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Preface

Plants are colonized by a multitude of microorganisms, collectively called
“microbiome.” In this new era of ecology knowing plants at par with microbiome
is essential to address the growing demand and for sustainable agriculture.
Microbiomes associate with plants as commensals, symbionts, or pathogens and
are associated with multifarious functions such as nutrient acquisition and
augmenting plant defense against biotic and abiotic stresses in many cases. These
microbiomes occupy various niches in plants such as rhizosphere, root, seed, stem,
and leaves. Global agriculture is facing urgent challenges to sustainable food
production and to meet its growing demand. The quest to harness the potential of
useful microorganisms from ecological niches has shown many interesting results.

The book on Plant Microbiome for Plant Productivity and Sustainable Agricul-
ture features 18 chapters written by numerous renowned experts. The chapters
provide a comprehensive knowledge and understanding on the topic. The diversity,
distribution, functional potential of plant microbiota, and its associations with plants
in agroecosystems are described. The various technological constraints, approaches,
challenges to study microorganisms and prospects of using microbiomes for agri-
culture and sustainable production, and environment sustainability concepts are
described in this book.

Chapter 1 describes fungal microbiomes and plant growth-promoting potential
and opportunities for agriculture. Chapters 2 and 3 describe the rhizosphere and root
microbiomes and functional traits that are essential for plants productivity. Chapter 4
covers nanotechnology and prospects of microbiomes for sustainable agriculture.
Chapters 5 and 6 cover changes in plant microbiome and functional potential of
microbiomes in response to abiotic stress. Chapters 7, 8, and 9 cover beneficial plant-
microbe associations, and their diversity, distribution, and decoding using latest
techniques. Chapters 10, 11, and 12 highlight the essential functional traits and
function of Bacillus and Streptomyces for the management of biotic stresses in plants
and the omic route to utilize endophytes and their functional potentials in plant
growth promotion. Chapters 13, 14, 15, and 16 describe the functional traits of
microbiomes in siderophore production in iron uptake and plant biofortification,
plant microbiome diversity and potential for crops, endophytic microbiomes in plant
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vi Preface

hormone production, and endophyte microbiomes with potential in phosphate sol-
ubilization and phytoremediation of degraded lands. Chapters 17 and 18 cover the
molecular mechanisms of plant probiotics for the improvement of soil health and
plant microbiomes and the sustainability concepts for agriculture and in enhancing
the productivity in agroecosystems.

Most of the chapters also contain technical advancements which will be very
useful for microbiologists, agriculturalists, environmentalists, and Ph.D. students.
The book will be of interest to industrial experts, policymakers, and those interested
in environmental stewardship. The editors and contributing authors of this book
make an excellent attempt to bring together a deep understanding from the primitive
to the modern concepts about microorganism and their importance for crop improve-
ment. This volume is expected to attract professionals from all over the world.

The editors are thankful to Akansha Tyagi, Senior Editor, and Jayesh Kalleri,
Production Editor at Springer Nature, for their valuable help in formatting and
incorporating editorial changes in the manuscripts.

Greater Noida, Uttar Pradesh, India Sagar Chhabra
Motihari, Bihar, India Ram Prasad
Manabí, Ecuador Naga Raju Maddela
New Delhi, India Narendra Tuteja
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1

Chapter 1
Fungal Microbiomes: The Functional
Potential for Plant Growth Promotion
and Opportunities for Agriculture

Angela T. Alleyne and Laurent Penet

Abstract Fungal microbial communities in plant hosts, or the mycobiome, are
critical to key agriculture functions for increasing plant growth and improving
disease management. In this chapter, the fungal microbiome is explored for its use
as a tool in disease diagnosis, agroecology, and disease management in modern
agriculture. Molecular markers and specifically the internal transcribed regions (ITS)
are examined in their use as discriminants of community members in the
mycobiome. While widely used, the ITS is sometimes incapable of resolving
taxonomic complexities; thus, mycobiome analysis may require the use of several
additional barcode genes in fungi. Further, the impact of abiotic and biotic stresses
are examined and we discuss the application of microbiome therapy or using
microbial communities as a tool in combatting plant diseases while also improving
soil health.

Keywords Mycobiome · Fungi · ITS · Agroecology

1.1 Introduction

Living organisms are currently being re-examined in a wholistic manner as holobionts
and hologenomes in relation to their microbiomes (Bordenstein and Theis 2015; Berg
et al. 2020). Therefore, microbial communities or metagenomes have been recognized
as a second genome of multicellular eukaryotes and part of their extended phenotype.
Indeed, they may have effects beyond the organism that influence fitness. In plants,
they play beneficial roles in plant growth and development, and stress responses
in their hosts (Andreote et al. 2014; Patel et al. 2015; Zhang et al. 2021;
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Department of Biological and Chemical Sciences, Faculty of Science and Technology, The
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2 A. T. Alleyne and L. Penet

Fig. 1.1 The mycobiome: dynamic fungal community interactions in the phyllosphere and rhizo-
sphere with its plant host

Prasad and Zhang 2022). Fungi perform several critical functions in their plant hosts in
their roles as endosymbionts including biotrophic, necrotrophic, or saprophytic activ-
ities (Bonfante et al. 2019). Consequently, the fungal microbiome also known as the
mycobiome (Fig. 1.1) and the genomes of endophytic fungal communities contribute
to our understanding of major fields in agriculture such as agroecology and plant
pathology (Gao et al. 2021; Meunier and Bayır 2021).

One of the major applications of metagenomics is in disease diagnosis where
researchers can identify disease-causing agents that cannot be detected by traditional
methods (Raja et al. 2017). Metabarcoding has also shown that plant diseases are
sometimes more biologically complex than initially thought and disease symptoms
can be caused by a complex of microbes (Raja et al. 2017; Nilsson et al. 2019). As
such, the application of fungicides and other pest control agents can irreparably
damage and remove beneficial organisms in the microbiome. These side effects can
be reduced with a greater understanding of plant microbiomes, especially in fruits,
vegetables, and staple cereal crops such as wheat, rice, maize, yam, and cassava
(Clay and Schardl 2002; Edwards et al. 2015; Frediansyah 2021), in addition to
understanding the impact of the fungal microbiome or mycobiome in soils (Dubey
et al. 2019; Chen et al. 2021; Gao et al. 2021). Harnessing this major resource using
biotechnology and bioengineering is therefore important for producing metabolites,
improving crop yields, enhancing precision disease diagnosis, and providing alter-
natives to pesticide treatment in crops (Compant et al. 2019; Noman et al. 2021). In
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this chapter, we examine the impact of the mycobiome in plant disease and agro-
ecological approaches to disease management, with applications for sustainable
agriculture.

1.2 The Fungal Microbiome (Mycobiomes)

The plant mycobiome represents a dynamic network of fungal communities found
throughout the plant holobiont (Fig. 1.1). Its importance is considered from the root
systems and soil health, to the phyllosphere or plant leaf system and plant immunity.
While the structure and composition of the mycobiome is important for its functional
aspect in promoting plant growth, recruitment and organizing of the holobiontic
plant system are also important characteristics left to be fully explored.

The vast majority of plant fungi in the plant holobiont are beneficial microorgan-
isms (Pagano et al. 2017). The incredible speed and read length produced by modern
NGS technologies are useful tools in probing the plant’s mycobiome and have been
used in the field of diagnostics, while aiding agronomic practices (Hartman et al.
2018). Additionally, the interaction of wild plants with cultivated varieties are being
re-examined in terms of their microbiome characteristics and potential for contrib-
uting to local microbial ecology. As such, the communities of fungi among wild
plants are more abundant than those of cultivated plants (Ma et al. 2021). Harnessing
endosymbiotic microbiota for their benefits as an application in smart agriculture
applications (Hartman et al. 2018) is therefore considered here.

1.2.1 Molecular Markers and Fungal Metagenomics
in Agriculture

Sequence-based metagenomics provides information on species composition by
either sequencing, annotating, and assembling all the genetic material obtained
from mixed samples, or by sequencing targeted gene regions in fungi (Ahmed
2016; Noman et al. 2021). Generally, when used in disease diagnosis, molecular
markers are based on a range of various hybridization techniques which are genome
specific, sometimes are more precise than direct observations of symptoms, and less
time-consuming and limiting than microbial cell culture (Schoch et al. 2012; Raja
et al. 2017; Hariharan and Prasannath 2021). Polymerase chain reaction (PCR) and
next-generation sequencing (NGS) primers that target the rapidly evolving and
highly repetitive ribosomal DNA (rDNA) genes that transcribe rRNA and their
internal transcribed regions (ITS 1 and 2) are widely used to identify fungi at both
genus and species levels (Schoch et al. 2012; Crous et al. 2015; Raja et al. 2017;
Tedersoo et al. 2018). The full ITS region is approximately 600–650 base pairs long
and ITS1 and ITS2 are separated from each other by the 5.8 S rRNA (Schoch et al.
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Fig. 1.2 Polymerase chain reaction amplication and next-generation sequencing of internal tran-
scribed regions of fungal microbiome

2012; Edwards et al. 2017; Raja et al. 2017; Naranjo-Ortiz and Gabaldón 2019)
(Fig. 1.2). Notwithstanding this, in some instances, hybridization to the ITS is
insufficient in resolving taxonomic complexities in certain fungi, and therefore
secondary barcode genes are necessary to reach accurate taxonomic allocation or
identification. These include protein coding genes such as glyceraldehyde-3 phos-
phate dehydrogenase (GADPH), fungal-specific translation elongation factors
(TEF), beta tubulin (TUB), actin (ACT), and RNA polymerase II (RP2) (Schoch
et al. 2012; Stielow et al. 2015). Moreover, the border regions of the ITS designated
as the small subunit (SSU) or the large subunit (LSU) also provide further taxonomic
discrimination of fungi (Edwards et al. 2017) (Fig. 1.2). Additionally, in several
NGS studies of the plant mycobiome, ITS1 and ITS2 do not yield significant
differences in taxa assignment based on operational taxonomic units (OTUs)
(Blaalid et al. 2013), but ITS2 may provide better characterization of Ascomycota
fungi than the ITS1 region (Scibetta et al. 2018).

Notably, besides targeted amplicon sequencing of molecular markers, shotgun
metagenomics can be used to discern fungal taxa. Although more expensive than
amplicon-based NGS, shotgun metagenomics removes PCR bias and aids in the
discovery of novel or new lineages while also performing a quantitative function in
microbiome studies (Tedersoo et al. 2015; Donovan et al. 2018; Nilsson et al. 2019).
This is especially important in agriculture where knowledge of the extent of fungal
infection is usually desired but difficult to ascertain through real-time PCR (qPCR)
or other means that may not be readily available in field studies. Significantly,
metagenomic studies using molecular markers usually yield large numbers of
unidentified taxa (Cuadros-Orellana et al. 2013) many of which belong to
unidentified Ascomycota, which is challenging in well-established crops, and even
more so in less studied but important tropical crops such as the roots and tubers
including yam, cassava, and sweet potato (Gao et al. 2013; Chen et al. 2021; Xiong
et al. 2021). In fact, the partial genomes of these crops have only recently been
reported (Prochnik et al. 2012; Tamiru et al. 2017; Isobe et al. 2019). The incomplete
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genomic data for these important agricultural crops including wheat, rice, cassava,
yam, and sweet potato remain an untapped resource for future development in
agriculture research and plant health in general.

1.2.2 Core Mycobiomes and Plant Health

General plant health has been attributed to the plant microbiome and healthy or
diseased status may be gleaned from an observation of specific organisms in the
rhizosphere, phyllosphere, or endosphere of the plant (Toju et al. 2018b). Variation
in the plant mycobiome in time and spatial compartments such as the phyllosphere,
rhizosphere, endosphere, and seed have been described for several major agricultural
crops such as wheat, maize, and rice (Clay and Schardl 2002; Kim and Lee 2020;
Zheng et al. 2021), and tropical roots such as cassava (Frediansyah 2021; Zhang
et al. 2021). Therefore, fungal communities are determined structurally by the
developmental plant growth stage, soil types, as well as the plant species (Carbone
et al. 2021; Zhang et al. 2021). However, fungal endophytes of tropical plant systems
are less well known than those present in temperate grasses and shrubs. The latter are
also less diverse, are transmitted horizontally, and contribute less to host defense
than those found in woody angiosperms (Arnold et al. 2003).

From a developmental perspective, it has also been shown that root colonization
by microorganisms rapidly spreads throughout the plant and may be predicted by
functional roles assigned to plant–microbe interactions (de Souza et al. 2016; Toju
et al. 2016, 2018b; Bonfante et al. 2019; Varma et al. 2019a, b). Generally, studies
that examine commodity crops such as sugarcane and bananas have notable impacts
on such processes as biofuel production, food security, human health, and develop-
ment in countries heavily dependent on commodity exports (Yuan et al. 2021; Aslam
et al. 2022). In a critical review of the core fungal microbiome in sugarcane, it was
shown that yeast and yeast-like fungi dominate the various plant compartments and,
in the rhizosphere (de Souza et al. 2016), species such as Candida, Debaryomyces,
Hanseniaspora, Meyerozyma, Wickerhamiella, and Zygosaccharomyces made up
approximately up to 12% of all fungal diversity in the sugarcane stalk (de Souza
et al. 2016).

Suppressive soils rely heavily on studies of the plant microbiome. Disease
suppression in soils occurs when resident microorganisms compete with and limit
newer arrivals from occupying their niches, thereby coincidently reducing the
appearance of disease in plant hosts (Hartman et al. 2018; Pascale et al. 2020). In
a study on health status, it was found that the population of Fusarium decreases
during reductive soil disinfection (RSD) and when exposed to aerobic conditions
during replanting is more disease suppressive than in diseased soils (Huang et al.
2015).

Additionally, mycobiome studies have relied heavily on arbuscular mycorrhizae
(AM) and their function in improving plant health. As such, the vast array of
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pathogenic and non-pathogenic fungi that make up the core mycobiomes of plants
and soils remain to be further explored.

1.3 The Mycobiome and Sustainable Agriculture

1.3.1 Mycobiomes Boost Plant Growth

An overreliance on agricultural inputs such as fertilizers and pesticides has been
detrimental to plant biodiversity and soil microbial diversity or soil health (Hartman
et al. 2018). Sustainable agricultural practices such as tree-based intercropping and
use of RSD make use of microbial communities to improve soil health and encour-
age improved plant growth (Compant et al. 2019; Tedersoo et al. 2020). Mycorrhi-
zae act as a bridge in the rhizosphere to microbial communities, and with the roots of
its plant hosts. Importantly, established networks of AM fungi mediate nutrient
transfers between host and holobiont and function as significant nutrient trading
partners in plant–plant interactions in agricultural systems (Mendes et al. 2013;
Fitzpatrick et al. 2020; Tedersoo et al. 2020; Pozo et al. 2021; Varma et al. 2017a,
b, c). It has also been shown through network analysis that usually a small group of
organisms are key microbial players in the rhizosphere and phyllosphere and they
control these extended symbiont–symbiont networks (Toju et al. 2016). Three
processes are determined by these early colonizers and network organizers during
establishment of the microbiome network: (1) functional species recruitment,
(2) pathogen/pest blocking, and (3) core reinforcement (Toju et al. 2018a, b; Gao
et al. 2021). Nonetheless, the mycobiome is also conditioned by several ecological
factors that drive species composition including host plants, ecological drift, dis-
persal, and evolution (Fitzpatrick et al. 2020). Furthermore, it has been shown that
abiotic factors such as drought stresses may effect changes in the root microbiome.
As such, higher relative abundances in the fungal composition of the root
endosphere were seen in response to black-foot disease (Dactylonectria and
Cylindrocarpon) and the biocontrol agent Trichoderma, than in non-irrigated sys-
tems (Dubey et al. 2019; Carbone et al. 2021).

1.3.2 Plant Growth-Promoting Fungal Microbiomes
in Disease Management

Plant microbiota do not only demonstrate growth effects on plants, but they also
trigger plant resistance and increased protection against diseases. Resistance is
probably increased via different paths. Some commensals induce natural plant
immunity reactions despite not being pathogenic and causing no damage to plants,
thus yielding baseline responses before pathogens arrive and threaten plant health.
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This increase in resistance is thus passive and possibly incurs a defensive cost to the
plant, especially if no further immunity-based reaction is required. Increasing
induced immunity when no pathogen is eventually encountered is an energetic
loss (Heil and Bostock 2002). When this loss involves only local collateral damage
with casual benefits (pathogens eventually arrive), then the whole process is still
advantageous. On the other hand, if immunity triggering commensals are numerous
and co-exist on the whole individual, then the global cost for the plant might exceed
its benefit, possibly at the cost of diverting ineffectual commitment to defense that
could have been spent on growth or other functions (Martin 2001; Fitzpatrick et al.
2020). Little is known yet whether these effects translate into the global fitness
balance for plants. Besides the plant’s natural self-defense via antibiotic secretions,
microbiota can extend plant protection whenever antibiosis is the result of commen-
sal microbes themselves. This would lend to self-selecting communities (based on
resistance genes to local compounds). Still, since it involves a classical arms race
scheme for microbiota components, any microbe may become part of a local niche,
including pathogens themselves whenever they evolve resistance to the local anti-
biosis conditions. Nevertheless, enhanced microbiota communities that would allow
for pathogen control via local out-competition or even antibiosis are promising
prospects in agriculture practice (Fitzpatrick et al. 2020).

As a matter of fact, application of useful microbiota will rely on careful choice,
and precise and descriptive characterization of species in use, side effects, and
potential pitfalls. Yet, sometimes benefits can be expected even from closely related
co-existing organisms, and even when both behave as pathogens. We will illustrate
here an example from Colletotrichum genus, a well-known group of fungi species-
complexes often drastically pathogenic among many crops, worldwide. A study on
weed hosting ability during yam intercropping revealed a tendency for two closely
related species, namely C. gloeosporioides and C. truncatum, while co-existing at
local scale on various weed species to segregate among different sub-communities
within field vegetation. So, C. gloeosporioideswas found more often on erect weeds,
while C. truncatum was more frequent on vines and creeping species (Dentika et al.
2021). This segregation hinted at potential competition for the two fungi species.
Yet, while C. gloeosporioides may be strongly pathogenic on yams (Dioscorea
alata), C. truncatum is not considered a threat to this crop. Co-inoculation experi-
ences comparing either admixing or prior inoculation by C. truncatum demonstrated
that disease symptoms are aggravated in the first case, but were strongly reduced in
the second (Dentika et al. 2021). Prior presence of C. truncatumwas thus detrimental
to the more pathogenic species on yams. Clearly, this means that competition
between species can be used to decrease disease onset, and potentially attenuate
epidemics on crops. Still, an overall benefit will depend on the agricultural context.
In this case, C. truncatum is not pathogenic on yams, but the species complex is
heavily damaging on other crops such as peppers (Than et al. 2008; Weir et al.
2012). Potential for control will therefore preclude its use where both yams and
peppers are intercropped.
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1.4 Agroecology, Sustainable Agriculture, and Fungal
Microbiomes

Microbiota help in at least two major functions that are relevant to agriculture:
helping plant growth via production of hormones and related compounds associated
with nutrient uptake, and inhibiting pathogenic organisms, thus helping crops defend
themselves against antagonists (Andreote et al. 2014; Bonfante et al. 2019; Compant
et al. 2019). Both phylloplane microbiota (on aerial plant parts) and rhizosphere
microbiota (soil microorganism communities around the roots) can thus significantly
contribute to food production once we work out the best components and combina-
tions from natural microbiota (Arif et al. 2020). Engineering optimal communities
may also involve cycling components, as phyllosphere microbes can also further
degrade plant litter and so improve cycling processes in the soil and humus (Mueller
and Sachs 2015; Arif et al. 2020). Consequently, recent progress in important and
widely cultivated crops such as rice has already identified microbe species of interest
with high potential for increasing yield and most probably with culturing potential
for future use in agriculture (Chen et al. 2021). Conversely, designing optimal
microbiota combinations will require assessing their potential turnover both during
cropping and intercropping, especially if rotation is involved and alternated crops do
not respond optimally to the same communities, or if turnover is faster than crop
duration. This issue may likely be less relevant to soil microbiota, which demon-
strate more stability over time, given that some latency is expected in modification of
the physicochemical properties of soil microbiota (Yuan et al. 2021). Additionally,
aerial microbiota of plants are less resilient than their rhizosphere counterparts to
meteorological conditions such as rain, temperature, humidity, and their daily
fluctuations, and crop management as well (especially spraying). So, some level of
turnover is expected, especially since dispersal from neighboring environments is
facilitated by the lack of a physical barrier to the flow and arrival of natural airborne
propagules. This drawback in the use of microbiota will also naturally be exacer-
bated by the nature of the microorganism: fungi are probably more resilient actors of
the microbiota than bacteria are, both in soil and as endophytes in the phyllosphere,
and therefore the very nature of their facilitation in microbiome networks will be
impacted (Hartman et al. 2018; Compant et al. 2019).

Meanwhile, although microbiota will no doubt become a major tool in more
sustainable agriculture systems, several challenges still need to be addressed before
their use can be generalized at a large scale. The first and most obvious challenge is
to delineate taxonomic contributions to ecosystemic services by microbial commu-
nities that would benefit cropping systems, and especially delineate potential differ-
ences in composition that will differ in diverse environments, especially
temperate vs. tropical, but also potential asymmetries for sub-temperate/sub-tropical
areas or humid vs. arid tropics. Of course, combining optimal components will be a
major asset of the use of microbiota, but these might also prove different for the
different plant organs, especially contrasting effects between leaves and flower
structures, and even tubers or fruits (Müller et al. 2015). While the emergent and
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promising science of microbiome is growing exponentially in terms of studies and
knowledgeable insights, and it highlights the many opportunities for deploying
sustainable agriculture practices by potentially reducing an overreliance on chemis-
try, we still need to identify core microbial species, and core communities in
combination with all the different conditions they will face, before the optimization
process of communities may begin. The task is even more crucial because of climate
change, as it intensifies and may already be contributing to altering potentially
useful, but as yet unidentified microorganisms, or their current niches. In fact,
climate change is suggested to significantly impact shifts in microbial communities
(Dubey et al. 2019). Meanwhile, another dichotomy exists in the divide between
monocrop-intensive agriculture and small-scale diversified agroecological farming
systems, and therefore challenges in microbiota use will differ between these two
facets of current agriculture systems. We will explore this dynamic in more details in
the next section.

1.5 Opportunities for New Applications of Beneficial
Fungal Communities to Improve Soils, Plant Growth,
and Plant Health

Intensive agriculture, even within an ecologically intensive conceptual framework,
will often consist of simplified cropping systems when compared to agroecological
and agroforestry systems, and will thus more quickly benefit from applied
microbiota tools when those become available for large-scale use. Nevertheless,
issues highlighted previously will paradoxically also prove either more complex or
easier to include within highly diversified small-scale farming, which is still cur-
rently in widespread use in agriculture systems worldwide. We will review here how
enhanced microbiota approaches may translate within such systems, and whether a
common framework would apply in both cases, or if alternative solutions should be
worked out by the scientific community. There are grossly three levels for which
both approaches to agriculture are so divergent that they might rely on different
strategies for microbiota to be fully successful: the first deals with soil management
and fertilization, the second is concerned with crop diversity on a local scale, and the
last to the agronomic dark triad—weeds, pests, and diseases.

1.5.1 Soil Management and Fertilization

Currently, intensive agriculture mostly consists of broad-scale monocultures and has
historically given modest attention to soil (and by extension soil health), which was
viewed as an inert substrate and simple recipient for crops (Fedoroff 1987). More-
over, the concept of nutrient return in commercial agriculture is often optimized as a
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simple plant-specific formula to correctly balance and broadly compensate for
agronomic inputs and to compensate for exports from harvested crops, and less
frequently considers nutrient cycling via manure or other biotic factors. As a result,
many cultivated soils are damaged and impoverished, suffer from high levels of
run-off, and have become lifeless substrates on which efficient productivity will
require widespread use of external inputs (Pankhurst and Lynch 1995). Meanwhile,
the modern paradigm shift toward envisioning the soil as a living community of the
microbiome, together with the older substrate or subtractive narrative, and our need
to restock carbon lost from soils due to cultivated agriculture will provide us with
new tools or approaches to make food production both sustainable and more
environmentally friendly. Hence, provided specific regional mitigation, there are
already steps toward soil stewardship involving regenerative soil microbial commu-
nities (Pagano et al. 2017; Carbone et al. 2021). These will involve increased cycling
of organic matter, possibly through the local circular economy since soil resilience
involves large quantities of fungi biomass and fungi often require high levels of
organic matter (Pritsch and Garbaye 2011). While such fungi-based microbiota
composition needs to be precisely worked out, researchers should focus on fungal
taxa that are analogous in vegetative-stage evolution and create pioneer communities
that lend itself to natural evolution toward locally resilient communities, helping
both crops grow and resist diseases, while restoring prior soil health (Compant et al.
2019; Pozo et al. 2021). This is even more important than maintaining nutrient levels
in healthy soils based solely on intake and release by microbiota.

Contrastingly, agroecological systems are already based on cycling biomass and
enriching soils, be it in the form of compost use, green- and animal manure,
mulching, or even in the more extreme forms of recycling trees (hugelkultur
approach). Rich soils are known to be more resilient to drought and nutrient
run-off. Compared to impoverished soils, the challenge becomes more that of trying
to improve communities directly toward specifically optimized microbiota/plants
interactions. While little is known about communal stability of artificial microbial
assemblages, even less is known about whether replacement of constituent species is
even possible. Unless recurrent propagule import is brought up to a specific location,
we currently do not know if species can simply add up and build improved
microbiota with beneficial impacts on crops, even though classical ecology taught
us a lot about species displacement and competitive replacement, and specific
combinations might simply prove too complex to engineer. Yet, systems that are
naturally highly diverse often are resilient and self-sustained, so maybe the issue
becomes not so much optimizing individual components within the community, but
maintaining a functional collective entity with systematic efficiency. In this case,
scientific investigations should focus on the impact of practices and how they can
provide opportunities for improved functioning, stability, and benefit to crops.
Clearly, while still poorly documented from an academic perspective, several prac-
tices sometimes fancied by farmers who have adopted agroecological or permacul-
ture systems rely on the idea that microbiota are an important component of their
system, specifically indigenous microorganism enrichment procedures. The com-
mon basis for such practices is often conducted by collecting humus from local
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forests and application of fermented solutions to seed fields with enriched solutions.
There are probably numerous avenues for research in this regard, especially to study
whether and at which rate beneficial organisms are transferred to cultivated plots,
and whether recipes can be specifically designed to orientate the taxonomic compo-
sition for specific functions. One of the advantages of these approaches is that both
local and low-tech solutions amenable to scaling up are included for small farmers
worldwide.

1.5.2 Crop Diversity at Local Scale

Although intensive agriculture is most often characterized by monoculture, notwith-
standing recent increased frequency in intercropping of a few crops, developing
microbiota tools will still target a single or only a few crops. The core concern of
microbiota as a productivity tool will thus develop around the question as to whether
there exist simple communities that will be generalist enough to confer growth or
resistance benefits to a broad and diverse array of crops, or whether optimal
microbiota will be more specific and dependent on the crop species cultivated.
Focus on core components of beneficial microbiota communities will probably
first lead to rapid advances and early use, until more specialist organisms can be
proposed for use whenever their benefits outperform those of core components.
There is a serious question around communal identity of commensal microbes in the
wild. Current literature highlights both the importance of space and local influence of
species components. So, microbiota broadly shared between plants growing here and
there, sometimes even on a large scale or region, and more specific interactions with
microbiota species in close relationship with specific plants are critical. There is thus
an important issue to resolve as to whether shared species components between local
plants could demonstrate benefits in general, or if they behave more simply as casual
commensals without strong interactions. Understanding both core components of
microbiota and specific specialized components is thus an important goal for applied
agriculture science.

In contrast, agroecological systems strive for diversity at every level of structural
organization. Agroecological agrodiversity generally involves both infra-specific
and inter-specific levels of diversity. In addition to that, spatial structuring of
diversity is not necessarily homogenous or controlled, but often occurs with quite
high degrees of admixing, especially in more traditional and small-scale agriculture
contexts. In this case, the potential benefits of microbiota strongly rely on whether
generalist beneficial communities can be proposed. When it comes to specific
components, the natural diversity will preclude any artificial optimization of specific
components. Therefore, as previously discussed, the focus should shift to integrated
management of naturally occurring microbiota, with the hope to realize the full
potential for improvement with targeted practices influencing microbiota evolution
and equilibrium.
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1.5.3 The Agronomic Dark Triad: Weeds, Pests, and Diseases

The agronomic dark triad (Fig. 1.3) affects any crop, independently of the nature of
the cultivation system being used, be it under intensive or agroecological
management.

Traditionally, intensive cropping systems relied on a suppressive approach via
chemical control of the triad curatively or even preventively, at the cost of side
effects extending way outside the field targets, and resulting in high levels of
environmental damage. Agroecological methods have diverse strategies for each
point of the triad, and no single generalization can be drawn, ranging from locally
suppressive (e.g., control of weeds via mulching, control via bio-stimulants) to
liberal/indifferent or even making use of that diversity (e.g., weeds used as pillars
of push–pull strategies). Also, crop admixing levels are facilitated due to its barrier
effect on plant diseases, which is a natural control of pathogens under agroecological
management.

How would a microbiota approach translate in this case? First, we should note
that historically, single microbial control was used very early in agricultural practice.
For example, the fungus Colletotrichum gloeosporioides is regularly suggested as a
control agent for weeds (or invasive plants), because it is a generalist, as a pathogen
(Cai et al. 2009). Obviously, this approach is useful if the control agent only attacks
its target, without collateral damage on crops. This was also the case with bacteria
Bacillus thuringiensis for insect pest control, to the point its insecticidal protein was
the gene used for developing transgenic crops very early in the history of agricultural
biotechnology. As expected, single, but specific, solutions can flourish and solve
precise issues in agriculture. However, the question regarding microbiota thus
becomes once again a more general one: are there any communities that could be
used in preventive management against the dark triad? While hard to predict with

Fig. 1.3 Schematic of the
three threats to sustainable
agriculture
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certainty, little is probably to be expected regarding weed control, because a
microbiome approach would rely on component species behaving antagonistically
toward weeds, without doing so on crops. Similarly, control of pests may prove very
difficult as a communal strategy, and a single-species approach might be much easier
to develop for efficient management. This concern is greater for intensive agriculture
than it is for agroecological systems, as alternative ways beside microbiota are
already employed to manage insect pests, especially natural control via naturally
occurring pest antagonists (e.g., parasitoids) or push–pull strategies. Conversely, in
the dark triad, the feature most amenable to control via microbiota are crop diseases.
Current evidence seems to associate disease development with strong alteration and
even decrease in foliar fungal diversity. Scientists need to understand basic processes
involved in community changes, especially if these observations are simply
reflecting competitive displacement, including secretion of chemical compounds
by microbiota, predation, direct competition for local resources like nutrients, and
whether other processes might intervene. Little is known about interaction levels.
This is true of community or network composition, and in the case of the infection
process and plant disease we need to resolve not only mutualistic or commensal
interactions, but antagonisms as well, and how they could affect crop pathogens and
suppress disease. Accordingly, a large factor in the efficiency of microbiomes as
suppressive disease tools will depend on whether biological interactions are passive
and purely demographic as a competition effect, or if they can be active based on
aggressiveness within microbial communities and networks.

1.6 Conclusion

In summary, the next phase of agriculture is exciting and offers an opportunity for
researchers to adapt their knowledge of the microbiome to farming in practice.
Microbiota will certainly be an adequate tool to help agriculture evolve toward
improved sustainability without impairing productivity, and even possibly resulting
in increased yields. Nevertheless, there are still several challenges impeding its
general implementation on farms, given our current knowledge and the research
context. These include firstly, identification of core genera with relevant functions
for plants, to propose efficient synthetic communities; secondly, identification of
specific component species that match local (regional) or organ-specific character-
istics for improving baseline synthetic communities; and thirdly, investigating the
stability of synthetic communities over cropping cycles, to ensure benefits for food
production.

In this chapter, we examined the structure and function of the fungal microbiome
and provide specific recommendations for both intensive agriculture and small-scale
agroecological agriculture. Microbiota engineering and its application in agriculture
are the new frontiers in removing an unstainable dependency on chemical inputs for
both increased yields and enhanced disease management. Moreover, adopting inte-
grated pest management strategies which are key components in agroecology
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provides opportunities for a chemical independent, but microbiota-driven sustain-
able agriculture for increased plant growth and resistance to disease.
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Chapter 2
Unearthing the Modern Trends
and Concepts of Rhizosphere Microbiome
in Relation to Plant Productivity

Hitakshi Gupta, Jahanvi Ganotra, Nikita Pathania,
Tirth Bhargavbhai Patel, Nisha Choudhary, Reia Rani, Damini Supolia,
and Deepak Kumar

Abstract The rhizosphere microbiome is crucial for plant growth and health,
providing defense against plethora of surrounding potential pathogens, improving
crops’ nutrient acquisition, and aiding in withstanding series of abiotic stresses.
Exchange of resources between plants and their associated soil environment is
supported by a pivotal interface termed as rhizosphere. Plants being sessile are
incessantly exposed to a diverse array of abiotic and biotic stresses under natural
conditions, thereby acting as major bottlenecks to hinder their growth and produc-
tion. However, it is possible to engineer plant rhizosphere microbiome as revealed
by the recent advances in research in context to the plant–microbe interactions.
Therefore, shaping of rhizosphere microbiome for developing promising strategies
can be vital in relation to plant productivity. Furthermore, exploring the structure and
dynamics of plant rhizosphere microbiome represents an exciting frontier of research
to protect plants from potential phytopathogens in a sustainable manner. Advances
in molecular tools are beneficial to unravel the concepts of plant–microbe associa-
tion, which could act as a key driver in drafting the future “biofertilizers.” Owing to
the current challenges in crop production, there is an urgent need to understand
plant–microbiome interactions in the rhizosphere to bring microbiome-based strat-
egies for incorporating beneficial resident microbial communities into practice. The
present chapter uncovers the concepts of plant rhizosphere microbiome, its diversity,
abundance, composition, and interplay with the plants. Additionally, elucidation of
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plant rhizosphere microbiome engineering and various factors and techniques
involved therein for enhancing plant productivity have been presented, thereby
helping meet food requirements of exponentially growing global population.

Keywords Rhizosphere microbiome · Holobiont · Root exudation · Rhizosphere
engineering · Bioinformatics

Abbreviations

CRISPR Clustered regularly interspaced short palindrome repeats
Fish Fluorescent in situ hybridization
MALDI-TOF Matrix-assisted laser desorption/light ionization time
NGS Next-generation sequencing
PCR Polymerase chain reaction
PGPR Plant growth-promoting rhizobacteria
RFLP Restriction fragment length polymorphism

2.1 Introduction

Plants share their habitat with diversity of microbes such as bacteria, fungi, and
viruses. The constitution of the plant microbiota is framed by complex interactions
between the abiotic environment and its biotic natives. Depending on the outcome of
an interaction for the host, microbes are considered as mutualistic, commensal, and
pathogenic. The term microbiome was first used by Joshua Lederberg and it refers to
the microorganisms inhabiting our body as commensals, symbionts, or pathogens
(Lynch 1990), and plant microbiome is defined as the dynamic community of
microorganisms associated with the plant. Regions of the plant which provide
niche for microbial community are phyllosphere, rhizosphere, and endosphere
(Berg et al. 2016).

The rhizosphere is represented as that zone of the soil which is in direct associ-
ation with the plant roots (Shrivastava et al. 2014). In other words, it is an environ-
ment under the influence of plant. Rhizosphere is relatively stable and nutrient-rich
environment and the rhizoplane encompasses the root surface and its adhering soil.
Various organic compounds are released from plant roots that primarily participate
in symbiotic functioning in the soil area which is under the influence of plant roots
(rhizosphere) (Barea et al. 2005; Gupta et al. 2022). Moreover, rhizosphere provides
a nutrient-rich environment for diazotrophic bacteria that fix atmospheric nitrogen,
thereby making the nitrogen available to plants. Number of bacteria, fungi, and
archaea is high in the rhizosphere due to the presence of nutrient-rich environment
(Egamberdiyeva et al. 2008; Mendes et al. 2011). Therefore, profound knowledge in
context to the diverse array of microorganisms and their respective functions in the
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rhizosphere acts as a requisite for enhancing the growth and productivity of crop
plants. The present chapter embodies the information on rhizosphere microbiome, its
diversity, abundance, composition, and communication with the plants. The targeted
application of beneficial plant microbiome to counteract abiotic and biotic stresses is
gaining importance and is considered as an exciting frontier of research. Advance-
ment in next-generation sequencing (NGS) platform, gene editing technologies, and
metagenomics and bioinformatics approaches allows us to untangle webs of inter-
actions of holobionts and core microbiomes for efficiently deploying the
microbiome to increase crops’ nutrient acquisition as well as resistance in response
to abiotic and biotic stresses. Henceforth, the present chapter also provides insights
into the concept of plant rhizosphere microbiome engineering, and various factors
and aforementioned techniques involved therein.

2.2 Composition, Abundance, and Diversity of Rhizosphere
Microbiome

The interface between plant and soil is termed as rhizosphere, and it functions as the
primary step of root microbiome recruitment and plant defense. It features a spe-
cialized microbial community, intensive microbe–plant and microbe–microbe inter-
actions, and sophisticated signal communication. It has already been recognized that
microbial life is present in quite many trifling areas of soil which are localized in hot
spots like rhizosphere, where the microorganisms have uninterrupted ingress to the
flow of number of plant-root-derived organic substrates (Nannipieri and Badalucco
2003). Flow of such nutrients along with biological factors and physicochemical
factors can influence microbial community structure and performance of rhizosphere
(Sorensen 1997; Brimecombe et al. 2001). Myriad of microorganisms inhabit the
plant rhizosphere. Figure 2.1 depicts the composition, abundance, and diversity of
microorganisms present in the rhizosphere zone.

2.3 Types of Interactions Between Microbes and Plants

Plants are non-motile but they constantly encounter the abiotic and biotic stresses.
There is a constant war between the microbes and the host plant. The rhizosphere is a
hot spot for potentially important microbes and copious organisms. Different types
of unicellular and multicellular organisms such as bacteria, archaea, algae, fungi,
protozoans, and arthropods together with plant roots form the most complex eco-
system on earth (Raaijmakers et al. 2009; Kushwaha et al. 2020). Plants release
adequate amount of nutrients in the form of rhizodeposits which determine both the
type and composition of rhizosphere microbiome. Various compounds are exuded
from plant roots such as sugars, organic acids, nucleotides, peptides, enzymes, and
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Fig. 2.1 Generalized diagram showing abundance of microorganisms present in the rhizosphere.
The size of the circle is a measure of abundance of group of particular microbial community

other secondary metabolites which together regulate the microbial diversity and
activity inside the rhizosphere. The plants sometimes also exert selective pressure
by releasing unique rhizodeposits to stimulate the growth of beneficial microorgan-
isms for their growth and development (Cook et al. 1995). Rhizospheric microor-
ganisms can impart ecological fitness to their host plant and vice versa (Huang et al.
2014). Plant–microbiome communication is still fundamental and plant–microbiome
interactions vary between crops species (and even cultivars), between individual
members of the microbiome, and with environmental conditions. There is ample
evidence suggesting the plant–microbe relationship is uncertain to health, produc-
tivity, and the overall condition of the plant. There are many different kinds of
interactions between plants and microbes that traverse the whole variety from
beneficial to pathogenic, and the outcome of the interaction between a plant and a
microbe can vary among this range depending on plant species. Depending upon the
type of microorganisms, host plants, as well as existing environmental conditions,
both positive and negative plant–microbe interactions can persist in the rhizosphere.
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2.3.1 Negative Interactions in the Rhizosphere

Beneficial microorganisms colonize plant roots in response to root exudates, but they
can attract pathogenic population as well that can harm the plant. Plant diseases are
directly involved in damaging crop plants and destructing agricultural production
and thus agricultural economy. Soil-borne pathogens cause significant damage to the
crops, whereas fungi are the most devastating. Their damaging effects include both
mild and severe symptoms causing inconsiderate crop losses. Thus, they are major
threat to food production and economic stability worldwide. The most common
fungal pathogens include fungi of genus Aspergillus, Fusarium, Pythium,
Phytophthora, Mucor, Rhizopus, and Verticillium (Tournas and Katsoudas 2005),
as well as the common forest fungi, viz., Armillaria and Poria (Asiegbu et al. 2005).
Pathogens belonging to the genus Pseudomonas, Erwinia, Ralstonia, and
Xanthomonas are most common, as well as widely studied bacterial pathogens
(Tournas and Katsoudas 2005).

2.3.2 Positive Interactions in the Rhizosphere

In the rhizosphere, plant–microbe interactions are involved in various crucial ecosys-
tem functioning processes, such as nutrient mineralization and immobilization in
biogeochemical cycles. To establish a symbiotic relation with plants, microorganisms
form symbiotic associations with plants such as colonization of rhizosphere by plant
growth-promoting rhizobacteria (PGPR), mycorrhizae, and legume–rhizobium asso-
ciation. These interactions are beneficial for plants and are of three types, namely
biofertilizers, biocontrol agents, and biostimulants. Biofertilizers are the type of
microorganisms that increases the availability of the nutrients to plants (Giri et al.
2019). Biocontrol agents are the group of microbes that protects the plants from
pathogen attack and thus increases their growth indirectly. Biostimulants, on the
other hand, stimulate the plant growth by secreting growth-promoting hormones and
growth regulators such as auxins, cytokinins, and gibberellins (Sharma et al. 2022).

2.4 Evolution of Plant–Microbe Interaction

Co-evolution of microbes and plants is what has helped plants in growing and
adapting under varied environmental conditions. Microbes help plants in nutrient
acquisition and protection against various environmental stresses, thereby helping in
stimulating plant growth and development. They are known to be associated with a
specific group of microbes interacting with one another forming accumulation of
individuals often known as a “holobiont” (Bordenstein and Theis 2015; Theis et al.
2016). To select plants that are associated with microbial community often requires a
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wide range of selective pressure which majorly acts upon different components of
holobiont that put great impact on fitness of plant.

However, the varied variety of microbes found on various tissues of plant,
together with more early origin of microorganism and their fast generation time as
compared to their host, suggests that the microbe–microbe interactions are vital
selective force that forms a composite assemblage of microbes in different compart-
ments such as rhizosphere, phyllosphere, and endosphere. Understanding these
microbial exchanges for shaping more convoluted plant-associated communities of
microbes, along with their consequence for host health in a more natural environ-
ment, remains scarce. Plants secrete carbon-rich substrates with the help of their
roots; those substrates are likely favored by microbes that could quickly assimilate
them (Doornbos et al. 2012; Alqarawi et al. 2018). There are many success stories in
context to rhizosphere microbiome engineering (Chaparro et al. 2014), wherein most
of the antique lineages of plants depict a strong competence to alter the relative
abundance of rhizospheric microbes (Valverde et al. 2016). The differences in the
root exudate had resulted in the selection of contrasting microbiomes (Bais et al.
2006; Bell et al. 2015; Rasmann and Turlings 2016). The microbiome exerts
profound impact upon plant health and similarly the plants can also influence the
rhizosphere microbiome through a variety of mechanisms (Mohanram and Kumar
2019; Mendes et al. 2018). The reason behind this is phenotypic and genotypic
variations in plant traits that guide the specific microbiome responsible for enhanc-
ing the plant growth in a variety of ways (Kumar and Dubey 2020). The advances in
the plant–microbe interactions reveal that the plants are able to form their rhizo-
sphere microbiome, as evidenced by the fact that different plant species which are
host-specific microbial communities grow on the same soil. This complex plant-
associated microbial community is also known as the second genome of the plant
(Berendsen et al. 2012).

The plant–microbiome interactions are complex and depend on plant species, soil
type, and environmental conditions such as abiotic stress, biotic stress, climatic
conditions, and human intervention. Different textures of soils as well as different
kinds of environmental stresses (e.g., nutrient deficiencies, metal toxicity, and
pathogen attack) have been shown to prompt the plant-species-dependent physio-
logical responses and consequently exudation patterns (Quiza et al. 2015).

2.5 Rhizosphere Microbiome Assembly

Notably, there is crucial participation of plant root exudation in recruitment and
modulation of the rhizosphere microbiome. The root cap border cells serve as
rhizodeposit to enhance plant growth and also facilitate recruitment of new microbes
in the rhizosphere (Dennis et al. 2010; Hawes et al. 2000; Vermeer and McCully
1982). These rhizodeposits are a rich source of carbon and nitrogen along with
additional primary and secondary metabolites. Thus, they influence species-specific
growth in the rhizosphere microbiomes and function as vital components for the
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plant–microbe interface assembly. Along with factors such as plant species, geno-
types, and developmental stages, diurnal cycling of the plant also affects the
rhizosphere microassembly. Root exudates have been found to be affected and
secreted within a diurnal secretion pattern. Some pioneer plant species having high
levels of genetic diversity can naturally colonize sites which are important environ-
mental concern such as abandoned unrestored mines and many other kindred sites
that typically remain impoverished for decades, exposing to erosion, vast amounts of
waste, and various other factors limiting the revegetation of these sites, including
unfavorable abiotic and biotic conditions. This suggests that some plant genotypes
are likely more fitted for acclimation to the conditions with toxic waste around. In
some studies, it has been found that such plants improve soil health locally by
modifying the physicochemical properties such as higher nutrient content and pH of
the toxic waste and cause important shift in the microbial community composition,
from lithotrophic communities that dominate toxic waste environments to hetero-
trophic communities involved in nutrient cycling. Plant genotype and the type of
substrate in the rhizosphere are the main drivers of rhizosphere microbiome diversity
and community structure, in cases assessing the effect of genotype-by-environment
reciprocity by quantifying the physicochemical properties of the substrates and the
swap in microbial community congregation. Notably, the plant genotype act as a
selective pressure in modifying physicochemical properties of the substrate and
structuring rhizosphere microbial communities, particularly bacterial taxa. Also
genotype-by-environment interactions impact on the physicochemical properties of
substrates and the composition of the rhizosphere microbiome. The cooperative
harmonizing role of the soil type and host genotype bring forth the importance of
homogenized consideration of condition of soil and genetic variability of plant for
future development and synthetic microbiomes application. Besides, diagnosis of the
attune role by specific plant genotype in rhizosphere microbiome assembly delivers
us with an auspicious way for future breeding project to blend host traits engaged in
assembly of beneficial microbiota. The rhizosphere microbiome make-up and inter-
actions of microbe with microbe between soil types and plant genotypes forge ahead
our keen understanding of regulating the role of both the factors in the plant
rhizosphere microbiome assemblage.

2.5.1 Factors Affecting the Assembly of Microbial
Community in the Rhizosphere

The phenomenon that the rhizosphere microbial community differs from the com-
munity in bulk soil, suggesting that plant roots recruit and accumulate specific
microorganisms in the rhizosphere from bulk soil, is known as rhizosphere effect.
There are different evidences that suggested the presence of species-specific micro-
bial communities in the rhizosphere. A study of microbial communities in the
rhizosphere of 19 herbaceous plant species using the 16S rRNA gene amplicon
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sequencing showed that each tested plant species had 18–111 special operational
taxonomic units (OTUs) and that same species can also develop distinct rhizosphere
microbial communities, although the effect of the plant genotypes on the
microbiome assembly is quite weak (Bulgarelli et al. 2015; Walters et al. 2018).
These findings demonstrate that host genetics contribute to plant microbiome assem-
blies. A number of studies clarify that root phenotypes (Massalha et al. 2017), soil
type (Lundberg et al. 2012), and plant growth stages (Schlemper et al. 2017) also
shape the rhizosphere microbial communities. The assembly of rhizosphere
microbiomes was also being prone to different plant diseases. Quorum sensing
(QS) is well known as a signaling mechanism that depends on the manner in
which the rhizobacteria cell density regulates the gene expression of microbial
physiological activity (Hartmann 2020). Many plant-associated bacteria are enriched
in plant-associated environments by QS and require QS to regulate a series of
important processes, such as rhizosphere competition, conjugation, and biofilm
maturation (Newton and Fray 2004; Frederix and Downie 2011). The important
factors affecting the assemblage of microbial community in rhizosphere are men-
tioned below.

2.5.1.1 Plant Growth Changes Root Metabolite and Assembly
of the Rhizosphere Microbiome

Different factors influence the rhizosphere microbiome assemblage including plant
growth, aging, and propagation. For instance, plant roots release root cap border
cells into the rhizosphere as a kind of rhizodeposition to enhance the rhizospheric
effect and to recruit specific microorganisms (Dennis et al. 2010; Hawes et al. 2000;
Vermeer and McCully 1982). It has been reported that A. thaliana root caps release
border-like cells to promote Rhizobium sp. YAS34 accumulation (Vicré et al. 2005).
About �10% of photosynthetically fixed carbon and �15% of total plant nitrogen
are observed in root exudates, including primary metabolites and secondary metab-
olites, like sugars, organic acids, amino acids, mucilage, and so on (Jones et al. 2009;
Gargallo-Garriga et al. 2018). Plant roots release these metabolites with complex
transmembrane system (Canarini et al. 2019). Different plant species release differ-
ent root exudates. For example, cucumber roots secrete citric acid to assemble
B. amyloliquefaciens SQR9 and to shape a special biofilm (Zhang et al. 2014).
A. thaliana releases several amino acids in root exudate that aid in colonizing
B. subtilis in specific root segment. Antifungal Pseudomonas colonizes in the root
exudates of tomato root containing organic acids and sugar. Genotype and physio-
logical status of plant determine the root exudation. By different metabolomics
methods, it was observed that there were 19 A. thaliana genotypes that were present
with different exudation patterns (Mönchgesang et al. 2016). The root exudates in
A. thaliana were present at different development stages like seedling, vegetative,
bolting, and flowering stages; the abundances of four phyla, namely Acidobacteria,
Actinobacteria, Bacteroidetes, and Cyanobacteria, were significantly different at
varied developmental time points (Chaparro et al. 2014). The root exudate
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compounds mentioned such as amino acids, phenolics, sugars, or sugar alcohols
released by these four phyla show significant correlation. In addition to plant species,
genotypes, developmental stages, and diurnal cycling of the plant also affect the
rhizosphere microbiome, which breaks our orthodox notion that the rhizosphere
microbiome does not change within the short time. The circadian clock plays an
important role and is a key regulator of the plant diurnal physiological processes. An
impairment in circadian clock strongly influences the A. thaliana rhizosphere
microbiome, particularly the rare taxa; however, the important factors changing
the rhizosphere microbiota were not revealed (Hubbard et al. 2018). Thus, traits
including plant species, genotypes, developmental stages, as well as other charac-
teristics are strongly interlinked with the rhizosphere microbiome assembly by
modulating the physiological states of plants eventually resulting in the influence
on anabolism and root exudation. Plant root exudation is a key mechanism in
recruiting and modulation of the rhizosphere microbiome.

2.5.1.2 Abiotic and Biotic Stresses Modulate Root Exudation
and Recruit the Rhizosphere Microbiome

Different abiotic and biotic stresses affect the assemblage of rhizosphere
microbiome. In nature, plants are exposed to several abiotic and biotic stresses in
their lifetime (Sharma et al. 2021). The effect of these environmental stresses on the
microbiome assembly is of key concern while studying the plant–root interface.
Different environmental stresses shaping the rhizosphere microbiome, including
nutritional stress, such as phosphorus limitation, can activate phosphate starvation
responses (PSRs) to regulate important genes to mediate the synthesis of primary
and secondary metabolites and modify the root microbiome composition to alleviate
phosphate stress (Castrillo et al. 2017). Environmental contaminants like pesticide
residues modify the rhizosphere communities. A direct impact was detected as
inoculation of soil with atrazine significantly recruited three OTUs: Halobacillus,
Bacillus decolorationis, and Cesiribacter sp. JJ02 (Xu et al. 2018). Additionally,
maize can transfer glyphosate sprayed on the surface of leaves to soils and thus
significantly increase the amount of Fusarium on maize roots (Kremer and Means
2009). It was noticed that pesticides can also alter the rhizosphere microbiome
through modulating plant exudation. For example, in rice seedling after treatment
with diclofop methyl the root exudation of amino acids, fatty acids, and organic
acids increased. This increased the relative abundance ofMassilia and Anderseniella
genera and changed the richness and diversity of rhizosphere microorganisms (Chen
et al. 2017).

Biotic stress such as plant pathogen infection modifies the rhizosphere commu-
nity. Infection of A. thaliana leaves with Pseudomonas syringae pv. tomato modifies
plant root exudation patterns and significantly enriches the Roseiflexus genus in the
rhizosphere by increasing the exudation of amino acids, nucleotides, and long-chain
organic acids, and by decreasing the exudation of sugars, alcohols, and short-chain
organic acids. This change in exudation patterns recruits more beneficial rhizosphere
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microbes which help A. thaliana to resist above-ground pathogens (Yuan et al.
2018). Likewise, in accordance to a study, Carex arenaria root releases a set of
volatile organic compounds (VOCs) into the rhizosphere post Fusarium culmorum
infection, and recruits a special rhizosphere community that varies from the rhizo-
sphere of healthy plants (Schulz-Bohm et al. 2018). During pathogen attack, the
salicylic acid (SA) A. thaliana mutants establish specific bacterial taxa in the root
microbiome, possibly due to SA mutants changing the root exudate profiles (Lebeis
et al. 2015). Jasmonic acid (JA) mutants of A. thaliana (myc2, med25) possess a
different root microbiome composition and root exudates with lower levels of
ornithine, tryptophan, and asparagine, but harbor a higher abundance of
Enterobacteriaceae in the myc2 rhizosphere and Bacillus, Lysinibacillus, and Strep-
tomyces in the med25 rhizosphere (Carvalhais et al. 2015). From these studies it can
be concluded that the plant immune system and their rhizosphere microbiome are
closely interlinked. However, the mechanism behind this relationship is not known
and intense future research is required in this field.

2.6 Impact of Rhizosphere Communities on Plant Growth
and Diseases Resistance

It is well known that the resident rhizosphere communities of plant root microbiota
influence plant growth in more than one way. There are certain molecular mecha-
nisms that are at play, which influence this pattern. Selecting inoculants from a well-
growing microbiome community and applying it for growth purposes has been
successfully demonstrated in certain plant species. Examples have surfaced where
Rhizobia inoculants have been used for increasing crop yield and as an alternative to
chemical and synthetic fertilizers in agricultural communities. In addition to the
facilitation of biological atmospheric nitrogen fixation for plants by certain bacterial
communities, microbes also showcase involvement in overcoming various nutrient
limitations such as phosphate by making it accessible for plants. Additionally,
microorganisms have also been involved in providing siderophores to plants under
iron-limiting conditions.

Plant growth-promoting microorganisms (PGPM) impact plant yield by deter-
mining rhizosphere microbiome diversity. Different microbial communities exert
synergistic effects to promote growth activities. Additionally, increased diversity
also confers resistance against plethora of plant pathogens. Certain microbes belong-
ing to rhizosphere community release phytohormonal substances. In drought stress,
root growth and lateral root formation in wheat were stimulated by indole acetic acid
(IAA) derived from Azospirillum generated, which is beneficial to increase water and
nutrient absorption (Arzanesh et al. 2011). In addition, abscisic acid (ABA) was also
produced and released in response to water deficit stress. ABA helps in maintaining
plant transpiration rate and regulating stomatal behavior. According to a study,
inoculation of Arabidopsis thaliana with Phyllobacterium brassicacearum
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STM196 decreased leaf transpiration to elevate drought stress tolerance by secreting
ABA. Pseudomonas chlororaphis subsp. aureofaciens strain M71 synthesizes ABA
to modulate a higher extent of stomatal closure to enhance water use efficiency and
tomato growth (Brilli et al. 2019).

The term suppression deals with the resilient attitude of certain rhizospheric
communities against soil-borne pathogens. This property of microbes can be suc-
cessfully transferred between soils, thus conferring the “non-resistant soils” with a
form of induced resilience. Certain microbes synthesize antimicrobial compounds
imparting an inhibitory effect to host plant pathogens. Antibiotics and related
compounds are represented as major classes functioning to inhibit pathogen growth
(Mhlongo et al. 2018). Bacillus subtilis, a model Gram-positive bacterium, can shape
the biofilm on plant roots and has been utilized as a biopesticide. The biological
control activity of B. subtilis depends on the secretion of antibacterial compounds.
For example, B. subtilis strain 330-2 produce lytic enzymes (laminarase, cellulase,
and protease) responsible for degrading the pathogenic fungi cell wall and also
inhibit Rhizoctonia solani. In addition to disease suppressing of soils and production
of antimicrobial compounds, plant disease-resisting microorganisms (PDRM) are
capable of resisting diseases in the aerial parts of plants by long-term signaling
mechanisms involving induced systemic resistance.

Thus, understanding the role of microorganisms in promoting the growth and
disease resistance of crops is key to future development of bioproducts. However,
environmental factors and microbiome colonization are still crucial factors that
influence the benefit of microbial products. Determining the precise mechanisms
of rhizosphere microbiome colonization and assembly is still difficult. Further
exploration of the mechanisms will allow for a breakthrough in the application of
beneficial microbiomes in practical agricultural development.

2.6.1 Rhizosphere Engineering

Rhizosphere is central to microbial and nutrient dynamics and describes the zone of
soil surrounding roots of plant species which release organic substances
(Dommergues 1978). It is the main zone where the plant roots interact with its
environment and major activities like nutrient uptake and water absorption occur.
This region is highly susceptible to abiotic and biotic stresses (Giri et al. 2018). The
physical and chemical properties of the rhizosphere comprise the integration of
many competing processes that depend on the soil type, water content, composition,
biological activities of root-associated microbial communities, and the physiology of
the plant itself (Pinton et al. 2007). Plants can be engineered to modify the rhizo-
sphere pH or to release compounds to improve nutrient availability, protect against
abiotic and biotic stresses, or encourage the proliferation of beneficial microorgan-
isms (Bowen and Rovira 1999). Microorganisms form a vital component of the
rhizosphere where the total biomass and composition of rhizosphere microbial
populations distinctly aid in interactions between plants and the soil environment
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(Arshad et al. 1993). Microorganisms engineered in the rhizosphere exude exoge-
nous compounds that improve plant nutrition, suppress pathogenic microbes, and
minimize the consequences of abiotic or biotic stresses (Ryan et al. 2009). The
rhizosphere engineering results in the release of inorganic and organic substances
from the plant roots and this process is termed as rhizodeposition. The exudates
released by the roots are rhizodeposits. These exudates enhance nutrient accession to
avoid mineral stresses and also favor the growth of salutatory microorganisms. A
systemic approach is required for successful engineering of the rhizosphere
microbiome. By understanding the underlying mechanism behind shaping of the
associated rhizosphere, the sustainability and efficiency of crop production can be
enhanced just by imitating the beneficial symbiotic associations existing between the
soils, microbes, and plants (Kaushal and Prasad 2021).

2.6.2 Plant-Mediated Engineering

The beneficial plant traits are manipulated via two different approaches: genetic
engineering and plant breeding. Using plant breeding techniques for selecting a
specific microbial community is an interesting approach. Aim of this technique is to
increase crop yield, by providing plant resistance toward a variety of stresses (Ryan
et al. 2009). The main process of modification of rhizosphere through plants is by the
release of root exudates and this process is known as rhizodeposition. These
exudates can enrich nutrient accession, aid to elude mineral stresses, or cultivate
the growth of favorable microorganisms. Generation of membrane potential differ-
ence and an electrochemical gradient for H+ helps in many transport processes across
the plasma membrane in plants like nutrient uptake. In addition to generating a
driving force for membrane transport, H+ efflux can contribute to nutrient acquisition
by acidifying the rhizosphere (Hinsinger et al. 2003). The release of organic anions
such as citrate and malate, as well as phytases and phosphatases, helps some species
to access poorly soluble organic and inorganic phosphorus in a similar way
(Dinkelaker et al. 1995; Richardson et al. 2001; Vance et al. 2003). Henceforth,
the discharge of organic anions from roots exhibits an immense influence on plant
growth and nutrition. Through genetic engineering, rhizosphere can be modified by
manipulating the expression of genes controlling the exudates. Neal et al. (1973) in
their study used the substitution of chromosome between two wheat lines for
improving tolerance toward root rot disease and thereby preserving the group of
beneficial bacterial populations present in rhizosphere. In accordance to a study,
transgenic plants have greater ability to secrete citrate from the roots, which grow
better on phosphate-limited soil as compared to the wild type. In addition, this study
also suggested that crop plants with an enhanced ability to use aluminum phosphate
developed an enhanced ability to grow in acidic soils and tolerance toward alumi-
num (Koyama et al. 2000). Therefore, different studies are being conducted to
manipulate the genes controlling the useful exudates which help in developing
plant–microbiome interactions.
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2.6.3 Microbiome-Mediated Engineering

The microbiome is often called as secondary genome of the plant as plant and the
microbiome are interdependent. So, microbiome is also called as meta-organism or
holobiont (Sharma et al. 2022). This brings the “opine concept” that combines the
harmony of the host plants to secrete particular root exudates simultaneously with
the inoculation of microbes that are engineered to degrade this substrate. This often
results in the colonization of the rhizosphere by a specific type of microbial com-
munity. Hence, it was also noticed that the opines produced by transgenic plants lead
toward the selection of the host-specific microbial community that can maintain
themselves at very high concentrations, even after the transgenic plant is removed
(Savka et al. 2002). These approaches are highly peculiar as specific metabolites are
being utilized.

Bioengineering of synthetic microbial communities presents several opportuni-
ties for plant/crop growth promotion, disease resistance, and stress tolerance/regu-
lation. It has been identified that hundreds of bacterial strains possess many
beneficial effects; it is a challenge in engineering a sustainable synthetic microbial
community. For example, in a simple two-strain co-culture, six ecological interac-
tion factors must be taken into account (Grosskopf and Soyer 2014), including:
(1) Commensalism, in which one strain benefits from the other without affecting it,
for instance products from one strain serves as substrates for the other; (2) Compe-
tition, in which two strains compete for the same product, for instance substrate
competition; (3) Predation, in which predator benefits while the prey is harmed;
(4) No interaction, in which two strains have no or net zero effect on each other with
no shared substrates, no predator–prey relations, and no competition; (5) Coopera-
tion, in which both strains are profited from each other, and (6) Amensalism, in
which one strain is negatively affected while the other strains has no effect. The
complexity of these possible ecological interactions will scale linearly with the
addition of extra strains (Grosskopf and Soyer 2014). During rhizosphere engineer-
ing, the main challenges lie in minimizing the harmful or negative interactions like
parasitism and competition while maximizing beneficial effects and cooperation. As
even in two-strain co-cultures, competition tends to dominate temperature, nutrient
availability, and host plant exudates, which affect growth rates, seeding rate, stabi-
lization, susceptibility to pathogens, and sustainability of the synthetic microbial
community once applied. So, minimizing competition is quite challenging.

Many microbial genera are known that colonize the rhizosphere and can be
manipulated in genetic engineering efforts. Many plant growth-promoting
rhizobacteria (PGPR), free-living strains, are able to colonize roots and stimulate
plant growth (Prasad et al. 2015). Growth stimulation can be mediated directly via
enhanced nutrient acquisition or modulation of phytohormone synthesis, and indi-
rectly via induction of the plant’s own defense responses or antagonism of soil-borne
pathogens. Moreover, a number of other mechanisms of promotion can function
simultaneously in a single strain. These genera include Bacillus (Dong and Zhang
2014), Paenibacillus (Kim and Timmusk 2013), Streptomyces (Medema et al. 2011),
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and Rhizobium (Patel and Sinha 2011). While Streptomyces spp. offer great samples
of PGPRs with tractable genetic systems and much of obtainable complete genome
sequences, Streptomyces spp. have some drawbacks in that they need very large
genomes (on average ~ 7 MB) (Köberl et al. 2015) and have many mobile elements,
which make them difficult to engineer and/or grow in cooperative synthetic micro-
bial communities. Bacillus is the base of the synthetic microbial community, because
it is comparatively easy to genetically engineer (Dong and Zhang 2014), contains
many isolates that have plant growth proprieties (Köberl et al. 2013; Köberl et al.
2015), and/or is currently utilized in biocontrol applications. For example, Bacillus
could be engineered to contain a nitrogen-fixation machinery (e.g., NifH from
Paenibacillus) (Kim and Timmusk 2013), produce high concentrations of plant
hormones (Arkhipova et al. 2005), or add pathways from other Bacillus sp. to
control pathogens (Köberl et al. 2013). For increasing nitrogen fixation, Pseudomo-
nas, Rhizobium, and/or Bradyrhizobium genera might be added. A simple three-
strain member consortium, including an engineered Bacillus with two natural or
engineered nitrogen fixers like Pseudomonas, Rhizobium, and Bradyrhizobium,
could provide many of the benefits of a more complex natural rhizosphere commu-
nity. The potential ecological functional interactions increase with the number of
strains added; a three-strain consortium would potentially contain approximately
729 predicted interactions, and a four-member consortium 531,441 predicted inter-
actions (Grosskopf and Soyer 2014). Efforts should be taken to limit the number of
strains within a synthetic microbial community to three strains in order to exert
control of potential interactions rather quickly (Foster and Bell 2012). Thus, by
modifying the microbial community the crop productivity can be increased.
Table 2.1 enlists some more instances of crop productivity enhancement resulting
due to modification of microbial community.

2.6.4 Engineering the Interactions Between Plants
and Microbes

Engineering the interactions between plants and microbes is an exciting approach.
Several recent studies in this context have dealt with plant endophytes and
phytoremediation. For example, an endophytic Burkholderia cepacia strain was
transformed with a plasmid encoding toluene degradation, and was re-introduced
to yellow lupine (Lupinus luteus L.). Plants inoculated with the transformed strain
showed no sign of phytotoxicity at a high toluene concentration (1000 mg/L) and
sustained growth, while the control plants experienced phytotoxicity at levels above
100 mg/L. It has been observed that 50–70% reduction in toluene evapotranspiration
through the leaves occurred after plant–microbe association engineering. A similar
experiment using another strain of B. cepacia and another plasmid encoding toluene
degradation was conducted. Inoculation of poplar hybrids (P. trichocarpa �
P. deltoides) with the B. cepacia strain harboring the toluene-degrading plasmid
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Table 2.1 Crop productivity enhancement in response to modification of microbial community

Crop Microbial community Remarks References

Wheat (var. H1105
and PBW660) and
cowpea (var. PL-1
and PL-2)

Variovorax paradoxus
RAA3 and M11

Enhancement in plant growth
of wheat and cowpea by seed
bacterization; significant
increase in shoot/root length
(root parameter was not
observed in wheat), shoot and
root fresh/dry weight, chlo-
rophyll content, and also
increase in the NPK contents

Kumar
et al.
(2021)

Glycine max Co-inoculation of
Bradyrhizobium strain
along with Streptomyces
griseoflavus

Enhanced nodulation, nitro-
gen fixation, and nutrients
uptake

Htwe et al.
(2018)

Phaseolus vulgaris Co-inoculation of Bacillus
megaterium and
Paenibacillus polymyxa
along with Rhizobium

Enhancement in plant bio-
mass as compared to Rhizo-
bium inoculation alone

Korir et al.
(2017)

Maize, wheat, sun-
flower, and lettuce

Pseudomonas,
Azospirillum, Azotobacter,
and Bacillus

19–40% enhancement in
yield

Rubin
et al.
(2017)

Cicer arietinum Application of Serratia
strain 5D as an inoculum

25.55% and 30.85% increase
in the grain yield of crops
grown on fertile soil in irri-
gated areas and nutrient-
deficient soil in rainfed areas,
respectively

Zaheer
et al.
(2016)

had a positive effect on plant growth in the presence of toluene, and reduced the
amount of toluene released via evapotranspiration (Taghavi et al. 2005). Plant
inoculation with PGPR endophytes has also been reported. Antimicrobial metabo-
lites produced by a number of these bacteria, such as 2,4-diacetylphloroglucinol
(DAPG), can indeed enhance disease suppression in plants. This has been observed,
for instance, in eggplants (Solanum melongena) inoculated with DAPG producing
Pseudomonas, Enterobacter, or Bacillus isolates. Inoculated plants became partly
resistant to R. solanacearum as judged from the wilt incidence that was reduced by
over 70% compared to non-inoculated plants (Ramesh et al. 2009). The potential
value of plant–endophyte interaction engineering and the associated difficulties have
been extensively reviewed in the cases of phytoremediation (Weyens et al. 2009)
and plant growth promotion (Gaiero et al. 2013).

Opines are low-molecular-weight molecules that are typically synthesized in
crown gall tumors or hairy roots inoculated by Agrobacterium sp. The synthesis is
directed by the products of genes transferred by the bacteria to the host plant cells.
Opines play a major role in the Agrobacterium plant interaction and are used as
growth substrates by the inciting bacteria and as signals to induce the conjugal
transfer of the Ti-plasmid, the genetic element that bears most of the pathogenicity
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determinants (Dessaux et al. 1998). The opine concept stipulates that these mole-
cules help in the expansion of the pathogen and therefore dissemination of patho-
genicity. Interestingly, this approach can lead to the selection of indigenous strains
and is independent of plant species and soil type. Root exudation can also be
manipulated indirectly. The application of the flagellar peptideflg22 or that of the
bacterial toxin coronatine to the foliar system of Arabidopsis induced the expression
of the malic acid transporter ALMT1, which led to an increased malic acid concen-
tration in the rhizosphere of the plant Arabidopsis. Induced systemic resistance
response in plants against P. syringae pv. tomato was observed by increase in
concentration of malic acid, which led to increase in Bacillus subtilis strain
FB1A7. From all the above discussion, we can conclude that rhizosphere engineer-
ing is clearly more than a promising way to reduce the usage of agrochemicals, and
to improve soil and crop quality and productivity.

2.7 Techniques Associated with Rhizosphere Microbiome
in Relation to Plant Productivity

Biological agents are attracting worldwide attention for sustainable plant production,
yet investigating their potential for a multilayer environment such as the rhizosphere
is difficult. Therefore, knowledge of genomics as an independent cell tool to
understand the diversity and importance of the functioning of the rhizosphere
microbiome in sustainable agriculture is essential, although recent research in the
rhizosphere is carried out using evolving techniques such as metagenomics,
metaproteomics, and metatranscriptomics, as well as taking into account their
challenges, internal issues, impacts, and possible solutions.

In understanding soil compaction, the role of functional diversity and the taxon-
omy of soil microbiota and the role played by microbial metabolites in this process
have been analyzed and discussed in the context of a method known as “omics.”
“Omics” techniques are used to reveal important information about the diversity of
viruses, their response to various abiotic and biotic diseases, and the physiology of
stress for various diseases. The undoubted role of the rhizospheric microbiome in
plant production has been demonstrated by conventional methods, but the approach
to understand the non-invasive species and their ecology requires a combination of
multilayer technologies (Mendes et al. 2013). Thus, the molecular techniques and
“omics” studies have helped researchers to link the functional roles of the rhizo-
sphere microbiota to their ecosystem (Singh et al. 2017).

Metagenomics emerges as a genomics tool by combining a set of mechanisms, in
which the microbial genome is involved as a model for functional genetic identifi-
cation and diversity in conjunction with the help of bioinformatics to obtain infor-
mation from acquired data. Opportunities for rhizospheric microbiome studies as
well as metatranscriptomics and metaproteomics studies are introduced as a
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combination of molecular techniques and bioinformatics tools to present complex
microbial interactions in a rhizospheric active metagenomic environment.

2.7.1 Genomics

Genomics refers to the gene branch responsible for genome research. Genome refers
to a haploid set of genes or chromosomes present in living organisms. Genomics fall
under the genetic branch that can be described as structural and functional genomics
(Wang et al. 2020). Structural genomics includes location, physical characterization,
and genetic sequence present in the genome. The genomics approach is extended to
the functional part of the whole genome, including transcriptomics (RNA research),
proteomics (protein research), and metabolomics (metabolite research) (Soni et al.
2015; Suyal et al. 2019). In addition, the combination of many “meta-” and “omics”
technologies seems to benefit mankind, especially in the agricultural, industrial, and
medical fields (Rawat and Rangarajan 2019; Suyal et al. 2019). Several genomics
tools and techniques that appear on a daily basis are discussed here.

2.7.1.1 Polymerase Chain Reaction

The polymerase chain reaction (PCR) method was originally developed by Kary
Banks Mullis in 1983, who won the Nobel Prize in 1993 for the same that
transformed the entire field of molecular biology and still works today (Mullis
1990). This process involves the development of targeted DNA fragments extracted
from any source. Quantitative PCR (qPCR) technique involves measuring the
dynamic changes and relative abundance of fungal pathogens associated with
black-foot disease (Berlanas et al. 2019). In addition, PCR offers many benefits to
researchers in combination with gel electrophoresis approaches, i.e., agarose gel
electrophoresis, and temperature gradient gel electrophoresis, and enhances our
understanding in microbial community analysis.

2.7.2 Restriction Fragment Length Polymorphism

Inhibitory enzymes are part of endonucleases that can separate DNA only in certain
areas. They are also considered to be cellular scissors. These enzymes are widely
used to make genome mapping (O’Donnell et al. 2020). Some of the methods that
test the endonuclease block system include restriction fragment length polymor-
phism (RFLP), amplified fragment length polymorphism, and plasmid
fingerprinting.



36 H. Gupta et al.

2.7.3 DNA Sequencing

DNA sequencing is involved in identifying nucleotide sequences in a particular
genome. Nowadays, it is easy to track and analyze the entire genome by using high-
quality, automated, efficient, and reliable next-generation sequencing techniques
(Kumar et al. 2014). Several methods such as microfluidics and fluorescent activated
cell sorting (FACS) are popular in single cell tracking. This process involves a
variety of mechanisms such as DNA marking, classification, and fluorescent cell
sequence (O’Donnell et al. 2020).

2.7.4 Rhizospheric Microbiome Characterization by
Next-Generation Sequencing

Next-generation sequencing (NGS) is one of the most expensive and time-saving
tools used in the sequence of metagenomes. Prior to the discovery of NGS, studies
were mainly aimed at analyzing genetically modified genes consisting of consistent
sequences of genes with medical significance. This process involves a sequence of
high output because millions of DNA fragments from a single sample are in
sequence.

2.7.5 DNA Cloning

DNA cloning involves the transfer of a portion of DNA from one cell to another in
order to produce duplicate copies in vivo (O’Donnell et al. 2020). Various cloning
vectors have been developed in recent years, which can accommodate different types
and sizes of DNA fragments, including plasmids, hybrid vectors, and synthetic
chromosomes.

2.7.6 Blending Strategies

Hybridization method measures the level of genetic similarity between two different
nucleic acid molecules. The basic methods used by this system include: DNA
analysis/kinetic recombination and fluorescent in situ hybridization (FISH). Also,
DNA microarray is an advanced mechanism based on it. Microarray involves the
mixing of a piece of DNA and a probe into a chip called a DNA chip. In most cases, a
DNA chip involves a single genome, but many genomes can also be explored. The
method known as the “representational difference analysis” (RDA) analyzes the
differences between the types of variables based on a previously tracked
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representative. This process involves a combination of techniques such as PCR and
DNA sequencing. It is a very popular method of analyzing prokaryotic genomes as
they can vary greatly in their genetic size (Barcellos et al. 2009).

However, a combination of genomics and other omics technologies is commonly
used in rhizospheric microbiome research (Goel et al. 2018). Also, the merging of
genetic approach with bioremediation is important to evaluate relationship among
microbial and plant communities and ecosystem, which possess the aim of improve-
ment of phytoremediation of contaminated regions (Agarwal et al. 2020). The advent
of bioinformatics tools with these technologies has opened up new avenues for
research and development in the field of microbial ecology.

2.8 Metagenomics

It is accepted that only about 0.1–1% (depending on local sample) of germs can be
grown in artificial growth sources and more than 99% of microbe variants remain
unused (Suyal et al. 2019). Germs to enter under active but indestructible conditions
are forced by various environmental pressures which also reduce their access
through the use of genomics. Biodiversity can therefore be underestimated in
identifying plant-based pathogens. In order to overcome the limitations and com-
plexities associated with farming technology, the metagenomics approach has
already emerged as a potential tool (Soni and Goel 2011; Soni et al. 2017; Joshi
et al. 2017; Kumar et al. 2019).

Metagenomics is concerned with the study of a genome collection of microbes
(metagenome) from any surrounding environment to provide information on ecol-
ogy and the diversity of small forms in a particular area. Due to the continued
reduction in costs of nucleotide sequencing and the development of high-throughput
sequences, it is now possible to sequence large amounts of DNA from biological mix
(Metzker 2010) and thus provide a deeper understanding of the rhizosphere. The
knowledge of certain members of the microbiome living in the rhizosphere is
provided by a high-resolution analysis of the taxonomic structure of the rhizosphere
soil (Lagos et al. 2015). In addition, metagenomics not only is effective in deter-
mining bacterial diversity but also helps assess the number of fungi in the rhizo-
sphere (LeBlanc et al. 2015). Explanation of soil profiles with a culturally
independent mold community and the rhizosphere of sugarcane planted in the field
reveals that the concentration of nitrogen fertilizer significantly alters the formation
but not the taxon richness of fungal communities in the rhizosphere and soil
(Paungfoo-Lonhienne et al. 2015).
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2.8.1 Integrated Metagenomics Methods

Various cellular techniques are successfully applied to microbial diversity analysis,
including polymerase chain reactions, cloning and ribosomal gene sequence, dena-
turing gradient gel electrophoresis, borderline polymorphism, polymorphism-length
terminal-restriction, and fluorescent hybridization. Additionally, the 16S rRNA gene
is used as a phylogenetic marker to analyze genetic diversity, as this gene has been
remarkably well preserved in the first few years of evolution.

There are different types of next-generation sequencing technology (NGS) that
have recently been used in microbial studies. These include internal transcribed
spacer (ITS) and amplicon gene sequence (target enlargement) of 16S rDNA stored
to investigate viral and fungal variants. Metagenome sequences obtain information
about the life force and genetic diversity of all viral communities present in a
particular area. Metatranscriptomics involves the sequence of cDNA (a modified
mRNA of active genes) to measure genetic expression in relation to genetic and
metagenome reference and thus to identify potential functional functions and active
microbes. Metaproteomics sequence of proteins is used to evaluate the expressed
proteins and their richness to provide information on the active function between
plants and living organisms. Metabolomics profile of metabolites is extracted using a
state-of-the-art mass spectrometry (MS) method to detect and measure molecular
growth and its possible involvement in the metabolic response of plants and bacterial
communities.

Recently, a combination of advanced chemical analysis techniques and molecular
biology such as gas chromatography-mass spectrometry (GC-MS), capillary
electrophoresis-mass spectrometry (CE-MS), and liquid chromatography-mass spec-
trometry (LC-MS) has significantly improved the qualitative and quantitative ana-
lyses of the chemical and or metabolites of any plant or tissue component, the
rhizosphere, and the natural niche (Zhang et al. 2012; Zhang et al. 2015).

2.9 Bioinformatics Tools

2.9.1 Metagenome Analysis Software

Metagenome sequence generates a large amount of nucleotide sequence data that
need to be re-analyzed to obtain accurate results. Bioinformatics software is required
to process DNA sequences generated by Sanger sequence and a separate next-
generation sequencing (NGS) platform, i.e., 454 pyrosequencing and Illumina
producing long and short readings, respectively. There are various software available
for amplicon analysis and used for Sanger sequencing having 454 ribosomal pyro-
tag sequence. Quantitative Insights into Microbial Ecology (QIIME), MEGAN, and
CARMA are among the most important and widely used software for metagenomic
analysis (Caporaso et al. 2014; Gerlach and Stoye 2011; Huson and Weber 2013).
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Recently, software such as the Illumina study and PacBio study have been developed
for the purpose of metagenomic analysis of short-term readings and very long
sequences, respectively. There are a few metagenomic forums available that provide
information about the analysis of microbial diversity. One of the major challenges in
analyzing ecological sequences is data integration and the question of how to
analyze different types of data in an integrated manner that can provide information
in both taxonomic and operational analyses. In order to cope with these challenges,
community enabling cloud compatibility platform is available, which includes
IMG/M (Markowitz et al. 2006), CAMERA (Seshadri et al. 2007), and
WebCARMA (Gerlach et al. 2009). The Joint Genome Institute (JGI) supports
IMG (Integrated Microbial Genomes), which provides tools for analyzing microbial
genomes, genes, and functions. A community database for metagenomic data
deposition CAMERA (Cyberinfrastructure for Advanced Marine Microbial Ecology
Research and Analysis) is an important first step in developing methods for moni-
toring microbial communities. CARMA is a new software which characterizes the
species composition and the genetic potential of microbial samples using short,
unassembled reads. The Galaxy framework supports Cloud Virtual Resource
(CloVR) (Angiuoli et al. 2011), basic metagenomic analysis (Pond et al. 2009),
and Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST)
(Wilke et al. 2011).

2.9.2 Transcriptomics

Rhizosphere biology has revolutionized recent advances in DNA sequencing tech-
nologies by recording microbial formation by deep integration with metagenomics.
However, functional understanding has not been provided by metagenomics, which
thus provides a functional role for the obscure functional rhizospheric microbiome.
Transcriptomics and metatranscriptomics both are desirable as they are able to
determine both the structure and function of the active rhizospheric microbiome
and thus complete metagenomics data. Transcriptomics is about the study of the
corresponding RNA content that is produced under a certain natural environment.
On the other hand, metatranscriptomics refers to the high sequence of complete RNA
isolated from a natural sample. And two of the most popular metatranscriptomics
tools used to study the rhizosphere include RNA sequence and gene expression
microarray.

RNA sequencing is a method used to sequence and measure RNA molecules in a
sample using next-generation sequencing (NGS) technology. RNA-seq reveals a
complete transcriptome with quantitative and qualitative properties of mRNA,
rRNA, and tRNA and is currently considered the gold standard for genetic analysis.
The first step in this RNA-seq process involves the breakdown of high-quality RNA
in rhizospheric soils, which is followed by conversion to cDNA fragments (cDNA
library) followed by NGS. Urich et al. (2008) for the first time used the
“Double-RNA approach” to determine the formation and function of bacterial
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communities in the soil by sequencing both rRNA and mRNA in a single
transcriptome.

Microarray is a technique that involves the collection of microscope probes
attached to a solid surface used to analyze high-resolution expression and compar-
ative studies of genomics hybridization (Martínez et al. 2015). This process is also
used to monitor genetic expression and to detect viruses present in different natural
samples. Mendes et al. (2011) used a microarray-based approach to characterize the
rhizosphere microbiome and identified 33,000 species of bacteria and fossils. Rhi-
zobium leguminosarum biovar viciae inoculation effect on gene expression of pea,
alfalfa, and sugar beet rhizosphere was previously studied with the help of a
microarray method that revealed the presence of preserved plant colonies
(Ramachandran et al. 2011).

2.9.3 Proteomics Methods

Proteomics has provided new opportunities to test soil biodiversity and functions. It
is one of the most relevant and alternative metagenomics methods that provide
useful information for key biological factors that perform key metabolic functions
to solve the mystery of soil-acquisition skills in a particular ecology (Ploetze et al.
2015).

Proteomics is a systematic biological approach and is considered a sensible
option to investigate plant and bacterial interactions. The investigation here was
based on a two-dimensional electrophoresis (2-DE) gel. The identification of clas-
sified proteins is determined by the sequential library available on the website.
Initially, the protein site is derived from agarose gel, which is then extracted and
subjected to electrolytic cleavage in which peptide fragments are formed. Strategies
such as matrix-assisted laser desorption/light ionization time (MALDI-TOF) mass
spectrometry (MS) analysis will be performed to analyze broken peptide fragments.
MALDI-TOF analysis produces a peptide list of broken fragments. A special feature
of the protein is the predictable fraction size from the gene sequence that is also
compared to the site of the peptide enumerated/sent for each open reading frame
(ORF) in the genome. If no similarity is found in the sequential database, then the
proteins can be analyzed in peptide sequence.

Also, proteomics has a missing list of applications including the diagnosis of
plant diseases and their management and the analysis of the diversity of
microbiomes by contact with soil, water, and other organisms. In addition, studying
plant diseases, resistance, or infection is highly beneficial for proteomics. Microarray
technology will be used to develop proteomics in such a way that the immune system
analyzes changes in protein levels with a large amount of protein in a chip in a
similar way to how mRNA mutations are currently measured. Proteomics is widely
used to classify intercellular proteins that provide insight into microbial activity in
the soil of the rhizosphere. Biological control of brown rice disease, caused by the
deadly virus Helminthosporium oryzae, was investigated and tripartite interactions
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between the pathogen-biocontrol agent (Bacillus) and rice were investigated using a
proteomics method. About nine proteins including ribulose 1,5-bisphosphate car-
boxylase, ATP synthase, serine/threonine protein kinases, 2-cys-peroxiredoxin,
trehalose-phosphatase, and 50S ribosomal proteins were obtained using 2-D poly-
acrylamide gel electrophoresis (PAGE) analysis followed by a different expression
using strategies such as MALDI-TOF mass spectrometry (Prabhukarthikeyan et al.
2019). These proteins can however help in plant utilization and produce a protective
response against the brown spot pathogen. The proteomics method to study the
expression of protein in the soil of the rhizosphere during interactions between plant
organisms and soil was used by Wang et al. (2011). Therefore, proteomics is an
appropriate and alternative method and one of the most effective ways to solve
complex plant–bacterial interactions.

2.9.4 Metaproteomics Methods

Within the umbrella of the “omics,” metaproteomics is among the recent and most
innovative trends. This method examines the expression pattern of proteins within a
complex biological system and thus provides direct evidence of the physiological
and metabolic functions of the microbiome. Therefore, metaproteome expression
will help to improve the understanding of the microbial world and thus favor
microbial communities in natural functions (Wang et al. 2014). This process incor-
porates high-performance mass spectrometry to identify a suite of proteins that can
regulate metabolic functions in microbial communities (Hettich et al. 2013). Also,
the discovery of extensive metagenomic sequences from different microbial com-
munities has extended the genomics era to a new exit area of research in recent years.

However, metaproteomics is one of the best ways to analyze the bacterial
community in the soil. This process is basically done in four main steps, which
includes: (1) rhizosphere soil collection sample, (2) protein extraction, (3) purifica-
tion and separation, and analysis of MS, and finally (4) defining a protein and
analyzing it using bioinformatics (Wang et al. 2014). Also, two major workflows
have been developed for metaproteomics analysis including sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) combined with matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF-TOF) mass spectrometry
analysis (MS) or electrospray ionization source tandem MS analysis (ESI-MS/MS)
and liquid chromatography combined with electrospray ionization source tandem
MS (LC-ESI-MS/MS).

To solve the mystery of interactions between plants and bacteria in the soil
ecosystem, the metaproteomics analysis of the rhizosphere soil is a very powerful
and useful scientific method. A standardized method was developed by Wang et al.
(2011) for protein extraction from different soil samples with the identification of
1000 different sites with high density and contaminated 2-DE gels. It was noted that
189 spots represent 122 proteins in 2-DE gel, which are rice samples identified by
MALDI-TOF/TOF-MS successfully. And the proteins identified mainly from rice
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and bacteria were involved in various metabolic activities including nucleotide,
energy, and secondary metabolism, as well as signal transmission and anti-stress-
related condition. In the sugarcane field, a physiological profile analysis (CLPP) of
rhizosphere soil involving metaproteomics analysis was performed to determine the
cause of the decline in sugarcane yields. It was noted that the amount of sugarcane
made significant changes in the activity of the enzyme in the soil, the catabolic
microbial community, and changes in the level of protein production in the soil. In
addition, they were also found to influence biochemical processes in the rhizosphere
ecosystem and thus contribute to intermediate sugarcane interactions and bacterial
interactions (Lin et al. 2013). On the basis of comparative metaproteomics analysis,
it was found that 38 proteins have been shown to vary in number in the soil of
sugarcane, which was responsible for the decline in yield. Also, metaproteomics
analysis of bacterial communities (bacteria and archaea) was performed in the soil of
the phyllosphere and the rhizosphere and the phyllosphere of rice by Knief et al.
(2012). Also, in the metaproteomics information analysis, a total of 4600 detected
proteins were found, and they reflected the process of single carbon conversion in the
phyllosphere and rhizosphere. Rhizosphere, however, was dominated by proteins
involved in methanogenesis and methanotrophy and phyllosphere was dominated by
methylobacterium. Also, the enzyme namely dinitrogenase reductase was found
entirely in the rhizosphere despite the presence of nifH genes (Knief et al. 2012).

2.9.5 Metabolomics

Metabolomics is a method of qualitative and quantitative study of low-molecular-
weight metabolites (<1 kDa). It serves as an important tool for the detection,
measurement, and clarification of cell interactions within the rhizosphere. Most
plant-to-microbial contact and microbe-to-microbe communication in the
rhizospheric niche are associated with group of secondary metabolites. Thus, explor-
ing these metabolites in the rhizosphere enhances the interaction of the various cells
operating in the plant–microbe interface that further reveals a number of important
signaling pathways involved in promoting plant growth and stress defense, and
creates systemic resistance against plant diseases (Nath et al. 2017). Metabolomics
therefore strengthens our understanding of the mechanisms of cells and cells oper-
ating in the rhizosphere.

There are usually three major steps in the normal course of mass spectrometry
(MS)-based metabolomics. The first step is to prepare a sample that involves the
release of metabolites using organic solvents or by using a solid-phase extraction
method. The second step is concerned with differentiation and extraction, in which
metabolites are categorized by different chromatographic techniques based on the
nature of the metabolites and then “obtained through the use of quantitative analy-
sis.” For flexible and stable thermal compresses, gas chromatography-mass spec-
trometry (GC-MS) is popular, which can separate the metabolites by gas
chromatography and obtain them by quadrupole, quadrupole time-of-flight
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(qTOF), or triple-quadrupole (QqQ) mass analysis (van Dam and Bouwmeester
2016). However, on the other hand, liquid chromatography-mass spectrometry
(LC-MS) usually uses standard phase (NP) or regression phase
(RP) chromatography to classify metabolites on the basis of their variability. Finally,
data is tested with free software such as MarVis1, MAVEN, Mzine, Metaboanalyst,
and MetAlign, or available commercial software such as Markerlynx, Profile Solu-
tions, and Mass Profiler Pro. Rhizosphere metabolomics was previously used to
study various plant growth compounds such as ACC deaminase, auxins, cytokinins,
abscisic acid, gibberellins, jasmonic acid, salicylic acid, and bacterial-derived
siderophores (Mhlongo et al. 2018). Also, metabolomics is one of the best tools to
study molecules that show root and nodule symbiosis, i.e., flavonoids. In addition,
the role of acyl homoserine lactones (AHLs) and its degrading products in the
rhizospheric microbial response was investigated by Rothballer et al. (2018). How-
ever, metabolomics also documented changes in the microbial community in the
grass (Avena barbata) rhizosphere during the period of development and biological
sequence in relation to substrate preferences in altering root exudates (Zhalnina et al.
2018). However, due to the limited public index site, the cost of equipment and the
lack of appropriate technology make metabolomics much more complex than
DNA-based sequencing methods.

2.9.6 Phenomics

Phenomics is a systematic study of phenotypes on a wide range of genome or a set of
multiple ways to study how the genome of living organism translates a complete set
of phenotypic traits. Because of large number of genes interacting with each other
and the nature to produce phenotype, the prediction of phenotype from genotype
does not get reflected. However, the metagenomics approach provided access to a
complete genotype of rhizospheric microbes up to genus, species, and subspecies
levels.

In addition to the traditional techniques for making phenotypic characters,
methods such as transcriptomics, proteomics, and metabolomics are widely used
tools that provide large-scale phenomics data, and thus explain the phenomics of
rhizospheric microbes (Houle et al. 2010). Rhizobia phenome (phenotypic traits) has
been studied to differentiate and thus classify into different candidate groups.
Phenomics has also been very useful for the study and management of pathogen
co-evolution and the interaction of pathogens at the cellular level. Also, the com-
plexity of biological processes at various stages of development needs to be
addressed with high-quality digital phenotypic data. Recently, the work on the
global Escherichia coli promoter was infiltrated through PFI boxes to obtain high-
level genetic data amid antibiotic stress (French et al. 2018). To achieve microbial
compatibility in any ecosystem, growth measurement is a key phenotype. However,
there are limited tools available to study the phenomics of rhizospheric bacteria.
However, there is a need for the development of advanced phenotyping tools and
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Table 2.2 Advanced molecular techniques involving metagenomics for the characterization of
rhizosphere microbial communities

Plant community
of microbes

Metagenome sequencing Grassland plant community rich-
ness and soil edaphic
454 pyrosequencing to analyze
rhizosphere fungal communities
during soybean growth

Soybean (Glycine
max) rhizosphere

LeBlanc
et al.
(2015),
Sugiyama
et al.
(2014)

Amplicon gene sequenc-
ing of conserved marker
genes, 16S rRNA

Bacterial and fungal rhizosphere
communities in hydrocarbon-
contaminated soils

Rhizobacterial
population of
Arachis hypogea
Rhizosphere of
apple (Malus
pumila) nurseries

Bell et al.
(2014),
Haldar and
Sengupta
(2015),
Sun et al.
(2014)

Metatranscriptome
sequencing

Rhizosphere microbiome assem-
blage affected by plant develop-
ment
Root surface microbiome

Arabidopsis
rhizosphere

Chaparro
et al.
(2014),
Ofek-
Lalzar
et al.
(2014)

Metaproteomics profiling Phyllosphere and rhizosphere
study

Sugarcane
(Saccharum
officinarum)
rhizosphere

Lin et al.
(2013)

Metabolomics profiling Mycorrhizal study of roots Tomato (Solanum
lycopersicum)
rhizosphere

Rivero
et al.
(2015)

advanced adaptation to deal with detailed phenomics of rhizospheric microorgan-
isms. Table 2.2 enlists various molecular techniques employed for the characteriza-
tion of rhizosphere microbial community.

2.10 The Role of CRISPR for Plant Development

CRISPR—Clustered Regularly Interspaced Short Palindrome Repeats—and
CRISPR-compliant nine protein pathways have been developed in more than
20 plants to date (Sedeek et al. 2019). Genome engineering for targeted crop
development for improvement of crop yield and stress management, including
management of biotic and abiotic conditions, is a promising tool for future improve-
ment of plant sciences. Biotic stress caused by various phytopathogenic bacteria
possesses serious challenges in crop loss around the globe, which can be overcome
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by using CRISPR technology by which we can develop disease-resisting tolerant
cultivars that reduce the crop losses in future.

A study by Wang et al. (2016) strongly reported an increase in plant resistance to
Magnaporthe outbreak using a targeted CRISPR/Cas9 transformation process in
ethylene responsive factor (ERF), OsERF922 in rice. Similarly, successful CRISPR/
Cas9-mediated genome engineering in soybeans (Glycine max)—using a different
transgene sgRNA and six sgRNAs that targeted multiple sites of two endogenous
soybeans (GmSHR and GmFEI2) and testing the efficacy of sgRNAs in the hairy
root system—was the first report by Cai et al. (2015). Several other studies employed
CRISPR to release Avr4/6, a genetic pathogen virulence in Phytophthora sojae
(Fang and Tyler 2016). Also, the Avolog4/6 mutation (NPT II), which is an induced
gene for the CRISPR/Cas9 gene, focuses on the contribution made by the gene
virulence to pathogen-induced pathogen production in soybeans, namely Rps4 and
Rps6. In addition, by identifying the CRISPR/Cas9 tools, two OsSWEET13s are
formed, which are flexible in directing its promoter, which thus led to improved
bacterial tolerance for rice. There are various important factors such as crop yield and
abiotic resistance that are controlled by influence of more than one gene. However,
in a variety of crop development programs, a few studies are trying to map out these
multifactor QTL, which plays a role in managing important aspects of agriculture.
There are a number of identified quantitative regions introduced to promote
advanced species in selected lines. Therefore, the CRISPR/Cas9 process can be a
useful tool for introducing and learning unusual mutations in crop plants. Therefore,
the use of the CRISPR/Cas9 genetics and genetically modified approach accelerates
research and increases researchers’ ability to produce genetic models (Borrelli et al.
2018).

2.11 Basics of CRISPR-Mediated Plant–Microbial
Interactions in Agriculture

Plant–bacterial interactions depend on genetics in both the microbiome and host
(Levy et al. 2018). Because of the important role of microorganisms in plant stress
resilience, identification of candidate gene responsible for plant–microbe interaction
is important in regulating the agronomic factor, which will help to improve desired
plant characteristics for agricultural and industrial purposes. CRISPR-based tools
have given novel insights into learning the genetic functions by initiating genetic
mutations in plants or viruses or bacteria. CRISPR-based tools have the unique
advantage of completely eliminating the target gene compared to genetic mutation as
part of the RNA interference (RNAi) method that produces a phenotype component
(Bisht et al. 2019; Sarma et al. 2021).

Therefore, with the help of CRISPR-based tools, one can gain accurate genetic
information, especially genetic function in plant–microbe interactions at the cellular
level. More recently, the CRISPR/Cas and ssDNA recombineering method was
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developed in the rhizospheric bacterium, i.e., Pseudomonas putida KT2440, to
modify various genes, including gene removal, replacement, and insertion (Sun
et al. 2018). However, mechanical research is important to assess the genetic link
for harmful or pathogenic plant–microbe interactions in the case of non-model
microbial isolation. Thus, genome engineering of non-model microbes with power-
ful CRISPR/Cas tools enables studies to make links between particular genes and
their respective functions. In addition, the latest method of using biomaterials either
in DNA, mRNA, or protein precedes the unique solution for the delivery of CRISPR/
Cas into biological implants in normal ways (Eoh and Gu 2019).

2.12 Conclusion

The purpose of rhizosphere microbiome to implement and maintain the ecosystem of
plant is well established. However, various conventional techniques used for under-
standing the function are still in infancy stage for vast majority of microorganisms
present in the rhizosphere. Unraveling new plant signal molecules and exudates from
roots in particular environment make available biochemical and microbial markers
for study about how beneficial microbes are recruited and stimulated by plants in
rhizosphere. The association present between crops and rhizospheric microbes has
catalyzed the view of plants as a holobiont. For the management of rhizosphere, all
the present components can be manipulated to favor the plant growth and produc-
tivity. Global climate change has one of the impacts on structure and function of
various microbial species in the rhizosphere microbiome. To decrypt the extent of
the effect of climate change on rhizosphere is still in need to be explored.
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Chapter 3
The Role of the Root Microbiome
in the Utilization of Functional Traits
for Increasing Plant Productivity

Rahul Chandnani and Leon V. Kochian

Abstract It is now clear that the root microbiome, which consists of bacteria,
archaea, and fungi that colonize both the rhizosphere and the internal space of the
root, is one of the most complex ecosystems in nature and is very important for root
and plant health and function.

In this chapter we have focused on the role of the root microbiome functional
traits in improvement of nutrient acquisition and abiotic stress tolerance, with a focus
on drought stress, the biocontrol of root and shoot plant diseases, and the role of root-
associated microbes in both producing plant growth-promoting hormones and
impacting the plant hormone metabolism and signaling pathways to alter root
growth. Additionally, we have also endeavored to give the readers an introduction
into the rapid advances in this field, from the metagenomic analyses that now have
become relatively routine for the study of “what is there” in the root microbiome,
regarding microbial composition, diversity, and abundance, to nascent studies
beginning to study the plant and microbial molecular and physiological mechanisms
and processes that underlie how the microbiome is assembled, and how the
microbiome confers improved functional crop traits. Furthermore, given the incred-
ible complexity of this ecosystem, we discuss the recent research involving systems
biology analysis of the root microbiome, which will be critical in deciphering the
trait–function links and interactions between roots and soil microbes. Finally, we
also discuss the agricultural and genetic interventions that are being employed to
modify the root microbiome via inoculation of the seed and plant with potentially
beneficial soil microbes, as well as the studies looking at the role of plant genetic and
molecular variation in impacting the composition and function of the microbiome.
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3.1 Introduction

Diverse microbial communities are an integral part of plant and animal life. A root–
microbial ecosystem that consists of soil microbes that colonize and inhabit the soil
at the root surface, the rhizosphere, and live and function in the root, comprise what
plant biologists commonly refer to as the root microbiome.

The composition, diversity, and microbial species structure of the root
microbiome can be plant species-specific and contain both beneficial and harmful
microorganisms (Bressan et al. 2009; Lugtenberg and Kamilova 2009; Takeuchi
et al. 1996). Root microbiome composition is shaped by the host plant and, often to a
greater degree, the soil microflora, and many of the microorganisms in this biome are
beneficial for host plant and root health and function. Research findings have shown
that beneficial microbes in the root microbiome can increase the solubility and
uptake of soil macro- and micronutrients such as phosphorus, nitrogen, and iron
(Yadav et al. 2021).

Several soil-based abiotic stresses such as drought and salinity can impact the
composition of the root microbiome, resulting in microbiome shifts that may confer
increased tolerance to these stresses (Chen et al. 2017; Marasco et al. 2012; Vurukonda
et al. 2016; Giri et al. 2018). Beneficial microorganisms in the root microbiome can
also enhance plant growth and development by both synthesizing growth phytohor-
mones and altering plant hormone metabolism required for plant growth and thereby
increase root system growth and crop productivity (Arkhipova et al. 2005; Duca et al.
2018; Kudoyarova et al. 2014; Ping and Boland 2004; Prasad and Zhang 2022). On the
other hand, there are microbial species in the root microbiome that are harmful and can
negatively affect plant and human health such as disease-causing bacteria and fungi
(Takeuchi et al. 1996). A saying that “nothing is free” also stands true for root and soil
microbial interactions as plant roots and root exudates serve as a source of carbon and
sugars that are required for the survival, growth, and replication of the microorganisms
in the root microbiome (Bais et al. 2006; Foster 1986). Furthermore, specific root
exudates play roles as signaling molecules between the root and soil microbes,
influencing the microbial composition of the root microbiome. The root microbiome
is one of the largest and most complex biomes in nature and plays significant roles in
the maintenance and growth of plants.

The exponential growth of the human population and diminishing agricultural
lands and input resources (e.g., water, fertilizer) required for efficient agricultural
output, warrants novel and sustainable ways to achieve food security. Employment
of genetically narrow crop germplasm (seeds or tissue specific to a species, geno-
type, or population maintained for plant breeding purposes) and intensive selection
techniques in current breeding programs have enhanced the vulnerability to agricul-
tural pests and diseases (Hammons 1976). Significant recent advances in molecular-
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based plant breeding include tools such as genomic selection, which has been shown
to improve genetic gain via prediction of crop performance without phenotypic
analysis of novel germplasm. Further improvements to genomic selection is enabling
plant breeders to improve genetic gain while not losing genetic diversity (see, for
example, Daetwyler et al. 2015). However powerful these advances in plant breed-
ing are, they have yet to be intensively applied to the “hidden half” of the plant—the
root, and especially the root microbiome.

It is important now to focus on the role of the root microbiome in functional plant
traits to continue to improve crop resiliency and sustainability. For example, appli-
cation of inorganic fertilizers and pesticides has significantly improved crop yields
since the dawn of the Green Revolution. However, increasing pesticide and patho-
gen resistance, the increasing cost of fertilizers, and especially the finite availability
of phosphorous fertilizer, as well as environmental degradation due to leaching of a
significant portion of applied fertilizer into surface and ground waters, make these
approaches unsustainable in the future (Denholm et al. 1998; Savci 2012). To
address these complex problems, a systems approach integrating advances in preci-
sion fertilizer and water management with fundamental research innovations
resulting in more nutrient and water-efficient crop varieties is needed (Macintosh
et al. 2019). A critical component of the research aimed at improving crop nutrient
and water acquisition will be the investigations that enhance our understanding of
the development and function of the root microbiome. This will provide new
strategies for improving crop yields and agricultural sustainability through modifi-
cation of the root microbiome in part via use of biofertilizers that enhance the
availability and acquisition of essential mineral nutrients and also through
microbial-based biocontrol approaches to enhance disease and pest resistance.

It has been known for well over 100 years that certain root–microbe interactions,
specifically N2-fixing bacteria in legume root nodules as well as arbuscular mycor-
rhizae (AM), play key roles in root N and P acquisition from the soil (Beijerinck
1901; Frank 1885; Hellriegel and Wilfarth 1888). In recent years with the realization
that microbiomes associated with eukaryotic organisms play key roles in that
organism’s health, well-being, and function, research on the root microbiome is
clearly demonstrating that in addition to N2-fixing bacteria and AM, many other
free-living or more intimately root-associated bacteria and fungi play roles in
improving mineral nutrient availability in the rhizosphere and enhance biotic and
abiotic stress tolerance. One example of this is microbial-mediated solubilization in
the rhizosphere of sparingly soluble essential minerals such as P, Fe, and Zn
(Fabiańska et al. 2019; Gururani et al. 2013; Harbort et al. 2020; Hiruma et al.
2016; Weiß et al. 2016). However, the molecular basis and physiological mecha-
nisms underlying these improvements in plant function are still quite poorly under-
stood. To effect changes in the root microbiome as a strategy to improve crop
resiliency, improve yields using less inputs, and enhance agricultural sustainability,
it is of great importance to understand the genetic and functional (molecular and
physiological) mechanisms and regulation underlying the structure and function of
root microbiomes. Quite a few studies have been successful in the identification and
the use of plant growth-promoting bacteria from the soil and plant tissues to improve
crop production (Ji et al. 2014; Kloepper et al. 1980; Li et al. 2021).
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Certainly, the most significant advance in microbiome research over the past
decade has been the metagenomic analysis of microbiomes involving isolation of
microbial genomic DNA from bulk soil, the rhizosphere, and the root endosphere,
followed by amplification of specific highly variable regions of bacterial and fungal
genomes (16S rRNA for bacteria and the internal transcribed spacer [ITS]) region for
fungi. For a review, see Sczyrba et al. 2017. Next-generation sequencing of these
amplified bacterial and fungal gDNA regions and subsequent computational analysis
of the sequence is used to identify microbial operational taxonomic units, microbial
structure, and diversity. Furthermore, these types of studies have made it possible to
begin to probe possible functions of the root microbiome community and to postu-
late about gene-function links that may be useful in identifying or designing specific
root-associated microbes or communities of microbes that can be used in crop
improvement (Chen et al. 2017; Naylor and Coleman-Derr 2018; Shulse et al.
2019; Xu et al. 2018, 2021). Comparatively recent advances in genome-resolved
metagenomic and holo-omics approaches are finally enabling the researchers to
identify the changes in host plant metabolomes and possibly important causal
interactions between the root and microbes that could enhance nutrient uptake,
microbial phytohormone production resulting in root growth promotion, and greater
tolerance to abiotic and biotic stresses (Xu et al. 2021). In this chapter, we focus on
possible advantages the microbiome could confer to the root systems in terms of
acquiring resources for better plant growth, improving resistance to pathogens, and
microbiome gene-functional links that have been and can be exploited further for
these purposes.

3.2 Overview of the Root Microbiome

Dynamic and diverse groups of root-associated microorganisms, which include
plant-beneficial microbes, are recruited by plant roots via signaling between the
root and soil microbes (Hartman and Tringe 2019), to comprise the extremely
complex microhabitat, that is, the root microbiome. This ecosystem can have
impacts on plant health, growth, and function via direct or indirect pathways. The
root microbiome consists of bacteria and archaea, algae, fungi, and protozoa, with
bacteria being the most abundant component. The root microbiome can be quite
diverse, and can consist of microbiota with as many as 33,000 different bacterial and
archaea species (Mendes et al. 2011). Despite this amazing diversity, it has been
reported that there are primarily two bacterial phyla, Actinobacteria and
Proteobacteria, that dominate the global soil microbiome and root microbiome, for
example, in disease suppressive soils (Delgado-Baquerizo et al. 2018; Mendes et al.
2011).

The root microbiome is actively recruited by plant roots and specific microbial
communities are certainly influenced by the unique chemical composition of root
exudates (Berendsen et al. 2012; Doornbos et al. 2012). Plants acquire the majority
of their nutrients and water from the roots and, in return, low-molecular-weight
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organic compounds such as organic acids, sugars, phenolics, and amino acids are
secreted as root exudates (Antoun 2013). Published research findings have shown
that there can be an enrichment, for example, of unique organic acids in the root
exudates in different plant species that can play an important role in shaping the root
microbiome (Cotton et al. 2019; Hu et al. 2018; Huang et al. 2019; Tan et al. 2013;
Wang et al. 2021). Kamilova et al. (2006) demonstrated that tomato root-tip-specific
colonizing microbes had better growth and enrichment than other rhizobial
microbes, when tomatoes were grown on minimal media with citrate, a major tomato
root-tip organic exudate, as the primary carbon source. Furthermore, by introducing
the stable carbon isotope, 13CO2, into the rhizosphere of wheat, maize, rape, and
barrel clover plants, it was shown that there were differences in the sources of carbon
released from roots and used by different groups of microbes in the rhizosphere
(el Zahar Haichar et al. 2008).

Root exudate metabolites often play a beneficial role by modifying the
rhizobiome, which in turn can alter plant hormonal content and function. For
example, Hu et al. (2018) identified the secondary metabolite, benzoxazinoids,
which is released by maize roots and can shape the rhizobiome community. In
turn, this can favor plant defenses by increasing the production of the plant defense
hormone, jasmonic acid, conferring protection against herbivores. Differences in the
genotype of a plant species, which can significantly impact the composition of root
exudates, are another factor that not surprisingly influences the microbial composi-
tion of the root microbiome. It has been reported that transgenic Arabidopsis
thaliana plants expressing the sorghum CYP79A1 gene, resulted in the accumulation
of high levels of a derivative of the sulfur secondary metabolite, glucosinolate,
p-hydroxybenzylglucosinolate. This transgenic line exhibited significant alterations
in the profile of the root exudation of glucosinolate compounds, which altered the
microbial composition of root microbiome. This study showed that even small
modifications in root metabolism can have significant effects on root exudates and
the microbial composition of the root microbiome (Bressan et al. 2009).

There is a specific nomenclature used to define the microbiome on versus inside
the root. Root microbes residing inside the root tissue are known as endophytes
whereas the rhizomicrobiome is defined as microbes inhabiting the rhizosphere, the
thin layer of soil intimately associated with the root surface (Bulgarelli et al. 2012;
Edwards et al. 2015; Lundberg et al. 2012; Schlaeppi et al. 2014). Bulgarelli et al.
(2012) demonstrated that the endosphere microbiome is distinct and does not have
the same variation in microbial composition as does the rhizosphere, which is
certainly more strongly influenced by the microbial composition of the bulk soil
surrounding the root. Later, it was shown that the microbes residing on the surface of
roots, sometimes termed the rhizoplane microbiome, are also distinct from the other
two root microbiomes (the endomicrobiome and the rhizomicrobiome; Edwards
et al. 2015).
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3.3 Functional Traits to Enhance Plant Productivity

3.3.1 Biofertilizers that Impact Mineral Nutrient Availability
and Acquisition by Roots

3.3.1.1 Nitrogen Fixation

Nitrogen is one of the most important mineral nutrients required for plant growth and
can be a significant limiting factor to crop yields. Of course, nitrogen is essential for
synthesis of amino acids, proteins, and enzymes that are prerequisite for many plant
physiological processes (Novoa and Loomis 1981). Furthermore, nitrogen is the core
component of chlorophyll that is required for photosynthesis, which provides the
fixed carbon that underpins plant growth. Due to absence of large amounts of
bioavailable nitrogen in the soil, most agricultural crop production relies upon the
application of nitrogen fertilizers, usually as ammonia or urea. However, the
increasing costs of nitrogen fertilizers and the significant environmental costs asso-
ciated with the leaching of as much as 50–60% of N fertilizer before the plant roots
can absorb it, often lead to nitrate pollution of ground waters and pose a greater risk
to the environment (McCasland et al. 1985). Biological nitrogen fixation (BNF) is
the process by which N2 gas in the atmosphere is converted to NH3 by nitrogenase
enzyme activity in microbial diazotrophs, which are prokaryotes that have the ability
to fix N2 gas to ammonia (Kim and Rees 1994). BNF has the potential to be a
sustainable alternative to fulfill the nitrogen requirement of plants. However, only a
few species of plants have the ability to be colonized by nitrogen-fixing bacteria as
symbiotic microbes. There are two types of diazotrophs defined based on their
habitat: (1) symbiotic N2 fixers which live within root nodules of primarily legumi-
nous crop species, which include bacteria in the genera Rhizobium and Frankia; and
(2) non-nodular diazotrophic bacteria that can establish either associative or free-
living relationships with roots where the bacteria reside on or near the root surface
(epiphytes). Other species of non-nodular N2-fixing bacteria form endophytic rela-
tionships with a wide range of non-legumes, where the bacteria colonize inner plant
tissues and reside within root and even shoot tissues. These free-living diazotrophic
bacteria include species within the genera Azospirillum, Azoarcus, and
Herbaspirillum (Santi et al. 2013).

Most current root-nodulated crops obtain fixed nitrogen by the activity of a
molybdenum (Mo)-dependent nitrogenase complex (Boyd et al. 2011; Rubio and
Ludden 2008). It has been shown that only three genes—nifH, nifD, and nifK—are
required to encode the structural subunits of nitrogenase enzyme (Seefeldt et al.
2009; Yang et al. 2018). Mo-dependent nitrogenase (Nif) complexes are a
two-component enzyme system. The dinitrogenase reductase component is a
homodimeric iron (Fe) protein encoded by the NifH gene that donates electrons,
and a dinitrogenase or heterotetrameric Mo–Fe protein component encoded by
NifDK that contains the Fe–Mo cofactor that serves as the substrate reduction site,
accepting electrons from the Fe–S electron transfer protein, ferredoxin (Bulen and



3 The Role of the Root Microbiome in the Utilization of Functional. . . 61

LeComte 1966). Apart from these two components, maturation of the nitrogenase
enzyme complex for its activity also involves some regulatory proteins encoded by
nifE, nifN, and nifB genes. Due to high similarity in 16S rRNA phylogeny and
conserved nature of nif sequences, this similarity has been quite useful in identifying
nitrogen-fixing bacteria from a soil sample. Quite a few studies have employed nifH
as a phylogenetic marker to identify bacterial strains that make functional contribu-
tions to N2 fixation (Boyd et al. 2011; Bürgmann et al. 2004; Coelho et al. 2009;
Seefeldt et al. 2009).

Our understanding of the mechanisms and regulation of nitrogenase N2 fixation
and the nature of how and why these diazotrophs form these symbiotic relationships
with the host plants open potential opportunities to enable non-leguminous crops to
benefit from BNF. As cereals are the most widely grown food crops and are the
source of the largest proportion of calories consumed by the human population, there
has been considerable engineering biology research investigating and developing the
tools to transfer nodule-based symbiotic nitrogen fixation to cereal crops (Burén
et al. 2017; Ryu et al. 2020). This approach has been taken in the Burén et al. (2017)
publication from the Voight Lab at MIT. The focus is to express the genes in the
bacterial nitrogenase-dependent nitrogen-fixing pathway genes in the mitochondria
or chloroplasts of eukaryotes, as these organelles have an ancient bacterial origin and
thus are better suited for expression of bacterial genes than the nucleus of plant cells.
In the Burén et al. (2017) publication, they have reengineered the 16 gene nitroge-
nase pathway from an N2-fixing bacterium to remove its native regulation and
replaced it with well-understood synthetic genetic parts. They have ultimately
been able to express an important and functional section of the bacterial N2-fixing
pathway in the mitochondria eukaryotic model system, Saccharomyces cerevisiae,
which is an important first step in generating a functional nitrogenase enzyme in
plant cells.

A second approach to enhancing crop N nutrition via N2-fixing soil microbes
involves research focusing on free-living N2-fixing bacteria. There are different
approaches that are being explored for this and one of them is to transfer nitrogen-
fixation ability from non-native diazotrophs to plant-host-colonizing rhizobacteria
by introducing genomic islands that can encode the nitrogenase activity into free-
living bacteria that readily colonize plant roots. Fox et al. (2016) demonstrated that
transfer of X940 genomic island from Pseudomonas A1501 to the aerobic root-
associated beneficial bacterium, Pseudomonas protegens Pf-5, followed by the
inoculation of maize and wheat plants with this genetically modified bacterium,
enabled the host plant’s root surface (rhizoplane) and rhizosphere to be colonized by
Pf-5, providing enough radiolabeled fixed nitrogen to the roots to confer higher grain
and biomass yields.

3.3.1.2 Phosphorus Bioavailability and Uptake

Phosphorus is the second most important mineral nutrient for the plant (after N), and
can be a major limiting factor in plant growth as P deficiency is important to a wide
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range of plant processes, including cell division, root and shoot development,
biomass production, photosynthesis, and reproduction (Hu and Schmidhalter 2005;
López-Arredondo et al. 2014; Razaq et al. 2017). Even if soils are not deficient in
total P, inorganic phosphate, which is the primary inorganic form of P absorbed by
plant roots, will readily bind to the Fe and Al oxides/hydroxides on the surface of soil
clay minerals, rendering them unavailable for root P absorption (López-Arredondo
et al. 2014). Root P acquisition is relatively inefficient, and only approximately
20–25% of the applied P fertilizer is taken up by the plant during the first season after
fertilizer application (Roberts and Johnston 2015). Much of the remaining phosphate
fertilizer is either fixed to soil minerals, or is lost as runoff into surface waters,
resulting in environmental damage including algal blooms in lakes and streams,
which are costly to remediate.

The availability of inorganic phosphate to plant roots also is highly dependent on
soil pH (Marschner 1995). In acidic soils (pH < 5.5), as mentioned above, the
phosphate anion binds to aluminum and iron in clay minerals, whereas at higher soil
pH values, insoluble calcium phosphate is formed that cannot be absorbed by roots
(Hinsinger 2001). Currently, more than half of the arable lands worldwide consist of
either acidic or alkaline soil and are deficient in inorganic phosphate (López-
Arredondo et al. 2014). Soil microbes can solubilize the phosphate bound to Fe
and Al in the soil, as they can release organic acids such as citric and malic acids
which are strong chelators of Fe and Al, which then will release the bound phosphate
into the soil solution for absorption by plant roots. Phosphorus also accumulates in
soil in relatively unavailable organic forms, thus being tied up in soil organisms and
plant litter. For example, phytic acid or phytate, an organic storage form of P,
accumulates in soil and plants and some rhizobacteria can release the enzyme,
phytase, which hydrolyzes phytate, releasing inorganic phosphate into the soil
solution where it also can be absorbed by roots (Ke et al. 2021; López-Arredondo
et al. 2014; Shulse et al. 2019). These P-solubilizing soil microbes open additional
avenues of research that may enable the development of sustainable microbial-based
strategies to improve phosphate availability, enhancing root P acquisition efficiency
in agricultural crops. Biofertilization is likely not sufficient to meet the complete
phosphorus requirement of crops. However, it clearly could be a strategy to signif-
icantly improve P bioavailability from applied phosphate fertilizer, increasing
farmer’s yields per unit of P fertilizer applied, and reduce the environmental costs
associated with remediating P pollution of waterways and ground water.

Research aimed at engineering rhizobacteria to increase P bioavailability was
recently conducted by Shulse et al. (2019). In this study, they demonstrated that
multiple rhizobacteria species (Pseudomonas and Ralstonia sp.), when transformed
with phytase genes, significantly increased the release of soluble phosphate from soil
phytate. In this study, a total of 6674 metagenomes were screened and 82 phyloge-
netically diverse phytase genes were selected and their sequences optimized for high
gene expression in three species of rhizobacteria. The researchers identified 12 strains
across three bacterial species that generated a significant increase in growth using
Arabidopsis thaliana grown on phytate as the sole phosphate source. However, to
take advantage of research findings such as the findings from Shulse et al. (2019)
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using genetically engineered soil microbes, it will be necessary to develop a more
comprehensive regulatory framework to foster the more facile movement of inven-
tions such as genetically modified soil microbes from the laboratory to the market-
place. This will likely require the development of real partnerships between
academia, government, and industry to produce a science-based regulatory system
which is predictable and straightforward to navigate.

In another study, to investigate the microbial community structure of the root
microbiome, metagenomic analysis of the root microbiome of Lotus japonicus, a
wild legume that has a history of reasonable growth and yield without phosphate
fertilizer, was done. It was found that specific bacterial phyla, including
Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes, and
Methanobacteria, were specifically abundant in the root microbiome (Unno and
Shinano 2013). These rhizobacterial genera include bacterial strains that could
enhance phytic acid utilization, promoting plant growth using phytate as a P source.
Furthermore, several gene clusters possibly involved in phytic acid utilization,
including alkaline phosphatase and citrate synthase, were investigated by Chhabra
et al. (2013) who characterized the mineral phytate as well as phosphate solubiliza-
tion trait employing functional metagenomics of the barley rhizosphere. They
discovered that mineral phosphate solubilization screening of fosmid clones in
E. coli identified genes/operons related to phosphorus mineralization and uptake.
Further, Yadav et al. (2021) discovered that genes involved in gluconic acid
synthesis are involved in phosphate solubilization by creating transposon insertion
mutant libraries of Mesorhizobium ciceri Ca181, which is a symbiotic rhizobacteria
colonized with chickpea roots. Clearly, recent research in this area has identified
several rhizobacterial species that could play a role in root microbiome-induced
enhanced solubilization of P for root uptake from either fixed inorganic phosphate in
the soil or from organic P released from phytate.

3.3.1.3 Increasing Soil Iron Bioavailability via Bacterial Siderophores

Iron is an essential micronutrient required for several significant cellular processes
including chlorophyll synthesis, photosynthesis, respiration, nitrogen fixation, and
hormone production in plants (Vert et al. 2002). Iron is available in the soil as ferric
(Fe3+) and ferrous (Fe2+) ions depending on soil pH, and soil aeration and redox
potential. In aerobic soils, ferric iron predominates, and it is quite insoluble across
most soil pH values, except in highly acidic soils. Hence, most of the soluble ferrous
iron exists as ligands chelated by compounds such as organic acids, phenolics,
humic acids, and bacterial siderophores (Guerinot and Yi 1994). Root microbes
play an important role in soil iron solubility and uptake by releasing siderophores,
which are low-molecular-weight organic Fe3+ chelators that form strong ligands via
high-affinity binding with Fe3+ ions (Das et al. 2007). These Fe3+ siderophore
complexes are taken up into bacterial cells by specific bacterial membrane trans-
porters under iron-limiting conditions (Neilands 1984). The major classes of
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compounds that function as bacterial siderophores include catecholates (also known
as phenolates), hydroxamates, and carboxylates (derivatives of citric acid).

Plants have also evolved their own mechanisms to acquire Fe3+ from the soil. In
dicots and non-gramineous monocots, they employ a root cell plasma membrane
ferric reductase to reduce extracellular chelated Fe(III) iron and the resulting Fe2+

ions are released by the ferric chelate and rapidly transported into the root cell by
iron-regulated transporter 1 (IRT1), a root cell plasma membrane Fe2+ transporter
(Guerinot and Yi 1994; Marschner 1995). Grass species use their own
phytosiderophore process, releasing non-protein amino acids in response to Fe
deficiency, which chelate ferric (Fe3+) ions in the soil and the Fe(III)-
phytosiderophore complex is transported in toto across the root cell plasma mem-
brane. Both types of plant Fe acquisition systems can absorb Fe chelated by bacterial
siderophores. Using the reductase-based system, dicots and non-grass monocots can
reduce the iron in the Fe(III)-siderophore complex at the root cell plasma membrane
and then the released Fe2+ ion is transported into root cells via the IRT1 transporter.
In grasses, it has been suggested that the uptake of Fe(III) complexes by bacterial
siderophores can occur by Fe exchange between siderophores and
phytosiderophores, or that the Fe-siderophore complex may be transported by the
plant root plasma membrane transporter specifically functioning to absorb Fe(III)-
phytosiderophore complexes (Bar-Ness et al. 1992; Crowley et al. 1988; Wang et al.
1993).

In addition to using bacterial siderophore release to enhance crop Fe acquisition
and nutrition, the agronomic use of siderophore-producing plant-beneficial microbes
can also be part of a strategy for biocontrol of plant pathogenic microbes. For
example, the fluorescent Pseudomonads contain a number of plant-beneficial bacte-
rial species. These fluorescent Pseudomonads release very high affinity Fe-binding
siderophores which cannot generally be used by pathogenic bacteria. Hence, by
decreasing the iron availability to phytopathogenic bacteria by chelating most of
iron, these Pseudomonads promote plant growth by acting as a biocontrol agent
against plant pathogens (Smarrelli and Castignetti 1986). Furthermore, fluorescent
Pseudomonas sp. is one of initial bacterial strains explored that produced
siderophores that have resulted in enhanced iron uptake in oat and mungbean
(Crowley et al. 1988; Sharma et al. 2003). Sharma et al. (2003) showed that
mungbean plants inoculated with a siderophore-producing Pseudomonas strain
GRP3, exhibited reduced chlorosis and increased chlorophyll content under low Fe
growth conditions. The rhizobacterial species, Rhizobium and Bradyrhizobuim, have
also been reported to produce siderophores under iron-deficient conditions (Nambiar
and Sivaramakrishnan 1987). Molecular microbiologists are dissecting the gene
pathways involved in regulating siderophore synthesis and release in response to
Fe-limiting conditions. One key regulator of these processes is the ferric uptake
regulator, or Fur protein, that regulates siderophore production in variable iron
conditions (Hassan and Troxell 2013). As the understanding of the regulation of
these processes advances, more molecular tools are becoming available that will
better facilitate the modification of rhizobacterial genomes, to enable agricultural
researchers to improve the root microbiome to enhance crop Fe nutrition in
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Fe-limiting soils, and to provide microbial-based biocontrol against certain species
of plant pathogenic bacteria.

3.3.2 Drought Tolerance

Drought stress is the most important abiotic stress limiting the yield of agricultural
crops worldwide (Daryanto et al. 2016; Zipper et al. 2016). Additionally, climate
change associated with global warming has exacerbated both the severity and
frequency of droughts with more dire impacts on food crops, and increases the
need for the identification of more sustainable approaches to improve crop perfor-
mance under drought, mitigating drought-induced yield losses. Applications of
beneficial rhizobacteria to both soils and via plant inoculation have been studied in
various crop species to investigate the role of soil microbes and the root microbiome
in enhanced resistance to drought stress, and have demonstrated some promising
prospects for coping with drought (Chen et al. 2017; Marasco et al. 2012;
Vurukonda et al. 2016). Beneficial rhizobacterial inoculants have been suggested
to enhance performance under drought in different ways. First is production of
enzymes that can catabolize stress-responsive phytohormones such as ACC deam-
inase enzyme that can degrade the ethylene precursor, ACC (1-aminocyclopropane-
1-carboxylic acid), and thereby reduce ethylene production which at high levels
inhibits root growth (Mayak et al. 2004). Another possible drought-resistance
strategy involving beneficial rhizobacteria involves alterations in the levels of
exopolysaccharides and the drought-associated amino acid, proline (Vardharajula
et al. 2011). Proline acts as an osmolyte and when its concentration increases in the
cell symplasm under drought, this creates a water potential gradient directed into the
cell and allows the water to flow into the cell even though the water potential outside
the cell has dropped due to drought. This confers the ability to increase the host
plant’s drought tolerance by increasing cellular osmotic and thus water potential,
thus maintaining cell water content under drought stress. Also, proline can play a
role in protecting cell membranes and other cell components against damage caused
by free radical production during drought. Exopolysaccharides produced by
rhizobacteria during drought stress can enhance soil aggregation and structure and
thereby retain soil water near the roots during drought stress (Khan et al. 2017;
Naseem and Bano 2014; Yoshiba et al. 1997).

Additionally, inoculation of plants with certain rhizobacteria can alter hormone-
mediated drought responses including changes in root system architecture via
modulation of phytohormones to increase lateral root growth and biomass, thereby
enhancing the host plant’s ability to acquire water from soils under drought
(Arzanesh et al. 2011; Shakir et al. 2012; Zahir et al. 2008). Another example of
this type of rhizobacterial drought response was a report about rhizobacterial-
induced drought-resistance mechanisms that involved the production of volatile
metabolites that led to a systemic response inducing stomatal closure and reduced
water loss during drought stress. This systemic response appears to involve the
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volatile compound inducing interplay between ABA, jasmonic acid, and ethylene
(Cho et al. 2008).

Although a few published studies have shown that colonization of roots with
certain types of rhizobacteria resulted in improved plant performance under drought,
the functional physiological and molecular mechanisms that drive the recruitment of
a drought-responsive microbiome and the host plant responses remain poorly under-
stood. Research based on 16S rRNA sequencing and metagenomic analysis has shed
light on dynamic changes in the composition and function of the root microbiome
under drought, by enrichment of bacterial phyla such as Actinobacteria, primarily in
the root endosphere, but also in the rhizosphere (Edwards et al. 2015; Naylor and
Coleman-Derr 2018; Naylor et al. 2017; Xu et al. 2018). In the Xu et al. (2018)
study, a research approach integrating genome-resolved metagenomics,
transcriptomics, and plant root metabolomics was conducted in sorghum during
response to drought. The authors found that drought increased the abundance and
activity of monoderm bacteria (Actinobacteria, Firmicutes, and Chloroflexi), which
only have a single outer cell membrane and have thick cell walls. They also found
that drought increased the production of certain metabolites in the root, including
certain carbohydrates (especially glycerol-3-P) and amino acids, and that the
monoderm bacteria showed a concomitant increase in the expression of transporters
for these metabolites. Furthermore, inoculation of sorghum roots with monoderm
isolates suggested that increased abundance of monoderm bacteria in the root
microbiome increased plant growth during drought. These findings suggest that
production of specific root metabolites by drought and their transfer to monoderm
bacteria may play a role in reshaping the microbiome bacterial composition, to
enhance plant growth under drought. These findings indicate that it may be possible
to develop agricultural and/or genetic interventions that reshape the root microbiome
to enhance crop performance under drought in agricultural crops.

3.3.3 Biocontrol of Plant Diseases

Crop diseases caused by pathogens (bacteria and fungi) can result in up to 30% yield
loss in economically important crops (Soko et al. 2018; Tirnaz and Batley 2019).
Hence, the impact of plant pathogens on crop production is a major challenge to
global food security. For decades, chemical control measures have been applied to
control plant diseases; however, the lack of rapid rates of breakdown of these
chemicals into relatively safer constituents makes this approach detrimental to the
environment (Gilden et al. 2010). Additionally, rapid trends in the evolution of
pesticide resistance in plant pathogens have warranted the search for alternative and
environmentally sustainable approaches, such as biocontrol (Lucas et al. 2015),
which could be part of a broader strategy integrating biocontrol with plant genetics
and breeding, better agronomic practices, and new classes of pesticides. Therefore,
as the emphasis on environmentally friendly biocontrol strategies increases, over the
past 20 years there have been an increasing number of publications on the use of
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beneficial bacteria to help control plant pathogens (Akgül and Mirik 2008; Girish
and Umesha 2005; Mishra and Arora 2018; Sang et al. 2008). Even more recently,
root and soil microbiome metagenomic studies have been published and these types
of studies should ultimately increase our understanding of how the root microbiome
operates as a system to protect especially against root diseases (Wille et al. 2019).
For example, Lee et al. (2008) demonstrated the biocontrol of root diseases
employing Bacillus subtilis extracted from rhizosphere soil to control Phytophthora
blight of pepper caused by Phytophthora capsici, when seeds of pepper plants were
inoculated with Bacillus subtilis before planting. There have been reports of several
types of antibiotics produced by rhizobacteria that have been used to control plant
root pathogens such as: pyrrolnitrin, phloroglucinols, phenazines, cyclic
lipopeptides, and hydrogen cyanide (Haas and Défago 2005). Some of these antibi-
otics have been characterized functionally, including bacterial cyanide production
and soil antifungal activity against root fungal pathogens that are both mediated by
the GacA/GacS quorum sensing system in Pseudomonas sp. (Heeb and Haas 2001).
The GacA/GacS two-component system is involved in the synthesis and release of
secondary metabolites that have antifungal activity. The same GacA/GacS system is
used by the beneficial rhizobacterium Pseudomonas fluorescens F113, and is respon-
sible for HCN synthesis that enables P. fluorescens F113 to control the pathogenic
fungal species, Pythium ultimum, which causes damping off disease in important
agricultural crops (Aarons et al. 2000).

Another example of quorum sensing involved in production and release of
antifungal compounds was shown in a study on the PhzR/PhzI system in the plant-
beneficial bacterium, Pseudomonas chlororaphis 30-84. The PhzR/PhzI quorum
sensing system regulates the synthesis and release of phenazine derivatives that
are antibiotics with antifungal activity. The synthesis of phenazine is mediated by
PhzR, whereas PhzI encodes for acyl-homoserine-lactone (AHL) synthase. AHL is
the signal that activates PhzR to synthesize phenazine, which is then released into the
soil. Using this two-component system, Pseudomonas chlororaphis 30-84 was
effective at controlling the serious fungal disease, Take-all, in wheat (Chin-A-
Woeng et al. 2003; Pierson and Pierson 1996; Zhang and Pierson 2001).

In other publications, Bacillus amyloliquefaciens SQR9 has been reported to
control Fusarium wilt disease in cucumber, and Fusarium head blight in wheat
has been shown to be controlled by use of Bacillus amyloliquefaciens AS 43.3 (Cao
et al. 2011; Dunlap et al. 2013). It has been shown that regulation of bacterial
chemotaxis can impact biocontrol effectiveness. For example, Weng et al. (2013)
reported on a mutation in the AbrB gene in Bacillus amyloliquefaciens SQR9 that
regulates chemotaxis and biofilm formation around root, which resulted in the
enhancement of Bacillus amyloliquefaciens SQR9 chemotaxis and biofilm forma-
tion, thereby improving root colonization and biocontrol efficacy. Dunlap et al.
(2013) showed that whole-genome sequencing and analysis of Bacillus
amyloliquefaciens AS 43.3 identified a number of biosynthetic gene clusters (ribo-
somal and non-ribosomal) for synthesis of secondary metabolites that act as antibi-
otics such as surfactin, difficidin, and plantazolicin. Finally, recent advances in
genome-resolved metagenomics have enabled researchers to identify novel soil
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bacteria that can be resources for genes involved in the synthesis of important
secondary metabolites (Crits-Christoph et al. 2018). In Crits-Christoph et al.
(2018), the authors reconstructed hundreds of near-complete genomes of bacteria
isolated from a natural grassland soil ecosystem and identified members of
understudied bacterial phyla such as Acidobacteria, Rokubacteria,
Gemmatimonadetes, and Verrucomicrobia that contain novel gene clusters encoding
important plant-beneficial bacterial biosynthetic pathways. In this study, they found
members of these phyla contained genes that encode diverse polyketides and
non-ribosomal peptides, and these classes of compounds include many antibiotics,
antifungals, and siderophores that thus could be used as novel beneficial
rhizobacteria.

3.3.4 Plant Hormone-Producing Bacteria

Optimal situation-dependent levels of plant hormones such as indole-3-acetic acid
(IAA), gibberellic acid (GA), the direct precursor of the hormone ethylene,
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ethylene, and cytokinin
are required for adequate plant growth due to their significant roles in all the stages of
plant growth development from embryogenesis to seed development (Chen et al.
2014; Davies 2010). Certain taxa of plant growth and performance promoting
bacteria enhance root and/or shoot growth by inducing alterations in plant hormonal
homeostasis that can lead to improved overall plant growth, root growth, abiotic
stress tolerance, and, ultimately, improved yield (Duca et al. 2018; Miransari 2014;
Vessey 2003). Although quite a few species of rhizobacteria have been reported to
produce phytohormones, Pseudomonas and Bacillus spp. have been studied more
extensively than other bacterial species with regard to microbial biosynthesis of
plant hormones (Duca et al. 2018; Patten and Glick 2002b; Shilev 2013; Vessey
2003).

3.3.4.1 Indole-3-Acetic Acid (IAA)

Plant root exudates often contain tryptophan, a precursor in the biosynthesis of the
predominant class of auxin compounds, indole-3-acetic acid (IAA) via the
indolepyruvic acid pathway (Patten and Glick 2002a). Root soil colonization in tea
(Camellia sinensis) with the IAA-producing rhizobacteria, Bacillus megaterium DE
BARY TRS-4, resulted in significantly improved tea plant growth and decreased level
of the fungal disease, brown root rot (Chakraborty et al. 2006). Gene sequences and
genetic pathways for IAA biosynthesis have been identified in Pseudomonas
sp. UW4 in Duan et al. (2013), and later this information was used by Duca et al.
(2018) to transform Pseudomonas sp. UW4, overexpressing four native IAA bio-
synthesis genes: ami, nit, nthAB, and phe. Overexpression of all four genes individ-
ually in Pseudomonas sp. UW4, resulted in significant increases in bacterial IAA
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concentrations. Canola seed inoculation with one of the four bacterial
overexpression lines and subsequent canola growth demonstrated that all four
overexpression lines had greater root growth in plants 10 days post inoculation.
The Pseudomonas sp. UW4 nit overexpression line had the greatest stimulation in
root growth (Duca et al. 2018). The authors also measured the activity of ACC
(1-aminocyclopropane-1-carboxylic acid) deaminase in the transgenic and wildtype
bacterial lines and found significant decreases (30–70%) in enzyme activity in the
overexpression lines. As this enzyme decreases the amount of ACC, the direct
precursor to ethylene, they speculated that the root growth increase could be due
to a direct effect of IAA or one of the other auxin compounds released from the
transgenic overexpression lines colonizing canola roots, or reduction in root ACC
and ethylene by the increased levels of ACC deaminase could also increase root
growth.

Low levels of auxin are often associated with lower plant growth; however,
excessively high auxin levels can affect shoot and root growth adversely (Thimann
1939). Therefore, there have been a number of studies on bacterial genes and genetic
pathways that enhance degradation of IAA and their impact on plant growth
(Costacurta and Vanderleyden 1995; Patten and Glick 1996; Spaepen et al. 2007).
Leveau and Gerards (2008) identified and characterized a putative IAA degrading
iac gene cluster by using the Pseudomonas putida 1290 strain originally isolated
from pear tree foliage (Leveau and Lindow 2005). The iac gene cluster was shown to
introduce IAA degradability in the P. putida KT2440 sp., which does not have the
ability to degrade IAA, demonstrating the likeliness that some of the genes in this
operon are involved in IAA catabolism (Leveau and Gerards 2008). Subsequently,
Scott et al. (2013) conducted insertional inactivation of each of the genes in the iac
cluster, and expression of the altered gene cluster in E. coli were combined with
MS-based auxin metabolite analysis to demonstrate that iac-based degradation of
IAA involved the first gene in the cluster, iacA, and transcript profiling of a knockout
of another gene in the cluster, iacR, which encodes for a repressor of iacA expres-
sion, and this repression is overcome by exposure to IAA. As high levels of IAA also
inhibit Pseudomonas putida 1290 growth as they can with regard to plant growth,
the presence of this IAA degradation pathway in Pseudomonas putidamight allow it
to better colonize root tips where higher levels of root-synthesized IAA might occur.

3.3.4.2 Cytokinin

Cytokinin is an essential phytohormone of paramount importance for plant growth
regulatory processes and cell division (Skoog and Armstrong 1970). Cytokinin
production has been reported by quite a few rhizobacteria such as members of the
genera Azospirillum, Rhizobium, Pseudomonas, and Bacillus (Cacciari et al. 1989;
García de Salamone et al. 2001; Grover et al. 2021; Timmusk et al. 1999). It has been
shown that inoculating plants with cytokinin-producing rhizobacteria can enhance
plant growth and yield (Arkhipova et al. 2005; Kudoyarova et al. 2014; Ping and
Boland 2004; Wang et al. 2018). Wang et al. (2018) showed that inoculation of
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Arabidopsis cytokinin receptor knockout mutants with cytokinin-producing Bacillus
sp. LZR216 alters shoot growth and root system architecture, significantly stimulates
lateral root number and length, and inhibits tap root length, while increases leaf
surface area and shoot biomass. Bacillus sp. LZR216 treatment upregulated the gene
expression of the Arabidopsis cytokinin signaling genes AHK3/AHK4, AHP1/AHP3,
and ARR4/5/7/10/12/15 in root tips, suggesting that root-cytokinin-regulated genes
may play a role in interactions and signaling between the root and cytokinin-
producing bacteria such as Bacillus sp. LZR216.

3.3.4.3 ACC Deaminase Activity and Ethylene

Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) play impor-
tant roles not only in plant developmental but also in plant defense and symbiotic
programs. Thus, it is likely that ethylene and ACC play a central role in the
regulation of bacterial colonization and formation of root and shoot microbiomes.
A number of rhizobacteria can produce significant amounts of the enzyme,
1-aminocyclopropane-1-carboxylate (ACC) deaminase, enabling rhizobacteria to
degrade the ACC produced and exuded by plant roots and thereby reduce ethylene
levels in roots (Glick et al. 1998; Jacobson et al. 1994). ACC is an immediate
precursor to ethylene biosynthesis from methionine in plants (Adams and Yang
1979), and triggering of a surge in ethylene production can lead to root growth
inhibition (Jackson 1991). Although the catalyzing function of ACC deaminase was
first studied in free-living Pseudomonas spp., subsequently its activity was identified
in many other bacteria including rhizobacteria from the genera Rhizobium, Bacillus
pumilus, and Rhodococcus, and Burkholderia phytofirmans sp. Nov. (Glick 2005).
The ACC deaminase gene, acdS, is well characterized in the beneficial rhizobacteria,
Pseudomonas putida UW4, and it has been shown to be transcriptionally regulated
by an acdR gene that encodes the leucine-responsive regulatory protein (Lrp). Lrp
proteins have been found immediately upstream of many bacteria ACC deaminase
genes, suggesting transcriptional regulation of these deaminase genes by Lrp’s is a
key feature in the regulation of bacterial ACC deaminases. On the other hand, the
nifA gene, which is a master regulator of nitrogen fixation, has also been identified as
a regulator of an acdS gene in Mesorhizobium loti MAFF303099 (Kaneko et al.
2000). These results suggest evolution of parallel pathways of regulation of acdS
gene in different classes of proteobacteria that form symbiotic relationships with
plant roots.

ACC deaminases in rhizobacteria, which apparently enable the bacteria to mod-
ulate the levels of root ethylene in the host organ and increase or decrease root
growth where the bacteria reside, likely indicate this enzyme plays an important role
in root–rhizobacterial interactions. The ability to enzymatically modify root ethylene
levels is also a potential tool for agricultural researchers attempting to modulate the
composition and function of the root microbiome. But in order to effectively use this
information to facilitate root-microbiome-mediated enhancement of crop functional
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traits, it will be necessary to more deeply and completely understand the relationship
between ACC deaminase containing rhizobacteria and the plant root.

3.4 Conclusions

3.4.1 Genome-Level Investigations of the Root Microbiome
and Holo-Omics Are Required to Fully Exploit
Microbiome Functional Traits

Plant growth and performance promoting microbes (PGPPM) in the root
microbiome have the potential to be used as important alternative strategies to
plant breeding or agronomic methods to enhance crop productivity, by enhancing
nutrient acquisition, producing plant growth hormones, and enhancing disease and
pest resistance. The genome of the root microbiome can be thought of as a second
plant genome that needs to be decoded to provide the knowledge necessary to use
natural and genetically modified root microbes to improve crop yields by enhancing
root mineral nutrient and water acquisition, abiotic and biotic stress tolerance, and
root system growth and vigor via altered plant hormone homeostasis (Fig. 3.1).
Despite having great potential for the utilization of microbial functional traits,
efficient root colonization with beneficial microbes is certainly one of the major
challenges in enabling modification of root microbiomes to enhance crop functional
traits. There have been major advances in this research area that ranges from the use
of microbe-specific structural and functional markers to multi-omics approaches that
combine two or more omics technologies such as metagenomics, transcriptomics,
metabolomics, and proteomics to study the root microbiome at the genome level.
However, functional studies of the root and its associated microbiome are still in
their infancy, as scientists are developing and improving techniques to study the
microbiome. As these types of studies advance and mature, they will enable the next
steps, which will be to study the root microbiome as a functional ecosystem, using
approaches such as deep-sequencing-based genome-resolved metagenomics, holo-
omics, and microbiome/crop pan genome approaches. Using more systems-based
approaches will be necessary to gain a deeper understanding of the detailed genetic,
biochemical, and physiological networks underlying complex PGPPM-mediated
processes and interactions of the root microbiome with the host plant roots and
exudates, required for the microbial recruitment and root colonization resulting in
enhancement of important crop functional traits. It is imperative that more of our
efforts now focus on understanding the functional aspects of root–microbe interac-
tions, which will be necessary to more effectively and efficiently use root
microbiome modifications as a sustainable tool in our crop improvement toolbox
to enhance plant resiliency and productivity, to help ensure global food security.
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Fig. 3.1 Sustainable improvement in crop productivity via root microbiome-related functional
traits. Genomic DNA or RNA is extracted from the root microbiome for meta-genomic and meta-
transcriptomic analyses. Plant metabolites are extracted from the root and/or collected as root
exudates (very difficult to currently do for roots in soil) for metabolomic analysis. The holo-
omics approaches involves combining and analyzing the different meta-omics data from root
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Fig. 3.1 (continued) microbes, root tissue, and root exudates, which will be necessary for a more
informative functional characterization of microbial plant performance promoting traits and to
identify gene-functional links and networks. Functional information will be important to identify
root beneficial microbes and to genetically manipulate naturally occurring bacteria that can be used
as plant growth and performance promoting microbes (PGPPM). Inoculation with naturally occur-
ring beneficial or genetically engineered rhizobacteria can possibly alter the root microbiome
composition (if the introduced microbial species can compete and be established in this ecosystem),
to increase plant productivity by different mechanisms such as biofertilization, abiotic and biotic
stress tolerance, and plant hormone homeostasis. PGPPM can provide the major macronutrient,
nitrogen, in the form of NH3 by fixing atmospheric N2 via nitrogenase in nodular and free-living
root-associated N2 fixing microbes. Inorganic phosphates that tend to be fixed in the soil, reducing
their availability to roots, can be solubilized by PGPPM to provide bioavailable phosphate to the
roots. Micronutrient iron can be provided to plant roots by siderophores released by bacteria in the
root microbiome. Exopolysaccharides produced by PGPPM and microbe-induced increases in
proline in plants can act as soil aggregants (exopolysaccharides) and root and shoot osmolytes
(proline) to contribute to drought stress resistance. Additionally, microbiome-induced changes in
plant hormone metabolism can alter root system architecture via increases in the number and length
of lateral roots to promote increases in water and mineral nutrient acquisition efficiency. Antibiotics
secreted by the root microbiome can act as biocontrol agents for fungal and bacterial soil-borne
diseases, and competition by PGPPM with pathogenic bacteria for carbon, Fe, and other nutrients
essential for microbial growth can also reduce the abundance of harmful microbes via competition
within the root microbiome. Various plant hormones such as cytokinin and IAA required for
adequate plant growth can be synthesized by specific members of the root microbiome and enhance
plant growth, whereas reduction in concentrations of root growth inhibiting hormones such as
ethylene by rhizobacterial-produced ACC deaminase can also promote root growth and plant
productivity
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Chapter 4
Crop Microbiome for Sustainable
Agriculture in Special Reference
to Nanobiology

Pratyusha Sambangi, Vadlamudi Srinivas,
and Subramaniam Gopalakrishnan

Abstract The microbial population surrounding plant is regarded as the crop
microbiome and they are essential in crop development and sustenance. Specifically,
the plant growth-promoting microbes play a key role as growth enhancers and
disease suppressors. These plants associated microbiomes are often considered as
one of the essential agricultural components toward an enhanced crop yield. This has
led to a wide range of nanotechnological applications on the agricultural systems to
boost crop output. In this scenario, the nanoparticles are largely seen interacting with
the crop microbiomes and the plant systems. Hence, in the present chapter, the role
and response of these crop microbiomes and nanoparticles will be discussed in
detail. From the point of application of these nanoparticles, their effect on the
plant growth-promoting bacterial systems and to their biosynthesis utilizing the
crop microbiomes will be explored. Nanomaterials interaction with root colonizing
microbes often promised enhanced plant health during both abiotic and biotic stress
conditions through rhizobacterial metabolite changes. Nanotechnology, being a new
frontier in the modern agriculture practices, the challenges of nanoparticle dosage,
cost efficiency, and their footprint in the agricultural soils over a long time was one
of the vital areas to observe. On the other hand, nanoparticles are widely reported to
enhance the plant growth-promoting and defense traits of the crop microbiomes and
play a key role in global food production. The present chapter discusses the key
features of crop microbiomes, their response to nanoparticles, and together how they
could influence the crop yield and biotic stress resistance.
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4.1 Introduction

The crops are surrounded by a whole system of environment and diverse microor-
ganisms. These microbial communities associated with the crops are regarded as the
crop microbiome, and they are essential for plant sustenance and growth (Khatoon
et al. 2020). Crop microbiota consists of different types of living communities such
as archaea, bacteria, fungi, protozoans, and viruses that enhance the soil diversity
and fertility (Pedros-Ali and Manrubia 2016). They often support plant growth and
development through some significant processes, namely hormone synthesis, nitro-
gen fixation, and nutrient recycling (Tilak et al. 2005). Apart from that, this soil
microbiome also assists in plant protection against certain invading biotic and abiotic
factors (Müller et al. 2016). Crops with healthy microbiome will often facilitate rich
nutrients and metals into the agricultural cultivable lands (Fageria 2016). This results
in fertile and healthy soils that enhance agricultural crop production, which is an
important necessity at times of ever-increasing population and greater food demand.
Hence, agriculturalists across the world are adopting various technological develop-
ments such as varied microbial inoculants, bio-fertilizers, and microbiome nano-
engineering, further incorporating them into the traditional agricultural practices
(Chen and Yada 2011; Compant et al. 2019). These will surely flourish the crop
microbial ecosystem and sequentially enhance the crop resilience and yield.

Crop microbiomes are mostly influenced by the host plant and the environment
surrounding it. These microbes colonize in different parts of the plant, such as the
rhizosphere, endosphere, and phyllosphere. Among them, rhizosphere, i.e., plant
root surface and its associated microbes, is of paramount importance for undertaking
various metabolic and nutrient cycles (Lakshmanan et al. 2014). These root colo-
nizing beneficial bacteria, which are known as Plant Growth Promoting
Rhizobacteria (PGPR) and they, directly and indirectly, facilitate both plant growth
and protection (Table 4.1). The advantages of PGPR are attributed to their charac-
teristics features of nitrogen fixation, phosphate/potassium solubilization, phytohor-
mone/siderophore production, antibiotic/hydrolytic enzyme production, and induced
systemic resistance (Alekhya and Gopalakrishnan 2017; Vijayabharathi et al. 2018b;
Anusha et al. 2019; Gopalakrishnan and Vadlamudi 2019; Sambangi et al. 2021;
Prasad et al. 2015). Hence, these PGPR are used as an alternative to agrochemicals in
the form of bio-fertilizers/inoculants toward sustainable agriculture management.
Further, with the advanced technologies and multidisciplinary research, technologies
such as nano-encapsulation and nanomaterials are being utilized for the better
performance and productivity of these beneficial microbes (Dixshit et al. 2013;
Rana et al. 2021; Harish et al. 2022). Hence in the present chapter, the applications
of nanotechnology in the agriculture sector will be thoroughly analyzed with partic-
ular emphasis on the positive and negative impacts of these nanoparticles on the
essential soil crop microbiomes.



4 Crop Microbiome for Sustainable Agriculture in Special Reference. . . 83

Table 4.1 Role of some plant growth promoting rhizobacteria (PGPR)

PGPR Beneficial effect Crops References

Azospirillum Nitrogen fixation, phos-
phate solubilization,
improved growth and
nodulation

Bean, wheat,
chickpea, rice,
maize, sugarcane

Hamaoui et al. (2001), Lucy
et al. (2004), Tejera et al.
(2005)

Bacillus Biofertilization,
bioprotection, nitrogen fixa-
tion, improved plant resis-
tance, growth and yield

Chickpea,
pigeonpea, rice,
groundnut, maize,
tomato, cucumber

Ongena and Jacques
(2008), Gopalakrishnan
et al. (2011, 2012b),
Beneduzi et al. (2012),
Gopalakrishnan et al.
(2016), Sharma et al.
(2017), Vaikundamoorthy
et al. (2018), Hashami et al.
(2019)

Pseudomonas Increase in plant yield,
stress resistance, nitrogen
fixation, P and Fe uptake,
effective symbiosis with
other beneficial bacteria

Rice, maize,
chickpea,
pigeonpea, wheat,
cotton

Shaharoona et al. (2008),
Yao et al. (2010),
Gopalakrishnan et al.
(2011, 2012b, 2016),
Paramanandham et al.
(2017), Cheng et al. (2019),
Lawrance et al. (2019)

Rhizobia Nitrogen fixation, bioreme-
diation, bioprotection

Legumes, rice,
tubers

Yanni et al. (2001), Garcia-
Fraile et al. (2012), Flores-
Felix et al. (2013),
Gopalakrishnan et al.
(2018), Vijayabharathi et al.
(2018b)

Streptomyces Enhanced nitrogen fixation,
increased plant growth,
yield, and disease resistance

Legumes, rice,
tomato, chili

Gopalakrishnan et al.
(2011, 2012a, b, 2016),
Alekhya and
Gopalakrishnan (2017),
Vijayabharathi et al.
(2018a), Ankati et al.
(2021), Srinivas et al.
(2020), Gopalakrishnan
et al. (2020, 2021),
Pratyusha et al. (2021)

4.2 Nanotechnology in Sustainable Agriculture

Nanotechnology, being one of the significant technological, scientific advancement in
recent times, has shown a tremendous impact on many fields, including agriculture. It
plays multiple roles in crop production/improvement, immunity against abiotic and
biotic factors, and environmental remediation (Mukhopadhyay 2014; Moulick et al.
2020; Prasad 2014; Prasad et al. 2014, 2017a). These nanoparticles being characteris-
tically smaller in size, have unique features such as a large surface area to volume,
physiochemical stability, aggregation ability, high reactivity, and targeted delivery
(Prasad et al. 2016; Srivastava et al. 2021). Thus, many nanoparticles, namely Ag,
Au, Carbon nanotubes, Cu, Fe, Si, TiO2, Zn, and ZnO, have exhibited some significant
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Table 4.2 List of nano-products utilized on various agriculturally important crops

Impact

Positive Negative

Nanofertilizers (e.g.,
NPs of urea, ZnO,
chitosan, NPK)

Quick and specific
release, improved
nutrient efficiency,
anti-microbial water
holding capacity

Overdose toxicity,
indirect effect on
PGPR and
environment

Gogos et al. (2012),
Chhipa (2017),
Pitambara and Shukla
(2019)

Nanopesticides
(e.g., Nano-Ag,
Nano-FeO, Nano-
silica, Nano-ZnO)

Low dose, enhance
bio-availability of
active ingredient,
targeted delivery

Unknown fate of the
carrier, slow degra-
dation, possible risk
to humans and
microbiome

John et al. (2017), Kah
et al. (2018),
Bundschuh et al.
(2018)

Nano-biopesticides
(e.g., Azadirachtin-
chitosan, Aloin-
AgNPs, phero-
mones-nanofibers;
garlic essential
oil-polyethylene
glycol)

Crop protection,
increase efficacy of
biologically active
compound, low dosage

Possible hazardous
effect on environ-
ment and soil

Yang et al. (2009),
Feng and Peng (2012),
Shah et al. (2016),
Bipin et al. (2017),
Vijayabharathi et al.
(2018a)

Nano-biosensors
(e.g., Aptasensors,
nanofibers,
nanocapsules)

Monitor of plant and
soil health, smart
delivery

Risk of toxicity and
untargeted dispersion
into soil and water

Rai et al. (2012),
Srivastava et al. (2018)

effects on plant development and protection (Pokropivny et al. 2007). Many researchers
employed nanotechnology to promote quick and low-cost agriculture systems toward
enhanced yield and crop diagnosis (Sekhon 2014; Kim et al. 2017; Abd-Elsalam and
Prasad 2018, 2019; Abd-Elsalam et al. 2019). Also, these nano-engineered technologies
have shown a promising increase in the agricultural yield through sustainable manner
and a better alternative to agrochemicals (Deepti et al. 2020; Prasad et al. 2017b, c).

With the necessity to feed the ever-increasing population, research and innova-
tion in agri-nanotechnology have led to varied applications leading to the develop-
ment of nano-biosensors, nano-fertilizers, nano-pesticides, and nano-encapsulated
products (Bhattacharyya et al. 2016). These different forms of nanomaterials have
strongly exhibited their plant growth and protection properties along with agricul-
tural soil remediation (Kah et al. 2019; Borah et al. 2022). Following (Table 4.2) are
some of the significant developments of nanotechnology, utilized in the agriculture
sector with strong impacts on agricultural crops, crop microbiomes, and soil status
(Sangeetha et al. 2017a, b, c).

4.2.1 Nano-Agrochemicals

Among all nano-products that are widely in the application, nano-pesticides and
nano-fertilizers together are considered as nano-agrochemicals and have gained
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Table 4.3 List of marketing nano-agrochemicals produced by different agri-companies

Nano-
agrochemical

Nano-Gro Agro Nanotechnology Corp,
USA

Increases crop yield (FAO 2011)

Nano Green United Phosphorus Limited,
South Africa

Attacks pest respiratory system (FAO
2011)

PRIMo Maxx Syngenta, Switzerland Attacks pest neural system (FAO 2011)

Karate Zeon Syngenta, Switzerland Attacks pest neural system (FAO 2011)

Fruity Fresh Tamil Nadu Agricultural Uni-
versity, India

Enhances shelf life of fruits and vegetables
(TNAU 2019)

Nano-fert Geolife Agritech India Pvt. Ltd.,
India

Nutrition (Geolife group, www.
geolifegroup.com)

Fib-sol Fib-sol Pvt. Ltd., India PGPR benefits (www.fibsol.com)

much popularity due to their potential effectiveness. Nano-scale technology is
applied to these pesticides and fertilizers to enable their precise management and
better targeted-delivery than the conventional methods. Different types of nano-
formulations are utilized for these agrochemical applications, namely nano-
encapsulations, nano-emulsions, nano-tubes, nano-gels, and nano-suspensions (Liu
and Lal 2015; Prasad et al. 2019). Agriculture being the backbone to many devel-
oping countries, globally, many countries accepted the significance of this nano-
technology in agribusiness. By 2030, agribusiness expected to have a 3 trillion USD
market value globally. In that, nano-agrochemicals will contribute a significant share
with their vibrant developments in the sectors of food yield and plant protection. For
example, the leading agrochemical companies, namely Dow AgroSciences,
Syngenta AG, Bayer crop Sciences AG, and Baden Aniline and Soda Factory
(BASF), have already opened their nano-research divisions. In fact, Syngenta
already marketed nano-pesticides such as Banner MAXX fungicide, Cruise
MAXX Beans, and Primo MAXX Plant Growth Regulator (Bhan et al. 2018).
Likewise, agrochemical companies in Asia and America also are actively participat-
ing in the manufacturing of these nano-agrochemicals (Table 4.3).

Along with this extensive application of nano-agrochemicals, the question of the
risk assessment and the final fate of these products in the environment also been
raised over longer periods. There is uncertainty regarding their usage and safety
toward non-targeted living systems such as crop microbiomes and soil diversity.
Some studies reported adverse effects of these nano-agrochemicals on smaller living
organisms (Ostiguy et al. 2010). Apart from that, the biotransformation of these
nano-agrochemicals could accumulate in the plants, rhizobacteria, and food products
(Melanie and Rai 2020). Intrusion of plant-microbial symbiosis by these nano-
agrochemicals must be thoroughly analyzed before their fullest utilization.

http://www.geolifegroup.com
http://www.geolifegroup.com
http://www.fibsol.com
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4.3 Nanoparticles and Plant Microbiomes

It is evident that from many research reports that in the last few years, nanotechnol-
ogy has been playing a significant role in the agriculture sector in the forms of
different nano-products. The behavior and the impact of these widely introduced
nano-products on the environment are yet to be fully understood (Table 4.4). These
nanoparticles might have direct and indirect interactions on the plants and their most
closely associated soil bacterial communities (Shweta et al. 2018; Singh et al. 2019).
Many researchers have investigated the efficacy and effect of these NPs on the soil
rhizobacteria, and they include both positive and negative implications (Fig. 4.1).

Table 4.4 Nanoparticles effect on the soil microbiomes

Type of
nanoparticles

Ag Effects on enzymes Shin et al. (2012)

Ag Effects on β-glucosidase, acid phosphatase, dehydro-
genase, urease

Hänsch and
Emmerling (2010)

Ag Reduces enzymatic activities Peyrot et al. (2014)

Ag Changes/loss in the bacterial communities Colman et al. (2013)

Ag, Al2O3 Reduces the bacterial and archaeal amoA gene abun-
dance in soil

McGee et al. (2017)

Au Effects the nutrients, enzymes, and microbial
communities

Asadishad et al.
(2017)

Cu Reduces the C and N content and alters the microbial
structures in the soil

Kumar et al. (2012)

Cu & Fe Changes in soil humic contents Ben-Moshe et al.
(2013)

Ti Alters soil bacterial structures Ge et al. (2012)

Fig. 4.1 Impact of nanoparticles on the crop microbiomes
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There were also reports of constant percolations of NPs into the soil for more
extended periods of time, leading to toxicity (Yadav et al. 2014). These NPs could
also alter the microscopic properties of soil, i.e., reduced humic acid contents,
resulting in disruption of the residing soil microbial diversity (Maurer-Jones et al.
2013). The introduction of these NPs into the natural environment along with
unintentional releases in the form of water and sewage pose a great threat to the
beneficial crop microbiomes (Coll et al. 2016).

4.3.1 Positive Impact

There are significant positive attributes of these NPs on the soil bacteria communi-
ties. For example, Au, Cu, and SiO2 NPs enhanced the number of microbial
communities in the soil and increased their metabolic rate (Shah and Belozerova
2009). In many reports, AgNPs in lower doses have increased the microbial density,
the nitrifying ability of PGPR, and exhibited anti-microbial activity against patho-
genic microbes (Pietrzak and Gutarowska 2015; Nawaz and Bano 2019). In addition,
the TiO2 and ZnO NPs have assisted in the degradation of organic pollutants in
agricultural soils (Ge et al. 2012). The natural soil nanoparticles, namely TiO2 have
enhanced the performance of the PGPR and, in turn, increased plant growth and
physiology (Timmusk et al. 2018). This implies that the NPs under proper monitor
and dose restrictions could enhance the PGPR abilities and pave the way to an
ecological solution of increased agricultural crop yields. It is also reported that some
NPs, namely Cu, Ag, and Zn, could act against the soil-borne pathogens and play a
vital role in protecting the plant and crop microbiomes against various biotic stress
factors (Malandrakis et al. 2019).

Application of these NPs in the form of nano-fertilizers, nano-pesticides, and
nano-formulations can replace chemical fertilizers to provide site-specific crop
nutrition (Kah et al. 2019), suppress weeds (Amna et al. 2019), and insect-disease-
specific resistance (Camara et al. 2019) with better efficiency for sustainable crop
production. For instance, the silver nanoparticles biosynthesized from Streptomyces
griseoplanus SAI-25 showed antifungal activity against the fungal pathogen
Macrophomina phaseolina (Vijayabharathi et al. 2018a). In another study, the
MgO nanoparticles had reported anti-fungal activity against the soil-borne patho-
gens, namely Phytophthora nicotianae and Thielaviopsis basicola (Juanni et al.
2020). Silver and copper NPs biosynthesized from Pseudomonas aeruginosa
exhibited anti-fungal activity against three pathogenic fungi Botrytis cinerea,
Pilidium concavum, and Pestalotia sp. (Bayat et al. 2021). These reports show us
the positive impacts of NPs in the management of soil-borne pathogens. Thus,
developing eco-friendly nano-formulations, establishing proper delivery system,
and validation of these nano-formulations under field conditions to manage pests
and weeds along with potential benefits such as biofortification in crops is the need
of the hour for sustainability in productivity and conservation of biodiversity in
agricultural production systems (Gupta et al. 2018; Ismail et al. 2017).
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4.3.2 Negative Impact

The potential benefits of nanotechnology in the agriculture sector and its enormous
usage and applications have led to detecting NPs in the soil above the threshold
levels. This could significantly alter the biological and physiochemical properties of
the residing soil crop microbiomes (Vittori Antisari et al. 2013). These metallic NPs
were accumulated in the soil through different routes, and they could exhibit toxic
effects on PGPR, which might influence the plant health and the soil structures.
Apart from that, the accumulated NPs could also alter the associated microbial
carbon and nitrogen ecological cycles in the environment (Simonin et al. 2018).

The composition and type of the metallic NPs play a significant role in the effects
on the soil crop microbiomes. For example, the CuO NPs reduced the oxidative
potential of the soil (Schlich and Hund-Rinke 2015), and ZnO NPs decreased the
enzymatic activity of the residing rhizobacteria (Shen et al. 2015). Also, overdose
and continuous percolation of these NPs could accumulate and block the ion
channels of the bacteria. It was reported that the AgNPs impact the ion release
structure of the bacteria (Zhai et al. 2016) and hinder the bacterial enzymatic activity
(Lowry et al. 2012). The Fe3O4 NPs have shown increased toxicity toward the crop
microbiomes (Frenk et al. 2013). Gold NPs at higher concentrations in the soil led to
the loss of rhizobacterial diversity (Asadishad et al. 2017). In the end, these NPs
being present in abnormal quantities in the soil could possibly alter the natural soil
ecosystem and negatively effect on the plant-microbial symbiosis through mem-
brane disruption and cell wall damage.

4.3.3 Nanomaterial’s Role in Crop Abiotic Stress

Crops constantly expose to various abiotic stress factors such as salinity, drought,
extreme temperatures, and heavy metal stress (Zhang et al. 2022). Many researchers
are constantly working to utilize the applications of nanotechnology in minimizing
the abiotic stresses in the crops. Nanomaterials are being investigated to overcome
both the abiotic and biotic stresses in the plants through their promising and potential
nano-sizes. It was observed that the application of nano-silicon dioxide had lowered
the salinity stress in the strawberry crops (Avestan et al. 2019). Similarly, nano-
titanium dioxide had reduced the NaCl levels by increasing the antioxidative
enzymes and compatible solutes in tomato crops (Khan 2016). Nanoscale zero-
valent iron (nZVI) nanomaterials are known to attract the heavy metals and immo-
bilize them with their distinct structures (Fajardo et al. 2012). The application of
Cu-Zn nanoparticles showed an effective reduction in the drought levels in the
plants, especially in the wheat (Taran et al. 2017). In another study it was observed
that the application of SiO2 nanoparticles could increase the plant resistance to
drought conditions (Ashkavand et al. 2015).
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4.4 Future Trends and Challenges

With a wide range of potential applications, agri-nanotechnology has been actively
researched at both institutional and industrial levels. The development of novel
nano-tools could be encouraged in the future for a sustainable agriculture. At
present, nanotechnology is the promising solution to meet the two most demanding
issues, i.e., efficient utilization of resources and reducing the output waste. Hence,
innovative nanomaterials and systems will be developed to improve the quality of
the soil, stimulate plant/rhizobacterial growth, and intensify sustainable agricultural
output (Yadav et al. 2020). The validation and safety limits of these nanoparticles
must be studied before proceeding to a wide range of utilization and commerciali-
zation. A proper regulatory guidelines and legislative paperwork must be enforced,
with risk management factors of nanoparticles. In this scenario, at both national and
international level the regulatory bodies namely Department of Biotechnology,
India, International Standard Organization, Organization for Economic Cooperation
and Development, and US Food and Drug Administration have laid down guidelines
and practices, to ensure the proper utilization of these nanomaterials in various
sectors of agriculture (FAO/WHO 2013; DBT 2019). Strictly following these guide-
lines will minimize the adverse effects of these NPs on the natural environmental
factors such as vegetation, microbes, and soil over a long period and exhibit their
substantial positive impacts.

4.5 Conclusion

With the growing population and global warming application of nanotechnology
undoubtedly promise sustainable agriculture and enhanced food yield. But, in view
of the above-addressed reports of both positive and negative impacts of NPs on the
crop microbiomes, it is necessary to perform a proper risk-benefit assessment before
their application in the agricultural fields. It must explore a clear overview of the
plant-microbe-soil trophic chain transfer of these NPs. Indeed, the green synthesis of
nanoparticles is a safer approach and promising with less toxicity. In future, a
thorough physio-chemical assessment of these beneficial NPs in natural experimen-
tal designs such as agricultural fields could be advantageous to evaluate their actual
footprint in the ecological nature and on soil microbiota.
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Chapter 5
Changes in Plant Microbiome in Response
to Abiotic Stress

Mishaal Irfan, Hira Aslam, Awais Maqsood, Syeda Khola Tazeen,
Faisal Mahmood, and Muhammad Shahid

Abstract Heavy metal, drought, salinity, temperature, and nutrient shortage are
among abiotic factors that influence crop plants and jeopardize agricultural output.
The association of a variety of microbes with plants is very significant for the growth
and health of the plants for nutrient uptake, protection against phytopathogens,
hormonal signaling for homeostasis, and acquired tolerance against various abiotic
stresses. A community of these microbes that associates with plant is termed as plant
microbiome. Recent research reveals that phenotypic and genotypic traits including
length, water storage content, water storage capacity, nitrogen content, the phospho-
rus content of leaf, transpiration rate, and net photosynthetic rate are correlated with
the composition of bacterial, archaeal, and fungal communities. Hence, a shift in the
population density of these microbes in response to the abiotic stresses could
significantly affect plant morphology and physiology. For example, drought could
alter the microbial compositions in the rhizosphere and endosphere. The experimen-
tal studies revealed the depletion of several Acidobacteria, Verrucomicrobia, and
Deltaproteobacteria followed by the enrichment of Actinobacteria and Chloroflexi
during drought stress. Halotolerant microbes survive in high salt concentration
expressing such traits that help plants to live in elevated salinity environments. All
microorganisms respond to extreme temperatures by making specific polypeptides
called heat shock proteins (HSPs). Certain bacterial strains produce
exopolysaccharides (EPSs) that possess distinctive characteristics of holding water
and also has cementing characteristics. The higher temperature increased
Bacteroidetes and Verrucomicrobia while causing a decrease in the abundance of
Proteobacteria. Engineering the rhizosphere of plants with specific abiotic
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stress-tolerant microbes makes a specific environment for the plant to nourish. This
chapter will focus on different abiotic factors that affect the plant microbiome.

Keywords Abiotic stress · Microbiome · Rhizosphere · PGPM

5.1 Introduction

Microbial communities are essential for the survival of all living forms on the planet,
as they are involved in practically every biogeochemical cycle that occurs (van der
Heijden and Hartmann 2016). Microbiomes are made up of a diverse group of
microorganisms that live in close proximity to higher creatures. Microorganisms
can be found in all higher organisms, including animals, plants, and fish, as well as
insects, mice, apes, and people. The plant microbiome is a term used to describe the
collective groups of plant-associated bacteria (Barea 2015). Plant microbiome is the
key factor in maintaining plant’s fitness. Almost every part of the plant harbor
microorganisms, our focus is on the rhizosphere, phyllosphere (plant aerial parts),
and endosphere (internal tissues) (Tosi et al. 2020). The rhizosphere is a rich region
of soul-derived microbes colonizing root exudates. In contrast, phyllosphere is a
nutrient-poor region and is subjected to extreme temperature, radiation, and moisture
conditions. Epiphytes are microbial communities found in the rhizosphere and
endosphere. Microbes residing within plant parts comprise in endosphere. Microbes
are of immense importance as it is recognized that they have enormous potential to
increase host health. Microbes associated with plants are classified into three groups,
based on their effects on plants: beneficial, deleterious, and neutral (Spaepen et al.
2009). Some of the beneficial microbes can help plants maintain their productivity
under stressful conditions. The interaction of plants with microbes encompasses
multipart benefits in a plant’s cellular system.

Plants are subjected to a variety of biotic and abiotic stresses throughout their
lives, all of which have a favorable or negative impact on their growth. Changes in
transcriptomics and metabolomics can result in changes in tree, root, and leaf
exudates, affecting the plant-associated microbial population in the process. Plants
with microbiomes, particularly those that can withstand various abiotic challenges,
are not only beneficial to plants but also operate as a legacy and boost offspring
fitness, according to a growing body of evidence and research (Liu et al. 2020).
Microorganisms react to a wide range of stimuli, and their diverse stress responsive
systems interact with one another and have a role in pathogenicity.

Abiotic stressors caused by bad climatic conditions are one of the most important
limiting factors for agricultural output loss. According to a 2007 FAO assessment,
only 3.5% of the total land area is undisturbed by environmental limitations.
Dryness, low/high temperature, salt, and acidic environments, light intensity, sub-
mergence, nutritional inadequacies, drought, and heavy metal stress are all examples
of abiotic stressors. Drought has affected 64% of the land area, whereas flood
(anoxia) has affected 13%, salinity has affected 6%, mineral deficiency has affected
9%, acidic soils have affected 15%, and cold has affected 57%. Erosion, soil
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Fig. 5.1 Diverse abiotic stress factors affecting plants

deterioration, and salt have damaged 3.6 billion hectares of dryland agriculture on
the planet’s 5.2 billion hectares. Half of the world’s irrigated land is expected to be
damaged by salt-affected soils, resulting in a US$12 billion economic loss (Ansari
2018). Similarly, the global annual cost of land degradation by salt in irrigated
countries might be US$ 27.3 billion owing to crop loss. Salinity has been shown to
have a negative impact on plant growth. The number of hectares of irrigated land that
is becoming increasingly salinized has nearly surpassed 34 million. Although it is
impossible to make an exact assessment of agricultural loss (decrease in crop yield
and soil health) as a result of abiotic stresses, it is clear that such pressures affect
large areas of land and have a major impact on crop quality and quantity.

The soil biodiversity is the multiplex of biological communities on the Earth, with
even more richness than tropical forests. Plant-associated microbes are critical to the
health of the soil ecosystem and fertility. Soil is a significant organic carbon sink. In
the soil, organic leftovers from diverse sources are converted by microbes into
humus, a dark-colored, complex organic substance that is degraded by numerous
types of bacteria, releasing CO2 and water (Pandey et al. 2018). Also, it contains
nutrients that are also supplied to plants by mineralization (Fig. 5.1).

5.2 Abiotic Stresses and Plants

A variety of abiotic stresses are experienced by plants such as drought flooding,
extreme temperatures, salinity, nutrition deficiency, heavy metals that affect the
productivity of plants. Because of the sessile nature of plants, these stresses impose
major restrictions such as limiting crop production and food security worldwide (Jha
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and Subramanian 2018). A plant’s ability to adjust to various stresses depends on its
photosynthetic ability and strength about other metabolisms related to its growth and
development. Under abiotic stresses, plants activate different enzymes, complex
gene interactions, and crosstalk with other metabolic pathways. In this chapter, we
have discussed the different effects of abiotic stresses on plants.

5.2.1 Consequences of Drought

Water makes up a major part of fresh biomass of non-woody plants, i.e., 80–95%
and is essential in growth, development, and other metabolic functions (Bagheri
et al. 2019). It maintains plant cell turgor thus helping in the respiration process
(Khalid et al. 2019). Water has characteristics like high-temperature vaporization,
high surface tension that makes it a good solvent. These characteristics allow water
to remain in liquid even at high temperatures and act as a solvent for many important
molecules, minerals, and ions. Scarcity of water is one of the major issues in plant
production. Drought causes almost 50% losses in crop yield. There are many causes
of water shortage such as low rainfall, high temperatures, high intensity of light, and
salinity. Rainfall is the principal source of water because arid and semi-arid land
covers roughly 35% of the Earth’s surface. Even places with adequate rainfall face
this problem because to the erratic distribution of rainfall throughout the year. As a
result of changing global climatic conditions, temperature rises, increasing water
evaporation from soil and plants (Salehi-Lisar and Bakhshayeshan-Agdam 2016).

Plant productivity is affected in a variety of ways by drought. Cell division,
elongation, and differentiation are all necessary for an organism’s growth and
development (Salehi-Lisar and Bakhshayeshan-Agdam 2016). Drought has a direct
impact on all of these stages since it causes turgor loss, enzyme disruption, and a
reduced photosynthesis rate due to a lack of energy. Reduced leaf size and number of
stomata, cutinization of leaf surface, increase in number of large vessels, cell wall
thickening, premature leaf senescence, and submersion of stomata are some of the
morphological and anatomical characteristics influenced by water stress in succulent
and xerophytes plants. The fundamental variables in optimal photosynthesis in
plants are appropriate leaf area development and stomatal openings. As a result of
the lower surface area, increased resistance to gas exchange due to fewer stomatal
openings, and increased leaf senescence in water stressed plants, the net photosyn-
thetic rate is reduced. Drought stress primarily affects plant morphology by reducing
plant size and biomass production (Khan et al. 2021a). To enhance water uptake
under water stress, plants stretch their roots and form ramified root systems. During
dehydration, the root to shoot ratio increases, while the total biomass of the plants
decreases dramatically.
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5.2.2 Consequences of Flooding

Flooding, also known as damped, flooded, drenched, or ponded soil, is a severe
stress that harms plant growth and metabolism. One of the key drivers of global
warming is changes in environmental circumstances induced by the industrial
revolution’s release of greenhouse gases such as carbon dioxide and methane
(Tewari and Mishra 2018). As a result, changing climatic circumstances have
influenced a number of abiotic stressors as well as biotic factors. Scientists have
several definitions of flooding, which is regarded as one of the multiple stress factors
that causes numerous alterations in plant tissues. Climate change is one of the main
causes of erratic rainfall, which causes floods in some parts of the world. Flooding
has a detrimental impact on about 13% of the total land area and 10% of agricultural
land in the United States (Tewari and Mishra 2018). Around 15–80% of the total
yield of crops is lost due to waterlogging condition. Despite the fact that a number of
reviews had been published on different stress factors, but very less data is available
on flooding stress. Plants can be deprived of CO2, O2, and sunlight if excess of water
is present. Flooding stress disrupts plant processes. Photosynthesis and aerobic
respiration are hampered by a lack of CO2, O2, and sunshine. Reduced photosyn-
thesis and aerobic respiration result in a shortage of carbohydrates, restricting plant
growth and development. This increased water level induces hypoxia (a drop in
oxygen levels) in a small duration, causing anoxia to roots. The redox potential of
wet soil and plants rises as a result of hypoxia, leading in the production of reactive
oxygen species (ROS). Although ROS is essential for intracellular and intercellular
signaling, it also oxidizes membrane lipids, pigments, proteins, and nucleic acids,
causing normal plant metabolism to be disrupted. Additionally, increased CO2 levels
in plant roots create phytotoxin buildup in decreased soil, limiting respiration (Blom
and Voesenek 1996; Fukao and Bailey-Serres 2008).

5.2.3 Consequences of Salinity

The increase in world population demands for an increase in food sources: that is
why more arable land is needed to grow more food crops to feed people (Amirjani
2010). This can be accomplished by increasing the amount of farmed land and crop
productivity which can be made possible by bringing agriculture to marginal lands.
But the agricultural productivity is limited by salt stress. Soil salinity has deleterious
effects on crop production all over the world. According to an estimation, salt
damage affects 20% of all irrigated farmland and reduce crop yield (Kumar et al.
2020). The total area of salt-affected soil on the planet is estimated to be 833 million
hectares (Negrão et al. 2017). Every year vast swaths of agricultural lands are lost
and become unfit for agriculture and that is why removed due to increasing soil
salinity. The main factors resulting for soil salinity are the irrigation through saline
irrigation water and the application of fertilizers.
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Fig. 5.2 Mechanism induced by salt stress in plants

An excessive amount of salts in soil mainly NaCl has negative results on plant
productivity. In the beginning, plant’s response to salinity can be divided into two
phases depending on the Na+ sensing; shoot ion-dependent response and shoot
ion-independent response (Negrão et al. 2017). The first phase occurs within minutes
to days and is followed by stomatal closure and inhibition of leaf expansion. The
second phase occurs over a longer period and causes the accumulation of Na+ in
shoot up to toxic concentrations, particularly in old leaves causing premature leaf
senses and ultimately reducing plant yield and even plant death.

Salinity alters the morphological, physiological, and biochemical responses of
plants, and plants respond to them by various mechanisms (Fig. 5.2). It results in
osmotic and ionic stress. On molecular level changes in gene expression can be
identified as a result of this effect. Suppressive growth can be seen in plants facing
salt stress, but all the plants have different tolerance levels to high salt concentra-
tions. Plants adapt different adaptive strategies to fight different stresses such as
production and accumulation of Free Amino Acids (FAA) such as proline by plant
tissues (Amirjani 2010). Proline adjusts the osmotic potential in the cytoplasm by
acting as a compatible solute. Because there is a major imbalance between reactive
oxygen species (ROS) and antioxidant defense synthesis, oxidative stress is a critical
signal in the case of biotic and abiotic stressors. Because they cause significant
damage to lipids, nucleic acids, and proteins, ROS have been labeled as harmful
chemicals (Gratão et al. 2005). They cause variety of injuries to plant metabolism
and damage photosynthetic pigments, inactivate proteins, enzymes, and
permeabilize membranes by causing lipid peroxidation.
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5.2.4 Consequences of Extreme Temperature

The temperature around the plant determines the rate of (Hatfield 2015) growth and
development, and each species has a temperature range with a minimum, maximum,
and optimum temperature. Extreme events that occur throughout the summer would
have the greatest impact on plant productivity. Given the predicted global warming
of 1.5–2.0 �C by 2050, heat stress is now regarded as one of the most essential
elements affecting plant growth and development. Many elements of vegetative
processes, such as growth, yield, and generative development, are influenced by
heat exposure. Extreme temperatures cause several physiological and metabolic
changes. If we specifically talk about photosynthesis many plant species are reported
for disruptive photosynthetic rate due to extreme temperatures. Some of them are
reported in Table 5.1. Lower growth, reduced photosynthesis, seed germination
suppression, incorrect development, changed secondary metabolism, and
overproduction of reactive oxygen species (ROS) leading in oxidative stress have
all been linked to higher temperatures.

In cell cultures of Perilla frutescens and strawberry, the ideal temperature (25 �C)
enhances anthocyanin output. Lowering the temperature encourages the accumula-
tion of anthocyanins while restricting cell development. Strawberry cell culture
yielded the highest anthocyanin concentration at 15 �C, which was around 13-fold
higher than that at 35 �C. At the relatively high temperature of 28 �C, anthocyanin
synthesis was dramatically reduced in Perilla frutescens suspension cultures,
whereas 25 �C was ideal for pigment productivity. In Daucus carota cell suspension
cultures, similar findings on optimal anthocyanin productivity have been found
(Akula and Ravishankar 2011).

5.2.5 Consequences of Heavy Metals

Higher plants need trace levels of heavy metals like zinc (Zn) and copper (Cu) to
live, but others like cadmium (Cd) aren’t required. All heavy metals, however, are
dangerous at large doses (Riesen and Feller 2005). Because metals cannot be
decomposed, their remediation necessitates both immobilization and toxicity reduc-
tion or elimination. Scientists have been evaluating solutions including the use of
plants to clean contaminated areas in recent years. Phytoextraction (uptake) is the
process of using living green plants to extract inorganic toxins from polluted soils
and concentrate them in roots and easily harvestable shoots (Suman et al. 2018).

Metal ions (lanthanum, europium, silver, and cadmium) and oxalate have a role in
secondary metabolite synthesis. Because it is a major component of the urease
enzyme, the trace metal nickel (Ni) is necessary for plant development. Plant
development is stifled by Ni concentrations above a particular threshold. In response
to cadmium and lead stress, plant growth, pigment content, metabolic parameters,
and heavy metal uptake in Brassica juncea L. were investigated. Cd and Pb
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Table 5.1 Temperature effects on photosynthesis in several plant species

Temperature
stress

L. esculentum Cold
temperature

Chlorophyll content, leaf area, Pn, Gs, Et,
Ci, and Fv/Fm all decreased
A decrease in the expression of
photosynthesis-related proteins

Ahanger et al.
(2020)

Saccharum
officinarum

Cold
temperature

Chloroplast structural disruption, chloro-
plast microtubule and grana lamella
reduction, and overall photosynthetic
efficiency decline

Xalxo et al.
(2020)

T. aestivum Cold
temperature

Photosynthesis declines due to thylakoid
membrane damage

Djanaguiraman
et al. (2020)

High-tem-
perature
environment

Reduced net photosynthetic rate and thy-
lakoid membrane degradation

Djanaguiraman
et al. (2020)

High
temperature

Decline in CO2 assimilation rate and sto-
matal conductance

Djanaguiraman
et al. (2020)

Camellia
sinensis

Low
temperature

Reduction in Pn, Gs, Et, Ci, and maximal
photochemical efficiency of PS II

Zhang et al.
(2020)

Populus simonii High
temperature

Reduced electron transport, photosystem
disruptions, glycolate pathway activation
caused H2O2 production, damaging com-
plete photosynthetic apparatus

Sharma et al.
(2019)

L. esculentum Low
temperature

Damage to the thylakoid membrane,
resulting in a decrease in light energy
distribution and a decrease in electron
transport rate

Yang et al.
(2018)

T. aestivum High
temperature

Reduction in chlorophyll content and
photochemical activity of PS II

Liu et al. (2019)

Cucumis sativus High
temperature

Decreased net photosynthetic rate, actual
photochemical efficiency, photochemical
quenching coefficient, and starch content

He et al. (2018)

Pisum sativum High
temperature

Decreased CO2 assimilation, stomatal
conductance, and water use efficiency

Parvin et al.
(2019)

Glycine max High
temperature

Photosynthesis rates, stomatal and meso-
phyll conductance, photosystem II quan-
tum yield, carboxylation rate, and electron
transfer across CO2 levels have all
increased

Xu et al. (2016)

Cold
temperature

Due to a photo-biochemical process,
photosynthetic restriction occurs,
followed by stomatal and mesophyll lim-
itations. Photosynthesis is inhibited by the
build-up of carbohydrates and organic
acids

Gago et al.
(2020)

Citrullus lanatus Cold
environment

Reduction chlorophyll content, Pn, Gs, Et,
and Ci

Wang et al.
(2018)

Prosopis
chilensis &

Hot
environment

Photochemical efficiency and photosyn-
thetic rate are both decreasing

Wang et al.
(2018)
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Table 5.1 (continued)

Temperature
stress References

Hibiscus rosa-
sinensis

Cold
environment

PS II has a lower photochemistry effi-
ciency, electron transport, and quantum
yield

Banerjee and
Roychoudhury
(2019)

Zea mays Hot
environment

Decreased activities of RUBISCO
activase

Kim et al.
(2021)

Triticum
aestivum

Hot
environment

Enzymatic activities are destroyed
because of reduced chlorophyll
production

Zhou et al.
(2021)

Gossypium
barbadense

Hot
environment

Overall photosynthesis is diminishing due
to limited activity of ribulose-1,
5 bisphosphates and photosynthetic elec-
tron transport

Osei-Bonsu
(2020)

treatment reduced plant growth, chlorophyll content, and carotenoids, while Cd was
found to be more detrimental than Pb treatment. This is exemplified by B. juncea.
During the flowering stage, Cd (900 M) reduced protein level by 94%, whereas Pb
(1500 M) reduced protein content by 44%. Proline levels increased as Cd and Pb
levels decreased but declined at higher levels. B. juncea roots accumulated more Cd
and Pb than the shoots. Cd accumulates at a faster rate than Pb, while higher Pb
concentrations prevent Cd absorption.

5.2.6 Consequences of Nutrition Deficiency

When plants are stressed, secondary metabolite production may rise since growth is
often inhibited more than photosynthesis, and secondary metabolites are the main
source of carbon fixation. The relationship between soil pH, air and soil temperature,
available moisture, nutrient excesses, soil organic matter, and soil mineral content is
intricate. However, in some cases, visual signs may be used to indicate potential
difficulties. Deficiencies should be assessed through soil testing and plant tissue
analysis. Soil testing is the most exact technique of determining whether primary
nutrient levels are optimal for plant survival and growth. Nitrogen is normally a
unique test, but it is routinely applied at uniform rates to most crops (Hatfield 2015).

Crop health and productivity are harmed by nutrient shortages and toxicities,
which may manifest as unusual visual symptoms. Knowing the function and mobil-
ity of each essential nutrient in the plant will aid in determining which one is causing
a deficiency or toxicity symptom. Stunted development, chlorosis, interveinal chlo-
rosis, purple or red staining, and necrosis are all signs of general insufficiency.
Mobile nutrient shortages arise initially in older, lower leaves, while immobile
nutrient deficiencies appear first in younger, upper leaves. Overapplication of
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nutrients is the most common cause of nutrient poisoning, which causes abnormal
growth (excessive or stunted), chlorosis, leaf discoloration, and necrotic patches.
Many nutrients may impede the absorption of other nutrients when ingested in
excess, thus leading to deficiency symptoms.

5.3 Microbiome

Microbes are the collective communities of microorganisms in a particular environ-
ment. They are fundamental for the maintenance of life on Earth, as they play a
critical role in combating different diseases. We don’t know much about their
distribution, but we do know that they can be found in a variety of places, including
soils, oceans, the atmosphere, and even within our bodies (Berg et al. 2014). When it
comes to plant-associated microorganisms, it has a long history that dates back to
Lorenz Hiltner’s concept of the rhizosphere in 1904 (Berg et al. 2014). They
colonize a wide range of plant parts, from the surface to the roots and deep tissues,
and play a critical role in plant health, productivity, community composition, and
ecosystem functioning (Singh et al. 2019). This microbial diversity can resist a
variety of abiotic stressors (Table 5.2). Resistance and resiliency are two words
that come to mind when describing this. These microbial communities can assist
plants in coping with a variety of stressors.

5.3.1 Role of Microbiome in Relieving Drought

As the world population tends to reach nine billion by 2025, worldwide food security
is threatened (Hanjra and Qureshi 2010). As a result, 70% more food must be
produced to meet the growing population’s demand. Crop productivity is, however,
severely limited by difficult environmental circumstances. Drought stress is an
environmental limitation that poses a severe danger to agricultural growth and
productivity in most parts of the world. To cope up with this issue scientists are
focusing on improving drought resistance traits in crops with the help of molecular
breeding and transgenic approaches (Hussain et al. 2018). But these techniques have
certain limitations that make it difficult to develop drought resistance crops. There-
fore, there is need to explore and utilize the naturally occurring root microflora that
confer resistance in plants against drought and many other environmental stresses.

Because of its environmentally favorable nature and low-cost input, the use of
naturally existing microflora to combat drought stress is gaining traction around the
world. Microbes can be found in practically every component of the plant
(phyllosphere, endosphere, and rhizosphere), and the rhizosheath, which refers to
the “root-adhering soil fraction” and is also considered part of the plant microbiome,
has received less attention. Rhizosheaths are a mechanism that improves drought
tolerance in plants. They are made up of mucilage that is released from plants around
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Table 5.2 Abiotic stress tolerance in common crop plants is mediated by Rhizobacteria species

Crop Stress Rhizobacteria References

Solanum
tuberosum

Salt/
drought/
HMs

Bacillus pumilus DH 11, Bacillus firmus 40 Khan et al.
(2021b)

Helianthus
annuus

Drought Achromobacter xylosoxidans (SF2) Bacillus
pumilus (SF3 and SF4)

Raghuwanshi
and Prasad
(2018)

Lycopersicon
esculentum

Heat Bacillus cereus Patel et al. (2017)

Oryza sativa Drought Azospirillum brasilense Az.39 Tisarum et al.
(2019)

Triticum
aestivum

Heat Bacillus velezensis 5113 Abd El-Daim
et al. (2019)

Triticum
aestivum

Heat Pseudomonas brassicacearum, Bacillus
thuringiensis, Bacillus subtilis

Khan et al.
(2021b)

Cucurbita
pepo

Drought Bacillus circulans ML2, Bacillus megaterium
ML3

Khan et al.
(2021b)

Lycopersicon
esculentum

Heavy
metal

Pseudomonas aeruginosa, Burkholderia
gladioli

Khanna et al.
(2019)

Zea mays Drought Klebsiella variicola F2, Pseudomonas
fluorescens YX2, Raoultella planticola YL2

Razad et al.
(2021)

Abelmoschus
esculentus

Salinity Enterobacter spp. Sagar et al.
(2020)

Stevia
rebaudiana

Salinity Streptomyces spp. Khan et al.
(2021b)

Phaseolus
vulgaris

Salinity Aneurinibacillus aneurinilyticus, Paenibacillus
spp.

Gupta and
Pandey (2020)

Arachis
hypogea

Salinity Bacillus licheniformis K11 Subiramani et al.
(2020)

soil particles and forms a cylinder around the roots of drought-stressed plants. They
are known to host bacterial and fungal populations, as well as microbes that promote
plant growth (PGP) (Etesami 2021). Microbes that live in areas that are frequently
subjected to drought stress are more adaptable and resistant than those that do not.
Brassica rapa plants were exposed to recurrent drought stress in one study, and they
were better able to regulate bacterial abundance than control plants (Naylor and
Coleman-Derr 2018).

Plant responses to microbe-induced drought stress are poorly known. Rolli et al.
investigated grapevine and Arabidopsis growth in drought-stricken environments.
They put eight isolates to the test in vivo for 510 different strains, and the results
demonstrated that plant growth-promoting action is stress-dependent, not strain-
specific. However, it was observed that several of the microbes studied play a role
in plant adaptation to drought stress (Hussain et al. 2018). Plants’ mechanisms for
resisting tolerance are still unknown. (1) Production of phytohormones like
gibberellic acid, abscisic acid (ABA), and indole-3-acetic acid (IAA) to lower
ethylene levels in the roots, which is possible when plant ACC is broken down by
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bacterial ACC-deaminase; (2) production of 1-aminocyclopro pane-1-carboxylate
(ACC) deaminase to lower ethylene levels in the roots, which is possible during the
breakdown of plant.

Cell division, stem and root elongation, lateral and adventitious root initiation,
and root and shoot orientation in response to light and gravity are all influenced by
IAA. Some bacteria, such as Azospirillum spp. and Bacillus thuringiensis, have been
discovered to produce IAA, which aids plant survival by increasing root and root
hair formation. Similarly, Azospirillum lipoferum strains can affect stomatal closure
in their host plant maize by generating ABA and gibberellins, which can influence
water loss regulation (Vurukonda et al. 2016). Some PGPRs that can produce
ACC-deaminase can also help in drought tolerance. For example, treatment of
tomato and pepper seedlings with Achromobacter piechaudii ARV8 resulted in
reduced ET concentration as these bacteria are capable of producing
ACC-deaminase which is an enzyme capable of cleaving ACC into amine and
alpha-ketobutyrate instead of ET (Mayak et al. 2004). Epoxy polysaccharides having
architectural characteristics impart functionality to biofilms. These biofilms can
improve plants performance in drought stress. Pseudomonas spp. and Acinetobacter
spp. are EPS producing species which promoted drought tolerance in pepper plant by
imparting protection against desiccation by the formation of hydrophilic biofilm
around the roots (Kaushal et al. 2016).

All these mechanisms induced by PGPR and plant itself are reported in the
literature, but ample research is available to advocate the fact that soil microorgan-
isms can improve drought tolerance in plants.

5.3.2 Role of the Microbiome in Relieving Flooding

Flood frequency and severity are predicted to grow as a result of global climate
change, which has had a variety of effects on climatic conditions around the world.
Plants undergo numerous physiological and biological changes as a result of
prolonged submersion under soggy circumstances. Under soggy conditions, the
soil in which plants grow undergoes numerous physiological changes. The pores
in the soil allow gaseous exchange between the atmosphere, the soil, and the soil
microorganisms. This increased the synthesis of the stress hormone ethylene. By
manufacturing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase,
many bacterial populations can control ethylene levels. ACC is a plant-produced
ethylene precursor that is cleaved by ACC-deaminase, reducing ethylene synthesis.
Basil plants infected with microorganisms that produce ACC-deaminase grew faster
than control plants. Pseudomonas putida UW4, an ACC-deaminase-producing
bacterium was used for proteomic profiling of the cucumber plant, and this plant
was grown in hypoxic conditions, which showed a shift in the protein profile of the
plant toward defense stress. Although this data showed the ability of microbiome in
flood stress tolerance, only very few studies are available. Continued study is needed
to unravel the mechanisms and plant microbiome interaction.
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5.3.3 Role of the Microbiome in Relieving Salinity

Fulfilling the world’s food demand is the major challenge as the world population is
rapidly growing. So, for this purpose soil salinity is the major focus as it limits crop
production and growth in many areas of the world. Several approaches including soil
reclamation and management practices can be used to address this issue, but these
techniques are expensive and not so practical. Another environment-friendly
approach that uses plant microbiome as inoculum is gaining momentum (Hussain
et al. 2018). Microorganisms that are exposed to high levels of stress are thought to
develop characteristics that allow them to withstand the stress. In the case of salinity
stress, the same strategy is employed. Microorganisms that are salinity tolerant can
withstand a variety of salt concentrations and overcome them via various salinity
tolerant processes. Microorganisms that are saline tolerant can improve the health of
salinity-affected soils, sustain ecological functions, and encourage plant growth.

The accumulation of different solutes for osmoregulation, production of extra-
cellular proteases, and production of Na+/K+ antiporters, which is an integral
membrane protein and a cotransporter involved in the active transport of two or
more molecules, are all reported mechanisms by which salt tolerant bacteria over-
come the effect of salt (Mayak et al. 2004). Such salt tolerant bacteria can be used as
an inoculum in salt effected soil that will help crops in overcoming the stress. In one
of the study 130 rhizobacterial strains were isolated from wheat plants that were
sown in saline conditions. Out of these 130 isolates, 24 isolates tolerated the high
stress level of NaCl. The authors added that this stress tolerance is due to different
genes, hormones, and proteins (Mayak et al. 2004). According to some reported
data, arbuscular mycorrhizal fungi (AMF) can help plants develop tolerance to salt
stress. Experiments showed that AMF plants inoculated with Glomus sp. have
increased growth in soil as compared to un-inoculated plants which might be
possibly due to increased K+ and decreased Na+ concentration in shoots (Giri and
Mukerji 2004). This treatment has shown improved salt tolerance in maize, mung
bean, cucumber, tomato, and clover plants. Hence the application of a salt-tolerant
microbiome can be beneficial for plants to grow in salt-affected soil. However, there
is a need to explore that which hidden mechanisms of microbiome are involved in
salt tolerance.

5.3.4 Role of the Microbiome in Relieving Extreme
Temperatures

Bacteria play an important role in the survival of most types of life on the planet. It’s
crucial to understand how people and other living things on Earth can adapt to
climate change by combining knowledge of many microbiomes. We need to under-
stand not just how microbiomes drive temperature change (via GHG production and
consumption), but also how climate change and other anthropogenic activities will
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affect them. The impact of climate change is predicted to be heavily influenced by
microbiome reactions, which are critical for achieving a green future. Despite the
fact that microbiomes are critical in the regulation of climate change, they are rarely
the focus of climate change research (Cavicchioli et al. 2019; Bakken and Frostegård
2017; Itakura et al. 2013; Ritchie et al. 2018).

Finding the genes that control agriculturally beneficial nitrogen, potassium, and
sulfur metabolism, and then improving the bacteria that carry these genes is one
strategy (Bakken and Frostegård 2017; Itakura et al. 2013). N2O emissions from
soybean have decreased as a result of the use of microbial strains with increased N2O
reductase activity, and both genetically modified and wild strains with increased
N2O reductase activity give prospects for reducing N2O emissions (Itakura et al.
2013). The programs that control the stomach microbiota and breeding of cattle, aim
for host genetic elements that change microbiome’s responses are options for
lessening methane emission from livestock.

Microbiomes have the greatest impact on carbon sequestration. As a result,
ecological changes that affect aquatic photosynthesis of microbiomes and, as a
result, carbon storage—fixed in waters—are a focus for the carbon cycle.
Microbiomes contribute significantly to GHG emissions through the biochemical
cycles of nitrogen, carbon dioxide, and methane. The local environment, the biome,
the food chain, and, most importantly, climate change all have an impact on the
balance of microbial GHG uptake versus release. GHG emissions, pollution, agri-
culture, and finally population increase all have an impact on microbiomes, and this
has a direct impact on climate change, hazardous waste, agricultural practices, and
disease spread (Venkatramanan et al. 2020a, b). Positive feedbacks will occur as a
result of anthropogenic activity that alters the carbon uptake-to-release ratio, has-
tening climate change. Microbiomes, on the other hand, have great promise for
easing anthropogenic concerns through enhanced agricultural results, biofuel pro-
duction, and pollution reduction. Targeted laboratory study using model bacteria
will be used to address specific microbiome challenges (Cavicchioli et al. 2019).

5.3.5 Role of the Microbiome in Relieving Heavy Metals

Heavy metal pollution of soil poses a threat to the natural environment and food
safety. Environmental pollution and social disclosure associated with heavy metals
are attributed to a variety of human-caused actions such as trade production and
mining. Around 50 million locations of soil pollution by heavy metals or metalloids
exist worldwide, with existing concentrations exceeding legal thresholds. Heavy
metal contamination of soil poses several risks to the environment and individuals,
as well as affecting food chain safety and the ability to use the land for agricultural
purposes, all of which have a significant impact on food security (Wuana and
Okieimen 2011).

Heavy metal pollution of soil poses a threat to the natural environment and food
safety. Environmental pollution and social disclosure associated with heavy metals
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are attributed to a variety of human-caused actions such as trade production and
mining. Around 50 million locations of soil pollution by heavy metals or metalloids
exist worldwide, with existing concentrations exceeding legal thresholds. Heavy
metal contamination of soil poses several risks to the environment and individuals,
as well as affecting food chain safety and the ability to use land for agricultural
purposes, all of which have a significant impact on food security. The natural
environment and food safety are both threatened by heavy metal poisoning of soil.
Heavy metal contamination and social disclosure are linked to several human-caused
activities, including trade production and mining. Around 50 million sites worldwide
have been contaminated by heavy metals or metalloids, with concentrations exceed-
ing legal limits. Heavy metal pollution of soil provides a multitude of threats to the
environment and persons, as well as influencing food chain safety and land use for
agricultural reasons, all of which have a substantial impact on food security.
Bacterial processes can be divided into two categories: molecular and biochemical.
The first group consists of heavy metal resistance genes found on chromosomes or
plasmids. Microbes interact with extracellular soluble metals and have a role in
microbial tolerance through diverse chemical reactions, according to the latter.

The remediation of metals in soil is important to safeguard the natural environ-
ment and shield living organisms (Prasad 2021). Conventional remediation tech-
niques include chemical and physical methods. Correspondingly, biological
approaches are measured as an active technique for metal remediation, which
comprises: bioremediation, and phytoremediation (Suman et al. 2018). Bioremedi-
ation by microorganisms is an effective, efficient, and eco-friendly procedure that
lowers the cost of the cleaning process associated with the contamination of heavy
metals (Mishra 2017; Prasad et al. 2021). Contrary, phytoremediation, depends on
the conditions of water, soil, and climate, demonstrating to be a very sluggish and
seasonally effective method (Prasad 2022). In addition, interactions of plant–micro-
organism also perform a vital part in the adaptation to environments polluted with
heavy metals and therefore can be examined in depth to enhance microbe-assisted
methods of phytoremediation (Ianeva 2009; Spain and Alm 2003).

5.3.6 Role of the Microbiome in Relieving Nutrient Deficiency

Plants are part of a varied ecological unit in their natural habitat, which contains a
large number of microorganisms. However, research into a broad range of plant-
associated bacteria and their potential to replace synthetic agricultural inputs is still
in its early stages. The composition and dynamics of rhizosphere microbiomes have
lately made significant advances. Plants impact microbiome architecture, probably
through root exudates, and bacteria have evolved to thrive in the rhizosphere niche in
a variety of ways, according to evidence.

Plants contribute a considerable amount of carbon to the rhizosphere, which helps
soil microbes survive. So, what do the plants get in exchange? Although the N2

molecule contains a substantial amount of nitrogen in the atmosphere, the majority
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of nitrogen, potassium, and sulfur atoms are biologically bonded in soils. These
nutrient sources are only slightly accessible to plants due to differences in metabolic
capacity between plants and bacteria, but they can be digested by a variety of soil
microbes. This suggests that in natural ecosystems, microorganisms’ nitrogen fixa-
tion and nutrient mineralization activities are critical for plant nutrition, as these
reactions break down refractory forms of nitrogen, phosphorous, and sulfur to
release these elements for plant nutrition (Rovira 1965; van der Heijden et al.
2008). This long-held belief has recently been thrown into question, as many studies
have showed that plants may directly absorb various types of organic nitrogen.
Despite this, it is often considered that bacteria are the top competitors for organic
nitrogen molecules in soil due to their poor diffusivity. Furthermore, isotope labeling
tests often confirm the notion that most organic nitrogen is used first by microbial
species and then by plants (Kuzyakov and Xu 2013).

For years, researchers have established a list of microbial metabolic pathways
relevant to plant nutrition in terms of nitrogen, potassium, and sulfur in the literature
on soil microorganisms. The symbiotic connection between bacteria and legumes is
often used economically when inoculating field crops with nitrogen-fixing rhizobia
strains. But how can these phenomena be strengthened and improved for long-term
use in agricultural systems for nitrogen fixation in legumes and nutrition in
non-legume crops in terms of nitrogen, potassium, and sulfur? Assume that several
bacterial strains have varied metabolic capacities (Timm et al. 2015), along with the
vast amount of soil microbial genome sequencing data generated recently (Müller
et al. 2016). Finding the genes that control agriculturally beneficial nitrogen, potas-
sium, and sulfur metabolism, and then improving the bacteria that carry these genes
is one strategy.

5.4 Current Insights and Future Prospectives of Research

Plant-associated microbiomes are expanding in relevance as a major field of research
that enhances plant health, growth, and production. Plant-associated microbiomes
are intimately implicated in mechanisms that enable plants survive stressful circum-
stances, as explained in this chapter. Because of the heavy reliance on it, scientists
are now viewing the microbial genome as a plant genome. However, these conclu-
sions are preliminary, and additional research is needed to properly comprehend the
highly complex phenomenon of microbial communities. Stress management in
plants would be greatly aided by plant-associated microbiomes. One method could
be to create transgenic crops with microbe-derived beneficial genes. However,
molecular procedures are time-consuming, and there are a slew of other difficulties
that make it less accessible. The other strategy that could be more cost-effective and
environment-friendly is using microbial inoculants. Several studies have shown
beneficial and positive results in field conditions, while others find unsatisfied and
negative results (Nadeem et al. 2014). Another strategy could be the development of
a microbial consortium for ready-to-use formulations against specific abiotic
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stresses. Therefore, the mechanisms by which microbes confer stress resistance to
plants need more research and understanding. If we develop our knowledge and if
we can decode and mimic the biological procedures of microorganisms and be able
to regulate them, then we can control these abiotic stresses. Recent trend provides
data on understanding the microbe–microbe and plant–microbe interactions that will
help us to use PGPM as a sustainable tool against these limiting factors.

5.5 Conclusion

Abiotic elements such as heavy metal, flooding, temperature, light, and drought all
have an impact on agricultural output around the world. Abiotic stresses cause plants
to respond in a variety of ways, but photosynthetic activity is one of the most
significant regulators of overall plant growth and productivity. Reactive oxygen
species (ROS) are formed in plants as a result of all of these abiotic stressors,
producing oxidative damage, and membrane instability. When RUBISCO activity
is decreased, plant photosynthetic efficiency is also diminished. Heavy metals have a
significant negative impact on pigment production and accumulation due to enzy-
matic degradation. Meanwhile, the temperature is progressively rising as a result of
several environmental circumstances, such as global warming. Temperatures beyond
the permissible threshold stress the plant, causing it to lose its cellular equilibrium
and limit its growth, development, and metabolism. As a result, plants’ and micro-
organisms’ ability to cope with these stressors differs substantially between species.
Agricultural yields still have a lot of room for improvement, despite substantial
advances in genetic technologies such as QTL mapping and transgenic approaches.
For example, genetic and environmental relationships are thought to be poorly
understood. Likewise, finding QTLs for one type of stress does not work for other
types of stress. As a result, problems with transgenic plants designed to combat stress
persist.
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Chapter 6
Functional Potential of Plant Microbiome
for Sustainable Agriculture in Conditions
of Abiotic Stresses

Sudhakar Srivastava and Divya Singh

Abstract The growth and yield of crop plants are threatened by a variety of factors
like soil and irrigation water quality, climate change, and abiotic and biotic stresses.
Among these, abiotic stresses like drought, salinity and metal(loid)s, such as arsenic
(As) and cadmium (Cd) constitute three major constraints inducing huge yield losses
and quality deterioration of crop produce throughout the world. To enable plants to
combat these stresses and to obtain sustainable increases in crop yields, the help is
required from its associated microorganisms. Microbiome constitutes all microor-
ganisms intricately linked to plants in above and below-ground part of plants.
Microbiomes affect plant growth, development, and yield both in normal and
under-stressed conditions via several mechanisms. These effects include changes
in bioavailability of essential and toxic metal(loid)s, nitrogen fixation, phosphate
solubilization, phytohormone synthesis, and water uptake. The microbiome func-
tions like an extended genome of plants and these microbial associations change
dynamically in presence of stress and also influence the effect of stresses on plants in
reverse. The research on this dynamic microbe–plant interaction has yielded valu-
able mechanistic information and identified potential microbes that can be used to
achieve sustainable crop production in coming years. The present chapter discusses
microbiome and its role in abiotic stresses.

Keywords Climate change · Drought · Salinity · Heat · Metal(loid)s · Microbes

6.1 Introduction

The plant and microbiome are intricately connected to each other and plant growth
and development are influenced strongly by the microbiome. The microbiome of
plant can be obtained from root surface, rhizosphere, of above ground parts like
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leaves and also from inside the plant tissues. These microbiomes can be termed as
rhizosphere, phyllosphere, and endosphere (Berg et al. 2014; Bulgarelli et al. 2012;
Lundberg et al. 2012). Rhizosphere is studied with respect to microbiomes, plant–
soil, and plant–organisms interactions, which include archaea, bacteria, and fungi
and also protozoans, nematodes, and viruses; all playing important roles toward
plant growth and development.

The microbiome–plant association extends potential pool of proteins and metab-
olites and helps both mutualistic group of organisms in growth, development, and
stress tolerance. Microorganisms help in nutrient bioavailability, uptake, and assim-
ilation in plants, in providing stress-fighting metabolites, hormones, and proteins to
combat abiotic and biotic stresses and diseases (Berg et al. 2014). The plant
microbiome also assists in the remediation of contaminant present and can help in
phytoremediation efforts by enhancing its effectiveness and rate (Frossard et al.
2018). Nonetheless, abiotic and biotic stresses also influence the microbiome com-
position and functions and in turn influence their own effects on plants. Further
effects on microbiome are from agricultural use of chemicals that influence nutrient
composition of soil and thus the microbiome. Crop rotation, irrigation pattern,
weather changes, etc. also influence plant microbiome. Thus, plant–microbiome
interactions are highly dynamic in nature and therefore the research on this aspect
has increased in recent past. This is because it is now well understood that amidst
rising abiotic stresses, decreasing crop productivity and need of higher crop produc-
tion, microbiome interventions can be fruitful to sustain crop yields (Ambrosini et al.
2016; Frossard et al. 2018; Lareen et al. 2016; Naylor et al. 2017; Thiem et al. 2018;
Young et al. 2018; Prasad et al. 2018).

6.2 Role of Plant Microbiome in Metal(loid) Stress
Tolerance

Metals are present ubiquitously and life of all living beings is dependent on the
optimum presence and intake of some essential or beneficial ones. However, some
metals like cadmium (Cd), arsenic (As), and chromium (Cr) are toxic even in minute
quantities. The contamination of toxic metals influences plant microbiome in terms
of microbial diversity and operational taxonomic unit (OTU) counts (Gołębiewski
et al. 2014; Hur et al. 2011; Jiao et al. 2019; Sheik et al. 2012) or in terms of
abundance of specific bacterial species and genera (Berg et al. 2012). The effects of
beneficial, essential, and toxic metals on microbiome vary and there is variation in
effects due to metal species and crop plant (Gołębiewski et al. 2014; Hur et al. 2011).
In a study on Cd, it was found that microbial diversity decreased initially but
increased later on demonstrating that microbiome can adjust, tolerate, and revert to
normal or stress–tolerance roles within a crop cycle (Jiao et al. 2019). Microbiome
can consist of microbes that not only provide the stress tolerance but also comprise
of plant growth promoting microbes (PGPMs) and the appropriate application of
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PGPMs (Table 6.1) and stress–tolerant microbes can allow to attain sustainable and
quality crop yields even in stressed conditions (Chen et al. 2016; Gil-Martínez et al.
2018; Mnasri et al. 2017; Wang et al. 2016). Several researchers have identified
PGPMs with high tolerance to metal(loid)s like strains of Pantoea agglomerans,
Alcaligenes faecalis, and Bacillus cereus for cadmium (Cd), arsenate [As(V)], silver
(Ag), copper (Cu), lead (Pb), and zinc (Zn) (Luziatelli et al. 2020; El-Meihy et al.
2019; Abo-Amer et al. 2015).

6.3 Role of Plant Microbiome in Drought Stress Tolerance

Drought is a major environmental stressor in agriculture, which results in huge losses
in crop yields every year (Lesk et al. 2016). The research on drought has been going
on for several decades and a lot of information about its effects on plants, mode of
action, and tolerance mechanisms has been revealed. However, the drought-induced
changes in plant microbiome are yet to be understood (Bastida et al. 2017; Naylor
and Coleman-Derr 2018). As in case of other stresses, the interactions between
drought and microbiome are mutual, both affecting each other (Naylor et al. 2017)
(Table 6.2). Nonetheless, some microbes possess tolerance to drought and therefore,
their abundance is increased in drought conditions (Naylor et al. 2017). The mem-
bers of Proteobacteria, Bacteroidetes, and Firmicutes have been found to be nor-
mally drought tolerant (Soussi et al. 2016). Drought tolerant bacteria have been
identified from several drought affected regions (Armada et al. 2018) and focus has
been on to find bacteria that are able to not only grow themselves but also protect the
crop plant from drought effects. In a study, Acinetobacter and Pseudomonas bacteria
reduced growth inhibition of grapevines in drought conditions by minimizing effects
on photosynthesis through the synthesis of 1-aminocyclopropane-1-carboxylate
(ACC) deaminase (Rolli et al. 2015). One of the major influences of drought tolerant
bacteria on plants for reducing their proneness to drought is augmentation of plant
root growth and root water uptake (Armada et al. 2018; Gagne-Bourque et al. 2016;
Marasco et al. 2013; Rolli et al. 2015) that can be achieved through the synthesis of
various hormones.

6.4 Role of Plant Microbiome in Salinity Stress Tolerance

Salinity is another very important stress factor that causes major agricultural crop
losses. The presence of high salinity in agricultural field leads to high osmotic values
inhibiting water and nutrient uptake by the plants and thus decreasing plant photo-
synthesis and biomass (Yaish and Kumar 2015). The microbiome associated to
plants, especially roots, is also affected due to less water availability in prolonged
stress conditions. However, there are several environments, which are highly saline
like sea water and coastal areas and these are home to a number of microbes. Thus,
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Table 6.1 Studies demonstrating the role of microorganisms in mitigation of metal(loid) toxicity in
plants

S
no.

Name of the
microorganisms Plant Effect References

1. Achromobacter
xylosoxidans

Brassica juncea Microbe inhibited the dam-
aging effect of Cu toxicity by
increasing length and dry
weight of shoot and root

Ma et al.
(2009)

2. Burkholderia sp. Lycopersicon
esculentum

This microbe protected the
host plant against Cd stress
and promoted relative plant
growth by reducing the Cd
absorption

Dourado
et al. (2013)

3. Psychrobacter sp. Ricinus
communis and
Helianthus
annuus

This microbe helped the
energy crops against Ni tox-
icity, enhanced fresh and dry
weight of plants; it improved
the availability of phospho-
rus and promoted the iron
content in both plants

Ma et al.
(2010)

4. Klebsiella pneumoniae Oryza sativa The microbial strain helped
in improving the overall
growth of the plant by
reducing the accumulation of
Cd in seedling

Pramanik
et al. (2017)

5. Bacillus spp. Cicer arietinum Bacillus helped host plants
to fight against Cr toxicity,
promoted the growth of all
parts of the plant including
nodules, maximum incre-
ment in chlorophyll and
leghemoglobin at 136 mg
Cr/kg soil was 23% and
143%, respectively

Wani and
Khan (2010)

6. Pseudomonas
aeruginosa and
Burkholderia gladioli

Lycopersicom
esculentum

These microbes fight against
Cd toxicity by enhancing the
osmolytes and phenolic
compounds in the host plant.
The activities of
antioxidative enzymes were
enhanced in presence of
microbes

Khanna
et al. (2019)

7. Penicillium janthinellum Solanum
lycopersicum

This endophytic fungus sig-
nificantly improved the
growth by improving the
shoot length, chlorophyll
content, shoot dry weight,
and stomatal conductance in
plant subjected to Cd stress

Khan et al.
(2014)
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Table 6.1 (continued)

S
no.

Name of the
microorganisms

8. Achromobacter
xylosoxidans

Oryza sativa A. xylosoxidans excreted
indole-3-acetic acid, which
promoted overall growth of
the rice and reduced the
effects of As toxicity; it
reduced the concentration of
As in stem, leaves, bran and
grain of rice

Wang et al.
(2020)

9. Phyllobacterium
myrsinacearum

Sedum
plumbizincicola

This microbe helped in
mobilization of high con-
centration of Cd, Zn, and Pd
in soil and thus helped in
preventing the adverse
effects of their toxicity

Ma et al.
(2013)

10. Enterobacter sp.
(in combination with
zeolite)

Brassica napus This microorganism helped
in alleviating the Cd toxicity
in combination with zeolite.
The combination improved
the physiological attributes
such as chlorophyll content,
transpiration rate, or stomata
conductance of B. napus

Saeed et al.
(2019)

11. Bacillus sp. and
Stenotrophomoas sp.

Raphanus
sativus

These microbes reduced the
negative effects of
Ni-toxicity by improving
plant growth parameters,
total chlorophyll, and shoot
nitrogen content

Akhtar et al.
(2018)

12. Arbuscular mycorrhizal
fungus (with compost)

Medicago
sativa

This mixture helped in miti-
gating the stress caused by
Zn and Cd and reduced oxi-
dative stress, leading to bet-
ter plant development; the
application of mixture
improved the stomatal con-
ductance and sugar content
in the host and decreased
metal accumulation

Raklami
et al. (2020)

13. Enterobacter aerogenes Oryza sativa This microbe possessed high
degree of resistance toward
Cd, Pb, and As. This
microbe also exhibited some
important traits of PGPM
under high Cd stress. It
reduced the oxidative stress
through antioxidants and
decreased Cd uptake

Pramanik
et al. (2018)
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Table 6.1 (continued)

S
no.

Name of the
microorganisms

14. Proteobacter,
Alphaproteobacter,
Gammaproteobacter,
Rhizobiales, Rhizobium,
and Acidobacteria, etc.

Miscanthus
sinensis

These rhizospheric and
endophytic microbes helped
in growth of host plants
under metal stress.
M. sinensis showed resis-
tance toward As and Sb in
presence of these microbes
due to improved carbohy-
drate metabolism and bio-
synthesis of secondary
metabolites

Sun et al.
(2021)

15. Bacillus pumilus and
Pseudomonas
sp. (in combination with
leonardite)

Oryza sativa These microbes with
leonardite decreased the
accumulation of As in the
host plant. These microbes
also reduced oxidative stress

Dolphen
and
Thiravetyan
(2019)

salt-tolerant and halophytic microbes are known and have been found in highly
saline soils (Yan et al. 2015). The saline conditions have also been found to
negatively impact plant-mycorrhizal association; mycorrhizae are fungal associates
helping plants gain nutrients from soil (Thiem et al. 2018). Bacterial abundance and
diversity were also found to reduce in saline soils (Thiem et al. 2018; Yaish et al.
2016). The research over the years has screened, identified, and characterized
potential salinity tolerant PGPMs that have been applied either singly or in form
of different consortia (Table 6.3). Salt tolerant PGPMs have been found to possess
potential for production of exopolysaccharides, hormones (gibberellic acid, indole-
3-acetic acid), and siderophores (Fatima et al. 2020). A salt tolerant bacterium
Cellulomonas pakistanensis sp. nov. strain NCCP-11T was isolated from paddy
rice that was found to enhance nutrient availability to plants by the degradation of
organic matter via the production of cellulases and hemicellulases (Ahmed et al.
2014; Duy et al. 2016).

6.5 Sustainable Agriculture in the Future Scenarios

The global population has been continuously increasing over past several decades
and trend is proposed to be the same in near future. The same comment holds true for
climatic changes that have been worsening and projected increase in temperature and
disturbance in rainfall patterns are threatening. The need of sustainable crop plant
production becomes challenging in the face of these major pressures; population
growth and extreme climatic conditions (Lesk et al. 2016). The population growth
has also reduced the available lands and has increased the rate of depletion of natural
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Table 6.2 Studies demonstrating the role of microorganisms in mitigation of drought and water
stress in plants

Name of
plant

1. Achromobacter
xylosoxidans and Bacillus
pumilus

Helianthus
annuus

This is an endophytic bac-
terium which helped in pro-
moting growth of sunflower
seedling under the influence
of water stress; it also pro-
duced silicic acid and
inhibited the growth of
pathogenic fungi

Forchetti
et al.
(2010)

2. Klebsiella variicola,
Raoultella planticola, and
Pseudomonas fluorescens

Zea mays These microbes induced a
positive effect on dry matter
weight of plants under
drought stress and increased
relative water content of
leaves

Gou et al.
(2015)

3. Micrococcus luteus Zea mays M. luteus was able to pro-
duce exopolysaccharides
which helped in surviving
under water stress; this
microbe showed positive
enhancement for root,
shoot, and number of leaves
of maize plant

Raza and
Faisal
(2013)

4. Bacillus subtilis Arabidopsis
thaliana and
Brassica
campestris

This microbe helped in tol-
erating water stress by
enhancing soil nutrients,
nitrogen fixation, and key
elements such as potassium,
phosphorus, and iron

Woo et al.
(2020)

5. Azospirillum lipoferum Triticum
aestivum

The microbe helped in alle-
viating the drought stress,
improved growth, relative
water content, leaf photo-
synthetic pigment, antioxi-
dant enzymes, and grain
yield

Agami
et al.
(2017)

6. Enterobacter sp. and Bacil-
lus sp.

Triticum
aestivum

These microbes mitigated
the drought stress by mak-
ing the root system more
branched and increased total
root length, surface area,
and number of root tips

Jochum
et al.
(2019)

7. Euphorbia trignisa, Bacil-
lus sp., Lysinibacillus,
Enterobacter,
Stenotrophomonas,
Lelliottia, and
Pseudomonas

Solanum
lycopersicom

Bacterization of the host
plant by these microbes led
to overall biomass incre-
ment and greater water
retention in foliage

Eke et al.
(2019)
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Table 6.2 (continued)

Name of
plant

8. Streptomyces laurentii and
Penicillium sp.

Sorghum
bicolour

Both of these are P—Solu-
bilizing bacteria which
increased growth in all
parameters and also
increased chlorophylls, pro-
line, and glycine betaine

Kour et al.
(2020)

9. Pseudomonas flourescense
and Bacillus
amyloliquefaciens

Mentha
piperita

Plants treated with these
microbes had higher content
of phenol, osmolytes, and
antioxidants and showed
change in the root system

Chiappero
et al.
(2019)

10. Pseudomonas sp.,
Stenotrophomonas sp.,
Undibacterium and
Providencia sp.

Alhagi
sparsifolia

All these microbes helped in
improving the growth
capacity of inoculated
plants under drought stress
measured in terms of length
and weight of shoot and root

Zhang
et al.
(2020)

resources like water, nutrients, and clean air. All such factors reduce the crop growth
and productivity. Further stress on the agriculture comes from the xenobiotics, metal
(loid) contamination, and other abiotic stresses. The situation overall is quite gloomy
and sustainable crop production needs intensive research and inputs from all sectors
in near future. In this scenario, the role of microbiome has been considered to be
vital. Microbes are known to exist in extremes of environment and thrive. Even in
agricultural fields subjected to abiotic stress conditions, microorganisms thrive in
abundance and such microorganisms also possess key properties for augmenting the
growth of plants. Therefore, the use of such microbes, microbial consortia and
microbiome interactions, holds the key to the sustainable agriculture in future.

The increasing temperature is the most obvious effect of changing climate and
high temperature stress is known to restrict the growth and yield of plants owing to
multifaceted effects on water availability, rate of transpiration, stomatal movement,
photosynthetic efficiency, and optimal enzyme activities (Asseng et al. 2013; Wahid
and Close 2007; Ashraf and Hafeez 2004). The high temperature has been found to
decrease biomass of plants, spike and floret numbers, and seed setting, induce
scorching of leaves and twigs and early senescence of leaves (Ebrahim et al. 1998;
Fahad et al. 2016; Mitra et al. 2021). At�30 �C, the floret sterility has been found to
increase owing to poor germination and shedding of pollens (Fahad et al. 2015,
2016). At cellular level as well, high temperature can cause protein breakdown (Xie
et al. 2003), and impair cell membrane structure and properties (Beney and Gervais
2001). In agricultural scenario, the microorganisms are supposed to be prone to high
temperatures, which can change the community and functions of microbes and
reduce PGPMs in the soil (Singh et al. 2019). The high temperature of the soil and
air disturbs evapotranspiration and water relations of soil and plants as well as
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Table 6.3 Studies demonstrating the role of microorganisms in mitigation of salinity stress in
plants

S. no.
Name of
microorganism Name of plant Effect References

1. Pseudomonas
fluorescens
Pseudomonas putida
Bacillus subtilis

Glycine max These microbes helped in
alleviating salt stress by
reducing germination time and
enhancing the length and fresh
weight of the upper plant
body. They promoted antioxi-
dant enzymes activity

Abulfaraj
and Jalal
(2021)

2. Bacillus
amyloliquefaciens

Mentha
piperita

This microbe helped plant in
harsh saline conditions by
enhancing total chlorophyll
content. It released acetoin as
one of the main components
which helped in increment in
length and dry weight of root

Cappellari
and
Banchio
(2020)

3. Arbuscular mycorrhi-
zal fungi (AMF) and
Pseudomonas
sp. (coinoculation)

Sulla
coronaria

They helped in the mitigation
of salt stress via various
mechanisms like reducing
shoot Na accumulation, elec-
trolyte leakage, and by lower-
ing level of malondialdehyde
in plants

Hidri et al.
(2019)

4. Stenotrophomonas
maltophilia

Arachis
hypogaea

It helped in escaping the salt
stress by protecting photosyn-
thetic pigments in peanut
plants. It also increased auxin
like growth enhancing
hormones

Alexander
et al.
(2020)

5. Bacillus subtilis Cicer
arietinum

It helped in alleviating the salt
stress by reducing accumula-
tion of sodium and promoting
the accumulation of potas-
sium, calcium, and magne-
sium in plant

Abd-Allah
et al.
(2018)

6. Bacillus licheniformis Triticum
aestivum

This microorganism directly
helped in plant growth by
supporting increment in length
of root, shoot, fresh weight,
and dry weight and by reduc-
ing sodium ion content

Singh and
Jha (2016)

7. B. subtilis and
Arbuscular mycorrhi-
zal fungi (AMF)

Acacia benth The microbiome helped the
plant to survive in saline stress
by increasing the accumula-
tion of important elements like
nitrogen, phosphorus, potas-
sium, magnesium, and
calcium

Hashem
et al.
(2016)

(continued)
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Table 6.3 (continued)

Name of
microorganism

8. Piriformospora indica Hordeum
vulgare

This mutualistic fungus helped
in alleviating salt stress by
modulating ion accumulation
in colonized plants by
increasing the foliar potassium
(K+)/sodium (Na+) ratio. It
promoted Ca+ accumulation

Alikhani
et al.
(2013)

9. Trichoderma
harzianum

Cucumis
sativus

This microbe helped in miti-
gating the salt stress by
affecting antioxidant enzymes
including peroxidase, poly-
phenol oxidase phenylalanine
ammonia-lyase, catalase,
superoxide dismutase, ascor-
bate peroxidase and glutathi-
one reductase, proline, and
ascorbic acid. This microbe
increased the concentration of
K(+) ion and decreased that of
Na(+) ion and ethylene

Zhang
et al.
(2019)

10. Pseudomonas putida Arabidopsis
thaliana

It significantly improved the
germination rate of host plants
under salt stress. It also
upregulated the stress toler-
ance gene like LOX2
(jasmonic acid synthesis)

Chu et al.
(2019)

11. Bacillus licheniformis
and Pseudomonas
plecoglossicida

Helianthus
annuus

These PGPMs helped in
reducing oxidative stress and
improving height and root
length of plants. They also
upregulated the physiological
and biochemical functions at
high salinity levels

Yasmeen
et al.
(2020)

12. Azospirillum lipoferum Cicer
arietinum

It alleviated inhibitory impacts
of salinity on chickpea growth
via modulating osmolytes,
antioxidants machinery, and
stress related gene expression

El-Esawi
et al.
(2019)

13. Azospirillum brasilense Trifolium
repens

This microbe helped in
improvement of overall
growth of plant, leaf area and
chlorophyll content. It
increased the ratio of K+/Na+

by decreasing the level of Na+

Khalid
et al.
(2017)
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Table 6.3 (continued)

Name of
microorganism

14. Bacillus licheniformis
and Enterobacter
asburiae

Chenopodium
quinoa

These microbes helped in
mitigating the salt stress by
producing IAA, siderophores,
hydrogen cyanide, ammonia,
and many extracellular
enzymes. They decreased the
concentration of Na ion under
saline stress

Mahdi
et al.
(2020)

microbes and affects overall crop growth and yield (Lamaoui et al. 2018).
Microbiome functions carry potential to deal with heat stress and other climatic
changes to sustain high crop yields in near future (Mahmud et al. 2021). Soil
microbes can be engineered to address soil fertility and crop production problems,
such as by enhancing nutrient availability. This is because microbes can evolve,
adapt, and influence to the climatic changes in real time and can also allow host
plants also to adapt slowly (Qiao et al. 2017). The future research needs to study
microbiome with respect to heat, drought, salinity, and other abiotic stresses and
climatic changes in isolation and in conjunction to engineer potential microbial
consortia for sustainable crop production.

Acknowledgments S.S. acknowledges funding support from Institute of Eminence, Banaras
Hindu University (Scheme no. 6031).

References

Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON et al
(2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea
plants by regulating the plant defense mechanisms. J Plant Interact 13:37–44

Abo-Amer AE, El-Shanshoury AER, Alzahrani OM (2015) Isolation and molecular characteriza-
tion of heavy metal-resistant Alcaligenes faecalis from sewage wastewater and synthesis of
silver nanoparticles. Geomicrobiol J 32:836–845

Abulfaraj AA, Jalal RS (2021) Use of plant growth-promoting bacteria to enhance salinity stress in
soyabean (Glycine max L.) plants. Saudi J Biol Sci 28:3823–3834

Agami RA, Ghramh HA, Hasheem M (2017) Seed inoculation with Azospirillum lipoferum
alleviates the adverse effects of drought stress on wheat plants. J Appl Bot Food Qual 90:
165–173

Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T, Fujiwara T et al (2014) Cellulomonas pakistanensis
sp. nov., a moderately halotolerant Actinobacteria. Int J Syst Evol Micrbiol 64:2305–2311

Akhtar MJ, Ullah S, Ahmad I, Abdul R, Nadeem SM, Khan MY et al (2018) Nickel phytoextraction
through bacterial inoculation in Raphanus sativus. Chemosphere 190:234–242

Alexander A, Singh VK, Mishra A (2020) Halotolerant PGPR Stenotrophomonas maltophilia BJ01
induces salt tolerance by modulating physiology and biochemical activities of Arachis
hypogaea. Front Microbiol 11:568289



132 S. Srivastava and D. Singh

Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH (2013) A proteomics
approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L)
conferred by root mutualistic fungus Piriformospora indica. Mol BioSyst 9:1498–1510

Ambrosini A, de Souza R, Passaglia LMP (2016) Ecological role of bacterial inoculants and their
potential impact on soil microbial diversity. Plant Soil 400:193–207

Armada E, Leite MFA, Medina A, Azcon R, Kuramae EE (2018) Native bacteria promote plant
growth under drought stress condition without impacting the rhizomicrobiome. FEMS
Microbiol Ecol 94:fiy092

Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages:
growth and nutrient relations. Biol Plant 48:81–86

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC et al (2013) Uncertainty in
simulating wheat yields under climate change. Nat Clim Chang 3:827–832

Bastida F, Torres IF, Andres-Abellan M, Baldrian P, Lopez-Mondejar R, Vetrovský T, Richnow
HH et al (2017) Differential sensitivity of total and active soil microbial communities to drought
and forest management. Glob Chang Biol 23:4185–4203

Beney L, Gervais P (2001) Influence of the fluidity of the membrane on the response of microor-
ganisms to environmental stresses. Appl Microbiol Biotechnol 57:34–42

Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ et al (2012) Selection for
Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-
term Cu exposure. Appl Environ Microbiol 78:7438–7446

Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and
future perspectives. Front Microbiol 5:1–7

Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F et al (2012)
Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.
Nature 488:91–95

Cappellari LR, Banchio E (2020) Microbial volatile organic compounds produced by Bacillus
amyloliquefaciens GB03 ameliorate the effects of salt stress in Mentha piperita principally
through acetoin emission. J Plant Growth Regul 39:764–775

Chen L, He L, Wang Q, Sheng X (2016) Synergistic effects of plant growth-promoting
Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation
of edible tissues of hot pepper. J Hazard Mater 312:123–131

Chiappero J, Cappellari LR, Alderete LGS, Palermo TB, Banchio E (2019) Plant growth promoting
rhizobacteria improves the antioxidant status in Mentha piperita grown under drought stress
leading to enhancement of plant growth and phenolic content. Ind Crop Prod 139:111553

Chu TN, Tran BTH, Bui LV, Hoang MTT (2019) Plant growth promoting rhizobacterium Pseu-
domonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 12:11

Dolphen R, Thiravetyan P (2019) Reducing arsenic in rice grains by leonardite and arsenic-resistant
endophytic bacteria. Chemosphere 223:448–454

Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR et al (2013)
Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann
Appl Biol 163:494–507

Duy MV, Hoi NT, Ve NB, Thuc LV, Trang NQ (2016) Influence of Cellulomonas flavigena,
Azospirillum sp. and Pseudomonas sp. on rice growth and yield grown in submerged soil
amended with rice straw. In: Sayyed RZ, Reddy MS, Al-Turki AI (eds) Recent trends in
PGPR research for sustainable crop productivity. Scientific Publishers, Delhi, pp 238–242

Ebrahim MK, Zingsheim O, El-Shourbagy MN, Moore PH, Komor E (1998) Growth and sugar
storage in sugarcane grown at temperatures below and above optimum. J Plant Physiol 153:
593–602

Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M, Patel A et al (2019) Endophytic
bacteria of desert cactus (Euphorbia trigonasMill) confer drought tolerance and induce growth
promotion in tomato (Solanum lycopersicum L.). Microbiol Res 228:126302



6 Functional Potential of Plant Microbiome for Sustainable Agriculture. . . 133

El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers
improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant
machinery and stress-related gene expression. Environ Exp Bot 159:55–65

El-Meihy RM, Abou-Aly HE, Youssef AM, Tewfike TA, El-Alkshar EA (2019) Efficiency of
heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on
sorghum. Environ Exp Bot 162:295–301

Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D et al (2015) Potential role of phytohor-
mones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing
environment. Environ Sci Pollut Res 22:4907–4921

Fahad S, Hussain S, Saud S, Khan F, Hassan S, Nasim W et al (2016) Exogenously applied plant
growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

Fatima T, Mishra I, Verma R, Arora NK (2020) Mechanisms of halotolerant plant growth promot-
ing Alcaligenes sp. Involved in salt tolerance and enhancement of the growth of rice under
salinity stress. 3 Biotech 10:361

Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic
bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and
inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493

Frossard A, Donhauser J, Mestrot A, Gygax S, Baath E, Frey B (2018) Long- and short-term effects
of mercury pollution on the soil microbiome. Soil Biol Biochem 120:191–199

Gagne-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought
stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis
B26. Front Plant Sci 7:584

Gil-Martínez M, Lopez-García A, Domínguez MT, Navarro-Fernandez CM, Kjøller R, Tibbett M
et al (2018) Ectomycorrhizal fungal communities and their functional traits mediate plant-soil
interactions in trace element contaminated soils. Front Plant Sci 9:1682

Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wrobel B (2014) 16S rDNA pyrosequencing
analysis of bacterial community in heavy metals polluted soils. Microbial Ecol 67:635–647

Gou W, Zheng P, Chen F, Zhang L, Cui Z, Cao M et al (2015) Accumulation of choline and
gylcinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth
promoting rhizobacteria (PGPR) strains. Pak J Bot 47:581–586

Hashem A, Abd-Allah EF, Alqarawi AA, Shah MA (2016) Induction of osmoregulation and
modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and
Bacillus subtilis (BERA 71). BioMed Res Int 2016:6294098

Hidri R, Mahmoud OMB, Farhat N, Cordero I, Pueyo JJ, Debez A et al (2019) Arbuscular
mycorrhizal fungus and rhizobacteria affect the physiology and performance of Sulla coronaria
plants subjected to salt stress by mitigation of ionic imbalance. J Plant Nutr Soil Sci 182:451–
462

Hur M, Kim Y, Song H-R, Kim JM, Choi YI, Yi H (2011) Effect of genetically modified poplars on
soil microbial communities during the phytoremediation of waste mine tailings. Appl Environ
Microbiol 77:7611–7619

Jiao S, Chen W, Wei G (2019) Resilience and assemblage of soil microbiome in response to
chemical contamination combined with plant growth. Appl Environ Microbiol 85:e02523–
e02518

Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson A et al (2019)
Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses.
Front Microbiol 10:2106

Khalid M, Bilal M, Hassani D, Iqbal HMN, Wang H, Huang D (2017) Mitigation of salt stress in
white clove (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud
58:5

Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014) Fungal endophyte Penicillium
janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe).
Biol Fertil Soil 50:75–85



134 S. Srivastava and D. Singh

Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohari P, Bhardwaj R et al (2019) Supplementing
with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum
lycopersicum by modulating the expression of secondary metabolites. Chemosphere 217:463–
474

Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020)
Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet
(Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal
Agricult Biotechnol 23:101501

Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and
approaches for their mitigation. Front Chem 6:26

Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root
microbiomes. Plant Mol Biol 90:575–587

Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop
production. Nature 529:84–87

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S et al (2012) Defining the
core Arabidopsis thaliana root microbiome. Nature 488:86–90

Luziatelli F, Ficca AG, Cardarelli M, Melini F, Cavalieri A, Ruzzi M (2020) Genome sequencing of
Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant
growth-promotion and tolerance to heavy metals. Microorganisms 8:153

Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium
Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by
Brassica juncea. J Environ Manag 90:831–837

Ma Y, Rajkumar M, Vicente JAF, Freitas H (2010) Inoculation of Ni-resistance plant growth
promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of phytoextraction by
energy crops. Int J Phytoremediation 13:126–139

Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metals polluted soil using
Sedum plumbizincicola inoculated with metal mobilization Phyllobacterium myrsinacearum
RC6B. Chemosphere 93:1386–1392

Mahdi I, Fahsi N, Hafidi M, Allaoui A, Biskri L (2020) Plant growth enhancement using
rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and
Enterobacter asburiae QF11 isolated from Chenopodium quinoa Wild. Microorganisms 8:948

Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S (2021) Rhizosphere
microbiome manipulation for sustainable crop production. Curr Plant Biol 27:100210

Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H et al (2013) Are drought-resistance
promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8:e26741

Mitra D, Rodriguez AMD, Cota FIP, Khoshru B, Panneerselvam P, Moradi S et al (2021)
Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria. Physiol Mol
Plant Pathol 115:101679

Mnasri M, Janouskova M, Rydlova J, Abdelly C, Ghnaya T (2017) Comparison of arbuscular
mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in
contact with extraradical mycelial network. Chemosphere 171:476–484

Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front
Plant Sci 8:2223

Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence
bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704

Pramanik K, Mitra S, Sarkar A, Maiti TK (2018) Alleviation of phytotoxic effects of cadmium on
rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenesMCC 3092. J Hazard
Mater 351:317–329

Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK (2017) Characterization of cadmium resistance
Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity
of cadmium. Environ Sci Pollut Res 24:24419–24437

Prasad R, Gill SS, Tuteja N (2018) Crop improvement through microbial biotechnology. Elsevier.
ISBN: 9780444639882



6 Functional Potential of Plant Microbiome for Sustainable Agriculture. . . 135

Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G et al (2017) The variation in the rhizosphere
microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7:3940

Raklami A, El Gharmali A, Rahou Y, Oufdou K, Meddich A (2020) Compost and mycorrhizae
application as a technique to alleviate Cd and Zn stress in Medicago sativa. Int J
Phytoremediation 23:190–201

Raza FA, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-
chp37 isolated from Cholistan desert, Pakistan. Aust J Crop Sci 7:1693–1698

Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML et al (2015) Improved plant
resistance to drought is promoted by the root associated microbiome as a water stress-dependent
trait. Environ Microbiol 17:316–331

Saeed Z, Naveed M, Imran M, Bashir MA, Sattar A, Mustafa A et al (2019) Combined use of
Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physi-
ology and antioxidant activity of Brassica napus. PLoS One 14:e0213016

Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S et al (2012) Exposure of soil
microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:
e40059

Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments
induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:
1890

Singh RK, Masurkar P, Pandey SK, Kumar S (2019) Rhizobacteria–plant interaction, alleviation of
abiotic stresses. In: Sayyed R, Arora N, Reddy M (eds) Plant growth promoting rhizobacteria for
sustainable stress management. Springer, Singapore, pp 345–353

Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E et al (2016) Plant-associated
microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil 405:
357–370

Sun X, Song B, Xu R, Zhang M, Gao P, Lin H, Sun W (2021) Root-associated (rhizosphere and
endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal
contamination. J Environ Sci 104:387–398

Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K (2018) How does salinity shape
bacterial and fungal microbiomes of Alnus glutinosa roots? Front Microbiol 9:651

Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with
water relations of sugarcane leaves. Biol Plant 51:104–109

Wang Q, Chen L, He L-Y, Sheng X-F (2016) Increased biomass and reduced heavy metal
accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting
Neorhizobium huautlense T1-17 and biochar. Agric Ecosyst Environ 228:9–18

Wang KT, Li YP, Wu YC, Qui ZQ, Ding Z, Wang X et al (2020) Improved grain yield and lowered
arsenic accumulation in rice plants by inoculating with arsenite-oxidizing Achromobacter
xylosoxidans GD03. Ecotoxicol Environ Saf 206:111229

Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer
arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

Woo OG, Kim H, Kim J-S, Keum H-L, Lee KC, Sul WJ, Lee JH (2020) Bacillus subtilis strain
GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and
Brassica campestris. Plant Physiol Biochem 148:359–367

Xie C, Li YQ, Tang W, Newton RJ (2003) Study of dynamical process of heat denaturation in
optically trapped single microorganisms by near-infrared Raman spectroscopy. J Appl Phys 94:
6138–6142

Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.),
past, present, and future perspectives. Front Plant Sci 6:348

Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2016) Impact of soil salinity on
the structure of the bacterial endophytic community identified from the roots of caliph medic
(Medicago truncatula). PLoS One 11:e0159007

Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil
microorganisms. Int Soil Water Cons Res 3:316–323



136 S. Srivastava and D. Singh

Yasmeen T, Ahmad A, Arif MS, Mubin M, Rehman K, Shahzad SM et al (2020) Biofilm forming
rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant
enzymes activity. Plant Physiol Biochem 156:242–256

Young E, Carey M, Meharg AA, Meharg C (2018) Microbiome and ecotypic adaption of Holcus
lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing.
Microbiome 6:48

Zhang F, Wang Y, Liu C, Chen F, Ge H, Tian F et al (2019) Trichoderma harzianum mitigates salt
stress in cucumber via multiple responses. Ecotoxicol Environ Saf 170:436–445

Zhang L, Zhang W, Li Q, Cui R, Wang Z, Wang Y et al (2020) Deciphering the root endosphere
microbiome of the desert plant Alhagi sparsifolia for desert resistance-promoting bacteria. Appl
Environ Microbiol 86:e02863-19



137

Chapter 7
The Beneficial Plant Microbial Association
for Sustainable Agriculture

Sivakumar Natesan, Shyamkumar Rajaram, Devaprakash Manoharan,
and Thirumalaivasan Ramachandran

Abstract Microbes are ubiquitous and can associate to colonize plants and exhibits
different modes of interactions. Plant beneficial microbes could colonize both the
phyllosphere and rhizosphere to promote the various aspect of plant growth and
other various compartments in plants. These beneficial microbes are generally called
plant growth-promoting microbes (PGPMs), they can become an excellent alterna-
tive to remove or reduce the use of various toxic agrochemicals including synthetic
chemical fertilizers and biocides. The association of PGPMs provides nutrients,
protection against pathogens as well as various environmental stress responses either
direct or indirect mechanisms. The soil and rhizosphere microbes beneficially
associate either the root surface or phyllosphere region of the plant and influence
the growth and health fitness of crops. Some microbes directly interact with the plant
to develop a symbiotic relationship (e.g., Rhizobium, mycorrhizal fungi), and few
can interact at the surface of the root with either associative symbiosis (Azospirillum)
or nonsymbiotic beneficial interactions such as nutrient acquisition, solubilization,
and translocation of minerals and water, vitamin and growth hormone synthesis,
mineralization of soil organic residues, inhibits harmful pathogens and nematodes,
production of iron siderophores to chelate ions, and provide induced resistance
against various biotic and abiotic stresses. This chapter describes the basic beneficial
microbial interactions on the rhizosphere, phyllosphere, and their beneficial effects
on the host for sustainable agriculture, specifically, bacterial nodulation, mycorrhizal
infection, microbial endophytes, development of bioinoculums, and their benefits to
the plant. Further, the functions of beneficial microbes to the plants and the soil have
been discussed. Besides, rhizosphere microbiome engineering and its role in sus-
tainable agriculture have been also discussed.
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7.1 Introduction

Increasing the human population often drives-up demand for food, especially since
almost one in seven people around the world is continually hungry, lacking enough
food to be healthy. The Food and Agriculture Organization (FAO) projects that by
2050, the world population will reach 9.2 billion, hence it is an urgent need to
increase the agricultural productivity up to 60–70% from the current levels (Pawlak
and Kołodziejczak 2020). In order to supply the growing demand for food, certain
factors are necessary to reach this goal including a suitable environment with the
climatic condition, good adequate fertile soil, and also suitable cultivation practices.
From the mid twentieth century to date, the majority of agricultural farmers use
chemical fertilizers and other agrochemicals to increase crop productivity. The
chemical fertilizers as well as the synthetic agrochemicals give sudden effects on
the yield; however, they continuously eradicate the soil beneficial microbes as well
as the soil health (Meena et al. 2020). In addition, extensive and improper use of such
chemicals causes environmental issues as well as health issues for humans and
animals.

The beneficial role of soil-borne microbes especially rhizosphere microbes has
been emphasized in many cases. They can play a vital role in earth biogeochemical
cycling that can maintain soil fertility and soil health (Basu et al. 2021). Hence, last
few decades scientists give more attention to screen, select, and identify the most
beneficial microbes from the environment of the various plant species, and studied
the real benefits toward the plant and our environment (Pawlak and Kołodziejczak
2020). There are various microorganisms including bacteria, actinobacteria, fungi,
and cyanobacteria have beneficially interacted with a wide range of plants either
symbiotically or nonsymbiotically. The major benefits of such microbial interactions
are usually either direct or indirect benefits such as mineral supply phosphorus (P),
nitrogen (N), potassium (K), and sulfur (S). Mineralization of organic waste and
inorganic substances provides enhanced nutrient uptake, synthesis of plant growth
hormone-like substances, quench pathogenic microbes including soil nematodes and
other insect vectors (biocontrol), decreases either biotic or abiotic stresses, detoxi-
fication of chemicals, reduction of heavy metal toxicity, and also reduces the impact
in global climatic change. Hence, scientists have begun to direct their interests
toward ensuring soil microorganisms and their sustainability in agricultural use, as
bio-inoculants as a suitable alternative for chemical fertilizers and biocides (Abdul
Rahman et al. 2021).

Among the various environment, rhizosphere soil and the phyllosphere have
more beneficially interacted with a large number of diverse microorganisms (Prasad
and Zhang 2022). Symbiotic, associative symbiotic, and nonsymbiotic modes
microbes are largely exploited the rhizosphere and phyllosphere region for their
surveillance (Sivakumar et al. 2020). For example, the most prominent and well-
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known symbiotic microorganism that fixes atmospheric N2 in the form of ammonia
is Rhizobium in legume nodules; Azotobacter, Azospirillum, and Phosphobacter are
other well-known beneficial microbes being considered as biofertilizers for various
crops. In addition to the mycorrhizal fungi, Frankia can also mobilize various
minerals to the host plant and give protection against environmental stresses
(Oleńska et al. 2020).

Rhizosphere health is important for plant growth and development; it depends on
the diversity and abundance of beneficial microbes. For the sustainable agriculture, it is
necessary to maintain the rhizosphere microbiome through effective soil management,
which can define as the process of improving the nutrient efficiency in the soil to
enhance the nutrient availability to improve beneficial microbes for the growth and
yield of crops (Tahat et al. 2020). Generally, beneficial soil microbes enhance the
rhizosphere health through the multidimensional mechanism, which includes fixing the
N2, hydrolyzing complex organic waste residues to simple molecules, production of
siderophores, hydrogen cyanide, and organic acids, secreting enzymes to solubilize
phosphate and potassium, and production of vitamins and growth hormones, ultimately
it improves soil fertility. There are several research works undertaken to isolate many of
such beneficial microorganisms from the soil of both agriculture and forest that can
exhibit plant growth-promoting activities called, plant growth-promoting rhizobacteria
(PGPR) (Prasad et al. 2015). PGPR and mycorrhiza fungi are currently used as a tool
for food security and sustainable agriculture (Diagne et al. 2020).

Recent scientific discoveries gaining more and more information related to the soil
and rhizosphere microbiome and its complex architecture are used to design a new and
healthier environment for a specific type of crop in a particular soil is possible.
Through such microbial manipulation, the rhizosphere gets more benefits which
overcome the drawbacks of the single type of microbial supplement. This technology
is now called microbiome engineering or designing, specifically rhizosphere
microbiome engineering (Albright et al. 2021). This chapter describes the important
beneficial microbial associations in both the rhizosphere and phyllosphere region of
plants and their beneficial role mainly PGPR functions. In addition, the role of
beneficial microbes for the use of biofertilizers and biocontrol agents in sustainable
agriculture is analyzed. Further, microbiome engineering with beneficial microbes to
manipulate the rhizosphere microbiome for agricultural sustainability is also discussed.

7.2 Beneficial Microbial Interactions in Plants

Microbes are ubiquitous, they can survive and develop adaptation to any environ-
ment and establish their colonies in different niches. Plants have different micro-
habitats that hold several complex microbial communities such as bacteria, archaea,
and fungi, named microbiome (Bang et al. 2018). This microbiome of microbial
consortia develops a unique community structure in the various microhabitats of the
plants, generally by either epiphytic or endophytic association. Various studies
revealed this complex microbial colonization on different structural components of
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Fig. 7.1 Microbial associations on plant

plants such as phyllosphere (caulosphere (stems), phylloplane (leaves), anthosphere
(flowers), and carposphere (fruits)), and rhizosphere regions (Fig. 7.1), besides, the
spermosphere, a small area which surrounds a germination seed in the soil which has
a unique microenvironment for microbial diversity (van der Heijden et al. 2007;
Hodge and Fitter 2010).

7.3 Rhizosphere Microbiome Interaction

The soil is the natural and largest microbial reservoir for plants, contains 106 to 1011

microbial cells per gram and consists of 30,000 and above prokaryotic diversity
(Berendsen et al. 2012). The rhizosphere is the region where the plant roots are
firmly attached with soil particles for their stability, nutrients, and water. This region
is densely populated with both prokaryotic and eukaryotic microbes and nematodes.
In this region, plants secrete root exudates called rhizodeposits, consists of sugars,
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Fig. 7.2 Factors determination of microbial interactions on plant

amino acids, organic and inorganic acids, siderophores, vitamins, nucleosides, and
polysaccharide (Cooper 2007; Odelade and Babalola 2019; Khan et al. 2021), which
chemotactically attract the microorganism to establish their associative/symbiotic
colonies on the surface (epiphytes) and inner tissues (endophytes) of root (Canarini
et al. 2019). The rhizosphere microbes heavily influence the soil nutrients recycling
(decomposition, N2 fixation, and solubilization of rock minerals) and make them
available for plants. Hence, the abundance and diversity of microbes in the rhizo-
sphere region are comparatively ~100 times greater than the nearby other soil habitat
(Backer et al. 2018). Several biotic and abiotic factors have determined the microbial
abundance and interaction with plant roots. Factors which include native microbes,
temperature, wind flow, light intensity, oxygen availability, soil fertility, heavy
metals, and agrochemicals (Fig. 7.2) have direct influences on beneficial microbial
interaction (Dastogeer et al. 2020). Further, the composition of rhizodeposits varied
in different plant species, which determines the microbial composition in the rhizo-
sphere soil (McNear 2013; Mendes et al. 2013; Paterson et al. 2007). For example,
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legume plants’ rhizosphere has a significant number of microbial diversity than
cereal crops due to its specialized chemoattractants (flavonoids and organic acids),
which interact with the symbiotic association of N2 fixing Rhizobium sp. that makes
nodules on its root (Cooper 2007). The exudates of roots are important to mobilize
and modulate the community of the microbiome in the rhizosphere, along with other
biotic and abiotic factors (Mendes et al. 2013; Korenblum et al. 2020). However,
some selected microbial taxa are common in specific plant species, which are always
detected in the similar plant species in the different environment called “core
microbes” (Jones et al. 2019). The core microbe of a specific plant species is usually
not disturbed by various agricultural practices including the long-term tillage and
crop rotations (Bziuk et al. 2021). Besides, the seed contains beneficial microbes,
after germination, it develops an endophytic association with plants (Shao et al.
2021) and also increases the sustainability of the crop (Zhang et al. 2019). In root,
Rhizobium, mycorrhizal fungi, and Frankia are symbiotically associated with a wide
range of plants and promote growth and yield. Further, Azotobacter, Azospirillum,
Phosphobacter, and other rhizosphere microbes beneficially assemble in the rhizo-
sphere microbiome and provide various health benefits to the host plant.

7.3.1 Rhizobium Nodulation: A Beneficial Microbe–Plant
Interaction

Nodulation is an important event for the biological N2 fixation in legumes. Rhizo-
bium is a genus of Gram-negative soil bacteria, the well-known nitrogen-fixing root
nodule bacterial symbiont of legumes and other flowering plants. The legume-
rhizobia symbioses mainly occur in three Leguminosae subfamilies, the
Caesalpinioideae, Mimosoideae, and Papilionoideae. According to the species-
specific interaction of Rhizobia in legumes further named Bradyrhizobium,
Ochrobactrum, Rhizobium, Ensifer, Mesorhizobium, Burkholderia, Neorhizobium,
Allorhizobium, Devosia, Phyllobacterium, Microvirga, Ochrobactrum, and
Pararhizobium (Andrews and Andrews 2017). The bacteria colonize plant cells
within root nodules, where they convert atmospheric nitrogen into ammonia by a
nitrogenase enzyme and then provide organic nitrogenous compounds such as
glutamine or ureides to the plant. Plant provides photosynthetically fixed organic
carbon for Rhizobium growth. During this association, both partners have mutually
benefited (Varma et al. 2020).

The root-nodulation process starts with a signal transduction process between the
host plant and its microsymbionts (Oldroyd 2013; Wang et al. 2018a). Under
nitrogen starvation, legume roots secrete a complex mixture of exudates (infection
flavonoids) into the rhizosphere, which stimulates nodulation (nod) genes to syn-
thesize nodulation factors, a lipochitooligosaccharidic signal that is essential for
initiating symbiotic development in most legumes (Oldroyd et al. 2011). Further,
rhizobia polysaccharides such as exo- (EPS), capsular- (KPS), and lipo-
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Fig. 7.3 Stages of Rhizobium root nodule formation. (Adapted from Farssi et al. 2018)

polysaccharides (LPS) also have significant role in establishing symbiotic relation-
ship with legumes (Gibson et al. 2008). Exopolysaccharides have been shown to be
required for a rhizobial infection that can suppress plant defense and promote
nodulation. This mechanism was reported in different nodulating rhizobium species
such as Rhizobium leguminosarum, Sinorhizobium meliloti (Peck et al. 2006),
Bradyrhizobium japonicum, R. alamii, R. lentis, R. japonicum, R. metallidurans,
R. smilacinae, R. phaseoli, and R. trifolii (Breakspear et al. 2014).

Exopolysaccharides have been shown to be required for rhizobial infection that
can suppress plant defense and nodulation. Figure 7.3 described the mechanism of
root nodulation. Infection starts with recognition of the Nod signals in the root hair of
the specified host and induces the modification on the root hair growth, which looks
like curling at the tip of root hair results in a cork-screw structure. Rhizobia colonize
at the curled surface of root hair and infect, then enter into the root hair by
endocytosis. The invaded rhizobium is confined within a specialized infection tube
called infection thread which further progresses intracellularly to the cortex, where it
develops into a primordium, a newly forming nodule. Bacteria multiply within a
membrane-bound compartment named symbiosome, a unit of biological N2 fixation
where bacteria make symbiotic interaction with host cell for nutrients and ammonia
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Fig. 7.4 Morphology of legume nodule. (a) Alfalfa root with fingerlike nodule (Jensen et al. 2012);
(b) soybean root with round shape nodule (Rodríguez-Navarro et al. 2011)

exchange, within the nodule bacteria changing their shape (bacteroids). There are
two types of nodules identified in plants (Fig. 7.4). The first one appears as the
modified lateral root with a terminal apical meristem along with lateral vascular cells
called intermediate nodule (e.g., alfalfa, fingerlike in shape); the other one is the
determinate nodule of soybean (round shape), where the cortical cells divide and
expand to develop globular nodule structure. The development of this nodule is in a
radial pattern (Sulieman and Tran 2013).

The symbiotic nitrogen-fixation by the rhizobia-legumes comprises 14 genera
and more than 98 species (Berrada and Fikri-Benbrahim 2014). The N2 fixing ability
of the rhizobia in the nodule should vary with the associated species, nodule shape,
growth pattern, and also acidic or alkaline N compounds (Sprent 2009). There are a
number of regulatory processes involved in the N2 fixation in root nodules. the
following are some important components to regulate the N2 fixation; (1) enzymatic
regulation of C- and N-metabolism, (2) O2 availability regulated by a physical
barrier and leghemoglobin (Lb), (3) molecular control of nodule number, (4) pro-
duction of reactive oxygen species and reactive nitrogen species (RNS), and (5) sig-
nal mediated regulation of nitrogen-fixing (nif) gene expression (Sulieman and Tran
2013). Within the nodules, N2 is reduced to ammonia that is used to incorporate into
the plant component.

The quantity of N2 fixed by Rhizobium varies approximately 50–100 kg N/hect-
are with the species of legumes under different environmental conditions. Legumes
bioinoculated with Rhizobium increases the yield up to 35% (Amat et al. 2020).
Generally, for the formulation of commercial biofertilizer, Rhizobium is mixed with
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suitable carriers such as lignite and charcoal peat, or in a liquid-based formulation
used with methylcellulose, polyethylene glycol (0.5%), gum arabic, and polyvinyl
pyrrolidone (0.5%) (Tittabutr et al. 2007) consist of 1010 to 1012 cfu/g. It is generally
used for economically important legume plants, and the dosage depends on the type
of crop, soil type, and environmental conditions (Barman et al. 2017). Table 7.1
represents the importance of Rhizobium inoculums for sustainable agriculture.

7.3.2 Azotobacter

Azotobacter is a free-living, nonsymbiotic N2-fixing bacterium abundant in soil and
plays an important role in the nitrogen (N2) and phosphorous (P) cycle
(Velmourougane et al. 2019; Rana et al. 2020). Several studies revealed that the
rates of N2-fixation in soil range from 15 kg/ha/year to 60 kg/ha/year (Romero-
Perdomo et al. 2017; Saha et al. 2017). In addition, Azotobacter accelerates the
mineralization of soil organic residues and also reduces heavy metals (Kizilkaya
2009; Din et al. 2019) and has the ability to produce vitamins. Azotobacter contrib-
utes ~0.06% to the rhizosphere microbiome (Hassen et al. 2020). Species of Azoto-
bacter such as A. chroococcum and A. vinelandii are most abundant in tropical soil,
A. insignis, A. beijerinckii, and A. macrocytogenes are present in a wide range of soil
pH, both acidic and alkaline soil (Kennedy et al. 2015). Azotobacter species is used
as a suitable biofertilizer for non-leguminous crops such as cotton, rice, vegetables,
sorghum, sugarcane, and potato (Ritika and Utpal 2014). Several reports suggested
that Azotobacter inoculum increases the yield of various crops (Wani and Ali 2013),
rapeseed and mustard (Dutta and Singh 2002), sugarcane (Kizilkaya 2009), etc.
Moreover, Azotobacter species are able to synthesize plant growth hormones such as
indole acetic acid (IAA), gibberellins, and cytokinins. Besides, Azotobacter strains
can also protect host plants indirectly from phytopathogens, prevent seedling mor-
tality, and regulate other beneficial rhizosphere microorganisms (Arora et al. 2018;
Ansari and Mahmood 2019a, b). Through the available literature, Azotobacter
influences overall plant growth, but the exact mechanism is not yet fully understood
(Sumbul et al. 2020). In addition, to fix nitrogen, they can solubilize phosphates and
also mineralize organic sulfur (El-Badry et al. 2016). The exopolysaccharide of
Azotobacter sp. solubilizes tricalcium phosphate (Yi et al. 2008).

However, soil organic matter acts as limiting components for Azotobacter sur-
veillance, poor growth of Azotobacter was reported in a reduced amount of soil
organic matter with other factors such as temperature, moisture content, salinity, and
soil pH (Andjelković et al. 2018). Azotobacter grows optimally at a pH of 7–7.5,
however, A. chroococcum survived at pH 9 (Andjelković et al. 2018). Further, the
plant growth-promoting activity of Azotobacter is mainly affected by soil salinity;
but Azotobacter salinestris is known to tolerate 8% of NaCl. Azotobacter is a
mesophilic bacterium that can grow at 25–30 °C, but it can develop cyst under
unfavorable temperature (45 °C), that germinate under favorable conditions (Saribay
2003).



(continued)

146 S. Natesan et al.

Table 7.1 Applications of Rhizobium for sustainable agriculture

Strain Host plant Function References

Rhizobium leguminosarum
bv. viceae

Pisum
sativum L.

Soil inoculum increased pea
nodulation under short season
conditions

Begum et al.
(2001a)

Rhizobium leguminosarum Pisum
sativum
L. and Lens
culinaris

Flavonoids induced nod gene
expression and preactivated nod
genes

Begum et al.
(2001b)

Rhizobium spp. PchDMS
and Pch43

Chickpea Increased yield and antioxidant
activities and induced resistance
against Fusarium oxysporum
f. sp. ciceris (Foc)

Arfaoui et al.
(2005)

Rhizobium strains BARI
RPs-2001 and BARI
RPs-2002

Pisum
sativum

Soil inoculation increases pod
weight and length

Ahmed et al.
(2007)

Rhizobium sp. Lens
culinaris
Medik

Increased yield and seed quality Al-Karaki
(2008)

Sinorhizobium meliloti Medicago
sativa L.

The tripartite symbiosis of Rhi-
zobium, AM, and Lucerne can
improve the performance of
Lucerne in organic farming and
under dry conditions

Ardakani et al.
(2009)

Rhizobium sp. Pisum
sativum

Indigenous rhizobia increase the
seed quality

Agarwal and
Choure (2011)

Rhizobium japonicum Soybean Biocontrol agent against soil-
borne pathogens Fusarium
solani and Macrophomina
phaseolina

Al-Ani et al.
(2012)

Mesorhizobium spp. Cicer
arietinum L

Increased nutrient uptake and
yield of chickpea

Verma et al.
(2013)

Rhizobium sp. Glycine max
(L.) Merril

Reproductive growth stages on
shoot biomass and yield of
soybean

Lamptey et al.
(2014)

Rhizobium trifolii,
R. phaseoli,
R. leguminosarum and
Bradyrhizobium japonicum

Legume plant Inoculation of solid and liquid
biofertilizers resulted into
enhanced plant growth by pro-
viding balanced nutrient supply

Datta et al.
(2015)

Rhizobium spp. Pisum
sativum L.

Rhizobium coupled with soil
application of organic manures
could increase yield in pea

Olle et al.
(2016)

Rhizobium sp. Lens
culinaris
Medik.

Symbiotic efficiency of native
and exotic Rhizobium strains
nodulating lentil

Tena et al.
(2016)

Rhizobium sp. Phaseolus
vulgaris L.

Higher plant-growth-promoting
effects

Assefa et al.
(2017)

Rhizobium leguminosarum
bv. viceae

Pisum
sativum

Disease resistance against
Didymella pinodes

Ranjbar
Sistani et al.
(2017)
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Table 7.1 (continued)

Strain Host plant Function References

Rhizobium sp. Glycine max
(L) Merril

Increased growth and yield Herliana et al.
(2019)

Rhizobium sp. and
Bradyrhizobium spp.

Phaseolus
vulgaris
L. and Gly-
cine max L.

Rhizobial inoculation improved
drought tolerance, biomass and
grain yields

Aserse et al.
(2020)

Rhizobium spp. Vicia faba L. Combined use of inoculant and
chemical fertilizer increased
growth and yield

Genetu et al.
(2021)

Azotobacter produces siderophores (Ansari et al. 2017), an iron (Fe) chelating
molecule, that can use the utilization of extracellular “Fe” molecules, and they act as
an important iron resource in the environment (Wichard et al. 2009). For example,
Azotobacter expresses iron-rich nitrogenases (Baars et al. 2016), through which they
can reduce nitrogen (N2 fixation). The Fe-siderophore complex of Azotobacter
shows antiphytopathogenic activities and can directly improve plant growth by
protecting plants from the pathogens attack (Hayat et al. 2010). In addition, it can
use molybdenum (Mo) or vanadium (V) for its nitrogenase activity and absorb heavy
metals like W and Zn (Kraepiel et al. 2009; Sumbul et al. 2020). Abo-Amer et al.
(2014) demonstrated heavy metals (Co2+, Ni2+, Zn2+, and Cu2+) absorbing efficiency
of Azotobacter using heavy metal contaminated soil. In addition, Azotobacter
provided good protection to the plants against pathogenic infections caused by
Rhizoctonia solani and Xanthomonas campestris and also inhibits root-knot nema-
tode Meloidogyne incognita (Akram et al. 2016; Sumbul et al. 2020). Besides,
Azotobacter can produce antibiotic-like substance anisomycin, a fungicidal com-
pound that inhibits the growth of Alternaria, Aspergillus, Curvularia, Fusarium,
Helminthosporium, Macrophomina, and Rhizoctonia (Jnawali et al. 2015). Further,
Azotobacter sp. has also been reported to degrade toxic pesticide compounds such as
2-chlorophenol, 4-chlorophenol, 2,6-dichlorophenol, 2,4-6-trichlorophenol, and
2,4-dichlorophenoxyacetic acid (2,4-D) (Gaofeng et al. 2004; Kumar et al. 2016).
All such properties of Azotobacter sp. could be a promising character for considering
a potent biofertilizer for the benefits of crops, a few are highlighted in Table 7.2.

7.3.3 Azospirillum

A genus Azospirillum is a group of gram-negative, flagellated, slightly curved,
microaerophilic (or) facultative anaerobic diazotrophs, nonfermentative, and
nitrogen-fixing bacteria from the family of Rhodospirillaceae, the best-characterized
PGPR, able to colonize the roots of several plant species. Twenty-one species of
Azospirillum have been isolated from the rhizosphere of many types of grass and
cereals in tropical as well as in temperate climates, namely Azospirillum brasilense,
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Table 7.2 Effect of Azotobacter-based biofertilizers on yields of different crops

Strain Crop Effect on yield References

Azotobacter sp. Cabbage Yield increase 13.9% Sarkar et al. (2010)

Azotobacter sp. Capsicum annum L.
and Pisum
sativum L.

Yield increase 11.4;
decrease
Fusarium root rot
infection

Jaipaul et al. (2011)

Azotobacter Wheat Yield increase 14.3% Milošević et al. (2012)

Azotobacter sp. Cluster Bean Yield increases up to
16.6%

Deshmukh et al. (2014)

Azotobacter
chroococcum

Potato Yield increases 62.3% El-Sayed (2014)

Azotobacter sp. Broccoli Yield increase 17.3% Singh et al. (2014)

Azotobacter sp. Rice Yield increase up to
26.9%

Zayadan et al. (2014)

Azotobacter sp. Cucumber Yield increase up to
21%

Saeed et al. (2015)

Azotobacter sp. Chickpea Yield increase 35.5% Ansari et al. (2015)

Azotobacter sp. Tomato Yield increase 23.8% Singh et al. (2015a)

Azotobacter sp. Carrot Yield increase 34.2% Sarma et al. (2015)

Azotobacter sp. Cotton Yield increase 13% Romero-Perdomo et al.
(2017)

A. amazonense, A. irakense, A. lipoferum, A. largimobile, A. halopraeferens,
A. oryzae, A. canadensis, A. doeberinerens, A. melinis (Peng et al. 2006; Mehnaz
et al. 2007; Saharan and Nehra 2011), A. formosense (Lin et al. 2012),
A. fermentarium (Lin et al. 2013), A. humicireducens (Zhou et al. 2013), A. soli
(Lin et al. 2015), A. agricola (Lin et al. 2016), A. griseum (Yang et al. 2019),
A. palustre (Tikhonova et al. 2019), A. ramasamyi (Anandham et al. 2019),
A. thermophilum (Zhao et al. 2020), A. oleiclasticum (Wu et al. 2021), and
A. baldaniorum (dos Santos Ferreira et al. 2020). Among them, A. brasilense and
A. lipoferum are well-known species for their physiological and genetic character-
istics (Fibach-Paldi et al. 2012). The bacteria have a wide range of growth temper-
ature (5–42 °C) and pH (5.0–9.0) (Steenhoudt and Vanderleyden 2000). The
Azospirillum–plant root interactions are explained by four different aspects such as
habitat, plant root association, N2 fixation, and biosynthesis of phytohormones.

The beneficial growth-promoting role of Azospirillum ensures the biofertilizer
applications in various commercial crops. Other than the N2 fixation, Azospirillum
relies on the synthesis of phytohormones such as auxins (Spaepen and Vanderleyden
2015), abscisic acid (Cohen et al. 2009), cytokinins (Tien et al. 1979), ethylene
(Strzelczyk et al. 1994), gibberellins (Bottini et al. 1989), and salicylic acid (Sahoo
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et al. 2014). Like Azotobacter sp., Azospirillum sp. can solubilize inorganic phos-
phates (Turan et al. 2012) and alleviate several abiotic stresses, such as drought and
salinity (Rodríguez-Salazar et al. 2009; García et al. (2017)), and also the heavy
metals (Bashan and de-Bashan 2010). The mechanisms involved in this process are
quite complex, where Azospirillum inoculum under high NaCl enhances K, Ca
uptake, and also increase chlorophyll a and b biosynthesis, and photoprotective
pigments such as carotenoids, violaxanthin, zeaxanthin, antheraxanthin, lutein, and
neoxanthin resulting in the production of soluble saccharides, proteins and other
osmolytes like proline and betaine, which improve salt stress resistance (Mehnaz
2015; Singh et al. 2015b). Azospirillum inhibits Na uptake, enhances the uptake of
Ca and K, and triggers nitrate reductase and nitrogenase activity in shoot and roots
(Hamdia et al. 2004). Azospirillum improves drought resistance in plants, through
the induction of jasmonic acid (JA) and salicylic acid (SA), which improves the
tolerance to drought and salinity stress (Kaushal and Wani 2016; Fukami et al.
2018). Further, Azospirillum lowers the synthesis of ethylene, which is related to
senescence processes induced by stress conditions (Kumari et al. 2018), and adjust-
ment of water loss by stomatal closure control (Kaushal and Wani 2016).
Azospirillum develops biofilm on the root surface (Molina-Favero et al. 2008),
which is another possible way to resist stress responses. In addition, Azospirillum
can reduce the biotic stress against the plant pathogens through a siderophore-
induced systemic resistance mechanism (Tortora et al. 2011) or cause alteration of
host physiology to induce several secondary metabolite synthesis that mediated
resistance against pathogens (Bashan and De-Bashan 2010). Some important
biofertilizer applications of Azospirillum sp. are listed in Table 7.3.

7.3.4 Actinorhizal (Frankia–Plants) Interaction

Actinorhizae are a symbiotic association between the actinomycete genus Frankia
and various dicotyledonous plant families including Betulaceae, Casuarinaceae,
Coriariaceae, Datiscaceae, Elaeagnaceae, Myricaceae, Rhamnaceae, and Rosaceae
(Diagne et al. 2013). In this association, Frankia develops nodules on actinorhizal
plants (morphologically distinct from legume-rhizobia nodules), able to fix nitrogen
up to 300 N2 kg/hectare/year (Shantharam and Mattoo 1997). Frankia is a gram-
positive, filamentous free-living, and nitrogen-fixing actinobacterium that usually
forms a symbiotic association with actinorhizal plants or in soil (Fig. 7.3a). Frankia
forms hyphae and multilocular sporangia which are located on hyphae either termi-
nal or intercalary (Obertello et al. 2003). The morphology of the Frankia in nodule
varies according to the host plant, and it forms the nodule in a perennial root,
wherein bacteria are hosted and nitrogen is fixed (Santi et al. 2013). In the genus
Frankia, 11 species such as Frankia alni, F. asymbiotica, F. canadensis,
F. casuarinae, F. coriariae, F. discariae, F. elaeagni, F. inefficax, F. irregularis,
F. saprophytica, and F. Torreyi (Nouioui et al. 2016, 2019) are able to make two
types of an actinorhizal nodule; they are (1) intracellular and (2) extracellular
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Table 7.3 Use of Azospirillum sp. for sustainable agriculture

Strain Host plant Function References

Azospirillum brasilense ssp.
248

Triticum
aestivum

Improved nitrogen content and
counteract the effects of salinity

Alamri and
Mostafa
(2009)

Azospirillum brasilense Triticum
aestivum

Increasing grain yield Ardakani
and
Mafakheri
(2011)

Azospirillum brasilense Capsicum
annuum

Ameliorate the deleterious effect
of NaCl in a sweet pepper

Amor and
Cuadra-
Crespo
(2012)

Azospirillum brasilense
sp. 245

Lactuca
sativa L. cv.
Crimor
INTA

Overcome the negative effects of
aging on lettuce seeds

Carrozzi
et al. (2012)

Azospirillum lipoferum Zea mays L. Increased shoot and root fresh and
dry weight; shoot and root length

Bano et al.
(2013)

Azospirillum brasilense
sp. 245

Lactuca
sativa L.

Seed inoculation improved freshly
product quality but also extend
storage life in lettuce grown under
salt stress

Fasciglione
et al. (2015)

Azospirillum brasilense
sp. 245

Arabidopsis
thaliana

Improved plants seed yield, plants
survival, proline levels, and rela-
tive leaf water content under
drought

Cohen et al.
(2015)

Azospirillum brasilense Wheat Increased antioxidant activity Méndez-
Gómez
et al. (2015)

Azospirillum brasilense Urochloa
ruziziensis

Makes the plant more efficient at
removing reactive oxygen species
and protecting chlorophyll a

Bulegon
et al. (2016)

Azospirillum brasilense Zea mays
and Triticum
aestivum

Seed inoculation improves plant
growth and yield

Fukami
et al. (2016)

Azospirillum
brasilense + Bradyrhizobium

Glycine max
(L.)

Coinoculation stimulates an early
nodulation and maintenance of
nodule under drought; increased
the grain yield

Cerezini
et al. (2016)

A. brasilense Az39 Glycine max Microbial IAA increases plant
growth

Puente et al.
(2017)

Azospirillum brasilense Trifolium
repens

Salt stress resistance Khalid et al.
(2017)

Azospirillum sp. Zea mays Increased tolerance to osmotic and
salt stress

García et al.
(2017)

Azospirillum brasilense Zea mays Seed or leaf spray inoculum
increases plant growth through
phytohormones and eliciting
genes related to plant-stress

Fukami
et al. (2017)
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Table 7.3 (continued)

Strain Host plant Function References

Azospirillum brasilense Zea mays Coculture-effective strategy to
mitigate salinity stress

Fukami
et al. (2018)

Azospirillum brasilense Fragaria
ananassa

Activation of systemic acquired
resistance against pathogens

Elías et al.
(2018)

infection (Pawlowski and Demchenko 2012). In this actinorhizal endosymbiotic
nodule, nitrogen is fixed and can be transported to the host, and reduced carbon
from the plant can be transferred to the Frankial partner (Franche and Bogusz 2012;
Gonzalez et al. 2015). However, little is known about the plant growth-promoting
(PGP) properties of Frankia, some of these strains have been found to solubilize
inorganic phosphate, and synthesize plant hormones, and siderophores (Tisa et al.
2016).

Morphology of actinorhizal nodule is varied in different host species, septate,
pear-shaped without stalk, or septate, elongated, or club-shaped (Berg 1994). The
symbiotic interaction starts with Frankial infection at the surface of root hair. The
intracellular infection starts with the deformation of root hairs with a signaling
molecule produced by Frankia. With Rhizobium infection, actinorhizal hyphae are
tangled by curled root hairs and few can enter into the infection site of folding, then it
invaded to develop infection thread formation. Within the structure, Frankial fila-
ments are encapsulated in plant cell-wall-based components. Frankial invasion
triggers cell divisions in the root cortex near to the infected root hair, forming a
mitotically active zone called the pre-nodule, penetrating the thin wall of the recently
expanded cortical cells, and enlarging wherein N2 can fix. During the infection
process, when the infected cell matures, the tips of the hyphae in due course
differentiate vesicles that will fix nitrogen (Newcomb andWood 1987). Nitrogenase,
which is an oxygen-labile enzyme, is exclusively expressed in these vesicles, and
fixes the N2. Moreover, the periderm of the nodule acts as an oxygen barrier, wherein
the bacterial hemoglobin could also support shuttle oxygen to the sites of respiration
(Pawlowski et al. 2007). Figure 7.5 illustrates the structure and physiology of the
Frankia nodule.

Actinorhizal symbiosis generally gives resistance to plants against abiotic
stresses. Several reports suggested the impact of Actinorhizal nodule on dicotyle-
dons. Frankia is highly tolerant to salinity, hence it can be used for rehabilitation of
soil affected by salt, heavy metal, oil, etc. (Diagne et al. 2013). For example, the
symbiotic association between C. equisetifolia and Frankia can be widely used for
the recovery of saline soil (Ngom et al. 2016). The effect of bio-inoculation of
isolated Frankia sp. strains has been demonstrated to improve drought stress toler-
ance in tomato (Solanum lycopersicum L. cv. Pusa ruby) (Mohan Gupta et al. 2020),
which give an idea to use Frankia for sustainable agriculture.
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Fig. 7.5 Actinorhizal nodule. (a) Frankia nodule; (b) microscopic image of Frankial hyphae and
spore; (c) cross-section of young nodule; (d) schematic drawing of a mature actinorhizal nodule
lobe. (Adapted from Rascio and La Rocca 2008. Biological Nitrogen Fixation. Encyclopedia of
Ecology)

7.3.5 Mycorrhizal Interaction

Fungi are the second most diverse and abundant microbe in soil, which could exploit
very diverse substrates for their nutritional purpose, especially they do saprophytic
mode of life. A few fungal groups establish the mutualistic symbiont with its
associated host. Mycorrhizal fungi are a heterogeneous group of fungi that can
carry out their life cycle as free-living and also associate with the roots of higher
plants (over 90% of plant species). In mycorrhizal association both partners are
benefited, fungal partner improves the nutrient status of the host plant especially for
the mineral nutrients, water absorption, disease resistance, and growth, whereas the
host plant provides space and nutrients for the fungal growth and propagation
(Martin et al. 2008; Varma et al. 2017a, b, c). The fungal partners do an essential
role in mineral recycling through their mycelium, absorb soil nutrients, and feed
them to the plant. Moreover, fungal partners develop an extensive hyphal network in
the soil named web which can effectively connect the host plant and supply the
nutrients efficiently. Species of three major groups of fungi such as Ascomycota,
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Basidiomycota (septate), and Glomeromycota (aseptate) develop either ecto- or
endo–mycorrhizas (Javot et al. 2007a, b).

7.3.5.1 Ectomycorrhizae

Ectomycorrhizas occur mainly in certain woody plants of gymnosperms and angio-
sperms, and it contributes 30% of the total microbial biomass in forest soil (Johnson
and Gehring 2007). More than 6000 species of ascomycetes (Cenococcum
geophilum, Tuber borchii, Scleroderma hypogaeum), basidiomycetes (Amanita
muscaria, Hebeloma cylindrosporum, Laccaria bicolor, Paxillus involutus,
Pisolithus tinctorius, Suillus bovinus, Xerocomus badius), and zygomycetes take
part in this ectomycorrhizal (EM) assemblage, where they colonize roots of trees,
such as pine (Pinaceae) and beech (Fagaceae) of the forest ecosystem. These fungi
form symbioses with lateral roots of plants and create a specialized characteristic
structure called “Hartig net” (labyrinthine structure), a network of inward-growing
hyphae that extends into the root penetrating between the epidermis and cortex cells
of its host plants. Due to this association, fungi can induce altered root architecture
including root hair modification or inhibition (Fig. 7.6a). The EM fungal hyphae
occasionally join together into macroscopic structures called sporocarps, similar to
the xylem, which serve in water uptake (Smith and Read 1997; Agerer 2001). EM
fungi are generally carried out saprotrophic and symbiotic modes of life. During
saprophytic life, EM fungi release many extracellular hydrolytic enzymes that can
use organic nutrient sources. EM fungi have an instance loss of plant cell wall
degrading enzymes, hence it restricts penetrating the intracellular space of plant root
(Martin et al. 2008).

7.3.5.2 Endomycorrhizae

Endomycorrhizas are further divided into orchid, ericoid, and arbuscular mycorrhi-
zas (AMs). The arbuscular mycorrhizal fungi are the most abundant of the
endomycorrhiza (Smith and Read 2008), they are obligate biotrophic symbionts
the hyphae penetrate the cells of the inner root cortex to form specialized branched
structures called “arbuscules” (Javot et al. 2007a, b), a specific nutrient transfer
interface of the symbiosis (Genre et al. 2005, 2008). However, arbuscules do not
penetrate the protoplast of plant cells, which can develop a new and distinct
periarbuscular membrane (PAM) continuous with the plasma membrane of the
cortical cell (Genre et al. 2005) (Fig. 7.6b). Several AM fungi form vesicles as
lipid-rich storage organelle, called vesicular-arbuscular mycorrhiza (VAM). AM
fungi are classified under the separate phylum Glomeromycota consisting of four
genera, Acaulospora, Gigaspora, Glomus, and Sclerocystis. In the case of Orchid
and Ericoid mycorrhiza, they can specifically make symbiotic colonization in
Ericales and Orchidaceae respectively. In orchids, the flow of carbon is from the
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Fig. 7.6 Schematic diagram of the main structural features of ectomycorrhiza (a) and AM
mycorrhiza (b). (Adapted from, Marschner 2012, Rhizosphere Biology, In: Marschner’s Mineral
Nutrition of Higher Plants)

fungus to the host which is entirely different from the other mycorrhiza, this is
essential for orchid seed germination (Smith and Read 2008).

7.3.5.3 Fungal Endophytes

Endophytic fungi are a group of fungi that live in almost all plant species to maintain
symbiotic life without causing symptoms of disease (Gazis and Chaverri 2010;
Porras-Alfaro and Bayman 2011). Most endosymbiotic fungi live at least part of
their life cycle away from the plant (Rodriguez et al. 2009). The members of
Ascomycota, Basidiomycota, and Mucoromycota are the major group of endosym-
bionts of plants, including Moeniiplasma glomeromycotorum, Rhizopus micro-
spores, Mortierella elongate, Mycoavidus cysteinexigens, Piriformospora indica,
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Paracoinothyrium variabile (Bärenstrauch et al. 2020). However, fungi such as
Cladosporium, Curvularia, Colletotrichum, Cordana, Deightoniella, Fusarium,
Guignardia, Nigrospora, Periconiella, Phoma, and Verticillium are identified as
pathogenic endophytes (Photita et al. 2005; Cui et al. 2021). The endosymbiotic
colonization as well as the nutrient transfer mechanisms of such beneficial fungi is
not clearly understood when compared with mycorrhizal fungi (Saikkonen 2007;
Behie et al. 2012; Behie and Bidochka 2014).

In mutualistic symbiosis, both partners of endosymbionts benefit from this
association (Jia et al. 2016), where host plants provide shelters and other prolifera-
tion facilities to fungi, and fungi can alter the metabolic activities of host, such as
enhance growth, promote nutrient acquisition, and improve metal and drought
tolerance (Mejia et al. 2014; Poveda et al. 2021). In addition, they also enhance
the defense efficiency of host plants against pests as well as pathogenic microorgan-
isms (Cui et al. 2021).

7.3.6 Benefits of Fungal–Plant Interactions

Beneficial plant-associated fungi are broadly distributed and lead to benefits for the
plant nitrogen transfer, phosphate mobilization, drought resistance, salt stress, and
also the alleviator of biotic stresses. The major benefit of mycorrhizal association to
the plant is listed in Fig. 7.7.

7.3.6.1 Soil Health

Healthy soil is more productive; in sustainable agriculture management of soil is an
important event that increases the crop productivity. Healthy soil is nutrient rich and
abundant in microbial diversity with good texture and aeration. Soil is rich in fungal
diversity, especially mycorrhizal fungi form a complex networking between plant
and soil, which provide nutrient transport, decomposition of organic residues in soil,
regulation of microbial community, increase water holding ability, and aeration of
soil (Fig. 7.5). Arbuscular mycorrhizal (AM) fungi are the important microorganism
in agricultural soil, and they can significantly increase crop productivity (Bagyaraj
and Ashwin 2017; Frąc et al. 2018). The positive effect of fungi in the soil is to
maintain soil quality and plant health along with other PGPRs from soil microbiome.
However, a human activity heavily affects soil microbiome and affects the soil
texture, aeration, and water-holding capability. In grassland soil, basidiomycetes
dominate and actively involve in the decomposition and mineral recycling process
(Cassman et al. 2016; Yang et al. 2017). In a forest, ectomycorrhizal associations
strongly regulate soil texture and health. Moreover, soil organic matter could
regulate the diversity and abundance of fungi and other microorganisms. They are
the major energy source of soil microorganisms and maintain the nutritional quality
of soil (Jiménez-Morillo et al. 2016).
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7.3.6.2 Nitrogen Uptake

Nitrogen is the most important nutrient needed for the primary productivity of the
plant, which is essential for plant growth, health, and yield. Generally, roots absorb
nitrogen in their inorganic forms such as nitrate (NO3

-) and ammonium (NH4
+)

ions. In the atmosphere, a large amount of nitrogen exist, some can be readily
incorporated by soil containing nitrogen-fixing organisms, and some quantity may
be immobilized in organic forms like peptides, proteins, and amino acids. Through
the fungal decomposition of organic substances, nitrogen can be mineralized and
available for plant nutrition. Several soil fungi such as mycorrhizal fungi break down
the organic nitrogen by their extracellular proteases for their energy requirements
and provide nitrogen reserve to their host plant (Sinsabaugh 2010). Earlier studies
have reported that approximately 20–75% of the total N uptake of AM plants can be
transferred through the AM fungi to their hosts (Ahanger et al. 2014; Hashem et al.
2018a). For example, AM fungi and ectomycorrhizal fungi release proteases and
peptidases to hydrolyze polymers to simple monomers like nitrates (NO3) or ammo-
nium (NH4

+), then absorbed by the extraradical mycelia and further synthesis of
amino acids (arginine) into intracellular mycelia. After its migration, the amino acid
arginine is broken down into ammonia via the urea cycle and transported to the plant
root (Ngwene et al. 2013). This mechanism helps to absorb a large amount of NH4

+

and NO3 via the fungal hyphae (Mian et al. 2009). This kind of nutrient transport is
mediated with a specialized cell structure developed by arbuscular mycorrhizae-root
in the symbiosis called PAM, which contains AMT family of ammonium trans-
porters (Kobae et al. 2010; López-Pedrosa et al. 2006) and high-affinity nitrate
transporters (NRT) (Kemppainen and Pardo 2013). Several studies highlighted the
impact of AM fungi on the ability to absorb and transfer N to the nearby plants or
host plants (Zhu et al. 2016; Battini et al. 2017; Turrini et al. 2018; Wang et al.
2018a, b; Liu et al. 2018a, b). Few examples are listed in Table 7.4.

7.3.6.3 Phosphate Transfer

Phosphorous is one of the growth-limiting nutrients for plants. Plants are unable to
use insoluble rock or organic phosphates from the soil (Ruttenberg 2003). In nature,
weathering process releases phosphate ions, orthophosphates, H2PO4

-, and HPO4
2-

are the primary forms of phosphorus taken up by plants and or root colonized
mycorrhiza (Yang et al. 2012). Fungal mycelium directly absorbs phosphates by a
translocation process and is transported into the cortical cells of the root in the form
of inorganic phosphates (Smith and Smith 2011). In addition, mycorrhiza secretes
enzymes such as phosphomonoesterases and phosphatases, they hydrolyze organic P
compounds in soil, and through this mechanism, phosphate can be a cycle in plant
nutrition. Unlike nitrogen transport, the absorption and transport of phosphate are
also mediated with a number of phosphate transporters in both mycorrhizal fungi and
plants, which are located in PAM of arbuscular mycorrhizal symbiosis (Benedetto
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Table 7.4 Mycorrhizal transporters in nutrient transport to plant

Mycorrhizal
species

Nitrogen GintAMT1,
GintAMT2,
GintAMT3

Glomus
intraradices

López-Pedrosa et al. (2006), Pérez-
Tienda et al. (2011), Calabrese et al.
(2016)

RiPTR2 Rhizophagus
irregularis

Belmondo et al. (2014)

Phosphorus GiPT Glomus
intraradices

Maldonado-Mendoza et al. (2001)

GmosPT Glomus
mosseae

Balestrini et al. (2007)

GigmPT Gigaspora
margarita

Xie et al. (2016)

GiPT Rhizophagus
irregularis

Yang et al. (2012)

Zinc GintZnT1 Glomus
intraradices

González-Guerrero et al. (2005)

GintZnT1 Rhizophagus
irregularis

Sugar GpMST1 Glomeromycota Schüßler et al. (2007)

RiMST2 Glomus sp. Helber et al. (2011)

RiMST2 Rhizophagus
irregularis

Helber et al. (2011)

RiMST5 Ait Lahmidi et al. (2016)

Arsenic RiArsAB Rhizophagus
irregularis

Maldonado-Mendoza and Harrison
(2018)

RiMT-11 González-Chávez et al. (2014)

Iron RiFRE1
RiFTR1-2

Rhizophagus
irregularis

Tamayo et al. (2014)

et al. 2005). Several studies reported that the expression of transporters in mycor-
rhizal fungi is high at symbiotic association and also under low phosphorous
conditions (Krajinski et al. 2014; Wang et al. 2014a, b). AM fungi inoculation
improved P contents in plant tissues (Jixiang et al. 2017; Garcés-Ruiz et al. 2017;
Wang et al. 2018a, b; Liu et al. 2018a, b; Chhabra and Dowling 2017; Chhabra
2019) by the expression of phosphate transporters during the mycorrhizal associa-
tion in plants, for example, Piriformospora indica and H. cylindrosporum associa-
tion in plant root under low soil phosphate conditions (Tatry et al. 2009; Yadav et al.
2010; Gill et al. 2016).

7.3.6.4 Other Soil Nutrients Transport

Along with nitrogen and phosphate transfer, AM and ectomycorrhizal fungi are able
to transfer potassium, sulfur, zinc, copper, and cesium (Cartmill et al. 2008; Nord
and Lynch 2009). The above nutrients are generally rich in most soil; however, the
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plant cannot easily access these elementary nutrients in some soil. Like phosphate
mineralization, AM fungi and other mycorrhizal fungi solubilize and transfer such
soil nutrients to their host plant. Several gene expression studies disclosed the
efficiency of mineral uptake by the AM fungi, for example, the upregulation of
sulfate transporters in M. truncatula is due to fungal colonization (Casieri et al.
2012). Sulfur uptake in plant roots is directly connected with the phosphate content
of the soil, whereas low soil phosphate with fungal colonization increases both
phosphate and sulfate uptake (Garcia et al. 2014). Moreover, various reports
suggested that mycorrhizae have the ability to transfer both macro and
micronutrients such as N, P, K, Ca, Mg, Fe, Cu, and Zn from soil (Asrar et al.
2012; Berruti et al. 2016; Bati et al. 2015; Zaefarian et al. 2013; Ali et al. 2015).
Mycorrhizae can mobilize such minerals at a high level under stress conditions
(Asrar et al. 2012), for example, under salinity stress increases P, Ca, and K transport
in Euonymus japonica (Gómez-Bellot et al. 2015), and under drought stress P and Fe
transport in Pelargonium graveolens L. (Amiri et al. 2017). Under salt stress
conditions AM fungi-treated Cucumis sativus plants have absorbed a high amount
of P, Ca2+, N, Mg2+, and K+ (Hashem et al. 2018b). Few examples are listed in
Table 7.4. However, little information is available on the ability of endophytes to
transfer soil nutrients (Usuki and Narisawa 2007). Usually, fungal endophytes make
asymptomatic interactions with the plant without any beneficial nutrient transport
(Behie and Bidochka 2014).

7.3.6.5 Mutual Exchange of Minerals

AM fungi develop symbiosis with roots to obtain essential nutrients from the host
plant and reciprocally provide mineral nutrients, for example, N, P, K, Ca, Zn, and
S. Normally, readily available free carbon in the soil ecosystem is a limited one.
Primary carbon metabolites of plants fixed through photosynthesis are often simply
metabolized by fungi, which may be the reason fungi are able to colonize on the root
to reciprocally exchange the minerals (Smith et al. 2009). For example, the mycor-
rhizal fungi Glomus intraradices transfers phosphorus and nitrogen to the roots of
wild carrot (Daucus carota) in a reciprocal exchange of carbon (Liao et al. 2013;
Fang and St Leger 2010). In contrast, the decrease in available carbon delays the
overall rate of phosphate transfer, which indicates the need for the mechanism of
fungal interaction with plant roots. Moreover, different abiotic conditions can also
influence the nutrient exchange in between mycorrhizal symbiosis (Hoysted et al.
2021), where the atmospheric (CO2) influences the carbon-nutrient exchanges
between Mucoromycotina “fine root endophyte” (MFRE) fungi and vascular plant.
As a result, reciprocal nutrient exchange stabilizes the cooperative relationship
between the symbiotic partners because of the nutritionally mutualistic relation
(Field et al. 2015; Orchard et al. 2017). Several fungal associations on plant roots
essentially transfer nonlimiting nutrients from the soil through the reciprocal
exchange of ions and nutrients. In AM fungi, Glomus spp., the amount of carbon
received from the symbiotic association is directly related to the phosphate transfer
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(Bücking and Shachar-Hill 2005). However, endophytes take the photosynthetic
carbon from the plant without reciprocal exchange of nutrients. Very limited infor-
mation is available in the nonmycorrhizal fungal symbionts nutrient exchange
process (Behie and Bidochka 2014). These findings offer new insights into the
regulatory mechanism of mineral nutrient uptake by host plants from AM fungi.

7.3.6.6 Drought Resistance

Drought stress is multidimensional stress that can affect plant life and causes
changes in the morphological, physiological, biochemical, and molecular properties
of plants. Shortage of water induces oxidative stress (Impa et al. 2012;
Hasanuzzaman et al. 2013), which leads to giving deleterious effects on plant growth
by affecting enzyme activity, nutrient uptake, and assimilation (Ahanger and
Agarwal 2016; Ahanger et al. 2017a, b). Numerous studies reported that mycorrhizal
association alleviates drought stress in several crop plants such as barley, maize,
onion, soybean, strawberry, and wheat (Yooyongwech et al. 2016; Moradtalab et al.
2019). One such mechanism of drought resistance is enlarging the root surface by the
association of mycorrhizal fungi. Such a kind of symbiotic association regulates a
variety of physiological processes including osmotic regulation, increase proline and
glutathione levels, and stomatal conductance, and decreases transpiration rate which
plants get resistant to drought (Zhang et al. 2016; Rani 2016; Li et al. 2019).
Table 7.5 contains some representative evidence for fungal-induced drought resis-
tance in plants.

7.3.6.7 Salinity Stress Tolerance

Salts occur naturally within soils and water, salinization is the process of increasing
the salt content in the soil, which is an increasing environmental problem that creates
a cruel risk to global food safety. Salinity induces the generation of high-level
expression of reactive oxygen species that affects plant growth and productivity
(Ahanger et al. 2017a, b, 2018). However, mycorrhizal association mitigates
salinity-associated adverse effects on plants (Santander et al. 2019) and increases
crop productivity (Elhindi et al. 2017; Ait-El-Mokhtar et al. 2019) through the
modification of plant physiology and biochemical activities such as photosynthetic
rate, stomatal conductance, leaf water relations, and water use efficiency (El-Nashar
2017; Wang et al. 2018b) in Ocimum basilicum L. (Elhindi et al. 2017) and Allium
sativum (Borde et al. 2010).

In addition, support with mineral nutrient transport, mycorrhizal symbionts
enhance the synthesis of some plant metabolites, for example, jasmonic acid and
salicylic acid. Under salt stress, AM fungi inoculated plants showed higher resis-
tance to saline stress and improved nutrient transport, which may be due to enhanced
mineral absorption by the mycorrhizal symbiont (Hashem et al. 2018b), for example,
AM inoculation increases chlorophyll contents and regulate Na+ transport with
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Table 7.5 Mycorrhizal association on plant drought resistance

Fungus species Plant Responses References

Glomus deserticola Antirrhinum majus
L.

Increased shoot and
root length, leaf num-
ber, leaf area, water
content, Chl content,
and proline

Asrar et al.
(2012)

Funneliformis mosseae,
F. geosporus

Fragaria ananassa Increased shoot and
root biomass, water
use efficiency (WUE),
and plant survival

Boyer et al.
(2015)

F. mosseae and Rhizophagus
intraradices

Robinia
pseudoacacia L.

Increased dry biomass,
WUE, and
photosynthesis

Yang et al.
(2014)

R. irregularis,
G. intraradices

Lettuce and tomato Increased biomass,
strigolactone produc-
tion, and
ABA accumulation

Ruiz-Lozano
et al. (2015)

R. intraradices, F. mosseae Pelargonium
graveolens

Increase plant bio-
mass, and essential oil
content

Amiri et al.
(2015)

Septoglomusconstrictum,
Glomus spp. G. aggregatum

Glycine max Improved mineral
(N &P) uptake and
water content

Grümberg
et al. (2014)

G. intraradices, Gigaspora
gregaria, Scutellospora
gregaria

Vigna subterranea Increased mineral
absorption, soluble
sugars, and acid but
reduced proline
content

Tsoata et al.
(2015)

G. intraradices Hordeum vulgare Increased root volume
and P content

Bayani et al.
(2015)

R. intraradices Zea mays Increased uptake of P,
N, K, and Mg, plant
dry weight and WUE

Zhao et al.
(2015)

G. mosseae, G. fasciculatum,
Gigaspora decipiens

Triticum aestivum
L.

Increased plant growth
and total chlorophyll
content

Pal and Pandey
(2016)

R. intraradices Triticum durum Increased biomass,
mineral nutrition (Cu,
Fe, Mn, & Zn ), and
gliadins in grains

Goicoechea
et al. (2016)

Glomus spp. Ipomoea batatas Proline and soluble
sugars adjust osmotic
potential

Yooyongwech
et al. (2017)

F. mosseae, Paraglomus
occultum

Poncirus trifoliata Increased mineral
absorption, and leaf
water potential

Zhang et al.
(2018a)

R. intraradices,
Claroideoglomusclaroideum,
F. mosseae

Hordeum vulgare,
Hordeum vulgare
ssp. spontaneum

Increase root biomass
alleviation of drought
stress

Sendek et al.
(2019)
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Table 7.5 (continued)

Fungus species Plant Responses References

AMF Triticum aestivum
L.

Increased phosphorus
uptake, pigment bio-
synthesis, and accu-
mulation of plant
metabolites

Metwally et al.
(2019)

R. irregularis Malus hupehensis Enhanced drought by
regulating genes in the
MAPK pathway

Huang et al.
(2020)

R. irregularis Zea mays Improved photosys-
tem II activities, bio-
mass, and drought
tolerance in seedlings

Hu et al.
(2020)

Glomus spp. Saccharum
arundinaceum Retz.

Increased water
uptake, phenolics,
ascorbic acid, gluta-
thione, antioxidant
enzymes, and plant
biomass

Mirshad and
Puthur (2017)

support of Mg2+ and N nutrients in Capsicum annuum (Çekiç et al. 2012), and higher
biomass production, increased synthesis of proline, increased N uptake in lettuce
(Santander et al. 2019). In addition, the mycorrhizal fungi can improve some organic
acid synthesis in plants under saline stress, which increases betaine production and
substantiates osmoregulation (Begum et al. 2019) in maize plants (Sheng et al.
2011). Table 7.6 presents few examples of mycorrhizal association on the adaptation
of plant under saline stress.

7.3.6.8 Heavy Metal(s) Tolerance

Heavy metals are elements that generally produce common toxic effects on plants,
such as low biomass productivity, inhibition of growth and photosynthesis, chloro-
sis, altered water balance and nutrient assimilation, and senescence, which ultimately
cause plant death (Singh et al. 2016; Moghadam et al. 2016). Some heavy metals
(Co, Cu, Fe, Mn, Mo, Ni, V, and Zn) may require trace amounts for the normal
functioning of cells, when their concentration is excess it can become harmful.
Moreover, excess of such heavy metals affects soil properties, in particular, soil
pH, water-holding ability, mineral properties, soil aeration, and also microbial
diversity. When plants grow in such soil, growth and yield may be severally affected,
and accumulate toxic heavy materials in its root, leaf, fruits, and seeds (Yousaf et al.
2016). However, mycorrhizal association specifically, AM fungi reduces the toxic
effects of such heavy metals and inhibits their transport to the plant. Heavy metal
toxicity is typically reduced by chelation through immobilizing the metals in their
hyphae or hyphal mantle and storing them in vacuoles. Hence, the concentration of
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Table 7.6 Effect of mycorrhizal association on the adaptation of plant under saline and heavy
metal stresses

Fungus species Plant Responses References

Glomus fasciculate Acacia nilotica Improved root and shoot biomass as
well as P, Zn, and Cu contents

Giri et al.
(2007)

Glomus intraradices Solanum
lycopersicum L.

Improved dry matter, ion uptake,
growth parameters, and chlorophyll
content

Hajiboland
et al. (2010)

Glomus mosseae and
Paraglomus occultum

Citrus
tangerine

Higher antioxidant defense systems
response to salinity

Wu et al.
(2010)

Glomus intraradices Trigonella
foenumgraecum

Better plant growth, lower leaf
senescence, and decreased lipid per-
oxidation, higher osmolyte (glycine
betaine, sugars), and polyamines
concentration, and more and bigger
plastoglobules formation

Evelin et al.
(2012,
2013)

Glomus viscosum Medicago
sativa

Reduce salt toxicity, maintain the
yield attributes, and regulate antho-
cyanins enrichment in the pericarp of
grains

Campanelli
et al. (2013)

G. mosseae Kosteletzkya
virginica

Increased mineral nutrition and anti-
oxidant enzymes

Zhang et al.
(2014)

Claroideoglomus
etunicatum

Oryza sativa
(L)

Improved quantum yield of PSII
photochemistry, net photosynthetic
rate, stomatal conductance

Porcel et al.
(2015)

Claroideoglomus
etunicatum

Aeluropus
littoralis

Increased shoot and root dry mass,
stomatal conductance, soluble sugars,
free α-amino acids, and Na+ and
K+uptake

Hajiboland
et al. (2015)

Claroideoglomus
etunicatum

Oryza sativa Root and shoot P, Na, and K content
and expression of genes with a role in
the uptake, transport, or compart-
mentation of Na/K

Porcel et al.
(2016)

Funneliformis
mosseae

Cicer arietinum Increased antioxidant enzymes and
modulated ascorbate-glutathione
(ASA-GSH) cycle

Garg and
Bhandari
(2016)

Rhizophagus
irregularis

Solanum
lycopersicum L.

Enhanced shoot fresh weight (FW),
leaf area, leaf number, root FW, and
levels of growth hormones

Khalloufi
et al. (2017)

G. mosseae Leymus
chinensis

Increased colonization rate, seedling
weight, water contents, and both P
and N

Jixiang
et al. (2017)

Glomus etunicatum,
Glomus intraradices,
Glomus mosseae

Cucumis
sativus L.

Increased biomass, photosynthetic
pigment synthesis, and enhanced
antioxidant enzymes

Hashem
et al.
(2018b)

R. irregularis Elaeagnus
angustifolia

Higher activities of superoxide
dismutase (SOD), catalase (CAT),
and ascorbate peroxidase (APX) in
the leaves of the mycorrhizal seed-
lings in response to salinity

Chang et al.
(2018)
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Table 7.6 (continued)

Fungus species Plant Responses References

R. intraradices Cicer arietinum
L.

Improving root biomass, root to shoot
ratio, and nutrient acquisition,
maintaining ion equilibrium, and
modulating carbohydrate metabolism
and reproductive yield

Garg and
Bharti
(2018)

heavy metals is diluted to the point of being inaccessible to the plants (Punamiya
et al. 2010; Garg and Chandel 2011; Kapoor et al. 2013; Audet 2014). In addition, at
the high concentration of heavy metals in soil, mycorrhizae increase their morphol-
ogy and biomass as well as uptake of maximum quantity of heavy metals and fix
their cells, hence it reduces their toxicity to plants (Miransari 2017). Several
researchers found the impact of AM fungal symbionts in various plant growth
under heavy metal stress. Generally, AM fungal mycelia show a high cation-
exchanging process through which it uptakes a large quantity of heavy metals
especially in the extra-radical mycelium and also detoxifies the heavy metals
(Kamal et al. 2010). For example, restoration of Cd in the extra-radical mycelium
of AM fungi binds to glomalin glycoprotein (Janoušková and Pavlíková 2010),
further, lowering the Cd level in both the vacuoles and cell wall, which brought
about Cd detoxification, observed in rice (Li et al. 2016) and give tolerance in alfalfa
(Wang et al. 2012). A few examples of heavy metal adaptation by mycorrhizal fungi
are listed in Table 7.7.

7.3.6.9 Adaptation Under High and Low Temperature

Soil temperature promotes either heat stress or cold stress to plants; it certainly
affects the growth and yield of crops through several physiology receptive stresses
including oxidative stress, abscission, and senescence, wilting and burning of leaves,
and inhibition of seed germination and growth (Bunn et al. 2009; Chen et al. 2013;
Hasanuzzaman et al. 2013). However, mycorrhizal association alleviates the stress-
ful effect of heat or cold through improving water–plant relationships strengthening
plant immunity, and also promoting sufficient protein expression (Zhu et al. 2010;
Begum et al. 2019). For example, AM fungi such as Rhizophagus intraradices,
Funneliformis mosseae, and F. geosporum increase plant growth by regulation of
stomatal conductance, and transpiration rate under high temperature in Zea mays
(Mathur et al. 2016), similarly, R. irregularis in Solanum lycopersicum (Calvo-
Polanco et al. 2016), Rhizophagus irregularis, Funneliformis mosseae,
F. geosporum, and Claroideoglo musclaroideumi on Triticum aestivum L. (Cabral
et al. 2016).
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Table 7.7 Heavy metal adsorption by AM fungi

Metal Plant Fungi Activity References

Heavy
metal

Sesbania
rostrata

Glomus mosseae Stimulated formation of root
nodules, and increased N and
P contents

Lin et al.
(2007)

Cd and
Zn

Cajanus
cajan L.

Rhizophagus
irregularis

Improved root biomass,
nutrient status (P, N, Mg, Fe),
and proline biosynthesis

Garg and
Singh (2018)

Zn Medicago
truncatula

Rhizophagus
irregularis

Increased expression of
transporters and decreased
absorption of Zn

Nguyen et al.
(2019)

Cd Cajanus
cajan L.

Glomus mosseae Increase in biothiols (NPSH)
and glutathione (GSH), with a
larger pool of NP-SH which
strongly induced accumula-
tion of phytochelatins

Garg and
Aggarwal
(2012)

Lonicera
japonica

Glomus versiforme
(Gv) and Rhizophagus
intraradices (Ri)

Increased several
antioxidative enzymes and
decreased of shoot Cd
concentrations

Jiang et al.
(2016)

Trigonella
foenum-
graecum
L.

Glomus monosporum,
G. clarum, Gigaspora
nigra, and
Acaulospora laevis

Increased antioxidant enzyme
activities and
malondialdehyde content.

Abdelhameed
and Metwally
(2019)

7.4 Beneficial Microbial Association on Phyllosphere

The phyllosphere is defined as “the aerial part of the plant or the part of a plant above
the ground (leaves, stems, buds, flowers, and fruits), generally, the surface of leaves,
thought to provide a home for microorganisms,” a habitat for a variety of microor-
ganisms including bacteria, yeasts, and fungus (Yadav and Yadav 2019). Bacteria
are the most common microbial occupants exceeding 108 cells/cm2 of the
phyllosphere followed by archaea, filamentous fungus, and yeasts play a role in
phyllosphere microbial community formation, either epiphytic or endophytic
(Leveau 2015; Whipps et al. 2008). The epiphytic phyllosphere microbial commu-
nities are extremely complex, containing both culturable and unculturable organisms
(Müller and Ruppel 2014). Microbes in the phyllosphere zone have evolved to
insensible environmental conditions with epiphytic microbes, particularly vulnera-
ble to temperature, light, UV radiation, and a lack of water or nutrition availability,
which influences the richness and composition of the phyllosphere microbial com-
munity (Vorholt 2012). The interaction between plants and invading microbes are
also influencing the development and maintenance of plant–microbe or microbe–
microbe relationships such as commensalism, mutualism, and or antagonism
(Rastogi et al. 2013; Barrera et al. 2019). Depending on the association microbes
may have either beneficial or harmful effects on the host (Colston and Jackson
2016).
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Recent years, extensive research work has analyzed the health status of animals
based on individual microbiomes, emphasizing their need for microbiome analysis
in various ecosystems, such as soils, water, and plants (Alivisatos et al. 2015;
Dubilier et al. 2015; Thaiss et al. 2016). Figure 7.8 represents the various limiting
factors regulating the formation of the phyllosphere microbial community. In the
phyllosphere, microbes from air and soil, factors such as environmental conditions,
rainfall, agricultural practice, human intervention, seasonal variations, and plant
species are regulating microbial growth on the leaf surface (Beattie 2002). Moreover,
the cuticle layer of the leaf keeps moisture leaving from the interior of the leaf tissues
and regulates the amount of water that remains on the leaf surface (Neinhuis and
Barthlott 1997). Though, bacteria overcome the water demand by building aggre-
gates to develop biofilms and secrete extracellular polymeric substances (EPS) that
can withstand desiccation (Morris and Kinkel 2002; Afzal et al. 2019).

7.4.1 Phyllosphere Microbiome

The phyllosphere’s microbial communities are varied from one plant to another,
composed with different kinds of bacteria, filamentous fungus, yeasts, and algae, in
addition to cyanobacteria, protozoans, and nematodes (Morris and Kinkel 2002;
Lindow and Brandl 2003). Several recent cultivation-independent investigations
have provided new information about the phyllosphere microbial communities. It
is clear that these communities do not reflect random assembly of microorganisms,
but are rather subjected to selection, resulting in predictable microbial communities
with few dominating phyla and other subgroups (Vorholt 2012). Bacteria are the
dominant epiphytes (e.g., methylobacterium, methylophilus, methylibium, and
hyphomicrobium) followed by yeast and certain filamentous fungi, mostly present
as latent spores rather than active mycelia range between 102 and 108 CFU/g leaf
(Delmotte et al. 2009).

7.4.1.1 Phyllosphere Bacteria

The phyllosphere represents the largest bacterial habitat on Earth and maintained
either more prevalent epiphytic or endophytic life. Compare with the rhizosphere,
the phyllosphere is an extremely flexible habitat, where epiphytes are frequently
exposed to various growth-limiting environmental factors and antimicrobial com-
pounds (Laforest-Lapointe et al. 2016). However, endophytes complete their life
within the host plant with limited multiplication due to host defense (Singh and
Dubey 2018). The core phyllosphere bacterial biome comprised Proteobacteria,
Firmicutes, Actinobacteria, and Bacteroidetes (Vorholt 2012; Laforest-Lapointe
et al. 2016; Müller et al. 2016a). The microbiome assemblage on the phyllosphere
of distinct plant species could depend on the interaction of several environmental
factors (Andreote et al. 2014), and also the host (Müller et al. 2016b). Generally, they
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Fig. 7.8 Phyllosphere microbiome. Factors controlling the phyllosphere microbiome formation

are derived from the air as well as from the seeds, soil, and water (Lemanceau et al.
2017). Several works highlighted that Alphaproteobacteria (Sphingomonas,
Methylobacterium), and Gammaproteobacteria (Pseudomonas) are the most abun-
dant phyla, followed by Firmicutes, and Actinobacteria (Müller et al. 2016b; Durand
et al. 2018; Carvalho et al. 2017). For example, Bacillus (Venkatachalam et al. 2016;
Thapa and Prasanna 2018), Citrobacter (Kecskeméti et al. 2016), Curtobacterium
(Steven et al. 2018), Enterobacteria (Thapa et al. 2017; Dong et al. 2019), Erwinia
(Thapa and Prasanna 2018), Exiguobacterium (Venkatachalam et al. 2016), Pseu-
domonas (Cid et al. 2016), Microbacterium (Toju et al. 2019; Knief et al. 2012),
Methylobacterium (Janakiev et al. 2020), Flavobacterium (Bodenhausen et al.
2013), Firmicutes (Mina et al. 2020), Rhizobium, Xanthomonas (Ottesen et al.
2013), Weissella sp. (Dong et al. 2019), and Streptomyces (Thapa and Prasanna
2018) are identified from the phyllosphere of crop plants. In addition, diazotrophic
bacteria such as Azotobacter, Beijerinckia, and Klebsiella and Cyanobacteria such as
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Nostoc, Scytonema, and Stigonema are also the inhabitant of the phyllosphere
(Bashir et al. 2022).

Compared with the rhizosphere the phyllosphere is a nutrient-poor environment
with a more dynamic structure. On the phyllosphere, plants release a very less
quantity of sugars generally fructose, methanol, sucrose, and also trace levels of
volatile organic compounds and amino acids, which can support the growth of
bacteria and develop microbial assemblage on a leaf (Tecon and Leveau 2016;
Quan and Liang 2017; Sivakumar et al. 2020). Methylotrophs such as
Hyphomicrobium, Methylobacterium, Methylibium, Methylophilus, Methylocapsa,
Methylocella, and Methylocysts are the dominant flora of the phyllosphere environ-
ment that can use methanol or methane as a sole source of carbon and energy and
also helps to plant growth (Abanda-Nkpwatt et al. 2006; Krishnamoorthy et al.
2018). The presence of such nutrients on the phyllosphere surface can facilitate
diverse bacteria; they are spatially distributed and interact with one another through
direct physical interaction (Tecon et al. 2018; Sivakumar et al. 2020).

7.4.1.2 Phyllosphere Fungi

Fungi are an important part of the leaf microbiome, having a significant role on their
host, and exhibit both epiphytic and endophytic life with a wide range of metabolic
activities including mineral nutrition and recycling, biotic and abiotic stress-resistant
and adaptation (Guerreiro et al. 2018; Yao et al. 2019). On the phyllosphere, yeast is
the most common epiphytic fungus followed by filamentous fungi. Cladosporium,
Colletotrichum, Chaetomium, Alternaria, Penicillium, Acremonium, Mucor, and
Aspergillus are the dominant group of filamentous fungi that make epiphytic and
also an endophytic association with phyllosphere (Inácio et al. 2002; Ripa et al.
2019; Dhayanithy et al. 2019). Sreekanth et al. (2017) isolated Alternaria alternata,
Setosphaeria sp., Cochliobolus sp., Alternaria sp. Phomaherbarum,
Davidiellatassiana, Botryosphaeria dothidea, Ulocladium alternariae, Phoma
macrostoma var. incolorata, Phoma exigua var. exigua, Cladosporium
cladosporioides, Botryospaeria sp., Guignardia mangiferae, Pyrenophora tritici-
repentis, Guignardia alliacea, and Rhizopus oryzae from Catharanthus roseus. This
multifungal group of such associations plays an essential role in the operation of
ecosystem function and maintaining complex food webs in the phyllosphere. Fungal
endophytes synthesize several metabolites including volatile organic compounds,
and secondary metabolites, which directly provide antipathogenic effects to the host
as well as induce plant immune functions.

7.4.1.3 Phyllosphere Actinomycetes

Along with bacteria, actinobacteria contribute considerable attention to the
phyllosphere. Some actinobacteria interact with the host plant to maintain symbiotic
life residing in plant tissues giving huge significance to the host through their
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secondary metabolites (Singh and Dubey 2018). Various studies revealed that plants
at arid, semiarid, and mangrove contains a vast diversity of actinomycetes such as
Actinoplanes missouriensis, Actinoallomurus acaciae, A. coprocola, A. oryzae,
Actinomaduraglauciflava, Amycolatopsistolypomycina, Jishengella endophytica,
Kribbella sp., Microbisporamesophila, Microbispora sp., Micromonospora sp.,
Nocardioides sp., Nocardia alba, Nonomura earubra, Nonomuraea sp.,
Pseudonocardia sp., planotetraspora sp., Pseudonocardia endophytica,
P. halophobica, Streptomyces sp., and Streptomyces javensis (Chen et al. 2011;
Xie et al. 2011; Yadav 2017; Yadav and Yadav 2018; Yadav and Yadav 2019;
Sivakumar et al. 2020). The diversity and distribution of endophytic actinomycetes
in the phyllosphere are determined by the host plant physiology and their environ-
ment (Du et al. 2013; Dinesh et al. 2017; Nalini and Prakash 2017). Endophytic
actinomycetes have wide functional properties in their associated plants, including
protection and mineral recycling.

7.4.2 Functions of Phyllosphere Microorganism
for Sustainable Agriculture

7.4.2.1 Plant Nutrition Acquisition and Growth

The phyllosphere microbiome is being considered a vital component in plant
nutrient acquisition and has little impact on the host plant growth (Stone et al.
2018). Conversely, nitrogen-fixing bacteria present in the phyllosphere facilitate
microbial diversity formulation and improve the health status of the plant. Mecha-
nistic investigations revealed the essentials of plant phyllosphere nitrogen dynamics
in stress resistance and also the growth (Delmotte et al. 2009). Plant cells can absorb
the end products of nitrogen fixation (ammonia, nitrate, and nitrogen dioxide) more
easily in warm conditions because nitrogenous end products readily diffuse into the
leaf’s inner tissue. In the phyllosphere, numerous plant species colonized by che-
moautotrophic nitrogen-fixing bacteria have been found, particularly archaea (Abadi
et al. 2021; Qin et al. 2019). In humid tropical conditions, epiphytic microbes can fix
nitrogen, generally, tropical epiphytes grow in the plant phyllosphere to fix nitrogen
and are able to meet a significant portion of their nitrogen needs (Hietz et al. 2002;
Abril et al. 2005; Stanton et al. 2019). Several studies reported that α-proteobacteria,
β-proteobacteria, and γ-proteobacteria along with cyanobacteria (Oscillatoria
Microcoleus, Scytonema, and Stigonema) are significant nitrogen fixers of
phyllosphere (Freiberg 1998; Fürnkranz et al. 2008; Bao et al. 2020). In addition,
the presence of nitrifying bacteria in the phyllosphere of tropical forest plants
(Whipps et al. 2008; Maignien et al. 2014; Carrell and Frank 2014; Guerrieri et al.
2020) and crop plants has a significant impact on plant growth (Miyamoto et al.
2004). But the actual mechanism of nitrogen fixation on the phyllosphere is not yet
clear.
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Other than the nitrogen acquisition, phyllosphere microbes can solubilize phos-
phates and potassium. Various phyllosphere inhabitants such as Acetobacter
sp. Arthrobacter humicola, Bacillus alcalophilus, B. aryabhattai, B. thuringiensis,
Chryseobacterium sp., Cellulosimicrobium, Enterobacter sp., Klebsiella terrigena,
Methylobacterium extorquens, M. mesophilicum, M. radiotolerans, Paenibacillus
amylolyticus, Phyllobacterium, Pseudomonas fuscovaginae, P. fluorescens CHA0,
Psychrobacterfozii, Rhodococcus, and Serratia have been documented as phosphate
solubilizers used to promote plant growth and development (Kumar et al. 2013;
Verma et al. 2014; de Souza et al. 2013; Thapa et al. 2017). In order to solubilize
phosphates, some phyllosphere bacteria such as Bacillus mucilagenosus,
P. amylolyticus, and Psychrobacter sp. solubilize potassium (K) (Verma et al.
2014). In the same way, some phyllosphere microbiota takes part in the uptake of
micronutrients like zinc (Esitken et al. 2010), sulfur (Yu et al. 2013), and copper
(Esitken et al. 2010). Moreover, the contribution of the phyllosphere microbiome for
the growth of plant is comparably less than that of the microbiome of the rhizo-
sphere. Benefits of phyllosphere microbes to the growth of plant begin germination
of seeds. Many of the phyllosphere bacteria produce plant growth regulators includ-
ing cytokines (CKs), auxins. Microbial production of CKs on leaf surface facilitates
the transport of nutrients from the surface to inner tissues especially nitrogen
transport (Lemanceau et al. 2017). In these instances, the phyllosphere microbiome
may influence the total plant’s capacity to get nutrients, rather than just the foliage
(Bram et al. 2018).

7.4.2.2 Biological Control

Microbial association on phyllosphere protects their residing host through various
mechanisms. One such mechanism is changing nutrient distribution on leaf surfaces
can manipulate microbial communities against pathogens (Williams et al. 2013;
Manching et al. 2014). In some cases, phyllosphere microbes produce higher
biomass through which competitive mechanism can quench the pathogenic growth
(Pusey and Wend 2012), which was observed in rice (Ren et al. 2016) and lettuce
(Williams et al. 2013), and also fix nitrogen (Feng et al. 2003), this could be
important for agricultural sustainability (Gupta et al. 2018). Pseudomonas
fluorescens A506 crumb leaf blight disease-causing Erwinia amylovora through
competition for nutrients and space (Wilson and Lindow 1993). However, in
general, phyllosphere microbes produce antagonistic substances (antibiotic), which
can reduce both bacterial and fungal pathogenesis. Bacterial flora such as Pseudo-
monas spp. and Bacillus spp. residing in the phyllosphere could produce antibiotic-
like peptides, which induce systemic resistance of plants against various fungal
pathogens (Vorholt 2012; Ceballos et al. 2012; Griffin and Carson 2015). The use
of Bacillus spp. isolated from phyllosphere and soil has been largely exploited as a
biocontrol agent in agriculture (Fernando et al. 2007), due to its broad-spectrum
antagonistic activity it has been used as a biocontrol for sugar beet (Collins and
Jacobsen 2003), citrus (Huang et al. 2012), cotton, rice and amaranth leaves (Wang
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et al. 2014a, b), strawberry (Wei et al. 2016), and cacao (Villamil Carvajal et al.
2015). The ability to produce endospores, secondary metabolites (Mendes et al.
2013), and proteins (Zhang et al. 2018b) by Bacillus sp. and the capability to induce
systemic resistance in a host are considered to be useful biocontrol agents for
phyllosphere pathogens (Lahlali and Peng 2014; Wei et al. 2016).

In addition, the interaction of microbes on the phyllosphere stimulates gene
expression of its residing host by signaling process, through this mechanism plants
can recognize (molecular recognition pattern) and distinguish the presence of path-
ogens (Hunter et al. 2010) and other beneficial microbes (Rastogi et al. 2012).
Similarly, the expression of pathogenesis-related proteins and antimicrobial proteins
by Sphingomonas melonis on the phyllosphere controls the potent plant pathogen
Pseudomonas syringae (Innerebner et al. 2011). Moreover, some phyllosphere
microbes can produce siderophores, by which epiphytic bacteria inhibit pathogens,
and reduce oxidative stresses (Fu et al. 2016; Thapa et al. 2017; Gupta et al. 2018;
Santos Kron et al. 2020). For example, Pseudomonas syringae pv. syringae has
pathogen quenching activity through siderophore production (Wensing et al. 2010).
Pseudomonas protegens CS1 produces enantio-pyochelin siderophore has the antag-
onistic activity against the plant pathogen Xanthomonas citri (Michavila et al. 2017).
In addition, some microorganisms could induce the systemic resistance of plants by
changing upregulation of various antioxidant enzymes, such as ascorbate peroxidase
(APX), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), and super-
oxide dismutase (SOD) (Abd El-Gawad et al. 2015). Meanwhile, researchers could
suggest the use of native microorganisms as biocontrol agents due to their host-
specific association, colonization, and adaptation to local environmental conditions
(Kumar and Gopal 2015; Cruz-Martín et al. 2017), and shows multiple modes of
activity against pathogenic microbes. For example, representatives of the
Bacillaceae family isolated from Mussa spp. phyllosphere showed antifungal activ-
ity against black Sigatoka disease (Mycosphaerella fijiensis) (Poveda et al. 2010;
Cruz-Martín et al. 2017), also in Mussa spp., Bacillus pumilus showed chitinolytic
and glucanolytic activity against M. fijiensis (Cruz-Martín et al. 2018).

7.4.2.3 Anti-insect Activity

Endophytic microbes produce various secondary metabolites (alkaloids), within the
plant tissues, which can reduce or kill the plant-feeding insects and pest. The
alkaloids exhibit strong insecticidal activity mainly to inhibit the developmental
stages of insect larvae, affect feeding activities, reduce survival, and also the
egg-laying ability (Akutse et al. 2014; Martinuz et al. 2012; Resquín-Romero et al.
2016; Sánchez-Rodríguez et al. 2018). Endophytic alkaloids are toxic to plant-
feeding insects, for example, endophytic fungi such as Acremonium coenophialum
and Epichloe typhina interact with Lolium and Festuca grasses to produce multiple
loline, peramine, ergovaline, which have toxic effect to aphids (Siegel et al. 1990);
Tripterygium wilfordii produce cytotoxic alkaloid, cytochalasin (Wagenaar et al.
2000); Phomopsis sp. synthesize Phomapsichalasin (antimicrobial agent) (Horn
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et al. 1995); Streptomyces sp. produces 1-N-methyl albonoursin (antibiotic) in
perennial ryegrass (Gureny and Mantle 1993) are other few examples. In addition,
Beauveria bassiana reduces the damage caused by a poppy stem gall wasp (Iraella
luteipes) (Quesada-Moraga et al. 2009), Helicoverpa zea (Powell et al. 2009), and
Tuta absoluta (Klieber and Reineke 2016; Qayyum et al. 2015). Endophytic fungal
entomopathogens, B. bassiana and Metarhizium brunneum kill aphid such as
Aphidius colemani and Myzus persicae, hence it could be used as a biocontrol
agent to reduce the herbivorous damage on several crops such as tomato, potato,
sugarcane, and pea (De Sassi et al. 2006; Akutse et al. 2014; Qayyum et al. 2015;
Jaber and Araj 2018). Moreover, B. bassiana offers protection against plant viral
pathogens, Zucchini yellow mosaic virus (ZYMV) transmitted by aphid vector
(Jaber and Salem 2014). Hence, in agriculture, the pest management practices the
beneficial endophytic bacteria and fungi have been used to control disease transmis-
sion and insect pest-mediated crop damage.

7.4.2.4 Host Stress Tolerance

Microbial association in phyllosphere provides stress tolerance against various
environmental stresses such as extreme drought, UV rays, and temperature (Sun
et al. 2010; Meena et al. 2015). UV radiation causes damage to the genetic material,
which alters the physiology and growth of plants (Yurimoto et al. 2021). Some of the
plant’s defenses may be provided by bacterial EPS, which may protect it from
desiccation and UV radiation. It has been shown that the gel-like EPS matrix of
aquatic Pseudomonas aeruginosa biofilm helps to transport water and nutrients to
the plant. Biofilms presence in the phyllosphere may provide able to minimize the
loss of water to get more resistant to desiccation than biofilms in water (Chaturvedi
et al. 2016). Piriformospora indica, endophytic fungi alleviate drought stress-
induced oxidative stress in many plants (Waller et al. 2005; Sun et al. 2010).
Pseudomonas sp. is often a major element of the phyllosphere, indicating that
naturally existing biofilms give protection against desiccation and UV light.
Pigmented bacteria provide increased UV resistance than other bacteria. It is plau-
sible that phyllosphere microorganisms may give some UV protection to the plant
host via the creation of EPS and the pigmentation by UV-absorbing pigment (Jacobs
and Sundin 2001; Compant et al. 2019). In arid conditions, often result in an
increasing C:N ratios in leaves suggesting that one of the secondary impacts of
drought is nitrogen restriction, implying a possible function for the phyllosphere
microbiome alleviating drought-induced nitrogen limitation (Rico et al. 2014). Other
environmental stresses may also be tolerated by plants because of microbially
acquired tolerance (Vacher et al. 2016).

Ecological stress stimulates the plant to produce various reactive oxygen species
(ROS), hydrogen peroxide, hydroxyl radicals, and superoxide radicals, causing
oxidative damage to various cellular components such as proteins, nucleic acids,
and membranes (Das and Roychoudhury 2014; Lata et al. 2018; Huang et al. 2019).
Beneficial plant endophytes alleviate oxidative damages induced by both biotic and
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abiotic stresses; they can stimulate the plant defense mechanism to protect them-
selves from such defects. There are several research outcomes highlighting the
endophytic or endosymbiotic association of both bacteria and fungi in phyllosphere
and rhizosphere induces plant defense responses through the expression of peroxi-
dase enzymes like superoxide dismutase and glutathione reductase (Egamberdieva
et al. 2017; Lata et al. 2018; Oukala et al. 2021). Endophytes could also produce
stress-responsive enzymes, which can also protect the plant cell from oxidative
damages, for example, the endophytic Enterobactes sp. contain several superoxide
genes, peroxidase, catalase, and hyperperoxide reductases (Taghavi et al. 2005). In
some cases, it can produce various antioxidant metabolites and accumulates in plant
tissues, for example, the presence of the endophytic fungus Epichloë coenophiala in
tall fescue grasses accumulates mannitol an antioxidative fungal metabolite, which
provides oxidative stress-related protection in plant (Lata et al. 2018); Pestalotiopsis
microspora produces pestacin and isopestacin in endosymbiotic interaction with
plant (Strobel and Daisy 2003).

Above all significant merits provide the use of beneficial phyllosphere
microbiome interaction on plant growth and its productivity guide us to use those
microbes for sustainable agriculture.

7.5 PGBs Bioinoculant Formulation for Sustainable
Agriculture

Bioinoculants are ecofriendly microbes having the ability to promote plant growth
and yield in a variety of mechanisms (Prasad et al. 2019). It is an excellent alternative
of chemical fertilizers, improves the soil nutrients, antagonist against phytopatho-
gens and soil nematodes, facilitator, stress relieving agent producer, and detoxifier,
as the whole, it enhances the crop production more economically and ecofriendly.
Several researches revealed the exploitation of PGPR as bioinoculant imparts suc-
cess in sustainable agriculture through the low-cost process. There are different
bioinoculant formulation are in agricultural practice which contains PGPBs such
as solid (e.g., powder) or liquid formulations, metabolite formulations, solid carrier-
based formulations, and synthetic polymer-based formulations. Efficiency of the
bioinoculant is based on the type of inoculums, their appropriate formulation,
production, and storage condition of microbial cells, where in some cases the
application is more efficient and it always maintains rich colony-forming units
(CFUs), either in the soil or in the phyllosphere (Orozco-Mosqueda et al. 2021),
and it shows some detectable antipathogenic activity against soil-borne pathogens.
On foliar application of such bioinoculants may interfere with the growth of path-
ogens causing infections in the aerial part of plant (Owen et al. 2015). Commonly,
the bioinoculant formulation process depends on the type of applications in the
larger field or in the small greenhouse conditions. Moreover, the time of inoculums
given, quantity, and the type of organism used along with environmental factors are
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influencing the efficiency of inoculums, which could kill or inhibits the propagation
of pathogens. Mostly they are applied to the field as prophylaxis, before observing
disease symptoms in crops to prevent the pathogenic attack and managing to protect
even the products during post-harvest (Sridhar et al. 2014).

Commercially available bioinoculants contain the beneficial microorganisms that
have plant growth-promoting activities and biocontrol along with fertilizer effects to
the plants. Some bioinoculants can be used to kill several larvae of harmful insects
and pest. For example, Bacillus thuringiensis control the larvae of several moths and
butterflies, Bacillus popilliae kill Japanese beetles, Nosema locustae control grass-
hoppers, and entomopathogenic fungi such as Beauveria bassiana, Metharhizum
anisopliae, and Isaria fumosorosea kill various insects (Maina et al. 2018).
Trichoderma sp. controls the growth of various plant fungal pathogens such as
Rhizoctonia, Fusarium, Verticillium, Pythium, and Phytophthora. The best choice
of bioinoculum application is on seed coat (seedlings), hence the beneficial microbes
start its interaction at the early stage of plant growth. For example, Bacillus and
Pseudomonas show its direct effect on plant growth and also eliminate pathogens
from its rhizosphere region (Hernández-León et al. 2015).

However, in the use of various beneficial microbes as bioinoculants, several
barriers could affect the effect and application including loss of biological activity,
physiological and agronomical factors affecting the survival of inoculants, lifetime
effect, etc. For example, when the spore form of Bacillus sp. is used for soil
application, which prolongs its shelf life (Santoyo et al. 2012). Some
non-sporulating traits required more specific and special formulations. Once it has
been inoculated, the bioinoculant maintains its persistence in the soil and makes
them colonize in the rhizosphere. Hence, it is our need to select a more appropriate
bioinoculum which can compete rhizosphere or phyllosphere microflora and also
able to colonize and perform beneficial activities in the microenvironment
(Hartmann et al. 2008; Berendsen et al. 2012; Liu et al. 2020).

For this reason, more research is required to evaluate abiotic factors on the
beneficial properties of each bioinoculant. However, prior to the development of
commercial bioinoculants, the following properties should be properly evaluated
which include (1) pathogenecity, (2) specificity, (3) interactions with other soil
microbes, (4) shelf life of the preparation, (5) longevity time in soil/crop, (6) perfor-
mance, (7) dosage level, and (8) cost effect (Arora et al. 2010). Some important
biocontrol and biofertilizer effects of beneficial microbes are listed in Table 7.8.

7.5.1 Microbial Consortium as Bioinoculum

In recent years, crop quality with higher nutrition and minerals is of increasing
concern with the prolonged demands from consumers (Timmusk et al. 2017). A soil-
native microbe significantly contributes to the health and development of plants
against nutritional deficiency and abiotic/biotic stress factors (Bakker et al. 2018;
Oyserman et al. 2018). Commercially available bioinoculants have limited success
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Table 7.8 Microbial consortia and its beneficial role

Microbial consortia Beneficial effect References

Bacillus subtilis, R. tropici Reduced disease severity caused by Fusarium
solani, increase the yield of bean

De Jensen
et al. (2002)

Bradyrhizobium, G. mosseae Inhibits Cylindrocladium parasiticum,
increased production of soybean

Yao et al.
(2002)

AMF, Rhizobium, Azospirillum,
Bacillus, Pseudomonas

Increased nodulation, higher plant growth,
increased yield, increases systemic resistance
against stress responses, increased nutrient
uptake

Singh et al.
(2010)

Pseudomonas, Azotobacter,
Azospirillum

High nutrient intake, shoot, and root wet and
dry biomass, enhanced lycopene production,
increased antioxidants in tomato

Ordookhani
et al. (2010)

Bacillus cereus, B. subtilis,
Serratia

Enhanced photosynthetic efficiency, reduce
wilt symptoms, reduce mono-
dehydroascorbate, increased coat proline con-
tent, increase systemic resistance to plant

Wang
(2009)

Pseudomonas aeruginosa,
Trichoderma harzianum,
B. subtilis

Increased defense against sclerotinia rot,
induced systemic resistance

Jain et al.
(2012)

P. aeruginosa, Trichoderma sp.,
Rhizobium sp.

Activated physiological defense response
against color rot pathogen in chickpea

Singh et al.
(2013)

Pseudomonas fluorescens,
Trichoderma, Rhizobium

Increased antioxidant enzyme activity,
induced resistance of plant against biotic stress

Singh et al.
(2013)

Streptomyces spp. Pseudomo-
nas sp., P. flurescens,
G. intraradices

Increased plant growth, yield, and increased
drought resistance in Finger millet

Khadka
et al. (2016)

due to their formulation of either one or few microbial taxa. It is unlikely that it never
consolidates our entire basic requirement for commercial crop production (Hart et al.
2018). Hence, using the synthetic method to formulate microbial consortia (MC) that
could potentially replace and/or redesign the structure and function of plant
microbiome is a remedial measure to solve the disadvantages of conventional
biofertilizers (Qin et al. 2016; Hart et al. 2018; Kong et al. 2018). Several reports
highlighted the merits of such consortia of bioinoculants, coinoculation of rhizobia
with other PGPR enhances nodulation ability, nitrogen fixation, phytohormone
production, and growth of legumes (Bansal and Srivastava 2012; Gupta et al.
2015). Similarly, diazotrophic such as Azospirillum, Azotobacter, Bacillus, Pseudo-
monas, Enterobacter, and Serratia are a few PGPR that have been successfully
coinoculated with rhizobium (Tajini et al. 2012; Sekar et al. 2016). The
bioinoculums of microbial consortia often target to enhance the metabolite content
(sugars, ascorbic acid, folic acid, vitamin, and anthocyanin) and nutrients (N, Ca, P,
Mg, K, Na, Fe, Mn, Cu, Zn, and B) in crops. Hence, the inoculums of consortia are
formulated with PGPRs and AM fungi, which promotes the highest nutraceuticals in
the crops (Battini et al. 2016; Torres et al. 2016; Avio et al. 2017; Bona et al. 2015).

The efficiency of the beneficial microbes and their consortia on growth promotion
and productivity in the field condition in various crops have been accounted for in
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the formulation studies (Table 7.8). The following are the major components that
need to be evaluated for the consortia design and development: (a) compatible
strains with a different pattern of plant colonization, (b) compatible strains combined
with a broad spectrum of activity against pathogens, (c) compatible strains combined
with different mode of action, and (d) compatible strains combined with a geneti-
cally diverse group to adapt in a wide range of pH, temperature, moisture, and
relative humidity (Sekar et al. 2016).

7.6 Engineering Host Microbiome for Sustainable
Agriculture

The microbiome is defined as the collective genomes of the microbes such as
bacteria, fungi, protozoa, and viruses that live in a specified environment. Diverse
microbial community in the microbiome gives either beneficial or harmful effect on
its host and environment. Harmful microbial domination in a microbiome causes
diseases and disorders. Microbiome engineering is a kind of process to manipulate
the microbial abundance with the inoculation of one or more new beneficial
microbes in an adequate amount (Albright et al. 2021). However, the engineering
of microbiome can be used to modify microbial diversity and community structure
and could restore ecological balance, and has been employed for improving human
health and agricultural productivity. Researchers understand the relationships
between microbe–microbe and microbes–host, which creates novel insights into
microbiome engineering, where the new microbial community with a small number
of species can create a stable ecosystem. Plant microbiome is represented as the
microbiome in root and root-associated area. In agriculture, rhizosphere microbiome
engineering will impose green revolution to develop high yield in crops, which
greatly improved food security worldwide (Bano et al. 2021).

Microbiome engineering is an attempt to find and improve the function of an
ecosystem by manipulating the required composition of microbes (Albright et al.
2021). For sustainable agriculture, currently, selective beneficial microbes with
desirable properties could blend and formulate synthetically to establish complex
beneficial microbiome at the rhizosphere and phyllosphere to promote the growth
and fitness of the plant under various ecoclimatic conditions. Like animal probiotic
supplements, soil has been enriched with plant beneficial microbes that can colonize
and modulate the rhizosphere community through various interactions and signaling
processes. In the following section, the agricultural importance of rhizosphere
microbiome engineering has been discussed.
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7.6.1 Rhizosphere Microbiome Engineering

The root-associated microbiome consists of different compositions of the microbial
communities represent in plant root and the rhizosphere they could share the
nutrients and space together with plants. In rhizospheres, several thousand bacterial
and fungal taxa including beneficial and harmful species are maintaining a complex
food web to develop a complex microbial community structure. Functionally, the
root-associated microbiome influences plant physiology and plays anti-pathogen
roles (Agler et al. 2016; Foo et al. 2017). However, the manipulation of root-
associated microbial composition and networking for highly efficient beneficial
microbes of PGPRs (nutrient mobilizers, antibiotics, siderophore, and plant growth
hormone producers) that promote growth, provide fitness and health of the plant as
well as enhance the yield.

In the microbiome engineering process, beneficial microbes are isolated from
healthy crops and analyzed for their microbial composition, nutritional and physio-
logical characteristics, role in the rhizosphere community, and environmental impor-
tance. This information has accounted for the effective formulation of rhizosphere
microbiome engineering. Rhizosphere microbiome engineering is a hot topic in
agriculture studies because of its unpredictable benefits to the agricultural crops
(Kumar and Dubey 2020). In natural environment, rhizosphere microbiome func-
tions are continuously changing due to unstable environmental conditions. In this
status, microbial communities both adapt and survive or failed to survive, that is the
reason behind the limited level of success of bioinoculants (biofertilizers and
biocontrol agents) in various environmental conditions. Thus, there is a need to
formulate and engineer the microbiome with highly adaptable traits with optimum
PGPR functions and maintain a healthy microbiome in various soil and environ-
mental conditions. This system of agriculture is called “microbiome-mediated smart
agriculture system (MiMSAS),” where the engineered microbiome has the ability to
withstand the various environmental stresses (Bano et al. 2021; Kaul et al. 2021).

Using the applications of new emerging techniques in the synthetic biotechnol-
ogy, microbes can be constructed based on the required characteristics capable to
adapt and effectively perform plant growth (Peng et al. 2016; Dubey et al. 2019).
Genetic manipulation of the desirable traits could be based on the conventional
features of plant-microbe intercellular communications, or intracellular metabolic
pathways, and also the composition of microbial communities that enhances plant
performance (Dubey et al. 2019). Figure 7.9 illustrated the microbiome engineering
for sustainable agriculture. The potential property used to engineer the microorgan-
ism is the desirable mutualistic character of the PGPR microbes. In addition,
engineered microbes make positive beneficial communication with unmodified
microbes there in the natural environment, which can facilitate syntrophic nutrition
within the microbiome makes enhanced plant growth (Ren et al. 2016; Muleta 2017;
Charubin and Papoutsakis 2019). After strengthening the characters through genetic
modification, large-scale field experiments can be performed with control experi-
ments in various soil and environmental stress responses such as drought, salinity,



178 S. Natesan et al.

Fig. 7.9 A diagrammatic representation of microbiome engineering. The microbes are engineered
genetically in order to modify the characters of the plant–microbe intercellular interactions, or
microbial intracellular metabolic pathways, and to change the microbial composition. (Adapted
from Dubey et al. 2019, Biodivers Conserv. 28, 2405–2429)

pH, elevated level of carbon dioxide, and light on microbial community composition
and mutualistic benefits of inoculations (Dubey et al. 2019).

Rhizosphere microbiome engineering can alleviate the drought stress in plants
with the association of rhizospheric, endophytic, and symbiotic microbes, and
increases soil fertility which can reduce the use of commercial chemical fertilizers
for crop yield (Zolla et al. 2013). Reduced use of such chemicals and fertilizers could
retain the biodiversity in the soil or the engineered microbes synergistically interact
with other soil microbes to re-establish the healthy rhizosphere microbiome. The
main advantage of microbiome engineering is that their microbial composition is
controllable and easily detectable. In addition, engineered microbes can compete the
pathogen by multiple mechanisms and protect the plant against the infections. For
example, for the control of potato common scab and tobacco black root rot (Gopal
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et al. 2013), five root-associated bacteria have been shown to protect Nicotiana
attenuata from a sudden-wilt disease (Santhanam et al. 2015). However, the devel-
opment of engineered microbiomes limits our understanding of the core microbiome
and only culturable microbes can be included in microbiome engineering
(Table 7.9).

7.7 Conclusion

Beneficial microbes that are associated with the plants are having plant growth-
promoting activities (PGPMs), as growth promoters, biofertilizers, or biocontrol
agents for sustainable agricultural practices. Microorganisms sustain a specific
microenvironment and provide various benefits to the soil, plant, and environment.
In the rhizosphere environment, many bacterial beneficial interactions have been
established by bacteria, fungi, actinomycetes, cyanobacteria, etc. Most significantly,
the symbiotic association between Rhizobium and mycorrhizal fungi provides
various nutrients through nitrogen fixation, transportation, solubilization of phos-
phates, and other insoluble minerals. Saprophytic microbes could decompose
organic waste material to enrich the soil nutrient and recycling process. The bene-
ficial microbes that are associated with the plant as endophytic and epiphytes of the
phyllosphere and rhizosphere have various biological functions to control patho-
genic infection and alleviate different environmental stresses (drought, salinity,
heavy metal, oxidative stresses) and control pest and nematode infections. Studies
of the microbiome in the phyllosphere and rhizosphere instigate the production of
bioinoculants. To overcome the setbacks of single conventional bioinoculants com-
bined microbes with better attributes could be used for species-specific microbiome
engineering mainly in rhizosphere region. Moreover, the knowledge generated
through modern technologies used to understand the functional role of individual
microbes in a microbiome and its impact on soil and plant health guide us to redesign
beneficial rhizosphere microbiomes that will improve soil health, and crop produc-
tivity through sustainable agriculture.
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Table 7.9 Functions of microbiome transfer for sustainable agriculture

Microbiome method Functions and limitations References

Native root-associated microbiota
transplant

Inhibit plant diseases, resist envi-
ronmental stresses, and promote
growth;
Easy to manipulate; Limited by the
availability of functional native
microbiome

Gopal et al. (2013),
Zolla et al. (2013)

Synthetic microbiome: root-
associated microbiota transplant

Inhibit plant diseases, resist envi-
ronmental stresses, promote
growth;
Controllable customization of
microbial composition for benefi-
cial effects;
Limited by the understanding of
the core microbiome;
Only applicable to culturable
microbes

Santhanam et al.
(2015), Glick (2012)

Signaling molecules: Administra-
tion of root extrudates, e.g.,
salicylic acid

Resist environmental stresses,
promote growth;
Promote assembly of balanced
microbiome;
Limited by the availability of sig-
naling molecules

Lebeis et al. (2015)

Agricultural management: Organic
farming

Improve soil fertility Navarrete et al.
(2015)

Plant-based methods: Plant breed-
ing and cultivar selection

Enhanced production of exudates;
Influences the microbial diversity
by enhancing the growth of some
selected microbes present in the
rhizosphere

Dubey et al. (2019)

Alteration of plant resistance to
disease and environmental factors;
Improved tolerance toward to
resist adverse environmental con-
ditions (edaphic, biological, and
climatic)

Ryan et al. (2009),
Lynch and Neufeld
(2015)

Genetic modification: Change in
the amount of signaling molecules,
and organic exudates in soil

Plants are engineered to secrete
exudates that direct specific
microbial diversity for providing;
Plant induces microbiome for ben-
eficial functional traits like pro-
duction of siderophore, anti-
fungal, antimicrobial, antibiotics
acts as a biocontrol agent.
Improving resistance toward
adverse environment conditions.
Use in bioremediation of
contaminants

Bakker et al. (2012),
Imam et al. (2016),
Sharma et al. (2013)
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Table 7.9 (continued)

Microbiome method Functions and limitations References

Genetic modification: Plants are
engineered for producing exudates
which modify properties

Plant growth is enhanced at acidic
or low pH, resistance salinity,
alkalinity and water stress.
Enhanced resistance towards Al3+.
Enhanced phosphate solublization.
Increase in shoot biomass, longer
and larger root hairs

Ryan et al. (2009),
Yang et al. (2007)

Meta-organism based management
and selection of complementary
microbiomes and plants

Crop rotation; Managing soil
diversity by induction of suppres-
sive soils; Improving physico-
chemical characteristics of the soil;
Elevation in organic carbon con-
tent and higher level of nutrients
cycling

Kumar et al. (2015)
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Chapter 8
Microbiome of Plants: The Diversity,
Distribution, and Their Potential
for Sustainable Agriculture

Ajay Kumar Pandey, Shweta Mehta, Priyanka Bhati, and Sagar Chhabra

Abstract Plants contain associated microbiomes, which facilitate the plant’s pro-
ductivity by supporting their healthy growth in native niche. Globally, sustainable
food production is quintessential, wherein the growth-promoting abilities of plant-
associated microbes become vital. Recent literatures reveal significant structure and
dynamics on plant microbiome, which recognizes the regulation of plant fitness by
native microbiome. Henceforth, it is essential to practice modern microbial devel-
opments for strengthening crop production. Many of the environmental factors
modulate the microbiome organization. This chapter emphasizes the comprehensive
characterization of different niche’s microbiome and impact of differential influen-
tial factors such as genotype, microbial interactions, agricultural habits,
bioinoculants, and abiotic factors to microbial diversity and sustainable plant health.
Moreover, conventional and advanced approaches (omics/multi-omics) for studying
plant microbiome diversity and plant microbiome interactions are also discussed,
which would be helpful in developing novel microbial formulations for sustainable
agriculture.
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Bioinoculants
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8.1 Introduction

Term “plant microbiome” describes “the microorganism’s community with the
potential of harboring a space in plant body as symbionts, commensal or pathogen.”
Plants harbor microbial hotspots along with soil as major natural microbial resource.
This microbial plethora is vital in promoting plant’s growth, health, and productiv-
ity. However, food productivity enhancement strategies (use of fertilizers, pesticides,
and agrochemicals), industrialization, and anthropogenic interventions led to an
enforced soil and microenvironment deterioration and attenuation in agriculture
lands (Compant et al. 2019). These factors cumulatively exert pressure on agro-
ecosystems and challenge the high-yielding economical and sustainable
agriproducts. In this background, plant microbiomes are potential tool for enhancing
agricultural productivity while maintaining sustainable ecosystem. The plant
microbiomes not only promote the growth of plants but also enhance the soil fertility
for facilitating sustainable agriculture. Moreover, microbiome aids in seed germina-
tion, growth, productivity, yield, adaptation, and stress resistance/tolerance of plants,
which impacts the fitness of the plant leading to the sustainable agriculture (Aamir
et al. 2021).

8.2 Plant Microbiome: Diversity, Composition,
and Distribution

Microbiomes possess high degree of diversity and are dispersed on soil, water, and
air, which can associate with the plant organs (Gupta et al. 2021). The microbiome
distribution on plant is majorly categorized into phyllospheric (present on aerial
parts such as stem, leaves, and flowers), endospheric (present on inner plant tissues),
and rhizospheric (present on below ground components such as roots and surround-
ing soil) (Fig. 8.1) (Aamir et al. 2021; Santos and Olivares 2021). In addition,
microbes also reside as epiphyte on plant surface (Compant et al. 2019). As
endophyte microbes penetrate the epidermis and colonize inter- and intracellularly.
In general, ectomycorrhizal fungi penetrate root spaces intracellularly after devel-
oping a mantle, which surrounds root tip. However, endomycorrhizal fungi develop
arbuscules for intracellular colonization (Santos and Olivares 2021). Naturally,
healthy plant harbors multifaceted diversity of microorganisms such as bacteria,
and fungi are foremost constituent associated with plants (Trivedi et al. 2020). Some
examples of plant-associated bacterial and fungal strains and their functional role in
normal/stressed environment are listed in Tables 8.1 and 8.2, respectively.

Generally, microbial dynamics is associated with the types of plant species, its
developmental stages, or genetic makeup. And, changes in host plant environment
during the different life stages play a crucial role and arbitrate the microbial diversity
by innate defense system stimulation of plant (Dastogeer et al. 2020; Gupta et al.
2021). Additionally, abiotic and biotic stresses-driven and -compromised defense
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Fig. 8.1 Schematics of morphological, biochemical, and molecular characterization of plant
microbiome

system can also alter microbiome diversity. Henceforth, to study the biotic/abiotic
factors influencing microbial matrix at phylogenetic and functional level, it is
essential to estimate the plant microbiome’s heterogeneity individually and in
understanding different niches (Santos and Olivares 2021).

Recent studies and advances in the knowledge of plant microbiome have dem-
onstrated that plant-associated heterogenetic microbial consortia influence their
growth, development, and productivity (Bhatt et al. 2020; Singh et al. 2019;
Trivedi et al. 2020). The microbiome consists of some microorganisms, which can
interact with other species/host and influence theorganization microbial community.
Such microorganisms are known as “hub-microorganisms” of the microbiome
(Agler et al. 2016). Microbiome diversity and composition are majorly affected by
soil profile and physiochemical characteristics (texture, moisture proportion, pH,
temperature, salinity, organic matter, etc.). Moreover, microbe–microbe/plant–
microbe interaction, microbial/host secretome, anthropogenic factors, cultivation
exercises, and environmental changes also influence at a certain extent (Bhatt et al.
2020; Li et al. 2020; Oyserman et al. 2021).
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Table 8.1 Examples of bacterial strains involved in plant microbiome assembly, their function and
relevance in normal and stressed conditions

Growth
parameters

Bacillus subtilis Zea mays,
Acacia
gerrardii

Nutrient
deficiency
and salinity
stress

Solubilization of supple-
ments (Mg, Ca, N, P, K)
and their delivery to plant

Hashem et al.
(2016),
Rodrigues
et al. (2016)

Pseudomonas
putida

Pennisetum
glaucum,
Hordeum
vulgare,
Citrus
macrophylla

Salt and
salinity
stress

Tolerance and enhanced
phytoremediation

Jodeh et al.
(2015)

Novosphingobium
sp.

Glycine max Normal Improved nitrogen diges-
tion and transport of
supplement

Hara et al.
(2019)

Pseudomonas
fluorescens

Oryza
sativa,
Citrus
aurantifolia

Drought
stress

Enhanced phosphate solu-
bilization, growth, and
chlorophyll content

Shahsavar
et al. (2016)

Enterobacter sp. Pennisetum
glaucum,
Brassica
juncea

Metal stress Enhanced phosphate solu-
bilization, growth, and
phytohormones

Durán et al.
(2018)

Klebsiella sp. Avena
sativa

Salt stress Enhanced salt tolerance Sapre et al.
(2018)

Acinetobacter
calcoaceticus

Agave
americana

Normal Improved growth and
sugar content

De La Torre-
Ruiz et al.
(2016)

Streptomyces sp. Pisum
sativum

Drought
stress

Improved salt tolerance,
seed germination, root/
shoot length, and ROS
gathering

Zahir et al.
(2008)

Saccharibacteria,
Verrucomicrobia
Firmicutes

Triticum
aestivum

Normal Antifungal property
against Microdochium,
Neoascochyta, and Fusar-
ium spp.

Kinnunen-
Grubb et al.
(2020)

Sinorhizobium and
Rhizobium

Hordeum
vulgare

Oils sand
mining

Increased plant growth,
improved resistance
against biotic/abiotic
stresses

Mitter et al.
(2017)

Acremonium sp.
Mesorhizobium
Mesorhizobium
ciceri

Cicer
arietinum

Normal Improved knob size, yield,
and nitrogen content.
Antifungal property
against Botrytis, Fusarium,
and Rhizoctonia solani

Alok et al.
(2020), Qin
et al. (2017)

Rhizobium
daejeonense

Agave
americana

Normal Enhanced growth, sugar,
and solubilization of
supplements.

De La Torre-
Ruiz et al.
(2016)
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Table 8.2 Examples of fungal strains involved in plant microbiome assembly, their function and
relevance in normal and stressed conditions

Growth
parameters

Penicillium
menonorum

Cucumis
sativus

Normal Plant-growth-promotion
activity via production
of siderophore and
indole-3 acetic acid and
phosphate
solubilization

Babu et al. (2015)

Acaulospora
scrobiculata,
Funneliformis
mosseae

Morus alba Normal Enhanced growth due to
increased chlorophyll
content and rate of pho-
tosynthesis. Improved
conductance of stomata.

Shi et al. (2016)

Rhizophagus
intraradices,
R. fasciculates,
Glomus
mosseae,
Scutellospora
sp., and
Gigaspora
margarita

Solanum
lycopersicum

Drought
and salt
stress

Enhanced water trans-
port, water pressure,
and phosphorous
aggregation.

Chitarra et al. (2016),
Mohumad Tahat
(2012), Padmavathi
et al. (2015),
Viscardi et al. (2016)

Rhizophagus
clarus

Sorghum
bicolor,
Capsicum
annuum

Normal Improved plant growth Lee and Eom (2015)

Glomus
etunicatum

Citrus
aurantifolia

Drought
stress

Improved plant growth,
chlorophyll and
photosynthesis.

Shahsavar et al.
(2016)

Glomus species Allium cepa Normal Improved plant growth,
chlorophyll, and
photosynthesis.

Shuab et al. (2014)

Funneliformis
mosseae,
Rhizoglomus
intraradices

Lactuca
sativa

Normal Enhanced zinc
absorption

Konieczny and
Kowalska (2016),
Zhang et al. (2020)

8.3 Approaches for Studying Plant Microbiome Diversity

Plant microbiome exhibits extensively wide-ranging diversity depending upon hab-
itat and plant organs such as phyllo/endo/rhizospheric regions. Plant microbiome
diversity investigation aims to unravel the structural/functional diverseness of a
specific host plant-associated microbial community in a definite habitat (Bhatt
et al. 2020; Dastogeer et al. 2020; Liu et al. 2019). The colonization of microbiome
is facilitated by the host’s secondary metabolite secretome and specialized structures
such as hairs and trichomes (Gupta et al. 2021).
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Conventionally, identification and characterization of plant microbiomes (bacte-
ria and fungi) consists of sequencing of universally conserved sequences and
bioinformatic analysis. Briefly, this method consists of different sequential
steps as: (1) microbial isolation from phyllo/endo/rhizosphere, (2) morphological
characterization (for phenotypic and microscopic characteristics), (3) biochemical
characterization (for biomolecules and enzymes), (4) Sanger’s sequencing (for 16S
rNRA/18S rRNA), and (5) Basic Local Alignment Search Tool (BLAST) analysis
using National Centre for Biological Information (NCBI) database.

These conventional methods give the outlook information only, henceforth
holistic approaches using modern biotechnological techniques to unwrap complete
multi-dimension information to understand the mechanistic component are essential.
In this context, during last few years various studies implemented advance tech-
niques to unwrap the microbiome exclusively and understand their interaction
mechanism with host (Fitzpatrick et al. 2020). It has been established that along
with the host and habitat, microbiomes are also affected by their environment and
developmental stages. In recent years, advanced modified Sanger’s sequencing
techniques including 454-pyrosequencing, Oxford nanopore, Illumina, Ion- torrent,
PacBio, and hybrid-platform were used to reveal rare microbial taxa in definite niche
(Bhatt et al. 2020; Gupta et al. 2021). These techniques extract complete genomic
information leading to comprehensive microbial diversity study in a given popula-
tion through phylogenetic and comparative genomics studies. Nevertheless, these
techniques fail to differentiate dead/live cells, which raises the possibility of errors in
estimation or hiked microbiome diversity, which are being addressed by managing
PCR error using specifically tagged DNA (Gupta et al. 2021).

Moreover, microbiome also contains enormous diversity in uncultivable
microbes, which makes it difficult to select a suitable method for their identification.
However, in recent years advanced culture-independent direct-environmental DNA
cloning, next generation sequencing, single strand conformation polymorphism,
denaturing/temperature gradient gel-electrophoresis, terminal restriction/restriction
fragment length polymorphism, and fatty acid methyl esters were reported for plant
microbiome studies (Bodor et al. 2020; Gupta et al. 2021; del Orozco-Mosqueda
et al. 2018).

Omics technologies (genomics/metagenomics, transcriptomics/meta-
transcriptomics, proteomics/meta-proteomics, and metabolomics) give a compre-
hensive genetic, structural, and functional information of the plant microbiomes
(Sharma et al. 2020). This information, coupled with the metabolic engineering at
cellular and/or molecular level, enhances the knowledge on dynamics of
microbiomes.
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8.4 Factors Affecting Plant Microbiome Diversity

Microbiome consists of several microbes; however, various factors including
genome organization, microbial interactions, biotic/abiotic components, local agri-
cultural practices, environmental factors, and physiochemical factors greatly affect
plant microbiome organization in local habitat. Some important factors are described
below:

8.4.1 Impact of Genomic Organization

Plants benefit from capacities of their microbiome, which is the reason they devote
some fraction of their carbon sources toward the development and sustenance of the
microbiota. Plants with different genotypes perform distinctively toward metabolism
of roots, composition of root secretome, recognition system, and native defense
mechanism (Santos and Olivares 2021). Plant genotype alters the root metabolism
by modulating the metabolic intermediates (pyruvic acid, citric acid, malic acid,
lactic acid, etc.), nitrogenase activity, and reactive oxygen species (ROS) generation
(Shcherbakova et al. 2017). Genotype also modulates composition of root secretome
in terms of organic acids (citric, malic, and succinic), sugars (ribose, glucose,
galactose, and fructose), amino acids (glycine, serine, lysine, and histidine),
isoflavones, enzymes (chitinases, proteases, phytases), and phytoalexins
(Shcherbakova et al. 2017). Genotype mediates the localized/systemic immune
responses of plants by transcriptional changes leading to the elaboration of physical
barriers, synthesis of antimicrobial compounds, defense phytohormones, jasmonic
acid, salicylic acid, and gaseous ethylene (Lebeis et al. 2015).

Studies demonstrate that varieties of this nature can modify the design and action
of the plant microbiome, which thus follows up on development, sustenance, and
protection from biotic and abiotic stresses (Santos and Olivares 2021). Curlango-
Rivera et al. demonstrated the impact of genotype toward composition of root
microbiome, wherein cotton cultivars showed structural differences in their border
cells (Curlango-Rivera et al. 2013). These cells are shaped from meristematic cells
and were at first thought to be “dead” and answerable for the mechanical security of
the root tip. Today, it is realized that line cells are connected with colonization of the
root by microorganisms. Essentially, plant roots store high and low sub-atomic
weight compounds at the root–soil interface, the rhizodeposition, which might
shift as per their genotype. Along these lines, plants with various genotypes can
deliver compounds with various creations, advancing explicit microbial flagging and
colonization. While examining the seed microbiome, various creators distinguished
the effect of the plant genotype on the microbial synthesis of the seed. In the tomato
phyllosphere, a review uncovered that four of the nine genotypes tried had an
alternate microbial arrangement, which demonstrates that the hereditary elements
of the host plant might shape the related microbiota (Morella et al. 2020). In the
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rhizosphere, microorganisms from the families Solibacteraceae, Pseudomonadaceae,
Cytophagaceae, and Bacillaceae were more bountiful in Fusarium-safe bean culti-
vars (Mendes et al. 2019). Fusarium opposition formed the microbial gathering of
the rhizosphere and chose bacterial taxa with biocontrol action (Santos and Olivares
2021). In recent study, transplantation of rhizospheric soil from a Ralstonia
solanacearum-resistant tomato plant to a prone plant genotype stifled the suscepti-
bility (Kwak et al. 2018).

8.4.2 Impact of Agricultural Activities

Agricultural activities alter soil’s nutrient and physiochemical properties. Nutrient
properties act as selection pressure for selection of plant microbiome and altered
nutrition influences plant’s microbiome profile in negative way and reduces their
productivity. Several studies reported the change in microbiome in different agri-
cultural practices using green manure (Bergottini et al. 2017), organic manure
(Lupatini et al. 2017), mulch (Qin et al. 2017), nitrogen fertilizers (Cai et al. 2017;
Zhu et al. 2016), and crop rotation (Hong et al. 2020). Therefore, for achieving high
agricultural productivity, it is essential to comprehend the impact of feasible prac-
tices on the design of the plant’s microbiome referring native plants and vegetable/
animal residues (Santos and Olivares 2021).

8.4.3 Impact of Bioinoculants

Bioinoculant is a practical strategy to build crop efficiency while lessening the
utilization of synthetic chemicals, though information on its effect on the plant
microbiome is extremely scant. Subsequently, understanding the connection
among inoculated and native microbial networks in plants will add to the improve-
ment of natural products.

Microbial inoculants proficiency relies upon the inoculum characteristics and its
capacity to bridge local microbial contest or its layout in the rhizosphere.
Rhizospheric fitness (in terms of efficient microbial contents) is an essential factor
for promising plant responses (plant-microbe interactions), however, has been
explored below par. The cooperation between local miniature life forms of the
plant and miniature organic entities (called “transients”) can be competitive, para-
sitic, mutualistic, or predatory (Santos and Olivares 2021), wherein secretomes
containing probiotic/antimicrobial compounds selectively stimulate/inhibit the
growth of microorganisms (Pieterse et al. 2016). Taken together, the native micro-
bial organization of the host plant is urgent for the achievement of its colonization by
transient microbes. Different signalling routes between plants and microorganisms
as well as among microorganisms make up the base of the microorganisms in the
root area. During plant-microbe interactions the population density is managed by
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releasing low atomic weight quorum sensing compounds such as acylated-
homoserine-lactones (Hartmann et al. 2014).

The impact of the bioinoculant is regarded as indirect when it causes changes in
the native microbiome structure and function by producing probiotic or antimicro-
bial compounds (Santos and Olivares 2021). Several reports stated the alteration in
endophytic population’s structure while using inoculants (Andreote et al. 2014;
Conn and Franco 2004). In another study, changes in the phenotype of the endo-
phytic potato were reported after Methylobacterium sp. inoculation to it, wherein
relative proportion of biocontrol regulators (Acinetobacter sp., Massilia sp., Phoma
sp., and Entyloma sp.) were also increased (Ardanov et al. 2016).

The bioinoculants effects are considered as direct if inoculum directly alters/
improves the metabolism of plant or root exudates profile, which in turn modulates
microbiome’s structure and function (Santos and Olivares 2021). Molecular
advanced technologies permit portraying the microbiome of various plants or
contrasting microbiome of plants treated with bio-inoculants. This information will
be helpful in developing novel bioinoculants, or shaping it as per the
agricultural need.

8.4.4 Impact of Pathogens

The endophytic plant community can harbor useful and destructive microbes in an
inactive state. These microbes can be “reactivated” by extrinsic factors including
pathogen’s attack (Santos and Olivares 2021). The endophytic community encour-
ages plant resistance either with the presence of resistance inducing microbes or
reactivation of endophytic population by entry of a microbial biocontrol strain/
abiotic stimulus (Podolich et al. 2015). Nevertheless, reactivation of inactive endo-
phytic microbes after pathogenic attack is more proficient (Santos and Olivares
2021). Agler et al. reported phyllosphere’s reformed colonization of endophytic
and endophytic bacteria by pathogenic fungi Albugo sp. and Dioszegia sp. (Agler
et al. 2016). Likewise, a decrease in the number of Bacillus species in roots, and
Streptomyces & Flavisolibacter in the rhizosphere of Chinese cabbage was observed
with the presence of pathogenic Plasmodiophora brassicae (Lebreton et al. 2019).
These findings show that the microbiome can protect plants against pathogenic
attacks, hence it is conceivable that it can change the microbiota of the host plant.

8.4.5 Impacts of Abiotic Factors

Plants and their microbiome are naturally exposed to different environmental vari-
ations including humidity, pH, temperature, salinity, and ultraviolet rays, which
straightforwardly or by implication alter the microbial composition. The microbiome
profiles of soil from various climate zones shows enormous taxonomic and



220 A. K. Pandey et al.

functional variety, although arid conditions revealed the least functional variation
(Tripathi et al. 2017). Lower functional diversity in arid regions is associated with
the up-regulation of sporulation/dormancy-associated genes and down-regulation of
nutrient (N, P, and S) cycling and stress-associated genes (Tripathi et al. 2017). This
study has significant ramifications for understanding the effects of environmental
change on various microbiomes. In comparison of soil rhizospheric microbiome of
eight different countries, highly significant variation was displayed and credited to
difference in pH of different country’s soil (Simonin et al. 2020).

Water-stress/drought has maximum impact on plant microbiome (Santos and
Olivares 2021). Santos-Medellín et al. studied rice plants exposed to water pressure
had their root microbiome rebuilt, which can add to the endurance of plants in this
condition (Santos-Medellín et al. 2017). Soil heat (50–80 �C) exposure influences
microbiome and disease resistance due to the reduction in antagonistic bacterial
loads of Mycobacteriaceae, Micrococcaceae, and Streptomycetaceae (van der Voort
et al. 2016). Likely, with routine exposure of plants to UV radiation due to DNA
damage phyllospheric microbiome stratification occurs; however, some bacteria
acquire UV protection by endospore formation, exo-polysaccharides, and pigments
such as melanin, xanthomonadine (Kumar et al. 2019).

Taken together, abiotic factor greatly influences the structure and diversity of
plant microbiomes.

8.5 Role of Plant Microbiome in Sustainable Agriculture

Plant microbiome influences agriculture via enhancing soil fertility and promotion of
plant growth. Microbes are diverse in nature and constitute of beneficial, harmful,
and pathogenic microorganisms.

Plant growth-promoting bacteria (PGPB) synthesize phytohormones (cytokinin,
auxin: indole-3-acetic acid, gibberellin, jasmonic acid, and salicylic acid), which act
as phytostimulant and enhances plant growth (Kaur 2020; Rastegari 2020; Santos
and Olivares 2021). Moreover, ethylene (a stress hormone) is regulated by the
enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), which
breaks down the molecule ACC and stimulates plant development by lowering
ethylene levels (Glick 2014; Santos and Olivares 2021; Shahid et al. 2021). Some
common ACC deaminase producers are Pseudomonas spp., Bacillus spp.,
Paraburkholderia spp., Arthrobacter spp., and Pantoea spp. (Rastegari 2020; San-
tos and Olivares 2021). These genera exhibit various properties including phytohor-
mones, phosphate solubilization, and nitrogen fixation which enhances nutrient
uptake and stress tolerance. In contrast, some bacteria produce phytoactive com-
pounds, which cause disease symptoms in plants. Some common examples of
pathogenic bacteria are Pseudomonas syringae (infects tomato, tobacco, olive, and
green bean), Xylella fastidiosa (infects potato and banana), Erwinia amylovora
(infects ornamental plants), Xanthomonas spp. (infects banana), Ralstonia
solanacearum (infects banana and potato) (Gupta et al. 2021; Rastegari 2020).
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Several bacteria directly facilitate essential nutrients (iron, nitrogen, phosphorus,
etc.) acquisition and promote plant development (del Orozco-Mosqueda et al. 2018).

Plant resistance is influenced by microorganisms which are present above and
below the soil due to alteration in plant defense system or commensal interactions
(Igiehon and Babalola 2018). Various biocontrol mechanism are involved in plant
resistance induction such as production of siderophores (chelating agents with
potential of insoluble ferric-ions sequestration), antibiotics
(2,4-diacetylphloroglucinol), enzymes (proteases, chitinases, phytases), lipopeptides
(bacillomycin-D, mycosubtilin, and iturin-A), volatile organic compounds, and
bacteriocins (del Orozco-Mosqueda et al. 2018; Santos and Olivares 2021).

Of note, microbiome not only induces plant growth by these biocontrol mecha-
nisms, but also these perform bio-fertilization (by controlled availability and attain-
ment of nutrients for plants) for regulating plant growth. Some typical examples of
biofertilization are symbiotic associations between Rhizobium (nitrogen-fixing bac-
teria), arbuscular-mycorrhizal fungi, and phosphate solubilizing bacteria to deliver
nitrogen and phosphorus, to plant, respectively (Santos and Olivares 2021). Some
examples of phosphate solubilizing bacteria are Rhizobium, Bacillus,
Microbacterium, Azotobacter, Erwinia, Serratia, Burkholderia, Enterobacter,
Beijerinckia, Flavobacterium, and Pseudomonas (Chhabra 2019; Chhabra et al.
2013; Chhabra and Dowling 2017; Kumar et al. 2019).

Rhizobium evolves with leguminous plants and has potential of directly fixing
atmospheric nitrogen, hence facilitates self-establishment of plants in low nitrogen
soils (Santos and Olivares 2021). Notably, along with Rhizobium, leguminous plants
also contain some nitrogen-fixing endophytic bacteria such as Azospirillum, Azoto-
bacter, Gluconacetobacter, and cyanobacteria (Calothrix, Nostoc, Anabena)
(Kumar et al. 2019). Moreover, there are some nitrogen-fixing microorganisms
(Bacillus, Beijerinckia and Klebsiella), which can fix nitrogen in non-leguminous
plant in their free form (Santos and Olivares 2021).

Taken together, above-mentioned characteristics of microbiome justify their
importance toward sustainable agriculture in terms of inducing crop’s nutrient
intake, disease resistance, harsh environment tolerance, growth, yield, and
productivity.

8.6 Current Trends and Future Perspectives

Continuously increasing global demand of food is challenging for the farmers,
wherein they have to tackle with various stresses such as changing hostile climate,
nutrient, water scarcity, and pollution. In this background, plant growth-promoting
potential natural resources such as plant microbiome become a viable alternative tool
for supporting plant health and sustainable agriculture. In plant microbiome estab-
lishment microbial diversity, their inter/intra generic interactions and environmental
factor are critical. Despite extensive microbiome knowledge to scientists, still
advances are needed for comprehensive information. In recent years, advanced
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biotechnological tools, bioinformatics, and meta-omics approaches together have
established pipelines for structural, genomic, and functional organization of plant
microbiomes and their interaction with plants. With such all-inclusive information, it
would be easy to improve native microorganisms at cellular or molecular level
leading to the more efficient bioinoculants development for improving crop’s yield
and productivity.
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Chapter 9
Decoding Beneficial Plant Microbe
Association with Latest Techniques
for Sustainable Agriculture

Bhawana Jangra, Pooja Bhadrecha, Pankaj Kumar, and Jitendra Kumar

Abstract One of the most precious treasures offered by mother nature to humans is
plants and to aid in their outstanding performances, plants maintain allelopathic
relationships with microorganisms, especially in roots and rhizosphere, along with
providing food, fodder, and employment. But plants have to face various detrimental
conditions such as abiotic and biotic stress conditions caused through pollution,
climatic situations, pathogenic microorganisms, competing herbs, and weeds. Asso-
ciation of beneficial microorganisms with the plant roots and rhizosphere provide
privilege to plant development, potential to resist stress, hence maximize yield even
in adverse environment. Therefore, researchers worldwide have concentrated their
attention toward exploring the rhizospheric microbiota with the help of conventional
methods as well as latest techniques like metabolomic tools and CRISPR/Cas
system. Here we discuss various beneficial and mutualistic relationships between
plants and associated rhizospheric microbiota and spotlight the latest research
techniques and findings aimed at understanding and utilizing microorganisms for
sustainable agricultural practices.
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9.1 Introduction

The microbiome is native to the microbial population that exists in a particular
environment. The plant ecosystem is considered the ecological niches that foster in
their rhizosphere, phyllosphere, and endosphere, which carry a varied range of inter-
actions like beneficial, neutral, and harmful. The microorganisms syndicate with plants
and assist in the soil nutrients acquisition, stress tolerance, and disease surveillance that
promote plant growth and ecological fitness under the agricultural system. In ecosys-
tem various types of interaction exist between plant and microorganisms. However, the
interaction between the plant root and soil microorganism is essential, and the soil
microbes stimulated toward rhizosphere because of unveiling of root exudates.
Microbes exploit the root through varied plant growth-promoting (PGP) aspects.
Phyllospheric microbiomes are considered stress-tolerant microbes that have the
potential to tolerate UV exposure and torrid heat as compared to other microbiomes
(Liu et al. 2020). The endophytic microbiome is considered the most beneficial
microbiome due to the invasion of plant microbes in plant tissues like root, stem,
flower, fruits, and seeds (Rana et al. 2020; Prasad and Zhang 2022). The most limiting
element is nitrogen which is responsible for plant germination. However, microbes
(Rhizobium, Azospirillum, Gluconoacetobacter) adjunct with the plants and make
available the atmospheric nitrogen for plants. Furthermore, the use of some of these
microorganisms as biofertilizer (natural fertilizers that contain living microorganisms
(bacteria, fungi, and cyanobacteria) in the soil to provide nutrition to the plant source
has emerged as a sustainable technology for nitrogen fixation that promotes crop yield.
Phosphorus is another limiting element for plant development. The rhizospheric
microbiomes are often considered to have the best ecological approach to transform
insoluble inorganic phosphorous into soluble phosphorus, and also help in seed
germination and help in plant growth promotion under acidity/alkalinity, salinity,
drought, and foster the plants (Verma et al. 2013). Due to the inclusion of systematic
resistance, the defense system of plants activates furthermore which prevents plants
from initiating pathogen attack through niche competition, production of antimicrobial
eventually leading to release of secondary metabolites. The microbial population is
harmed by human arbitration like discerning procreation, and pumping of agrochem-
icals in the agricultural biosphere (White et al. 2019).

9.1.1 Microbiomes and Potential

The microbiome is a mass of microbes (bacteria, fungi, algae, yeast) that provide
nutrients to the plants. Various publications have mentioned its importance, and
researchers have studied different compartments of the plant to soil continuum for
sustainable agriculture (Bertola et al. 2021). Among all the plant organs, the most
studied organs are vegetative and reproductive, where the microorganisms can
colonize and establish. For last few decades, most focused research is on the



9 Decoding Beneficial Plant Microbe Association with Latest Techniques. . . 229

Fig. 9.1 Plant–microbe interactions (Andreote et al. 2010)

rhizosphere and phyllosphere (Nelson 2018). However, habitats like spermosphere
(the zone where interaction between soil, microbes, and seed germination occurs)
and carposphere (the zone around the fruits where the microbes are present) are less
studied (Nelson 2018). The rhizobiome contributes to the plant in nutrient acquisi-
tion, phytohormone production, increases plant immunity and improves soil fertility
(Nwachukwu and Babalola 2021). Rhizosphere microbiota influences plant growth
through detrimental and beneficial microorganisms such as biocontrol microorgan-
isms bacteria and plant pathogenic fungi (Srivastava et al. 2014; Prasad and Varma
2014). Root exudates are the source for nutrient acquisition that produces different
inorganic and organic compounds known as rhizodeposits which provide an exclu-
sive environment and attract the microbes with high nutrient utility (Kohli et al.
2012). The multiple microbial colonies make effective soil because of releasing the
regulatory substrates that help many to survive in an extreme environment. The
rhizoderm cells consider organic acids, siderophores, inorganic acids, sugars, amino
acids, vitamins, purines, nucleosides, and polysaccharide mucilage-like compounds
that consider hundred times more microorganisms than aggregated soil.

Microorganisms can control nutrient acquisition and promote stress tolerance that
influences agricultural productivity. The diversity of microorganisms and species
evenness are the impact factors on agricultural productivity which are still not
defined. The current focus of research is on specific niches of plants and the
regulation of microbial communities. Understanding the phylogenetic and functional
perspectives should be heightened on the different parts of plant microbiome
individually. Microbiomes from rhizosphere, endosphere, and phyllosphere have
diverse microbial communities (Hirsch et al. 2013). Understanding the significance
of plant-associated microbiome preventing the plants from harmful pathogens
(Fig. 9.1). Mainly focus should be on the appropriate methodology for studying
the interaction between plants and microbes (Carvalhais et al. 2013).

The molecular techniques determine the effects incited through stress factors on
rhizospheric microbiome and interaction between microbes and plants in changing
environments. The main factor is improvement of microbial stress alleviation in
crops helps to understand the plant and microbe interaction (Barea 2015). Stress
factors such as salt stress, drought, nutritional deficit, impurity, diseases, pests affect
the plant and microbe interaction. Scientists discovered a new finding to improve
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aging factor of water and nutrient for essential crops. The important nutrients and
water acquisition occur through the roots. Therefore, understanding the regulation of
root branching is essential.

9.2 Abiotic and Biotic Stress Tolerance

9.2.1 Abiotic Stress and Microbial Potential

Regulation of plant–microbe interaction has an essential perspective toward a variety
of stress like metal pollution, drought, salt stress, and temperature (Muller et al.
2016).

9.2.2 Salt Stress and Heavy Metal Stress

In semiarid and arid conditions, high salt accumulation is present which is the major
abiotic stress for agriculture. In a study, the antioxidative Trichoderma asperelloides
was recognized with antioxidant properties against salt stress (Brotman et al. 2013).
In case of tomato, Azotobactor chroococcum was recognized with antioxidant
properties (Viscardi et al. 2016). The Plant Growth-Promoting Bacteria (PGPB)
and endophytic fungus promote PGP metabolite secretion, IAA production, and
ACC deaminase activity in saline conditions (Prasad et al. 2015). Usage of PGPB
was found promising for salinity tolerance in crops like wheat (Nadeem et al. 2016)
and maize (Sorty et al. 2016). The bacteria found in siderophore are used to reduce
the pollution due to heavy metal tolerance in canola, Indian mustard, and tomato
cultivation (Burd et al. 2000).

9.2.3 Thermal and Radiation Stress

As we know high temperature is the major issue in today’s environment due to
climate change or human indulging activities such as increase of CO2 by using CFC,
increment of industries which are affecting crop growth all over the world. Micro-
organisms are auspicious factor to reduce temperature stress. Pseudomonas putida,
Sphingomonas, Azospirillum brasilense, and Acinetobacter are stress-tolerant that
increase the maize plant biomass (Molina-Romero et al. 2017), whereas high
molecular weight proteins produced by using Pseudomonas are described in improv-
ing metabolites level in sorghum and wheat (Ali et al. 2011). Drought and
ultraviolet-B radiations are the strongest stress effector. Some bacteria like
Enterobacter cloacae in rice and Clavibacter michiganensis in groundnut were
found to prevent from the UV-B radiations (Rodriguez and Duran 2020).
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9.2.4 Drought Stress

Among all stresses drought is known as the major aspect for high loss of crop yield
(Barnawal et al. 2013), due to instability of water in plant (Pareek et al. 2009).
Various microbes act against abiotic stress. The microbiomes that are commonly
used are Raoultella planticola, Azospirillum lipoferum, Klebsiella variicola, Pseu-
domonas fluorescens, and Pseudomonas putida which can tolerate the drought stress
in maize crops (Ansary et al. 2012; Bano et al. 2013; Gou et al. 2015). Microorgan-
isms perform the essential role in the functions of maize like water potential,
stomatal closure, promotes hormonal potential by accumulating abscisic acid,
auxin, choline, gibberellin, and proline. Furthermore, the species like Azospirillum
brasilense reduce the osmotic stress in rice crops and make the better root growth
(de Souza et al. 2019). In the study of drought in wheat, some of the microbes are
used such as Rhizobium leguminosarum, Mesorhizobium ciceri, and Rhizobium
phaseoli (Hussain et al. 2014; Timmusk et al. 2014). Mostly PGPR is approached
in the pepper crop due to which rhizobia and the endosphere lead to the ability which
can tolerate the shortage of water through increment of roots (Rolli et al. 2015)
(Fig. 9.2).

9.3 Biotic Stress and Microbial Potential

Microorganisms play most essential role in reduction of biotic stress, and help in
improving plant growth and vegetative vigor and tolerate diseases (De Corato 2020).
For example, PGPR releases various significant biomolecules like 1-amino-cyclo-
propane-1-1-carboxylate (ACC) deaminase, hydrogen cyanide (HCN), phytohor-
mones, siderophores, which prevent the invasion of harmful phytopathogens (Kaur
et al. 2018). The species like Arthrobacternitroguajacolicus, B. cereus,
B. megaterium, B. mojavensis, P. azotoformans, and P. frederisksbergensis suppress
the Alternaria and Fusarium activity of wilt disease and mortality in tobacco

Fig. 9.2 Abiotic and biotic stress
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(Santhanam et al. 2015). Bacillus mojavensis is an endophytic pathogenic against
Fusarium verticillioides found in maize kernels and possesses growth-promoting
traits (Bacon and Hinton 2011). Along with disease, the pests can also be controlled
by using the microbes that contain activity like pathogen. Among all, the soil-
dwelling bacteria Bacillus thuringiensis (Bt) is most widely exploited for pest
suppression. Insects like Lepidoptera, Coleoptera, and Diptera are too degradative
for the plants and hence Bt. variants like Kurstaki, Tenebrionis, and Israelensis are
popularly employed. M. robertsii boosts the root growth of Panicum virgatum and
Phaseolus vulgaris (Sasan and Bidochka 2012). The most widely exploited endo-
phytic microbes reported are Lecanicillium and Akanthomyces (Nicoletti and
Becchimanzi 2020). The endophytic strain L. lecanii prevents the cotton plant
from aphids and Aphis gossypii (Nicoletti and Becchimanzi 2020). Lecanicillium
species act as anti-fungal against diseases which are caused by powdery mildew and
rust fungi (Jackson et al. 2012). Some fungal endophytes produce compounds which
act against pests like argot alkaloids, indole-diterpenes, lolines, and paramine
(Panaccione et al. 2014) (Fig. 9.2).

9.4 Modern Approaches for Sustainable Agriculture

Implementation of the modern approach in sustainable agriculture can help in
understanding the communications among plants and PGPR in terms of biomole-
cules and signals. Some of the OMIC tools that help in better understanding the plant
microbial interactions or the plant microbiome are: metabolome, proteome, genome,
transcriptome.

The genetic modification of microbe or plant and microbial consortia in sustain-
able cultivation can be handled by modern approaches; genomics approach is more
accurate compared to other approaches because of precise genomic sequences
without the insertion of foreign gene.

Metablomics is an advance technique in micrbiolgical world for decoding the
microbes however, its still lacking in accuracy and other various challenges. In
present situation, various modern tools and techniques like GC-MS (gas
chromatography-mass spectrometry) or LC-MS (liquid chromatography-mass spec-
trometry) are emerging whereas techniques like nuclear magnetic resonance (NMR)
are daunting (Fig. 9.3).

9.4.1 Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas System

In the current era of changing climate, the environmental effects impact negatively
on economic and agronomic level. To resolve this issue, new technologies are used
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Fig. 9.3 Latest techniques
for gene manipulation.
CRISPR clustered regularly
interspaced short
palindromic repeats, TALEN
transcription activator like
effector nuclease

in the field of biotechnology. This technique represents a new prospective for genetic
engineering and gene editing tools. It is based on the two main components: Cas
endonuclease (sgRNA) and single gRNA (Jinek et al. 2012). Its main function is the
modification of desired DNA fragment using molecular scissor (Kanchiswamy et al.
2016). About 11 CRISPR/cas systems divided as Type I-III have been reported
(Ma and Liu 2016). The most beneficial factor to use this technique is short
recognition sequence, i.e., protospacer adjacent motif (PAM) adjacent to gRNA.
In this technique, it is easy to use the sgRNA designing for target.

Cas9 is a DNA endonuclease mainly for inhibition of targeted foreign DNA using
RNA. Transcription and processing of CRISPR produce mature RISPR (cr) RNAs
that introduce the cleavage in the RNA/DNA of the attacker (Krishnakumar and
Kraus 2010; Sarma et al. 2021). CRISPR is popular for its specificity which is
sustained by gRNA. It permits the certain binding to targeted DNA. Binding of
upstream and downstream gRNA prevent the off target editing in the double nickase
system. Moreover, it is corrected by using immobilized cas9. Restriction enzyme
nuclease activity gets activated when upstream and downstream gRNA is in acces-
sibility (Guilinger et al. 2014). The addition and removal of gene of interest is done
by inclusion of DSBs in the target site (To et al. 2014). In the current scenario,
diverse computational tools are emerging such as CHOPCHOP, E-CRISPR, and
CRISPR designing tool which are used for identifying the probable sequence of
cleavage. The conclusion of this technique is that basically it helps to design the
gRNA (Hsu et al. 2013; Heigwer et al. 2014; Montague et al. 2014).

9.4.2 Gene Editing

Gene editing is the technique that has the ability to change the organism’s DNA.
This technique is useful for improve of different variety of crops so that higher yield
can be obtained, increased the stress tolerance, resist from pest and various diseases
and increased nutritional value. Crops can be improved followed by a few modifi-
cations among nucleotides present in the genome of living cells, and/or by editing
whole allele, or insertion of new gene at a target site in the genome. However, gene
editing is the best method for increasing the crops yield in the harsh climate. Genome
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editing can be done through three different ways such as alter few nucleotides,
replace an allele from already existing one, and insert new genes in predetermined
regions in the genome. Most of gene editing tools include the double strand breaks
named as CRISPR-Cas, Zinc finger nuclease (ZFN), and transcription activator like
effector nucleases (TALEN) which are corrected by non-homologous end joining
(NHEJ) or homologous directed repair (HDR) (Szankasi and Smith 1992).

9.4.3 Transcription Activator like Effector Nucleases
(TALEN)

TALEN are restriction enzymes that use TAL effector DNA binding domains to
break target DNA. An easy “code” that fits the 2-amino acid sequence in the 33–35
amino acid preserved target sequence aids selective targeting. Discovery of diverse
methods for facile synthesis and assembly of TALENs, as well as advancements in
gene editing tools, enables for productive editing at several sites. TALENs were used
to successfully knock out the HIV-resistant CCR5 gene in human cells, destroy the
disease related to rice gene (Ayala Garcia et al. 2012; Li et al. 2012), disrupt swine
LDL receptor (Carlson et al. 2012), and replace Zebra fish tyrosine hydroxylase gene
(Xiao et al. 2013).

9.5 Analytical Tools and Techniques

The techniques like NMR, LC-MS, GC-MS, HPLC, and DFI-MS, which are
approached for understanding the plant metabolome, are used for studying the
plant metabolome as they speed up metabolic profiling. The metabolome is a
group of metabolites in an organism which is used to characterize genetic and
environmental variations. Metabolomics plays a significant role in exploring
environment–gene interactions, mutant characterization, phenotyping, identification
of biomarkers, and drug discovery. Metabolomics is an approach to decipher various
metabolic networks that are linked with stress tolerance. Single analytical procedures
cannot sense all of the metabolites exist in a sample in plant metabolomics. Alter-
natively, a combination of approaches is needed to offer highest degree of metabolite
coverage (Razzaq et al. 2019). Metabolites research is generally based on the MS
techniques, such as MALDI, FTICR-MS, CE-MSIMS, GC-MS, and NMR (Bianchi
et al. 2018) (Fig. 9.4).
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Fig. 9.4 Latest analytical
techniques. GC-MS gas
chromatography-mass
spectrometry, CE-MS
capillary electrophoresis-
mass spectrometry, FTICR-
MS Fourier transform ion
cyclotron resonance-mass
spectrometry, NMR nuclear
magnetic resonance,MALDI
matrix-assisted laser
desorption/ionization

9.5.1 Gas Chromatography-Mass Spectrometry (GC-MS)

It is an analytical technique used to identify or quantify the tiny metabolites such as
amines, sterols, sugars, alcohols, amino acids, hydroxyl acids, and fatty acids (Guo
et al. 2019). Furthermore, different types of methods can also be used such as
acylation, trimethylsilylation, silylation, and alkylation. In this technique, there are
two major derivatization steps for the isolation and recognition of metabolites. The
initial step involves transforming all the carbonyl groups into corresponding oximes
through methoxyamine hydrochloride. In next step, the volatility of the derivative
metabolites increases through trimethylsilylation reaction using derivatizing
reagents such as N, O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA), and
N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) (Harvey and Vouros
2020). GC-MS is used to identify the compounds with low molecular weight that
thermally stable and volatile metabolites through chemical derivatization before
research (Hall 2006).

GC-MS contains chemical ionization (CI) and electron ionization (EI). The GC
with TOF-MS is popular technique for metabolomic profiling because it contains the
ability of faster acquisition time, improved deconvolution, and higher mass accuracy
outcomes for compounded mixtures while the GC with EI detector attire with
individual quadrupole (Q) mass analyzer contains reproducibility, resolution, robust-
ness, and high sensitivity suffer from stagnant examine agility and with deprived
accuracy of mass (Kumar et al. 2016). Concluding all the metabolite techniques the
GC-MS is the superior approach due to its better working features such as produc-
tivity, standardization, and efficiency (Tsugawa et al. 2011).
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9.5.2 Capillary Electrophoresis-Mass Spectrometry

Capillary electrophoresis mass spectrometry used to evaluate diversity of classical
metabolites on the basis of charge and size proportion ratio (Obata and Fernie 2012).
Based on mass fragmentation, this technique characterizes the metabolites and the
outcomes come up with fast and high resolution (Salem et al. 2020). Capillary
Electrophoresis-mass spectrometry technique is time saving because capillary
mass spectrometry (CE-MS) metabolite analysis imbricates with GC-MS and no
need for derivatization. This technique is implemented in fused silica capillary tubes,
the ends dipped in the buffer solutions and across which high voltage is applied
(Jorge et al. 2016). The disadvantageous features of this technique are poor mitiga-
tion time, low sensitivity, lack of reference libraries, and reproducibility (Williams
et al. 2007). The advantageous features of this technique separation are done in small
amount which is suitable for plant metabolomics (Salem et al. 2020).

9.5.3 Fourier Transform Ion Cyclotron Resonance-Mass
Spectrometry (FTICR-MS)

This approach furnishes by means of high resolving power and mass specificity out
of all kinds of mass spectrometry (Nikolaev et al. 2016). It becomes the essential
technique for proteomics and metabolomics due to its specific analytical features.
FTICR-MS is used as a part of metabolomics procedures because of its ability to
furnish ultimate elevated resolution and elevated mass specific data (Jorge et al.
2016). This technique is also consistent with multi-stage mass spectrometry ana-
lyzers. The high cost is the only barrier to widespread application in plant
metabolomics (Ahmad et al. 2018).

9.5.4 Matrix-Assisted Laser Desorption/Ionization (MALDI)

This non-targeted analytical approach is implemented for quantitative and qualita-
tive image of a broad range of metabolites (Baker et al. 2017). The componenets like
sugars, metabolites, and lipids from various parts of the plants such as leaves, stem,
roots, and flower most of the studies used the MALDI-MS technique (Jung et al.
2010). The plant tissues contain many peptides and proteins that can be analyzed
through this technique which involves the coating of a fine film of a matrix
comprising either sinapinic acid, alpha-cyano-4-hydroxycinnamic acid (CHCA),
and 2, 5-dihydroxy benzoic acid (2,5-DHBA) on the tissue surface. The penetration
of laser beam through the matrix-coated tissue generates the mass spectrum. MALDI
is the most common method for protein/metabolites imaging, merged with the broad
varieties of various mass analyzers such as Fourier ICR transform (FT-ICR), QqToF
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(quadrupole time of flight), linear and spherical ion trap. Other emerging ionization
techniques like laser ablation electrospray ionization (LAESI), desorption
electrospray ionization (DESI), and secondary ion mass spectrometry (SIMS) are
already studied (Dong et al. 2016).

9.5.5 Nuclear Magnetic Resonance (NMR)

NMR is a technique that furnishes the qualitative or quantitative data from biological
extracts used to investigate the different types of plant metabolome (Kim et al.
2011). NMR approach is based on the electromagnetic radiation, occurs when the
atomic nuclei is placed in the strong magnetic field. Currently, the NMR is an
emerging technique because chromatic separation and sample derivatization needs
not much higher requirement to perform the technique (Foroutan et al. 2019). This
technique contains various advantages such as quick analysis, non-destructive
nature, and excellent repeatability, however, it is less sensitive than MS, rather it is
pH-sensitive. Buffered solutions are usually needed at stable pH (Deborde et al.
2017; Kim et al. 2011).

9.6 OMICS Approaches

9.6.1 Genomics

The study of genetic material is known as the genomics (Mulder et al. 2017). In this
field, various combinations of recombinant DNA are used such as the DNA sequenc-
ing method, bioinformatics to sequence, analyze, and assemble its genomic and
functional structure. Using the next-generation sequencing data generates the data
that permit faster and cheaper sequencing (Grelewska-Nowotko et al. 2018). The
functional and structural genomic approaches are the divisions of genomics, the
structural genomics reveals the complete sequence DNA of an organism and it is also
the preliminary phase of genome study. Moreover, assessing the function of gene the
genome sequence is used in functional genomic (Leister 2004). Genomics provides
information about the resistant gene in the plant genome along with its location on
the chromosome. For developing the new improved crop varieties, the advance
tactics for plant biotechnology allow specified and practicable approaches for
molecular plant breeding and marker-assisted selection (Wang et al. 2017). The
disease-resistant R gene or nucleotide-binding leucine-rich repeats are detected by
the RenSeq tool. In greenhouse conditions, The Rpi-amr3i gene was found that
completely prevented phytophthora in the transgenic potatoes (Witek et al. 2016).
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9.6.2 Transcriptomics

The transcriptome approach is the complete set of RNA transcripts of an individual’s
genome under specific conditions/specific cells. The technique like microarray
analysis is used in the transcriptomic approach. The microarray quantifies the
steady-state mRNA levels which are different from the total functional protein
present in the plant tissue. Based on the RNA-sequence, comparison of
transcriptomic data allows the recognition and better knowledge of varied expressed
gene patterns, splice variants, and uncommon genes in a particular cell type (Gao
et al. 2013; Peter et al. 2018). The RNA genome of some plant viruses is hard to
analyze through standard molecular techniques. Understanding the plant virus
interaction between plant and microorganisms transcriptomic approaches is
used such as Degradome sequencing, RNA sequencing and sRNA sequencing is
increasing tremendously (Zanardo et al. 2019). The RNA sequence is performed to
analyze the differential gene expression in the resistant cotton. Plant science has
transcriptomic applications such as the progress of molecular markers, identifying
the genes and pathways related to the stress, and searching the genes which are
responsible for secondary metabolism and plant growth. Instead of pathologically
important genes, transcriptomics analyzes the crops whose sequence is still not
discovered. This approach leads to the genes that improve the concerning traits
(Agarwal et al. 2014). This technique assists in the examination of genes that are
implied in basic growth and stress mechanisms (Zan et al. 2013).

9.6.3 Proteomics

Proteomics is an appropriate approach to understand the molecular mechanism of
plant development and its growth. Proteomics is popular because it enables deep
study of the molecular mechanism of plant growth and development (Chen and
Harmon 2006) through functional and structural proteomics and protein-protein
interaction analysis (PPI), presence of the sequence of primary amino acids of
proteins, post translocation modification state, estimation of their relative amounts
and protein function characterization and structure are identified (Rhee et al. 2006).
Determining the plant reactions to peripheral incentives such as ailment and insect
infestation helps in unraveling the functions of different proteins by protein expres-
sion profile. Furthermore, it helps in understanding the resistance mechanism of
plants, mode of action for insecticides and their biodegradation, supporting in the
progress of effective, and safe agricultural pests (Van Emon 2016).



9 Decoding Beneficial Plant Microbe Association with Latest Techniques. . . 239

9.6.4 Metabolomics

It is an OMIC approach which measures all the metabolites and the molecules whose
molecular weight is lower in organisms, cells, and tissues (Castro-Moretti et al.
2020). To generate data in metabolomic approach, the nuclear magnetic resonance
and mass spectrometry are used (Winning et al. 2009). Metabolomics is easy to
study molecular mechanism of plant development under stress conditions and
normal conditions. Along with the improvements in metabolomic techniques, breed-
ing of plants have various applications and futuristic approaches toward the devel-
opment and resistance against cultivators (Fernie and Schauer 2009). The
expeditious testing of plant metabolomic responses to environmental and genetic
changes helps in screening individuals which are tolerant and resistant (Castro-
Moretti et al. 2020). Identification of several metabolites which are capable to
tolerate the stress in plants can be recognized. For instance, resistant and acquiescent
cultivation of rice are blighted with Xanthomonas oryzae pv. oryzae, which causes
leaf blight, differs strikingly for different metabolites named lipids, xanthophylls,
alkaloids, acetophenone and carbohydrates (Sana et al. 2010). The Fusarium
graminearum-resistant agmatine coumaroyltransferase (ACT) gene was detected
through the analysis of hydrocinnamic acid amide compounds. In conclusion,
culturing based on metabolomics helps in developing new plant varieties resisted
to diseases (Hong et al. 2016) (Fig. 9.5).

9.7 Conclusion

Manipulating the genome to recruit a coding sequence of interest has made it
possible to achieve/enhance desired characteristics and to suppress/delete the
unwanted traits, all thanks to latest gene editing techniques. Regular developments
and updating of latest analytical tools and techniques are additional benefits to record
the effects gene editing by analyzing the production yield and quality of metabolites.
Ongoing research and development in techniques like CRISPR/Cas and OMICS will
surely be giving us excellency in applicational benefits of these approaches. Hence,
utilizing them to decode allelopathic relationships between a plant and rhizospheric
microbiome will bring about incredible results in terms of plant growth, yield,

Fig. 9.5 OMICS technologies
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production of metabolites beneficial to humans and with great applications in
industries, better survival and sustainability of the plants to withstand biotic and
abiotic conditions.
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Chapter 10
Phosphate Solubilizing Microorganisms:
Multifarious Applications

Mahendra Kumar, Ajay Shankar, Shivani Chaudhary, and Vishal Prasad

Abstract Phosphorus is a key element for plant growth and development. Phos-
phate sources are available in soil present in both forms organic as well as inorganic.
Due to its highly reactive nature, phosphate forms insoluble complex with several
metal ions (Fe, Al, and Ca) and becomes unavailable for plant uptake and thus acts as
a major limiting factor. Phosphate solubilizing microorganisms (PSMs) such as
bacteria, fungi, and actinomycetes possess the ability to solubilize insoluble phos-
phate and convert into available form as orthophosphate ions thereby helping in
plant growth, crop yield, and simultaneously improve soil health. In addition, these
PSMs also play major role in various other key activities of environmental signifi-
cance. A few such activities include ecological restoration, heavy metal decontam-
ination and immobilization, promoting sustainable agricultural practices in saline-
alkaline and other unsuitable soils. Overall, these PSMs are evolving as worthy
candidates with multifarious application for environmental sustainability. This chap-
ter covers several aspects of phosphate solubilization and mobilization by PSMs in
the soil and further describes several other beneficial applications of these PSMs.

Keywords Phosphorus · Phosphatase · Phytase · PSM · Solubilization

10.1 Introduction

Phosphorus (P) is the second most essential macronutrient for plant growth and
development after nitrogen and it accounts for around 0.2% of plant dry weight (Lin
et al. 2006; Sharma et al. 2013). Phosphorus plays very crucial roles in several of the
metabolic processes such as synthesis of biomolecules, energy transfer reactions,
photosynthesis, cell division, plasma membrane components, signaling molecules,
nucleic acid components, flowers and seeds formation, enzyme activities regulation
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by phosphorylation of serine, histidine, aspartate, threonine, and tyrosine amino
acids (Raghothama 1999). Plants absorb P as phosphate anions (HPO4

2¯ or H2PO4
¯)

from soil (Rodriguez and Fraga 1999). However, these phosphate anions are highly
reactive in the soil and immediately form complex compound with metals ions like
Ca2+, Al3+, and Fe3+; and their precipitation reaction depends on pH of the soil. In
acidic soils, phosphate anions react with oxides and hydroxides of Al and Fe and
form insoluble complexes whereas in alkaline soils Ca reacts with these phosphate
anions and fixes the available P (Igual et al. 2001). Due to high reactivity of these
phosphate anions with metal cations, most soils are deficient in available P for the
plant uptake thus making it to act as a limiting factor for plant growth and develop-
ment in tropical and subtropical regions (Richardson 2001). To cope with this P
limitation, farmers apply synthetic fertilizer but approximately 70–90% of applied P
fertilizers get precipitated rapidly after their application in the soil (Mikanova and
Novakova 2002). Consequently, overuse of chemical fertilizer causes nutrient
imbalance and puts a burden on arable land which is a serious concern.

Soil microbiomes play essential role in P cycle. The P cycle in the biosphere is
considered as open or sedimentary because there are neither gaseous intermediary
forms nor any interchange between soil and air. This P cycle takes place by means of
oxidation and reduction of phosphorus compounds in which oxidation state of
phosphorus ranges from phosphine (�3) to phosphate (+5) (Ohtake et al. 1996;
Behera et al. 2014). PSMs eventually increase the availability of soluble phosphate
in the soil and boost plant growth and development by enhancing the efficacy of
biological nitrogen fixation or enhancing the availability of other trace element such
as iron and zinc and by producing plant growth promoting regulators (Ponmurugan
and Gopi 2006). In the recent past, these PSMs have been explored for their various
other potentials like that of heavy metal removal, ecological restoration, organic
pollutant clean-up, and others. In this chapter, we focus on several aspects of
phosphate solubilization and mobilization by PSMs in the soil and extend our
discussion further to several other beneficial applications of these PSMs.

10.2 Phosphorus in Soil

Soil is a dynamic system and an ecological niche of various biological activities. The
inorganic phosphate (Pi) available for biosynthetic purposes depends not only on the
total amount of P in the environment but also on its availability as well as solubility.
Phosphorus is one of the most important macronutrients for plant growth and
development. The concentration of soluble P in soil is generally very low, normally
at level of 1 ppm or less (Goldstein 1994). Mineral forms of P are represented in soil
primarily by minerals such as apatite, hydroxyapatite, and oxyapatite and their main
characteristic is insolubility, though they can be solubilized under suitable condi-
tions and become available for uptake by microorganisms and plants. In soil, P exists
in both organic and inorganic form. In cultivated soil around 70–80% of P exist in
inorganic form applied in the form of P fertilizers (Foth and Foth 1990). Organic
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forms of P may constitute 30–50% of the total P in most soil, although its concen-
tration may vary from as low as 5% to as high 95% (Paul and Clark 1988). Organic
form of P exists mainly as inositol phosphate (soil phytate) accounting for approx-
imately 50% of the total organic P. It is most stable form of organic P in the soil and
is synthesized by microorganisms and plants. The other organic P forms include
phosphomonoesters, phosphodiesters, phospholipids, phosphotriesters, and nucleic
acids.

10.3 Phosphate Solubilizing Microorganisms

Diverse types of microorganisms are the major players in various processes that are
linked with transformation of soil P and thus are an integral part of the soil P cycle.
Soil microorganisms play very crucial role in making the availability of P from
inorganic and organic pool of the total soil P by solubilization and mineralization
(Hilda and Fraga 1999). Evidences of naturally occurring rhizospheric PSMs date
back to 1903 (Khan et al. 2007). Microorganisms involved in phosphate solubiliza-
tion consist of mycorrhizal fungi, bacteria, and actinomycetes, among the microbial
population in soil, phosphate solubilizing bacteria (PSB) constitute 1–50%, while
phosphate solubilizing fungi (PSF) are only 0.1–0.5% in solubilization potential
(Chen et al. 2006). A considerably higher number of PSB are present in the
rhizospheric soil than in non-rhizospheric soil (Raghu and Mac Rae 1966). The
PSMs found in the plant rhizosphere are reported to be metabolically more active
(Vazquez et al. 2000). Population of PSB in soil depends on its physical and
chemical properties, organic matter, and P content (Kim et al. 1998). Strains from
bacterial genera Pseudomonas, Bacillus, Rhizobium, Enterobacter along with Pen-
icillium and Aspergillus from fungi are the most powerful phosphate solubilizers
(White la 2000). Bacteria such as Bacillus megaterium, Bacillus circulans, Bacillus
subtilis, Bacillus polymyxa, Bacillus sircalmous, Pseudomonas striata, and
Enterobacter are referred as most important phosphate-solubilizing strains (Kucey
et al. 1989). Among the soil bacterial populations, ectorhizospheric strains from
Pseudomonas and Bacillus and endosymbiotic rhizobia have been observed as
effective phosphate solubilizers (Igual et al. 2001). A fungus Arthrobotrys
oligospora has also been reported for its ability to solubilize the phosphate rocks
(Duponnois et al. 2006).

10.4 Need of Phosphate Solubilizing Microorganism

Chemical phosphatic fertilizers are made by a highly energy-intensive process that
consumes energy worth US $4 billion per annum in order to fulfill the global needs
(Goldstein et al. 1993). Further almost 75–90% of applied phosphatic fertilizers are
precipitated by certain metal ions due to complex formation in the soil and it has
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been estimated that the precipitated phosphates in agricultural soils are sufficient to
sustain crop production worldwide for nearly 100 years (Goldstein et al. 1993).
Microorganisms are reported to play very crucial role in soil P cycle and relocating P
between different soil P pools (Prasad et al. 2018). Hence it is evident to explore
sources of phosphate solubilizers. Under different soil and agro-climatic conditions,
these PSMs have proved to be an economical alternative to the more expensive
chemical phosphatic fertilizers with greater agronomic utility (Ngalimat et al. 2021).
The PSMs increase the availability of usable form of phosphate and can improve
plant growth and soil health by producing other plant growth promoting substances,
increasing biological N-fixation and enhancing the availability of other important
trace element like iron and zinc (Ponmurugan and Gopi 2006; Nath et al. 2018).

10.5 Mechanisms of Phosphate Solubilization

There are various mechanisms such as production of low molecular weight organic
acids, lowering of pH through H+ extrusion, production of inorganic acids, and
secretion of different enzymes like phosphatases, phytases, and phosphonatases for
solubilizing the insoluble phosphate by PSMs. The various ways of phosphate
solubilization by PSMs are summarized in Fig. 10.1. Based on the source of
insoluble P, the phosphate solubilization mechanism can be categorized into two
categories, i.e., inorganic P solubilization and organic P solubilization (Surange et al.
1995; Dutton and Evans 1996; Nahas 1996).

Fig. 10.1 Various mechanisms of phosphate solubilization by phosphate solubilizing
microorganisms
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10.5.1 Inorganic Phosphate Solubilization

The principal mechanisms of inorganic phosphate solubilization involve production
of low molecular weight organic acids (Sperber 1957; Goldstein 1995; Buch et al.
2008). The organic acids produced by PSMs include acetic acid, malic acid, oxalic
acid, succinic acid, citric acid, gluconic acid, 2-ketogluconic acid, tartaric acid, and
many more (Kalayu 2019). The secretion of these organic acids by the microbial
cells brings about acidification of its surroundings. These organic acids produced are
consequently changed into ionic forms liberating proton (H+) which replaces the
metal cations like Fe3+, Al3+, and Ca2+ from the insoluble phosphate complex and
makes available the soluble phosphate for plant uptake; or sometimes carboxylic
anions chelate cations and release phosphate anion (Rodriguez and Fraga 1999;
Hwangbo et al. 2003; Chen et al. 2006; Lin et al. 2006; Park et al. 2009; Kumar and
Rai 2015; Prasad et al. 2018). Among the various organic acids produced by PSMs,
gluconic acid and keto-gluconic acid are considered as major ones for P solubiliza-
tion by the lowering of pH in the rhizosphere. The pH of rhizosphere is also
supposed to be lowered through production of proton/bicarbonate release and
gaseous (CO2/O2) exchange. The bacterial strains which produce the above-
mentioned as well as several other organic acids are reported to belong to Pseudo-
monas (Park et al. 2009), Enterobacter (Hwangbo et al. 2003; Kumar et al. 2014),
and Burkholderia (Lin et al. 2006). Based on several studies where cloning and
characterization of the genes involved in organic acids production has been carried
out, it had been concluded that genes involved directly or indirectly in the synthesis
of organic acid or regulation of the expression of genes responsible for organic acid
synthesis are also responsible for inorganic phosphate solubilization (Rodriguez
et al. 2006; Buch et al. 2010; Chhabra et al. 2013). Some researchers also believe
that proton translocation ATPase play an important role in P mineralization as it
helps in proton extrusion to the outer surface as well as proton exchange for cation
uptake (Illmer and Schiner 1995). The organic acids produced by PSMs in the
medium can be identified and measured by using high performance liquid chroma-
tography technique (Park et al. 2009; Kumar and Rai 2015). Furthermore, the other
mechanism of inorganic P solubilization takes place as a result of nitrogen assimi-
lation (nitrate formation), evolution of carbon dioxide, and oxidation of sulfur. These
processes lead to the formation of nitric acid, carbonic acid, and sulfuric acid
(Sperber 1957). However, the efficiency and their impact on release of bound P in
soils seem to be less than organic acid production. The concept of organic acid
production and phosphate solubilization hardly have any correlation between the
concentration of organic acid and amount of solubilized phosphate in the culture
medium hence acidification could not be the sole mechanism of inorganic phosphate
solubilization (Parks et al. 1990). Solubilization of calcium phosphate has been
reported to occur even in the absence of organic acid (Illmer and Schiner 1992).
Furthermore, siderophores and exopolysaccharide synthesized by PSMs bring out
locked phosphate into soluble form mainly by charge-related interaction (Yi et al.
2008; Sharma et al. 2013). As can be seen from above interpretations the organic
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Table 10.1 Principal organic acids by phosphate solubilizing microorganisms for phosphate
solubilization

PSMs Organic acid References

Bacteria

Arthrobacter sp. Malonic acid, oxalic acid Banik and Dey
(1982)

Enterobacter
intermedium

2-ketogluconic acid Zaidi et al.
(2009)

Azospirillum sp. Citric acid, fumaric acid succinic acid, gluconic acid Kalayu (2019)

Enterobacter
ludwigii

Acetic acid, gluconic acid, succinic acid Tahir et al.
(2013)

Pseudomonas
cepacia

Gluconic acid, 2-ketogluconic acid Zaidi et al.
(2009)

Bacillus firmus Oxalic acid Banik and Dey
(1982)

Bacillus
megaterium

Gluconic acid Chen et al.
(2006)

Pseudomonas
fluorescence

Citric acid, malic acid, tartaric acid, gluconic acid Zaidi et al.
(2009)

Fungus

Aspergillus flavus Citric acid, gluconic acid, oxalic acid, succinic acid Rashid et al.
(2004)

Aspergillus
foetidus

Citric acid, gluconic acid, oxalic acid, succinic acid,
tartaric acid

Zaidi et al.
(2009)

Aspergillus
japonicus

Citric acid, gluconic acid, oxalic acid, succinic acid,
tartaric acid

Zaidi et al.
(2009)

Penicillium sp. Citric acid, gluconic acid, glycolic acid, malic acid,
oxalic acid, succinic acid

Sane and Mehta
(2015)

Penicillium
radicum

Gluconic acid Fenice et al.
(2000)

Penicillium
rugulosum

Citric acid, gluconic acid Reyes et al.
(2002)

acid as well as chelating and reducing molecules produced by PSMs are the key
factors responsible for inorganic phosphate solubilization and these organic acids are
also utilized as an alternate source of energy by PSMs resulting in the improved
biomass yield (Buch et al. 2010; Kumar and Rai 2015). Table 10.1 shows various
organic acids produced different PSMs.

10.5.2 Organic Phosphate Solubilization

The process of solubilization of organic phosphate is also known as mineralization
of organic phosphate. The mineralization of organic phosphate is performed by
different types of enzymes mainly phosphatases, phytases, and phosphonatases.
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10.5.3 Phosphatase

Phosphatase (Phosphohydrolase) is an enzyme that acts by hydrolyzing
phosphoester and phosphoanhydride bonds of organic matter. Phosphatase enzymes
are classified into two types on the basis of their optimum pH: alkaline phosphatase
(pH> 7) and acidic phosphatase (pH< 6). Their predominance is determined by pH
of soil; in acidic soil acid phosphatases are predominant while in neutral and alkaline
soil alkaline phosphatases are predominant (Rodriguez and Fraga 1999; Sharma
et al. 2013). Table 10.2 shows some of the PSMs reported to exhibit acid and
alkaline phosphatase activities.

10.5.4 Phytase

Phytase is an enzyme which acts on inositol phosphate component of phytate and
releases utilizable phosphate. Phytate is the major source of inositol phosphate and
accounts for more than 50% of organic phosphate form present in the soil
(Rodriguez et al. 2006; Prasad et al. 2018). Phytate is synthesized by microorganism,
plant seeds, and pollen grains (Rodriguez and Fraga 1999). Primarily phytases were
used to improve animal nutrition; nevertheless, the contemporary approach may be
the use of phytase secreting PSMs to improve plant growth and development
(Richardson and Simpson 2011). Arabidopsis plants genetically engineered with
phytase gene from Aspergillus niger were capable to procure phosphate from
phytate. The growth and P content of the plants were equivalent to those plants
supplied with soluble phosphate (Richardson and Simpson 2011). Table 10.3 enlists
several of the phytase producing PSMs.

Table 10.2 List showing PSMs with phosphatase activity

Enzyme Microorganism References

Acid phosphatase Emericella rugulosa Yadav and Tarafdar (2007b)

Serratia marcescens Hameeda et al. (2006)

Chaetomium globosum Hameeda et al. (2006)

Serratia marcescens Ryu et al. (2005)

P. fluorescens Ryu et al. (2005)

Burkholderia cepacia Unno et al. (2005)

Pseudomonas sp. Richardson et al. (2001)

Enterobacter aerogenes Thaller et al. (1995)

Enterobacter cloacae Thaller et al. (1995)

Citrobacter freundii Thaller et al. (1995)

Alkaline phosphatase Bacillus flexus Patel (2016)

Bacillus megaterium Priya et al. (2014)

E. coli Bhattacharjee et al. (2018)
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Table 10.3 List showing PSMs with phytase activity

Enzyme Microorganism References

Phytase Discosia sp. Rahi et al. (2009)

Rhizobacteria Hariprasad and Niranjana (2009)

Rhizobacteria Patel et al. (2010)

Serratia marcescens Hameeda et al. (2006)

Pseudomonas sp. Hameeda et al. (2006)

Emericella rugulosa Yadav and Tarafdar (2007a)

Bacillus mucilaginous Li et al. (2007)

10.5.5 Phosphonatases

Phosphonatases and C-P lyases hydrolyze C-P bond of organo-phosphonates and
release phosphate (Rodriguez et al. 2006; Prasad et al. 2018). However,
phosphonatases are not the major contributors in soil due to limited availability of
their substrates (Rodriguez et al. 2006).

10.6 Application of Phosphate Solubilizing Microorganisms

There are several very important applications of PSMs in the arena of agriculture and
allied activities. The PSMs play considerable role in the various ways such as plant
growth and development promoters, salinity tolerance, drought tolerance, heavy
metal tolerance, soil health repair, and ecological restoration in the management of
agriculture (Malla et al. 2004; Prasad et al. 2018; Chhabra 2019). A few such
applications of PSMs are discussed below.

10.6.1 Phosphate Solubilizing Microorganisms as Plant
Growth Promoters

There are many PSMs present in soil but their numbers are not enough to compete
with other microorganisms commonly found in rhizosphere, therefore the amount of
phosphate released by these PSMs are generally not in enough quantity which is
required by plants for better growth and development. Therefore, inoculation with
selected microorganisms at a much higher concentration than that normally found in
soil is necessary to harness the benefit of their phosphate solubilizing ability for plant
yield increment (Singh and Kapoor 1998; Peix et al. 2001; Bharadwaj et al. 2008;
Babu et al. 2015). The effectiveness of PSMs under natural conditions depends on its
ability to persist and proliferate in the soil. In general, the density or population of
applied PSM decreases rapidly upon introduction into soil due to various
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environmental factors (Ho and Ko 1985). The various factors that affect the survival
of the inoculant PSM include abiotic and biotic factors. Abiotic factors include
features such as soil composition, physiological condition, temperature and soil
moisture (Bashan et al. 1995; Prasad et al. 2018). The biotic factors such as
competition, predation, and root growth are the ones that facilitate substrate avail-
ability to the inoculated microorganisms (Mendes et al. 2013). These PSMs enhance
plant growth and yield by two mechanisms, i.e., direct and indirect mechanism. The
direct mechanism of growth promotion involves making the availability of nutrient
by phosphate solubilization, N-fixation, and production of phytohormones
(Rodriguez and Fraga 1999; Sharma et al. 2013; Chhabra 2019). Indirect mechanism
of growth promotion involves synthesis of antibiotics and siderophores which help
in prevention of deleterious effects of pathogenic microorganism (Rodriguez and
Fraga 1999; Sharma et al. 2013; Chhabra and Dowling 2017). Several researches
have been conducted to evaluate the biofertilization ability of different PSMs to
enhance crop productivity in different parts of the world. Growth and crop produc-
tion of mung bean was increased with the inoculation of Bacillus circulans (Singh
and Kapoor 1998), common bean with Burkholderia cepacia (Peix et al. 2001),
potato with Pseudomonas, Stenotrophomonas, Arthrobacter, Microbacterium, and
Pantoea (Bharadwaj et al. 2008; Babu et al. 2015). Enhanced production of peanut
(Dey et al. 2004), chickpea (Zaidi et al. 2003), radish (Antoun et al. 1998), maize
(Hameeda et al. 2008; Kaur and Reddy 2014), rice (Vasudevan et al. 2002), tomato
(Ghosh et al. 2015), and sugarcane (Sundara et al. 2002) has also been demonstrated
with the use of different PSMs as biofertilizers.

10.6.2 Phosphate Solubilizing Microorganisms in Ecological
Restoration and Phosphorus Cycling

Degraded ecosystems are characterized by extremely low levels of soil nutrients
including P (Li 2006). Restoring these ecosystems requires the recovery of soil P
cycling (Huang et al. 2012). Microbes play an integral role in soil P cycling, as they
mediate bioavailable soil P (Rodriguez and Fraga 1999; Richardson and Simpson
2011). A global meta-analysis of 173 terrestrial studies revealed that plant responses
in terrestrial ecosystems to P addition were not significantly different from those to N
addition (Elser et al. 2007). Despite such an observation, substantial variations in
plant responses to P and/or N addition were found between sub-habitats (e.g., forest,
grassland, tundra, and wetland) within terrestrial environments (Elser et al. 2007),
indicating that whether the soil is more limited to P or N is dependent on the specific
ecosystem considered. Further, another global meta-analysis of 50 terrestrial studies
showed that the plant responses in terrestrial ecosystems to P addition were more
pronounced under elevated than under ambient N, indicating that P limitation in
terrestrial ecosystems will become more pronounced under increasing atmospheric
N deposition in the future (Li et al. 2016). Therefore, mitigating terrestrial P
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Table 10.4 List of PSMs with active role in ecological restoration

Microorganism Process References

Arthrobacter sp. P cycling Banik and Dey (1982)

Enterobacter intermedium P cycling Zaidi et al. (2009)

Azospirillum sp. P cycling Kalayu (2019)

Enterobacter ludwigii P cycling Tahir et al. (2013)

Pseudomonas cepacia P cycling Zaidi et al. (2009)

Bacillus firmus P cycling Banik and Dey (1982)

Bacillus megaterium P cycling Chen et al. (2006)

Pseudomonas fluorescence P cycling Zaidi et al. (2009)

limitation is increasingly recognized as a major priority in ecosystem management
and restoration (Penuelas et al. 2013). A set of PSMs-derived enzymes, such as acid
phosphatase, alkaline phosphatase, phytase, phosphonatase, and C-P lyase are able
to release free orthophosphate ions from recalcitrant organic P forms (Rodriguez and
Fraga 1999; Richardson and Simpson 2011) and a variety of organic acids, including
citric acid, formic acid, gluconic acid, malic acid, oxalic acid, are involved in the
microbial solubilization of recalcitrant inorganic P forms (Rodriguez and Fraga
1999; Richardson and Simpson 2011). Several of the PSMs involved in ecological
restoration are listed in Table 10.4.

10.6.3 Phosphate Solubilizing Microorganisms
in Sustainable Agriculture

Mostly the challenge of P deficiency in agriculture is addressed by the application of
P fertilizers. However, the majority of the applied phosphatic fertilizer is not
available to plants and the addition of inorganic fertilizers in excess of the amount
that is commonly employed to overcome this effect can lead to environmental
problems such as groundwater contamination and waterway eutrophication (Kang
et al. 2011). It is therefore of great interest to investigate management strategies that
are capable of improving phosphate fertilization efficiency, increase crop yields, and
reduce environmental pollution caused by phosphate drainage from the soil. Soil
microorganisms enhance plant nutrient acquisition. They are involved in a wide
range of biological processes including the transformation of insoluble soil nutrients
(Babalola and Glick 2012). Several PSMs are capable of solubilizing and mineral-
izing insoluble soil phosphorus for the growth of plants. In the natural environment,
numerous PSMs in the soil and rhizosphere are effective at releasing phosphate from
bound soil phosphate through solubilization and mineralization (Bhattacharyya and
Jha 2012). Several salt-tolerant or halophilic soil microorganisms which also exhibit
the ability to solubilize insoluble phosphate holds promises for facilitation and
development of saline-alkali soil-based agriculture (Zhu et al. 2011). The inoculation
of soil or crop with PSMs is therefore a promising strategy for the improvement of
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Table 10.5 List of PSMs involved in promotion of sustainable agriculture

PSM Test crop Result References

Aspergillus niger Wheat Improved growth Xiao et al. (2013)

Serratia sp. Wheat Increased growth Swarnalakshmi
et al. (2013)

Aspergillus awamoriS29 Mung
bean

Increased plant growth, total P
content, and plant biomass

Jain et al. (2012)

Azotobacter chroococcum
and Bacillus subtilis

Wheat Enhanced productivity of
wheat

Kumar et al.
(2014)

P. favisporus TG1R2 Soybeans Increased dry biomass Fernandez et al.
(2011)

plant absorption of phosphate and thereby reducing the use of chemical fertilizers
that have a negative impact on the environment (Alori et al. 2012). Mobilization of
soil inorganic phosphate and increasing its bioavailability for plant use by harnessing
soil PSM promotes sustainable agriculture, improves the fertility of the soil, and
hence increases crop productivity. Various PSMs which imparted positive effects on
crop production and promoted sustainable agriculture are listed in Table 10.5.

10.6.4 Phosphate Solubilizing Microorganisms
in Immobilization of Heavy Metals

Soil contaminated with heavy metals has become a severe problem in many parts of
the world (Li et al. 2014). Heavy metals are naturally occurring ingredient of the
earth’s crust (Pan et al. 2016); however, there are various anthropogenic activities,
like ore mining, e-waste recycling, and sewage irrigation that had greatly increased
the concentrations of heavy metals in the soil. Exposure of human to soil-heavy
metals mainly includes the leaching of heavy metals from soil into water and the
consumption of edible plants grown in the contaminated soil (Cao et al. 2009).
Addition of different kinds of phosphate-containing compound into contaminated
soil to immobilize heavy metals (like Pb, Zn, Cu, and Cd) has been well documented
because of the formation of highly insoluble metal–phosphate precipitates (Liang
et al. 2014), especially Pb–phosphate minerals, pyromorphites [Pb5(PO4)3X, where
X ¼ Cl¯, OH¯, F¯], which are the most thermodynamically stable and insoluble Pb
minerals over a broad pH and EC range. The efficiency of phosphate addition-
induced heavy metals immobilization depends on the solubility of both the heavy
metals and the added phosphate (Park et al. 2011a). Although soluble phosphate
compounds like sodium-, potassium-, and ammonium phosphates having high water
solubility had been widely applied to remediate heavy metals contamination and had
achieved high immobilization efficiency, they are relatively more expensive than
insoluble phosphate compounds and are more prone to cause eutrophication (Park
et al. 2011a, b). In soils, PSMs could produce organic acids and phosphate enzymes
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Table 10.6 Heavy metals immobilizing PSMs

Microorganism Heavy metals References

Achromobacter xylosoxidans Ax10 Cu Ma et al. (2009)

Azotobacter chroococcum HKN5,
Bacillus megaterium HKP-1,
Bacillus mucilaginosus HKK-1

Pb and Zn Wu et al. (2006)

Bacillus sp. PSB10 Cr Wani and khan (2010)

Bacillus subtilis SJ-101 Ni Zaidi et al. (2006)

Pseudomonas sp. M6, Pseudomonas jessenii
M15

Ni, Cu, and Zn Rajkumar and Freitas
(2008)

to enhance the solubilization of insoluble phosphate compounds (Chen et al. 2006),
and hence, PSMs have been widely used as inoculants to increase soil available
phosphate contents and thus act as a good heavy metal immobilizer (Rodriguez and
Fraga 1999). Microbial-immobilized remediation technology refers to using soil
microorganisms to immobilize heavy metals, causing heavy metals to precipitate
or be adsorbed and fixed in the soil, reducing their absorption by plants (Han et al.
2018). PSMs are capable of producing siderophore which is a metal-binding ligand
molecule and chelates with several heavy metals such as cadmium, nickel, lead,
arsenic, and many others that can help in adsorbing or absorbing these heavy metals
from the soil and minimize the toxic effect of heavy metal accumulation by
immobilizing them (Ma et al. 2009). Heavy metal-immobilizing bacteria have
been widely studied and applied as excellent heavy metal passivators. Heavy
metal-immobilizing PSMs not only immobilize heavy metals, alter the existing
state of heavy metals in soil, and reduce the absorption of heavy metals by crops,
but also promote the growth of crops and improve the quality of crops (Zhao et al.
2019). PSMs increased the growth and heavy metal resistance of vegetables by
producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carbox-
ylate deaminase, and arginine decarboxylase (Teng et al. 2019). Table 10.6 enlists
some of the heavy metal immobilizing microorganisms. To cope with stress caused
by heavy metals, microorganisms have evolved mechanisms to overcome toxicity,
including metal reduction, cell permeability reduction, and extracellular isolation
(Noisangiam et al. 2011).

10.7 Conclusion

The current overuse of synthetic phosphatic fertilizers poses greater threats to the
environment and also creates soil nutrient imbalance. Therefore, the application of
PSMs is an eco-friendly and economically viable and efficient approach for the
utilization of fixed phosphate present in the soil. Application of PSMs on one hand
reduces the agricultural input cost by curtailing the use of highly priced synthetic
fertilizers and on the other gives a more organic and natural crop yield. These PSMs
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with their additional qualities like that of heavy metal and salinity tolerance hold
great potential for future of environmental sustainability.
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Chapter 11
Bacillus and Streptomyces for Management
of Biotic Stresses in Plants for Sustainable
Agriculture

A. Manikandan, R. Anandham, I. Johnson, R. Krishnamoorthy,
M. Senthilkumar, R. Raghu, N. O. Gopal, and P. K. Mukherjee

Abstract Plant pathogens cause various crop plant diseases and are considered one
of the biotic stresses, accounting for 20–40% of economic losses. Chemical-based
treatments are currently believed to be an effective and reliable agricultural man-
agement technique for disease control. Agrochemicals are highly effective and easy
to use, yet they pose a danger to the ecosystem. The use of microbial agents to
combat plant diseases is a good alternative to the use of chemicals, which are
harmful to the environment and human health. Members of the Bacillus and Strep-
tomyces genera are two of the most frequently used biocontrol agents to suppress
plant diseases. Plant growth-promoting (PGP) characteristics are shared by both
bacterial species. This chapter comprehensively reports the mechanisms used by
Bacillus and Streptomyces in their behavior as biocontrol and PGP agents. Also
discussed are the various commercial formulations made from these genera. The
application of biocontrol agents made from viable microbial strains to the field bodes
well for successful management of the disease for sustainable agriculture.
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11.1 Introduction

11.1.1 General

Numerous biotic stresses that plants frequently experience are having an impact on
crop growth and yields. The existence of numerous pathogens, pests, and parasites is
what causes biotic stresses. Around 20–40% of the yield losses occur worldwide
only through the diseases caused by several plant pathogenic fungi, bacteria, viruses,
and various pests. Microorganisms could play an important role in adaptation
strategies and increase of tolerance to biotic stresses in agricultural plants
(Sobiczewski et al. 2017). Plant growth-promoting rhizobacteria (PGPR) mitigate
most effectively the impact of biotic stresses on plants through the production of
exopolysaccharides, biofilm formation, hydrolytic enzymes, lipopeptides,
siderophore production of volatile organic compounds, degradation of the ethylene
precursor ACC by bacterial ACC deaminase, and induction of systemic resistance in
plants (Prasad et al. 2015). Bacillus and Streptomyces genera are widely used as the
biological control agents due to their prevalence in the agro-ecological region’s
natural environment and a wide range of biocontrol mechanisms (Manikandan et al.
2022). In this chapter, the mode of actions, production of metabolites, and improve-
ment of biocontrol mechanisms by gamma-induced mutations and effective formu-
lations of these biocontrol agents are discussed.

11.2 Biotic Stress

Numerous biotic stresses that plants frequently experience are having an impact on
crop development and yields. Plant infections and biotic stresses are caused by the
abundance of pathogens, pests, and parasites. The major plant fungus is necrotrophic
(killing the host by producing toxins, for example, Sclerotinia sclerotiorum and
Fusarium spp.) and biotrophic (having a long-term relationship with the host for
feeding, for example, Basidiomycota and Ascomycota groups). They can cause leaf
spots, cankers, and vascular wilts in plants (Laluk and Mengiste 2010; Doughari
2015; Sobiczewski et al. 2017). The plant pathogenic bacteria also cause many
diseases and exhibit various types of symptoms which include galls, overgrowths,
soft rots, wilts, blights, leaf spots, and cankers. Nematodes also cause major soil-
borne diseases. They feed plant parts and cause stunted growth, wilting, and nutrient
deficiency (Lambert and Bekal 2002; Bernard et al. 2017; Osman et al. 2020).
Likewise, viruses also cause chlorosis and stunted growth in plants (Pallas and
García 2011). On the other hand, insects and mites can cause damage to plants by
feeding and also act as a vector for various bacteria and viruses (Schumann and
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D’arcy 2006). Plants have developed various immune systems to overcome biotic
stress (Rejeb et al. 2014). All the plants are having first-line defense mechanisms to
avoid pathogen and insect attacks, which also consist of physical barriers such as
wax, trichomes, and cuticle layer. Plants are also able to produce metabolite com-
pounds to protect from pathogens (Taiz and Zeiger 2006; Hammond-Kosack 2000).
Furthermore, stress reduction can be improved by having a detailed understanding of
the molecular mechanisms underpinning plant defense systems (Cheng et al. 2012;
Wang et al. 2019; Daayf et al. 2012).

Around 20–40% of the yield losses occur worldwide only through the diseases
caused by several plant pathogenic fungi, bacteria, viruses, and various pests
(Cabral-Pinto et al. 2020). To overcome these pests and diseases, farmers are
following various approaches to suppress the plant diseases. For control of plant
pathogens, they majorly depend on chemicals which include fungicides, pesticides,
and nematicides that arrest pests and plant pathogens. These chemicals effectively
control plant diseases; however, the excessive use of these chemicals could lead the
pathogen resistance against these chemicals and also harm the environment and
human health (Tilman et al. 2002). For example, captan, a fungicide which is banned
in Mexico because of its carcinogenic effect (González et al. 2018). On the other
hand, DTT (dichlorodiphenyltrichloroethane), which is a synthetic pesticide effec-
tively used to control plant pathogens, was found to cause endocrine disorders and
genotoxicity in humans (Cohn et al. 2007). Hence, there is a need for the develop-
ment of alternative plant pathogen control strategies. Currently, the plant patholo-
gists focus their research on developing a new alternative that could eventually
replace the usage of chemicals in plant disease control. Apart from this, cultural
methods such as crop rotation and the system of planting in different plots might
reduce the occurrence of pests and diseases; however, these are not completely
effective (Sainju et al. 2016). Biocontrol agents as a promising solution to reduce
the adverse effects on agricultural yield and quality caused by various diseases
minimize the resistance of plant pathogens and reduce contamination of environ-
ments. This helps produce safe foods while also lowering agricultural production
costs (Tena et al. 2015).

The first biological control agent was used in the early 1800s, to control different
crop diseases by using living organisms or their byproducts (Badii and Abreu 2006).
The significance of a broad group of rhizosphere microorganisms in the management
of plant pathogenic organisms has been explored in recent years. These rhizosphere
organisms act as the plant’s front line of defense against plant pathogens, preventing
their development in the roots (Tejera-Hernández et al. 2011). Various direct and
indirect biocontrol methods have been observed in various biological control agents.
Bacillus and Streptomyces genera are widely used for biocontrol purposes because of
their abundance in nature in the agroecological region and owing to various biocon-
trol mechanisms shown in Fig. 11.1 (Jog et al. 2012; Tejera-Hernández et al. 2011).
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Fig. 11.1 PGPR and biocontrol mechanisms of Bacillus and Streptomyces

11.3 Bacillus and Streptomyces

Bacillus is a genus of the Gram-positive group, rod-shaped, and spore-forming
bacterium belonging to the phylum Firmicutes which is found in mostly all types
of environments including soil rhizosphere region. Cultivation-dependent method
was conducted by Vargas-Ayala et al. (2000) and the results showed the occurrence
of several isolates that were phenotypically and phylogenetically related species of
Bacillus subtilis and Bacillus cereus with the range of 103 to 106 (CFU)/g of soil.
Bacillus is considered one of the most important and widely used biocontrol agents
against various groups of plant pathogens. It also produces numerous types of plant
growth-promoting characters and various hydrolytic enzymes and lipopeptides
which help to inhibit the plant pathogenic organisms and also improve the plant
growth and health. It forms endospore under the adverse climatic condition to remain
viable in all climatic conditions (Teixeira et al. 2010; Fira et al. 2018; Shafi et al.
2017; Verschuere et al. 2000; Cavaglieri et al. 2005).

Streptomyces is a group of Gram-positive, filamentous, aerobic, and non-motile
bacterium placed under the phyla of Actinobacteria, which are usually persistent in
soil; it accounts the ~10% of the total microbial load in the soil (Samac et al. 2003;
Hayakawa et al. 2004; Law et al. 2017; Schrey and Tarkka 2008). Streptomyces is
known for the production of a plethora of secondary metabolites including antibi-
otics; however, in recent years attention has been paid towards plant growth-
promoting promoting (PGP) characteristics such as IAA production, phosphate



11 Bacillus and Streptomyces for Management of Biotic. . . 267

solubilization, siderophore production, volatile organic compounds (VOC), and
induced systematic responses (ISR) (Jog et al. 2012; Lehr et al. 2007, 2008).
Many Streptomyces strains have been used for the control of various plant pathogens
(Hanif et al. 2019; Hue et al. 2001; Inbar et al. 2005; Gopalakrishnan et al. 2014).

11.4 Antibiotics from Bacillus and Streptomyces

Bacillus species can produce numerous types of antimicrobial compounds. In their
total genomes, around 4–5% is employed only for the synthesis of antimicrobial
compounds (Stein 2005). Based on the biosynthesis nature, antimicrobial substances
are classified into two categories. One is lipopeptides, which are produced
non-ribosomally. Another one is bacteriocin, which is produced ribosomally
(Arnison et al. 2013; Ongena and Jacques 2008). The antimicrobial compounds
produced by the Bacillus sp. include bacillomycin, subtilin, bacilysin, mycobacillin,
iturin, surfactin, and fengycin, which have both antifungal and antibacterial activi-
ties. Recently lipopeptides are receiving more attention due to their nature of wide
antimicrobial ability, less toxic, easily degradable, and stable even in high temper-
atures (Meena and Kanwar 2015). Lipopeptides are cyclic, low molecular weight
compounds, which are divided into three major groups, namely, fengycin, surfactin,
and iturin (Kakinuma et al. 1969; Vanittanakom et al. 1986).

Fengycin is majorly produced by the B. subtilis and B. amyloliquefaciens (Steller
and Vater 2000; Hanif et al. 2019). Fengycin helps in plant growth (Deleu et al.
2005) and inhibits various plant pathogens including Fusarium oxysporum, F.
oxysporum Forma specialis spinaciae, F. solani, F. solani f. sp. radicicola, F.
verticillioides, F. graminearum, and Plasmodiophora. Surfactin is produced by
most of the Bacillus spp. and it is having antibacterial and antifungal properties
(Hanif et al. 2019; Hue et al. 2001). Surfactin has arrested the growth of various
fungal pathogens such as F. verticillioides, F. verticillioides, F. oxysporum, and
Colletotrichum gloeosporiodes (Fan et al. 2005; Dunlap et al. 2011; Snook et al.
2009; Geissler et al. 2017). Iturin is also mostly produced by the B. subtilis and B.
amyloliquefaciens species (Ongena and Jacques 2008; Nasir and Besson 2012). It
also shows antifungal activity against the Colletotrichum, Botrytis, F. graminearum,
F. oxysporum, Rhizoctonia solani, and Penicillium (Meena et al. 2014; Calvo et al.
2019; Zalila-Kolsi et al. 2016; Fujita and Yokota 2019). Surfactin and fengycin
lipopeptides also induce the systemic resistance of plants (Cawoy et al. 2014). A
dual plate assay was carried on Bacillus spp. against the Macrophomina phaseolina
pathogen. Results showed the stunted hyphal growth in the contact point of the
pathogen near the antagonistic organisms (Fig. 11.2).

Streptomyces is known for the production of versatile types of antibiotic com-
pounds, including antibacterial, antifungal, antiviral, insecticides, and herbicides
(Sharma et al. 2014). Oxytetracycline is produced from Streptomyces rimosus and
showed antagonistic activity against fire blight (Erwinia amylovora). Streptomycin
from Streptomyces griseus prevents plant diseases caused by Pseudomonas tabaci,



268 A. Manikandan et al.

Fig. 11.2 Dual plate assay of Bacillus spp. against the Macrophomina phaseolina pathogen. (a)
SEM image was taken in the normal hyphal region of pathogen. (b) SEM image was taken in the
pathogen and antagonistic contact region

Xanthomonas oryzae, and Xanthomonas citri. Blasticidin-S of Streptomyces
griseochromogenes inhibits the rice blast (Pyricularia oryzae). Kasugamycin pro-
duced by Streptomyces kasugaensis arrests the leaf spot in sugar beet and mycostop
produced by Streptomyces sp. K61 inhibits the damping-off caused by Rhizoctonia
solani, Fusarium, and Phytophthora. Actinovate produced by S. lydicus WYEC
108 inhibits the soil-borne diseases, namely, Pythium, Fusarium, Phytophthora,
Rhizoctonia, and Verticillium (Aggarwal et al. 2016). Lipopeptides and antibiotics
produced from different Bacillus spp. and Streptomyces spp. are listed in Table 11.1.

11.5 Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOCs) are a group of odorous, low molecular weight
(<300 Da) secondary metabolites produced by soil microorganisms. Many VOCs
can control the plant pathogens and induce the systemic resistance in the plants
(Kanchiswamy et al. 2015; Raza et al. 2016; Tahir Ha et al. 2017). Major chemical
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Table 11.1 Lipopeptides and antibiotics produced from Bacillus spp. and Streptomyces spp.

Stains
name

Lipopeptide/
antibiotic

Bacillus
amyloliquefaciens

YN201732 Bacillomycin D Fusarium solani Jiao et al.
(2021)

B. velezensis S499,
FZB42
QST713

Fengycins
Iturins

Rhizoctonia variabilis Zihalirwa
Kulimushi
et al.
(2017)

B. subtilis 98S Fengycins Botrytis cinerea,
F. oxysporum
Pythium
aphanidermatum

Cawoy
et al.
(2015)

B. velezensis SQR9 Fengycins
Iturins
Surfactins
Bacillibactin

Verticillium dahliae
F. oxysporum,
Phytophthora parasitica
var. nicotianae
Sclerotinia sclerotiorum

Li et al.
(2014)

B. subtilis B9-5 Fengycins
Surfactins

R. stolonifer
F. sambucinum
Verticillium dahliae

DeFilippi
et al.
(2018)

B. velezensis QST713 Surfactins T. aggressivum f. sp.
europaeum

Pandin
et al.
(2019)

B.
amyloliquefaciens

SB-1 Surfactin, Iturin
A1, Bacillibactin,
Bacillaene,
Fengycin A,
Macrolactin E

F. oxysporum
F. moniliforme,
F. solani, Aspergillus
flavus, A. niger, and
Curvularia sp.

Shahid
et al.
(2021)

B. subtilis A-2 Surfactin Iturin
A1
Bacillibactin
Bacillaene
Bacillomycin D
Fengycin A
Macrolactin E

F. oxysporum
F. moniliforme,
F. solani, A. flavus,
A. niger, and Curvularia
sp.

Shahid
et al.
(2021)

B. tequilensis A-3 Surfactin, Iturin
A1
Bacillibactin,
Bacillaene

F. oxysporum,
F. moniliforme,
F. solani, A. flavus,
A. niger, and Curvularia
sp.

Shahid
et al.
(2021)

B.
amyloliquefaciens

A3 Surfactins, iturins,
and fengyins

Dickeya dadantii Hossain
et al.
(2020)

B. coagulans ATCC
7050

Lactosporin Micrococcus luteus and
Listeria monocytogenes

Riazi et al.
(2009)

B. tequilensis A-3 Iturins, fengycins,
macrolactins,
bacillomycin-D

F. moniliforme, F.
solani, A. flavus, A.
niger, and Curvularia sp.

Shahid
et al.
(2021)
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Table 11.1 (continued)

Stains
name

Lipopeptide/
antibiotic

Streptomyces
griseochromogenes

– Blasticidin-S Pyricularia oryzae Misato
et al.
(1959)

S. kasugaensis – Kasugamycin Venturia spp.,
Cercospora spp., M.
grisea

Hamada
et al.
(1965)

S. natalensis – Natamycin F. oxysporum Copping
and Duke
(2007)

S. rimosus – Oxytetracycline Erwinia amylovora,
Xanthomonas sp.

Copping
and Duke
(2007)

S. cacoai var.
asoensis

– Polyoxin B Sphaerotheca spp.
Botrytis cinerea
Sclerotinia sclerotiorum
Corynespora melonis
Alternaria alternata

Copping
and Duke
(2007)

S. griseus – Streptomycin Xanthomonas oryzae
X. citri
Pseudomonas tabaci
P. lachrymans

Copping
and Duke
(2007)

S. hygroscopicus – Validamycin R. solani and
Rhizoctonia

Copping
and Duke
(2007)

S. scabies – Macrolactin A F. oxysporum Copping
and Duke
(2007)

classes of microbial volatile organic compounds (mVOCs) are alcohols, ketones,
aromatic compounds, terpenes, organic acids, esters, aldehydes, sulphur compounds,
alkanes, and nitrogen compounds (Schenkel et al. 2015; Schmidt et al. 2017).
Approximately 2000 different types of VOCs with various synonyms have been
reported from the 1000 bacterial species (Lemfack et al. 2018).

Numerous volatile organic compounds with antifungal and antimicrobial proper-
ties are produced by Bacillus species (Leelasuphakul et al. 2008; Chen et al. 2008).
The first reported mVOCs 2,3-butanediol and acetoin produced by B. subtilis
enhance the growth and systemic resistance in Arabidopsis (Ryu et al. 2003). Wu
et al. (2019) reported the volatile compounds 2-nonanone and 2-heptanone produced
by Bacillus amyloliquefaciens, which effectively control the Fusarium wilt of
watermelon caused by F. oxysporum f. sp. niveum. The compounds acetoin and
2,3-butanediol help plant growth. Bacillus subtilis CF-3 produced 62 potential
VOCs and among these benzothiazoles, benzoic acid, 3-methylbutanal, 2,4-di-tert-
butylphenol, and 1-octanol showed the antagonism towards the Macrophomina
fructicola and Clostridium gloeosporioides (Gao et al. 2018). Benzenoids class of
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VOCs such as 1-butanol, 3-methyl-, hexanol, 2-ethyl decanal, 2-ethyl nonanal are
produced by the B. subtilis and effective against the F. oxysporum f. sp. lactucae, F.
oxysporum f. sp. cubense, R. solani, S. sclerotiorum. Similarly, sulphur-containing
volatiles such as carbon disulphide, dimethyl trisulfide, and thiophene showed
effectiveness against Colletotrichum gloeosporioide, Alternaria brassicae, A.
solani, Ascochyta citrullina, B. cinerea, Cercospora kikuchii, F. graminerum, F.
oxysporum.

Streptomyces genus produced nearly 10,000 secondary metabolites including
volatile compounds (VOCs) (Berdy 2005; Hopwood 2007; van Wezel et al. 2009).
Various groups of VOCs include alkanes, alkenes, alcohols, esters, ketones, geno-
mics, and sulphur compounds produced by the Actinomyces (Palaniyandi et al.
2014). Streptomyces albulus NJZJSA2 produced over 13 VOCs, and among these
4-methoxystyrene, 2-pentylfuran, and anisole showed the antifungal activity against
the Sclerotinia sclerotiorum and Fusarium oxysporum (Wu et al. 2015). The VOCs
produced from S. platensis F-1 effectively control the fungal pathogens including S.
sclerotiorum, R. solani, and Botrytis cinerea (Wan et al. 2008). Volatile compounds
produced by S. philanthi RM-1-138 effectively control R. solani (Boukaew et al.
2013). Streptomyces alboflavus TD-1 produced nearly 35 compounds and among
these benzenamine and dimethyl trisulfide exhibited the control of mycelial growth
of Aspergillus ochraceus (Yang et al. 2019). Wang et al. (2013) reported VOCs from
Streptomyces alboflavus and Streptomyces philanthi which inhibited the growth of
Fusarium moniliforme, Fusarium fujikuroi, Aspergillus flavus, Aspergillus
ochraceus, Aspergillus niger, and Penicillium citrinum.

11.6 Plant Growth-Promoting (PGP) Traits

Plant rhizosphere regions are populated with a wide range of plant growth-
promoting rhizobacteria (PGPR) and are involved in the various direct and indirect
mechanisms to help the plant development and also help in phytopathogen control.
PGPR includes the genera of Azospirillum, Bacillus, Pseudomonas, Rhizobium, and
Burkholderia (Glick et al. 1998; Solanki et al. 2017; Kalita et al. 2015). Furthermore,
actinobacterial strains including Streptomyces spp., Streptosporangium sp., and
Micromonospora sp. show the various PGPR and biocontrol activities (Gomes
et al. 2000; Sousa et al. 2008; Franco-Correa et al. 2010). PGPR and biocontrol
mechanisms of Bacillus and Streptomyces are shown in Fig. 11.1. Similarly, differ-
ent PGPR and biocontrol traits of Bacillus and Streptomyces were given in
Table 11.2.
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11.6.1 Indole Acetic Acid (IAA)

IAA is one of the most studied phytohormones which belongs to classes of auxin. It
helps in plant growth and root development. 80% of the soil rhizosphere microor-
ganisms are able to produce IAA (Neubauer et al. 2000). Microbial IAA is the
effective signaling molecule for the plant–microbe interaction and plant growth
(Matsuda et al. 2018). B. subtilis showed the IAA activity in various crops which
improved plant growth in rice, maize, and onion (Park et al. 2013; Ahmad et al.
2017; Reetha et al. 2014). Similarly, B. amyloliquefaciens displays the IAA produc-
tion in various crops such as banana, cucumber, rice, potato, and brassica (Wang
et al. 2016; Blom et al. 2012; Shao et al. 2015; Niazi et al. 2014). Manulis et al.
(1994) reported the IAA synthesis and its pathways in Streptomyces sp. including S.
griseus, S. violaceus, S. exfoliates, S. coelicolor, and S. lividans. El-Shanshoury
(1991) reported that Streptomyces sp. induces the IAA production in plants under
greenhouse conditions.

11.6.2 1-Aminocyclopropane-1-Carboxylic Acid Deaminase
(ACCd) Activity

According to Brandl and Lindow (1997), the plant hormone ethylene aids in the
growth and development of plants, but high levels can also cause defoliation and
lower plant metabolisms. PGPR has the enzyme 1-aminocyclopropane-1-carboxyl-
ate (ACC deaminase) which controls ethylene production. It converts ACC into
ammonia and α-ketobutyrate (Zahir et al. 2008). Bacillus subtilis Rhizo SF
48 exhibits the ACCd activity in tomatoes, significantly improving the plant growth
even under different stress conditions (Gowtham et al. 2020). Similarly, Misra and
Chauhan (2020) recorded ACCd activity in three Bacillus strains, namely, B. subtilis
NBRI 28B, B. subtilisNBRI33N, and B. safensisNBRI 12M, which mitigate the salt
stress in maize. Similarly, ACCd activity and exopolysaccharide-producing B.
cereus effectively reduced the heat stress in tomatoes (Mukhtar et al. 2020). Strep-
tomyces spp. show the various PGP activities including ACCd, improving the
growth of maize plants (Nozari et al. 2021). In a study done by Yoolong et al.
(2019), the acdS gene which is responsible for ACC deaminase was taken from S.
venezuelae ATCC 10712 and cloned into S. venezuelae. The mutants show a
significant improvement in salt stress alleviation in rice compared to wild strains.
Streptomyces sp. strain PGPA39 exhibits the ACCd activity and improved the
growth in Arabidopsis under in vitro condition (Palaniyandi et al. 2014).
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11.6.3 Siderophore Production

Siderophore is a low molecular weight compound that chelates with iron (Fe3+) from
the environment (Jha and Saraf 2015). In the soil, iron is mostly existing in the ferric
iron form and it remains unavailable to support microbial growth and development
(Das et al. 2007). In order to prevent other microbes, notably harmful pathogens,
from obtaining the iron in the rhizosphere, PGPR Produces siderophores (Freitas
et al. 2015). Bacillus subtilis CAS15 can control the Fusarium wilt in pepper crops
and also exhibits siderophore production (Yu et al. 2011). Antagonistic bacterium
Bacillus licheniformis K11 that effectively inhibits Phytophthora capsici also pro-
duces the siderophore and cellulose (Jung et al. 2007). Shobha and Kumudini (2012)
revealed that the Bacillus spp. produced siderophore also shows antagonistic activity
against Fusarium oxysporum. Jog et al. (2012) reported that Streptomyces rochei, S.
carpinensis, and S. thermolilacinus effectively improve the plant growth and pro-
duce the siderophore. Similarly, siderophore-producing Streptomyces was tested in
the saline soil condition that improved the plant growth (Akram and Anjum 2011).

11.6.4 Induced Systematic Resistance (ISR)

PGPR can also control plant diseases through the indirect mechanism, the so-called
induced systematic resistance (ISR). ISR improves defense-related enzymes or pro-
teins against plant pathogens. ISR activates the plant defense response after the
pathogen attack (Pieterse et al. 2014). Niu et al. (2011) reported that PGPR Bacillus
cereus AR156 activates the ISR through the salicylic acid (SA) pathway in
Arabidopsis. B. subtilis increased the plant defense enzymes such as PAL, PPO,
and PO and chitinase activity against the various plant pathogens such as F.
oxysporum (Akram and Anjum 2011), Colletotrichum acutatum (Wang et al.
2014), Alternaria solani (Latha et al. 2009), and Xanthomonas oryzae pv. oryzae
(Udayashankar et al. 2011). B. pumilus activates the phenolic compounds in pea
against the F. oxysporum f. sp. pisi (Benhamou et al. 1996). Streptomyces AcH
505 activates the ISR through SA and jasmonic acid pathway in oak trees against the
powdery mildew (Kurth et al. 2014). Similarly, Streptomyces strains activate the
SA/JA pathway in Arabidopsis to protect against fungal pathogens (Conn et al.
2008).

11.7 Mutation

Mutation is a commonly used tool for the enhancement of secondary metabolite and
biocontrol ability in various beneficial microorganisms (Spadaro and Gullino 2005).
Two types of mutation have been employed to create mutants: (1) physical and
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(2) chemical methods. The chemicals such as methyl methanesulfonate (MMS),
ethyl methanesulfonate (EMS), hydroxylamine (HA), and N-methyl-N0-nitro-N-
nitrosoguanidine (MNNG) are widely used to create mutants. The physical mutation
was achieved by ultraviolet and gamma rays (Baltz 2001). Through gamma, irradi-
ation mutation was achieved in Bacillus thuringiensis NM101-19 to enhance the
chitinase production. Mutants showed a 2.6-fold higher chitinase activity compared
to wild-type strains. Also, mutants showed higher inhibitory activity against
Verticillium sp., Pythium sp., and Rhizopus stolonifer (Gomaa and El-Mahdy
2018). Khaliq et al. (2009) studied to improve the tylosin production through UV
and gamma irradiation in Streptomyces fradiae NRRL-2702. Similarly, gamma
irradiation was performed in Streptomyces rimosus strain CN08 to improve the
oxytetracycline antibiotic production, and the mutant S. rimosus γ-45 showed
19-fold increased antibiotic production (Lazim et al. 2010). Numerous studies
have been conducted in Trichoderma to improve the biocontrol ability through
gamma mutations against various phytopathogens including F. oxysporum f. sp.
radicis-cucumerinum (Sahampoor et al. 2020), Fusarium graminearum, Sclerotinia
sclerotiorum, Rhizoctonia (Soufi et al. 2021), Macrophomina phaseolina, and Rhi-
zoctonia solani (Abbasi et al. 2016). Afsharmanesh et al. (2013) reported that
enhanced biofilm production was achieved in Bacillus subtilis UTB1 by gamma
irradiation and also exhibited improved biocontrol ability towards Aspergillus
flavus. Similarly, Manikandan et al. (2022) reported that the enhanced biocontrol
ability in mutants of Bacillus subtilis BRBac4, Bacillus siamensis BRBac21, and
Streptomyces cavourensis BRAcB10 was achieved through gamma irradiation
against the Macrophomina phaseolina and Fusarium oxysporum f. sp. udum.

Repetitive element sequence-based polymerase chain reaction (rep-PCR) is a
genomic fingerprinting technique which is used for the identification of genetic
variants in the strains. The DNA primers used in this technique are corresponding
to naturally interspaced sequences in bacteria such as ERIC, BOX, and REP sites
(Versalovic et al. 1991). Moreover, it has been shown that random mutagenesis such
as gamma irradiation induces the rearrangement of chromosomal genome (Najafi
et al. 2011). In this case, rep-PCR is an effective tool for the identification of
diversity of mutants in comparison with wild and mutant strains (Kousar and Babu
2010). The rep-PCR fingerprinting technique is used to determine the genome
diversity and polymorphic bands between the mutants and wild-type strains Bacillus
subtilis UTB1 (Afsharmanesh et al. 2014), Trichoderma harzianum (Abbasi et al.
2016) (Sahampoor et al. 2020), Bacillus thuringiensis NM101-19 (Gomaa and
El-Mahdy 2018), Trichoderma aureoviride (Soufi et al. 2021), Bacillus subtilis
BRBac4, Bacillus siamensis BRBac21, and Streptomyces cavourensis BRAcB10
(Manikandan et al. 2022).
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11.8 Formulations

The formulation is a commercially available product made from experimentally
competent biocontrol strains (Prasad et al. 2019). It is a major challenge for all
agro-based industries to make their product a success or failure. There are four types
of formulations that are commercially available in the market: liquid, powder,
granules, and slurry (Bashan et al. 2014; Bashan 1998). Furthermore, formulations
should be made from low-cost materials such as peat, charcoal, vermiculite, lignite,
and vermicompost (Catroux et al. 2001). All the biocontrol strains may not give the
same results as that in the laboratory conditions when comes to the field conditions,
which is a crucial factor in the development of bioinoculants for industrial purposes.
The biocontrol agent efficiency is affected by the soil pH, nutrient availability,
moisture level, and organic matter content of the soil. Differences in environmental
conditions also influence the efficiency of biofertilizer strain under greenhouse/field
conditions that are performed well in the laboratory conditions (Suprapta 2012).

Carrier is a transporter of bioinoculants from industry to field level (Bashan
1998). It has to maintain the right number of cell load and also give temporary
protection in the field conditions both physically and nutritionally (Arora et al.
2010). The carriers are classified into four types based on their origins: (1) Solid-
based inoculum includes soils (inorganic soil, peat, and coal), (2) plant-based
materials (farmyard manure, compost), (3) inert materials (vermiculite, perlite,
alginate beads, and ground rock phosphate), and (4) lyophilized bioinoculant cells,
liquid carriers, and pellets containing spore or cells (Bashan 1998). Dry inoculants
(powders) are produced from the soil and organic and inorganic carriers. Mostly dry
inoculants are formed from the peat. Granules are made from calcite or silica grain,
which is moistened with the adhesive material and mixed with powdered
bioinoculants. Granules are coated with the targeted bioinoculant/s (Stephens and
Rask 2000). The liquid formulation is based on broth culture, polymer-based
substance, and mineral/organic oil (Malusá et al. 2012; Xavier et al. 2004).
Liquid-based formulations are an easier way to handle and apply directly onto soil
or seeds (Stephens and Rask 2000; Xavier et al. 2004). Dried synthetic carriers
(lyophilized freeze-dried cells) stay dormant for a longer amount of time, although
they may induce cell death during dehydration (Bashan 1998). A list of commer-
cially available biocontrol agents of Bacillus and Actinobacteria is given in
Table 11.3.

11.9 Prospects and Conclusions

The use of biocontrol agents as a key to modern agriculture is fundamental, based on
its renewable, low-cost, and eco-friendly potential in ensuring sustainable agricul-
ture. Importantly, the application of biocontrol as an integral component of agricul-
tural practice in promoting plant yield has gained more attraction recently in meeting
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Table 11.3 List of commercially available Bacillus and Streptomyces biofertilizers

Strains Formulations Company Pathogen control

Bacillus subtilis WP STING
T. Stanes and
Company
Limited

Rhizoctonia, Botrytis, Oidiopsis,
Leveillula, Pythium, Alternaria,
Xanthomonas, Phakopsora, Sclerotium,
Phytophthora, Peronospora, Sclerotinia

Bacillus
megaterium var.
phosphaticum

WP SYMBION-P P solubilizers

Bacillus subtilis Liquid Samridhi™
Jaipur Bio
Fertilizers

It acts against deuteromycetes, oomycetes,
ascomycetes, and bacterial plant
pathogens

Streptomyces
K61

WP Mycostop®

AgBio, Inc.,
USA

Fusarium, Phytophthora, Alternaria, and
Pythium

Streptomyces
lydicus

Liquid Bio-Nata
Farmers
Bio-fertilizers
and Organics

Fusarium, Rhizoctonia, Pythium,
Phytophthora, Phytomatotricum,
Aphanomyces, Botrytis, Sclerotinia,
Postia, Verticillium and Geotrichum,
Monosporascus, Armillaria, Alternaria
solani, Pyricularia, Monilinia,
Colletotrichum, Cladosporium

Streptomyces
griseus

Liquid Green Marvel
Greenlife Bio-
tech Lab

Citrus canker, pomegranate bacterial
blight

the demand for food production. Employing Bacillus and Streptomyces in the
production of biocontrol agents for disease management has recorded success.
Moreover, the new technology which involves enhancing the shelf life of these
biocontrol agents with various organic and organic amendments in their growth
medium and the development of newer formulations such as lyophilized cells, spore
suspension, and metabolites are yet to be explored. However, an appropriate SCAR
(sequence characterized amplified regions) marker has to be developed to track the
introduced biocontrol strain formulation at the field level.

In conclusion, overdependence on the use of chemical fertilizers has encouraged
industries to produce chemicals that are toxic to human health, thus causing ecolog-
ical imbalances. These drawbacks are combined with a high cost of production
which is beyond the purchasing capacity of many farmers in the developing world.
The application of biocontrol agents is eco-friendly, relatively inexpensive,
nontoxic, and possesses the significant potential to increase plant yield. Thus, the
application of biocontrol agents made from viable microbial strains to the field bodes
well for the successful management of the disease for sustainable agriculture.
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Chapter 12
Omic Route to Utilize Endophytes and Their
Functional Potentials in Plant Growth
Advancement

Charu Gupta, Dhan Prakash, Mohd Fadzelly Abu Bakar,
and Worapong Kitdamrongtham

Abstract Plant–bacteria associations have been studied for several decades. Con-
versely, a complete understanding of the mechanisms employed by plant growth-
promoting bacteria remained somewhat elusive. It is therefore difficult to take full
advantage of such complex relationships to reproducibly improve the growth of
plants in a pragmatic background. Endophytic microorganisms such as bacteria and
fungi are better adapted and protected by their host plants and are considered
superior to their rhizospheric counterparts. The current scenario is that bacteria can
positively impact plant growth and health while plants can select their microbiome in
order to have beneficial bacterial colonizers, including those living within the plant
tissues. They function by increasing the bioavailability of essential nutrients and
modulating hormone levels. It is assumed that endophytes have the potential to
replace or augment several chemicals currently used in agricultural practice includ-
ing fertilizers, pesticides and chemical remediation agents for a number of environ-
mental hazards. Therefore, the prime focus of this chapter is to describe the role of
endophytes in the production of phytohormones and the utilization of some of the
functional traits in plant growth promotion. Further, the emphasis would also be to
cover the ‘omic’ approach to unravel plant–endophyte communications under abi-
otic stress.
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12.1 Introduction

Endophytes are a group of symbiotic microorganisms that vastly spread through all
plants and they colonize the intra- and intercellular spaces of the host without
causing any substantial morphological modification or visual infection (Fouda
et al. 2019). They are mainly located in roots inside stems and in distinct compart-
ments of the plant (Compant et al. 2010). The structure and composition of endo-
phytes are determined by environment and plant-associated factors, such as the plant
genotype, developmental stage, phenology and edaphic properties (da Silva et al.
2016; Goulart et al. 2019).

The coexistence of microbes in the plant affects the health and growth perfor-
mance of the plant, which effectively improves the agricultural properties such as
root length and fresh and dry weight of shoot and root and improves yield, quality of
soils, and nutrient cycling (Habib et al. 2020; Soliman et al. 2019; Elkelish et al.
2020). A symbiotic linkage is formed between microorganisms and plants, which is
useful for both partners. The endophytic microbes produce secondary active metab-
olites that protect plants from phytopathogens, in addition to exo-enzyme produc-
tion, which could be supporting in plant colonization (Gill et al. 2016). Endophytes
may enhance plant growth by phytohormone production and support plant growth
under adverse biotic and abiotic stress (Eid et al. 2019). Endophytes can typically
interact with their hosts more effectively than their plant growth-promoting
rhizospheric counterparts (Rashid et al. 2012). A variety of endophytes have been
isolated from different tissue types in numerous species of plants, and often multiple
species of endophytes are found within a single plant (Kobayashi and Palumbo
2000). Recently, bacterial endophytes have been used in different biotechnological
sectors, such as biofertilizers to improve crop production and significantly reduce the
chemical input into the environment (ALKahtani et al. 2020), as well as in nano-
technology for the fabrication of various nanoparticles incorporated in different
applications (Fouda et al. 2020; Eid et al. 2020; Prasad 2017).

The genetic and biochemical factors that contribute towards successful endo-
phytic colonization and maintenance are not well understood. Nevertheless, there
have been a large number of studies that described the use of endophytic bacteria as
components of various phytoremediation schemes (Doty 2008). As a starting point,
it should be emphasized that all available evidence indicates that endophytic bacteria
employ similar plant growth promotion mechanisms to those used by rhizospheric
bacteria (Santoyo et al. 2016). The existing evidence suggests that endophytic
bacteria are more effective than similar non-endophytic bacterial strains in promot-
ing plant growth under a wide range of environmental conditions (Ali et al. 2012,
2014). In order to ensure their efficiency, the endophytes should ameliorate multiple
abiotic stresses and should be good plant colonizers with broad host ranges. They
should be good soil and plant competitors to compete with native soil and plant
microbes for entry into plant tissues, should not be pathogenic to plants or animals
when exogenously applied, and should not interfere with the functions of the plant
microbiome. Thus, the present chapter discusses the mechanism employed by
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growth-promoting bacteria to improve plant growth, the role of endophytes in the
production of phytohormones, and the utilization of functional traits in plant growth
promotion and furthermore emphasizes the ‘omic’ approach of plant–endophyte
communications under abiotic stress.

12.2 Role of Endophytes in Combating Abiotic Stress

Plant stress implies some adverse effects on the physiology of a plant induced upon a
sudden transition from some optimal environmental condition where homeostasis is
maintained to some suboptimal condition which disrupts this initial homeostatic
state.

Reactive oxygen species (ROS) may be considered endogenously produced
signal molecules or regulators produced by several plant organelles, including
mitochondria, chloroplast, or peroxisomes under stresses. ROS consists of a group
of chemically reactive oxygen molecules such as hydrogen peroxide (H2O2), super-
oxide radical (O2•–), hydroxyl radical (OH•) and singlet oxygen (1O

2) and are
produced in plants under stress conditions (Peleg and Blumwald 2011). Abiotic
stress leads to the overproduction of ROS that must be managed in a homeostatic
pool; however, excess concentrations of ROS cause oxidative stress, which results in
denaturation of protein structure, lipid peroxidation and nucleotide disruption and
may affect plant physiology which ultimately leads to the death of plants
(Demidchik 2015; Nath et al. 2017).

Many plants have the capacity to tolerate a particular stress and hence are
considered to be stress resistant. Stress resistance requires that the organism exhibit
the capacity to adjust or to acclimate to the stress. Plants have various mechanisms
that allow them to survive and often prosper in the complex environments in which
they live.

In the plant system, mitigation of ROS excess concentrations generally leads to
activation of enzymatic or non-enzymatic antioxidant systems. Plants secrete several
enzymes, including catalase (CAT), ascorbate peroxidase (APX), superoxide
dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductases
(DHAR) and monodehydroascorbate reductases (MDHAR); the non-enzymatic
system involves quenching of ROS via synthesis of ascorbic acid (AsA), glutathione
(GSH) and carotenoids, which quench free radicals and protect the plant cell from
oxidative stress (Hasanuzzaman et al. 2020; Kumari et al. 2020).

The endophytic microbiome shows mutualistic relations with the host plant in
maintaining health or vigour (Hardoim et al. 2015). Moreover, it is essentially
involved directly or indirectly in the growth and development of host plants via
secreting various growth-promoting attributes like phytohormone synthesis, nutrient
acquisition and siderophore production, antibiotic production, phosphate solubiliza-
tion and mitigation of various biotic and abiotic conditions (Shade et al. 2017).
However, this has been described in earlier studies on impacts of drought and
salinity stress on the effect of growth, productivity, or survivability of plants
(White and Torres 2010).
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Zhou et al. (2021) reported improved seedling growth of Pinus tabulaeformis
after inoculation of endophytic strain Phoma sp. under drought condition. Wu et al.
(2008) described decreased leaf area, photosynthetic pigments and photosynthetic
efficiency under drought stress. Higher salinity in soil affects the survivability of
plants by altering chemical, morphological and physiological processes (Otlewska
et al. 2020). Naveed et al. (2014) reported improved growth, water availability, and
photosynthetic activity in maize cultivars under drought after inoculation of endo-
phytic bacterial strains Burkholderia phytofirmans strain PsJN and Enterobacter
sp. FD17. The endophytes inoculation improved seedling growth, shoot and root
biomass and photochemical efficiency of PSII.

Yandigeri et al. (2012) demonstrated the potential of endophytic bacterial strains
Streptomyces coelicolor DE07, S. olivaceusDE10 and S. geysiriensisDE27, isolated
from arid and drought affected regions, to increase tolerance of plants to intrinsic
water stress and showed plant growth promotion after application to wheat seed-
lings. Additionally, the combined application of S. olivaceus DE10 + S. geysiriensis
DE27 strains showed synergistic effects and improved response in terms of stress
mitigation and growth promotion. Morsy et al. (2020) reported that the endophytic
fungal strains Ampelomyces sp. and Penicillium sp. isolated from stress inducing soil
(drought and high salinity) enhanced drought tolerance (Ampelomyces sp.) and
salinity tolerance (Penicillium sp.) in tomato.

Endophytic microorganisms present inside the host plant play an essential role in
host fitness, nutrient supply and stress tolerance. Endophytes are often used in
sustainable agriculture as biofertilizers, biopesticides and inoculants to mitigate
abiotic stresses including salinity, drought, cold and pH variation in the soil. Plants
experience stress conditions that involve endogenous boosting of their immune
system or the overexpression of their defensive redox regulatory systems with
increased reactive oxygen species (ROS). However, rising stress factors overwhelm
the natural redox protection systems of plants, which leads to massive internal
oxidative damage and death. Endophytes are an integral internal partner of hosts
and have been shown to mitigate abiotic stresses via modulating local or systemic
mechanisms and producing antioxidants to counteract ROS in plants. Endophytes
also provide support in acclimatizing crop plants under abiotic stress conditions,
growth promotion and management of phytopathogens and help in activating stress
responsive/induced genes of plants that are not usually activated under stress
conditions (Verma et al. 2021).

Thus microbial endophytes appear to be a suitable alternative for drought and
salinity stress management. In the recent past, various microbial strains have been
successfully utilized to increase drought tolerance. Inoculation of microbial endo-
phytes or exogenous supply of phytohormones significantly enhanced adaptive
behaviour of plants via improving photosynthetic activity, chlorophyll contents,
root growth, water status, antioxidant enzymes, phytohormone signalling and nutri-
ent uptake under drought conditions (Khan et al. 2016; Singh et al. 2018). Recent
advances of research on positive interaction between microbial endophytes and their
plant host under drought and salinity stress conditions are described and compiled in
Table 12.1.



Mode of action Plant host

12 Omic Route to Utilize Endophytes and Their Functional Potentials in. . . 293

Table 12.1 Example of positive interaction amongst microbial endophytes and their plant host
under stress conditions adapted from Verma et al. (2021)

Endophyte: ameliorate stress and
beneficial effect

Phoma species (fungi) Increased proline peroxidase (POD),
catalase (CAT), superoxide dismutase
(SOD)

Pinus
tabulaeformis

Glomus mosseae, G. versiforme,
G. diaphanum (fungi)

Increase of peroxidase activity and
beneficial effects on soil structure

Poncirus
trifoliata

Endophyte consortia (Rhodotorula
graminis, Burkholderia
vietnamiensis, Rhizobium tropici,
Acinetobacter calcoaceticus,
Rahnella sp., Burkholderia sp.,
Enterobacter asburiae,
Sphingomonas yanoikuyae, Pseudo-
monas sp., Curtobacterium sp.)
(fungi + bacteria)

Reduced damage by reactive oxygen
species (ROS), increment of IAA

Populus sp.

Bacillus, Achromobacter, Klebsiella,
Citrobacter (bacteria)

Production of 1-aminocyclopropane-1-
carboxylate (ACC) deaminase

Capsicum
annuum

Burkholderia phytofirmans,
Enterobacter sp. (bacteria)

Reduced H2O2 induced damage Zea mays

Bacillus subtilis (bacteria) Upregulation of the drought-response
genes, such as DREB2B-like, DHN3-
like and LEA-14-A-like and modula-
tion of the DNA methylation genes,
such as MET1B-like, CMT3-like and
DRM2-like that regulate the process

Brachypodium
distachyon

Bacillus subtilis (bacteria) Enhanced level of ROS scavenging
antioxidant enzymes (superoxide
dismutase, peroxidase, catalase)

Cicer
arietinum
seedling

Curvularia sp. (fungi) Elevates antioxidant enzymes (SOD
and APX)

Poplar plant

Piriformospora indica (fungi) Enhanced plant growth and attenuated
the NaCl-induced lipid peroxidation,
metabolic heat efflux and fatty acid
desaturation in leaves. In addition,
significantly elevated the amount of
ascorbic acid and increased the activi-
ties of antioxidant enzymes catalase,
ascorbate peroxidase,
dehydroascorbate reductase,
monodehydroascorbate reductase and
glutathione reductase

Hordeum
vulgare
seedling
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12.3 Phytohormones Production by Endophytes

12.3.1 Auxin

Auxins are plant hormones that play vital roles in almost every step of life and daily
growth of a plant (Grossmann 2010). The most common naturally occurring auxin is
indole-3-acetic acid (IAA), which is produced by plants, bacteria and fungi through
at least three diverse tryptophan-dependent IAA production pathways (Duca et al.
2014). The type of pathway a bacterium uses (genetically and/or environmentally
dependent) to produce IAA within plants or in their close vicinity can determine the
nature of the resulting plant–microbe interactions. It is important to note that not all
the IAA producing bacteria are beneficial to plants. Interestingly, many plant-
beneficial bacteria produce IAA via the indole-3-pyruvate (IPyA) pathway, whereas
many pathogenic bacteria mainly synthesize IAA via indole-3-acetamide (IAM)
pathway (Hardoim et al. 2008).

The areas of activity of IAA mainly include, but are not limited to, cell division
and elongation, initiation of root systems, leaves, flowers, fruit development and
senescence (Phillips et al. 2011). Numerous PGPB, including both Gram-positive
and Gram-negative bacteria, have been reported to produce IAA (Rashid et al. 2012).
The prominent IAA producing endophytic bacterial genera include Pseudomonas,
Rhizobium, Azospirillum, Enterobacter, Azotobacter, Klebsiella, Alcaligenes,
Pantoea, Acetobacter, Herbaspirillum, Burkholderia, Bacillus, Rhodococcus and
Streptomyces (Duca et al. 2014; Rashid et al. 2012). Generally, plants are very
sensitive to the amount of IAA present in plant tissues at any particular time. Since
plants also produce IAA, in order to regulate plant growth, an IAA producing PGPB
must provide the appropriate amount of IAA when combined with the amount of
hormone produced by plant. In fact, phytopathogens are often characterized by their
ability to produce IAA at high concentrations (Kunkel and Chen 2006).

Numerous bacterial endophytes have been reported to promote plant growth by
their ability to biosynthesize IAA. For example, one study reported IAA production
as a common growth promotion trait in bacterial endophytes isolated from apple tree
buds, in which 8 of 18 isolates exhibited IAA production of 1.2–2.4 μg/mL (Miliūtė
and Buzaitė 2011). In another report, Vendan et al. (2010) investigated the various
plant growth-promoting capabilities, including IAA production, of bacterial endo-
phytes from ginseng (Panax ginseng C.A. Meyer). A total of 51 bacterial endophytes
were isolated from ginseng stem and clustered in four groups, namely, Firmicutes,
Actinobacteria, α-Proteobacteria and γ-Proteobacteria, with Firmicutes being the
most prominent group. Some 18 representatives of all groups were further charac-
terized, and 14 of these 18 endophytic isolates produced significant amounts of IAA
when supplemented with tryptophan as a precursor. The highest amount of IAA
(13.93 μg/mL) was produced by isolate E-I-4 (Micrococcus luteus) and was
followed by the isolates E-I-20 (Lysinibacillus fusiformis) and E-I-8 (Bacillus
cereus), which produced 7.23 and 4.61 μg/mL, respectively. The population diver-
sity and plant growth promotion effects of IAA produced by endophytic and
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epiphytic bacteria isolated from soybeans (cultivars: Foscarin and Cristalina) have
also been investigated. Isolates that presented plant growth promotion capabilities
were identified as belonging to genera Pseudomonas, Ralstonia, Enterobacter,
Pantoea and Acinetobacter. Moreover, endophytic soybean cultivars exhibited
more abundant IAA producing abilities (34%) than that of epiphytic population
(21%) (Kuklinsky-Sobral et al. 2004). Further seed endophytes were isolated from
12 different cultivars of soybeans and identified by amplified ribosomal DNA
restriction analysis (ARDRA) grouping and by partially sequencing of their 16S
rRNA gene. These endophytes were classified as Acinetobacter, Bacillus,
Brevibacterium, Chryseobacterium, Citrobacter, Curtobacterium, Enterobacter,
Methylobacterium, Microbacterium, Micromonospora, Pantoea, Paenibacillus,
Pseudomonas, Ochrobactrum, Streptomyces and Tsukamurella. They all produced
IAA in vitro at significant levels but only one strain (Enterobacter sp.) significantly
increased the root dry biomass when soybean seeds were pre-treated with this strain
(Assumpção et al. 2009). Moreover, endophytic bacteria were isolated from crops
like berseem clover or canola in rotation with rice using IAA production as a primary
screening trait. This study demonstrated plant growth-promoting features of seven
isolates and rice seedlings inoculated with any one of these isolates exhibited higher
shoot biomass, root length, and the number of colonizing bacteria than did control
plants inoculated with endophytic strains that did not produce IAA (Etesami et al.
2015).

12.3.2 Gibberellin

Gibberellins (GAs) stimulate a number of plant metabolic functions, which are
essential for plant growth and development (Khan et al. 2015) including seed
germination, stem elongation, flowering, fruit formation and senescence. To date,
there have been ~136 GAs identified (Bömke and Tudzynski 2009). Different GAs
are named according to their order of discovery (Khan et al. 2015). The full bacterial
gibberellin biosynthesis pathway has been described (Nett et al. 2017) but very little
is known about GA production by bacterial endophytes. Only a few studies have
described this potential plant growth-promoting trait of bacterial endophytes (Khan
et al. 2014a, b). Two bacterial endophytes, namely, Acetobacter diazotrophicus and
Herbaspirillum seropedicae, have been reported to produce gibberellins (GA1, GA3
and IAA). These bacteria establish an endophytic relationship with graminaceae
species where they promote growth and overall yield (Bastián et al. 1998). In
addition, Azospirillum lipoferum strain op 33 has been recognized as an endophyte
of grasses and a GA producer in vitro. The gibberellins produced by these bacterial
endophytes were measured in chemically defined media by capillary gas
chromatography-mass spectrometry (Bastián et al. 1998). In one study, spent culture
from 10 wild-type and mutant strains (including nod� and fix�) of Rhizobium
phaseoli were screened for the presence of GAs and IAA by a high-performance
liquid chromatography (HPLC) immunoassay. The presence of GA1, GA4, GA9



296 C. Gupta et al.

and GA20-like molecules was confirmed by combined gas chromatography mass
spectrometry; however, the GA20-like molecule was present only in some cultures
and not in all, and GA9 was detected only in small amounts compared to GA1 and
GA4 (Atzorn et al. 1988). The study of nod� and fix� mutants indicated that the
production of GAs was independent of genes involved in nodulation and nitrogen
fixation in Rhizobium phaseoli. In another study, a bacterial endophyte
Sphingomonas sp. LK11, originally isolated from the leaves of Tephrosia apollinea
(a legume native to parts of Asia and Africa), has shown the ability, by advanced
chromatographic and spectroscopic techniques, to synthesize physiologically active
GA4 and inactive GA9 and GA20 in culture media. Tomato plants inoculated with
Sphingomonas sp. LK11 displayed a significant increase in plant shoot length,
chlorophyll contents and shoot and root dry weights compared to control plants
(Khan et al. 2014a, b).

The other large group of endophytic microorganisms that produces GAs is fungi.
A number of fungi have been identified with the capacity to synthesize physiolog-
ically active GAs (Leitão and Enguita 2016). Hamayun et al. (2009a) recognized two
fungal endophytes Aspergillus fumigatus and Scolecobasidium tshawytschae, which
were isolated from a drought stressed cultivar (Hwangkeumkong) and a salt stressed
cultivar (Daewonkong) of soybean, respectively. Both strains were identified by
morphological characteristics and phylogenetic analysis of 18S ribosomal RNA
gene sequences. Scolecobasidium tshawytschae produced physiologically active
GA1, GA3, GA4 and GA7 and inactive GA15 and GA24, whereas Aspergillus
fumigatus synthesized active GA3, GA4 and GA7 along with physiologically
inactive GA5, GA19 and GA24.

Subsequently, rice and soybean plants that were treated with these fungal endo-
phytes showed a significant increase in plant length and plant fresh and dry weight
compared to plants treated with Gibberella fujikuroi, which is also a non-endophytic
gibberellin producing fungus and was used as control for these studies (Hamayun
et al. 2009a, b). In addition, the fungal endophyte Aspergillus fumigatus sp. LH02
facilitated soybean plant growth under salt stress (70 and 140 mM). The soybean
plants pre-treated with this fungus exhibit significant increase compared to control in
shoot length, shoot fresh, dry biomass, leaf area, chlorophyll contents and photo-
synthetic rate (Khan et al. 2011). It was argued that the treatment of plants with the
fungal endophyte, Aspergillus fumigatus sp. LH02, increased the plant’s levels of
proline, salicylic acid (SA) and jasmonic acid (JA) and lowered the abscisic acid
(ABA) concentration compared to control (Khan et al. 2011). Moreover, the treated
plants had a higher level of isoflavones, which was independent of the level of salt
stress, notwithstanding the fact that isoflavones are considered to be a factor in
helping soybean plants to cope with salt stress (Khan et al. 2011).

Similarly, a group of 11 fungal endophytes was isolated from the sand dune plant
Elymus mollis and screened for the production of GAs and their plant growth-
promoting capacities on Waito-C rice (GAs deficient rice) and Atriplex gmelinii
(saltbush). Altogether, 7 of 11 fungal endophytes promoted the growth of both plants
and one isolate, EM-7-1, showed significantly higher plant growth compared to
control plants (Afzal Khan et al. 2009). Screening of the culture filtrate of isolate
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EM-7-1 revealed the presence of GA1, GA3, GA4 and GA7 as well as physiolog-
ically inactive GA5, GA9, GA20 and GA24. Subsequently, this isolate was identi-
fied as Gliomastix murorum (Afzal Khan et al. 2009).

A similar study was reported by Khan et al. (2014a), who isolated and charac-
terized two fungal endophytes from the bark of Moringa peregrina (a tree indige-
nous to the Horn of Africa), Aspergillus caespitosus LK12 and Phoma sp. LK13, and
showed that these fungi could produce a variety of GAs in culture filtrate. Both
fungal strains promoted the growth of rice that lacks gibberellins biosynthesis (Khan
et al. 2014a). Furthermore, two GAs and IAA producing fungal endophytes Phoma
glomerata LWL2 and Penicillium sp. LWL3 have been shown to provide protection
to cucumber plants under salinity and drought stresses. The treated plants exhibited
significantly higher contents of a range of nutrients than the untreated control plants.
On the other hand, under salinity stress, treated cucumber plants upregulated SA
levels, altered JA levels, and downregulated ABA levels and glutathione, catalase,
peroxidase and polyphenol oxidase activities. This change in the metabolome of the
treated cucumber plants compared to uninoculated control plants is ascribed to the
endophytic fungus, which apparently ameliorated the detrimental effects of the stress
(Waqas et al. 2012). The effects of GAs producing strains of Penicillium sp. on
plants under salt stress was evaluated and the role of the fungus in overcoming the
stress incurred by salinity was evaluated (Leitão and Enguita 2016).

12.3.3 Cytokinin

Cytokinins are a group of hormones that promote cell division in plant roots, shoots
and growing buds. These hormones have been found in all complex plants as well as
mosses, fungi and bacteria. There are about 200 different natural and synthetic
cytokinins known to botanists today. Most cytokinins are produced in the meristem
of the roots and transported to the other parts of the plant through the xylem (vascular
system). Cytokinins have been reported to be present in the culture filtrate of a
number of bacteria including Azotobacter sp., Rhizobium sp., Pantoea agglomerans,
Rhodospirillum rubrum, Pseudomonas fluorescens, Bacillus subtilis and
Paenibacillus polymyxa (Glick 2014). Although these bacteria have been
documented as endophytes of different plants, little evidence has been found to
definitively link bacterial cytokinin production with plant growth promotion. One
study described the isolation, identification and characterization of bacterial endo-
phytes that produce cytokinin-like molecules (Bhore et al. 2010). In this study, three
bacterial endophytes were isolated from Sambung Nyawa [Gynura procumbens
(Lour.) Merr.] and identified as Pseudomonas resinovorans, Paenibacillus polymyxa
and Acinetobacter calcoaceticus. The ethyl acetate extract of bacterial culture media
was used to inoculate cucumber cotyledons in a greening bioassay. The assay
indicated positive results only for the strains Pseudomonas resinovorans and
Paenibacillus polymyxa with the suggestion that these bacterial endophytes might
be used as plant growth-promoting agents for Sambung Nyawa (Bhore et al. 2010).
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In a similar study, crude bacterial suspensions of 115 bacterial isolates from 72 dif-
ferent plant species were screened using the cucumber cotyledon greening bioassay
to investigate if these endophytes could produce cytokinins, but the study found that
none yielded better results than the control (Bhore and Sathisha 2010). Recently,
workers engineered a strain of Sinorhizobium meliloti to overproduce cytokinin by
expressing an Agrobacterium ipt gene under the control of the E. coli trp promoter
(Xu et al. 2012). Following a period of severe drought stress, alfalfa plants inocu-
lated with the engineered S. meliloti strain were significantly larger than plants
inoculated with the parental strain. This experiment indicates, despite the fact that
cytokinin-producing plant growth-promoting bacteria appear to be relatively uncom-
mon, that rhizobial strains synthesizing higher than normal levels of cytokinin may
improve plant tolerance to severe drought stress.

12.3.4 Endophytic ACC Deaminase Production

The microbial enzyme 1-aminocyclopropane 1-carboxylate (ACC) deaminase
(E.C. 4.1.99.4) is used as a dynamic enzyme in sustainable agriculture. ACC
deaminase is a multimeric enzyme that requires pyridoxal 50-phosphate as an
essential co-factor for enzymatic activity (Glick 2014) and cleaves ACC to
α-ketobutyrate and ammonia, where ACC is the immediate precursor of phytohor-
mone ethylene. Thus, ACC deaminase lowers the levels of deleterious ethylene in
higher plants (Sun et al. 2009). Ethylene, like other phytohormones, is crucial for
plant growth, development and stress signalling (Glick 2004; Rashid et al. 2012).
Plant growth-promoting endophytes expressing the enzyme ACC deaminase have
been revealed to help protect plants from a number of different biotic and abiotic
stresses and to promote the growth of plants in the absence of stressful conditions.
For example, a group of 25 endophytes, originally isolated from tomato plants, that
contained ACC deaminase all demonstrated the ability to significantly promote
canola seedling growth compared to un-inoculated canola seedlings (Rashid et al.
2012). Several studies have defined the potential of ACC deaminase containing
endophytes in promoting plant growth in tomato (Abbamondi et al. 2016), rice
(Raweekul et al. 2016) and ginger (Jasim et al. 2014).

Further, the potential of the bacterial endophyte Burkholderia phytofirmans PsJN
was evaluated in a field study of switchgrass at two different soil sites over 2 years.
The inoculated switchgrass displayed enhanced biomass production, increased root
growth, tillering and greater early season plant growth vigor than that of untreated
control plants. Moreover, the plants grown on a low fertility soil site performed
better with bacterial endophyte treatment. These researchers suggested that the
mechanism of this plant growth promotion, especially at the poor soil site, might
include the possession of ACC deaminase by this endophyte and the interaction of
auxins and ethylene in response to the action of ACC deaminase (Lowman et al.
2015). In addition, it has been previously shown that a mutant of Burkholderia
phytofirmans PsJN that lacks the ability to produce ACC deaminase (i.e. acdS2)
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could not promote canola seedling growth in a growth pouch root elongation assay
(Sun et al. 2009). Complementing the mutant with exogenous DNA carrying the
ACC deaminase gene from wild-type strain restored the ability of the mutant to
promote canola root elongation, therefore proving the importance of this gene for the
observed growth promotion (Sun et al. 2009). Further, it was also found that
B. phytofirmans PsJN specifically promoted the growth of a certain genotype of
switchgrass, which led to the isolation and characterization of another bacterial
endophyte, Pantoea agglomerans strain PaKM, from the surface of sterilized
seeds of switchgrass (Kim-Dura et al. 2016). Strain PaKM was able to promote
the growth of at least eight varieties of switchgrass in in vitro conditions; subse-
quently, two of these varieties were screened more extensively in greenhouse and
field environments, and a significant difference in the biomass of endophytic treated
plants was observed (Kim-Dura et al. 2016). P. agglomerans strain PaKM was able
to protect switchgrass under salt and drought stress in in vitro conditions; however,
this endophyte does not contain ACC deaminase (Kim-Dura et al. 2016).

When the bacterial endophyte Pseudomonas migulae 8R6, an ACC deaminase
containing bacterium, was utilized as a biocontrol agent against yellow disease of
grapevines caused by phytoplasma, it significantly protected periwinkle, a model
plant hosting phytoplasma. The results have shown that the density of the phyto-
plasma inside the leaf tissue was unaffected by this bacterial endophyte; however,
the symptoms of the disease were significantly reduced in plants treated with wild-
type bacterium compared with either untreated or treated plants with an ACC
deaminase minus mutant (acdS2) of strain 8R6 (Gamalero et al. 2016). These trials
suggest that ACC deaminase played a key role in protecting the plant from the biotic
stress of phytoplasma infection. Moreover, ACC deaminase containing endophytes
have also been found to protect plants from salinity and other abiotic stress. The rice
endophyte Pseudomonas stutzeri A1501 has demonstrated rice seedling growth
promotion in moderate (0.12 M) and high (2 M) salt (i.e. NaCl) and in the presence
of 0.3 mM heavy metals (Cu, Co, Ni and Zn) (Han et al. 2015). In these experiments,
the bacterial treatment was given to surface-sterilized rice seeds and plant biometrics
were collected after 7 days. In order to validate that the ACC deaminase activity is
the main driving force in protecting and facilitating rice seedling growth in presence
of these abiotic stresses, a mutant of the acdS gene was constructed. It was observed
that the seeds treated with wild-type P. stutzeri A1501 displayed significantly longer
roots and higher fresh and dry weights compared to the plants either untreated or
treated with the mutant (Han et al. 2015). In another study, endophytic bacteria
isolated from date palm were assayed for growth promotion of canola roots in the
presence and absence of 100 mM salt. The majority of endophytes tested exhibited
canola root elongation under salt stress compared to un-inoculated control plants in
gnotobiotic conditions; however, the researchers pointed out that these endophytes,
in addition to ACC deaminase, could also produce IAA and increase the uptake of
nutrients that enable them to benefit the host under stress (Yaish et al. 2015).
Brachybacterium paraconglomeratum is an ACC deaminase producing salt-tolerant
bacterial endophyte, which was isolated from the surface-sterilized roots of the
medicinal plant Chlorophytum borivilianum (Barnawal et al. 2016). This bacterium
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promoted host plant growth by reducing oxidative and osmotic damages caused by
salinity (150 mM). Moreover, biochemical analysis of bacterially treated and
untreated plants, both grown in the presence of salt, revealed that there were high
amounts of ACC, proline, malondialdehyde (MDA) and abscisic acid (ABA) in
untreated controls. Increased levels of proline and MDA indicate osmotic and
oxidative stress, respectively, whereas increased ABA and ACC levels are thought
to be the consequence of osmo-oxidative damage (Barnawal et al. 2016). However,
plants treated with the wild-type endophyte (containing ACC deaminase) show
reduced levels of proline, MDA, ABA and ACC and increased total chlorophyll
contents, IAA levels and plant biomass compared to untreated controls (Barnawal
et al. 2016).

Additionally, the expression of five genes involved in the stress response
(CaACCO, CaLTPI, CaSAR82A and putative P5CR and P5CS) in pepper plants
(Capsicum annuum L.) was investigated. These plants were given a mild osmotic
stress in the presence and absence of two plant growth-promoting bacterial endo-
phytes, Arthrobacter spp. EZB4 and Bacillus spp. EZB8 (Sziderics et al. 2007). The
pepper plant gene CaACCO, which encodes the enzyme ACC oxidase that catalyses
the final step in the biosynthesis of ethylene, was strongly upregulated in
non-inoculated stressed plant root and leaf tissue. This gene was significantly less
upregulated in leaf tissue, unaffected in plant roots treated with strain EZB4, and
unaffected in the leaf and root tissue of plants treated with strain EZB8. The pepper
plant gene CaLTPI encodes a lipid transfer protein that may be induced by ethylene
in addition to a number of other stress factors (Jung et al. 2003). The gene expression
of CaLTPI was significantly upregulated under osmotic stress in non-inoculated
plants, unaltered in plants (leaves and roots) treated with strain EZB4 and the leaf
tissue of plants treated with strain EZB8, and significantly downregulated in the
roots treated with strain EZB8. The putative P5CR and P5CS are involved in proline
biosynthesis and were significantly downregulated in the leaves of plants treated
with both endophytic strains under stress conditions and remained unaffected in the
roots of stressed plants. The expression of pepper plant gene CaSAR82A, which is
also a stress-inducible gene, was not consistent under stress conditions in either leaf
or root tissues with bacterial treatments but was significantly upregulated in
non-inoculated stressed plants (Sziderics et al. 2007). Altogether, it was speculated
that because ethylene can act as signalling molecule and subsequently could regulate
the gene expression under stress conditions, the addition of endophytes that can
lower stress ethylene levels by functioning of ACC deaminase could ameliorate the
damage caused by such stress. Nonetheless, independent of the levels of altered gene
expression of above-mentioned genes, all of the pepper plants treated with bacterial
endophytes Arthrobacter spp. EZB4 and Bacillus spp. EZB8 showed significant
increases in biomass compared to the non-inoculated control plants under mild
osmotic stress (Sziderics et al. 2007).

In addition to plant growth facilitation under stressful environmental conditions,
ACC deaminase has also been documented to help endophytic colonization within
plants (Hardoim et al. 2008). Ethylene levels in plant tissues modulate plant colo-
nization by endophytes (Iniguez et al. 2005). The bacterial endophyte Klebsiella



12 Omic Route to Utilize Endophytes and Their Functional Potentials in. . . 301

pneumoniae strain 342 can establish endophytic relationships with Medicago
truncatula; however, the colonization of plants by this endophyte was found to be
under the control of ethylene. In an ethylene-insensitive mutant of Medicago
truncatula, this endophyte hypercolonizes the plant compared to the wild-type
(Iniguez et al. 2005) Medicago truncatula, which displayed a low level of endo-
phytic colonization in the presence of ACC, and an increase in endophytic coloni-
zation was observed when the ethylene inhibitor 1-methylcyclopropene was
introduced to the plant (Iniguez et al. 2005). Since ACC deaminase is able to
lower the levels of ethylene by cleaving ACC, it may help some endophytes to
efficiently colonize plant tissues, thereby giving those endophytes an additional
advantage in their interaction with plants.

12.4 Plant Growth Promotion and Stress Management by
Endophytes

Endophytes provide support in acclimatizing crop plants under abiotic stress condi-
tions, growth promotion and management of phytopathogens and help in activating
stress responsive/induced genes of plants that are not usually activated under stress
conditions. The endophytic microbiome shows mutualistic relations with the host
plant in maintaining health or vigour (Hardoim et al. 2015). Moreover, they are also
essentially involved directly or indirectly in the growth and development of host
plants via secreting various growth-promoting attributes, namely, phytohormone
synthesis, nutrient acquisition and siderophore production, antibiotic and phosphate
solubilization and by mitigating various biotic and abiotic conditions (Shade et al.
2017). Various microbial strains have been successfully utilized to increase drought
tolerance. Inoculation of microbial endophytes or exogenous supply of phytohor-
mones significantly enhanced the adaptive behaviour of plants via improving pho-
tosynthetic activity, chlorophyll contents, root growth, water status, antioxidant
enzymes, phytohormone signalling and nutrient uptake under drought conditions
(Singh et al. 2018).

Naveed et al. (2014) reported improved growth, water availability, and photo-
synthetic activity in maize cultivars under drought after inoculation of endophytic
bacterial strains Burkholderia phytofirmans strain PsJN and Enterobacter sp. FD17.
The endophytes inoculation improved seedling growth, shoot and root biomass and
photochemical efficiency of PSII. Yandigeri et al. (2012) revealed the potential of
endophytic bacterial strains Streptomyces coelicolor DE07, S. olivaceus DE10 and
S. geysiriensis DE27, isolated from arid and drought affected regions, to increase
tolerance of plants to intrinsic water stress and showed plant growth promotion after
application to wheat seedlings. Additionally, the combined application of
S. olivaceus DE10 + S. geysiriensis DE27 strains showed synergistic effects and
improved response in terms of stress mitigation and growth promotion. Jayakumar
et al. (2020) reported that several endophytic bacterial strains, including Bacillus sp.,
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Providencia sp. and Staphylococcus spp., isolated from Ananas comosus, enhanced
drought tolerance and promoted growth and pathogen resistance. Likewise, Sandhya
et al. (2017) reported that several endophytic bacterial strains isolated from various
crops in which most of the strains conferred drought tolerance up to (�1.02) matric
potential also had growth promotion potential. Chen et al. (2017) stated that endo-
phytic strain Pantoea alhagi isolated from Alhagi sparsifolia, after inoculation,
enhanced the growth of wheat seedlings under drought conditions. Additionally,
the endophyte-treated plant showed enhanced accumulation of soluble sugars and
decreased concentrations of malondialdehyde. In the grass Brachypodium
distachyon, drought stress was mitigated with the help of an endophytic bacterium
Bacillus subtilis B26, which also upregulated the stress responsive genes (Gagn-
é-Bourque et al. 2015). Morsy et al. (2020) described that endophytic fungal strains
Ampelomyces sp. and Penicillium sp., isolated from stress inducing soil (drought and
high salinity), enhanced drought tolerance (Ampelomyces sp.) and salinity tolerance
(Penicillium sp.) in tomato.

12.5 ‘Ome’Approach of Plant-Endophyte Communications
Under Abiotic Strain

Endophytic microbes are known to modulate the genome, epigenome, proteome and
metabolome of their hosts after inoculation to cope with abiotic stress. Plants with
their modulated ‘ome’ after inoculation with endophytes bear better potential to
ameliorate various abiotic stresses including drought and salinity. The molecular
basis of endophytes in mitigating abiotic stress in crops is poorly understood. The
recent developments in high-throughput technologies of sequencing and mass-
spectroscopy based omics techniques have generated hopes for a detailed gene and
protein study of molecular insights into the interaction of plant-endophytes during
abiotic stress conditions.

Culture-independent sequencing approaches including metagenomics, meta-
transcriptomics and meta-proteomics have emerged as new tools for studying the
unexplored wealth of endophytes for conferring abiotic stress tolerance in plants.
Shotgun metagenome analysis of uncultured microbe communities of endophytic
bacteria revealed the population of Proteobacteria and Actinobacteria which can play
a role in plant growth promotion and abiotic stress tolerance (Hong et al. 2019). The
change in endophytic bacterial communities of wheat, as assessed by 16S rRNA
sequencing, was associated with the change in drought stress conditions (Žiarovská
et al. 2020). Not only the endophytes, but the ‘ome’ of plants is also modulated
during their interactions with endophytes while coping with abiotic stress. The
‘omics’ of endophytes also may be modulated by ‘horizontal gene transfer’ and
synergism while interacting with their host crop (Tiwari and Bae 2020). Coutinho
et al. (2015) reported that the influence of host crop Oryza sativa on gene expression
of endophytic Burkholderia kururiensis M130 was related to biofilm regulation and
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iron transport. Some of the endophytic Rhizobium and Xanthomonas sp. associated
with crops have shown the transfer of genes responsible for plant adaptation and
survival (Van Elsas et al. 2003). Comparative transcriptomics and proteomics
studies associated with Atractylodes lancea in response to endophytic fungus
Gilmaniella sp. AL12 revealed regulated plant metabolites, with upregulation in
terpene skeleton biosynthesis and upregulated genes annotated as β-farnesene
synthase and β-caryophyllene synthase (Yuan et al. 2019). Similarly, to understand
the interaction of endophytic Piriformospora indica and host Brassica napus, an
LC-MS/MS-based label-free quantitative proteome technique was used, revealing
the change in metabolic pathways and stress response and increase in stress adapting
metabolites after endophytic interactions (Shrivastava et al. 2018). Understanding
the roles of endophytes–plant interactions at a molecular level is crucial to under-
standing crop coping mechanisms to abiotic stress and may lead to more sustainable
agriculture. The uncultured microbiome of endophytes can also be exploited for
coping with the abiotic stress using the next generation of sequencing technologies.

12.5.1 Metaproteogenomics

Metaproteogenomics links proteome and genome of the environmental samples and
allows identification of more proteins (functions) than proteomics alone. It involves
combinatorial study of metagenome and metaproteome of the same sample. Knief
et al. (2012) have used metaproteogenomic approach to study microbial communi-
ties in the phyllosphere and rhizosphere of rice. The results showed that despite the
presence of nifH genes in both microenvironments, expression was found in rhizo-
sphere only. If such an approach could be applied to study the endosphere, more
significant data regarding endophyte functionality can be collected. Characterization
of the metaproteogenome is expected to provide data linking the genetic and
functional diversity of microbial communities. Proteins involved in plant endophyte
interactions that could not be studied in cultivated isolates are new targets for
functional studies. Plant associated bacterial protein secretion system can be suc-
cessfully used for determining plant bacterial interactions (Downie 2010). Delmotte
et al. (2009) have successfully used community proteogenomics to identify the
unique traits of phyllosphere bacteria. Bacterial proteogenomic pipeline and other
tools are available for proteogenomic analysis studies (Uszkoreit et al. 2014). The
technique offers insights into possible strategies adopted for an endophytic lifestyle.
The combined metagenome and metaproteome analysis would allow overcoming
the limitations of protein identifications as in the metaproteomic approach due to the
non-availability of closely related reference genomes (Kaul et al. 2016).
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12.5.2 Microarray-Based Techniques

Microarray technique has equipped the modern genome-based studies with the tools
for genome-specific gene expression, endophyte gene profiling, exploration of host
plant–symbiont interactions and many other transcriptome analysis (Felitti et al.
2006). Barnett et al. (2004) used the dual genome Symbiosis Chip based tool to
study symbiotic interactions. Symbiosis chip allow simultaneous analysis of gene
expression in both partners of the association and can easily be used to study the
endophyte–host interaction. Barnett et al. (2004) studied the coordinate differentia-
tion and response generated from signal exchange between two symbiotic partners
simultaneously, namely, α-proteobacterium Sinorhizobium meliloti and its legume
partner Medicago truncatula during nodule development. They designed a custom
Affymetrix Gene Chip with the complete S. meliloti genome and�10,000 probe sets
for M. truncatula.

Genomic interspecies microarray hybridization technique has proved to be useful
in the characterization of previously untouched genomes, provided that the genome
of a close relative has already been fully sequenced (Dong et al. 2001). Microarray
technique allows the identification of a number of genes in an uncharacterized
genome without the need for genome sequencing. However, reference selection is
a critical step in microarray studies as non-specific references may generate ambig-
uous results. Non-availability or limited access to the specific gene expression/
profiling databases has restricted such studies (Kaul et al. 2016) (Fig. 12.1).

Fig. 12.1 Summary of the ‘ome’ of the plant-endophyte interactions under abiotic stress
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12.6 Conclusions and Future Perspectives

Plants harbour and interact with a variety of microbial populations at various stages
of their lifetime; these dynamic interactions may be harmful, benign, or beneficial to
plants. Endophytism is a mutualistic plant–microbe interaction where plants provide
a safe home and secure supply of food to microbes and microbes, in return, benefit
the plants enormously. Microbial endophyte biology is a growing field of research
and a number of researchers have planned these beneficial interactions where
endophytes provide nutrients, act as growth regulators, fix nitrogen, antibiotics,
secondary metabolites, and protect plants from both abiotic and biotic stresses.
Moreover, endophytes are thought to be superior to their rhizospheric counterparts
in facilitating plant growth as they have the ability to colonize the interior of plants
where they can rapidly sense any environmental change and quickly respond to their
needs. Since endophytes are generally not host specific, they can be readily intro-
duced into plants other than their natural host.

The increasing research output over the past three decades shows that there has
been an increasingly growing interest in the study of endophytic microbes. A
significant knowledge has been accumulated on endophytic microbes and their
effects on plants. It is known that microbes colonize in shoots and roots of plants.
In many cases, microbes actually enter into plant cells and involve in the rhizophagy
cycle. This suggests that interaction between endophytic microbe and plant may be
to the extent of a direct protoplast interaction within plant cells. A deep understand-
ing of endophyte–host interactions is the need of the hour in order to realize the use
of endophytes as plant probiotics. The major areas of future research are the
knowledge of the intimate microbe cell to plant cell interactions or ‘cross talk’ that
results in beneficial effects in plants. The ‘signals’ expressed between endophytes
and host plant cells result in oxidative stress tolerance in plants. The signal sent to
host cells that triggers the oxidative response may be the key to understanding the
endophyte–host interaction. It is that crosstalk between endophyte and host which
determines if the plant recognizes the microbes as friendly endophyte or pathogen.
The complementary information generated through modern “omics” studies in
association with other system biological techniques is inevitable to build up models
for prediction and explain endophyte-mediated processes. Advanced techniques can
be used with accuracy for bacterial and fungal endophytes to reveal their genetic and
metabolic potential, ecology and evolution. The prime focus is on microbial endo-
phytes to improve plant/crop productivity and sustainable agriculture with minimum
or nil environmental degradation. In light of these considerations, the practice of
endophytes in agriculture can offer an economic means to achieve sustainable high
crop productivity.

Acknowledgements The authors are grateful to Dr. Ashok K. Chauhan, Founder President,
Dr. Atul Chauhan, Chancellor, Prof. Dr. Balvinder Shukla Vice Chancellor and Amity University,
UP, Noida, for the motivation, research facilities and ASEAN-India Science & Technology
Development Fund, Department of Science and Technology (DST-SERB), New Delhi India for
financial support.



306 C. Gupta et al.

Conflict of Interest The author(s) confirm that this article content has no conflict of interest.

Ethical Issues There is none to be declared.

References

Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodine C, Rangel WM,
Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endo-
phytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol
Technol Agric 3:1

Afzal Khan S, Hamayun M, Kim H, Yoon H, Lee I, Kim J (2009) Gibberellin production and plant
growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol
Biotechnol 25(5):829–833

Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing
1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113(5):1139–1144

Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-
promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–
167

ALKahtani MD, Fouda A, Attia KA, Al-Otaibi F, Eid AM, Ewais EE-D, Hijri M, St-Arnaud M,
Hassan SE-D, Khan N (2020) Isolation and characterization of plant growth promoting Endo-
phytic bacteria from desert plants and their application as bioinoculants for sustainable agricul-
ture. Agronomy 10:1325

Assumpção LDC, Lacava PT, Dias AC, de Azevedo JL, Menten JOM (2009) Diversity and
biotechnological potential of endophytic bacterial community of soybean seeds. Pesqui
Agropecu Bras 44(5):503–510

Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-
acetic acid by rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta
175(4):532–538

Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-deaminase-
producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates
Chlorophytum salinity stress via altering Phytohormone generation. J Plant Growth Regul
35(2):553–564

Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome Symbiosis Chip for coordinate
study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci
U S A 101:16636–16641

Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic
acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum
seropedicae in chemically-defined culture media. Plant Growth Regul 24(1):7–11

Bhore SJ, Sathisha G (2010) Screening of endophytic colonizing bacteria for cytokinin-like
compounds: crude cell-free broth of endophytic colonizing bacteria is unsuitable in cucumber
cotyledon bioassay. World J Agri Sci 6(4):345–352

Bhore SJ, Nithaya R, Loh CY (2010) Screening of endophytic bacteria isolated from leaves of
Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds.
Bioinformation 5(5):191–197

Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic
pathway in fungi compared to plants and bacteria. Phytochemistry 70(15–16):1876–1893

Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel
endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:
1–14



12 Omic Route to Utilize Endophytes and Their Functional Potentials in. . . 307

Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and
endosphere of plants: their role, colonization, mechanisms involved and prospects for utiliza-
tion. Soil Biol Biochem 42:669–678

Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V (2015) Plant-influenced
gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant-Microbe
Interact 28:10–21

da Silva KJ, de Armas RD, Soares CR, Ogliari JB (2016) Communities of endophytic microor-
ganisms in different developmental stages from a local variety as well as transgenic and
conventional isogenic hybrids of maize. World J Microbiol Biotechnol 32:189

Delmotte NL, Kniefa C, Chaffronb S, Innerabnera G, Roschitzkic B, Schlapbachc R et al (2009)
Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc
Natl Acad Sci U S A 106:16428–16433

Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell
biology. Environ Exp Bot 109:212–228

Dong Y, Glasner JD, Blattner FR, Triplett EW (2001) Genomic interspecies microarray hybridiza-
tion: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae
342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl
Environ Microbio 67:1911–1921

Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New
Phytol 179(2):318–333

Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interac-
tions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe
interactions. Antonie Van Leeuwenhoek 106(1):85–125

Eid AM, Salim SS, Hassan SE-D, Ismail MA, Fouda A (2019) Role of endophytes in plant health
and abiotic stress management. In: Kumar V, Prasad R, Kumar M, Choudhary DK (eds)
Microbiome in plant health and disease: challenges and opportunities. Springer, Singapore, pp
119–144

Eid AM, Fouda A, Niedbała G, Hassan SE-D, Salem SS, Abdo AM, Hetta H, Shaheen TI (2020)
Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and
anticancer properties for developing functional textile fabric properties. Antibiotics 9:641

Elkelish A, Qari SH, Mazrou YSA, Abdelaal KAA, Hafez YM, Abu-Elsaoud AM, Batiha GE-S,
El-Esawi MA, El Nahhas N (2020) Exogenous ascorbic acid induced chilling tolerance in
tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional
regulation of catalase and heat shock proteins. Plan Theory 9:431

Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid (IAA) production trait, a useful
screening to select endophytic and rhizosphere competent bacteria for rice growth promoting
agents. MethodsX 2:72–78

Felitti S, Shields K, Ramsperger M, Tian P, Sawbridge T, Webster T et al (2006) Transcriptome
analysis of Neotyphodium and Epichloe grass endophytes. Fungal Genet Biol 43:465–475

Fouda A, Hassan S, Eid AM, El-Din Ewais E (2019) The interaction between plants and bacterial
endophytes under salinity stress. In: Endophytes and secondary metabolites. Springer, Cham, pp
1–18

Fouda A, Hassan SED, Abdo AM, El-Gamal MS (2020) Antimicrobial, antioxidant and larvicidal
activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol
Trace Elem Res 195:707–724

Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth
rate and increased drought stress resilience of the model grass Brachypodium distachyon
colonized by Bacillus subtilis B26. PLoS One 10:e0130456

Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E, Novello G, Glick BR, Ali S,
Cantamessa S, D’Agostino G, Berta G (2016) An 1-Aminocyclopropane-1-carboxylate (ACC)
deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma
infection. Plant Biosyst:1–10



308 C. Gupta et al.

Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R,
Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant
stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol
56:291–312

Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the
world. Microbiol Res 169(1):30–39

Goulart MC, Cueva-Yesquén LG, Hidalgo Martinez KJ, Attili-Angelis D, Fantinatti-Garboggini F
(2019) Comparison of specific endophytic bacterial communities in different developmental
stages of Passiflora incarnata using culture-dependent and culture-independent analysis.
Microbiol Open 8:e896

Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest
Manag Sci 66(2):113–120

Habib N, Ali Q, Ali S, Javed MT, Zulqurnain Haider M, Perveen R, Shahid MR, Rizwan M, Abdel-
Daim MM, Elkelish A et al (2020) Use of nitric oxide and hydrogen peroxide for better yield of
wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation and anti-
oxidative defense mechanism. Plan Theory 9:285

Hamayun M, Khan SA, Khan MA, Khan AL, Kang S, Kim S, Joo G, Lee I (2009a) Gibberellin
production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol
Biotechnol 25(10):1785–1792

Hamayun M, Khan SA, Kim H, Chaudhary MF, Hwang Y, Shin D, Kim I, Lee B, Lee I (2009b)
Gibberellin production and plant growth enhancement by newly isolated strain of
Scolecobasidium tshawytschae. J Microbiol Biotechnol 19(6):560–565

Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015)
1-Aminocyclopropane-1-carboxylate deaminase from pseudomonas stutzeri A1501 facilitates
the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):
1119–1128

Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their
proposed role in plant growth. Trends Microbiol 16(10):463–471

Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M,
Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations
for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Al Mahmud J, Fujita M,
Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic
stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

Hong CE, Kim JU, Lee JW, Bang KH, Jo IH (2019) Metagenomic analysis of bacterial endophyte
community structure and functions in Panax ginseng at different ages. Biotech 9:1–8

Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric
endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18(2):169–178

Jasim B, Joseph AA, John CM, Mathew J, Radhakrishnan EK (2014) Isolation and characterization
of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Bio-
tech 4:197–204

Jayakumar A, Padmakumar P, Nair IC, Radhakrishnan EK (2020) Drought tolerant bacterial
endophytes with potential plant probiotic effects from Ananas comosus. Biologia 75:1769–1778

Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer
protein from pepper are differentially activated by pathogens, abiotic, and environmental
stresses. Plant Cell Environ 26(6):915–928

Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte
interactions. Front Plant Sci 7:955

Khan AL, Hamayun M, Kim Y, Kang S, Lee J, Lee I (2011) Gibberellins producing endophytic
Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids
production and plant growth in salinity stress. Process Biochem 46(2):440–447

https://doi.org/10.3389/fmicb.2016.00332


12 Omic Route to Utilize Endophytes and Their Functional Potentials in. . . 309

Khan AL, Waqas M, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Hosni K, Kim M, Adnan M, Lee I
(2014a) Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 ofMoringa peregrina
produce gibberellins and improve rice plant growth. J Plant Interact 9(1):731–737

Khan AL, Waqas M, Kang S, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L,
Jung H, Lee I (2014b) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and
IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I (2015) Endophytic fungi: resource for
gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35(1):62–74

Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Kim SH, Doty SL (2016) Growth
enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consor-
tia. Curr Plant Biol 6:38–47

Kim-Dura S, Lowman S, Zhang S, Mei C (2016) Growth promotion of switch grass by bacterial
endophyte Pantoea agglomerans strain PaKM isolated from seeds. J Pathol Microbiol 1(2):
1007

Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R et al (2012)
Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of
rice. ISME J 6:1378–1390

Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in
agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, Inc,
New York, pp 199–233

Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004)
Isolation and characterization of soybean-associated bacteria and their potential for plant growth
promotion. Environ Microbiol 6(12):1244–1251

Kumari M, Pandey S, Mishra SK, Giri VP, Agarwal L, Dwivedi S, Pandey AK, Nautiyal CS,
Mishra A (2020) Omics-based mechanistic insight into the role of bioengineered nanoparticles
for biotic stress amelioration by modulating plant metabolic pathways. Front Bioengg
Biotechnol 17:242

Kunkel BN, Chen Z (2006) Virulence strategies of plant pathogenic bacteria. In: Dworkin M
(ed) The prokaryotes. A handbook on biology of bacteria, ecophysiology and biochemistry.
Springer, New York, pp 421–440

Leitão AL, Enguita FJ (2016) Gibberellins in Penicillium strains: challenges for endophyte-plant
host interactions under salinity stress. Microbiol Res 183:8–18

Lowman JS, Lava-Chavez A, Kim-Dura S, Flinn B, Nowak J, Mei C (2015) Switch grass field
performance on two soils as affected by Bacterization of seedlings with Burkholderia
phytofirmans strain PsJN. Bioenergy Res 8(1):440–449

Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic
bacteria from apple tree. Biologija 57(2):98–102

Morsy M, Cleckler B, Armuelles-Millican H (2020) Fungal endophytes promote tomato growth and
enhance drought and salt tolerance. Plan Theory 9:877

Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and
signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma
A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, pp 223–232

Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress
resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and
Enterobacter sp. FD17. Environ Exp Bot 97:30–39

Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles TC, Hedden P, Rojas MC, Peters RJ
(2017) Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat
Chem Biol 13(1):69–74

Otlewska A, Migliore M, Dybka-Stepien K, Manfredini A, Struszczyk-Swita K, Napoli R,
Białkowska A, Canfora L, Pinzari F (2020) When salt meddles between plant, soil, and
microorganisms. Front Plant Sci 11:1429

Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin
Plant Biol 14:290–295



310 C. Gupta et al.

Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD,
Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan amino-
transferase required for vegetative and reproductive development in maize. Plant Cell 23(2):
550–566

Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine.
Springer International Publishing. ISBN 978-3-319-68423-9. https://www.springer.com/gb/
book/9783319684239

Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-
promoting bacterial endophytes. Appl Soil Ecol 61:217–224

Raweekul W, Wuttitummaporn S, Sodchuen W, Kittiwongwattana C (2016) Plant growth promo-
tion by Endophytic bacteria isolated from Rice (Oryza sativa). Thammasat Inter J Sci Technol
21(1):6–17

Sandhya V, Shrivastava M, Ali SZ, Sai Shiva Krishna Prasad V (2017) Endophytes from maize
with plant growth promotion and biocontrol activity under drought stress. Russ Agric Sci 43:
22–34

Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant
growth-promoting bacterial endophytes. Microbiol Res 183:92–99

Shade A, Jacques MA, Barret M (2017) Ecological patterns of seed microbiome diversity, trans-
mission, and assembly. Curr Opin Microbiol 37:15–22

Shrivastava N, Jiang L, Li P, Sharma AK, Luo X, Wu S, Pandey R, Gao Q, Lou B (2018) Proteomic
approach to understand the molecular physiology of symbiotic interaction between
Piriformospora indica and Brassica napus. Sci Rep 8:5773

Singh VK, Singh AK, Singh PP, Kumar A (2018) Interaction of plant growth promoting bacteria
with tomato under abiotic stress: a review. Agric Ecosyst Environ 267:129–140

Soliman M, Alhaithloul HA, Hakeem KR, Alharbi BM, El-Esawi M, Elkelish A (2019) Exogenous
nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxi-
dants, osmolyte metabolism, and glyoxalase systems. Plan Theory 8:562

Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC)
deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting
bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296(1):131–136

Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contrib-
ute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53(11):
1195–1202

Tiwari P, Bae H (2020) Horizontal gene transfer and endophytes: an implication for the acquisition
of novel traits. Plan Theory 9:305

Uszkoreit J, Plohnke N, Rexroth S, Marcus K, Eisenacher M (2014) The bacterial proteogenomic
pipeline. BMC Genomics 15:S19

Van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol
157:525–537

Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their
potential for plant growth promotion. J Microbiol 48(5):559–565

Verma H, Kumar D, Kumar V, Kumari M, Singh SK, Sharma VK, Droby S, Santoyo G, White JF,
Kumar A (2021) The potential application of endophytes in management of stress from drought
and salinity in crop plants. Microorganisms 9:1729

Waqas M, Khan AL, Kamran M, Hamayun M, Kang S, Kim Y, Lee I (2012) Endophytic fungi
produce gibberellins and indole acetic acid and promotes host-plant growth during stress.
Molecules 17(9):10754–10773

White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of
oxidative stress protection? Physiol Plant 138:440–446

Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with
three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

Xu J, Li X, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and
tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78(22):8056–8061

https://www.springer.com/gb/book/9783319684239
https://www.springer.com/gb/book/9783319684239


12 Omic Route to Utilize Endophytes and Their Functional Potentials in. . . 311

Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-
promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in
salinity tolerance. Antonie Van Leeuwenhoek 107(6):1519–1532

Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK
(2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum
aestivum) under water stress conditions. Plant Growth Regul 68:411–420

Yuan J, Zhang W, Sun K, Tang MJ, Chen PX, Li X, Dai CC (2019) Comparative transcriptomics
and proteomics of Atractylodes lancea in response to endophytic fungus Gilmaniella sp. AL12
reveals regulation in plant metabolism. Front Microbiol 10:1208

Zhou XR, Dai L, Xu GF,Wang HS (2021) A strain of Phoma species improves drought tolerance of
Pinus tabulaeformis. Sci Rep 11:7637

Žiarovská J, Medo J, Kyseľ M, Zamiešková L, Kačániová M (2020) Endophytic bacterial
microbiome diversity in early developmental stage plant tissues of wheat varieties. Plan Theory
9:266



313

Chapter 13
Siderophore Production in Iron Uptake
and Plant Biofortification

Neerja Srivastava

Abstract Although iron (Fe) is present abundantly on the earth, its bioavailability to
plants is low and is dependent on the soil’s redox potential and soil pH. In aerobic or
alkaline soil, Fe is readily oxidized and usually forms insoluble complexes as ferric
oxides which make it unavailable for plant uptake. Beneficial microorganisms, such
as mycorrhiza and root endophytic fungi, dark septate fungi, and plant growth-
promoting rhizobacteria, have several functions and can increase mineral Fe uptake.
They have also been considered to have long-term efficiency once they are used in
the field. Under iron-limited surroundings, some iron chelating bacteria produce iron
chelating molecules siderophores to increase iron uptake as well as transport it to
their host plants. This chapter covers and describes the role of siderophore in iron
uptake and biofortification in plants.

Keywords Siderophores · Iron · Iron deficiency · Biofortification

13.1 Introduction

Micronutrient malnutrition is a serious threat to human health around the world,
mainly in developing countries (Kennedy et al. 2003). Iron deficiency is an
extremely predominant nutritional ailment affecting 2.5–5 billion people around
the world (Yip 2002), where underprivileged households, as well as preschool
children, are seriously affected because of the greater demand for iron (Benoist
et al. 2008). Iron is a co-factor for many enzymes executing primary functions in the
human body. An insufficient amount of iron causes disability and anaemia as well as
retards mental growth (Sheftela et al. 2011). The malnourishment of iron can be
reduced by enhancing the bio-available iron content through supplementation by
fortification of food (Rana et al. 2012a). Biofortification is a method for producing
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micronutrient-laden staple food through traditional breeding as well as transgenic
strategies (Murgia et al. 2012). Rhizobacteria promote plant growth, fortify food
crops for iron, and also improve the fertility of soil as well as crop yield via
siderophore production (Rana et al. 2012a). Siderophores are low molecular weight
organic substances that possess a high affinity for iron (Das et al. 2007). They form
very stable iron complexes as well as increase the dissolution of minerals that have
iron through coordination with an iron atom at the mineral surface. Rhizobacteria
produce siderophores and release them into the surroundings to dissolve the iron by
making iron chelate complex as well as translocate them to the plant through
growing roots. Transporter proteins present on the plasma membrane of plant
roots help in Fe uptake by forming iron–siderophore complexes (Boukhalfa and
Crumbliss 2002). Moreover, these rhizobacteria can also improve plant growth by
providing various advantageous features such as enhanced nitrogen fixation, solu-
bilization of phosphorus, phytohormone synthesis, and organic acid production with
decreased vulnerability for disease (Ahemad and Kibret 2014). According to Sharma
et al. (2013), the amount of iron in rice and grain was enhanced through the use of
plant growth-promoting bacteria (PGPR). Thus, plant biofortification by PGPR is
regarded as a safe method to increase iron content in various edible plant parts as
well as to remove malnutrition (Khalid et al. 2015).

13.2 Micronutrient Deficiency and Strategies for Control
of Micronutrient Malnutrition

To counter the deficiency of micronutrients in food crops, the biofortification
approach is a reasonable answer to maintaining an appropriate amount of vital
nutrients in the various edible portions of plants. Unfavourable environmental stress
conditions impede the micronutrient uptake from the soil into plants, and thus the
insufficient level of micronutrients is going to restrict plant growth and development,
causing malnutrition amongst the human population of the world. The modern
agriculture system aims to yield nutritiously safe food crops free from chemical
residues and with enhanced micronutrient level in the edible portion of plants. Most
of the human population is highly dependent on foods that are based upon crops for a
basic diet and if they take a diet with insufficient amounts of vital micronutrients,
they face severe health issues such as anaemia. Implementing of approach such as
biofortification is a better option for producing crops that possess an increased level
of required micronutrients. According to the available literature, biofortification of
food crops can be achieved mainly through three different ways: agronomic
biofortification, breeding approach and genetic modifications.

Although these strategies of agronomic as well as genetic biofortification to
supplement micronutrients in crops for removing micronutrient malnutrition are
regarded as profitable, they are unsuitable in developing countries where the rural
population is large (Mayer et al. 2008). Greater use of chemical fertilizers poses
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several problems such as disruption of soil microbial ecology and loss of soil fertility,
which eventually can lead to drastic effects on both crop production and human health.
Thus, there is a clear demand for discovering other cheap alternate approaches in place
of genetic and agronomic strategies for achieving the goal of fortification. The
application of microorganisms, particularly those which promote plant growth, is
another alternate strategy for biofortification and is a better option in place of chemical
fertilizers (Singh et al. 2017a). Furthermore, the use of plant growth-promoting
rhizobacteria as bioinoculants can provide a cheaper and manageable option for
increasing the micronutrient level in plants (Shaikh and Saraf 2017). Soil inhabiting
microbiome promotes plant growth, preserves soil health, and enables the conversion
of complex micronutrients into a simple form that is eventually taken up by plants
(Singh and Singh 2017; Shah et al. 2018; Prasad et al. 2016). Plant-associated bacteria
induce the host plant growth by various means such as increased mobility, uptake, and
enhancement of nutrients in plants (Prasanna et al. 2016; Singh and Prasad 2014;
Chhabra et al. 2010, 2013). Plant growth-promoting bacteria (PGPB) increases crop
yield through several processes such as biological nitrogen fixation, solubilization of
insoluble minerals such as phosphorus, zinc, and calcium, phytohormone production,
and biocontrol of insect pests and plant pathogens (Glick et al. 1999; Singh et al.
2010a, b, c, 2011; Singh and Goel 2015; Prasad et al. 2015). Microbes can also affect
the availability of nutrients by several properties such as chelation, solubilization, and
oxidation or reduction activities (Khan 2005; Singh et al. 2013, 2018c). Soil, as well as
rhizosphere-associated microbes, assists in the enhanced nutrient acquisition of vital
micronutrients from the soil system to different plant parts. Therefore microbial-
assisted precise nutrient acquisition strategy makes microbes ideal candidates for
crop biofortification with essential nutrient elements such as Zn, Fe, and
Se. Different microbes such as bacteria, cyanobacteria, and fungi can be used for
growing plants effectively with enhanced nutrients level, which are achieved through
genetic and agronomic-based biofortification.

13.3 Need for Biofortification

Biofortification targets either enhanced storage of micronutrients in edible portions
of plants or increase in their bioavailability for plants. It is regarded as an inexpen-
sive approach that emphasizes removing malnutrition in developing nations. Iron is a
naturally present metalloid, which is needed in small quantities for humans and other
animals. It is a vital micronutrient for every microbe, plant, and animal. It is crucial
for plants as it plays a very important role in transporting oxygen, oxidative
metabolism, and cell proliferation as well as required in some physiological mech-
anisms such as N2 fixation and photosynthesis (Nair and Iyengar 2009). Iron is an
important micronutrient in biological systems and getting attention worldwide due to
growing reports on iron deficiencies in human populations and crops. Mineral and
vitamin deficiencies are responsible for about 7.3% of the global disease burden
(WHO 2002). Iron deficiency is amongst the most prominent micronutrient
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deficiencies and is affecting almost two billion people (McLean et al. 2009) It is one
of the major health issues for 39% of children below the age of 5 years, 48% of
5–14 years old children, and 42% of total women while 52% of expecting women in
developing countries are anaemic (Zimmermann and Hurrell 2007; Bersamin et al.
2008). In developing countries, legumes, vegetables, and cereal grains are the key
sources of nutrition. Today, plant growth-promoting rhizobacteria (PGPR) are
applied as substitutes for increased micronutrient uptake in plants. These bacteria
produce plant growth-promoting substances, which may have a significant role in
increasing enhancing with increasing plant growth through morphological changes
such as greater root surface area for nutrient uptake in the soil and also for protecting
crops against diseases (Rana et al. 2012b; Patel et al. 2020; Prasad et al. 2015)

13.4 Strategies for Biofortification

Biofortification approaches such as agricultural, plant breeding, genetic manipula-
tion and the use of microbial inoculants are the main processes for increasing the
concentration of nutrients in plants. ‘Agronomic biofortification’ is the process of
applying nutrient-laden fertilizers into the soil or on foliage to enhance the micro-
nutrient level in the edible portion of the crops and ultimately improve the use of
required micronutrients by users (Carvalho and Vasconcelos 2013). A significant
strategy for biofortification ‘plant breeding’ is being used by farmers for several
years whereas traditional plant breeding is the crossing of plants to yield offspring
having properties of both the parents (Garcia-Casal et al. 2016), and thus this
technique can be employed to produce progenies with a considerable amount of
required nutrients. Rice varieties having a greater amount of iron and zinc are
crossed with high-yielding rice species to get offspring having both properties
such as greater yield and a higher amount of micronutrients (Khush 2003).
Biofortification via ‘genetic modification’ takes a shorter time to produce crops
that express the trait of interest like nutritional content in a very refined manner
and permits the transfer of specific genes or genes of interest (Garcia-Casal et al.
2016). The utilization of microbial inoculants for biofortification is an inexpensive
strategy and provides a sustainable answer for increased micronutrient levels in
plants in an eco-friendly way. Useful soil microbes make possible nutrients available
to plants through several processes such as atmospheric N2 fixation, solubilization of
the nutrients fixed into the soil, and through the production of phytohormones (Yao
et al. 2008). These microbes facilitate further increase in the level of micronutrients
in plants because they have a prime role in the mineralization of organic material as
well as converting inorganic nutrients (Rana et al. 2012a; Upadhayay et al. 2018).
Each biofortification strategy is described in detail in the following section.
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13.4.1 Agronomic Interventions

The application of mineral fertilizers to the soil for maintaining soil health and
enhancing plant quality is a very old practice (Rengel et al. 1999). It was seen that the
used nutrient transferred more noticeably when a particular element is deficient in
the soil or the properties of the specific element permit its quick utilization. Supple-
mentation of micronutrients by using chemical fertilizers is an efficient method
applied by farmers to get the highest crop production. Although, efficiency of
micronutrients utilization is very low in crops and only 2-5% of total applied dose
of fertilizer is used (Tian et al. 2008).

13.4.2 Genetic Approaches

Genetic biofortification includes traditional breeding methods for characterization
and exploitation of genetic differences such as by using novel strategies including
gene discovery and marker-assisted breeding (Grusak 2002). Hindu et al. (2018)
utilized genome-wide association studies (GWAS) for the recognition of various
genomic regions in maize for kernel zinc and iron biofortification. Velu et al. (2016)
proposed that genomic selection (GS) may be a possible breeding technique for iron
and zinc biofortification in wheat. There are various benefits of nutrition-oriented
breeding of crop plants based on sustainability. Current developments enable us to
modify signalling pathways. DNA markers and marker-assisted selection (MAS)
techniques are speeding up the growth of nutrient-rich genotypes. Kumar et al.
(2018) described quantitative trait loci (QTLs) for iron and zinc biofortification in
pearl millet via diversity array technology (DArT) and simple sequence repeat (SSR)
markers. There are various reports on Fe and/or Zn biofortified varieties of rice,
wheat, and maize which are released globally including in India to lessen malnutri-
tion. In addition to the genetic or plant breeding strategies, various trans-
genic approaches have also been used for fruitfully biofortifying food crops.
Transgenic methods allow the substitution of genes between completely unrelated
species or carry new genes into food or cash crops. Ramesh et al. (2004) devised a
new strategy for enhancing Zn and Fe content in seeds by overexpressing a zinc
transporter in Hordeum vulgare cv. Golden Promise assisted by a ubiquitin pro-
moter. Goto et al. (1999) succeeded in enhancing the Fe concentration three times
more in rice grains by Agrobacterium-mediated transfer of the whole coding
sequence of the ferritin gene of soybean plants. Lucca et al. (2002) produced
transgenic rice plants, with more Fe content, rich in phytase and cysteine peptides
which facilitated improved iron uptake and bioavailability. Vasconcelos et al. (2003)
manipulated the soybean ferritin gene expression regulated by glutelin promoter in a
selected Indica rice line with highly needed agronomic and field performance
characters. More amount of grain nutrition was reported in brown grains and
polished grains. Liu et al. (2004) through genetic engineering produced ferritin-
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containing rice varieties with 64%more iron amount in the milling where this ferritin
gene could be expressed at a higher level, particularly in the transgenic rice endo-
sperm. Genetic strategies might be tough work for breeders in soils typically having
fewer iron and zinc micronutrients. To get the full capacity of biofortified species,
simultaneous attention is required for additional aspects such as soil pH and organic
matter which affect root exudation as well as enzyme activities in the rhizosphere
and thus micronutrient intake and storage (Cakmak 2008).

13.4.3 Microorganisms and Plant-Based Strategies

The process of taking iron by higher plants in iron deficiency is classified into two
groups (Kobayashi and Nishizawa 2012; Römheld and Marschner 1986): strategy I
for non-graminaceous plants and strategy II for graminaceous plants. The two key
mechanisms in the strategy I response are (1) ferric chelate reduction at the root
surface by the assistance of the ferric reduction oxidase gene (FRO2) and (2) the
absorption of the produced ferrous ions through the root plasma membrane via iron-
regulated transporter gene (IRT1). Another mechanism included in strategy I is the
removal of proton and phenolic compounds by the roots to the rhizosphere, which
improves the solubility of ferric ions or supports the reduction capacity of ferric on
the root surface. Strategy II plants uptake iron in iron deficiency through the
excretion of phytosiderophores (PSs), which are low molecular weight Fe chelating
substances such as mugineic acids (MA) and nicotianamine (NA) having high
affinity for ferric and produce an iron–phytosiderophore soluble complex. The
iron–phytosiderophore complex is then transferred into root cells by a strong affinity
intake scheme. Suzuki et al. (2006) reported that barley plants secreted mugineic
acid (MA) phytosiderophore under Zn deficiency and formed Zn(II)–mugineic acid
complex and absorbed more Zn2+ by the roots of a Zn-deficient plant. The amounts
and kinds of phytosiderophores secreted by plants into the rhizosphere vary from
species to species (Mori 1999). A large concentration of iron and zinc is found in the
earth’s crust but not available to plants because they exist in the form of insoluble
salts. Plant-dependent intrinsic approaches such as the production of
phytosiderophore or organic acid and secretions of chelators are not every time
adequate for making micronutrients accessible in micronutrient-deficient soils. With
our enhanced knowledge of crosstalk between soils, plants, and microorganisms,
higher awareness of the rhizosphere environment has been achieved (De Santiago
et al. 2011; Mishra et al. 2011; Pii et al. 2015; Zaidi et al. 2003). Plant growth-
promoting microbes play a very important part in the fortification of macronutrients
in food crops through several processes such as siderophore production, transfor-
mations, nitrogen fixation, and phosphorus mobilization (Khan et al. 2019; Singh
et al. 2018b). Microbes play key roles in the zinc and iron biofortification in cereal
grains (Gosal et al. 2010; Rana et al. 2012a; Sharma et al. 2012). Both rhizospheric
and endophytic microbes prominently affect micronutrient bioavailability in plants.
Endophytic microorganisms are regarded as more promising agents to enhance iron
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and zinc uptake and translocation because endophytic microbes can indirectly
influence the regulation of metal transporters (Reiter et al. 2002; Weyens et al.
2013). Bacterial and fungal endophytes have been implicated in the biofortification
of grains of wheat and rice with iron and zinc (Abaid-Ullah et al. 2015; Ramesh et al.
2014). Gosal et al. (2010) described an endophytic fungus Piriformospora indica as
having an important influence on plant growth, biomass, and micronutrient uptake.
Arthrobacter sulfonivorans (DS-68) and Enterococcus hirae (DS-163) improved
iron concentration and iron availability in wheat grains (Singh et al. 2017b, 2018b).
Rana et al. (2012a) reported that the iron amount in wheat grains improved consid-
erably because of inoculation of Providencia sp. PW5. There are several processes
by which microorganisms enhance the zinc and iron availability in soil and increase
their movement in plant parts or improve the bioavailability of iron and zinc in food
grains. These processes are: i) production of siderophores and other chelating sub-
stances, ii) secretion of organic acid and proton extrusion, iii) alteration in morphol-
ogy and anatomy of root, iv) overexpression of zinc and iron transporters,
v) decrease in phytic acids or anti-nutritional factors in food grains, vi) phenolics,
and its related reducing moieties secretion and vii) phytohormones such as signalling
molecules secretion.

13.5 Production of Siderophore and Other Chelating
Substances

Low molecular weight iron chelating compounds which possess a strong affinity for
Fe(III) (Ganz 2018) are called siderophores. It has been reported by several workers
that siderophores are secreted by various microorganisms to counter the iron scarcity
in soil (Schalk et al. 2011). Fe(III) is not soluble in soil, but siderophores make
siderophore–Fe(III) complexes that can improve the availability of iron in the
environment (Saha et al. 2012). Owing to their solubilizing influence on iron
hydroxides, the siderophores are produced in the rhizosphere, which is the crucial
microbial action for assisting plants in gaining iron (Desai and Archana 2011; Hayat
et al. 2012). Khalid et al. (2015) described that through inoculating siderophore-
generating fluorescent Pseudomonas, iron amount in chickpea grains can be
enhanced. In another previous field experiment, inoculation with siderophore gen-
erating endophytes Arthrobacter sulfonivorans DS-68 and Enterococcus hirae
DS-163 increased the iron content in grains of low and high iron storing wheat
genotypes by 67% and 46%, respectively. Singh et al. (2018b) observed a positive
connection between the production of siderophores and the iron storage in wheat
grains through endophytes, which shows the significant role of siderophores in
gaining iron and movement into the plant. However, its movement within the
plant, particularly to grains, involves various steps as well as processes such as
transport, remobilization, and accumulation mechanisms which are facilitated
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through membrane transporters, chelators, and regulatory proteins (Singh and
Prasanna 2020).

13.5.1 Siderophores Secreted by Mycorrhizal Fungi

Siderophore ferricrocin is produced by ectomycorrhizal fungus (EMF) Cenococcum
geophilum. When the fungus was grown in a less iron culture medium, certain
siderophores were produced in a culture medium where the key siderophore was
ferricrocin, which was confirmed by HPLC, FAB-mass spectrometry, and 1H- and
13C-NMR spectra (Haselwandter and Winkelmann 2002). Two members in the
genus Suillus, S. granulatus and S. luteus, are generally EMF species, and they
produced cyclic and linear sideramine fusigen, ferrichrome, coprogen together with
triacetylfusarinine C in the culture medium (Haselwandter et al. 2011). Two fungi
Wilcoxina mikolae and W. rehmii are new fungi that can have a symbiosis with
certain members of the genus Pinus to create ectomycorrhizae. When three fungal
strains, W. mikolae CSY-14 and RMD-947 andW. rehmii CSY-85, were grown in a
pure culture medium with little iron, they secreted ferricrocin (Prabhu et al. 1996).
Several members of the genusGlomus can have a symbiosis with various food crops,
such as G. intraradices with wheat (Mohammad et al. 2004), G. mossae with lettuce
(Lactuca sativa) and onion (Allium cepa) (Garcia-Garrido et al. 1992), and
G. versiform with wheat (Luo et al. 2019). A new siderophore basidiochrome is
produced in the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia
spp. (Haselwandter et al. 2006). When AMF infected Poncirus trifoliata seedlings in
loam and lime condition, there were no prominent changes in total root length as
well as specific root length in comparison to non-AMF seedlings, but shoots iron
level was noticeably greater than that of non-AMF seedlings (Treeby 1992). Addi-
tionally, siderophores produced through mycorrhizal fungi are vital for iron solubi-
lization. Watteau and Berthelin (1994) observed that ectomycorrhizal fungus Suillus
granulatus could solubilize Fe form goethite (ferric oxyhydroxide) and solubility
can be because of siderophores produced by the fungus. The widespread existence of
AMF causes the acidification of rhizosphere area due to the production of organic
acids and phenolic substances, with the enhancement of iron availability in soil
(White and Broadley 2009). Siderophores are produced by mycorrhizal varieties
such as ect-, ectendo-, and endomycorrhizal fungi with orchid mycorrhizal fungi. If
these mycorrhizal fungi can have a symbiosis with food crops, they are valuable for
iron biofortification.
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13.5.2 Siderophores Produced by Dark Septate Fungi
and Root Endophytic Fungi

Dark septate fungi (DSFs) are usually studied for their role in plant growth promo-
tion, uptake of nutrition, and tolerance to abiotic and biotic stresses. Hydroxamate
siderophores are produced in DSF Phialocephala fortinii, which is an anamorphic
ascomycete belonging to the order Helotiales (Bartholdy et al. 2001). In the two
isolates of the fungus, the highest siderophore production was found at a pH in the
range of pH 4.0–4.5, and the optimal concentration of ferric iron was determined to
be between 20 and 40 μg/L iron(III) under the experimental conditions. In addition
to hydroxamate, ferrirubin and ferrichrome C are also produced in the two isolates.
Plant endophytic fungi are those fungi that can complete their life cycle partially or
entirely in an inter- and/or intracellular way in the host plant tissues and cause no
symptoms of infection in the host plants. Root endophytic fungi comprise a wide
variety of fungi having symbiosis with plants. Members of the genus Trichoderma
are usually employed in biofilm biofertilizers for plant growth and biocontrol. These
members produce and discharge several siderophores. For example, T. asperellum
(Segarra et al. 2010), T. longibrachiatum, and T. pseudokoningii synthesize
coprogen, ferricrocin with a coprogen derivative (Anke et al. 1991), T. virens
synthesizes ferricrocin (Mukherjee et al. 2018), and T. harzianum produces a new
siderophore harzianic acid (Vinale et al. 2013). Beauveria bassiana and
Metarhizium robertsii (M. anisopliae) are well-known entomopathogenic fungi,
but occasionally these two fungi develop into root endophytic fungi to increase
plant growth (Greenfield et al. 2016).

13.5.3 Siderophores Produced from PGPR

Plant growth-promoting rhizobacteria (PGPR) are very common in agriculture as
well in forestry production which increases plant growthas well as yield and is also
used as biocontrol agents (Adesemoye and Egamberdieva 2013; Durairaj et al. 2017;
Ferreira et al. 2019). Siderophores secreted by PGPR can work as plant growth
promoters, which has been even proven by evidence (Pahari et al. 2017). Members
of the genus Pseudomonas act as PGPR and they are popular for their functions.
These bacteria also produce siderophores, such as pyoverdine with pyochelin as in
the case of P. aeruginosa (Lehoux et al. 2000; Rossbach et al. 2000; Li et al. 2009)
and pyoverdine in P. fluorescens (Baysse et al. 2001; Visca et al. 2007).
P. aeruginosa also works like an opportunistic pathogen. In the bacterium,
siderophore-mediated signalling controls the production of virulence factors
(Lamont et al. 2002). In P. fluorescence, mutations in hemA and hemH genes affect
the biosynthesis of pyoverdine (Baysse et al. 2001), and the Fe-regulated PbrA
sigma factor controls the biosynthesis of the siderophore pseudobactin. Members of
the genus Bacillus are also prominent PGPR Bacillus subtilis CAS15 synthesized the
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catecholic siderophore bacillibactin and Fe inhibited siderophore productivity (May
et al. 2001; Yu et al. 2011). This bacterium also synthesizes siderophore AH18 (Woo
and Kim 2008), while B. licheniformis synthesizes a catecholic siderophore
(Temirov et al. 2003) and ferrisiderophores are produced by B. megaterium
(Arceneaux and Byers 1980). B. stratosphericus too synthesizes siderophores
(Durairaj et al. 2017). Serratia marcescens is also among the one of PGPR, and
one siderophore-deficient mutant of S. marcescens was identified in which one gene
entA homologue is inactivated (Hofte and Bakker 2007). The gene entA codes for
2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase enzyme which is involved in the
biosynthetic pathway of enterobactin siderophore. The role of these siderophores
synthesized by PGPR is still unidentified for Fe uptake in host plants.

13.6 Effects of Siderophores Secreted by Beneficial
Microorganisms on Cellular Structures and Iron
Distribution in Host Plants

Siderophores produced by beneficial microorganisms influence cellular structures as
well as iron distribution in the roots of host plants. Recently, a study was done on
Pinus sylvestris using transmission electron microscopy together with energy-
dispersive X-ray spectroscopy. Mucha et al. (2019) described that metabolites
derived from the ectomycorrhizal fungus Hebeloma crustuliniforme entered and
interacted with P. sylvestris root cells and strongly altered the ultrastructure of root
cells. The triacetylfusarinine C and ferricrocin siderophore treatments noticeably
altered root cells’ ultrastructure. Meanwhile, substances produced through
H. crustuliniforme enhanced the iron level in the cell wall, cytoplasm, mitochon-
drion, nucleus, and the vacuole of host cells. There was almost 23 and 15 times
enhancement in iron in the cell wall and cytoplasm, respectively. When PGPRs
Arthrobacter sulfonivorans DS-68 and Arthrobacter sp. DS-179 infected wheat
seedlings, clear alterations in root anatomy were observed (Singh et al. 2018a).
The endodermis, cortical region, root hair extension, xylem and xylem vessels,
pericycle, and vascular bundles were more distinct and thicker in comparison to
control. These results oncluded that mycorrhizal fungi, as well as PGPR, increased
iron uptake of host plants through the production of siderophores with ultrastructural
alterations in host root cells. The same type of study is essential for food crops such
as maize, rice, and barley to understand in a better way the processes by which
mycorrhizal fungi, as well as PGPR, enhance iron uptake together with the
biofortification of food crops. Taken together, beneficial microorganisms increase
iron uptake through their host plants. Siderophore-secreting systems in beneficial
microorganisms have shown their capability in increasing iron bioavailability to
plants and thereby reducing iron fertilizer application. Moreover, beneficial micro-
organisms can also be employed for increased phytoremediation of iron polluted
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soils (Guo et al. 2013; Abbaszadeh-Dahaji et al. 2016; Mishra et al. 2016; Sut et al.
2016; Liu et al. 2021).

13.7 Conclusion

It can be concluded that food-dependent crops with increased micronutrients level
are needed worldwide for removing hidden hunger. Plant-associated microorgan-
isms exist in the soil and root interface and increase uptake of macro- and
micronutrients for plant life. Several microbes proficient in the production of
siderophore were considered for improving iron in food crops. Microbial inoculants
can play a useful role in biofortification and help in decreasing dependency on
expensive strategies such as agronomic involvement and genetic modification for
increasing micronutrient level in the edible portions of crops. Microbes possess
several plant growth stimulating characters as well as various nutrient acquiring
mechanisms that can be utilized for the formulation of the biofortification approach.
Fe-biofortified plants can be a good source of iron to fulfill the daily needs of human
populations and can prevent the diseases caused by iron defciencies.
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Chapter 14
Plant Microbiome Diversity and Potential
for Crops and Sustainable Agriculture

Nazia Rifat Zaman, Farhana Tasnim Chowdhury, Haseena Khan,
and Mohammad Riazul Islam

Abstract Since the last few decades plants are not treated as single entities, rather
they are considered with association of different microbial communities known as
plant microbiome. These microbiomes are now known an extension of a plant
genome. Diversity of this microbial population is quite large including different
classes of bacteria, archaea, and fungi. They always preserve symbiotic relation with
a host plant by providing different growth promoting factors. It is well established
that plant microbiota are structured mainly by different plant compartments (e.g.,
different plant organs, and diverse between rhizosphere, phyllosphere, and
endosphere). These plant microbial groups show potential functions related to
probiotics and plant protection. They can help a plant with germination and growth,
as well as disease prevention, biotic, and abiotic stress resistance. Microbial diversity
has been discovered as an important role in disease prevention and could be used as a
biomarker in plant protection measures. The study of plant–microbiome interaction
has resulted in a paradigm shift in our knowledge of the microbiome’s involvement
in plant health and disease, with significant implications for biocontrol and growth
promotion.
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14.1 Introduction

Increase of global food production has been greatly disrupted due to rapid industri-
alization, anthropogenic interventions, climate change events, overgrazing, and
extensive uses of agrochemicals/fertilizers/pesticides (Raza et al. 2019). These
problems are getting worse with shrinking agricultural land, deterioration of soil
quality and nutrition profile, and recurring challenges due to several biotic and
abiotic stresses. The UN Food and Agriculture Organization (FAO) has projected
to increase the food production 70% more by 2050 to meet the global needs of the
predicted population of nine billion people on earth (www.fao.org). To meet this
challenge a low-cost sustainable agro-ecosystem technology should be adopted.

For the last few decades, lots of approaches have been proposed to improve crop
production. Among them, the use of microorganisms to improve soil health, plant
growth has got much attention compared to the use of conventional chemical
stimulants and pesticides. These microorganisms are plant-associated microbes
residing in soil or plant tissues and commonly known as plant microbiome (Singh
et al. 2019). Different studies have shown that, use of plant microbiome has a great
potentiality in mitigating the challenges currently faced in agriculture. The microbial
components of a plant in the rhizosphere, phyllosphere, and endosphere have
important functions supporting plant growth and health (Vorholt 2012). Plant
microbiota consist of different types of organisms including fungi, archaea, and
bacteria. A deeper knowledge of the plant as a meta-organism and how plants can
benefit from their microbial partners can be gained by revealing the functioning of
plant–microbe interactions and elements involved in community assembly (Hardoim
et al. 2015; Hacquard 2016). Multiple factors influence the community structure and
dynamics of a host-associated microbial system, including host genotypes, surround-
ing environment, host–microbe, and microbe–microbe interactions. It has been
reported that the existence of diverse and well-balanced microbiome plays a crucial
role in crop improvement program by mitigating abiotic and biotic stress response
and management of nutrients supporting plant growth and productivity, and there-
fore reduces the need for chemical fertilizers and pesticides (Compant et al. 2019).

In this chapter, we have discussed the diversity of microbial populations residing
in plants, their secreted compounds used for host–microbe interactions, how plant
gets benefited through this relation, and their potential uses to increase crop
productions.

14.2 Plant Microbiome Diversity

There have been a number of studies identifying individual factors that drive the
microbiome composition of plants and their associated organisms and environments.
Plant microbiome is known to be mostly structured by plant compartments (e.g.,
different plant organs, and diverse between endosphere and ectosphere) (Trivedi

http://www.fao.org
https://www.sciencedirect.com/topics/chemistry/rhizosphere
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Fig. 14.1 Plant microbiome diversity

et al. 2020). The makeup of both plant and soil microbiomes has been demonstrated
to be influenced by plant genotype and developmental phases (Wagner et al. 2016).
Plant microbiome composition has been demonstrated to be influenced by soil
microbiome composition (Cordovez et al. 2019), and plant pathogens and herbivores
produce compositional shifts in plant-associated microbial communities (Lareen
et al. 2016). However, we still know little about the relative strength of these factors
in shaping plant microbiomes.

Despite the plant microbiota’s taxonomic and functional overlap (Bai et al. 2015),
distinct microbiomes have been found for each plant organ and species (Vorholt
2012; Philippot et al. 2013; Hardoim et al. 2015) and plant species (Berg and Smalla
2009) (Fig. 14.1). The plant’s enrichment of microbes is not a random, but rather
deliberate. The function of both chemo-attractants and repellents is influenced by
differences in plant root exudates and plant components (Badri and Vivanco 2009).
Plant defense signaling plays a part in these processes as well (Doornbos et al. 2012).
Multi-omics methods provide significantly more detailed insights into the organiza-
tion of plant-associated microbial communities, extending and supplementing
existing information (Berg et al. 2016; Jansson and Baker 2016). In addition, the
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tools revealed novel roles of the plant microbiome as well as ecological
interconnections.

14.2.1 Rhizosphere Microbiome

The diversified habitat created by soil texture encourages the coexistence of a vast
variety of microorganisms, including bacteria, archaea, fungus, oomycetes, viruses,
and protists, all of which interact in complex trophic exchange networks (Compant
et al. 2019; Wei et al. 2019b). Microorganisms in the rhizosphere can be beneficial or
harmful to the host plant’s health (Yu et al. 2019). Plant development can be aided
by beneficial bacteria (including mutualistic microbes) that increase food availabil-
ity, produce plant hormones, and improve tolerance to biotic and abiotic challenges
(Haney et al. 2015; Jacoby et al. 2017; Yin et al. 2021).

Mycorrhizae, rhizobium bacteria, plant growth promoting rhizobacteria (PGPR),
and biocontrol microorganisms are the most often explored beneficial rhizosphere
species (Fig. 14.1). According to Gans, Wolinsky, and Dunbar (Gans et al. 2005),
1 g of soil might contain over a million different bacterial genomes. The potato
rhizosphere yielded 55,121 OTUs (operational taxonomic units), according to
İnceoğlu et al. (2011). The most common bacteria in the rhizosphere belong to the
Acidobacteria, Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, and
Firmicutes families (Bulgarelli et al. 2015; Uroz et al. 2010). The microbial com-
munity composition of bulk soil (soil not linked to the plant root) and rhizosphere
soil did not differ significantly as found in several investigations (Lundberg et al.
2012; Schlaeppi and Bulgarelli 2015).

Mycorrhizal fungi are widespread in the rhizosphere ecosystem, having been
discovered in over 200,000 plant species and believed to be associated with over
80% of all plants (van der Heijden et al. 2015). By controlling nitrogen and carbon
cycles, these mycorrhizae root connections have a significant impact in land eco-
systems. Mycorrhizae are vital to plant health because they provide up to 80% of the
N (nitrogen) and P (phosphorus) that plants require.

14.2.2 Phyllosphere Microbiome

The phyllosphere (the above-ground surface of plants) is home to a diverse range of
microorganisms, and this phyllosphere microbiome interacts with the host plant,
influencing its health and function. The phyllosphere’s environment is more
dynamic than the rhizosphere’s and endosphere’s. Microbial colonists are exposed
to diurnal and seasonal changes in temperature, humidity, and radiation. Further-
more, these environmental factors influence plant physiology (photosynthesis, res-
piration, water absorption, and so on) as well as microbiome composition indirectly.
Microorganisms in the phyllosphere, mostly bacteria and fungus, can function as
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mutualists, boosting plant growth and stress tolerance, commensals, utilizing the leaf
habitat for their own development and reproduction, or antagonistic pathogens
(Gong and Xin 2021).

Bacterial assemblages in the phyllosphere are often less species rich than those in
the rhizosphere or soil (Knief et al. 2012). On the leaf surface, alpha-proteobacteria
are extremely abundant, and these bacteria serve a variety of ecological activities
(Ruinen 1965; Innerebner et al. 2011) (Fig. 14.1). Gamma-proteobacteria have also
been found in phyllosphere bacterial community composition surveys (Redford et al.
2010; Vorholt 2012). Proteobacteria have a wide range of metabolic capabilities, and
bacteria that do methyltrophy, nitrification, nitrogen fixation, or anoxygenic photo-
synthesis are frequently found in the phyllosphere (Fürnkranz et al. 2008; Atamna-
Ismaeel et al. 2012; Watanabe et al. 2016). Bacteroidetes and Actinobacteria are the
next most prevalent bacterial lineages, and both of these phyla are also substantially
represented in the rhizosphere (Lauber et al. 2009; Philippot et al. 2013).

Fungi have a vital role in the microbiota of the phyllosphere. The fungal com-
munity is made up of organisms that play a wide range of ecological tasks, and
whose population levels vary according to the growth season and, eventually, leaf
senescence (Morris and Kinkel 2002). Before senescence, Ascomycota molds are
frequently the dominating fungus on the leaf surface (Bashir et al. 2022; Abdelfattah
et al. 2015). Yeasts from the Ascomycota and Basidiomycota families are also
notable fungi (Dickinson 2012). Following leaf senescence, filamentous fungi dom-
inate over the fungal microbiome (Voříšková and Baldrian 2013).

14.2.3 Endosphere Microbiome

The plant endosphere is inhabited by complex microbial communities and microor-
ganisms known as endophytes, which live in the plant interior for at least part of their
lives. They host a diversified microbiota in several compartments and tissues,
including vegetative organs such as roots, stems, and leaves, as well as reproduc-
tive/disseminating organs (flowers, fruits/seeds). Bacteria and, to a lesser extent,
Archaea, play a key role in endosphere communities. The plant immune system may
be able to regulate endophyte abundance and maintain the most “plant-friendly”
bacterial density in various organs (Liu et al. 2017). The root bacterial microbiome
has the greatest diversity of microorganisms (although not necessarily) (Amend et al.
2019). Acidobacteria, Verrucomicrobia, Bacteroidetes, Proteobacteria,
Planctomycetes, and Actinobacteria are the most commonly found taxa, and the
majority of them may also be found in the rhizosphere (Hardoim et al. 2015)
(Fig. 14.1). Other microorganisms, such as fungi or mycorrhizae-like fungi, as
well as microbial interactions, might affect the diversity of the root endophytic
microbiota (Deveau et al. 2018). Several bacterial taxa, including Azoarcus,
Gluconacetobacter, Herbaspirillum, and Klebsiella spp., have been shown to
occupy predominantly intercellular but also intracellular regions inside stems
(Turner et al. 2013). The epidermis, xylem vessels, ovary, ovules, and stigma, as
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well as, other organs including the floral receptacle, petal, sepal, and anthers with
their filaments, and pollen, have all been discovered to be colonized by bacteria
(Compant et al. 2011). Strains of Firmicutes, Actinobacteria, and Proteobacteria,
for example, have been isolated from these organs (Shi et al. 2010; Compant et al.
2011; Fürnkranz et al. 2012). Within the plant, the identity and diversity of the
endophytic microbiome differs between above- and below-ground tissues
(Dastogeer et al. 2020).

14.3 Plant and Soil Microbiome Interaction

Soil is an ecosystem which has the capacity to produce resources required for the
development of plants. The diverse groups of microorganisms (bacteria and fungi)
found in the soil are responsible for the decomposition of biomass and circulation of
biogenic elements. These allow for the availability of nutrients to plants making the
microbial communities in soils work as facilitators of plant processes (Pang et al.
2021). For example, they secrete hormones that change root growth; some microbes
help to uptake iron from the soil or solubilize phosphorus and make these nutrients
available to the plant. Non-pathogenic microorganisms are known to alter plant
immune responses, thereby giving protection against pathogens. Then there are the
nitrogen fixers which provide N for plant growth by converting atmospheric N2 to
NH3. Thus, co-evolution of plants with soil microorganisms serves a variety of
useful purposes. A large number of research findings have shown that, in almost all
cases, not a single microbe but rather a conglomerate of microorganisms is respon-
sible for the positive effects on plants.

The rhizosphere is a boundary between the plant roots and the soil and is
characterized by a dynamic community of microorganisms. The exudates together
with mucilages and cells which are shed from the plants influence strongly the soil
and its microbiome around the plant root (Turner et al. 2013). These microbial
populations form structured and interconnected networks. This leads to an active
communication not only between the microbes but between the plants and microbes
as well, enabled by molecular signals especially the secondary metabolites that the
plants produce (Pang et al. 2021). This cross-talk acts as the primary screen for the
microbes that inhabit the root as endophytes.

In such ecosystems, the soil health can be altered by cropping practices and
intensive land-use management, which can further impact soil functions. Earlier
studies on soil health in relation to agriculture were based on soil eco-functions that
looked into non-biological properties like the nutrient and structure of the soil. Only
in recent years have biological properties such as soil microorganism garnered
emphasis as an essential composition in soil health as well. Agricultural practices
also impact the plant microbiome composition and functions (Hartman et al. 2018)
with both negative and positive consequences on plant growth. Different cropping
systems, which include intercropping and tilling free farming, have been found to
increase the diversity of microbial population, yields in crop, and soil levels of
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organic carbon (Sergaki et al. 2018). Cultivation of a single crop or short rotations of
crops rapidly exhaust soil nutrients and increase plant species-specific soil pathogens
and root herbivores. This leads to a drastic decrease in crop yields. Following
microbial supplementation, some fungi were found to help plants augment resistance
against drought. Soil treatment with bacterial inoculants have helped to increase
plant tolerance to heat stress by reducing reactive oxygen species, enhanced plant
immunity and through assistance with drought stress.

Since relation between plants and soil microbes is significant for plant growth and
disease resistance, in recent years a lot of research has focused on understanding the
dynamics, assembly and functions of these microbial communities, the mechanism
of interactions and the forces that modulate the plant microbiome association.
However, the mode of action of such communications and the ways these modula-
tions are driven remain evasive. Exploiting the diverse benefits afforded by the plant
microbiome, more knowledge of this system is a viable strategy to promote sustain-
able agriculture. Understanding the key elements that determine the rhizosphere
microbiome assembly, as well as the mechanisms of reciprocal adaptation between
microbes and plants in response to changing environmental circumstances, may aid
in the identification of prospective breeding and management targets for future crops
(Sandrini et al. 2022).

Recent agricultural production strategies have given rise to the concept of “smart
agriculture.” It is based on intelligent agricultural management. Manipulation of
rhizospheric microbiota and its management strategies are now considered “smart
farming.” This involves the integration of beneficial plant microbiome traits, traits
that improve plant growth, resistance to diseases and stress tolerance leading to
sustainable agricultural production (Sandrini et al. 2022). How and to which extent
the different cropping practices permit the manipulation of soil and root microbiota
are the foci of many recent research groups. Land management and tillage intensities
influence the dominance or the connectivity between bacteria and fungi in both the
soil and the roots. Focus is now on how to define the microbiome functions that can
be manipulated through cropping practices.

Now researchers are suggesting that plant–soil feedbacks are shaped by microbial
bequests that plants leave in the soil. In bacterial communities, legacies fade away
rapidly and bacterial communities are influenced strongly by the current plant
(Hannula et al. 2021). However, both fungal and bacterial legacies are found
conserved inside the roots of the current plant species and their composition signif-
icantly correlate with plant growth. Microbial soil legacies present at the time of
plant establishment play a vital role in shaping plant growth even when these
legacies had faded away in the soil due to the growth of the current plant species.
The soil microbiome legacies have been found to be reversible and versatile.

Mendes and Raaijmakers (2015) have recently shown cross-kingdom similarities
in microbiome functions. This is truer for the root and gut microbiome, since the two
microbial communities exist under comparable conditions which are basically open
systems characterized by gradients of oxygen, water, and pH that create a whole
array of diverse niches. The microbial members of the two groups come from the
environment: food in humans and soil in plants, respectively. Both the systems are

https://www.researchgate.net/profile/Islam-Abd-El-Daim/publication/260535721_Improved_heat_stress_tolerance_of_wheat_seedlings_by_bacterial_seed_treatment/links/0a85e531850585b51b000000/Improved-heat-stress-tolerance-of-wheat-seedlings-by-bacterial-seed-treatment.pdf
https://www.researchgate.net/profile/Islam-Abd-El-Daim/publication/260535721_Improved_heat_stress_tolerance_of_wheat_seedlings_by_bacterial_seed_treatment/links/0a85e531850585b51b000000/Improved-heat-stress-tolerance-of-wheat-seedlings-by-bacterial-seed-treatment.pdf
https://link.springer.com/article/10.1007/s11104-020-04786-9
https://link.springer.com/article/10.1007/s11104-020-04786-9
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096086
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inhabited by a host of similar bacterial phyla (Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria). Research has shown that raw plant materials
are the source of some members of the gut microbiome. The microbial community of
both the gut and the root are known to synthesize essential amino acids, vitamins,
and many other secondary metabolites that modulate their host immune system: as
such, the plant and gut microbiomes can be considered as meta-organs with para-
mount importance for the health of their hosts. Furthermore, because of the food
connection, humans would benefit from consuming unprocessed organic food,
which contains beneficial bacteria as well as secondary metabolites. Research on
the integral role of microbiomes on their host’s metabolism and health should
therefore not stop at the human gut microbiome but expand to the microbiota of
plants and their function in plant growth and development.

As a result, it’s critical to better understand the activities and responsibilities of
the hundreds of distinct microbial species that interact with their hosts in a complex
network. The subject of how to create and maintain a healthy microbiome is also
crucial. Agriculture has consequences for studying microbiomes holistically rather
than one bacterium at a time (for example, utilizing tracking devices). However, in
spite of its importance, the complex, heterogenic and subterranean setting makes it
difficult to study soil microbiome. Fortuitously, emerging technologies, artificial
intelligence, advances in modeling biological systems, data interpretation are now
allowing us to understand the complex interlink between plants and microbial
community.

14.4 Microbiomes and Secreted Metabolites in Plant
Growth Promotion

Plant growth-promoting bacteria (PGPB) enhance plant development through a
variety of ways. For example, they secrete phytohormones, such as auxins that
change root growth. Some bacteria absorb iron and phosphorus, making these
minerals accessible to the plant. They can indirectly promote growth by forming a
biofilm that acts as a protective layer against pathogens or as a surface for improved
nutrient acquisition from soil (Weselowski et al. 2016). Particular non-pathogenic
microorganisms may even alter plant immune responses, thereby giving protection
against pathogens. Additionally, PGPR increase tolerance to abiotic stress in crops
such as salinity and drought (Lucke et al. 2020).

These mechanisms have been grouped into three clusters according to the plant
growth promoting effects on plant physiology. These groups are: (1) biofertilization
including biological fixation of atmospheric nitrogen, phosphate solubilization,
siderophores production, and exopolysaccharides production; (2) phytostimulation
including production of indole acetic acid, gibberellins, cytokinins, and ethylene;
and (3) biocontrol including induction of systemic resistance, competition for iron,
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Fig. 14.2 The role of microbial metabolites in plant growth promotion (Velivelli et al. 2014)

nutrient and space, production of antibiotics, lytic enzymes, hydrogen cyanide, and
volatile compounds (Mitter et al. 2013; Tsegay et al. 2016) (Fig. 14.2).

14.4.1 Phosphate Solubilization and Mobilization

Phosphorus is one of the vital plant nutrients essential for the proper functioning of
plants. Though soil is rich in insoluble phosphates of metal ion like iron, aluminum,
and calcium, the soluble form orthophosphate which can be absorbed by plants is
deficient which can severely restrict plant growth, development, and yield.

Applying phosphorus fertilizers in soil is the main input of inorganic P. About
75–90% of these added chemical P fertilizer is becomes fixed in soils as metal-cation
precipitation and has long-term impacts on the environment in terms of soil fertility
depletion, eutrophication, and carbon footprint (Sharma et al. 2013).

Phosphate solubilizing microbes (PSMs) are helpful bacteria that can hydrolyze
organic and inorganic insoluble phosphorus compounds into soluble P that plants
may easily absorb. PSM provides an eco-friendly and economically alternative to
phosphorus fertilizers to overcome the P scarcity (Kalayu 2019).

Several bacterial, fungal, and actinomycetes strains have been identified as PSM
for example strains of Pseudomonas, Bacillus, Rhizobium, Aspergillus, and Penicil-
lium are some known phosphate solubilizers (Table 14.1). In addition to supplying
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Table 14.1 List of potential phosphate solubilizing microorganisms (PSMs) (Kalayu 2019)

Types PSMs

Bacteria

Bacillus Bacillus circulans

Bacillus megaterium

Bacillus polymyxa; B. subtilis

Bacillus pulvifaciens

Bacillus coagulans; B. fusiformis; B. pumilus; B. chitinolyticus

Bacillus sircalmous

Pseudomonas Pseudomonas canescens

Pseudomonas putida

Pseudomonas calcis

Pseudomonas fluorescens

Pseudomonas koreensis

Pseudomonas striata

Others Thiobacillus ferrooxidans

Enterobacter cloacae

Pantoea agglomerans

Rhizobium meliloti

Rhizobium leguminosarum

Mesorhizobium mediterraneum

Burkholderia cepacia

Fungi

Aspergillus Aspergillus niger

Aspergillus clavatus

Aspergillus awamori

Aspergillus candidus; A. parasiticus; A. fumigatus; A. rugulosus

Aspergillus flavus

Aspergillus foetidus; A. nidulans; A. wentii

Aspergillus terreus

Aspergillus tubingensis

Aspergillus sydowii; A. ochraceus; A. versicolor

Penicillium Penicillium bilaii

Penicillium citrinum

Penicillium digitatum; P. lilacinum; P. balaji; P. funiculosum

Penicillium oxalicum

Penicillium simplicissimum; P. rubrum

Others Trichoderma viride

Arthrobotrys oligospora

Actinomycetes

Acinetobacter rhizosphaerae

Streptomyces albus; S. cyaneus; Streptoverticillium album

Cyanobacteria Calothrix braunii
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soluble P to plants, these microorganisms also promote plant growth by improving
the uptake of other nutrients, stimulating the production of some phytohormones and
helping the plant to manage biotic and abiotic stresses (Shrivastava et al. 2018; Mitra
et al. 2020).

PSMs apply different approach to make phosphorus accessible for plants to
absorb like secretion of organic acids thus lowering soil pH, enzyme production,
mineralization, and excretion of siderophores that can chelate the metal ions and
form complexes, making phosphates available for plant uptake (Zheng et al. 2017).

Organic acid production leading to lowering of soil pH and production of
chelating substances are the principal mechanisms adopted by PSB which result in
inorganic P solubilization. Alkaline soil with high pH restrict P acquisition by plants
(Zheng et al. 2017). Most Gram-negative bacteria show glucose dehydrogenase
activity that can solubilize phosphate by extracellular oxidation of glucose to
gluconic acid, when glucose is used as carbon source. The PSMs may release several
organic acids that can solubilize phosphates like citric, lactic, gluconic,
2-ketogluconic, oxalic, glyconic, acetic, malic, fumaric, succinic, tartaric, malonic,
glutaric, propionic, butyric, glyoxalic, and adipic acids; however, gluconic acid is
reported as the principal organic acid produced by phosphate solubilizing bacteria
(Kalayu 2019). Thus the PSMs have the ability to release such organic acids, through
which their hydroxyl and carboxyl groups chelate the cation bound to phosphate,
converting it to soluble forms.

Mineralization is another process for solubilizing soil phosphate (P). PSMs
mineralize soil organic P by producing phosphatases, which hydrolyze organic
forms of phosphate compounds, releasing inorganic phosphorus that will be
immobilized by plants.

14.4.2 Nitrogen Fixation

After water, nitrogen is the major factor limiting plant growth under most conditions.
Nitrogen is used to synthesize plant proteins and nucleic acids. Although, atmo-
spheric nitrogen is abundant, plants cannot use the available form (N2). Plants can
utilize if nitrogen are combined chemically with oxygen or hydrogen to form
different nitrogenous compounds. The commercially available fertilizers are nitrog-
enous compounds added to the soil in the form of ammonium (NH4

+) and nitrate
(NO3

+) like ammonia, nitric acid, ammonium nitrate, and urea (Ji et al. 2014).
Nitrogen is essential for plant growth and development during vegetative and
reproductive phases (Cheremisinoff 2010). For this reason common agricultural
practices make use of chemical nitrogenous fertilizers to maintain high crop yields.

PGPB retain more soil organic nitrogen and other nutrients in the plant–soil
system, thus reducing the need for fertilizers. Since N2 fixation is a prime requisite
for plant growth, N2 fixer bacteria, also called “diazotrophs” play a critical role in the
plant growth by reducing dinitrogen (N2) to ammonia (NH3) by the enzyme
nitrogenase.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/nucleic-acids
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nitric-acid
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ammonium-nitrate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/growth-development-and-aging
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Many PGPB are capable of biological nitrogen fixation (BNF). Several bacteria
such as Azospirillum, Klebsiella, Burkholderia, Bacillus, and Pseudomonas have
been identified as PGPR through BNF, phosphate solubilization, phytohormone
production, and biological control of soil pathogens (Kuan et al. 2016; Fukami
et al. 2018a, b). Nitrogen-fixing rhizobacteria can promote plant growth; however,
the role of BNF in the promotion of plant growth has not been well documented still
(Pankievicz et al. 2015).

Nitrogen fixing organisms are generally categorized as (a) symbiotic N2 fixing
bacteria which form symbiosis with leguminous plants and non-leguminous trees
and (b) non-symbiotic (free living, associative, and endophytes) nitrogen fixing
forms. However, non-symbiotic nitrogen fixing bacteria provide only a small
amount of the fixed nitrogen to the host plant (Ahemad and Kibret 2014).

In legumes, its symbiotic soil rhizobial bacteria can provide N through biological
nitrogen fixation (BNF). However, most agricultural plants, especially grasses, lack
this ability (Charpentier and Oldroyd 2010). Endophytic nitrogen-fixing bacteria are
believed to contribute significant amounts of N to some gramineous crops such as
rice, maize, wheat, and barley (Ladha et al. 1997). Few examples of endophytic
diazotrophic bacteria are Lysinibacillus sphaericus (L1), Klebsiella pneumoniae
(S2), and Bacillus cereus (R2) reported in rice (Shabanamol et al. 2018), Pseudo-
monas aeruginosa PM389 in wheat (Amanullah and Fahad 2018), Bacillus spp. in
corn and banana (Amanullah and Fahad 2018). Endophytic diazotrophic bacteria
were also identified belonging to genera: Bacillus, Caballeronia, Paenibacillus, and
Pseudomonas in pine and spruce trees (Puri et al. 2018).

In order to reduce the excessive use of chemical nitrogenous fertilizer, agricul-
tural crops can be colonized by bacterial inoculants for a significant enhancement of
growth through BNF. BNF by PGPR has been reported to contribute up to 12–70%
of total N uptake in field crops like in maize, sugarcane, wheat, rice, and oil palm.
Generally, it has been estimated that up to 65% of N used in agriculture is contrib-
uted by biological nitrogen fixation, and it will be an increasingly key element for
more-sustainable agricultural practices in future plant-N management (Kuan et al.
2016; Fukami et al. 2018a, b); Montañez et al. 2009).

14.4.3 Potassium Solubilization and Mobilization

Potassium together with nitrogen and phosphorus is one of the most important
essential nutrients for plants and is the third key element in the standard commercial
fertilizers NPK (nitrogen, phosphorus, and potassium) (Kour et al. 2020). It plays an
important role in the activation of several metabolic processes such as photosynthe-
sis, synthesis of proteins, and enzymes, as well as in resistance to diseases, pests, and
abiotic stresses (Teotia et al. 2016; Kumar et al. 2020). In addition, K is required to
activate over 80 different enzymes responsible for plant and animal processes
(Etesami et al. 2017). Since most of the soil potassium is not readily available for
uptake by the plants, potassium fertilizers majorly in the form of the muriate of

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lysinibacillus-sphaericus
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/klebsiella-pneumoniae
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacillus-cereus
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potash (potassium chloride) or sulfate of potash are used to fulfill the needs of the
plants (Scherer 2005).

A wide range of potassium-solubilizing microbes (KSM) have been reported,
which include bacteria and fungi; the prominent are Bacillus spp. (B. megaterium,
B. mucilaginosus, B. edaphicus, B. circulans, Acidithiobacillus ferrooxidans, Pseu-
domonas putida, Arthrobacter sp., and Paenibacillus sp.), Aspergillus spp., and
Aspergillus terreus, Burkholderia, Enterobacter, Pantoea, Flectobacillus, Klebsi-
ella, Microbacterium, Myroides, and Stenotrophomonas (Teotia et al. 2016; Kour
et al. 2020). Pseudomonas, Bacillus, and Aspergillus, among other rhizosphere
K-solubilizing microorganisms, produce organic acids that solubilize the inaccessi-
ble potassium and make it available to plant roots (Teotia et al. 2016). Currently
there is little information available on the strategy by which KSM can solubilize
K-bearing minerals and release K for improving the growth and yield of plant.
Similar to the mechanism of P solubilization, the major mechanism of K solubiliza-
tion is inorganic and organic acids production and production of protons (acidolysis
mechanism). Organic acid such as tartaric acid, citric acid, succinic acid,
α-ketogluconic acid, and oxalic acid can directly increase dissolution by a proton-
or ligand-mediated mechanism. Released protons can directly dissolve the mineral K
converting the insoluble K to soluble forms. Organic acids can also indirectly
increase dissolution by the formation of complexes in solution with reaction prod-
ucts (Etesami et al. 2017).

14.4.4 Microbial ACC Deaminase

Ethylene is a plant hormone involved in the regulation of various physiological
processes of plants like germination, fruit ripening, growth, and senescence. Abiotic
stress such as flooding, drought, salinity, wounding, and pathogen attack can induce
the increment in ethylene level secreted by plants and has been found in almost all
plants growing under stress conditions. Environmental stress-induced ethylene pro-
duction in plants cause a significant reduction in plant growth, root elongation and
lateral root emergence, and even result in plant death (Gupta and Pandey 2019).

1-Aminocyclopropane-1-carboxylic acid (ACC) is the immediate precursor of the
hormone ethylene in plants. PGPB possess the ability to produce ACC deaminase
that can hydrolyze ACC to ammonia and α-ketobutyrate, thus reducing the indige-
nous ethylene level inside the plants, thereby increasing the root length and growth
and curbing the environmental stress induced ethylene production and its associated
harmful effect on plants (Raghuwanshi and Prasad 2018). PGPR containing ACC
deaminase thus make the plants more resistant to various abiotic stresses.

ACC deaminase has been widely reported in various species of plant growth
promoting endophyte bacteria like Agrobacterium genomovars, Azospirillum
lipoferum, Alcaligenes, Bacillus, Burkholderia, Enterobacter, Methylobacterium,
Pseudomonas, Ralstonia solanacearum, Rhizobium, Rhodococcus, Sinorhizobium
meliloti, Variovorax paradoxus (Saleem et al. 2007).

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/potassium-chloride
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Table 14.2 Inoculation with PGPR containing ACC deaminase and subsequent physiological
changes in plants (Saleem et al. 2007)

Plant species PGPR Comments

Brassica
campestris

Methylobacterium fujisawaense Bacterium promoted root elongation
in canola

Brassica
campestris

Bacillus circulans DUC1, Bacillus
firmus DUC2, Bacillus globisporus
DUC3

Bacterial inoculation enhanced root
and shoot elongation

Brassica
napus

Alcaligenes spp., Bacillus pumilus,
Pseudomonas spp., Variovorax
paradoxus

Inoculated plant demonstrated more
vigorous growth than the control
(uninoculated)

Brassica
napus

Enterobacter cloacae A significant increase in the root and
shoot lengths was observed

Dianthus
caryophyllus
L.

Azospirillum brasilense Cd1843 Inoculated cuttings produced longest
roots

Glycine max Pseudomonas cepacia Rhizobacterium caused an early soy-
bean growth

Pisum
sativum L.

Rhizobium leguminosarum bv. viciae
128C53K

Bacterium enhanced nodulation in
plants

Vigna
radiata L.

Pseudomonas spp., Bradyrhizobium sp. Bacterium promoted nodulation in
mung bean

Vigna
radiata L.

Pseudomonas putida The ethylene production was
inhibited in inoculated cuttings

Zea mays L. Enterobacter sakazakii 8MR5, Pseudo-
monas spp. 4MKS8, Klebsiella oxytoca
10MKR7

Inoculation increased agronomic
parameters of maize

Zea mays L. Pseudomonas spp. Bacterium caused root elongation in
maize

A number of studies show, a plant inoculated with bacteria containing ACC
deaminase exhibits more root growth (Saleem et al. 2007). Table 14.2 contains some
examples of inoculation with PGPR containing ACC deaminase that alter the
endogenous levels of ethylene and subsequently brings changes in plant growth.

14.4.5 Siderophores

Siderophores are iron-chelating peptide molecules with high affinity side chains and
functional groups for ferric iron (Das et al. 2007). They are low molecular weight
molecules and their molecular weights range from 400 to 1500 Da (Beneduzi et al.
2012). These macromolecules are one of the most effective binding agents for
soluble Fe3+ and they are released by microbes in response to iron deficiency so
they may gather iron from the surroundings and provide the required iron mineral to
the microbial cell (Kannahi and Senbagam 2014). Microbial siderophores can be
used by plants to obtain iron as well (Sessitsch et al. 2004). Several PGP (plant
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growth promoting) bacteria have been reported for growth promoting potentiality
through siderophore production in sugarcane (Saccharum spp.), rye grass (Lolium
perenne), Thai jasmine rice plant, and jute (Haidar et al. 2018). Iron deficient tomato
plants supplemented with microbial siderophores are also shown to produce higher
crop yields, and had increased chlorophyll and iron content in the leaves (Radzki
et al. 2013).

Siderophore-producing PGPR are mostly found closely to the surface of plant
roots and rhizosphere area. They not only provide iron nutrition to the plant, but also
act as the first defense against harmful parasites that mostly attack plant roots
(Sayyed et al. 2013). Siderophore-producing bacteria act as an antagonist against
phytopathogens by scavenging the necessary iron from the environment which is
needed for growth, nucleic acid synthesis, sporulation, and maintaining cell mor-
phology of the pathogen (Campbell et al. 1986; Pandya and Saraf 2014). Generally
the fungi are mostly affected by this iron deprivation as they cannot absorb the iron–
siderophore complex (Goswami et al. 2016). Thus PGPR secret the siderophores as
the weapons to win the battle to acquire maximum iron from the environment
(Balhara et al. 2016).

PGPR usually produce four types of siderophores: hydroxamate, catecholate,
salicylate, and carboxylate (Kannahi and Senbagam 2014). Among all the bacteria
studied for siderophore activity, Pseudomonas species produce the most potent
siderophore pyoverdines containing both hydroxamate and catecholate functional
groups acting as a growth inhibitor of bacteria and fungi in iron depleted media
in vitro (Beneduzi et al. 2012).

The most reported siderophore-producing bacteria are commonly a member of
the genus Pseudomonas, among them the most known are Pseudomonas fluorescens
and Pseudomonas aeruginosa which secret the siderophores pyochelin and
pyoverdine (Goswami et al. 2016). Some other important siderophore producing
bacteria are Bacillus spp., Escherichia coli, Azotobacter, Burkholderia sp., Rhizo-
bium radiobacter, Pantoea allii, and Mycobacterium species (Ferreira et al. 2019;
Beneduzi et al. 2012).

14.4.6 Phytohormones

Phytohormones are small organic signal molecules produced by plants in very low
concentration that regulates all the physiological processes in plants like growth,
development, pathogen defense, stress tolerance, and reproductive processes.

PGPR directly or indirectly influence plant growth by secreting secondary metab-
olites that in turn play role in plant hormone synthesis and obtaining nutrient from
soil. Almost all the PGPB have the ability to produce phytohormones like auxin, i.e.,
indole acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA), and cytokinins.
These phytohormones greatly play roles in plant root growth resulting a better
uptake of moisture and nutrients from soil (Fukami et al. 2018a, b).
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14.4.7 Volatile Compounds

The volatile compounds produced by the plant associated microbiome inhibit the
growth of plant pathogens and provide defense against them. They may also increase
the immunity of the plants by inducing systemic resistance. Bacillus
amyloliquefaciens YN201732, an endophytic bacterium found to be antagonistic
against 12 pathogenic fungi, was reported to reduce the effects of powdery mild dew
in tobacco, possibly by inducing the jasmonic acid/ethylene signaling pathway (Jiao
et al. 2020). Volatile organic compounds (VOCs) produced by Bacillus
amyloliquefaciens FZB42 and Bacillus atrophaeus LSSC22 showed inhibitory
activity against Ralstonia solanacearum, responsible for wilt disease. Benzaldehyde,
1,2-benzisothiazol-3(2H)-one and 1,3-butadiene in particular exhibited prominent
negating effect, manifested by the significant inhibition in the colony size, cell
viability, and motility of the pathogens. Moreover, VOCs even genetically altered
the virulence and pathogenicity related genes of the pathogen and elicited the
upregulation of wilt resistance and pathogen defense related genes in the plant,
thus decreasing the wilt disease in tobacco (Tahir et al. 2017). Streptomyces
sp. CEN26, a root node endophyte of Centella asiatica (L.), was found to produce
2,5-bis(hydroxymethyl)furan monoacetate that impede conidial germination and
appressorium formation of the plant pathogenic fungi Alternaria brassicicola that
causes black spot disease on a broad range of hosts (Phuakjaiphaeo et al. 2016). The
Muscodor endophytic fungi are already considered to be promising biocontrol
agents owing to the VOCs they produce (Pena et al. 2019). Blue mold and gray
mold caused by Penicillium expansum and B. cinerea respectively were completely
diminished in M. albus inoculated fruits. 2-methyl-1-butanol and isobutyric acid
abundantly released by the fungi were suggested to be responsible for the disease
suppression (Kumar et al. 2021). The VOC emitted by Flavobacterium johnsoniae
strain GSE09, 2,4-di-tert-butylphenol, hindered the development of the pathogen
Phytophthora capsici (Sang and Kim 2012). In addition to increasing plant biomass
Trichoderma asperellum T1 VOCs impeded the growth of two leaf spot fungal
pathogens Corynespora cassiicola and Curvularia aeria. These VOCs also elicited
the host defense response as plant increases the activity of chitinase and β-1,3-
glucanase (Wonglom et al. 2020). Microbial VOCs also have the potential as
insecticides to control insect induced diseases from the roots as seen in case of
Paenibacillus polymyxa strain BMP-11 (Zhao et al. 2011).

14.4.8 Other Secondary Metabolites

Antibiotics are yet another strategy for microbes to communicate with one another.
Antibiotics are most commonly associated with medicine, but soil microbes need
them to live in a tough competitive environment (Cornforth and Foster 2015).
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PGPR strains’ biocontrol capabilities are mostly reliant on extensive root colo-
nization, the generation of systemic defense response in the host plant, and the
synthesis of antimicrobial chemicals. Antibiotics are a diverse collection of
low-molecular-weight, organic chemicals that prevent other microbes growth or
metabolic functions. Antibiotics work in different ways, like by blocking pathogen
cell wall synthesis, altering or deforming cellular membrane structures, slowing the
formation of initiation complexes on the ribosome, thereby preventing protein
biosynthesis, etc. (Beneduzi et al. 2012). Antibiotics also have an important role in
the induced systemic resistance (ISR) mechanism in plants, in addition to their direct
inhibitory activity (Kenawy et al. 2019).

Actinomycetes, ubiquitous bacteria that play important roles in soil ecology, are
sources of 70% of clinical antibiotics—a widely used example is streptomycin
(Tkacz and Poole 2021). PGPR belonging to Bacillus and Pseudomonas species
play an active role in the suppression of pathogenic microorganisms producing
antibiotics. These PGPR secrete this extracellular metabolites that are inhibitory to
plant pathogen even at low concentration (Goswami et al. 2016).

Phenazine, 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin, surfactin, iturin,
fengycin, viscosinamide, kanosamine, zwittermicin-A, polymyxin, circulin,
pantocin, subtilin, and subtilosin are some of the antibiotics synthesized by PGPR,
having potential biocontrol abilities (Kenawy et al. 2019).

Pseudomonads synthesize an antifungal drug phenazine, which has redox action
potential and can reduce plant infections by inhibiting plant pathogens like Fusarium
oxysporum and Gaeumannomyces graminis. The antibiotic DAPG, generated by
Pseudomonas fluorescens, has been found to be efficient in destroying the cellular
membrane of phytopathogen Fusarium oxysporum sp. niveum. Pyrrolnitrin, which is
similarly generated by Pseudomonads, can prevent Rhizoctonia solani from
infecting cotton plants during damping-off. Antibiotics, such as polymyxin, circulin,
and colistin, generated by most of the Bacillus spp., are effective against many
Gram-positive and Gram-negative microbes, as well as several pathogenic fungi.
Bacillus spp. additionally produces zwittermicin A and kanosamine antibiotics, that
help to inhibit pathogenic fungi and fungus-like bacteria in the soil environment
(Beneduzi et al. 2012).

The antibiotics produced by PGPR are divided into two categories: volatile and
non-volatile compounds. Alcohols, aldehydes, ketones, sulfides, and hydrogen
cyanide are volatile antibiotics, while polyketides, cyclic lipopeptide amino polyols,
phenylpyrrole, and heterocyclic nitrogenous substance are non-volatile antibiotics.
This class of non-volatile antibiotics has wide antimicrobial activity against a variety
of plant pathogens (Kenawy et al. 2019).

Several rhizobacteria produce hydrogen cyanide (HCN), a volatile compound that
has a significant inhibitory impact upon several species. The cyanide ion suppresses
metalloenzymes, particularly copper-containing mitochondrial cytochrome c oxi-
dases, preventing transfer of electrons and disrupting the cell’s energy supply,
resulting in the death of organisms. HCN synthesis is mostly attributed with
Gram-negative Pseudomonas spp., although several other bacteria species, such as
Alcaligenes, Aeromonas, Bacillus, and Rhizobium, can also synthesize the same
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(Abd El-Rahman et al. 2019). P. putida has been reported to inhibit Fusarium solani
infection alfalfa plant by secreting HCN (Sarhan and Shehata 2014). Moreover,
black root rot disease which is caused by the phytopathogen Thielaviopsis basicola
(Kenneth et al. 2019) and Macrophomina phaseolina (Reetha et al. 2014) is also
found to be prevented by Pseudomonas fluorescens. Both siderophores and HCN are
recognized to have a role in a PGPR’s antifungal properties. Production of hydrogen
cyanide has been reported as an important antifungal trait of a good number of
rhizobacteria to control root infecting fungi (Bakthavatchalu et al. 2012).

14.5 Endophytes Contribute to Plant Stress Adaptation

Global warming of recent years, climate change, and many other environmental
adversaries cause hyper-salinities, water deficits, and extreme temperatures and have
become prevalent abiotic stress factors that attribute decreased crop production
globally. Studies have already revealed the microbiome of a plant to play an
important role behind it’s adaptability against many stress factors, directly or
indirectly inciting plant’s own physical and chemical mechanism to lead it toward
the ultimate objective of survival and growth. As the environmental disturbances
continue to increase the stresses, the microbiome and its ability to support plant
adaptation become all the more significant, for survival and sustenance (Table 14.3).

Table 14.3 Plant microorganisms alleviating different stress conditions in plants

Associated
plant

Achromobacter
piechaudii
ARV8

Pepper and
tomato

Increased drought tolerance by producing
ACC deaminase

(Patel
Priyanka
et al. 2019)

Solanum
lycopersicum

Elevated acquisition of phosphorus and potas-
sium under saline conditions

Mayak et al.
(2004a)

Pseudomonas
mendocina

Lettuce Reduced oxidative stress under drought con-
dition through antioxidant catalase activity

Kohler et al.
(2008)

Glomus
intraradices

Pseudomonas
fluorescens

Canola
(Brassica
spp.)

Enriched the plant with proteins related to
energy metabolism and cell division to help
tolerate salinity

Banaei-Asl
et al. (2016)

Pseudomonas
spp. AKM-P6

Sorghum At being inoculated, improved physiological
and metabolic performances under high heat
stress

Ali et al.
(2009)

Burkholderia
phytofirmans
PsJN

Grapevine Root inoculation resulted in improved root,
increased biomass, and enhanced physiologi-
cal activity at low temperature (4 �C)

Ait Barka
et al. (2006)
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14.5.1 Hypersaline Habitat Adaptability

In saline conditions the excessive uptake of Na+ and Cl� ions disrupts the Na+

homeostasis and nutritional balance, generating cytotoxicity, and fatally damaging
the plant (Table 14.3). Some rhizobacteria as well as endophytic microbes evidently
help maintain the Na+ homeostasis in saline conditions as they enhance Na+ exclu-
sion and K+, Ca+ uptake thus improving the Na+/K+ ratio and sustaining the Na+

homeostasis (Singh et al. 2021; Rojas-Tapias et al. 2012). Some plant growth
promoting rhizobacteria (PGPR) may achieve this through the secretion of
exopolysaccharides that bind cations and assist in biofilm production around root
surfaces to restrict the entry of Na+ (Ashraf and Harris 2004; Dodd and Pérez-
Alfocea 2012). Some have shown the ability to downregulate the expression of high
affinity K+ transporters (HKT1) in the roots limiting Na+ uptake, whereas inducing
their expression in the shoots promoting root to shoot Na+ recirculation and thus
improving Na+ homeostasis (Zhang et al. 2008). PGPR and endophytes are also
reported to improve N, P, K, Ca, Fe, and other nutrient uptake through fixing,
solubilizing, releasing siderophores, balancing nutrition in saline stress (Mayak
et al. 2004b; Upadhyay et al. 2016). Reactive oxygen species (ROS) produced due
to high salinity stress are also addressed by plant microbiome as they are seen to
interfere with expression of related genes to detoxify ROS (Kim et al. 2014;
Sukweenadhi et al. 2015). Even the volatile organic compounds (VOCs) produced
by this microbiome promote salt tolerance in plants. Two such VOCs, hexanedioic
acid and anoic acid, secreted by a Betaproteobacteria Alcaligenes faecalis
JBCS1294 induce salt tolerance in plant through reprogrammed auxin and gibber-
ellin pathways (Bhattacharyya et al. 2015). Colonized endophytes may provide salt
tolerance through their signaling molecules, hormones, and even microRNAs,
providing high amounts of osmolytes, decreasing water usage, and fighting produc-
tion and the effects of ROS (Azad and Kaminskyj 2016; Woodward et al. 2012).
Saline stress increases ethylene production in a plant that inhibits plant growth.
PGPR exhibit the ability to produce the ACC (aminocyclopropane-1-carboxylate)
deaminase which restricts the production of ethylene (Glick et al. 2007). A plant’s
response to saline condition may vary in accordance with its associated microbiome.

14.5.2 Alleviating Temperature Stress

Increased temperature directly affects plant growth by reducing membrane perme-
ability, photosynthesis, respiration, and seed germination. These also enhance ROS
production resulting in cell death. Plant microbiome may mitigate the effects of heat
stress through Induced Systemic Tolerance (IST) (Table 14.3). Root endophytes
were found to confer heat tolerance to its host plant by inducing constitutive
chromatin modification (Shekhawat et al. 2021). The plant microbiome can alleviate
the heat stress effects through symbiosis as observed in tropical panic grass
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Dichanthelium lanuginosum and the fungus Curvularia protuberate (Márquez et al.
2007). Microbes also help plant growth and development in high temperature
through inducing decreased production of abscisic acid (ABA), increased production
of salicylic acid, increasing the generation of antioxidants, neglecting the effects of
ROS, etc. (Khan et al. 2020). Not just high temperatures, microbiome supports
plants in cold temperatures too. A psychrotolerant bacterial inoculation is reported
to reduce freezing injuries, ice nucleating activities, and lipid peroxidation while
lessening the effects of ROS (Tiryaki et al. 2019). Some microbes confer tolerance in
both higher and lower temperatures, for example, Burkholderia phytofirmans strain
PsJN provides heat tolerance in tomato but cold tolerance in grapevine (Issa et al.
2018; Miotto-Vilanova et al. 2016).

14.5.3 Drought Stress Reduction

Drought stress damages membranes, causes loss of photosynthesis, reduces leaf size,
root proliferation and even shoot extension, lessens water use efficiency along with
fatal accumulation of ROS. Plants showcase several mechanisms to counter these
effects but the importance of plant microbiome is manifested by the way plants may
have evolved to recruit drought specific microbes in prolonged drought conditions
(Farooq et al. 2009; Naylor and Coleman-Derr 2018). In response to drought, PGPR
have been reported to manipulate phytohormones such as Indole Acetic Acid (IAA),
ABA, cytokinins, induce the production of ACC deaminase, and decrease that of
ethylene (Poudel et al. 2021). Some root zone bacteria even produce osmotically
active molecules and osmo-solutes such as proline to impart drought tolerance
(Moreno-Galván et al. 2020). Arbuscular mycorrhizal fungi (AMF) enhance osmotic
balance through increased uptake of K+, Ca+, and other cations (Ruiz-Lozano 2003).
AMF also improve the water use efficiency and water status of a plant (Augé 2001).
Plant microbial VOCs confer drought tolerance by monopolizing the expression of
genes involved in maintaining the cell wall structure and affecting phytohormone
signaling pathways (Asari et al. 2016; Poudel et al. 2021). Apart from that, a plant
microbiome provides protection against the accumulation of ROS through enzy-
matic and non-enzymatic antioxidant system (Poudel et al. 2021).

Microbiome-associated plant adaptations against stress are adaptable themselves
as they differ in different stress conditions. One microbe may have the ability to
inaugurate different responses in different conditions and plants may recruit a
specific species of microbe to withstand a specific stress condition. No matter what
the case, in every stress condition prominence of plant–microbiome interactions is
substantiated.
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14.6 Applications of Microbiome Engineering

Microbial communities are so intricately connected to the host that there is a set of
“core microbiome” specific for the host that is determined at Operational Taxonomic
Unit (OTU) levels (Gopal et al. 2013). Any disruption in the composition or function
of the core microbiome can prove to be catastrophic for the host. And as the hosts are
interconnected in ecology so are the microbial communities. So, the effect does not
only extend to a particular host but the whole ecosystem, as they may bring about
physical, biochemical, and even genetic changes in the host and thus affecting the
productivity and efficiency of the whole ecosystem. The extensive impact and
potential of microbiome forces the focus of research around microbiome, with
both urgency and interest. And as microorganisms are easier to handle, they become
a convenient target for engineering to generate desired phenotypic and even genetic
changes in the host and consequently other biotic elements in the ecosystem. The
biotechnological advances regarding genome sequence, meta-omics tools, compu-
tational tools, genome wide functional genomics, etc. further encouraged
microbiome engineering, efforts to “customize” the microbiota to sustain agriculture
without damaging the environment by introducing biological ways to control,
fertilize, and stimulate, for the welfare of humankind.

Microbiome transfer and host-mediated microbiome engineering (HMME) and
synthetic microbiomes are widely used in microbiome engineering. Based on syn-
thetic biology bottom-up or top-down approaches are notably used to engineer
phytomicrobiomes (Ke et al. 2021). The bottom-up approach isolates the plant-
associated microbes from environmental microbes, modifies genome for them to
carry desired traits, and then reintroduces the synthetic microbial communities
(SynCom) to the host plant for it to then express the outcome of the engineering
(Toju et al. 2018; Vorholt et al. 2017). On the other hand, horizontal gene transfer
(HZT) is used in top-down approach to inaugurate the desired traits in a broad range
of hosts in situ. This can be achieved through incorporating mobile genetic elements,
developing bacteriophage system, or by other necessary strategies to introduce the
desired traits in the host (Ke et al. 2021).

Engineered microbiome may suppress different diseases of host as seen in the
case of ACC deaminase engineered banana endospheric bacterial cell wall promot-
ing suppression of Fusarium induced wilt disease (Kaul et al. 2021). Conferring
stress tolerance is one of the most desired applications of plant microbiome engi-
neering for sustainable food production. Microbes are specifically engineered to
confront stress conditions including drought and salinity (Jochum et al. 2019;
Mueller et al. 2021). Microbiome engineering can also be employed in biocontrol,
which can be exemplified through plant pathogen Burkholderia ambifaria that
produces a biocontrol component cepacin A. Various studies have proved that
engineered Burkholderia ambifaria that does not have virulence can be used as an
effective biocontrol agent (Coenye 2019; Mullins et al. 2019). Microbial system can
be engineered to produce novel biocontrol compounds as in the case of Serratia
fonticola and novel fungicidal phenazine (Greunke et al. 2018). Engineered
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microbiome exhibits excellent biofertilizer activity as demonstrated by Voigt and
colleagues, where engineering of nif gene clusters in microbiome resulted in nitrogen
fixation of a cereal crop (Ryu et al. 2020; Temme et al. 2012). Moreover,
microbiome engineered to generate specific phytohormones can elevate host’s
ability to resist stress, work as a biostimulant and even suppress disease
(Ke et al. 2021).

Biosafety, biosecurity, and biocontainments need to be evaluated before the field
application of microbiome engineering, but once applied may open the door to
exceptional advantages leading toward sustained agriculture and flourishing
ecosystem.

14.7 Application of Endophytes as Potential Biofertilizer
and Biocontrol

Chemical fertilizers serve a critical part in meeting the world population’s ever-
increasing food needs. Increased agricultural usage of chemical fertilizers, on the
other hand, has negative consequences for ecosystems. These fertilizers are leached
into water bodies due to poor absorption by plants, causing eutrophication. They can
also have a variety of negative consequences on soils, such as depletion of water
storage capacity and uneven soil fertility (Ongley et al. 2010). Another severe issue
is the widespread use of pesticides, many of which are toxic to both people and
animals, including pollinators (Sponsler et al. 2019). Pesticides may also change the
dynamics of soil microbial communities associated with plants (Meena et al. 2020).
As a result, finding ecologically acceptable alternatives is crucial.

For decades, microbiological tools such as biofertilizers and biocontrol agents,
which are bacteria and fungi, capable of promoting plant growth and health, respec-
tively, have been produced. Biofertilizers have the potential to increase agricultural
yields while also being ecologically beneficial (Mahanty et al. 2017; Giri et al.
2019). Biological nitrogen fixation, initiated by the endophytic bacteria Rhizobium
spp., colonizes and occupies the interior compartment of plant tissue with little or no
injury to the host plant, is one of the most prevalent ways. This category of
endophytic microbes can be used as a biofertilizer. Endophytic nitrogen-fixing
bacteria isolated from various plants and plant components were found to supply
around 48% of the nitrogen. Endophytes like Gluconacetobacter diazotrophicus,
Serratia marcescens, and Azoarcus sp. are suitable bioformulations/biofertilizers
and hence can be prepared to use in agricultural fields (Garima Gupta et al. 2012).
Moreover, nitrogen-fixing alpha-proteobacterial genera of Agrobacterium,
Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium,
Sinorhizobium, Methylobacterium, Ochrobactrum, and Phyllobacterium, as well
as beta-proteobacterial Burkholderia and Cupriavidus, have also been reported as
potential biofertilizers (Franche et al. 2009).
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Endophytic fungi have been rarely exploited as potential tools in agriculture, despite
their various favorable effects on plants and promise in biocontrol and biofertilization.
Piriformospora indica, which colonizes the roots of cereal plants like barley and maize,
is one of the most promising and well-studied endophytes (Waller et al. 2005; Malla
et al. 2004; Prasad et al. 2008, 2013; Mishra et al. 2014; Chadha et al. 2014, 2015; Gill
et al. 2016). The fungus can promote phosphate and sulfur intake, increase biomass
output, and stimulate early flowering and seed production (Oelmüller et al. 2009).
Effects of P. indica have been widely investigated and evaluated in over 150 different
plant species (Smriti Shrivastava and Varma 2014).

Biological control agents have shown the ability to colonize plants, or at the very
least form a close bond with them. The majority of biological control endophyte (BCE)
agents have been discovered in a variety of crops and have the ability to reduce major
pathogens. Bacterial endophytes lessen or prevent deleterious effects of plant patho-
gens through antibiosis (antibiotic production), growth promotion, inducing host
defenses (induced systemic resistance, ISR), parasitism, competition, and signal inter-
ference (quorum sensing) (Jorjani et al. 2012; Mansoori et al. 2013). A bacterial
endophyte Pseudomonas fluorescens PICF7 was found to suppress Verticillium wilt,
one of the most serious diseases affecting olive trees worldwide (Mercado-Blanco
et al. 2004). In glasshouse and field trials, Paenibacillus K165 isolated from tomato
root tips was demonstrated to minimize disease severity and symptoms caused by
Verticillium dahliae in potato and eggplant (Tjamos et al. 2004). Bacterial strains Y30
and E36 identified as Streptomyces virginiae were isolated from tomato plants and
found to suppress Ralstonia solanacearum, the causal agent of tomato bacterial wilt
(Tan et al. 2011). In a recent work by Chowdhury and Bae (2018) discovered an
endophyte Burkholderia stabilis EB159 (PG159) that has the strongest inhibitory
efficacy against B. cinerea—caused leaf spot disease. Bacillus cabrialesii TE3T, a
new Bacillus species identified as an endophytic bacteria associated with wheat, was
also found as a biological control agent against a developing wheat phytopathogen
(Bipolaris sorokiniana) in the Yaqui Valley, inducing spot blotch and lowering the
infection frequencies (Villa-Rodriguez et al. 2019). Several bacterial endophytes were
also found to inhibit pathogens during the post-harvest period. Aiello et al. (2019)
recently evaluated the biocontrol properties of Pseudomonas synxantha DLS65, an
isolated endophyte from kiwi fruit tissues, against Monilinia fructicola and Monilinia
fructigena, which are causal agents of post-harvest brown rot of fruit with bone and
found 100% of mycelial growth inhibition. Zaman et al. recently identified a novel
bacterial endophyte Burkholderia contaminans NZ from jute plant that substantially
suppress the growth of different fungal plant pathogens including Macrophomina
phaseolina (Zaman et al. 2021).

Several fungal endophytes were also reported to have potential biocontrol prop-
erties. Trichoderma species have been found to antagonize Sclerotinia sclerotiorum
and Rhizoctonia solani hyphae (Mukhopadhyay and Kumar 2020). Purpureocillium
lilacinum is a classic biocontrol agent of plant parasitic nematodes and insects
(Wang et al. 2016). In a study by Wei et al. (2019a) found that a novel Fusarium
strain (Fusarium solani CEF559) could protect cotton plants against wilt in green-
house tests with better than 60% control, similar to the control level (50%) reached
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by another F. solani strain (Bx215) in a greenhouse experiment. Non-toxigenic
strains of Aspergillus flavus have been demonstrated to have the capacity to control
mycotoxigenic Aspergillus in cereals in several investigations (Sarrocco and
Vannacci 2018).

Despite the strong antagonistic nature and capacity of endophytes to benefit the
host plant by inducing resistance and growth promotion, there are a number of
obstacles to overcome when generating or using endophytes as biofertilizers and
biocontrol agents. When administered to the roots, endophytes may encounter
competition from the varied diversity of indigenous soil microflora, as well as the
various degrees of their population densities, which are often influenced by envi-
ronmental factors. Furthermore, despite the fact that some endophytes have excellent
bioactivity in laboratory and greenhouse trials, they are not always used in the field,
possibly due to poor viability during storage, poor colonization, toxicity to
non-targeted organisms, or the fact that they are not suitable for large-scale applica-
tions due to low yield in cultures (Pirttilä et al. 2021; Kumar et al. 2017). Better
understanding of the mechanisms involved in the growth promotion and antagonistic
abilities of endophytes will lead to better crop production. Several approaches such
as the use of genomics, in vivo expression technology, fluorescence experiments,
and model plants can help achieve this objective.

14.8 Conclusion and Future Prospects

Plant microbe management is considered as an advanced approach in order to
increase nutrient absorption and control disease. Therefore, most of the current
researches are aimed at elucidating the processes of host–pathogen interaction in
order to promote sustainable agriculture. Exploiting interactions between plant and
soil microbial populations is a viable strategy for increasing food production for the
world’s rising population while minimizing ecological damage in the present climate
change situation. The development of potential microbial inoculants or the modifi-
cation of naturally occurring microbial populations are the two main techniques for
regulating the plant-microbiome. The formulation, biosafety maintainence, and
modalities of application of microbial inoculants are being given special attention.
Challenges arise mostly from the demand of characterizing a broad variety of
systems involving the complex microbial populations, where the majority of
which are unculturable species. A growing number of culture-independent
approaches are often used to unravel the unknown variety of microbes living in
plant, and soil environments, as well as to characterize the molecular basis of plant–
microbe interactions. Different forms of stressful conditions, such as salinity,
drought, diseases, and pests, have negative impact on plants’ functioning. So,
plant–microbiome interactions have huge role in growth and survival of plants in
stressful conditions by using a signaling network. Recognizing this network is
critical for developing biotechnological solutions to increase plant adaption mech-
anisms and soil microorganisms’ abilities to alleviate stress in crops. Several ways
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are now being investigated to see whether the plant microbiome may be manipulated
to promote beneficial species while preventing disease presence. As a rational
conclusion, numerous accomplishments have been made via the use of microbial
biotechnology in agriculture, but many problems and possibilities need to be inves-
tigated in order to ensure future agricultural sustainability.
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Chapter 15
Endophytic Phytohormone Production
and Utilization of Functional Traits in Plant
Growth Promotion

Aahuti Sharma, Pankaj Kumar, Vikas Pahal, Jitendra Kumar,
and Shiv Shankar Pandey

Abstract Microorganisms such as bacteria, fungi, or actinomycetes play an impor-
tant role in plant growth and development. They are ubiquitous in nature. Endo-
phytes are beneficial microbes that live within host plant tissue without causing
harmful effects to their host. They are present in all plants species and show
symbiotic association with them. Population of the endophytes depends on region
where the host plant grows and also affected by climatic condition. Endophytic
microbes utilize various mechanisms to enhance plant growth and productivity and
also play important role in plant defense mechanism against different environmental
condition (biotic and abiotic stresses). Phytohormones are small molecule growth
regulators which are synthesized during the plant metabolism. The most common
phytohormones are auxins, cytokinin, gibberellin, abscisic acid, ethylene,
brassinosteroids, salicylic acid, jasmonates, and strigolactones. Endophytes also
produce phytohormones which promote plant growth and change the morphology
and physiology of the plant. During stress responses, biosynthetic and signaling
pathways of phytohormones play major role in coordinating the development of
plant. We have focused on endophytic phytohormone production and their role in
plant growth in this chapter.
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Abbreviations

4-Cl-IAA 4-Chloroindole-3-Acetic Acid
ABA Abscisic acid
ACC 1-Aminocyclopropane-1-Carboxylic Acid
CPP Copalyl diphosphate
GA Gibberellic Acid
IAA Indole-3-Acetic Acid
IAld Indole-3-Acetaldehyde
IAM Indole-3-Acetamide
IAN Indole-3-Acetonitrile
IAOX Indole-3-Acetaldoxine
IBA Indole-3-Butyric Acid
ICS Isochorismate Synthase
IPA Indole-3-Pyruvic Acid
IPP Isopentenyl pyrophosphate
IPT Isopentenyl Transferase
JA Jasmonic Acid
MEP Methyl Erythritol Phosphate
MVA Mevalonic Acid
PAL Phenylalanine Ammonia-Lyase
SA Salicyclic Acid
TAM Tryptamine
Trp Tryptophan

15.1 Introduction

The term endophytes was first introduced by De Bary (1866), where endo means
inside and phytes means plants. It is defined as any organisms that grow within plant
tissue without harming their hosts (Yadav 2018). Endophytes exist in all plants and
live asymptomatically in the plant cellular environment. During mutualistic interac-
tion, endophytes perform specific function such as synthesis of secondary metabolite
or signaling molecules that function as external and internal signals (Tidke et al.
2018). Endophytes show complex interaction with their host plant which involves
mutualism and antagonism. Their association with plant can also be obligate and
facultative. Microorganisms which do not reproduce outside the plant tissue,
depends on plant metabolites for their survival are termed as obligate endophytes
(Hardoim et al. 2008). Endophytes that live freely in soil at a definite stage of their
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life but they are usually entered to plants from the surrounding environment are
defined as facultative endophytes (Abreu-Tarazi et al. 2010). Endophytes show
symbiotic relationship with plants, which improve the physiological fitness and
metabolite profile of plants while the plants provide shelter and food for endophytes
(Chadha et al. 2015; Mishra et al. 2015; Kumar et al. 2017). Interaction of endo-
phytes with plants depends on the capacity of microorganisms to use the exudates
produced by the plant roots as their energy source. They are ubiquitous in nature and
present in all species of plants. Endophytes population in plants species is highly
variable and depends on different components such as host plant developmental
stage, inoculums density, and climatic conditions (Dudeja and Giri 2014). Types of
endophytes also vary from plant to plant and species to species. Endophytes are
generally isolated from the internal tissue of plants after surface sterilization by using
1–2% sodium hypochlorite and 70% ethanol (Sahu et al. 2022). The role of endo-
phytes is known to influence overall host plant growth, photosynthesis, nutrient
absorption and physiological processes. Beneficial endophytes produce many com-
pounds which are useful for protecting plants from environmental conditions,
increase plant growth and sustainability, while living inside the host plant (Sarkar
et al. 2021). Endophytic microbes also improve plant’s ability to tolerate various
stresses such as nutrient, temperature, salinity, drought and enhance the ability of
resistance against plant insects and pests (Joseph and Priya 2011; Prasad et al. 2013,
2018). Due to abiotic stresses, the endogenous levels of phytohormones, such as
auxins, gibberellins (GA), cytokinin, abscisic acid (ABA), jasmonic acid, and
salicylic acid (SA), alter the plant growth pattern and play crucial role in plant-
microbe interaction (Singh et al. 2021; Khan et al. 2014). Endophytic colonization
can be local or systemic; they colonize in the stems, bark, roots, petiole, fruits, buds,
seeds, and leaf segments with midribs (Specian et al. 2012; Stepniewska and Kuzniar
2013). They produce phytohormones and bioactive compounds which are useful in
industries, agriculture, and medical science (Singh et al. 2021). Phytohormones are
important growth regulators which have a prominent impact on plant metabolism
and they are synthesized in defined organs of the plant (Kazan 2013). Endophytes
secrete phytohormones and help in bidirectional nutrient transfer to improve
nutritional level and plant health by protecting against phytopathogens (Andreozzi
et al. 2019; Shen et al. 2019). Endophytes secrete various components such as
secondary metabolites, serves as biocontrol agents, antimicrobial agents and they
secrete antiviral compounds and also enhance natural antioxidants development,
antibiotics, and insecticidal product (Gouda et al. 2016; Varma et al. 2017a, b).
Endophytic microorganism helps in boosting plant growth through several mecha-
nism. The general mechanisms employed by endophytic bacteria and fungi are
indirect and direct mechanisms. In case of direct mechanisms microorgan-
isms directly provide the nutrients and other resources that are necessary for plant
growth or modulate plant hormonal levels. In indirect mechanisms, plant growth
inhibition thwart by endophytic microbes by producing of siderophores, lytic
enzymes, antibiotics, systemic resistance induction, alteration in ethylene levels,
and direct competition with phytopathogens (Glick 2012; Chhabra and Dowling
2017).
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15.2 Endophytic Phytohormones

15.2.1 Auxin

The first hormone discovered in plants was auxin. First time, Dutch botanist Fritz
W. Went (1928) isolated auxin from the tip of oat coleoptiles in the gelatin block.
Auxins are important plant hormones that play vital role in plant’s daily growth and
life (Grossmann 2010). It plays vital role in much of the early physiological
processes such as plant cell expansion. Auxin enhances plant cell division, cell
elongation, differentiation and extension, stimulates seed and tuber germination,
and increases the rate of development of root and xylem (Fadiji and Babalola 2020).
The most common natural auxin are indole-3-acetic acid (IAA), indole-3-butyric
acid (IBA), and 4-Chloroindole-3-acetic acid (4-Cl-IAA) (Fig. 15.1). Indole -3-
acetic acid (IAA) is the most common auxin, which is produced by plants and also
by bacteria and fungi. Structurally, IAA is related to the amino acid tryptophan
which is precursor for the biosynthesis of auxin (Duca et al. 2014). IAA production
by endophytes improved apical dominance and also stimulates adventitious and
lateral root development, also promotes plant root biomass, surface area, and
mediate resistance stress condition (Chen et al. 2014; Ali et al. 2017). All the IAA
producing bacteria are not beneficial to plants. Generally, at any particular time
plants are very sensitive to the amount of IAA present in plant tissue. IAA-producing
endophytes must provide appropriate concentration of IAA when combined with the
amount of the hormones produced by the plant. Less concentration of IAA produc-
tion by the endophytes can enhance plant growth, whereas the high amount of IAA
prevents growth and development (Malik and Sindhu 2011). Mostly IAA are
produced in young leaves and buds of plant. There are many ways by which IAA
helps the plant growth. In young stem, IAA helps to increase cell wall extensibility.

IAA productions have been reported in both Gram-negative and Gram-positive
bacteria. IAA-producing endophytic bacterial genera include Acetobacter, Rhizo-
bium, Azospirillum, Azotobacter, Klebsiella, Alcaligenes, Pantoea, Herbaspirillum,
Burkholderia, Pseudomonas, Bacillus, Enterobacter, Methylobacterium,
Citrobacter, Rhodococcus, and Streptomyces (Apine and Jadhav 2011; Sun et al.
2013). Some fungi (e.g., Colletotrichum acutatum, Fusarium proliferatum, F.

Fig. 15.1 Structure of three natural auxins
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Fig. 15.2 Tryptophan-dependent pathways of IAA biosynthesis

fujikuroi, F. oxysporum, Muscodor cinnamomi, Piriformospora indica, Ustilago
esculenta, and U. maydis) mainly use tryptophan-dependent pathways for IAA
biosynthesis (Hilbert et al. 2012; Tsavkelova et al. 2012; Sun et al. 2014; Nutaratat
et al. 2016). Moreover, amount of IAA in plants can also determine whether bacterial
IAA promote or suppresses plant growth, as bacterial IAA production usually
benefits those plants that have low endogenous level of IAA (Glick 2012). Endo-
phytic bacteria produce IAA is the major effector molecule in pathogenesis,
phytostimulation, and plant–microbe interaction (Gao and Tao 2012). IAA in plants
is synthesized by different biosynthetic pathways. The main precursor for IAA
synthesis is tryptophan, which helps to alter the level of biosynthesis (Kundan
et al. 2015). IAA production is stimulated by tryptophan and it also regulates the
IAA synthesis by inhibiting anthranilate because it reduces the IAA synthesis
(Fig. 15.2). The types of pathway of IAA production by endophytes within plants
depend on the nature of the resulting plant–microbe interactions. In many plant-
beneficial bacteria, IAA production occurs via the indole-3-pyruvate pathway (IPA),
whereas in many pathogenic bacteria indole-3-acetamide pathways (IAM) were used
for the synthesis of IAA (Hardoim et al. 2008). Assumpção et al. (2009) reported
several endophytes from soybean seeds as Acinetobacter, Bacillus, Brevibacterium,
Enterobacter, Methylobacterium, Paenibacillus, Pseudomonas, Ochrobactrum,
Streptomyces, and Tsukamurella produced IAA in vitro but only Enterobacter
sp. increased the dry biomass of root of soybean. In another study, IAA-producing
bacterial endophytes (Bacillus cereus and B. subtilis) and fungal endophytes (Pen-
icillium crustosum and Penicillium chrysogenum) isolated from Teucrium polium
stimulated the plant growth and increased biomass of maize in comparison to
uninoculated plants (Hassan 2017). Chen et al. (2017) reported that endophytic
IAA producing Pseudomonas fluorescens Sasm05 promoted the growth and photo-
synthesis of Sedum alfredii.
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15.2.2 Gibberellic Acid

Gibberellins (GAs), are chemicals produced naturally by plants, are considered as
phytohormones. It is a large family of diterpenoids that are derived from tetracyclic
gibberellane carbon structure, which are arranged in either four or five ring structure.
GA was first identified in Japan in 1926, as a metabolic by-product of the plant
pathogen Gibberella fujikuroi (thus the name), which afflicts rice plants. Gibberella
fujikuroi causes Bakane or Foolish seedling disease in rice. Gibberellins stimulate a
number of plant’s metabolic functions, which are essential for plant development
and growth including seed germination, leaf growth promotion, stem elongation,
stimulation of flowering, fruit development, and senescence (Khan et al. 2015). They
also act as chemical messenger and help by breaking dormancy and stimulate the
enzyme (Alpha amylase) and help in hydrolysis of starch present in many seeds into
glucose to be used in cellular respiration (Kundan et al. 2015). There are many types
of GAs but the main types of GAs include molecules with 20 carbon atom (C20-GAs)
and other molecules with 19 carbon (C19-GAs), having variable fifth ring of a
lactone (Fig. 15.3). The biologically active gibberellin is GA1 which helps in
controlling the stem growth and development (Bömke and Tudzynski 2009; Sponsel
and Hedden 2010).

Gibberellin also plays an important role in mediating the effects of environmental
changes on plant growth. Environmental factors including temperature and photo-
period can change the level of active gibberellins by affecting gene transcription for
particular steps in biosynthetic pathway. The main precursor of gibberellins biosyn-
thesis is isoprene unit (5C). The basic isoprenoid unit is isopentenyl diphosphate
(IPP) which is generated by two ways: the mevalonic acid (MVA) and methyl
erythritol phosphate (MEP) pathway. MVA pathway occurs in cytoplasm whereas
the MEP pathway occurs in plastids (Hedden and Thomas 2012). Biosynthetic
pathway of gibberellins can be divided into three stages according to their different
cellular compartment and the enzyme involved (Fig. 15.4). First step is the produc-
tion of terpenoid precursors (ent- Kaurene) occur in plastids. In second step,
oxidation reaction occur in endoplasmic reticulum to form GA12 and GA53 and in
last step formation of all other gibberellins from GA12 and GA53 occur in cytosol
(Salazar-Cerezoa et al. 2018). Bacillus siamensis BE76 an endophytic bacteria

Fig. 15.3 Structure of C20-GAs and C19-GAs
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Fig. 15.4 Gibberellin
biosynthetic pathway and
the enzymes involved in the
metabolic steps

isolated from stems of banana have the ability to produce a significant amount of
gibberellic acid which provides beneficial effects on crop yield and prevent envi-
ronmental pollution by avoiding excessive applications of chemical fertilizers
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(Ambawade and Pathade 2015). In Cicer arietinum the endophytic bacteria
B. cereus MEN8 produce maximum amount of GAs and increase seed germination
capacity and vegetative growth, i.e., root/shoot length and fresh/dry weight (Baliyan
et al. 2021).

15.2.3 Cytokinin

Cytokinins are plant growth hormones which are basic in nature. The first cytokinin
was discovered from degraded autoclaved Herring sperm DNA by Miller et al.
(1955). The first natural cytokinin was obtained from unripe maize grains or kernels
by Letham et al. (1964). It is also present in coconut milk. Cytokinin is known as
zeatin (6-hydroxy 3-methyl trans 2-butenyl amino-purine) (Fig. 15.5) or kinetin
(6-furfuryl amino-purine). 18 types of Cytokinins have been discovered till date.
Cytokinin promote cytokinesis (= cell division) either alone or in conjunction with
auxin. Skoog and Tsui et al. (1948) found that callus from intermodal segments of
Tobacco proliferate only when in addition to auxin, the nutrient medium is provided
with yeast extract, vascular tissues, coconut milk or DNA because of presence of
cytokinin in these sources. Cytokinin is also produced by endophytes which can be
used to prolong the shelf life of cut flowers, fruits, and leafy vegetables. In addition,
endophytes do have potential to produce many important pharmaceutically bioactive
compounds (Bhore et al. 2010). Cytokinins like compounds are not only produced
by plants but other prokaryotic and eukaryotic organisms also produce cytokinins
such as bacteria and fungi. Cytokinins are important group of phytohormones that
influence not only many aspects of plant physiology, growth, and development of
plant but also show the interaction with microorganisms, including pathogens
(Grosskinsky et al. 2016). Cytokinins help in plant to promote cell division of
roots and shoots but the main functions of cytokinins are cell growth. It also delay
the senescence or aging of tissue and thus effect the leaf growth, also inhibit the
premature senescence of leaf (Hwang et al. 2012) and affect the apical dominancy.
The farmers use it for increasing the overall yield and quality of crops.

Cytokinins are isoprenoid substituted adenine molecules. Under various environ-
mental stages, the activity and type of cytokinin molecules differ remarkably

Fig. 15.5 Cis and trans
-zeatin
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Fig. 15.6 Cytokinin
synthesis pathway (Kieber
and Schaller 2014)

between divergent plant species and tissues at different developmental stages. For
the synthesis of cytokinins, the first enzyme is isopentenyl transferases (IPTs) which
are involved in catalyzing isoprenoid to other various types of cytokinins including
zeatin, N6-isopentenyl-adenine (Fig. 15.6). The most common form of cytokinin in
plants is Trans - zeatin. Cytokinins are metabolized and inactivated through conju-
gation to sugars or through degradation by cytokinin oxidases (Akhtar et al. 2019).
Endophytic fungus Phomopsis liquidambari B3 can enhance cytokinin, auxin,
ethylene level by establishing a mutualistic symbiotic relationship with Oryza sativa
L. which enhanced nitrogen uptake, yield, and metabolism in rice (Li et al. 2018).
Cytokinin-producing bacterial endophytes Pseudomonas resinovorans and
Paenibacillus polymyxa were isolated from Sambung Nyawa (Gynura procumbens
(Lour.) Merr.) and can also be used as plant growth-promoter (Bhore et al. 2010).
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15.2.4 Ethylene

Ethylenes are compound which can be produced by almost all parts of higher plants,
although the rate of production of ethylene depends on the type of tissue of plant and
development stage of plants. The most active site for biosynthesis of ethylene is
meristematic region and nodal region of plant. During leaf abscission, root nodula-
tion, flower senescence, and fruit ripening, production of ethylene also increases
(Sun et al. 2016). The production of ethylene depends on its rate of production
versus its rate of escaping into the environment. It is produced more in dividing cells
mostly in dark (Kundan et al. 2015). The main precursor of ethylene (Fig. 15.7)
production is methionine, and ACC (1-aminocyclopropane-1-carboxylic acid) acts
as an intermediate, which helps in the conversion of methionine to ethylene and
provides the nitrogen sources α-ketobutyrate and ammonia from the ethylene pre-
cursor ACC. Therefore, under nitrogen-limitation conditions the bacterial endo-
phytes can promote plant growth through the secretion of ACC deaminases (Sun
et al. 2009). Decrease in the level of ethylene in plant relies on the ability of the ACC
deaminase-positive bacteria to take up ACC before its oxidation by the plant ACC
oxidase (Fig. 15.8). ACC deaminase-inducing endophytes are good plant-growth
promoters, because they ameliorate plant stress by blocking ethylene production
(Santoyo et al. 2016).

Ethylene is the first gaseous hormone formed by breakdown of methionine
(amino acid) that is present in all the cells. The presence of ACC deaminase-
containing endophytic microorganisms promotes tolerance against both abiotic and
biotic stress that normally induces plant growth by inhibiting levels of ethylene.
ACC deaminase-containing plant growth-promoting bacteria can effectively protect
against growth inhibition by salinity, drought, flooding, cool, high levels of metals
and organic contaminants, the presence of fungal and bacterial pathogens, as well as
temperature stress (Gamalero et al. 2020). Under these stressed conditions, the
endogenous production of ethylene is induced more to have the adverse effect on
root growth and eventually on whole plant. Any type of wounds in plants can also
induce ethylene biosynthesis. Biotic and abiotic stresses result in an increased
ethylene production in plants that leads to inhibition of root elongation, formation
of root hair, and development of lateral roots (Afzal et al. 2019). The ACC deam-
inase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by
reducing stress-related ethylene production, resulting in improved growth, photo-
synthetic performance, and ionic balance in tomato plants (Win et al. 2018). Khan
et al. (2016) isolated edophytic bacteria from Moringa peregrina having ability to

Fig. 15.7 Structure of
ethylene
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Fig. 15.8 Biosynthetic pathway of ethylene synthesis from methionine (Adams and Yang 1979)

Fig. 15.9 Structure of
abscisic acid

produce indole acetic acid and ACC deaminase enhanced the the growth of Solanum
lycopersicum.

15.2.5 Abscisic Acid

Abscisic acid (ABA) is ubiquitous plant hormone present in vascular plants.
Abscisic acid (Fig. 15.9) is a signaling molecule mediating bud growth, seed
dormancy, and adaptation to various environmental stresses (Hauser et al. 2011).
ABA also protects plant by inducing stomatal closure and thereby reduces water loss
(Herrera-Medina et al. 2007). It is a derivative of sesquiterpenoid, which are group of
phytohormones that helps in the regulation of plant growth.

Under drought stress condition, ABA shows different effects on the growth of
root and shoot of the plant (Bano et al. 2012). ABA is required for the development
of desiccation tolerance in the developing embryo, the synthesis of storage proteins,
and the acquisition of dormancy (Nonogaki 2019). During abiotic stress the expres-
sion of stress responsive genes is regulated by ABA-induced and -mediated signal-
ing, leading to better elicitation of tolerance responses (Sah et al. 2016).

ABA biosynthesis takes place in plastid and cytosol, which begins with
isopentenyl diphosphate (as precursor of terpenoid) and leads to the synthesis of
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Fig. 15.10 Biosynthetic
pathway of abscisic acid
(Finkelstein 2013)

the C40Xanthophyll (i.e., oxygenated carotenoid) Violaxanthin. Violaxanthin syn-
thesis is catalyzed by Zeaxanthin epoxidase which convert Violaxanthin into C40

compound neoxanthin, which cleaved to form the C15 compound Xanthoxal, finally
Xanthoxal is converted to ABA via oxidative steps involving the intermediates ABA
aldehyde and the final step is catalyzed by aldehyde oxidases and synthesize ABA
(Fig. 15.10). Cohen et al. (2009) suggested that both ABA and gas producing
Azospirillum contribute to water-stress alleviation of plants. Seed born endo-
phytic B. amyloliquefaciens RWL-1 produce ABA under saline conditions signifi-
cantly increased the Oryza sativa growth (Shahzad et al. 2017).
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15.2.6 Salicylic Acid

Salicylic acid (SA) is a phytohormone that plays a main role in plant defense under
biotic and abiotic stimuli through the alteration of antioxidative enzyme activities
(Ahmad et al. 2011; da Silva et al. 2017). SA is best known for endogenous
signaling, mediating host responses against pathogen infection. Its biosynthesis in
plants is not fully understood, but its role in plant defense activation has been well
established. The IUPAC name of salicylic acid is 2-hydroxybenzoic acid
(Fig. 15.11). SA is derived from two pathways, i.e., ICS and PAL pathway. Both
the pathways start from chorismate (Lefevere et al. 2020). SA modulates several
physiological processes involved in plant stress tolerance through stress-activated
signal pathways and response mechanisms (Ahmad et al. 2011; Janda et al. 2012).
SA treated plants showed better growth in terms of transcription, biomass accumu-
lation, and promotion of cell differentiation and also showed antioxidant enzyme
activity and higher photosynthetic rate of plant (da Silva et al. 2017).

Plants synthesize SA from cinnamate produced by the activity of phenylalanine
ammonia lyase (PAL). Genetic studies, on the other hand, indicate that the bulk of
SA is produced from isochorismate. In bacteria, SA is synthesized from chorismate
through two reactions catalyzed by isochorismate synthase (ICS) and isochorismate
pyruvate lyase (IPL). Arabidopsis contains two ICS genes but has no gene-encoding
proteins similar to the bacterial IPL. Thus, how SA is synthesized in plants is not
fully elucidated. Two recently identified Arabidopsis genes, PBS3 and EPS1, are
important for pathogen-induced SA accumulation. PBS3 encodes a member of the
acyl-adenylate/thioester-forming enzyme family and EPS1 encodes a member of the
BAHD acyltransferase superfamily. PBS3 and EPS1 may be directly involved in the
synthesis of an important precursor or regulatory molecule for SA biosynthesis
(Chen et al. 2009). A study reported that the SA-producing Pseudomonas
tremae EB-44 was most effective in suppressing tobacco wildfire disease and also
has potential for use as an alternative, eco-friendly control measure for this disease in
other crops (Islam et al. 2020).

15.2.7 Jasmonic Acid

Jasmonic acid (JA) is growth-regulating organic compound (Fig. 15.12). The mol-
ecule is a member of the jasmonate class of plant hormones. It is biosynthesized from

Fig. 15.11 Structure of
salicylic acid
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linolenic acid by the octadecanoid pathway. JA are lipid-derived signaling molecules
which are essential for the adaptation of plants to adverse environment (Campos
et al. 2014; Lefevere et al. 2020; Zhu et al. 2021). The exogenous application of JA
also has a regulatory effect on plant growth. During stress condition, JA shows
physiological responses including activation of antioxidant system and regulation of
stomatal opening and closing (Wang et al. 2020).

15.3 Endophytic Fungi

Endophytic fungi are ubiquitous to plants, produce large number of chemical
compounds which are essential for plant growth and development. First time, the
plant hormone Gibberellins had been isolated from fungus Gibberella fujikuroi.
These secondary metabolites are also present in different genera of fungi including
Aspergillus cadophora, Porosterum spadiceum, Penicillium, Neosartorya sp.,
Porostereum spadiceum (Hamayun et al. 2017; You et al. 2013). Endophytic fungi
include Aspergillus fumigatus, Scolecobasidium tshawytschae, Aspergillus
caespitosus, Porostereum spadiceum, Cadophora malorum produces salicylic acid
(SA), jasmonic acid (JA), and low concentration of abscisic acid (ABA) (Khan et al.
2011). The endophytic fungus Paecilomyces formosus LHL10 produced many
physiologically active and inactive GAs and IAA, which helped the rice plants to
grow well and significantly mitigated the negative impacts of salinity stress on
cucumber plants (Khan et al. 2012). The co-inoculation of the endophytic fungus
Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 actively
contributed to the tripartite mutualistic symbiosis in Glycine max under heavy
metal stresses; this consortium could be used as an excellent strategy for sustainable
agriculture in the heavy metal-contaminated fields (Bilal et al. 2018). We have
summarized the various endophytic microorganisms (fungi and bacteria) having
abilities to enhance the growth of plants in Table 15.1.

Fig. 15.12 Jasmonic acid



Bacterial endophytes References

15 Endophytic Phytohormone Production and Utilization of Functional Traits. . . 379

Table 15.1 Various plant growth hormones produced by endophytes

Plant
hormones

Indole acetic
acid (Auxin)

Azospirillum, Azotobacter, Curtobacterium,
Paenibacillus, Alcaligenes, Herbaspirillum,
Enterobacter, Citrobacter, Pseudomonas,
Klebsiella, Rhizobium, Burkholderia,
Herbaspirillum, Enterobacter, Bacillus,
Acinetobacter, Serratia

Hauser et al. (2011), Rana
et al. (2020), Singh et al.
(2018), Zhao et al. (2018)

Gibberellins
(GAs)

Acetobacter diazotrophicus, Herbaspirillum
seropedicae, Bacilus, Pseudomonas,
Sinorhizobium, Rhizobium phaseoli,
Sphingomonas sp. Leifsonia soli

Ali et al. (2017), Shahzad et al.
(2016), Sandhya (2017)

Cytokinin
(CK)

Paenibacillus polymyxa, Pseudomonas
resinovorans, Bacillus subtilis, Pseudomo-
nas, Sinorhizobium, Klebsiella

Shahzad et al. (2017)

Abscisic acid
(ABA)

Bacillus amyloliquefaciens, Pseudomonas
resinovorans

Zhu and She (2018)

ACC
deaminase

Pseudomonas, Bacillus paralicheniformis,
Streptomyces niveus, Paenibacillus polymyxa

Islam et al. (2020), Borah and
Thakur (2020)

Salicylic acid
(SA)

Pseudomonas tremae, P. fluorescens,
P. aeruginosa and Serratia marcescens,
Curtobacterium herbarum

Chen et al. (2020), An and
Mou (2011)

Jasmonic acid
(JA)

Azoarcus olearius, Azospirillum spp. Khan et al. (2014a)

Fungal endophytes

Indole acetic
acid

Penicillium chrysogenum and Penicillium
crustosum

Hassan (2017)

Gibberellins Aspergillus, Porosterum spadiceum, Penicil-
lium, Neosartorya sp., Porostereum
spadiceum

Hamayun et al. (2017)

Cytokinin and
ethylene

Phomopsis liquidambari Li et al. (2018)

Salicylic acid
and Jasmonic
acid

Aspergillus, Cadophora, Porosterum Khan et al. (2011)

15.4 Conclusion

Endophytic microorganism supports plant development and growth by employing
different mechanisms of action, i.e., indirect and direct mechanisms. Endophytes
show mutualistic interaction with plants where the plants provide shelter and food to
microbes and in return microbes provide benefits to plants by producing phytohor-
mones and various secondary metabolites. Endophytes also have the ability to
protect plants from various environmental stresses, including abiotic and biotic stress
and resistance to pathogens by producing growth regulators, i.e., auxin, gibberellins,
salicylic acid, cytokinin in host plant tissue. Endophytic microbes have a great
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potential to be used as biofertilizers, biopesticides, and usually used in agricultural
field because they can synthesize and secrete chemical compounds which are useful
for the development and growth of plant.
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Chapter 16
Role of Endophytic Microorganisms
in Phosphate Solubilization
and Phytoremediation of Degraded Soils

Dipita Ghosh, B. S. Manisha Singh, Manish Kumar, Subodh Kumar Maiti,
and Nabin Kumar Dhal

Abstract Phosphorus (P) is considered as the second most important element in
plant nutrient profile after nitrogen. It primarily exists incorporated in organic
compounds or as mineral salts in soil. Despite these, phosphorus compounds are
disbursed abundantly in agricultural soil, and the majority of them are of insoluble
form. With the assistance of plant-associated bacteria, the inorganic phosphate
solubilization is one of the significant mechanisms for plant growth promotion.
The mechanism involves the solubilization of phosphate complexes into more
available forms such as orthophosphate ions by organic acid secreted by microbes.
The employment of plant growth promoting P bacterial inoculants as biofertilizers
can provide favourable alternative to replace chemical fertilizer to some extent.
Some examples of phosphate solubilizer are Bacillus, Pseudomonas and Aspergil-
lus, while the phosphate absorber includes arbuscular mycorrhizal fungi
(e.g. Glomus). Phytoremediation of heavy metals in association with phosphate-
solubilizing bacteria are known to overcome metal stress on plants due to the
contaminated substrate. In case of mine-degraded soils, endophyte assisted P-solu-
bilization enhances the bioavailability of insoluble P to plants which in turn
enhances the plant growth. Therefore, this chapter covers endophytes assisted
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sustainable in-situ remediation of contaminated site which stimulates plant growth,
defence against metal toxicity and soil fertility.

Keywords Biofertilizers · Soil · Heavy metals · Amendment · Phytoremediation ·
Microbes

16.1 Introduction

Mining activity causes complete loss of soil profile, vegetation and the biodiversity of a
land. It also causes air and water pollution, disturbs drainage and permanently affects a
landform (Ghosh and Maiti 2020; Mohapatra et al. 2020). Mine spoil is characterized
by impoverished nutrient content, low organic content and cation exchange capacity
and disturbed ambient soil physicochemical and biological properties (Basu et al. 2015;
Ahirwal et al. 2021; Ghosh and Maiti 2021a). A degraded mine spoil is devoid of soil
organic matter, microbial activity and the enzymatic activities associated with the soil
fauna (Maiti 2013; Ghosh and Maiti 2021b). A mine spoil is devoid of essential soil
nutrients and often the storehouse of potentially toxic elements (Ahirwal and Maiti
2017; Ghosh and Maiti 2021c). Phosphorous (P) is a crucial component for overall
plant development and productivity (Rawat et al. 2021). Its properties constrain its free
accessibility and make it a restraining nutrient for vegetation development (Mehta et al.
2017). Thus, an efficient amendment technique is required for mitigation of phosphate
deficiency and heavy metal contaminations in mine spoils/tailings and technosol. Some
common restoration practices for post-mining coal mine degraded land are forestry,
agricultural practices, grass-legume seeding, fly ash amended plantation and biochar
aided plantation (Šebelíková et al. 2019; Shukla and Lal 2005; Kumari et al. 2022;
Świątek et al. 2019; Fellet et al. 2011; Ghosh et al. 2020).

In a natural soil ecosystem, plants interact with a number of symbiotic microorgan-
isms (Domka et al. 2019). The plant–soil interaction includes synergy of plants with
rhizobacteria and endophytic fungi (Maiti 2013; Domka et al. 2019; Varma et al.
2019a, b). Actinomycetes, bacterial and fungal endophytes perforate the plant through
root zones along with flower, leaf, stem and cotyledon (Li et al. 2012). The
microbiomes are such integral part of plants that they can be used as proxy to study
the phenotypic variation of the plant genotype. The knowledge of plant–microbiome
interactions can help improving the economic and environmental sustainability of mine
spoil restoration through agriculture and forestry. A reduction in inputs, in terms of
fertilizer, water, or chemical pesticides, would lead to significant cost savings (Prasad
2017, 2018; Prasad et al. 2021).

Endophytic microbes have the ability to grow throughout the host plant tissues and
releases phytochemicals that provide resistance to disease and help in nutrient miner-
alization for host plant (Maiti 2013). Some endophytic fungi can also solubilize P and
supply it to their non-mycorrhizal counterparts, encouraging its growth under nutrient
environment (Mehta et al. 2017; Rawat et al. 2021). Thus, they help in improving the
overall plant growth under stressed environmental conditions (Maiti 2013). Curvularia
geniculata isolated from Parthenium hysterophorus roots is a dark septate root
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endophytic fungus which can improve plant growth by promoting P-solubilization and
certain phytohormone secretion (Priyadharsini andMuthukumar 2017). Another impor-
tant role played by endophytes includes resistance to heavy metals and assistance in
phytoremediation of a metal contaminated site. Endophyte-assisted phytoremediation
technology has been reported to be an efficient technique for in situ remediation of
potentially toxic elements contaminated soils (Mastretta et al. 2009; Domka et al. 2019;
Guerrero-Zúñiga et al. 2020). During the phytoremediation of polluted sites, heavy-
metal contamination enduring endophytes can also improve plant growth, reduce metal
phytotoxicity and influence translocation and accumulation of metal. Thus, this chapter
focuses on the beneficial role of endophytes for phosphate solubilization and heavy
metal remediation. In conclusion, this chapter provides an insight on how endophytes-
assisted phytoremediation enhances soil properties.

16.2 Role of Endophytes for Mine Spoil Reclamation

16.2.1 Phytostimulation and Nutrient Cycling

Essential nutrients such as C, N, H, O and P are absolutely necessary for plant
growth and development. These nutrients are in chemical form through atmosphere,
soil, water and organic matter. Endophyte facilitates the uptake of nutrients by the
roots of the plants (Nair and Padmavathy 2014). They have been reported to elicit
different modes of actions for plant adaptation in P-deficient soil and facilitation of N
uptake (Arachevaleta et al. 1989). Certain endophytic bacteria have been reported to
produce phytohormones such as cytokinins, auxins and gibberellic acids which are
essential plant growth regulators (Xin et al. 2009). Endophytes play vital role in
biodegradation of the debris of its host flora (Mehta et al. 2017).

16.2.2 Enzyme Production, Antimicrobial Activity and Source
of Bioactive

Soil micro-organisms are the source of a number of commercially important enzymes.
This quest for alternative source of enzyme production has led to the discovery of
certain endophytes which can produce vital enzymes. Endophytic fungi such as
Aspergillus japonicas, Cladosporium sphaerospermum, Nigrospora sphaerica, Peni-
cillium aurantiogriseum, P. glandicola and Xylaria sp. have been reported to produce
enzymes such as pectinases, cellulases, xylanases and proteases (Nair and Padmavathy
2014). Acremonium zeae, isolated from maize, has also been reported to produce the
enzyme hemicellulase (Bischoff et al. 2009). A number of isolated endophytes from
plants have been reported to possess antimicrobial activity (He et al. 2020). Most
endophytes show antimicrobial activity; however, the ones obtained from medicinal
plants affects a broad spectrum of pathogenic microbes (Nair and Padmavathy 2014).
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16.2.3 Bioremediation

Bioaccumulation, bio-stimulation, bio-deterioration, bio-leaching, bio-reduction and
bio-sorption are some common bioremediation techniques used for heavy metal
contamination. Endophytes possess the ability to breakdown complex compounds.
Mastretta et al. (2009) reported that the inoculation of Nicotiana tabacum with
endophytes resulted in improved plant growth under Cd toxicity and the
phytoavailable Cd concentration was high in comparison with the one having no
endophytic growth. According to Basu et al. (2015), a number of microorganisms
catalyse the reduction of Cr (VI) to Cr (V) or Cr (III) in various environmental
conditions. Cr (VI) reduction is shown to be metabolic in some species of bacteria
but can also be dissimilatory/respiratory when exposed to anaerobic conditions.
Although, most microbes are sensitive to Cr (VI), some microbes are highly resistant
and can tolerate Cr (VI) toxicity in the soil. Metal reductase genes found on plasmids
and chromosomes impart the resistance to these microbes for growth in Cr
(VI) environment (Patra et al. 2017). Some common endophytes that have the
potential for Cr remediation include Acinetobacter, Arthrobacter, Bacillus spp.,
Cellulomonas spp., Escherichia coli, Enterobacter cloacae, Pseudomonas and
Ochrobactrum (Hossan et al. 2020). A review conducted by Pushkar et al. (2021)
reported that major bacterial communities found at chromium contaminated sites are
Gammaproteobacteria. Other bacteria reported to inhabit chromite contaminated
sites includes Serratia marcescens, Pseudomonas aeruginosa, Alcaligenes faecal
and Klebsiella oxytoca.

16.3 Role of Endophytes for Phosphate Solubilization

Phosphorus is an essential macronutrient for the proper metabolism, growth and
plant development. Phosphorus is abundantly available in both inorganic and
organic forms in soil; however, due to the complex formation with metal ions in
soil, it is unavailable for plant uptake. Phosphate-solubilizing endophytes have the
ability to solubilize the complex phosphates in the soil by various mechanisms.
Some commonly used mechanisms used by these microbes include production of
enzymes, organic acids and siderophores that have the ability to chelate the heavy
metal ions and form complexes, making bioavailable phosphates for vegetation
uptake (Rawat et al. 2021). These endophytes also produce certain phytohormones
such as auxins, cytokinins and gibberellins which promote plant growth.
1-aminocyclopropane-1-carboxylic acid deaminase produced by endophytes has
been reported to improve plant growth under stressful environment which improves
its resistance to heavy metal toxicity (Fig. 16.1). A few examples of endophytes,
their host plant and the role they play are given in Table 16.1.
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Fig. 16.1 Mechanism by which endophytes promotes plant growth and phosphate solubilization

16.4 Role of Endophytes for Phytoremediation

A number of endophytes have been reported to be heavy metals resistant.
Endophyte-assisted phytoremediation is an effective technique for in situ remedia-
tion of contaminated soils (Prasad 2022). Microbes develop symbiotic relationships
with their plant hosts and promote phytoremediation. Some common
hyperaccumulating plants such as Brassica juncea (L.) Czern., Pteris vittata,
Sedum alfredii and non-hyper-accumulators, such as Arabidopsis thaliana, Brassica
napus and Glycine max have been reported to house a number of important endo-
phytes (He et al. 2020). During pollutant phytoremediation association of heavy-
metal-resistant endophytes can result in enhancement of plant development followed
by decrease in metal phytotoxicity and affect translocation of metals in plants. They
even produce certain enzymes which help in the degradation of contaminants that
reduces the phytotoxicity of the potentially toxic elements. Application of endo-
phytes for phytoremediation and their significance for the host plant growth has been
given in Table 16.2.

16.5 Case Studies

16.5.1 Fungal Root Endophytes in Metal-Polluted Tailings

Flores-Torres et al. (2021) conducted a research identifying and assessing the plant
and fungal root endophytes in bioremediation of polymetallic polluted tailings. The
study revealed the significant role of native plants such as Tagetes lunulata, Cerdia

https://en.wikipedia.org/wiki/Carl_Linnaeus
https://en.wikipedia.org/w/index.php?title=Vassili%C4%AD_Matveievitch_Czernajew&action=edit&redlink=1
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congestiflora and Lupinus campestris as well as the exotic plant species Asphodelus
fistulosus, and Cortaderia selloana in phytoextraction and/or phytostabilization of
Zn, Pb and Cd. Molecular studies of fourteen endophytic fungi isolated from root
inner zones of Pennisetum villosum and T. lunulata showed the prevalence of
Alternaria and other Pleosporales. The dominance of endophytes in several plant
root systems indicates the interaction and functioning of mycorrhiza in mine tailings.
Exotic invasive plants A. Fistulosus and P. villosum showed more than 50% root
colonization intensity by endophytes, which could ascertain its invasive capacity.
The study reported that these endophytes could facilitate the advancement of
Ambrosia artemisiifolia growing at polluted sites; therefore, mycorrhizal interac-
tions can help in promoting local adaptation and/or reducing environmental stress.
Thus, the study indicated that the employment of native endophytic fungi could
emphasize the establishment of plants for reclamation of mine waste in semi-arid
climate in biologically sustainable manner. Also, high efforts are needed to enhance
the vegetation practice of mine wastes under study, which can efficiently reduce, in
turn, their potential ecotoxicological impact on organisms, human populations and
agricultural areas.

16.5.2 Root Colonizing Endophytes for Succession in a Mine
Degraded Land

Kolaříková et al. (2017) studied the fungal community assembly during spontaneous
primary succession in Sokolov brown-coal mining in Czech Republic. The fungal
communities associated with the roots of Betula pendula and Salix caprea were
studied in a mine spoil chronosequence (12–50 years old sites) site. The study
showed that the fungal root endophytes, fungal plant pathogens and ectomycorrhizal
fungi changed significantly along the age of reclamation. Ectomycorrhizal fungi and
fungal plant pathogens communities have a direct impact on the development of the
vegetation cover and the properties of the reclaimed mine spoil. Thus, the study
concluded that plant community structure changed along the various stages of
succession which was directly impacted by the endophyte and pathogen communi-
ties of the soil. The study provided a better understanding of community assembly of
root-associated fungi and provided insight of fungal ecology in various stages of
succession.

16.6 Conclusion

Phytoremediation with endophyte assistance can be a promising technique for the
restoration of a degraded and contaminated soil. They are known to improve nutrient
uptake, enhance growth, decrease phytotoxicity of heavy metals and effect their
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assimilation in plants body. These endophytes also solubilize the unavailable phos-
phorus in soil and restore the deficiency in soil. These endophytes also play a vital
role in phytoremediation of heavy metal contaminated sites. Thus, endophytes as a
mean to remediate contaminated sites should be explored for eco-friendly and
effective remediation of heavy metal contaminated sites. Selection of potent endo-
phytes with multifunctional role is essential for the commercialisation and reduction
of coast of restoration of mine-degraded land. Thus, future researches should be
done to develop and discover new strains from various ecological niches and for
employing in degraded soil restoration.
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Chapter 17
Techniques to Study Plant–Microbe
Interactions that Lead to Efficient
Sustainable Agriculture

Nishra Joshi, Janki A. Ruparelia, Meenu Saraf, and Chaitanya Kumar Jha

Abstract Plant and microbes interact with each other at many levels of their life
cycle, which may be beneficial, harmful, or neutral, and these interactions can be
seen on multiple interfaces of the plant like root, shoot, stem, or leaves. If we have a
glance in the field of agriculture in this context, the demand of agriculture is rising
unprecedentedly and the conventional agriculture practices cannot keep pace with it
both economically and environmentally, and we as humankind need to execute new
strategies that are both economical and environment friendly. A strategy that is
gaining momentum these days is the use of plant growth-promoting rhizobacteria
(PGPR) in the field to get an increased amount of crop production, to improve the
nutrient profile of crops, to remove toxic compounds, or for elimination of patho-
gens. But to get ahead in this field, first we have to understand the complex
relationships between plant and microbes. Also, we need to examine the interspecies
relationship between microbes themselves as to how they are imparting beneficial or
harmful effects on plants. Only then will we be able to open the door to sustainable
agriculture to meet the rising demand of food, fuel, and fibers. It was a hefty task to
study the microbiomes some decades ago but thanks to techniques developed in
recent decades, such as polymerase chain reaction, enzyme-linked assays such as
enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA),
nucleic acid sequencing (genome sequencing, 16S ribosomal RNA sequencing,
clustered regularly interspaced short palindromic repeats [CRISPR]), and micro-
scopic techniques (fluorescence microscopy, video microscopy), it is now easy to
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study the microbes and microbial interactions neatly. In this chapter, we will discuss
the microbial interactions at the plant interface and various techniques to study
microbiomes.

Keywords Plant microbiome · PGPR · Plant–microbe interface · Sustainable
agriculture

17.1 Introduction

Every organism on the planet depends on interactions with its surroundings to stay
alive. The term “interaction” merely brings up a mental image of two entities
actively interacting in a certain situation. Interaction derives from the Latin inter,
which means “between,” and ago, which means “to do” or “to act.” Since we human
beings and other animals are heterotrophic in nature, we mainly depend on the plants
for the food and fiber needs.

Crop production will be one of the primary challenges of the twenty-first century
to provide enough food for the growing human population, renewable energy, and
fundamental molecules in industrial processes. Farmers in the modern day can
benefit from microbial solutions since they can help meet the demand for more
sustainable farming approaches. Increased crop yields and a more sustainable
industry impact profile are possible outcomes of such solutions, resulting in more
food to feed a growing world and new chances to safeguard the environment (Jha
et al. 2011; Prasad et al. 2018; Kaushal and Prasad 2021).

Naturally, plants are inhabited by a myriad of microorganisms that perform a
range of associative functions with bacteria, fungi, algae, archaea, protozoa, and
viruses. The natural interaction between plants and microorganisms has long been
associated with higher plant growth, nutrition, and health (Berg and Smalla 2009).
For application of microbes in crop cultivation, we have to first address the ques-
tions: “How the microbes are affecting the plant or the crop?” “Is it beneficial or
detrimental to the plant?” “How microorganisms benefitted the plant?” “Whether it
benefits the plant by eliminating the pathogens, or by making the plant more stress
tolerant, or by aiding the plant in growth?” Consequently, we also have to address
the same questions like: “What microorganisms are doing?” “How they are
interacting with the plant?” “What is the effect of environmental stress on the
interaction?” “If plant microbial interactions are beneficial, how can we utilize the
beneficial interaction for sustainable agriculture?” “How we can help humankind to
survive sustainably by all these research?”

Application of helpful microorganisms in plant cultivation is required to engineer
a massive building of sustainable agriculture in order to increase soil fertility and
productivity. The study of interactions at the plant–microbe (PM) interface is a
critical component of environment-friendly agriculture (Varma et al. 2019a, b).
This chapter discusses and describes both conventional and emerging tools for
studying plant–microbe interactions.
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17.2 Agroecosystems and the Importance of Plants
and Microorganisms and Their Interactions

There is a growing desire for sustainable agricultural techniques that are capable of
maintaining optimum soil fertility, plant growth, and, eventually, keeping the crop
disease-free, which has driven growers to limit their use of chemical inputs. The use
of microbiological solutions such as plant growth-promoting rhizobacteria (PGPR)
has an alternative potential option to build eco-friendly techniques, which can be an
important moving force toward this end. In recent decades, agrobiologists have
concentrated their efforts on gaining a better understanding of the role of useful
microorganisms and harnessing diverse beneficial plant–microbe interactions, which
can be beneficial to agroecosystem’s productivity (Jha and Saraf 2015; Prasad et al.
2015).

Plants and bacteria are in naturally co-evolved symbiotic partnerships, and the
interfaces between host plants and microbes are one of the most important determi-
nants of crop health and productivity (Garg et al. 2019). The rhizosphere is the
region where plant and microbial interactions are most closely coordinated, and it
has the ability to provide a wide range of system properties such as rapid root
colonization, improved nutrient uptake, and resistance to biotic and abiotic influ-
ences. The plant–microbe interaction spectrum is vast, encompassing different
microbial communities and organisms, and the health of a plant is determined by
the establishment of plant–microbe interactions such as by positive and negative
influences on the host plant (Sharma and Pathak 2014). Plant–microbe interactions
have mostly been explored in terms of commensalism, mutualism, competition, and
parasitism among all plant–microbe interactions (Wu et al. 2009). The positive
typical contact via mutualism and commensalism is commonly known, in which
both or one member gets benefit from the interaction, respectively. The PGPRs are
potential candidates to contribute to sustainable crop production.

A wide range of symbiotic bacteria such as Rhizobium and Bradyrhizobium spp.,
or non-symbiotic bacteria such as Azospirillum, Bacillus, Pseudomonas, and Kleb-
siella spp., among others, are increasingly being employed to boost plant produc-
tivity around the world (Hayat et al. 2010). Mutual interactions between legumes and
N-fixing rhizobia and arbuscular mycorrhizal fungi (AMF) species, which help host
plants obtain nitrogen and phosphorus in nutrient-deficient situations, are well-
known examples of beneficial plant–microbe interactions (Cao et al. 2017; Udvardi
and Poole 2013). When the detrimental bacteria infect plants, negative interactions
such as parasitism occur, causing collateral damage and obtaining resources from
their hosts, whereas competition arises when plants and microbes have similar
nutritional requirements (Shelake et al. 2019). An overview of the plant–microbe
interactions is given in Table 17.1.



Description Reference

404 N. Joshi et al.

Table 17.1 Types of plant–microbe interaction

Type of plant–
microbe
interaction

Example of microbes
involved in interaction

Mutualism Both interacting species get
benefit from interaction; plants
and symbiotic or free-living
plant growth-promoting
rhizobacteria (PGPR) both get
benefit in this relationship

Rhizobia and Frankia,
Achromobacter, Corynebac-
terium, Derxia, Enterobacter,
Klebsiella, Pseudomonas,
Rhodospirillum,
Rhodopseudomonas

Saharan
and Nehra
(2011)

Commensalism Only one can benefit from this
interaction; usually, plant root
exudates provide the necessary
nutrients to the PGPR while
plants remain unaffected in this
interaction

Helicobacter pylori Hirsch
(2004)

Protocooperation Protocooperation is another
type of interaction where both
the interacting species get
benefitted, but the collaborat-
ing species do not rely on each
other for existence

Bacillus and Halobacillus Banik
et al.
(2018)

Parasitic Parasites colonize the host
plant, causing collateral harm
and may compete for nutri-
tional needs

Stachybotrys elegans Chamoun
et al.
(2015)

Pathogenic Pathogens can actively destroy
the host plant for their own
trophic advantage

Pectobacterium atrosepticum Chamoun
et al.
(2015)

17.3 Methods to Study Plant–Microbe Interaction

Morphological studies and biochemical testing were the main methods to study the
plant–microbe interactions a few decades ago. These methods are not only time-
consuming and laborious but also inaccurate at some points. The development of
advanced techniques such as enzyme-linked immunosorbent assay (ELISA), radio-
immunoassay (RIA), various gene-sequencing including DNA sequencing and RNA
sequencing, next-generation sequencing (NGS), and metagenomics gave way to
have an insight into a deep world of microorganisms. A simplified evolution of
study techniques of plant–microbe interactions is presented in Fig. 17.1.

17.3.1 Conventional Techniques

Conventionally, biochemical detection and microscopy were used to identify the
microbes. Biochemical identification includes isolation of the microbes by the use of
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Fig. 17.1 Evolution of approaches to study interactions at plant–microbe (PM) interface (Dass and
Mallick 2019; Prabhukarthikeyan et al. 2020)

agar media (routine, semi-synthetic, synthetic, semi-selective, selective, and special-
ized media), and studying colony morphology and biochemical characteristics. The
main limitation of these culture-dependent techniques is that it only allows limited
analysis of culturable microorganisms.
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17.3.1.1 Microscopy

Microscopy is the reason the whole microbiology exists today. Microscopy started
with a simple and then compound optical microscope.

Bright-field microscopy is a widely used microscopic technique mainly because
of its simplicity where the sample is illuminated by white light, suitable for observ-
ing stained or colored samples, while dark-field microscopy is useful for unstained as
well as living samples where the sample is illuminated by scattered light (Liu et al.
2014). Phase-contrast microscopy takes advantage of the different refractive indexes
of the subject and provides a better projection of the unstained subject making it
possible to distinguish between structures of similar transparencies. Phase-contrast
optics when used with a video microscope can be used to observe time-lapse
imaging of cell division or cellular movement (Hadjidemetriou et al. 2008).

In fluorescent microscopy, the shorter wavelength is used to illuminate the
specimen either stained with fluorescent dyes or, in some cases, inductively
expressed fluorescent proteins already present in cells or tissues, and a longer
wavelength is emitted by the specimen that is captured by the objective lens or
detector. This allows creative visualization as well as a resolution of the sample
(Sanderson et al. 2014). Confocal microscopy is developed to bypass some limita-
tions of conventional fluorescent microscopy by minimizing signal and maximizing
resolution with point illumination. Confocal microscopy was used to illustrate the
relationship between Azospirillum brasilense SP7 and wheat root by which bacteria,
root tissue, and mucilaginous layer can be localized precisely and XY or Z scan
image can be used to show them. It is also the first example of the use of confocal
microscopy in microbial ecology (Cardinale 2014).

Maximum magnification in optical microscopes is typically 1000× while electron
microscopy gave a new height to microscopy with a maximum magnification of
1,000,000× (Vernon-Parry 2000). Mainly, there are two types of electron micros-
copy: scanning electron microscopy (SEM) and transmission electron microscopy
(TEM). SEM creates a projection of the sample by scanning the surface of the
sample with an electron beam focused on it where the specimen excited by the
electron beam generates secondary electrons that will be captured by the detector to
create a three-dimensional (3D) image of the specimen. SEM also gives the depth
effect to the sample, which allows us to study the surface characteristics and shapes
of the microbes very easily (Vernon-Parry 2000; Elad et al. 1983). Hyphal interac-
tion of Trichoderma harzianum with Rhizoctonia solani during the infection of prior
on the latter was studied using SEM (Benhamou and Chet 1993). TEM, on the other
hand, transmits the electron through ultra-thin specimens and these transmitted
electrons are captured by the detector to create an image of the specimen. TEM
can also create a 3D micrograph of the specimen and can obtain a magnification of
up to 0.2 nm (Singh et al. 2021). TEM has been used to study the structure of the
Cucumber Mosaic Virus (CMV). For the study of the structure of viruses, TEM is a
better option (Khan et al. 2011).
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Though microscopy is one of the primitive techniques, it remains as important in
the modern world.

17.3.2 Biochemical Techniques

17.3.2.1 Immunoassays

Immunoassays can be categorized into two broad groups: (1) Labeled, and
(2) Direct.

Labeled Immunoassays

This includes enzyme-linked immunosorbent assay (ELISA), radioimmunoassay
(RIA), and immunofluorescence (Dass and Mallick 2019). Advance science many
times uses biochemical and serological methods such as ELISA, which is mainly
used for the detection and quantification of specific substances such as mycotoxins,
viral proteins/particles, and other such compounds that are able to perform an
antigen/antibody reaction (Zhang and Vrient 2020; Zheng et al. 2006). It is a
specific, sensitive, relatively rapid, and cheap technique (Zhang and Vrient 2020).
Mainly, three variations of ELISA exist: (1) direct, (2) indirect, and (3) sandwich.
ELISA mainly includes the use of: antibodies specific to the antigen or secondary
antibodies specific to primary antibodies; plant extract suspected to contain, or soil
sample containing, the target antigen; and a substrate and an enzyme that changes the
color of the substrate. When the enzyme is added, it changes the color of the
substrate and produces a spectrometric signal and the target compound is detected
by spectrophotometric determination. In direct ELISA, an antigen-containing buffer
solution is added to the microtiter plate, and enzyme-conjugated antibodies specific
to the target antigen are added subsequently, which creates an antigen–antibody
complex. The substrate when added, changes color if the target antigen is present in
the sample (Hema and Konakalla 2021; Fenner et al. 1987). The indirect ELISA, in
addition to direct ELISA, includes the addition of primary antibody after the antigen
has been added to microtiter wells. Enzyme-conjugated secondary antibodies will
then be added, which is specific to primary antibodies and changes the color of the
substrate added subsequently (Hema and Konakalla 2021; Varma and Singh 2020).
In sandwich ELISA, the first step is to add primary antibodies in the wells. Then the
suspected sample containing antibodies will be added, which follows enzyme
conjugates and the substrate and the result are interpreted the same as above,
spectrophotometrically (Varma and Singh 2020). It is also referred to as a triple-
antibody sandwich (TAS) when the secondary antibodies are used to detect the
primary antibody bound to the antigen. The sandwich ELISA technique can be
further divided into double-antibody sandwich (DAS) ELISA, triple-antibody sand-
wich (TAS) ELISA, and Protein A sandwich (PAS) ELISA (Fenner et al. 1987;



408 N. Joshi et al.

Serçe and Ayyaz 2020). Many pathogens such as Phytophthora cinnamomi, the
causative agent of turf disease, Pythium spp., Rhizoctonia solani, and Sclerotinia
homoeocarpa are detected using ELISA (Dass and Mallick 2019).

Radioimmunoassay (RIA) is a technique similar to ELISA with the label of the
radioactive compound, commonly 125I but also 131I or tritium (3H), instead of
enzymes in ELISA. Procedure and variations remain the same as ELISA involving
direct and indirect methods except for detection, which is made under gamma
counter as the radioactive label has been used (Kricka and Park 2014; Hema and
Konakalla 2021). Some pathogens including Botrytis cinerea are detected using RIA
(Dass and Mallick 2019).

Immunofluorescence is another much similar technique except that it uses
fluorophores instead of enzymes as label and fluorescence microscopy or confocal
microscopy is used to detect the labeled antibodies (Joshi and Yu 2017).

Direct Immunoassays

Direct immunoassays include immunoprecipitation, immunoagglutination, and
immunodiffusion.

Immunoprecipitation is used to detect a specific protein present in the sample.
Antibodies specific to the protein of interest are allowed to incubate with agarose
beads so that agarose beads become coated with antibodies. Now, these antibody–
agarose bead complexes are incubated with the sample so that the protein of interest
can make the complex with the antibodies added. Co-immunoprecipitation is also
used mainly to recognize the protein–protein interaction between the protein of
interest we have isolated and other proteins detected by immunoblotting (Pazour
2009). This technique is useful when we are looking for specific proteins such as
enzymes or hormones or toxins or antigens present in the pathogen and its interac-
tion with other proteins (Corthell 2014).

Immunodiffusion is the other simpler technique that involves pouring the antigen
in one and antibody in another well created on the agar media; they diffuse toward
each other due to porous nature of agar media (Licata et al. 2016) and form a
precipitation band in between the wells. This simple technique is used to check the
presence of specific pathogens in a sample (Fenner et al. 1987).

Microscopic carrier particles (referred to as latex) are coated with antibodies in
immune-agglutination protocol that are then incubated with the sample suspected for
containing the antigen. If the antigen is present, agglutination reaction takes place
here indicating the presence of the antigen. This method is called direct immune-
agglutination. Indirect immune-agglutination is performed by the immobilization of
antigen on latex particles and antibodies are detected based on the agglutination
reaction (Molina bolívar and Galisteo gonzález 2005).

Immunoassays are used when there are possibilities of antigen–antibody reaction,
mainly in plant pathology, which should indeed be an area of interest when we are
talking about agriculture. For better growth of commercially important plants and
better agricultural production, it is important to prevent infections in crops, and in
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this type of studies, immunoassays are very important for the detection of pathogens
in crops.

17.3.3 Molecular Techniques for Detection of Plant–Microbe
Interaction

The study of plant–microbe interactions is critical for the use of microbiomes, which
play a critical role in sustainable agriculture. Knowledge of the mechanisms under-
pinning plant–microbe interactions in the rhizosphere was previously limited due to
a lack of proper approaches; now, with advances in molecular biology, our under-
standing of the plant–microbe interaction is gradually becoming more transparent. In
this regard, some molecular diagnostic approaches have been deciphered in this area.

17.3.3.1 Polymerase Chain Reaction (PCR) Technique

Polymerase chain reaction (PCR) is a scientific technique invented by Kary Mullis
that revolutionized DNA research and led to numerous scientific breakthroughs such
as genome sequencing, gene expression in recombinant systems, and the study of
molecular genetic analysis (Singh et al. 2014). The polymerase chain reaction, also
known as molecular photocopying, is a simple and low-cost process for amplifying
or copying a specific piece of DNA (Singh et al. 2014).

The polymerase chain reaction (PCR) technology is extremely practical, and its
main premise is to multiply certain DNA sequences based on their molecular
structure. Denaturation, annealing, and the extension stage are the three simple
processes that make up the overall process. The single-stranded DNA molecules
are obtained in the denaturation step at 94 °C (Singh et al. 2014; Gachet et al. 1998).
At lower temperatures such as 55 °C, short DNA molecules named primers bind to
flanking regions of the target DNA during annealing. Finally, extension occurs at
72 °C, and new strands are synthesized with the assistance of DNA polymerase
(Gachet et al. 1998; Singh et al. 2014). The increase in target DNA sequences results
from a number of cycles carried out in a fully automated machine known as a
thermocycler, which is designed to modify the temperature of each phase and may
be finished in a couple of hours (Rajalakshmi 2017). Without PCR amplification,
studying large amounts of specific isolated bits of DNA at the genetic and molecular
levels in prokaryotic and eukaryotic organisms is nearly impossible.

Although procedures have altered with considerable increases in performance
that have contributed to the emergence of multiple PCR variants, the core concepts
of PCR have remained consistent over time. There have been several variations of
PCR available over the years based on their applications, but the most prevalent
varieties of PCR are reverse transcriptase-PCR (RT-PCR), real-time PCR, or
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quantitative PCR (qPCR), and RT-PCR/qPCR combined (Singh et al. 2014;
Rajalakshmi 2017).

PCR variants such as reverse transcriptase-PCR (RT-PCR), real-time PCR,
quantitative PCR (qPCR), and RT-PCR/qPCR combined have been created to
achieve simultaneous identification of several bacteria, and differentiation and
quantification of live bacterial cells. Quantitative PCR, often known as real-time
PCR, is a technique for amplification and measurement of PCR products generated
during each cycle of the process (Mo et al. 2012), while reverse transcriptase-PCR is
a refined PCR technique in which RNA molecules are transformed into complemen-
tary DNA (cDNA) molecules before being amplified by PCR (Mo et al. 2012). The
reverse transcriptase-quantitative PCR (RT-qPCR) technique represents a big step
forward in the field of PCR. It was created with the goal of quantifying RNA
expression using reverse-transcriptase PCR combined with qPCR (Singh et al.
2014).

17.3.3.2 16S rRNA Gene Sequencing for Bacterial Identification

The bacterial identification was harder to achieve in an evolutionary context than the
macro-organisms. Primarily, to identify the organisms standard approaches such as
changes in growth, shape, enzyme activity, and so on are typically used. However,
due to tiny size of microbes, their phenotypic characteristics have a limited range of
expression and typically fail because the phenotype is susceptible to interpretation
biases. The restrictions, in ordinary strategies, were eliminated by the new molecular
biology science procedures for bacterial identification. Notwithstanding, 16S ribo-
somal RNA (rRNA) genome sequencing has become a cornerstone for bacterial
identification as they can recognize as well as propose the phylogenetic connection
between microorganisms (Petti et al. 2005). Research of bacterial phylogeny and
taxonomy using 16S rRNA gene sequences is a common practice because of a
number of unusual properties like its presence in almost all bacteria, often as a
multigene family, or operons; its sequence is sufficiently conserved to accurately
evaluate random sequence changes in time (evolution) and contains areas of mod-
erated, variable, and hypervariable sequence regions. The 16S rRNA quality
(1500 bp) is sufficiently enormous to contain adequate data for identification and
phylogenetic examination (Janda and Abbott 2007). Standard PCR clone sequenc-
ing, as well as Sanger sequencing, 454 pyrosequencing, and the PhyloChip, a
specialized microarray for 16S surveys, are some of commonly used techniques
for bacterial identification and taxonomic classification of bacteria.

Throughout the most recent couple of years, various examination by researchers
have developed massive collection of genomically sequenced bacterial strains iso-
lated from plant roots or rhizosphere soil (Jacoby and Kopriva 2019). The discovery
of the plant microbiome allows building microbial networks to demonstrate stability
and adaptability allowing them to fulfill specific capacities. Sequenced rhizosphere
diversity might be explored to improve our functional knowledge of plant–microbe
interactions, which could then be utilized in the field to increase plant productivity.
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Due to a convergence of methodological advances, 16S is re-emerging as a
standalone molecular tool.

17.3.3.3 Next-Generation Sequencing (NGS)

With the headway in molecular biology, next-generation sequencing technology has
proven to be a revolutionary change in sequencing technology, allowing for greater
output reads and the production of enormous sequence data at a reduced cost.
Instruments utilized for NGS can be categorized as second-generation and third-
generation sequencing technologies (Liu et al. 2012). Second-generation sequencing
technology includes instruments from Roche 454, Illumina, and Life Technologies.
SOLiD—Sequencing by Oligonucleotide Ligation and Detection—and Ion Torrent
sequencers are the most common second-generation sequencing technologies. The
PacBio RS is the sole commercially available third-generation sequencing system
from Pacific Biosciences (Schadt et al. 2010; Kumari et al. 2017).

In the field of agrobiology, researchers can examine the microbiome associated
with the plant and the interconnection among them employing NGS, which can also
include utilizing transcriptomics, genomics, and metabolomics studies of microbes,
which will eventually enable the identification of the framework for their subsistence
and interconnections (Kumar and Sharma 2020). Many studies have underlined the
importance of NGS; for example, Gammaproteobacteria and Betaproteobacteria
were recognized in the soil to control Rhizoctonia solani infection, according to
NGS technology used on sugar beet (Kumari et al. 2017; Mendes et al. 2011). Using
NGS, taxonomic profiling investigations in the plant rhizosphere have attempted to
obtain varied information about plant species, genotype, soil type, different growth
stages, and various microbial community structures (Gupta et al. 2021).

17.3.3.4 CRISPR/Cas9

Understanding the basic concepts of the plant-specific microbiome seems to be a
viable technique for its application in agriculture, as the plant-associated microbiota
greatly influences the host’s phenotype. In addition, future plant microbiome appli-
cations will require research into microbial and plant genes implicated in plant–
microbe interactions (Shelake et al. 2019; Sarma et al. 2021).

Multiple intriguing genome-editing (GE) technologies (also known as genome
engineering) have evolved in recent years as a strong tool for changing an organism’s
genome to explore gene function with precision and efficiency. The targeted genome
editing is done by using programmed meganucleases to create double-stranded
breaks (DSBs) in specific genes of interest. The formation of nuclease-induced
double-stranded breaks (DSBs) is the starting point for targeted DNA modifications.
This event activates the cellular DNA repair mechanism, which works on the double-
stranded break to repair it by non-homologous end joining (NHEJ) or homology-
directed repair (HDR). Insertions, deletions, substitutions, and DNA recombination
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may occur during the process (Zhang et al. 2017). Specific-target genetic modifica-
tions can be achieved in a variety of ways, but transcription activator-like effector
nucleases (TALENs), zinc finger nucleases (ZFNs), and the clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system
have been the most widely used meganucleases (Shelake et al. 2019). These
meganucleases, which include transcription activator-like effector nucleases
(TALENs), zinc finger nucleases, and others, can be used to make genetic modifi-
cations in the early stages of genome-editing technology (Razzaq et al. 2019). The
encroachment of genome-editing tools solves challenges such as time consumption
and the need for long processes to achieve target specificity. In comparison to ZFNs
and TALENs, CRISPR/Cas9 system is more adventurous in terms of simple design,
versatility, cost-effectiveness, greater efficiency, multiplexing, and specificity
(Razzaq et al. 2019).

CRISPR/Cas9 system has proven to be a game-changing genome-editing method
with a wide range of potential applications in agriculture around the world. The most
powerful genome-editing tool, CRISPR-associated 9 (Cas9) nuclease, is a newly
found nuclease that was first recognized as an RNA-mediated adaptive immune
mechanism in bacteria and archaea against viral invasion (El-Mounadi et al. 2020).
CRISPR/Cas systems are commonly split into two classes, the first of which consists
of multiprotein effector complexes further subdivided into types I, III, and IV, and
the second of which consists of a single effector protein (types II, V, and VI). The
Class 2 CRISPR/Cas9 system is one of the most well-known and widely employed
for nucleic acid alteration (Li et al. 2020). The widely known CRISPR/Cas9 system,
which relies on a single Cas protein that targets the specific DNA sequences and was
developed from Streptococcus pyogenes for genome editing, is the most commonly
used for the construction and usage of CRISPR-based tools due to its promising
efficiency (Li et al. 2020). CRISPR/Cas9 is an appealing gene-editing technique
because it targets specific DNA sequences. A single-stranded guide RNA (sgRNA)
and a Cas9 endonuclease are the two key components of the CRISPR/Cas9 system.
The sgRNA often contains a special 20-base-pair sequence that is meant to comple-
ment the target DNA site in a sequence-specific manner, and this must be followed
by a short DNA sequence upstream known as the “protospacer adjacent motif”
(PAM), which is essential for Cas9 protein compatibility (Li et al. 2020). Once
sgRNA attaches to the target sequence via Watson–Crick base pairing, Cas9 accu-
rately cleaves the DNA to cause a DSB. Following the DSB, DNA-DSB repair
mechanisms commence genome repair. The CRISPR/Cas9 system can be used to
make targeted genomic changes, such as small insertions and deletions, using the
NHEJ or high-fidelity HDR pathways (Li et al. 2020).

Nowadays, CRISPR-based technologies have been used in a variety of plant–
pathogen interaction investigations, including host responses to bacteria, fungi,
oomycetes, viruses, and so on (Shelake et al. 2019). CRISPR-Cas9 has been used
to improve: metabolic pathways; resistance to biotic stresses like fungal, bacterial, or
viral diseases or abiotic stressors like cold, drought, and salt; and the nutritional
content, yield, and crop quality (El-Mounadi et al. 2020). To understand better viral
infection in plants, the bacterial CRISPR-Cas system can also be used to constrain



17 Techniques to Study Plant–Microbe Interactions that Lead to. . . 413

viral genetic material employing Cas9’s nuclease activity (Mahadevakumar and
Sridhar 2020). CRISPR/Cas9-based disease management is proved to be a novel
approach to plant disease control. The CRISPR/Cas9 technique was used to create
mutations in the OsSWEET13 coding area, which resulted in increased resistance to
Xoo infection caused by Xanthomonas oryzae pv. oryzae (Prabhukarthikeyan et al.
2020). The CRISPR-Cas9 technology has also been used to better understand the
infection process of fungal infections through the creation of CRISPR-Cas9-assisted
endogenous gene tagging (EGT) techniques (Wang and Coleman 2019). CRISPR-
mediated editing of plant-microbe-associated genes involved in the production of
secondary metabolite pathway is a novel and intriguing method for enhancing stable
and bioactive secondary metabolite production. Today, many secondary metabolites
are being used as nutrition, medications, repellents, perfumes, tastes, and coloring
compounds since they are important in plant or microbial defense processes (Shelake
et al. 2019; El-Mounadi et al. 2020).

Overall, CRISPR (clustered regularly interspaced short palindromic repeats)-
based genome editing (GE) is a good platform for learning the foundations of PM
interactions fast and enabling precise genetic alterations for increased crop produc-
tivity and disease resistance using genome-editing technology (Barrangou and
Notebaart 2019; Singh and Ramakrishna 2021).

17.3.3.5 Other Approaches to Study the Plant–Microbe Interface

Other than the genome-based studies, studying RNA, protein, and metabolites has
also nowadays evolved when it comes to identification as well as understanding the
function and interaction of the species with another species or the environment,
and the branches involved in the study is known as transcriptomics, proteomics, and
metabolomics (Tan et al. 2009). An overview of various “-omics” approaches and
their application for study of plant–microbe interface are given in Fig. 17.2.

The most popular among all the developing “-omics” approaches is
metagenomics. Entire genomic DNA is prepared from samples, irrespective of its
microbial composition, and is characterized by way of whole-genome sequencing in
metagenomics, which is also known as gene-centric environmental genomics.
Instead of relying on a single-genome-like traditional approaches, metagenomics
looks for all genes and genomes from a microbial community at once (Martí 2019;
Schloss and Handelsman 2005). The traditional genomic approach has been proven
accurate in the identification and analysis of disease caused by a single genotype but
when it comes to epidemiological studies, a single genomic approach might mask
the population of highly similar but still distinguishable individual genotypes that
may be responsible for the disease. Furthermore, a sample consisting of genotypes
from different bacterial, fungal, archaeal, or eukaryotic species is to be analyzed; a
single genomic approach would not be appropriate because not all the microbes are
cultivable (Martí 2019). Other than that, the discovery of infections involving
multiple microbes is increasing (Melcher et al. 2014). In both cases, the
metagenomic study is useful to reveal the actual nature of plant–microbe or in
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Fig. 17.2 Application of “-omics” approach to study PM interface

general host–microbe interactions (Martí 2019; Melcher et al. 2014). In spite of all
the advantages of metagenomics, it should be noted that the field of metagenomics is
still under development and next-generation sequencing techniques are changing the
outlook of metagenomics and hence new types of bioinformatics analysis tools are
expected in the future (Martí 2019). The diversity of endophytic bacteria present in
maize (Zea mays) plants was studied using metagenomics. Fungal endophytic
diversity of maize plants also has been revealed using metagenomics (Fadiji and
Babalola 2020).
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Apart from metagenomics, transcriptomics is also gaining momentum in the
modern era. Analysis and study of the entire set of transcripts including messenger
RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs),
also known as transcriptome, is called transcriptomics, which is also known as
quantitative gene expression profiling (Tan et al. 2009). Initially, transcriptomic
studies were carried out using the high-capacity microarray technique but using
microarray, it is very difficult to study transcriptome as it uses defined gene or
transcript probes. The next-generation sequencing technologies provide readings of
transcription boundaries precisely and unmapped transcripts without any predefined
gene or transcript. However, for transcriptome analysis, array-based technology is
still widely in use as the sequencing technology has some limitations including cost,
availability, complexity, and error vulnerability of sequence assembly (Metzker
2010). This approach can uncover gene expression, allow us to look into pathways
triggered due to biotic or abiotic stress conditions, and it can be used for diagnostics
and disease profiling (Garg et al. 2016; Wang et al. 2009; Tavassoly et al. 2018),
while for the study of the microbial community, meta-transcriptomics is used, where
transcriptome of the whole sample is analyzed in order to study the expression and
regulation profiling of complex microbial communities at a given moment and under
a specific condition (Aguiar-Pulido et al. 2016). Participation of small RNAs
(sRNAs) in environmental processes such as carbon metabolism and nutrient acqui-
sition was proved by the meta-transcriptomic study (Bharagava et al. 2019; Shi et al.
2009).

Like genomics, proteomics is a study of the entire protein content of a cell, tissue,
or organism, which is also known as proteomes, resulting in insights full of infor-
mation on protein expression and their modulation under a specific condition
(Yu et al. 2010; Holger Husi 2014). Initially, two-dimensional (2-D) gel electropho-
resis was used to study proteomes but nowadays mass spectrometry is used for the
proteomic study. Typically, there are two types of approaches in the study of
proteomes. The first is the bottom-up approach where protein is digested into
peptides and is used to study complex samples, and the approach is also known as
“shotgun proteomics.” One major limitation of this approach is the loss of important
information on post-translational modifications and limited protein sequence cover-
age by the identified peptides. Another approach is the top-down approach, where
the proteome is studied directly as intact proteins. Now, this method is suitable for
the simpler samples and it needs higher mass accuracy for analysis (Holger Husi
2014). Proteomics can be the reliable microscope to see enzymatic activity and how
it affects the plant–microbe interaction; it also helps in studying the pathogenicity of
a microbe and also the response of the host plant to the invading microbe. When the
pathogen Pseudomonas syringae was implanted in the leaves and Pseudomonas
fluorescens WCS417r-mediated induced systemic resistance (ISR) was inserted in
the roots, significant differences in transcript levels in Arabidopsis shoots were
observed (Sharma et al. 2020). Proteomics is an effective approach for studying
plant–fungus pathogenic interactions. Proteomic study of tomato–Cladosporium
fulvum interaction uncovers the first avirulence gene product (avr9) in fungi.
Tomato–Fusarium oxysporum pathosystem is another example where proteomic
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study allowed identification of first effector of root invading fungi (Six1) (Schottens-
Toma and de Wit 1988; Rep et al. 2004; Gonzalez-Fernandez and Jorrin-Novo
2012). Metaproteomics is an emerging side of proteomics. Like metagenomics,
metaproteomics is an analysis of the protein samples collected from the microbial
communities residing in a specific environment. Metaproteomics has the potential to
unravel the genetic diversity and microbial activities in environmental communities
and its impact on the ecosystem. However, uneven species distribution, large genetic
heterogeneity within the microbial communities, or the broad range of protein
expression levels within microorganisms are the main challenges for the
metaproteomic analysis (Bharagava et al. 2019). Metaproteomic study of field-
grown rice (Oryza sativa) showed that nitrogenase complexes containing bacteria
were mainly from type II methanotrophic bacteria from the family Methylocystaceae
(Bao et al. 2014).

Another reliable approach to study the plant–microbe interaction is
metabolomics. Metabolomics is the study of metabolomes, the term used for all
the metabolites present in an organism, tissue, or cell, which are the end products of
the cellular processes (Burgess et al. 2014). In the beginning, gas chromatography-
mass spectrometry (GC-MS) was used for metabolic profiling. Liquid chromatog-
raphy coupled with mass spectrometry and capillary electrophoresis is used in
metabolomic analysis (Burgess et al. 2014). Metabolomics holds useful applications
in pathway analysis, drug discovery, and pharmacogenomics. When analyzing the
environmental samples, metabolomics also includes analysis of metabolites secreted
by the organisms in the immediate environment. In this way, metabolomics can
demonstrate signaling processes between bacteria during communication in the
community such as quorum sensing (Aguiar-Pulido et al. 2016; Bharagava et al.
2019).

17.4 Conclusion

There is a range of possibilities lying in the diversity of microbes at the plant–
microbe interface and the interaction between plant and microbes as well as among
microbes themselves. There are many traits like nitrogen fixation, phosphorus
solubilization, pathogen resistance, or stress tolerance, which are either imparted
or enhanced, directly or indirectly, by the microbes interacting with the plant, and
ultimately resulting in the growth promotion of the plant. Thus, understanding those
interactions can be a game changer as it may allow us to mimic the nature for
imparting or enhancing particular characteristic of our interest. All the techniques
described above are trails leading us to understanding and ultimately enhancing the
growth promotion of plants, which can lead to economical as well as ecological
benefits.
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17.5 Future Perspective

From the era of agar media to the DNA writing era, humankind has not only
progressed outside the Earth to the Moon and Mars but also inside the micro
world, now that humankind has the capacity to edit the DNA. What seemed
impossible to study some decades ago is not just possible but affordable today.
Though we believe we have got way ahead in the field of science, what we have
fathomed might be just a few meters of a mile deep sea. We are expecting the same in
the interaction study at plant–microbe interface. We have so much data, research,
and knowledge on the plant–microbe interactions, but we still have so much to
explore. However, with the interaction studies opening the door of sustainable
agriculture, it is fair to expect it as the answer to sustainable agriculture and also
as the answer to sustainable development in the long run.
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Chapter 18
Plant Microbiome in Agroecosystems
for Sustainable Agriculture
and Environments

Songita Sonowal, Sagar Chhabra, Naga Raju Maddela, Narendra Tuteja,
and Ram Prasad

Abstract Plants are occupied by an assembly of microorganisms, cooperatively
called “microbiome.” These microbiomes occupy various niches in plants as com-
mensals, symbionts, or as pathogens. Microbes are referred to as phyllosphere
microorganisms when they are found on a plant leaf, and rhizosphere microbes
when they are present in the root system or at the soil-root interface. The microbes
have been associated with various applications and are a useful green technology
resource to attain Sustainable Development Goals (SDGs). Microbes are the main
participant in biogeochemical cycles and help in enhancing agroecosystems’ pro-
ductivity by overcoming biotic and abiotic stresses. Due to rapid increase in global
population, the microbiome engineering is considered useful for agriculture. This
chapter is mainly prepared to focus on potentiality of plant microbiome for sustain-
ability in agriculture and for sustainable developments.
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18.1 Introduction

The word microbiome is a derivative of the ancient Greek word where “micro”
means small and “biome” means life (Berg et al. 2020; Santos and Olivares 2021).
Microorganisms can occupy various niches in plant; for example, huge numbers of
bacteria and fungi live on the surface of plants, which is known as phyllosphere, and
when they occupy the soil–root interface or roots, it is known as rhizosphere or root
microbiomes (Jansson and Hofmockel 2020). The region of rhizosphere is extended
to about 2–80 mm from the root system; in this region, the rate of microbial growth
and variation is very fast because of which it influences the root exudation of the
plant. The rhizospheric microbes have various applications, like they can fix atmo-
spheric nitrogen, help in solubilizing inorganic phosphate, help in improving iron
and zinc availability, support in formation of root nodule, and promote plant growth.
The microbes also help to resist against biotic and abiotic stresses and are associated
to degradation of harmful environmental contaminants. A survey of different types
of phyllosphere microbes has also recognized beneficial influences to plant because
they protect the plant from toxic ozone rays and protect the environment from
pollution (Liu et al. 2022). Microbes like Euonymus japonicus, Curtobacterium,
Marmoricola, Microbacterium, Cladosporium, and Alternaria are mostly tolerant
species to ozone exposure (Ding et al. 2019).

There are several latest technologies used to study plant microbiomes; for exam-
ple, the use of informatics and robotics technology is currently introduced in
agroecosystems to study microbiomes of plants to know the core of microbiomes
and their application (Toju et al. 2018). So are the uses of agricultural techniques to
solve the low agroecosystems’ productivity problem. Now, people use the hydro-
ponics system for the culture of agricultural crops apart from the conventional field
production (Sharma et al. 2018). Construction of floating treatment wetland is also
applicable in the agricultural practices. Though floating treatment wetland is mainly
used for the remediation of wastewater, but they can also be used for agricultural
purposes (Grosshans et al. 2019). To construct a floating treatment wetland, we first
have to select the plant and bacteria that can grow in wastewater and form a plant–
bacteria partnership because here microbes play main part in remediation of waste-
water. As microbes use mechanisms like adsorption, absorption, and sedimentation,
they can easily help in biofiltration of contaminants from water (Colares et al. 2020).
The plant microbiome helps in improving the growth of the plant, and is useful along
the plant breeding programs in maintaining agriculture sustainability (Gopal and
Gupta 2016). There are several Sustainable Development Goals (SDGs) outlined by
the United Nations (UN), to be achieved by the year 2030, where microbiome can be
important to plants, agriculture sustainability and productivity, and environments.
This chapter is mainly focused on potentiality of plant microbiome for sustainability
in agriculture and for sustainable developments.
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18.2 Microbiomes and Sustainability Concepts

Sustainability is a factor in economic development of a country without harming the
environmental resources for future generation. The history of sustainability concept
started from the time of Neolithic agricultural revolution (Dorin Paul 2008). Sus-
tainability has three pillars, i.e., social, environmental, and economic, and they are
dependent on each other (Purvis et al. 2019). The three pillars are depicted in
Fig. 18.1. The primary goal of sustainability is to end poverty and hunger from the
society and the main aim of sustainable development is to promote the kind of
development that minimizes the environmental problems (Tilman et al. 2011). There
are several Sustainable Development Goals (SDGs) outlined by the United Nations
(UN), to be achieved by the year 2030, and microbiome’s potential has been
highlighted in several publications, for example in increasing the nutritious value
of food and decreasing the vulnerability of crops to disease, resulting in increased
yields, which is included under the SDG 2, i.e., “zero hunger.” SDG 3, such as
“healthy human consumption,” includes the improvement of human microbiota to
lower their risk of illness, including infectious and chronic diseases. SDG 6, “clean

Fig. 18.1 Three pillars of sustainability development
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Fig. 18.2 Microbiome in sustainable development

water and sanitation,” is fulfilled with the help of microbiome by purifying the
contamination of water caused by the agricultural runoff. Microbiomes can play
critical roles to achieve Sustainable Development Goals 7, 8, 9, 11, 12, 13, and
15 (Fig. 18.2). In both developing and developed economies, the purpose of SDGs or
its implications is to remove poverty, and improve life, economic growth, industry
innovation, sustainable cities, etc., and plant microbiomes can help achieve most of
the SDGs in many ways. It is because the microbiomes are a crucial regulator of
ecosystems and environments (Timmis et al. 2017). In present days, studies on
microbiomes are increasing to have innovations and technologies on industrial
microbiology side or to create new jobs and new businesses that can manage the
unemployment.

18.3 Agriculture Productivity and the Constituent of Soil
Microbiome

As population is growing so rapidly, the demand for food is also increasing. To
attain the demand for food as a necessity, it is crucial to pay attention to agricultural
productivity. But traditional agricultural practices are unable to produce the desired
amount of crop because the crops cultivated by traditional processes are easily
affected by the diseases and pests. Also, with the scarcity of land due to rapid
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growth of global population, it is not possible to produce the required amount of crop
and food to reduce the hunger of people. Therefore, various modern agricultural
techniques are applied to produce the crop. For example, techniques like genetically
modified technique, precision farming, hydroponics, terrace gardening, etc. have
evolved in recent era. In these techniques, the associations of microorganisms are
must and needed. Plant microbiome in agroecosystems helps in supplying nutrients
to plants, improving water uptake, and improving plant growth & productivity. The
microbes applied externally to the agroecosystem can help the plants to survive in
stress conditions (Jat et al. 2021).

18.3.1 Specialization of Microbes in Soil Fertility
and Improving Agricultural Productivity

Microbes strengthen the health of soil by increasing the physical and chemical
activities. The physical and chemical activities among the microbes and plants
regulate the pH and fertility of soil (Kumar and Verma 2019). The plant microbiome
of rhizospheric region, like mycorrhiza, helps in fixation of atmospheric nitrogen,
enhances the growth of crop in agriculture, and reduces the environmental pollution.
Plants need both macro and micro nutrients in a limited amount for the growth of
plants, and microbes like bacteria, fungi, mycorrhizae, and actinomycetes provide
those essential elements to the plant (Prasad et al. 2020). The rhizosphere region of
plants is known as the hot spot of microorganisms because in this region the diversity
of microorganism is very high. In this region microorganisms are united to form
colony or biofilms to increase the biogeochemical process (Shrivastava et al. 2014;
Prasad et al. 2015; Basu et al. 2021). Plants provide required nutrients like carbon
rich food and in return microbes mine the soil for mineral to the plants from which
both are equally benefited from each other in associations. Microbes like
Rhizobacteria, Cyanobacteria, Bacillus radiocola, etc. can fix the atmospheric
nitrogen in plants. As nitrogen is the base product of amino acid, protein, chloro-
phyll, hormones, and other vitamins, it is abundantly required by the plants. There
are only a few prokaryotic microbes that can fix the atmospheric nitrogen to the plant
(Pagano and Miransari 2016).

Like nitrogen, carbon is also another essential component for plant growth and
without carbon the survival of a plant is unimaginable. In most soils, microorgan-
isms help the soil to maintain their humus by decaying the soil organic matter like
cellulose, lignin, hemicellulose, chitin, and lipids into carbon. Soil organic carbon is
like a sink for the plant to supply nutrients (Khatoon et al. 2017) and microbes make
it available in soil by recycling the waste organic product. Phosphorus is another
essential element that is required by the plants in their metabolism and proper
functioning. But in environment it is found in organic and inorganic forms and
microbes can make it accessible such as by mineralization or solubilization process.
There are different types of bacteria and fungi available in the soil, which can
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Table 18.1 Microbes that help in soil fertility

Name of microbes Role of microbes References

Bacillus circulans, Bacillus subtilis,
Bacillus sircalmous, Enterobacter,
Beggiatoa, Thiomargarita sp.,
Actinobacteria, and Micromonospora

Help in phosphorus
solubilization

Kumar et al. (2018)

Nitrosomonas europaea, Nitrosospira
briensis, Nitrosococcus oceanus,
Nitrobacter winogradskyi,
Thiobacillus denitrificans, and Micro-
coccus denitrificans

Help in nitrogen fixation Chen et al. (2003)

Actinomycetes, Streptomyces,
Nocardia, Trichoderma, and
Verticillium

Help in degradation of organic
matter like cellulose, hemicellu-
lose, lignin, lipid, etc.

Khatoon et al.
(2017)

Thiobacillus sp., Pseudomonas
plecoglossicida, Pseudomonas
aeruginosa, Pseudomonas
fluorescens, Aspergillus, Penicillium,
Rhizopus, Streptoverticillium, and
Saccharomyces

Help in removing heavy metal
from the contaminated soil

Macaskie et al.
(1992), Puranik and
Paknikar (1997)

solubilize the inorganic phosphorus or organic form of phosphorus. Some of the
microorganisms and their diversity are described in Table 18.1. The soil microbes
are the hidden manager and participate in nutrient cycle such N, P, S, etc., and have
the capacity to inhibit the soil-borne pathogens, which indirectly promotes the
agricultural productivity (Sathya et al. 2016).

Due to rapid use of petroleum and mining of fossil fuel, the remediation of
contaminated soil is necessary for environmental clean-up and healthy lifestyle or
for sustainable environments and microbes play crucial role in bioremediation of
contaminated environments (Masciandaro et al. 2013; Chhabra and Prasad 2020).
Microbes can also help improve the water-holding capacity of soil by absorbing the
moisture from the environment and thus help improve plant growth. Bacteria are one
of the abundantly found microbes that can help to hold the water molecules in soil. It
improves the soil quality by infiltration of contaminants and absorbing soil mois-
ture (Doula and Sarris 2016).

18.3.2 Role of Microbes in Greenhouse Gas Reduction

Global warming is a serious threat in today’s life because it negatively affects living
organisms of earth. Rapid increases in temperature and climate change are also
threats to the ecosystem, causing spread of disease, high mortality, and loss of
natural habitat, which are also some of the outcomes of global warming or green-
house effect (Kweku et al. 2018; Venkatramanan et al. 2020a, b). Greenhouse effect
mainly increases due to burning of fossil fuel and biomass burning. When fossil fuels
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are used, it releases some toxic elements like chlorofluorocarbons, methane, and
carbon dioxide. But soil microbes can convert the greenhouse gases into the usable
form (Maximillian et al. 2019). The microorganisms release many enzymes that can
easily convert greenhouse gases into usable form for the plant and soil. For example,
microorganisms can convert CO2 into methane with the help of enzyme methyl
coenzyme M reductase; they can absorb the atmospheric methane and bring changes
in the climate (Dutta and Dutta 2016).

18.3.3 Impact of Microbes in Biotic and Abiotic Stress
Reduction in Plant

In agriculture, growth of plants is affected by the different types of stress like biotic
and abiotic stresses. Under biotic stress, the plant is mostly affected by the different
types of prokaryotic and eukaryotic microorganisms. Some pathogenic microbes
like bacteria, fungi, virus, nematodes, and actinomycetes infect the plants and cause
some lethal diseases that cause agricultural losses (Gull et al. 2019). For example, in
a report of 2020 it was said that approximately 21.3% crop losses every year were
due to the diseases caused by nematodes (Kumar et al. 2020). On the other side,
abiotic stresses like drought, salinity, water logging, extreme temperature, and
mineral toxicity also adversely impact on the plant and these cause losses in the
production of crops. Some man-made activities, like farmers using different types of
chemical fertilizers and pesticides to fertilize the soil and kill the pest, also negatively
affect the normal growth of plants (Gull et al. 2019). The plant growth-promoting
microbes help to lower the biotic and abiotic stresses in plant by stimulating different
types of plant hormones and enzymes. For example, presence of rhizobacteria in
xerophytic plant helps plants to tolerate the drought stress, stimulate the accumula-
tion of proline, and reduce glutathione reductase activity. Another example is the
bacteria associated with the foxtail millet that secrete 1-aminocyclopropane-1-car-
boxylic acid (ACC) deaminase and exopolysaccharide to survive in drought stress
(Niu et al. 2018). Normally, plant cannot survive in high temperatures, especially
above the 38 °C, but there are some microbes that can help plants survive at high
temperatures, and they help the host plant by changing their physicochemical
properties to adjust in adverse condition. Some of the examples of microbes that
help in stress reduction of plant are given below Table 18.2, with their role in host
plant. The stress tolerance potential of microbes are due to presence of stress proteins
that help the microbes resist oxidative stress, high temperature, low pH, and hypoxia,
but their role in plants is still unknown. A previous study revealed that common
stress proteins YdaA and YnaF from Salmonella typhimurium help in the hydrolysis
of adenosine triphosphate (ATP), cause cell membrane alteration, and cause chloride
sensing of plant in stress conditions (Bangera et al. 2015).
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Table 18.2 List of microbes that help in stress tolerance

Name of
microbes

Role of microbiome in biotic and abiotic
stress

Pseudomonas
aeruginosa

Vigna radiata Helps plant to absorb water and nutrients Riseh et al.
(2021)

Bacillus sp. Megathyrsus
maximus

Helps in secretion of proline and glutathione
reductase activity at the time of drought
stress

Moreno-
Galván et al.
(2020)

Azotobacter sp. Triticum
aestivum

Helps in nitrogenous activity and in produc-
ing exopolysaccharide in drought stress

Saad et al.
(2020)

Curvularia
portuberata

Dichanthelium
lanuginosum

Helps its host plant in heat tolerance de Zelicourt
et al. (2013)

Azospirillum
brasilense

Arabidopsis
thaliana

Reduces drought stress by inducing abscisic
acid

Cohen et al.
(2015)

Proteus
penneri

Zea mays Reduces drought stress by supplying water,
protein, and sugar through the proline con-
tent to the host plant

Naseem and
Bano (2014)

Pseudomonas
aeruginosa

Alcaligenes
faecalis

Klebsiella sp. Saccharum
officinarum

Helps in secretion of indole acetic acid (IAA)
in extreme environmental conditions

Mishra et al.
(2017)Enterobacter

sp.

Bacillus sp. Momordica
charantia

Produces IAA to improve maize growth in
Cd-contaminated soil

Ahmad et al.
(2015)Leifsonia sp.

Enterobacter
sp.

18.4 Plant Microbial Associations for Sustainable
Agroecosystems and Productivity

Investigators give importance in their study to microbiomes because they have
potential applications like: they reduce antimicrobial growth, replace inorganic
fertilizers and pesticides in agriculture, improve waste treatment, improve soil,
help in carbon sequestration, help in biofuel production, resist and cure diet-related
non-communicable diseases of human, and create sustainable business opportunities
in market (Santos and Olivares 2021). Apart from this, microorganisms play a major
role in ecosystems on the earth. They help to degrade the unwanted material from the
earth and produce nutrients that are crucial for the growth of the plant (Hatzenpichler
et al. 2020). Some of the specialized microbiomes in plant portions are
described here.
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18.4.1 Seed Microbiomes

Seed is the embryonic stage of a flowering plant. It is the source from where the
microbiota is transferred from the one generation to the next generation (Shade et al.
2017). Different types of fungal, bacterial, and oomycete microbes are found in seed.
Seed microbes are divided as endophytic (microbes growing on internal tissue) and
epiphytic (microbes growing on surface of the seed). The endophytic microbes are
transferred from one to the next generation (Brader et al. 2014; Nelson 2018).
Presence of microbiota on seed can help adapt genotype in adverse conditions. In
a previous study, it has been mentioned that the presence of microbes on seed
provides plant enormous resistance capacity to fight with the pathogen and improves
the metabolic activities in plant (Berg and Raaijmakers 2018). Microbes present in
seed have also been recognized with antifungal and antibacterial properties, which
keep the seed disease-free. For example, in a survey it was found that bacteria like
Sphingomonas and Methylobacterium can assist in the growth and development of
rice plant with disease-free adaptation (Eyre et al. 2019).

Among seed microbiome both pathogenic and beneficial microbes are present.
The pathogenic microbes like Pectobacterium carotovorum, Erwinia, and Pseudo-
monas viridiflava cause some necrosis in plants, like in Cucurbita pepo and other
plants. On the other hand, beneficial microbes like Lysobacter sp., Paenibacillus sp.,
etc. help in growth and high yield among crops (Adam et al. 2018). Apart from
helping in growth and development of plant, seed microbiome can help in the
management of weeds. Microorganisms present on seed help in germination and
formation of the shape and structure of the plant. As the seed is the source of many
microbes, it assists in the formation of immune system of a plant (Singh et al. 2020).

18.4.2 Rhizosphere Microbiomes

Many microbes exist in rhizosphere of plants. Plants secrete various kinds of
exudates in the soil, which are appropriate for the development of various microor-
ganisms. Plants provide required nutrients to the microbes and microbes provide
resistance capability against pathogen and also enhance the growth and development
of plants. For example, mycorrhizal organisms are an illustration of advantageous
relationship with underlying foundations of higher plants. The ecto- and
endomycorrhiza protect the plant root by absorbing the inorganic contaminants
like heavy metals from soil and on the other hand plants provide required nutrients
to mycorrhiza for the survival of the microbes (Galli et al. 1994). For the plants
growing in heavy metal contaminated soil, the arbuscular mycorrhizal fungi are
helpful in accumulation of nutrients and antioxidants from soil (Riaz et al. 2021).
Plant roots secrete a variety of exudates like sugars, mucilage, secondary metabo-
lites, etc. that influence the growth of different group of microbes in rhizosphere.
Most commonly found rhizospheric microbes in bacteria are Enterobacter,
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Fig. 18.3 Mechanism of rhizosphere microbes to promote plant growth and development

Rhizobium, Pseudomonas, Azospirillum, and Burkholderia (Babalola et al. 2021;
Parray and Shameem 2020), but Gluconacetobacter diazotrophicus, Bacillus
amyloliquefaciens, and Pseudomonas putida are also common (Parray and
Shameem 2020). Among archaea, Thermoprotei, Methanomicrobia, Halobacteria,
and Methanobacteria are most commonly found as rhizospheric microbes (Murthy
and Naidu 2012). The rhizospheric microbes associated with plant root secrete
indole-3-acetic acid that later changes the plant hormone auxin and it passes to the
vascular tissue of root through the stem and increases the root length (Ali et al.
2010). These microbes are also associated with the production of antibiotics in plant,
which keeps away the phytopathogen from the plant and also increases the disease
resistance capacity (Fig. 18.3). Rhizosphere microbes are also responsible for the
release of phytohormones such as cytokinin that help in the expansion of leaf,
promotion of seed germination, and delay senescence of plant (Kaushal 2019).

Rhizospheric microbes assist in the phytoremediation of heavy metal contami-
nated soil by producing siderophores (Das et al. 2007; Rajkumar et al. 2010). The
endophytic bacteria have also been described in literature that are well known for
solubilization of minerals and release of root exudates, which help in
phytoextraction of inorganic contaminants (Rajkumar et al. 2009). Rhizosphere is
the hot spot that is responsible for different features and traits borne by the plants.



18 Plant Microbiome in Agroecosystems for Sustainable Agriculture. . . 433

18.4.3 Phyllosphere Microbiomes

The microorganisms available in the aerial portion of the plant are known as the
phyllosphere microbiome. The aerial surface of the plant is a habitat of different
microbes and the microbes present in the aerial surface change the physiology and
functioning of the plant (Bashir et al. 2022). The phyllosphere microbes protect the
plants from the harmful ultraviolet radiation. For example, Methylobacterium
sp. helps in absorbance of ultraviolet rays and it is also applied in production of
pharmaceutical and cosmetic compounds (Kamo et al. 2018). Phyllosphere microbes
are also responsible for the texture of leaf structure because microbes prepare the leaf
surface according to their comfortability to accumulate nutrients. For example,
Pseudozyma antarctica secretes some enzymes like esterase and xylanase that
make the leaf of tomato plant thicker than the normal leaf surface and instigate the
growth of plant and its management (Ueda et al. 2018). Some functions of
phyllosphere microbes are given in Table 18.3. Figure 18.4 describes how
phyllosphere microbes promote plant growth by reducing biotic and abiotic stresses.

18.5 The Current Approaches and Prospects
of Microbiomes

Regular use of pesticides and chemical fertilizers in agricultural field causes adverse
impact on the environment and hazardous influences on living organisms entering
the food chain. The synthetic use of chemicals also increases soil erosion and
leaching, and has been associated with barren land and agroecosystem productivity

Table 18.3 List of some phyllosphere microbes with their function

Name of microbes Function of phyllosphere microbes References

Microbacterium sp. Improve growth and nutrient availability in
plants by stimulating indole acetic acid and fix-
ing atmospheric nitrogen

Abadi et al. (2020),
Madhaiyan et al.
(2015)

Stenotrophomonas
sp.

Methylobacterium
sp.

Pseudomonas sp. Provide disease resistance capacity in
Arabidopsis against Botrytis cinerea

Ritpitakphong et al.
(2016)

Cladophora sp. Help in N2 fixation in Hydrilla verticillata Bárta et al. (2021)

Pseudomonas
syringae

Promote the growth of tomato plant Ryffel et al. (2015)

Sphingomonas
melonis

Promote plant growth

Candida boidinii Support methanol assimilation in plant Kawaguchi et al.
(2011)

Methylobacterium
extorquens

Help in dinitrogen fixation in plant Knief et al. (2011)
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Fig. 18.4 Role of phyllosphere microbiome on the growth of plant and stress resistance

problems. Today, people are trying to lessen the utilization of chemical substances
and pesticides and increase the use of green technology resources as an alternate
source. Plant microbiomes are beneficial and are associated with many functions as a
useful biological resource. Microbes produce different types of enzymes,
biosurfactants, and siderophores, and they have the antagonistic effect/activities
toward other pests and pathogenic microbes and against many abiotic stresses.
Microbes are useful to attaining the sustainable development and for achieving the
SDGs to overcome agroecosystems’ productivity problems, and for environments,
human health, and industrial production. The microbes are useful resource and shield
agriculture, climate change, and help in ozone stress reduction; they are also useful
for agriculture, industrial, and innovation purposes. The current approaches have
unraveled range or assembly of microbes and can help improve agroecosystems’
productivity and the environment for sustainable development.
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