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Abstract This work proposes the use of a logarithmic hyperbolic cosine (Lncosh)-
based adaptive algorithm for a single-stage solar photovoltaic (SPV) grid-interfaced 
system. The design incorporates a VSC coupled SPV array to provide active power 
along with reactive power compensation. It also serves to offer load balancing, reduc-
tion of harmonics, and power factor correction. A maximum power point (MPP) 
extraction method based on the incremental conductance (InC) technique, integrated 
with the VSC control algorithm, is employed to ensure that the SPV array operates 
at the MPP under varying levels of irradiation. The Lncosh-based algorithm simul-
taneously offers benefits of both the least mean squares (LMS) and sign-error LMS 
algorithms, providing faster convergence without sacrificing the mean-square-error 
(MSE) performance. The proposed configuration is implemented for simulation in 
MATLAB with the Simulink environment; the steady-state and the dynamic behavior 
is observed and verified to be well within recommended limits. 

Keywords SPV · Lncosh · LMS · Power quality · Power electronics · MPPT 

1 Introduction 

The last few decades have seen the decay of fossil-fuel-based energy sources as 
the demand for energy consumption continued to grow. Along with an increasing 
concern for the global environment, this has motivated the search and development of 
renewable alternatives. Among these alternatives, there has been widescale adoption 
of technologies such as SPV systems in the form of distributed energy resources 
(DERs) [1].
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There is a host of difficulties to be tackled when interfacing SPV systems with 
the utility grid. The majority of these include poor reliability, voltage instability, 
and degraded power quality [2]. SPV systems may be integrated with the utility 
grid in either single-stage or double-stage topologies. The double-stage topology 
performs MPP extraction in the first stage and output power control in the second 
stage, while the single-stage topology achieves both functions in one stage. Several 
MPPT techniques have been discussed in [3]. 

The integration of SPV arrays with the utility grid is done with the help of power 
electronic converters, mainly VSCs [4]. The converter can be controlled to offer 
load balancing, reduction of harmonics, power factor correction, and/or zero voltage 
regulation (ZVR). Numerous algorithms have been reported for the control of VSC 
coupled SPV systems [5–8]. 

The use of algorithms based on adaptive filtering theory, for unfamiliar systems, 
has confirmed the capability of the theory to track variations in the properties of 
such systems [2]. The algorithm parameters are self-adjusted in response to changes 
in the surrounding environment, ensuring that the behavior of the system remains 
appropriately in order. The least mean squares (LMS) algorithm [9] and sign-error 
LMS (SELMS) algorithm are two such algorithms that have been used for the control 
of VSC coupled SPV [10]. The LMS algorithm offers faster convergence compared 
to the SELMS algorithm [11]; however, the SELMS algorithm offers better mean-
square-error (MSE) performance. 

Recently a Lncosh-based algorithm, consisting of a cost function employing the 
natural logarithm of the hyperbolic cosine function, has been proposed in [12]. The 
Lncosh-based algorithm provides convergence characteristics akin to the LMS algo-
rithm and robustness analogous to the SELMS algorithm [13]. It offers advantages 
of both the algorithms, performing similar to the LMS algorithm for errors of small 
magnitude and like the SELMS algorithm for errors of large magnitude [14]. 

In this work, the proposed Lncosh-based algorithm is implemented for the grid 
integration of a VSC coupled SPV array. The proposed configuration is implemented 
for simulation in MATLAB with the Simulink environment for Unity Power Factor 
(UPF) correction mode of operation as well as load balancing and reduction of 
harmonics. 

1.1 Configuration of Proposed System 

A composite circuit/block diagram representing the proposed configuration is shown 
in Fig. 1. The procedure for the calculation of the system parameters is given in [15]. 
The parameters for the proposed configuration are given in the Appendix.
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Fig. 1 Configuration of proposed system 

2 Control Algorithm 

The proposed control algorithm is developed for a single-stage three-phase configu-
ration and consists of two parts: MPP Extraction Control and VSC Control. 

The following signals are sensed: SPV array current and voltage (Ispv, V spv), grid 
line-voltages at the PCC (vtab, vtbc), VSC DC-link voltage (V dc), three-phase load 
currents (iLa, iLb, iLc), and three-phase grid currents (ita, itb, itc). 

2.1 MPP Extraction Control 

The goal of the MPP Extraction control is to ensure that the SPV array operates at 
the MPP under varying levels of irradiation, and provide a VSC DC-link reference-
voltage (V r dc) for the sensed VSC DC-link voltage (V dc) to track. 

The output power of the SPV array is proportional to the amount of incident 
radiation. As a result, peak power extraction is needed to increase performance. An 
InC-based MPP extraction method is used to acquire the desired power maxima. The 
method uses incremental changes in V spv and Ispv to estimate the result of a voltage 
shift. 

In case of the proposed SPV system, the V dc equals the V spv. At steady-state, 
the V dc equals the SPV array voltage at maximum power (VMPP). The InC-based 
MPP extraction method, besides being high-speed and accurate under a variety of 
environmental conditions, is easy to implement.
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2.2 VSC Control 

The VSC control algorithm focuses on the generation of a series of trigger signals for 
the appropriate switching of the converter switches. The algorithm may also offer 
ancillary services such as load balancing, reduction of harmonics, improved PCC 
voltage regulation, and power factor correction. 

A Lncosh-based converter control algorithm, shown in Fig. 2, is proposed [12]. 
The PCC phase voltages (vta, vtb, vtc) are evaluated from the grid line-voltages 

(vtab, vtbc) sensed at the PCC, using (1). 

vta = 
2vtab + vtbc 

3 
, vtb = 

−vtab + vtbc 
3 

, vtc = 
−vtab − 2vtbc 

3 
(1) 

From the phase voltage measurements, the unit templates in-phase (xpa, xpb, xpc) 
with the grid voltage are estimated using (2) 

xpa = vta 

VPCC 
, xpb = vtb 

VPCC 
, xpc = vtc 

VPCC 
(2) 

where VPCC is the magnitude of the PCC terminal voltage, given using (3). 

VPCC = 0.816
√  

(v2 
ta + v2 

tb + v2 
tc ) (3) 

The unit templates in-quadrature (xqa, xqb, xqc) with the grid voltage are derived 
from xpa, xpb, xpc using (4). 

xqa = 
−xpb + xpc √

3 
, xqb = 

3xpa + xpb − xpc 
2 
√
3 

, xqc = 
−3xpa + xpb − xpc 
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√
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Fig. 2 Lncosh-based control algorithm for voltage source converter control 



Lncosh-Based Adaptive Control Algorithm … 635

The VSC DC-link voltage (V dc) is controlled by a P.I. controller in such a way 
that it tracks the VSC DC-link reference-voltage (Vr 

dc). The VSC DC-link voltage 
error (V dce) is determined for the ith sampling instant using (5) 

Vdce(i ) = V r dc (i) − Vdc(i ) (5) 

and supplied to the DC-P.I. controller. The DC-P.I. controller provides the in-phase 
loss component (ϕlp) required to maintain V dc at Vr 

dc. ϕlp is estimated for the ith 
sampling instant using (6). 

ϕlp(i + 1) = ϕlp(i ) + λDCp(Vdce(i + 1) − Vdce(i )) + λDCi(i + 1)Vdce(i + 1) (6) 

where λDCp and λDCi are respectively the values of proportional gain constant and 
integral gain constant for the DC-P.I. controller. 

Similarly, another P.I. controller, termed the AC-P.I. controller, regulates the 
terminal voltage (VPCC) so that it tracks the reference terminal voltage (V r PCC) (set to 
0.816 * 415 = 340 V). The terminal voltage error (VPCCe) is given  using (7) 

VPCCe(i ) = V r PCC(i ) − VPCC(i ) (7) 

and acts as input to the AC-P.I. controller. The AC-P.I. controller outputs the 
quadrature-phase loss component (ϕlq) which is used to regulate VPCC at V r PCC. ϕlq 

is estimated for the ith sampling instant using (8). 

ϕlq(i + 1) = ϕlq(i ) + λACp(VPCCe(i + 1) − VPCCe(i )) + λACi(i + 1)VPCCe(i + 1) 
(8) 

where λACp and λACi are respectively the values of proportional gain constant and 
integral gain constant for the AC-P.I. controller. 

To improve the performance of the SPV system under dynamic conditions, the 
control algorithm includes an SPV feed-forward component. The SPV feed-forward 
component (ϕspv) for  the  ith sampling instant is given using (9) 

ϕspv(i ) = 0.66 ∗ 
Pspv(i ) 
VPCC 

(9) 

where Pspv(i) is the SPV array power output for the ith sampling instant. 
The in-phase load component of phase-a (ϕpa), for the ith sampling instant, is 

evaluated from the proposed Lncosh-based algorithm using (10) 

ϕpa(i + 1) = ϕpa(i) + τs tanh
[
ηpa(i)

]
xpa(i ) − ρ 

sgn
[
ϕpa(i )

]

1 + ε
||ϕpa(i )

|| (10)
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where τ s is the step-size, ρ is the zero-attractor coefficient, and ε−1 is the shrinkage 
coefficient [10, 12]. ηpa(i) is the error of the in-phase current component of phase-a, 
given for the ith sampling instant using (11) 

ηpa(i ) = iLa(i ) − xpa(i)ϕpa(i ) (11) 

where iLa(i) is the sensed load current in phase-a for the ith sampling instant. 
Correspondingly, the in-phase load components of phase-b (ϕpb) and phase-c 

(ϕpc), for the ith sampling instant, are estimated using (10) for the phases b and c. 
The quadrature-phase load component of phase-a (ϕqa), for the ith sampling 

instant, is evaluated using (12) 

ϕqa(i + 1) = ϕqa(i ) + τs tanh
[
ηqa(i)

]
xqa(i ) − ρ 

sgn
[
ϕqa(i )

]

1 + ε
||ϕqa(i )

|| (12) 

where τ s is the step-size, ρ is the zero-attractor coefficient, and ε−1 is the shrinkage 
coefficient [10, 12]. ηqa(i) is the error of the quadrature-phase current component of 
phase-a, given for the ith sampling instant using (13). 

ηqa(i ) = iLa(i) − xqa(i )ϕqa(i ) (13) 

Correspondingly, the quadrature-phase load components of phase-b (ϕqb) and 
phase-c (ϕqc), for the ith sampling instant, are estimated using (12) for the phases b 
and c. 

The total in-phase grid reference-current component (ϕtp) is given  using (14) 

ϕtp = ϕLp + ϕlp − ϕspv (14) 

where the average in-phase load component (ϕLp) is given using (15). 

ϕLp =
(
ϕpa + ϕpb + ϕpc

)

3 
(15) 

Similarly, the total quadrature-phase grid reference-current component (ϕtq) is  
given using (16) 

ϕtq = ϕlq − ϕLq (16) 

where the average quadrature-phase load component (ϕLq) is given using (17). 

ϕLq =
(
ϕqa + ϕqb + ϕqc

)

3 
(17)
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The in-phase reference-currents (i∗tpa, i∗tpb, i∗tpc) and the quadrature-phase 
reference-currents (i∗tqa, i∗tqb, i∗tqc) are estimated using (18) and (19), respectively. 

i∗ 
tpa = ϕtpxpa, i∗ 

tpb = ϕtpxpb, i∗ 
tpc = ϕtpxpc (18) 

i∗ 
tqa = ϕsqxqa, i∗ 

tqb = ϕsqxqb, i∗ 
tqc = ϕsqxqc (19) 

The summation of  i∗tpa, i∗tpb, i∗tpc and i∗tqa, i∗tqb, i∗tqc for each phase respectively gives 
the three-phase total reference-currents (i∗ta, i∗tb, i∗tc). 

i∗ 
ta = i∗ 

tpa + i∗ 
tqa, i

∗ 
tb = i∗ 

tpb + i∗ 
tqb, i

∗ 
tc = i∗ 

tpc + i∗ 
tqc (20) 

For the generation of VSC trigger signals, a hysteresis current controller (HCC) 
is brought into use. The HCC takes as input a 3 × 1 vector of error signals generated 
from calculating the difference between i∗ta, i∗tb, i∗tc and ita, itb, itc for each individual 
phase, respectively and generates the appropriate trigger signals. 

3 Simulation Results and Discussion 

The proposed configuration is implemented for simulation in MATLAB with the 
Simulink environment for UPF correction mode of operation, and its steady-state 
and dynamic behavior is verified under various conditions. 

3.1 Steady-State Behavior Under Non-linear Load 

The behavior of the proposed configuration, under steady-state, with a non-linear 
load connected at the PCC is simulated, and the results are shown in Fig. 3. V dc is 
sustained at the VMPP of the SPV array. The active power output (Pt) of the grid is 
negative as the VSC is supplying some of the active power generated by the SPV array 
(Pspv) back to the grid. Since the VSC meets the load’s reactive power requirements, 
the grid’s reactive power output (Qt) is zero. The power factor at the grid side is 
corrected to unity and the grid side total harmonic distortion (THD) values are in 
agreement with the IEEE-519 standard [16].

3.2 Dynamic Behavior Under Variable Irradiance 

Figure 4 Illustrates the dynamic behavior of the configuration for a simulated change 
in irradiance G from 1000–600 W/m2 at 0.6 s. As G is reduced, the power output
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Fig. 3 Steady-state behavior under non-linear load

Pspv of the SPV array drops; as such Pt rises to a value, less negative than earlier. 
The output current Ispv of the SPV array and the grid currents itabc also decrease. 
The power factor at the grid side is maintained at unity and the grid side THD values 
comply with [16].

3.3 Dynamic Behavior Under Imbalanced Load 

At 0.35 s, the load connected at phase a is disconnected to simulate an imbalance in 
load, and the behavior of the configuration is observed. The findings are depicted in 
Fig. 5. V dc is maintained as per the MPP extraction control. The further decrease in 
the value of Pt can be accounted for by the fact that more of the SPV array power 
Pspv is available to be transferred to the grid side after the loss of load. The voltage 
and the current waveforms on the grid side are sinusoidal with unity power factor, 
showing the proper operation of the control algorithm for load balancing. The THD 
values on the grid side are again observed to be in compliance with the IEEE-519 
standard.
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Fig. 4 Dynamic behavior of the configuration for change in solar irradiance

3.4 Comparison with LMS and SELMS Algorithm 

In Fig. 6, a comparison of the average in-phase load component (ϕLp) under a simu-
lated imbalance in load, from 0.25–0.45 s, is shown for the proposed Lncosh-based 
algorithm, the LMS algorithm, and the SELMS algorithm. The convergence charac-
teristics of the Lncosh-based algorithm are similar to the LMS algorithm and much 
faster than the SELMS algorithm. The oscillations in ϕLp for the proposed algorithm 
are observed to be less than that in the case of LMS and comparable to that for 
the SELMS algorithms. The THD values for the grid current are 1.60%, 2.87% and 
1.53%, respectively, for the proposed Lncosh-based algorithm, the LMS algorithm, 
and the SELMS algorithm.

4 Conclusion 

The Lncosh-based adaptive algorithm has been described for the grid interfacing of a 
single-stage three-phase SPV system. The proposed configuration is implemented for 
simulation in MATLAB with the Simulink environment. The steady-state behavior 
and the dynamic behavior of the configuration under conditions of variable irradiance
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Fig. 5 Dynamic behavior of the configuration for imbalance in load

Fig. 6 Comparison of the Lncosh-based algorithm against LMS and SELMS algorithms
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and load imbalance are shown to be reliable. The tracking of the MPP is proper under 
varying levels of irradiance. Moreover, the response of the proposed control algorithm 
for a simulated imbalance in load is observed to be better than conventional LMS 
and SELMS algorithms. The results show correspondence with IEEE-519 standards. 

Appendix: System Parameters 

Grid voltage, VLL = 415 V (rms); SPV array parameters: VMPP = 710 V, IMPP = 
46 A, PMPP = 32 kW (all parameters at G = 1000 W/m2); VSC DC-link voltage, 
V dc = 700 V; interfacing inductance, Lf = 2 * 10–3 H; DC-link capacitance, Cdc = 
8 * 10–3 F; sampling time, T s = 1 * 10–6 s; ripple filter parameters, Rrf = 5Ω, Crf 

= 1 * 10–5 F; AC-P.I. controller parameters, λACp = 0.7 and λACi = 0.5; DC-P.I. 
controller parameters, λDCp = 0.7 and λDci = 0.5; load parameters, 3-phase diode-
bridge rectifier feeding a series RL load of 20Ω and 1 * 10–1 H; Hysteresis bandwidth 
= 0.01. 
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