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Chapter 16
Role of Endophytic Microorganisms
in Phosphate Solubilization
and Phytoremediation of Degraded Soils

Dipita Ghosh, B. S. Manisha Singh, Manish Kumar, Subodh Kumar Maiti,
and Nabin Kumar Dhal

Abstract Phosphorus (P) is considered as the second most important element in
plant nutrient profile after nitrogen. It primarily exists incorporated in organic
compounds or as mineral salts in soil. Despite these, phosphorus compounds are
disbursed abundantly in agricultural soil, and the majority of them are of insoluble
form. With the assistance of plant-associated bacteria, the inorganic phosphate
solubilization is one of the significant mechanisms for plant growth promotion.
The mechanism involves the solubilization of phosphate complexes into more
available forms such as orthophosphate ions by organic acid secreted by microbes.
The employment of plant growth promoting P bacterial inoculants as biofertilizers
can provide favourable alternative to replace chemical fertilizer to some extent.
Some examples of phosphate solubilizer are Bacillus, Pseudomonas and Aspergil-
lus, while the phosphate absorber includes arbuscular mycorrhizal fungi
(e.g. Glomus). Phytoremediation of heavy metals in association with phosphate-
solubilizing bacteria are known to overcome metal stress on plants due to the
contaminated substrate. In case of mine-degraded soils, endophyte assisted P-solu-
bilization enhances the bioavailability of insoluble P to plants which in turn
enhances the plant growth. Therefore, this chapter covers endophytes assisted
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sustainable in-situ remediation of contaminated site which stimulates plant growth,
defence against metal toxicity and soil fertility.

Keywords Biofertilizers · Soil · Heavy metals · Amendment · Phytoremediation ·
Microbes

16.1 Introduction

Mining activity causes complete loss of soil profile, vegetation and the biodiversity of a
land. It also causes air and water pollution, disturbs drainage and permanently affects a
landform (Ghosh and Maiti 2020; Mohapatra et al. 2020). Mine spoil is characterized
by impoverished nutrient content, low organic content and cation exchange capacity
and disturbed ambient soil physicochemical and biological properties (Basu et al. 2015;
Ahirwal et al. 2021; Ghosh and Maiti 2021a). A degraded mine spoil is devoid of soil
organic matter, microbial activity and the enzymatic activities associated with the soil
fauna (Maiti 2013; Ghosh and Maiti 2021b). A mine spoil is devoid of essential soil
nutrients and often the storehouse of potentially toxic elements (Ahirwal and Maiti
2017; Ghosh and Maiti 2021c). Phosphorous (P) is a crucial component for overall
plant development and productivity (Rawat et al. 2021). Its properties constrain its free
accessibility and make it a restraining nutrient for vegetation development (Mehta et al.
2017). Thus, an efficient amendment technique is required for mitigation of phosphate
deficiency and heavy metal contaminations in mine spoils/tailings and technosol. Some
common restoration practices for post-mining coal mine degraded land are forestry,
agricultural practices, grass-legume seeding, fly ash amended plantation and biochar
aided plantation (Šebelíková et al. 2019; Shukla and Lal 2005; Kumari et al. 2022;
Świątek et al. 2019; Fellet et al. 2011; Ghosh et al. 2020).

In a natural soil ecosystem, plants interact with a number of symbiotic microorgan-
isms (Domka et al. 2019). The plant–soil interaction includes synergy of plants with
rhizobacteria and endophytic fungi (Maiti 2013; Domka et al. 2019; Varma et al.
2019a, b). Actinomycetes, bacterial and fungal endophytes perforate the plant through
root zones along with flower, leaf, stem and cotyledon (Li et al. 2012). The
microbiomes are such integral part of plants that they can be used as proxy to study
the phenotypic variation of the plant genotype. The knowledge of plant–microbiome
interactions can help improving the economic and environmental sustainability of mine
spoil restoration through agriculture and forestry. A reduction in inputs, in terms of
fertilizer, water, or chemical pesticides, would lead to significant cost savings (Prasad
2017, 2018; Prasad et al. 2021).

Endophytic microbes have the ability to grow throughout the host plant tissues and
releases phytochemicals that provide resistance to disease and help in nutrient miner-
alization for host plant (Maiti 2013). Some endophytic fungi can also solubilize P and
supply it to their non-mycorrhizal counterparts, encouraging its growth under nutrient
environment (Mehta et al. 2017; Rawat et al. 2021). Thus, they help in improving the
overall plant growth under stressed environmental conditions (Maiti 2013). Curvularia
geniculata isolated from Parthenium hysterophorus roots is a dark septate root
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endophytic fungus which can improve plant growth by promoting P-solubilization and
certain phytohormone secretion (Priyadharsini andMuthukumar 2017). Another impor-
tant role played by endophytes includes resistance to heavy metals and assistance in
phytoremediation of a metal contaminated site. Endophyte-assisted phytoremediation
technology has been reported to be an efficient technique for in situ remediation of
potentially toxic elements contaminated soils (Mastretta et al. 2009; Domka et al. 2019;
Guerrero-Zúñiga et al. 2020). During the phytoremediation of polluted sites, heavy-
metal contamination enduring endophytes can also improve plant growth, reduce metal
phytotoxicity and influence translocation and accumulation of metal. Thus, this chapter
focuses on the beneficial role of endophytes for phosphate solubilization and heavy
metal remediation. In conclusion, this chapter provides an insight on how endophytes-
assisted phytoremediation enhances soil properties.

16.2 Role of Endophytes for Mine Spoil Reclamation

16.2.1 Phytostimulation and Nutrient Cycling

Essential nutrients such as C, N, H, O and P are absolutely necessary for plant
growth and development. These nutrients are in chemical form through atmosphere,
soil, water and organic matter. Endophyte facilitates the uptake of nutrients by the
roots of the plants (Nair and Padmavathy 2014). They have been reported to elicit
different modes of actions for plant adaptation in P-deficient soil and facilitation of N
uptake (Arachevaleta et al. 1989). Certain endophytic bacteria have been reported to
produce phytohormones such as cytokinins, auxins and gibberellic acids which are
essential plant growth regulators (Xin et al. 2009). Endophytes play vital role in
biodegradation of the debris of its host flora (Mehta et al. 2017).

16.2.2 Enzyme Production, Antimicrobial Activity and Source
of Bioactive

Soil micro-organisms are the source of a number of commercially important enzymes.
This quest for alternative source of enzyme production has led to the discovery of
certain endophytes which can produce vital enzymes. Endophytic fungi such as
Aspergillus japonicas, Cladosporium sphaerospermum, Nigrospora sphaerica, Peni-
cillium aurantiogriseum, P. glandicola and Xylaria sp. have been reported to produce
enzymes such as pectinases, cellulases, xylanases and proteases (Nair and Padmavathy
2014). Acremonium zeae, isolated from maize, has also been reported to produce the
enzyme hemicellulase (Bischoff et al. 2009). A number of isolated endophytes from
plants have been reported to possess antimicrobial activity (He et al. 2020). Most
endophytes show antimicrobial activity; however, the ones obtained from medicinal
plants affects a broad spectrum of pathogenic microbes (Nair and Padmavathy 2014).
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16.2.3 Bioremediation

Bioaccumulation, bio-stimulation, bio-deterioration, bio-leaching, bio-reduction and
bio-sorption are some common bioremediation techniques used for heavy metal
contamination. Endophytes possess the ability to breakdown complex compounds.
Mastretta et al. (2009) reported that the inoculation of Nicotiana tabacum with
endophytes resulted in improved plant growth under Cd toxicity and the
phytoavailable Cd concentration was high in comparison with the one having no
endophytic growth. According to Basu et al. (2015), a number of microorganisms
catalyse the reduction of Cr (VI) to Cr (V) or Cr (III) in various environmental
conditions. Cr (VI) reduction is shown to be metabolic in some species of bacteria
but can also be dissimilatory/respiratory when exposed to anaerobic conditions.
Although, most microbes are sensitive to Cr (VI), some microbes are highly resistant
and can tolerate Cr (VI) toxicity in the soil. Metal reductase genes found on plasmids
and chromosomes impart the resistance to these microbes for growth in Cr
(VI) environment (Patra et al. 2017). Some common endophytes that have the
potential for Cr remediation include Acinetobacter, Arthrobacter, Bacillus spp.,
Cellulomonas spp., Escherichia coli, Enterobacter cloacae, Pseudomonas and
Ochrobactrum (Hossan et al. 2020). A review conducted by Pushkar et al. (2021)
reported that major bacterial communities found at chromium contaminated sites are
Gammaproteobacteria. Other bacteria reported to inhabit chromite contaminated
sites includes Serratia marcescens, Pseudomonas aeruginosa, Alcaligenes faecal
and Klebsiella oxytoca.

16.3 Role of Endophytes for Phosphate Solubilization

Phosphorus is an essential macronutrient for the proper metabolism, growth and
plant development. Phosphorus is abundantly available in both inorganic and
organic forms in soil; however, due to the complex formation with metal ions in
soil, it is unavailable for plant uptake. Phosphate-solubilizing endophytes have the
ability to solubilize the complex phosphates in the soil by various mechanisms.
Some commonly used mechanisms used by these microbes include production of
enzymes, organic acids and siderophores that have the ability to chelate the heavy
metal ions and form complexes, making bioavailable phosphates for vegetation
uptake (Rawat et al. 2021). These endophytes also produce certain phytohormones
such as auxins, cytokinins and gibberellins which promote plant growth.
1-aminocyclopropane-1-carboxylic acid deaminase produced by endophytes has
been reported to improve plant growth under stressful environment which improves
its resistance to heavy metal toxicity (Fig. 16.1). A few examples of endophytes,
their host plant and the role they play are given in Table 16.1.
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Fig. 16.1 Mechanism by which endophytes promotes plant growth and phosphate solubilization

16.4 Role of Endophytes for Phytoremediation

A number of endophytes have been reported to be heavy metals resistant.
Endophyte-assisted phytoremediation is an effective technique for in situ remedia-
tion of contaminated soils (Prasad 2022). Microbes develop symbiotic relationships
with their plant hosts and promote phytoremediation. Some common
hyperaccumulating plants such as Brassica juncea (L.) Czern., Pteris vittata,
Sedum alfredii and non-hyper-accumulators, such as Arabidopsis thaliana, Brassica
napus and Glycine max have been reported to house a number of important endo-
phytes (He et al. 2020). During pollutant phytoremediation association of heavy-
metal-resistant endophytes can result in enhancement of plant development followed
by decrease in metal phytotoxicity and affect translocation of metals in plants. They
even produce certain enzymes which help in the degradation of contaminants that
reduces the phytotoxicity of the potentially toxic elements. Application of endo-
phytes for phytoremediation and their significance for the host plant growth has been
given in Table 16.2.

16.5 Case Studies

16.5.1 Fungal Root Endophytes in Metal-Polluted Tailings

Flores-Torres et al. (2021) conducted a research identifying and assessing the plant
and fungal root endophytes in bioremediation of polymetallic polluted tailings. The
study revealed the significant role of native plants such as Tagetes lunulata, Cerdia

https://en.wikipedia.org/wiki/Carl_Linnaeus
https://en.wikipedia.org/w/index.php?title=Vassili%C4%AD_Matveievitch_Czernajew&action=edit&redlink=1
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congestiflora and Lupinus campestris as well as the exotic plant species Asphodelus
fistulosus, and Cortaderia selloana in phytoextraction and/or phytostabilization of
Zn, Pb and Cd. Molecular studies of fourteen endophytic fungi isolated from root
inner zones of Pennisetum villosum and T. lunulata showed the prevalence of
Alternaria and other Pleosporales. The dominance of endophytes in several plant
root systems indicates the interaction and functioning of mycorrhiza in mine tailings.
Exotic invasive plants A. Fistulosus and P. villosum showed more than 50% root
colonization intensity by endophytes, which could ascertain its invasive capacity.
The study reported that these endophytes could facilitate the advancement of
Ambrosia artemisiifolia growing at polluted sites; therefore, mycorrhizal interac-
tions can help in promoting local adaptation and/or reducing environmental stress.
Thus, the study indicated that the employment of native endophytic fungi could
emphasize the establishment of plants for reclamation of mine waste in semi-arid
climate in biologically sustainable manner. Also, high efforts are needed to enhance
the vegetation practice of mine wastes under study, which can efficiently reduce, in
turn, their potential ecotoxicological impact on organisms, human populations and
agricultural areas.

16.5.2 Root Colonizing Endophytes for Succession in a Mine
Degraded Land

Kolaříková et al. (2017) studied the fungal community assembly during spontaneous
primary succession in Sokolov brown-coal mining in Czech Republic. The fungal
communities associated with the roots of Betula pendula and Salix caprea were
studied in a mine spoil chronosequence (12–50 years old sites) site. The study
showed that the fungal root endophytes, fungal plant pathogens and ectomycorrhizal
fungi changed significantly along the age of reclamation. Ectomycorrhizal fungi and
fungal plant pathogens communities have a direct impact on the development of the
vegetation cover and the properties of the reclaimed mine spoil. Thus, the study
concluded that plant community structure changed along the various stages of
succession which was directly impacted by the endophyte and pathogen communi-
ties of the soil. The study provided a better understanding of community assembly of
root-associated fungi and provided insight of fungal ecology in various stages of
succession.

16.6 Conclusion

Phytoremediation with endophyte assistance can be a promising technique for the
restoration of a degraded and contaminated soil. They are known to improve nutrient
uptake, enhance growth, decrease phytotoxicity of heavy metals and effect their
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assimilation in plants body. These endophytes also solubilize the unavailable phos-
phorus in soil and restore the deficiency in soil. These endophytes also play a vital
role in phytoremediation of heavy metal contaminated sites. Thus, endophytes as a
mean to remediate contaminated sites should be explored for eco-friendly and
effective remediation of heavy metal contaminated sites. Selection of potent endo-
phytes with multifunctional role is essential for the commercialisation and reduction
of coast of restoration of mine-degraded land. Thus, future researches should be
done to develop and discover new strains from various ecological niches and for
employing in degraded soil restoration.
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