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Abstract

In the global era, the use of pharmaceuticals and personal care products (PPCPs)
has increased rapidly worldwide. In general, the PPCPs after being utilized/
consumed are emitted into the sewage system and thereby into municipal waste
material. With improper treatment of these wastes through conventional waste-
water treatment, PPCPs easily seep into nearby soil and water and in turn
contaminate our ecosystem. With regular addition of these compounds, there
has been a significant increase in the amount of PPCPs material in the environ-
ment rendering them hazardous for aquatic as well as terrestrial animals and
humans. Studies have also shown that PPCP compounds have percolated even
into groundwater. Therefore, a proper mechanism is required for the removal of
these PPCPs from drinking water, sewage, and environment. This chapter
discusses conventional methods such as nanofiltration, reverse osmosis, and
ozone with advanced oxidation along with focusing on mechanism and future
perspective of the biological treatments that can be used for removal of PPCPs
from contaminated sites.
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7.1 Introduction

Pharmaceuticals and personal care products (PPCPs) are classified as chemically
active ingredients also known as “emerging contaminants (ECs),” while
pharmaceuticals are products that are majorly used in treating or preventing diseases
and can be categorized into antibiotics, analgesics, blood lipid regulators, natural and
synthetic hormones, β-blockers, antidiabetics, antihypertensive, non-steroidal anti-
inflammatory drugs (NSAIDS), and many more (Liu andWong 2013; Daughton and
Ternes 1999; Yang et al. 2017). Products used every day for uplifting standard of
living of humans such as cosmetics, shampoos and conditioners, soaps and
detergents, and various other household products come under (PPCPs) (Ebele
et al. 2017). Occurrence of these ECs in the environment has become a major
concern because of their physiochemical properties and metabolically active
compounds present in pharmaceuticals; they tend to have a hydrophobic nature,
which easily enables them to bioaccumulate in the environment.

There are many ways by which PPCPs can enter into the environment. Discharge
of waste materials from industries, hospitals, households, and wastewater treatment
plants straight into surface water makes them contaminated with PPCPs. And
leaching of these PPCPs into the groundwater makes them also contaminated.
These PPCPs then finally enter into the food chain via irrigation and agricultural
practices (Sui et al. 2015).

Conventional wastewater treatment plants are not effective in removing these
ECs, and hence they persist in the environment.

Various studies have shown that PPCPs persist in our environment much longer
than previously thought ranging from few months to even many years (Kumar et al.
2010; Monteiro and Boxall 2009). Because of their polar nature, PPCPs persist in
surface water and then percolate to ground level during groundwater recharge, and in
this process, few PPCPs do get removed, but compounds such as carbamazepine can
easily percolate and reach groundwater with a travel time of up to 8 years (Chen et al.
2016a, b). To minimize the effects of these contaminants on the environment, the
scientific community has raised questions about the presence, outcome, and
consequences these PPCPs pose on our environment.

7.2 Issues Related to the Presence of PPCPs in Wastewater
Streams

PPCPs when get release into the environment due to their physiochemical properties
become persistent and start getting bioaccumulated. Individual PPCPs may not
become persistence, but because these PPCPs get continuously deposited in the
environment, they become “pseudo-persistent.” These pseudo-persistent compounds
have much more persistence capability in the environment than the original pharma-
ceutical compounds since their source of origin continuously gets refilled although
these compounds repeatedly get biodegraded and photodegraded by the environment
(Houtman et al. 2004; Kar et al. 2020).
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Because of the biologically active compounds present in PPCPs, when these
chemicals are released into freshwater, they become harmful to many aquatic
animals, even when present in very low concentration. The majority of these
PPCPs being manufactured for humans and animals have a severe impact on
non-target aquatic animals (Chen et al. 2016a, b).

Recent studies have shown that PPCPs have hazardous effects on fishes, they
being the non-target organism. For example, a study showed that when gemfibrozil
was exposed to goldfish (Carassius auratus) for 14 days, it got bioaccumulated in its
plasma at a concentration factor of 113 (Mimeault et al. 2005). Another experiment
conducted by Vernouillet et al. (2010) showed that carbamazepine (CBZ) which is
an antiepileptic drug gets bioaccumulated by algae Pseudokirchneriella subcapitata
at a bioaccumulation factor of 2.2, whereas the same compound gets bioaccumulated
in crustacean Thamnocephalus platyurus at a concentration factor of 12.6. Yet
another concerning factor that comes to light with PPCPs being accumulated in
the environment due to overuse of these ECs in human medicine and animal
husbandry is the generation of antibiotic-resistant strains inside a pool of natural
population of bacteria, and this in turn has led to ineffective treatment of certain
diseases that are caused by antibiotic-resistant bacteria (World Health Organization
2015).

One of the significant threats posed by PPCPs being present in water bodies is
their potential to hinder the pathways of endocrine systems thereby producing
undesirable effects or disturbance in homeostasis. Endocrine disrupters (ED) are
compounds of exogenous nature that have the potential to change the working ability
of the endocrine system and thereby affect the health of an organism and its progeny
adversely (Wielogórska et al. 2015). Toxicity of certain PPCP compounds increases
when they act synergistically, which implies that while singly these PPCPs may be
present in low concentrations and not imply much toxic effects, when a cocktail of
PPCP compounds work together, they impose significant toxic effects leading to
severe ecotoxicity. This was shown by a study conducted by Cleuvers (2003) where
carbamazepine and clofibric acid—two different drugs belonging to two different
therapeutic classes—elicited more severe effects on Daphnia magna than when
acting singly on the organism at the same concentration (Thorpe et al. 2001).

Studies of recent times have depicted that the toxicity due to exposure to PPCPs
depends on the organism that has been exposed to it, the time duration to which it has
been exposed, and the developmental stage at which it was exposed and at what
concentration. More abnormalities are observed at crucial stages of development in
non-targeted organisms even when PPCPs are present in trace amount (Wilkinson
et al. 2016).

7.3 Existing Physicochemical Techniques

As already mentioned earlier, PPCPs are present in nature in very small amount, but
the concern as well as the necessity to remove these compounds arises due to the
reason that these are being introduced in the nature continuously. Methods to remove



PPCPs are broadly divided into physiochemical methods and biological methods. In
this section we will focus on physiochemical methods.
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7.3.1 Physical Adsorption Processes to Remove PPCPs

7.3.1.1 Adsorption
Adsorption is one of the most commonly used physical techniques to remove
organic PPCP compounds from the environment especially from polluted water.
Various research has been done to increase the removing efficiency of PPCPs from
aqueous environment using discrete adsorbents. The below section focuses only on
the carbon-containing materials used for adsorption of PPCPs because they are
cheap, are easily available, and are also effective in removing PPCPs.

Activated Carbon
Activated carbon has long been used in the treatment of water, and its performance in
removal of endocrine disruptors has been reported by Liu et al. (2009). The result of
the study was positive; however, over time, two problems occurred. First, the
adsorption capacity decreased and, second, the quality of the activated carbon got
deteriorated. The main types of activated carbon are powdered activated carbon
(PAC) and granular activated carbon (GAC), and the efficiency of these activated
carbons to capture PPCPs depends on the hydrophobicity and charge of the PPCPs.
Apart from these, even the water matrix has an effect on the adsorption capability of
the activated carbon (Mailler et al. 2015; Rodriguez et al. 2016).

Graphene and Graphene Oxide
Recent studies have shown that both graphene and its oxide can be used to extract
PPCPs, and their efficiency to remove them depends on physiochemical properties
of PPCPs. Apart from this, the pH and the time of contact also influence the
efficiency rate of PPCPs removal (Kyzas et al. 2015; Yang and Tang 2016). Because
graphene and its oxide comparatively have more surface area than activated carbon,
they have become one of the preferred adsorbents to remove PPCPs. More research
needs to be carried out on graphene and graphene oxide, to study real wastewater and
its effect on the adsorption capacity of PPCPs by these compounds.

Carbon Nanotubes
Carbon nanotubes (CNTs) are composed of graphene sheets, and they can be
arranged as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon
nanotubes (MWCNTs) (Czech and Buda 2016). Because CNTs have an extraordi-
nary capacity of sorption, they also have a very high specific surface area-to-mass
ratio which ranges between 75 and 1020 m2/g (Jung et al. 2015). CNTs form three
types of chemical bonds—hydrophobic interactions, van der Waals forces, and π-π
stacking—which allow them to create four distinct sites of adsorption such as inner
cavities, interstitial channels, external grooves, and outermost surfaces (Ye et al.
2019; Wei et al. 2013).



7 Biological Treatment of Pharmaceuticals and Personal Care Products (PPCPs) 197

BiVO4 is a semiconductor which is used for degrading pollutants of organic
nature. In a study using MWCNT/BiVO4 composites, photocatalytic degradation of
oxytetracyclines using high-performance liquid chromatography (HPLC) was
measured, and the value reached 88.7% in a duration of 60 min. Because of the
synergistic effect that happened between MWCNT and BiVO4 composites, such an
enhanced rate of photocatalytic degradation was achieved (Marques et al. 2013).

7.3.1.2 Coagulative Precipitation
Coagulative precipitation is one of the first methods that are applied to remove
PPCPs. It works on the principle of colloidal coalescence, bonding, and precipitation
due to gravity (Yuan et al. 2016). Coagulants help in the process of adsorption and
flocculation of the wastewater and also increase the biodegradability of organic and
inorganic wastes. Coagulants that are frequently used are broadly categorized into
two main groups: (1) coagulants made up of inorganic salts such as aluminum and
iron salts and (2) coagulants made up of polymers, both organic such as polyacryl-
amide and inorganic such as polyaluminum chloride (PAC) and polyferric sulfate
(PFS). However, there are few disadvantages of this method such as slow removal
rate of dissolved wastes, production of huge amount of chemical sludge, and
incomplete treatment of pathogens.

7.3.1.3 Flotation
Flotation can be applied to both solid-liquid and liquid-liquid interface and is an easy
method which is applied to remove micropollutant particles. Processes such as
electroflotation, induced air flotation, and dissolved air flotation allow these
micropollutant particles to have a density lower than that of the water, thereby
allowing these micropollutants to rise and float on the surface of water and hence-
forth be removed (Suarez et al. 2009). This method being simple has an added
advantage of being economical, consumes less power, and is easy to maintain.

7.3.1.4 Membrane Separation
Membrane separation is an adequate traditional process which uses membranes of
varying sizes and materials for diffusion dialysis, electrodialysis, reverse osmosis,
and ultrafiltration (Martínez et al. 2013). This process is cheap and easy to handle
with low production of sewage output making them convenient for primary treat-
ment of wastewater. But there are a few disadvantages also, such as all these
processes included in membrane separation require external energy input to remove
the pollutants from wastewater. And apart from them, the membranes utilized in
these processes are costly and are not reusable.

7.3.2 Advanced Chemical Oxidation

Conventional treatment techniques to remove PPCPs from wastewater are not that
effective, so advanced chemical methods are required to handle these types of



pollutants. Few of the advanced chemical methods are discussed in the following
section.
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7.3.2.1 Ozonation
Ozonation has a good potential to remove PPCPs from wastewater, and it is one of
the most frequently studied oxidation processes. The method on which ozonation
works is formation of hydroxyl radicals, and it strongly depends on the oxidizing
capability of the hydroxyl radicals to remove PPCPs (Bai et al. 2016a, b), and
therefore the amount of hydroxyl radicals generated becomes directly proportional
to the rate at which the PPCPs get ozonized. This process is generally used in post-
treatment of wastewater to remove PPCPs. More research is required to study the
effect of various sources of wastewater on the formation of hydroxyl radicals, and
also the release of toxic by-products of ozonation should be monitored.

7.3.2.2 Fenton Oxidation
Fenton oxidation is one of the oxidation methods to remove industrial wastewater
pollutants with the use of iron salts and hydrogen peroxide at acidic pH. This method
also heavily depends on oxidizing capabilities of the hydroxyl ions. Few studies
have shown the effectiveness of this method to remove PPCPs. The fundamental
process of Fenton oxidation is to use various metal catalysts to breakdown H2O2 to
produce hydroxyl radicals (Xu and Wang 2012). More research is required to study
the effect of various sources of wastewater on the formation of hydroxyl radicals,
and also the release of toxic by-products of Fenton oxidation process.

7.3.2.3 UV Treatment
Recent studies have used UV treatment to remove PPCPs from wastewater (Kim
et al. 2009). The principle behind the process of photolysis is to break the chemical
bonds of the pollutants in the wastewater by applying direct UV light. But a study
conducted by Vogna et al. (2004) had shown that photolysis by direct UV light is not
that efficient for some of the pollutants such as carbamazepine. Yuan et al. (2016)
has shown the effectiveness of UV treatment removal process, the UV light can be
combined with hydrogen peroxide. This process is also based on generation of
hydrogen radicals caused by the breakdown of hydrogen peroxide by UV light.
More research should be done to study the efficiency of this process to remove
different pollutants from wastewater with a mixture of complex pollutants.

7.3.2.4 Ionizing Radiation
A study conducted by Kim et al. (2014a, b) showed that radiation of gamma rays has
a higher potential to degrade lincomycin, sulfamethoxazole, and tetracycline when
present in aqueous environment. Another study conducted by Sági et al. (2016)
showed that the BOD/COD value of sulfamethoxazole after treatment with gamma
radiation at 2.5 kGy was improved. Kimura et al. (2012) used 2.0 kGy of gamma
irradiation on wastewater to completely biodegrade stern PPCPs such as carbamaz-
epine, ketoprofen, mefenamic acid, clofibric acid, and diclofenac. In the study
conducted by Liu and Wong (2013), it was reported that when H2O2 was combined



with gamma radiations, the removal efficiency of TOC was heavily increased from
5% to 48%.
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7.4 Biological Treatment: Introduction

Recently, biological treatment of PPCPs has become one of the most researched
areas for degrading persistent organic pollutants. This technique has several
advantages over the existing physiochemical techniques such as easy operating
parameters, recovery of additional by-products, and cost-effectiveness. In biological
treatment process of PPCPs, the focus is mainly on factors which can increase the
robustness of the process such as type of microbial culture to be used, material of the
sorption process, and calculating the potential of degradation and also production
and disposal of secondary pollutants with sludge. Various biological treatments have
been described in the following section.

7.4.1 Aerobic Biological Treatment

7.4.1.1 Activated Sludge Process (ASP)
Activated sludge process (ASP) is one of the most frequently used techniques to treat
PPCPs in wastewater treatment processes (WWTPs). This technique follows the
principle of using synergistic microbial population to degrade PPCPS. Several
studies have conducted experiment to increase the efficiency of biodegradation by
allowing cultures of mixed microbes to grow in activated sludge (Zhou et al. 2014).
While some of the population of these mixed microbial cultures feed on the PPCPs,
others use certain biochemical pathways to degrade them, thereby making this
treatment method one of the potential candidates to treat PPCPs in wastewater
efficiently (He et al. 2020). Suarez et al. (2010) studied compounds such as trimeth-
oprim, sulfamethoxazole, carbamazepine, and diazepam and showed that these
compounds are highly resistant towards biological transformation. Verlicchi and
Zambello (2014) studied the removal process of 29 antibiotics by using conventional
activated sludge (CAS) system. This study reported biological transformation of
most of the compounds, but spiramycin had an insignificant removal rate, while
cefaclor showed a removal rate of around 98%.

7.4.1.2 Membrane Bioreactor (MBR)
Membrane bioreactor (MBR) is an alternate method for PPCPs removal, and it
works with a combinational approach where membranes and ASP work together.
This method uses ultrafiltration membrane rather than secondary sedimentation tank
(Yang et al. 2019). A study conducted by Sahar et al. (2011) compared antibiotics
such as macrolide and sulfonamide removal process between CAS and MBR
techniques, and the data showed that 15–42% of the antibiotics were removed by
MBR technique compared to CAS process. Compounds such as carbamazepine and
EDTA which are effectively removed in CAS however get poorly removed in MBR,



but other persistent compounds such as diclofenac and sulfophenyl carboxylates get
easily removed through MBR technique (Hai et al. 2011). In a different study, it was
showed that MBRs were efficient in removing 90% of the 23 PPCPs out of 26 PPCPs
used. ECs such as atorvastatin, metformin, 2-hydroxyibuprofen, and naproxen were
most effectively removed, whereas compounds such as meprobamate,
clarithromycin, trimethoprim, and thiabendazole were not so significantly removed
through this process (Kim et al. 2014a, b).
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7.4.1.3 Sequencing Batch Reactor (SBR)
This technique requires choosing certain suitable organisms that have the capability
to degrade and remove PPCPs from wastewater systems. The study conducted by
Muz et al. (2014) used both oxic and anoxic conditions in lab-scale SBR units to
remove PPCPs such as endocrine-disrupting compounds. The data showed that 80%
of the PPCPs were removed without involvement of any nitrifying microbes, when
the experiment was conducted at (solid retention time) SRT of 5 days. The result of
this study also showed that the process of removing carbamazepine followed
aggregation onto sludge, while the leftover PPCPs were removed through
biodegradation.

PPCPs can also be degraded through aerobic granular sludge sequencing biore-
actor (AGSBR). The technique makes use of extracellular polymeric substances
(EPS) which are present on the outer surface of the bacterial cell. EPS are made up of
proteins and polysaccharides which help in aggregation and formation of aerobic
granular sludge. In a study when PPCPs such as prednisolone, ibuprofen, naproxen,
sulfamethoxazole, and norfloxacin in synthetic wastewater were added to AGSBR,
initially the amount of EPS increased, because to protect themselves from the toxic
effect of these compounds, the microbes synthesized and exported out more EPS.
But with duration of time, the content of EPS in AGSBR decreased because the EPS
secreted by the microbes started combing with the PPCP compounds and this made
free PPCP molecules less available in the wastewater which in turn reduced the
toxicity these compounds pose to the microbes. Therefore, this technique is an
excellent method to remove PPCPs from wastewater, but more studies involving
research with real wastewater are required to estimate the full potential of this
technique (Shi et al. 2013).

7.4.2 Natural Aerobic Treatment

7.4.2.1 Waste Stabilization Ponds (WSPs)
This method is also a budding candidate for PPCPs removal from wastewater. A
study conducted by Li et al. (2013) had shown that WSPs have the capability to
remove 88–100% of PPCPs at (hydraulic retention time) HRT of 20–30 days.
Because this technique involves processes such as biodegradation,
photodegradation, and sorption onto solids, they are highly effective to remove
PPCPs from wastewater.
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7.4.2.2 Constructed Wetlands (CW)
Recently CWs have become an attention for extraction of PPCPs from wastewater
(Li et al. 2014). But parameters such as carbon load (CL) and hydraulic rate
(HR) affect the efficiency of PPCPs removal (Sharif et al. 2014). A study done by
Chen et al. (2015) showed that by utilizing integrated CWs, antibiotics can be
removed from domestic wastewater. The rate of removal of the antibiotics was
found to be 78–100%. More than 70% of the antibiotic compounds such as cotinine,
nadolol, ciprofloxacin HCl, and enrofloxacin were efficiently removed; however,
only 20–50% of the compounds were removed when it comes to persistent PPCPs
such as salinomycin, monensin, and narasin. Further research should be conducted
to evaluate the potential of these CWs to treat PPCPs in secondary wastewater
treatment plants.

7.4.2.3 Microbial Cultures
Recent researches have shown that microbial cultures of pure strains collected from
sediments and activated sludge after secondary treatment of wastewater can be
effectively used for removing PPCPs such as sulfamethoxazole (Reis et al. 2014;
Jiang et al. 2013), iopromide (Liu et al. 2013), ibuprofen (Almeida et al. 2013),
paracetamol (De Gusseme et al. 2011), diclofenac (Hata et al. 2010), triclosan (Zhou
et al. 2014), and carbamazepine (Santos et al. 2012). Reis et al. (2014) had shown
that activated sludge harbors Achromobacter denitrificans, and when pure culture of
this strain was used, it was able to effectively remove PPCPs such as sulfamethoxa-
zole and other sulfonamides. Other studies have shown that cultures of Delftia
tsuruhatensis, Pseudomonas aeruginosa, and Stenotrophomonas can effectively
remove paracetamol. These microorganisms were not only capable of degrading
the PPCPs, but they also used them as a carbon source for growth and survival
(Almeida et al. 2013; De Gusseme et al. 2011). Currently extensive researches are
being conducted on the usage of mixed microbial culture for removal and treatment
of PPCPs from wastewater in WWTPs (Khunjar et al. 2011).

7.4.3 Anaerobic Removal Technologies

7.4.3.1 Bench-Scale Upflow Anaerobic Sludge Blanket (UASB)
A study conducted by Sponza and Demirden (2007) using UASB reactor in combi-
nation with continuous stirred tank reactor (CSTR) showed that PPCP such as
sulfonamide (sulfamerazine) was removed effectively with 97% removal rate.
Another study performed by Carballa et al. (2006) in mesophilic anaerobic
conditions effectively removed ibuprofen and naproxen with a removal rate of
40% and 87%, respectively. For chemically alike compounds, removal rate of
even more than 90% has also been achieved (Samaras et al. 2013). This technique
is a bit superior when compared with aerobic processes when factors such as power
input, generation of biogas, small area of installation, and cost-effectiveness are
considered. But certain studies have also showed that this technique is not that



efficient for removal of persistent PPCPs because of their diverse and complicated
chemical composition (Deegan et al. 2011).
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7.4.3.2 Upflow Anaerobic Stage Reactors (UASRs)
Chelliapan et al. (2006) conducted a research to study the extraction process of
PPCPs from industrial wastewater utilizing UASRs and showed that the process is
effective in removing high amount of PPCPs. In a different study conducted by
Oktem et al. (2008) by combining both UASR and anaerobic filter technology,
significant amount of COD was removed from wastewater containing high organic
load. When thermophilic temperature was maintained in a study conducted by
Sreekanth et al. (2009), it was reported that both COD and BOD were removed
from organic load of 9 kg at a removal rate of 65–75% and 80–94%, respectively.
But the study also revealed that PPCPs such as carbamazepine were not effectively
removed by using UASR. In another work conducted by Carballa et al. (2006),
anaerobic microbes from sewage sludge were used to remove PPCPs. While many of
the compounds were effectively removed, iopromide and carbamazepine were found
to be persistent.

7.5 Future Prospects and Conclusion

Currently since there are no legal restrictions on maximum permissible limits for the
disposal of PPCPs in the environment, the amount of these compounds is rapidly
building up in the environment. Although conventional treatment methods such as
physical and chemical techniques are regularly used to degrade and remove PPCPs,
it comes with some drawbacks such as they are not so eco-friendly and their cost of
maintenance is very high. As many of these PPCPs are new emergent, knowledge
about their fate, behavior, impact on the environment, and methods to treat them are
very limited. So, future research should focus on improving the biological treatment
methods by improving their degradation ability, lowering their power consumption,
and reducing the release of secondary pollution.
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