sizes, shapes and directions. Besides, some real-world data are collected to
assess the presentation of deraining and two related datasets are involved: the first one
(called SPA-Data) that the rainy image is real and its ground truth is obtained by human
labeling and multi-frame fusion [15], and the other with 167 rainy images collected by
Internet. The detailed descriptions are tabulated in Table 1, together with the synthetic
and real-world datasets.
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Table 1. Datasets description. Values indicate the number of clean/rainy image pairs.

Datasets Training set | Testing set | Type
Rain200L 1,800 200 Synthetic
Rain200H 1,800 200 Synthetic
Rain800 700 100 Synthetic
Rain1400 12,600 1400 Synthetic
SPA-Data 638,492 1000 Real-world
Internet-Data | 0 167 Real-world

Setting. The detailed architecture and parameter settings of the proposed MPA-Net are
depicted in Fig. 1 using Pytorch framework. In MPA-Net, the parallel stage number is 3
with the channel dimensions of 32, 64 and 128 at the corresponding resolutions as 1, 1/2
and 1/4, respectively. In the training process, we randomly select 64 x 64 patch pairs
from the training datasets as input, and the loss function weight X is 0.2. To accelerate
the training process, Adam optimization is applied with a batch size of 16, as well as the
initial learning rate is 1 x 1073, and then multiplied by 0.1 after every 25 epochs. Our
model is trained with 200 epochs for the Rain200H, Rain200L, and Rain800 datasets, 100
epochs for Rain1400 datasets and 25 epochs for SPA-Data datasets. All the comparing
testing experiments perform with the same datasets and hardware environment on the
NVIDIA Tesla V100 GPU (16G).

3.2 Results on Synthetic Datasets

‘We compare our method with other five state-of-the-art image deraining methods, includ-
ing RESCAN [13], PReNet[14], SPANet [15], MSPFN [16], and RCD-Net [17]. Accord-
ing to the ground truth in synthetic datasets, we perform the quantitative comparisons
using Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity index (SSIM). As
shown in the Table 2, our proposed method gets the highest values both in PSNR and
SSIM, which reflect the excellent performance and robustness of MPA-Net. The notable
increasing scores in Rain200H and Rain800 reveal that our model can properly restore
the rainy images especially in the heavy rain with various rainy conditions.

Besides the quantitative results, we further present several challenging examples for
visual observation comparisons in Fig. 2. As displayed, the RESCAN leaves too many
rain streaks in the derained images, particularly in the heavy rain condition. Clearly,
PReNet, SPANet and MSPEN can remove the rain streaks in most of rain cases, while
there are still some rain left in the distant or complex sceneries. By observing zoomed
parts of image, the main drawbacks of RCDNet are that it tends to blur the contents and
fails to reconstruct the scene detail information, and these defects can also be found in
the above deraining methods. In contrast, our proposed MPA-Net can deal with majority
of rain streaks in diverse rain distribution with complex background. In addition, another
benefit can be found is being good at restoring the detailed structure information.
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Table 2. Quantitative results evaluate of average PSNR and SSIM metrics on five benchmark
datasets.

Datasets Rain200L Rain200H Rain800 Rain1400 SPA-Data
Metrics PSNR/SSIM
Input 26.70/0.8438 | 13.07/0.3733 | 22.55/0.6850 |25.24/0.8097 |34.15/0.9269

RESCAN | 36.94/0.9812 |26.62/0.8415 |24.09/0.8412 |32.03/0.9314 |38.11/0.9707
PReNet 36.28/0.9793 | 27.64/0.8846 | 22.83/0.7905 |32.55/0.9459 |40.16/0.9816
SPANet 35.60/0.9744 | 26.32/0.8581 |24.37/0.8618 |29.85/0.9148 | 40.24/0.9811
MSPEN 36.43/0.9810 |27.78/0.8993 |25.35/0.8567 |32.80/0.9321 |39.95/0.9768
RCD-Net |35.28/0.9710 |26.18/0.8357 |24.59/0.8216 |33.04/0.9472 |41.47/0.9834

Ours 38.65/0.9845 | 28.16/0.9042 | 26.33/0.8760 | 33.68/0.9579 | 43.02/0.9885

3.3 Results on Real-World Datasets

For practical use, we conduct additional comparisons against other deraining related
algorithms on the mentioned two real-world rainy datasets. Table 2 in the last column
and Fig. 3(a) compare the results on SPA-Data of all competing methods visually and
quantitatively. As the natural image are more complex, all the competing methods leave
some rain streaks even in the less rain streaks condition. As expected in the SPA-Data
datasets, our method still exhibits remarkable performance with the better quantitative
values and less rain streaks left.

Furthermore, we choose other two challenging samples from Internet-Data. For fair
comparison, all the methods employ the pre-trained model trained on the Rain200H
dataset to evaluate. As shown in Fig. 3(b), the rainy picture has complicated spatial space
and content with heavy rainy condition. t, all the competing methods fail to remove the
rain streaks far from the camera in the complex real rainy scenarios. Zooming the color

(2) Rain200L  puiem

(b) Rain200H

(c) Rain800

(d) Rain1400

Input RESCAN PReNet SPANet MSPFN RCDNet Ours Ground Truth

Fig. 2. Visual comparison of four synthetic examples, including (a) Rain200L, (b) Rain200H, (c)
Rain800, and (d) Rain1400.
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boxes, the other methods loss the details and blur the scene to certain extent. As the
various light environment in Fig. 3(c), the above deraining algorithms fail to figure out
the rain streaks from the complex surrounding background. It can be observed that the
proposed method significantly competes others in removing the majority of rain streaks
while preserving image details even in the dark surrounding and light effecting.

(a) SPA-DATA

(b) Internet-Data

(c) Internet-Data

Input RESCAN PReNet SPANet MSPFN RCDNet Ours Ground Truth

Fig. 3. Visual comparison of all the competing methods on two real-world datasets, including
SPA-Data (a) and Internet-Data (b, c).

3.4 Ablation Studies

We study the main component impacts and parameter choices on the final performance.
All the following ablation studies are completed in the same situation using the Rain200H
dataset.

Parallel Multi-resolution Stages Number. To investigate the different number influ-
ences, we implement experiments on different numbers of parallel multi-resolution
stages. From the Table 3, the increased parallel stages can lead to higher SSIM and
PSNR, which bring a total gain of 2.15 dB and 0.0569 over the one stage that means
better deraining performances. To balance the model performances and memory, we
choose stages = 3 for our MPA-Net.

Table 3. Ablation study on different number of parallel multi-resolution stages.

Metrics Stage =1 Stage =2 Stage =3
PSNR/SSIM 26.05/0.8473 27.69/0.8850 28.16/0.9042
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Feature Extraction and Aggregation Module. We analysis the effect of feature
extraction and aggregation module that consist of DCR and SE blocks. The baseline
module is constructed by using convolution layers in series. As displayed in Table 4, the
greatest performance can be realized by employing DCR and SE blocks both, which can
verify its effectiveness in the rain removal tasks.

Table 4. Ablation study on feature extraction and aggregation module.

Modules M M M3

Basic block i

DCR block i Vv

SE block Vv
PSNR/SSIM 27.74/0.8991 27.95/0.9013 28.16/0.9042

Feature Fusion Strategies. We further perform an ablation analysis on feature fusion
mechanism and three feature fusion methods as follows: (a) W/O scale exchange is
no exchange between multi-resolution stages. (b) adjacent-scale exchange is only
exchange between two adjacent stages. (c) cross-scale exchange is our designed method
that fuses the features from all the stages. In general, Fig. 4 provides the visual and quan-
titative deraining results of three stated feature fusion strategies. As shown in Fig. 4(c),
the zoomed color boxes perform better in rain removal, texture restoration and less arti-
fact. The evaluation criteria can also reflect the CSFF get the better results under the
following pictures.

11.09/0.2906 28.76/0.9012 29.14/0.9170 29.63/0.9265 Inf/l
Rainy image (a) w/o scale exchange (b) adjacent-scale exchange (¢) cross-scale exchange Ground Truth

Fig. 4. Quantitative and quantitative comparison of different feature fusion strategies, with the
explanation of PSNR/SSIM in the bottom of derained images.
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4 Conclusion

In this paper, we propose a multi-resolution parallel aggregation network (MPA-Net) to
handle the single image deraining. An original multi-resolution parallel architecture is
first utilized to extract and aggregate the multi-scale features, so that the complementary
parallel streams are dedicated to spatially-precise generating and provide better contex-
tualized features. In MPA-Net, DCR block is involved to explore the feature extraction
and fully propagation. In addition, an innovative CSFF mechanism is introduced to real-
ize comprehensive information exchange, so that the features across multi-resolution
stages are progressively fused together for improved representation learning. Experimen-
tal results on synthetic and real-world rainy images both demonstrate that our method
outperforms other state-of-the-art approaches considerably.
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