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What Will You Learn in This Chapter?
In this chapter, we will get familiar with person-
alized medicine in the field of cardiology, the 
genetic basis of most common cardiovascular 
diseases, and the role of genetics in pharmaco-
therapy. We will also discuss the ethical issues in 
personalized medicine and the perspective of this 
field in cardiology.

Rationale and Importance
Personalized medicine is important in early diag-
nosis; choosing the best treatment options, 
including the most suitable pharmacotherapy in 
familial arrhythmias; and preventing adverse 
drug reactions in the field of cardiology. 
Recognizing the best treatment and preventive 
strategy is individualized. It is crucial for health-
care providers to apply the most appropriate 
approach to patients.

4.1  Introduction

Personalized medicine (PM) is a concept that 
modifies therapeutic strategies according to each 
individual’s genomic, epigenomic, and proteomic 
profiles [1]. The major concept of PM is the treat-
ment and care of patients with a particular condi-
tion while considering individual alterations in 
genetics, exposures, and lifestyle [2]. 
Cardiovascular diseases (CVD), the most com-
mon cause of death all over the world [3], have 
genetic risk factors, and the pharmacokinetics of 
cardiology drugs have a broad spectrum of differ-
ent genotypes [4]. Moreover, genome-wide asso-
ciated (GWA) studies have revealed several 
genetic variants that are associated with cardiol-
ogy conditions such as cardiomyopathies, 
arrhythmias, and coronary artery diseases. Thus, 
determining genetic information and applying 
PM strategies are useful in the effective preven-
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tion and treatment of several cardiologic condi-
tions (Fig. 4.1).

4.2  Drugs

4.2.1  Warfarin

Warfarin is an anticoagulant that is often pre-
scribed for the treatment and prevention of 
thromboembolic events in people with prosthetic 
heart valves, atrial fibrillation, venous thrombo-
sis, and a history of stroke. Warfarin dose 
 requirements, drug response, and risk of bleeding 
are influenced by environmental factors (such as 
vitamin K consumption, age, gender, and concur-
rent medications) and by genetic variations [5]. 

VKORC1, CYP2C9, and CYP4F2 are considered 
the main genes that may influence warfarin 
metabolism and cause genetic variations.

4.2.2  VKORC1

The VKORC1 gene encodes the target enzyme of 
the warfarin drug, the vitamin K epoxide reduc-
tase enzyme, which is responsible for reducing 
vitamin K epoxide to the active form [6]. A com-
mon non-coding variant of VKORC1 that occurs 
in the promoter region of the gene, c.-1639G>A 
(rs9923231) polymorphism, affects protein 
expression and is associated with warfarin sensi-
tivity and lower dose requirements. Patients who 
are carrying one or two “A” alleles at -1639 
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require lower warfarin doses than -1639G/G 
homozygotes [1, 7, 8]. The c.-1639G>A allele 
frequency shows a discrepancy among different 
ethnic groups and is more common among 
Asians, Caucasians, and African Americans [2, 9, 
10]. Besides, other less common coding VKORC1 
polymorphisms (such as Asp36Tyr) are associ-
ated with warfarin resistance and higher dose 
requirements [4, 11].

4.2.3  CYP2C9

CYP2C9 is a member of the cytochrome P450 
superfamily (CYP450) that metabolizes the more 
potent warfarin S-enantiomer. CYP2C9*1 is the 
wild-type allele in the “normal metabolizer” phe-
notype (those with normal enzyme activity and 
metabolism). Individuals carrying two well- 
characterized variant alleles, CYP2C9*2 and 
CYP2C9*3, are known to be more sensitive to 
warfarin, require lower doses to achieve the ther-
apeutic range, are at a higher risk of bleeding, 
and take longer to achieve a stable INR compared 
to normal metabolizers [12, 13]. The mainte-
nance dose requirements of warfarin in patients 
with *1*1, *2*2, and *3*3 genotypes are reported 
as 5.28  mg/day, 3.04  mg/day, and 0.5  mg/day, 
respectively [14]. Other CYP2C9 variants 
(CYP2C9*5, *6, 8*, and *11), which are more 
common among African Americans, are also 
associated with decreased enzyme activity and 
dose variability [15].

4.2.4  CYP4F2

CYP4F2 is the vitamin K oxidase enzyme and 
acts as an important counterpart to VKORC1 
(vitamin K reductase enzyme), limiting vitamin 
K accumulation in the liver [16]. A known variant 
of CYP4F2*3 (c.1297C>T, rs2108622) has been 
shown to affect enzyme activity and dose require-
ments of warfarin [17]. Caucasian individuals 
who carry two “T” alleles require a higher dosage 
of warfarin (1 mg/day) compared to those with 
two “C” alleles, which is explained by the 
reduced function of the enzyme in those with “T” 

alleles [18]. Thus, including this CYP4F2 variant 
in warfarin dosing models is helpful in dose pre-
diction in Asians and Europeans, but not in 
African Americans [19–21].

4.2.5  P2Y12 Inhibitors

Clopidogrel is a prodrug, and genetic variants 
influence the catalytic activity of the CYP P450 
isoforms (such as CYP2C19, CYP1A2, CYP2B6, 
CYP2C9, and CYP3A) and affect the efficiency of 
active metabolite generation [22]. The most com-
mon CYP2C19 loss-of-function alleles are 
CYP2C19*2 (G681A) and CYP2C19*3 (G636A), 
and the most common allele that results in 
increased enzyme activity is CYP2C19*17 [23]. 
Therefore, based on the CYP2C19 genotypes, 
patients are categorized as ultrarapid metabolizers 
(*1/*17, *17/*17), extensive metabolizers (*1/*1), 
intermediate metabolizers (*1/*2, *1/*3, *2/*17), 
and poor metabolizers (*2/*2, *2/*3, *3/*3) [24]. 
The ABCB1 gene polymorphisms are also known 
to be associated with clinical outcomes in clopido-
grel-treated patients [25]; however, the association 
has been inconsistent across studies, with several 
studies finding no relationship between ABCB1 
variants and the antiplatelet effect of clopidogrel 
[26]. Prasugrel and ticagrelor are both stronger 
P2Y12 inhibitors than clopidogrel and lower 
platelet reactivity more effectively, irrespective of 
the CYP2C19 genotype [27, 28]. Moreover, poly-
morphisms of the other isoforms of the CYP450 
system appear to not influence prasugrel pharma-
cokinetics or pharmacodynamics [28].

4.2.6  Statin

Statins, HMG-CoA reductase inhibitors, act by 
inhibiting cholesterol biosynthesis and increasing 
low-density lipoprotein cholesterol (LDL-C) 
uptake by hepatocytes. SLCO1B1 and ABCB1 are 
proteins that play a role in the transportation of 
statins. The SLCO1B1 521C (rs4149056) variant 
is associated with a reduction of the lipid- lowering 
effect of simvastatin, atorvastatin, lovastatin, and 
pravastatin. Three ABCB1 gene polymorphisms 
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(1236T, 2677T, and 3435T) have been linked to 
statin pharmacokinetics and toxicity. HMG-CoA 
reductase is an important enzyme in cholesterol 
synthesis and is inhibited by statins within hepato-
cytes. The H7 haplotype of HMG- CoA reductase 
is associated with decreased lipid- lowering 
response to statins [29]. Polymorphisms in the 
CYP3A gene, such as CYP3A4*22 (rs35599367) 
and CYP3A5*3 (rs776746), have been shown to 
reduce CYP3A4 enzyme levels and activity, as 
well as to affect the pharmacokinetics of simvas-
tatin, atorvastatin, and lovastatin [30, 31].

4.3  Cardiomyopathies

4.3.1  Hypertrophic 
Cardiomyopathy (HCM)

HCM is one of the common hereditary cardiac 
diseases, which is associated with two main 
pathogeneses; the first one is defects in myocar-
dial filaments, associated with sarcomeric genes, 
and the second one is metabolic and infiltrative 
disorders [32]. The gene variants that are associ-
ated with HCM are the MYH7 gene, which 
encodes the myosin heavy chain [33],  TNNsT2 
which encodes cardiac troponin T [34], MYBPC3 
which encodes myosin-binding protein C [35], 
TNNI3 which encodes Cardiac troponin I [36], 
and FHOD3 which encodes “Formin homology 2 
domains containing 3” [37]. Moreover, there are 
some syndromic genes without isolated left ven-
tricular hypertrophy, including the autosomal 
recessive GAA gene as Pompe disease [38], and 
X-linked GLA, which presents as Anderson- 
Fabry disease [39]. Genotype-positive patients 
have been shown to present with illness approxi-
mately 10 years earlier, to have a greater maxi-
mum left-ventricular wall thickness, and to have 
a higher proportion of family history of HCM 
and sudden cardiac death than others [40].

4.3.2  Dilated Cardiomyopathy 
(DCM)

A strong familial component has been reassur-
ingly confirmed in DCM [41]. About 111 genes 

are associated with DCM.  The most associated 
gene is TTN, which encodes Titin, the largest 
structural protein of the heart [42]. Another gene 
variant that is associated with approximately 5% 
of the causes of DCM is LMNA missense and 
truncating mutations [43]. LMNA mutations are 
the main genetic cause of arrhythmogenic DCM.

4.3.3  Restrictive Cardiomyopathy 
(RCM)

RCM, one of the rarest and poor-prognosis car-
diac disorders, is characterized by a normal-sized 
left ventricle with a hypertrophic atrium. 
Amyloidosis, as an infiltrative disorder, is the 
most common cause of RCM. TTR gene variants 
and APOA1 are the main genetic perturbations in 
amyloidosis [44]. There is a lack of adequate data 
about non-infiltrative RCM genes; however, 
TNNI3, TNNT2, TNNC1, TPM1, TTN, MYH7, 
MYL2, MYBPC3, MPN, DES, FLNC, LMNA, and 
BAG3 were labeled as associated genes in RCM 
[45, 46]. Most of these genes encode sarcomeric 
proteins. Moreover, CRYAB, which encodes heat- 
shock proteins (such as crystallin B and BAG3), 
is also reported in some studies [45, 47].

4.4  Thoracic Aortic Aneurysm/
Aortic Dissection (TAAD)

Several causal genes have been identified in syn-
dromic and non-syndromic TAAD.  Variants in 
the smooth muscle contractile (SMC) genes, 
including ACTA2, MYH11, MYLK, and PRKG1, 
have been associated with non-syndromic TAAD 
[48]. Syndromic TAAD is associated with sev-
eral connective tissue disorders and their corre-
sponding genes, including Marfan syndrome 
(FBN1), Loeys-Dietz syndrome (TGFBR1, 
TGFBR2, SMAD3, and TGFB2), Ehlers-Danlos 
syndrome (COL1A1, COL1A2, COL3A1, 
COL5A1, and COL5A2), arterial tortuosity syn-
drome (SLC2A10), and Shprintzen-Goldberg 
syndrome (SKI) [49]. Marfan syndrome patients 
with FBN1 mutations have a low risk for acute 
aortic dissections at diameters less than 5.5 cm 
and for aneurysms of other arteries [50]. 
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Common genetic variants at 15q21.1, in the 
FBN1 gene, are associated with an increased risk 
of TAAD in the general population and are com-
mon pathogeneses of aortic disease in Marfan 
syndrome and sporadic TAAD [51]. Loeys-Dietz 
syndrome patients with TGFBR1 and TGFBR2 
mutations are at higher risk of aortic dissections 
at aortic diameters less than 5.0  cm, and these 
patients have aneurysms and dissections of other 
arteries. Furthermore, studies have shown that 
TGFBR1 mutation carriers may have a lower 
risk of aortic dissection with minimal enlarge-
ment than TGFBR2 mutation carriers [52]. 
MYLK encodes the Ca2+/calmodulin-dependent 
myosin light-chain kinase, which phosphory-
lates the regulatory light chain in smooth muscle 
cells to initiate contraction [53]. MYLK missense 
variants were shown to be associated with ear-
lier-onset aortic events compared to haploinsuf-
ficient variants [54].

4.5  Valvopathies

Aortic stenosis (AS) is the narrowing of the aor-
tic valves that leads to obstruction of blood flow 
from the left ventricle (LV) to the aorta. The inci-
dence of AS is increasing with the aging popula-
tion. Today, AS is not considered a passive 
degenerative disease anymore. It is associated 
with a dynamic, complex, and highly regulated 
pathobiological process that leads to a multitude 
of events [55]. The characterization of the whole 
protein complements of the genome, which is 
termed “proteome,” is the major goal of pro-
teomics that could improve the patient’s manage-
ment. Analysis of the cell or tissue is a suitable 
platform as they are eventually the targets for 
novel medications and should provide important 
evidence for treatment discovery.

As a result, lipoproteins and oxidized phos-
pholipids play a significant role in AS that gener-
ates inflammation, apoptosis, and calcification of 
the aortic valve [56]. LPA genetic variants linked 
to Lp(a) levels are significantly linked to aortic 
valve calcification and incident AS [57]. 
Accordingly, to manage the progression of AS, 
aiming lipoprotein(a) is a potential therapeutic 
target. The other potential mechanisms are:

 1. Calcium deposition: which includes calcium, 
phosphate, vitamin D, fibroblast growth factor 
23 (FGF-23), and PTH; the vitamin D/PTH 
axis biomarkers are the most verified factors 
[58]. The N-terminal propeptide of human 
procollagen type I (PINP), beta carboxy- 
terminal cross-linking telopeptide of type I 
collagen (β-CTx), osteocalcin, osteopontin, 
osteoprotegerin, and fetuin-A are the other 
suggested factors [59–62].

 2. Inflammation: limited factors are associated 
with inflammation, which leads to 
AS.  Remarkably, in contrast with CAD, 
C-reactive protein (CRP) is not associated 
with the progression of calcified aortic valve 
disease [63].

 3. Cardiac remodeling, B-type natriuretic pep-
tide (BNP), and cardiac troponin are poten-
tially informative about the myocardial 
consequences of AS. Higher NT proBNP was 
associated with a higher grade of AS severity 
and NYHA class [64]. Cardiac troponin was 
identified as a separate variable associated 
with mid-wall fibrosis of the myocardium as 
part of a clinical risk score that predicts car-
diovascular events in asymptomatic AS [65]. 
Biomarkers of extracellular matrix remodel-
ing such as Fibulin-1 are significantly and 
inversely correlated with AVA index [66].
Personalized medicine contains a multimodal 

approach that might be especially useful for 
decision- making in patients with asymptomatic 
AS rather than patients with AS. Defining which 
patients could benefit from each therapeutic strat-
egy would be possible with PM, for example, uti-
lizing a transcatheter instead of the surgical aortic 
valve.

4.5.1  Mitral Valve Replacement

In patients with significant mitral regurgitation 
(MR) due to floppy mitral valve (FMV)/mitral 
valve prolapse (MVP), mitral valve replacement 
is crucial. Due to the significant variability in the 
size of the mitral annulus, one ring size can’t fit 
all. The mitral “personalized ring” is a novel 
device constructed intraoperatively [67]. These 
“personalized rings” provide excellent support of 
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the mitral annulus, which avoids annular dilata-
tion and paravalvular leak.

4.6  Arrhythmia

4.6.1  Long QT Syndrome (LQTS)

LQTS is defined as QTc ≥480 ms in an asymp-
tomatic patient or a QTc ≥460 ms in the presence 
of unexplained syncope [68]. Patients with LQTS 
are at high risk of arrhythmogenic syncope, poly-
morphous ventricular tachycardia (torsade de 
pointes), and sudden arrhythmic death [69]. LQT 
type 1 is caused by loss of function mutation in 
the KCNQ1 gene which encodes the α-subunit of 
the slow rectifier current (IKS) [70]. LQT type 2 
arises from loss-of-function mutations in 
KCNH2, which encodes the α-subunit of the 
rapid rectifier current (IKr) [71]. In contrast, a gain 
of function in SCN5A will cause LQT type 3, 
which amplified late sodium current (INa) [72]. 
Based on LQTS genotyping studies, the best 
therapeutic option in LQT types 1, 2, and 3 has 
shown to be β-blockers [73, 74].

4.6.2  Brugada Syndrome (BrS)

Inward sodium current impairment compared 
with the transient outward potassium current (Ito) 
in the right ventricular outflow tract is the key 
pathogenesis of BrS [75]. The most common 
genetic mutation in BrS, which could be detected 
in 21% of the patients, is the loss of function in 
the SCN5A gene. Loss-of-function mutations in 
SCN5A reduce the overall available sodium cur-
rent (INa) through either (1) impaired intracellu-
lar trafficking of the ion channel to the plasma 
membrane or (2) through altered gating proper-
ties of the channel [76]. CACNA1C, GPD1L, 
HEY2, PKP2, RANGRF, SCN10A, SCN1B, 
SCN2B, SCN3B, SLMAP, and TRPM4 are some 
other rare genes associated with BrS [77]. 
SCN10A, which encodes α-subunit Nav1.8 
sodium channel, is one of the most novel muta-
tions and is responsible for 5 to 16 percent of BrS 
[78, 79].

4.6.3  Short QT Syndrome (SQTS)

SQTS is defined as QTc ≤330 ms, or QTc inter-
val <360  ms, and at least one of the following 
conditions: history of cardiac arrest or syncope, 
family history of sudden cardiac death (SCD) at 
age 40 or younger, or family history of SQTS 
[80]. Potassium and calcium channelopathies are 
the main pathophysiology in SQTS [26, 27]. 
Gain of function mutations in KCNH2, KCNQ1, 
and KCNJ2 genes (associated with potassium 
channels) are responsible for SQT type 1, 2, and 
3, respectively [81, 82]. Loss of function in 
CACNA1C, CACNB2, and CACNA2D1 (associ-
ated with calcium channels) leads to SQT 4, 5, 
and 6, respectively [83, 84].

4.6.4  Idiopathic Ventricular 
Fibrillation (IVF)

IVF is defined as resuscitated ventricular fibrilla-
tion (VF), which had no other causes for VF, that 
is, metabolic, toxicological, cardiac (including 
other channelopathies and structural heart dis-
ease), respiratory, and infectious causes [68]. IVF 
is responsible for 6.8% of sudden cardiac death 
causes [85]. IVF pathophysiology is mainly due 
to an abnormality affecting the microstructural 
myocardial or Purkinje system [86]. Several 
genes have been found in association with IVF, 
DPP6 was reported in Dutch families [87], 
CALM1 was reported in a Moroccan family [88], 
and RYR2 causes a leaky channel at diastolic lev-
els of calcium under non-stress conditions [89].

4.6.5  Catecholaminergic 
Polymorphic Ventricular 
Tachycardia (CPVT)

The main clinical manifestation of CPVT is epi-
sodic syncope occurring during exercise or acute 
emotion in individuals without structural cardiac 
abnormalities [90]. CPVT1 is caused by a muta-
tion in the RYR2 gene, which encodes the cardiac 
ryanodine receptor and accounts for 65% of the 
CVPT cases [91]. RYR2 gene affects intracellular 
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calcium hemostasis and excitation-contraction 
coupling of the heart [92]. Mutation in the CASQ2 
gene, which encodes cardiac calsequestrin (a 
calcium-buffering protein within the sarcoplas-
mic reticulum), accounts for 2–5% of the CPVT 
cases [93]. Some other genes associated with 
CPVT are TECLR [94], TRDN [95], CALM [96], 
and CALM2 [97]. ANK2 and KCNJ2 may pheno-
copy CPVT; hence they are associated with 
LQT4 and LQT7, respectively [98, 99]. However, 
no specific gene could be found for almost one- 
third of CPVT cases [100].

4.6.6  Progressive Cardiac 
Conduction System Disease 
(PCCD)

PCCD is defined as impulse conduction progres-
sive delay through the His-Purkinje system with 
right or left bundle branch block (RBBB or 
LBBB) [101]. The first reported gene associated 
with PCCD was SCN5A, which encodes the car-
diac sodium channel NaV 1.5 [102]. SCN5A 
mutations could also be found in BrS type 1; 
thus, there is a significant overlap between BrS 
and PCCD.  Individuals carrying this mutation 
may manifest isolated forms of each BrS and 
PCCD or coexisted forms [103]. Mutations in 
TRPM4 gene, which encodes a Ca2+-activated but 
Ca2+-impermeable cation channel [104], are asso-
ciated with PCCD as well as familial AV block 
and RBBB [105]. PCCD may be associated with 
HCM in the presence of mutations in PRKAG2, 
LAMP2, and GLA; also it may be accompanied 
by DCM in the occurrence of LMNA, DES, and 
TNNI3K alterations [106].

4.7  Coronary Artery Disease 
(CAD)

4.7.1  Genes and Mechanism

In addition to several traditional risk factors (such 
as smoking, hypertension, diabetes, dyslipid-
emia, and obesity), a strong genetic basis had 
been also identified for CAD. According to early 

GWA studies [107, 108], variants in two loci 
(LTA and LGALS2) are associated with pathogen-
esis and increased risk of myocardial infarction 
(MI). However, later studies failed to show such 
association between polymorphisms in LTA and 
LGALS2 and myocardial infarction [109]. In 
2007, GWA studies identified SNPs at the 9p21.3 
locus, which is located near the CDKN2A and 
CDKN2B genes and is associated with a 30–40% 
increased risk of CAD [110, 111].

GWA studies for plasma lipoprotein traits have 
identified several common single nucleotide poly-
morphism (SNP) variants that are strongly associ-
ated with plasma LDL. Common variants in genes 
associated with LDL-C levels (PCSK9, LDL-R, 
APOB, APOE, SORT1, ABCG5-ABCG8, ABO, 
LPA, and NPC1L1), genes associated with triglyc-
eride levels (LPL, APOA5, ASGR1, ANGPTL4, 
APOC3, and TRIB1), and the gene encoding cho-
lesteryl ester transfer protein (CETP), which is 
associated with HDL-C levels, have been linked 
to CAD [112, 113]. SNPs on chromosome 1P13 
have a strong association with LDL and have also 
been independently linked to CAD and MI [110, 
114]. Not all mutations are associated with an 
increased risk of CAD, in some cases; inactivat-
ing mutations may decrease CAD risk in conclu-
sion. PCSK9, NPC1L1, and ASGR1 mutations 
result in CAD risk reduction by lowering LDL 
cholesterol levels [11, 12, 115]. Lipoprotein lipase 
(LPL) hydrolyses lipoprotein- bound triglycerides 
and reduces triglyceride levels consequently. LPL 
loss of function is associated with an increased 
risk of CAD [116]. Apolipoprotein A5 (APOA5) 
increases LPL activity [116]. In contrast, apolipo-
protein C-III (APOC3) and angiopoietin-like 4 
(ANGPTL4) reduce LPL activity, and they are 
associated with CAD [117, 118]. APOA5 muta-
tions increase plasma triglyceride levels [116]; 
nonetheless, APOC3 loss-of-function has oppo-
site effects, which causes a reduction in plasma 
triglycerides levels [117].

4.7.2  Premature CAD

GWA studies have identified a considerable num-
ber of genetic variants that are associated with 
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premature CAD. Genetic variants in genes such 
as PCSK9, LDL-R, and NPC1L1 contribute to 
premature CAD either directly or via traditional 
cardiovascular risk factors. Variants in  locus 
9p21.3, which is located on chromosome 9, are 
also associated with the risk of developing pre-
mature CAD [119]. It has been shown that a 
mutation in LDL receptor (LDLR) may lead to 
LDL metabolism dysfunction and thus increase 
the risk of premature CAD [120]. LDLR plays an 
important role in CAD pathogenesis by increas-
ing LDL cholesterol and triglyceride-rich lipo-
proteins levels [121].

4.7.3  Vascular Inflammation 
and Remodeling

The encoding genes of cytokines (CXCL12) 
[112] and interleukin 6 (IL6) [122] are associated 
with CAD by vascular inflammation. SH2B3 is 
one of the novel mutations associated with an 
increased risk of CAD [122]. SH2B3 mutations 
trigger an elevation in numerous inflammatory 
mediators in left ventricle tissues including 
NRLP12, CCR2, and IFNγ [123]. There are two 
types of vascular remodeling, constrictive remod-
eling and expansive remodeling. Constrictive 
remodeling produces more stable plaque and nar-
row lumen, in contrast, expansive remodeling 
causes less stable plaque with no narrowing 
effect on the lumen [124]. ADAMTS7 is one of 
the novel genes associated with CAD and plaque 
formation, but not plaque rupture [125]. MIA3 is 
another gene associated with CAD, which regu-
lates the levels of large proteins such as collagen 
VII [126].

4.8  Hypertension

Hypertension is one of the major risk factors 
for CAD.  Based on CHARGE Consortium, 
ATP2B1, CYP17A1, PLEKHA7, and SH2B3 
were associated with systolic blood pressure 
(SBP); ATP2B1, CACNB2, CSK-ULK3, SH2B3, 
TBX3-TBX5, and ULK4DBP were associated 

with diastolic blood pressure (DBP); and 
ATP2B1 was labeled for hypertension [127]. 
According to another large- scale study, 
CYP17A1, CYP1A2, FGF5, SH2B3, MTHFR, 
c10orf107, ZNF652, and PLCD3 genes caused 
hypertension [128].

4.9  Recognizing Ethical Issues 
and How to Deal with Them

Many patients are aware of the benefits of PM 
although their knowledge of its potential appears 
to be limited [129]. Patients in oncology request 
information about PM more frequently than 
patients with other diseases [130]. Even if 
patients are aware of the phrase “personalized 
medicine,” some of them don’t understand the 
concept of PM [131], which may affect the par-
ticipation of patients in medical 
decision-making.

Professionals also describe a lack of knowl-
edge about PM. According to the conducted stud-
ies, cardiologists have the lowest information 
about PM among family physicians, cardiolo-
gists, and oncologists [130].

One of the major ethical concerns in this field 
is data confidentiality not being guaranteed prop-
erly [132]. Besides sharing data with the legal 
system, patients are concerned about data sharing 
with families in cases where information about a 
genetic disposition needs to be shared with all at- 
risk family members.

Test results or the testing process itself can 
also cause harm for patients. This harm can be 
caused by professionals’ misinterpretation of the 
results or making the wrong therapeutic deci-
sions [133]. Besides mentioned issues, the psy-
chological burden from knowing or expecting the 
assessment results is considerably high. 
Accordingly, harm to benefits must be evaluated 
in every patient.

In contrast with clinical practice, in which 
test results are only beneficial when they pro-
vide reliable and actionable evidence that can be 
used for clinical decisions, there is a lack of evi-
dence in PM results and practice guidelines in 
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this field. The cost-benefit ratio of PM is also 
questionable whether other treatment interven-
tions would not have a superior benefit. PM 
costs are supposed as being massive and caused 
by a much minor proportion of the total patient 
population [134].

4.10  Digital Twin “Prospective 
of Precision Medicine 
in Cardiology”

The idea of digital twins was initially discussed 
in David Gelernter’s book in the early 1990s 
[135]. A digital twin is a digital imitation or rep-
resentation of a physical object, process, or ser-
vice, but also beyond that. In other words, it is a 
virtual prototype (data plus algorithms) that will 
dynamically connect the physical and digital 
worlds and that will utilize modern technolo-
gies, such as smart sensors, data analytics, and 
artificial intelligence (AI), to monitor system 
performance, detect and prevent failures, and 
explore new advancements. A digital twin is 
intended to make a virtual representation of a 
physical object, test it, and optimize it in the vir-
tual space, until the virtual representation meets 
the desired performance, at which point it can 
be built or enhanced (if already built) in the real 
world [136]. Collecting real-time data streams 
from linked clinical, health, and other sensors 
and combining these mass data with advanced 
data analytics, cloud computing, and artificial 
intelligence (including machine learning) will 
generate highly potent networked computa-
tional resources, which could be used in real-
world decision- making. Precision cardiology 
could be established by the utilization of cardiac 
digital twins (CDT) [137]. This cardiovascular 
model will maximize the interaction between 
anatomical and physiologic understanding of 
the cardiovascular system. Treatment and pre-
vention of cardiovascular disease will be based 
on precise predictions of both the underlying 
causes of disease and the pathways; hence, these 
predictions will be promising with CDT 
utilization.
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