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Abstract Oil palm industry is one of the key contributors to the Gross Domestic 
Product (GDP) and Comprehensive National Strength (CNS) of Malaysia. According 
to the Department of Statistical Malaysia (2021), oil palm industries had contributed 
about 2.7% or RM 38.26 billion (equivalent to 9.45 billion USD) to Malaysia’s GDP 
in 2019. An abundant amount of palm-based biomass has been generated through oil 
palm harvesting and palm oil production. Therefore, conceptual design and modeling 
of the palm biomass supply chain are deemed necessary to ensure the sustainability of 
the oil palm industry. Nevertheless, to enhance the model reliability and robustness, 
stochastic modeling should be opted to incorporate various uncertainties into the 
supply chain model. Keeping this in mind, this chapter presents an overview of 
the key supply chain uncertainties that should be incorporated into the supply chain 
model. It is followed by three illustrative examples which cover (i) biomass selection 
decision, (ii) facility location decision, and (iii) policy selection decision. 
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Nomenclature 

Abbreviations 

AP Action plan 
AP-1 Engage in demand contract 
AP2-HS Engage in supply contract 
AP3-FI Introduce new financing incentive 
AP4-SF Substitute fossil fuel with biodiesel 
AP5-TI Introduce new tax incentive 
AP6-RF Revise Feed-in-Tariff (FiT) rate 
AP7-CM Introduce carbon management system 
BOTA Bottleneck Tree Analysis 
CAPEX Capital expenditure 
CNS Comprehensive National Strength 
DoE Design of Experiment 
EFB Empty fruit bunch 
FiT Feed-in-tariff 
GDP Gross domestic product 
GTFS Green Technology Financing Scheme 
LNG Liquefied natural gas 
MF Mesocarp fiber 
MILP Mixed Integer Linear Programming 
NPV Net present value 
OPEX Operating expenditure 
PBP Payback Period 
PCA Principal component analysis 
PKS Palm kernel shell 

Indices 

g Index for synthetic gas products 
m Index for months 
t Index for years 
u Index of units 

Parameters 

BiomassAVAILABLE m,t Biomass availability at month m in year t (t)
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BiomassQUALITY EFB Biomass quality for EFB 
BiomassQUALITY PKS Biomass quality for PKS 
BiomassQUALITY MF Biomass quality for MF 
c Specific heat capacity of water (J kg/K) 
CapTRUCK Vehicle load limit (t) 
CBIOMASS 
m,t Unit cost of biomass at month m in year t (USD/t) 

CBIOMASS 
t Unit cost of biomass in year t (USD/t) 

CCAPEX 
u Capital cost for unit u (USD) 

CCAPEX Total capital cost for the conversion process (USD) 
CCOAL 
m,t Unit cost of coal at month m in year t (USD/t) 

CCOAL 
t Unit cost of coal in year t (USD/t) 

CCO2 Compensation cost required per unit of carbon emission 
(USD/kg) 

CELEC Unit cost of imported power (USD/kWh) 
CFIT Feed-in-tariff (USD/kWh) 
CFUEL 
m,t Fuel price at month m in year t (USD/L) 

CFUEL 
t Fuel price in year t (USD/L) 

COPEX 
u,m,t Operating cost for unit u at month m in year t (USD) 

COPEX 
t Total operating cost for the conversion process in year t (USD) 

COIL 
m,t Bio-oil price at month m in year t (USD/L) 

CapTRUCK Vehicle load limit (t) 
d D Distance between polygeneration plant and the demand point 

(km) 
dS Distance between biomass supply and the polygeneration plant 

(km) 
ElecREQ m,t Power demand at month m in year t (kWh) 
FOIL_DEMAND 
m,t Bio-oil demand at month m in year t (L) 

HV  coal Heating value of coal (MJ/kg) 
in Discount rate (%) 
ITA Tax exemption indicator (USD) 
LHVg Low heating value of gas g (kJ/mol) 
LHVCHAR Low heating value of biochar (MJ/kg) 
LHVCOAL Low heating value of coal (MJ/kg) 
MCIN 

m,t Moisture content of biomass before drying (%) 
MCIN 

t Moisture content of biomass before drying (wt%) 
MCOUT Moisture content of biomass after drying (%) 
QFC Weight composition of fixed carbon of biomass (wt%) 
QVM Weight composition of volatile matter of biomass (wt%) 
Q A Weight composition of ash of biomass (wt%) 
QMC Weight composition of moisture content of biomass (wt%) 
QH Weight composition of hydrogen of biomass (wt%) 
QC Weight composition of carbon of biomass (wt%) 
QO Weight composition of oxygen of biomass (wt%) 
QS Weight composition of sulfur of biomass (wt%)
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QN Weight composition of nitrogen of biomass (wt%) 
TAX Corporate tax rate (%) 
ThermalREQ m,t Heat demand at month m in year t (kWh) 
yCHAR Biochar yield (%) 
yCO2_COGEN CO2 emitted during co-generation unit (kg CO2/kWh) 
yCO2_PY CO2 emitted during pyrolysis process (kg CO2/kg biomass) 
yCO2_TR CO2 emitted during transportation (kg CO2/L fuel) 
yGAS Syngas yield (%) 
yPY g Molecular composition of gas g (%) 
yOIL Bio-oil yield (%) 
ξ COGEN Conversion efficiency of the co-generation unit (%) 
ξ DRY Drying efficiency (%) 
ψFUEL Fuel consumption rate (L/km) 
ψPY Thermal energy required to try per unit mass of biomass 

(kWh/t) 
ψTHERMAL Thermal energy required to try per unit mass of moisture 

(kWh/t) 

Variables 

BiomassDRY m,t Flowrate of dried biomass fed into the pyrolyser at month m in 
year t (t) 

BiomassI N  
m,t Flowrate of biomass fed into the plant at month m in year t (t) 

BiomassIN t Flowrate of biomass fed into the plant in year t (t) 
BiomassSUPPLY t Biomass supply in year t (t) 
CPENALTY 
m,t Carbon penalty at month m in year t (USD) 

CPROCURE 
m,t Procurement cost at month m in year t (USD) 

CPROCURE 
t Procurement cost in year t (USD) 

CSYNGAS 
t The selling price of syngas in year t (USD) 

CTR 
m,t Transportation cost at month m in year t (USD) 

CTR 
t Transportation cost in year t (USD) 

CF IN 
m,t Input cash flow (USD) 

CF IN 
t Input cash flow in year t (USD) 

CFOUT 
m,t Output cash flow (USD) 

CFOUT 
t Output cash flow in year t (USD) 

ElecEXP m,t Exported power at month m in year t (kWh) 
ElecGEN m,t Generated power at month m in year t (kWh) 
ElecIMP 

m,t Imported power at month m in year t (kWh) 
FCHAR 
m,t Biochar production at month m in year t (t) 

FCOAL 
m,t Coal consumption at month m in year t (t) 

FCOAL 
t Coal consumption in year t (t) 

FGAS 
m,t Syngas production at month m in year t (t)
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FOIL 
m,t Bio-oil production at month m in year t (L) 

FSYNGAS 
t Syngas demand in year t (MWth) 

Qcoal Energy required to reduce the moisture content of biomass (MJ) 
SBIOMASS Specific syngas yield (kg/kg) 
TFinal Temperature of biomass after drying (°C) 
TInitial Temperature of biomass before drying (°C) 
NCFm,t Net cash flow at month m in year t (USD) 
NCFt Net cash flow in year t (USD) 
ThermalGEN m,t Generated heat at month m in year t (kWh) 

1 Introduction 

Laying the agriculture foundation in Malaysia, the cultivation of the oil palm industry 
has been emerging ever since the first commercial planting was materialized in Tenna-
maran Estate, Selangor, in 1917 (The Oil Palm, 2021). Oil palm plantation was first 
introduced by the Malaysian government to diversify the country’s agricultural prod-
ucts and at the same time diminish the nation’s economic dependency on rubber and 
tins in the early 1960s (The Oil Palm, 2021). 

Over the years, Malaysia has been showered and fueled with oil palm biomass 
resulted as the world’s second-largest palm oil producer (around 19.14 million tonnes 
of crude palm oil produced in 2020) (Malaysia Palm Oil Board, 2020). Oil palm 
biomass exists as one of the most appealing substituents for energy generation feed-
stock whereas many nations are still exploring diversifying the country’s energy 
profile. In order to appeal to more potential investors into biomass-based industries, 
a sustainable biomass supply chain (from harvesting to distribution) is required to be 
systemized and well-ordered. To this end, Hong et al. (2016) had proposed four crit-
ical elements in developing a sustainable biomass supply chain, which consists of (i) 
biomass harvesting and management, (ii) integrated biorefinery, (iii) product distri-
bution, and (iv) logistics management. Nonetheless, Lo et al. (2021) stated that almost 
95% of the researchers used deterministic models (Mixed Integer Linear Program-
ming (MILP)) in evaluating biomass supply chain models. However, various uncer-
tainties related to the biomass supply chain are yet to be considered in most of the 
supply chain optimization models. The relevant works mainly utilize deterministic 
optimization options in performing their studies and the outcomes may be too ideal 
which are not realistic in real life. For instance, Zakaria et al. (2020) did mention that 
deterministic optimization models would opt to generate ideal results which some 
of the systems are often uncertain in real life, causing the generated results to be 
impractical and imprecise. The addition of uncertainties and risk parameters into the 
supply chain model may shift it from deterministic to stochastic, where the model 
robustness can be enhanced and the outcomes can be more accurate and reliable. 
Stochastic optimization models with uncertainties integrated are able to develop 
random-probability-based distribution results (Kieffer et al., 2016), in which the
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generated outcomes would be more solid (Zakaria et al., 2020). One acknowledged 
example is the work conducted by Kristianto and Zhu (2017), where the stochastic 
optimization is implemented in the biomass-to-bioethanol supply chain model, had 
successfully generated promising results in minimizing emission, energy, and water 
utilization. 

Hence, this chapter focus on four key components as the uncertainty variables to 
be considered in the stochastic biomass supply chain model: 

(i) Biomass quality 
(ii) Biomass supply uncertainties 
(iii) Biomass demand variation 
(iv) Pricing fluctuation. 

Considering uncertainties in supply-chain, optimization models may be able to 
perform probability-based distribution outcomes in which the results might be closer 
to the real-world scenarios. Though, the details of the uncertainties need to be further 
discussed to prevent unexpected consequences that would lead to process failure or 
profit loss. A schematic figure of the basic idea for the uncertainties to be considered 
in stochastic biomass supply chain optimization models is shown in Fig. 1. The  
manipulating variables are then demonstrated with three different case scenarios, 
where the formulated models and their corresponding impacts are further discussed 
in the later sections. 

One of the concerns in developing a sustainable supply chain would be the biomass 
source of supply (i.e., biomass availability). Various research works were reported to 
include biomass supply as one of the uncertainties in the biomass supply chain due 
to different harvesting seasons and logistics arrangements as described by Martinkus 
et al. (2018) and Lim et al. (2019). In the case of biomass shortage, imported biomass 
is mandatory, where additional operating costs (transportation cost and importing 
cost) may be required, which directly affects the profitability and efficiency of the 
biomass supply chain. Extended from that, various biomass qualities (or character-
istics) should also be incorporated into the stochastic biomass supply chain model. 
It has been reported that the quality of the biomass is the most sensitive parameter

Fig. 1 Key uncertainties considered in stochastic biomass supply chain 
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in influencing the biorefinery economics, where it has been justified by Baral et al. 
(2019) that better biomass quality eventually contributes to higher profitability even 
though higher purchase cost for biomass is required. Another example from How 
et al. (2019), proved that higher moisture content and low density of biomass quality 
requires higher logistics cost which increases the prime cost of the biomass and the 
overall biomass supply chain. 

Likewise, the distinctive quality of biomass has a significant impact on their 
respective conversion routes (e.g. gasification, pyrolysis, anaerobic digestion, etc.). 
Lim et al. (2019) found that a broader quality range of biomass will lead to higher 
fluctuation of conversion efficiency. Several research works have discussed the impact 
of biomass quality on the overall economic feasibility of the biomass supply chain 
(Bussemaker et al., 2017; Tanzer et al., 2019). For example, the lowering of moisture 
content of biomass (60% to 40%) would help in reducing the drying cost along 
with the logistics cost. Similarly, biomass with different compositions would favor 
the generation of different end products (biochar, bio-oil, etc.), given the various 
decomposition rate of the respective components (Bussemaker et al. (2017). Hence, 
the uncertainty of biomass quality plays a crucial role in developing a feasible biomass 
supply chain. 

The quality of biomass not only influences the choice of conversion route and prod-
ucts yielded but also the demand variability and setting the market price which can 
further affect the profitability and feasibility of the biomass supply chain (Lin et al., 
2013). The demand variability of the biomass-derived products is often impacted 
by several factors (e.g. quality of biomass, price of the products, availability of the 
raw material, competitive market, etc.). For example, investing in biogas produc-
tion industry would be a very risky act in Malaysia, as the nation’s liquefied natural 
gas (LNG) had dominated the gas market (Malaysia is the fifth largest exporter of 
LNG in the world in 2019) (Energy Information Administration (EIA), 2021). In 
fact, the low market demand in Malaysia results in the hindrance of the develop-
ment of the biogas-related industry. Therefore, to meet the challenge of demand 
variability, stochastic biomass supply chain models will be needed to forecast and 
predict demand response. 

The instability of biomass-derived product price is attributed to the demand and 
quality of the products. At a regional level, the fluctuating prices of products have 
been disproportionate with the product fluctuations, causing the pricing of the yielded 
products to become inconsistent. Khatiwada et al. (2016) stated that the fluctuation 
of biomass-derived electricity price would eventually impact the feasibility of the 
overall biomass supply chain substantially. Typically, the unit costs for raw mate-
rial and the biomass-derived products are expressed as fixed variables in techno-
economic analysis which, therefore cause the results to be unrealistic and less reli-
able. It has been indicated that the feasibility of the biomass supply chain strongly 
depends on the biomass market where its inconsistency will eventually lead to a 
high level of risk management. As such, the sensitive correlation between price and 
other manipulative variables needs to be paid attention as they pose a great impact 
on developing a feasible biomass supply chain.
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Beyond technological challenges and their uncertainties in the supply chain, policy 
selection could also, be one of the decisive criteria to be included in the stochastic 
biomass supply chain. The induction of nation’s relevant regulations and policies 
(i.e., feed-in tariff system (FIT) from Renewable Energy Act, Renewable Energy 
Policy and Action Plan, Green Technology Financing Scheme (GTFS), etc. (Inter-
national Energy Agency (IEA), 2019)), would cause the biomass industries to face 
potential compliance issues and operating cost increment (How et al., 2019). The 
failure of finding common ground for cooperation on policy-related matters between 
government and industries may lead to serious consequences such as potential social 
scandal, higher costing, or project delay (Yatim et al., 2016). Given that the policy 
selection will continue to play important role in the biomass industries to drive 
the development of renewable energy in Malaysia, the strategic model formulation 
that considers policy selection decisions for the sustainable biomass supply chain is 
highlighted in this chapter later. 

The aforementioned research works had shown how biomass availability, biomass 
quality, and fluctuating price can significantly affect the feasibility of the supply 
chain. This reveals the necessity of incorporating these uncertainties into the 
stochastic biomass supply chain model. This chapter aims to provide an overview of 
the key uncertainties to be considered in the stochastic biomass supply chain model, 
then followed by three case studies that deal with (i) biomass selection decision, 
(ii) facility location decision, and (iii) policy selection decision, to demonstrate the 
application of the developed stochastic model. 

2 Biomass Selection Decision 

The Monte Carlo model can be utilized to perform decision-making such as the 
selection of biomass for the conversion process. Apart from biomass or product 
pricing, biomass quality is also one of the criteria that will affect the feasibility of the 
conversion process. Few researchers have considered numerous biomass qualities 
(e.g., moisture content (Ngan et al., 2020); moisture and ash content (Aboytes-Ojeda 
et al., 2019)) in their developed model. This section demonstrates the usage of the 
Monte Carlo model to select the optimal type of palm-based biomass (i.e., palm 
kernel shell (PKS), empty fruit bunches (EFB), and mesocarp fiber (MF)) for biomass 
gasification process with the consideration of their respective biomass qualities. The 
methodology to perform decision-making for biomass selection involves six general 
steps as follows: 

(i) Data collection and pre-processing 
(ii) Process simulation and validation of biomass conversion process 
(iii) Generation of design matrix from Design of Experiment (DoE) software 
(iv) Perform simulation based on the design matrix extracted from DoE software 
(v) Extraction of the generic correlation equation 
(vi) Formulation of Monte Carlo model
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Note that the explanations of each step is presented in Sect. 2.1 (step (ii) to step 
(v)) and Sect. 2.2 (step (vi)). 

2.1 Formulation of Generic Correlation Equation 

The integrated use of a process simulation software and Design of Experiment (DoE) 
software is to formulate the generic correlation equation to be integrated into the 
Monte Carlo evaluation model. Firstly, the biomass conversion process can be simu-
lated or modified via process simulation software. In this work, Aspen Plus and 
Design Expert software are used. Before simulating the desired process in Aspen 
Plus, a few information is required: 

(i) Process flowsheet diagram 
(ii) Process stream information (i.e., temperature, pressure, and other relevant 

information) 
(iii) Operating conditions of the equipment. 

For this case, the process flowsheet diagram and other required information are 
adapted from Han et al. (2017) whereby the authors simulated a downdraft biomass 
gasification process. The simulated flowsheet is illustrated in Fig. 2, whereas the 
significant operating conditions used are tabulated in Table 1. Before proceeding 
into the simulation environment, setting up of the simulation environment is signifi-
cant. Two conventional components were input into the components that are biomass 
and ash. The enthalpy and density model selected for the two aforementioned 
conventional components are HCOALGEN and DCOALIGT. On top of that, due 
to the combination of non-conventional and conventional components in the process 
stream, the stream class MCINCPSD were defined. After defining the required phys-
ical property method, the simulation model can be developed based on the process 
flowsheet. The flowsheet is distributed into three sections (i.e., pre-treatment, gasifi-
cation, and syngas clean up). The pre-treatment of biomass begins with the mixing of 
80 kg of ambient wet biomass with ambient air (comprise of 78% nitrogen and 21% 
oxygen). The air to fuel ratio is 1.38, the amount of ambient air to be mixed with the 
wet biomass is 110.4 kg. Subsequently, the mixture of ambient air and wet biomass 
is transferred into the drier to undergo drying process to decrease the biomass mois-
ture content to 8.91 wt%. The drier selected in Aspen Plus is RStoic block. The 
reduction of biomass moisture content is performed using FORTRAN calculator 
to be able to reduce varying moisture content of biomass into the system to 8.91 
wt%. Subsequently, the moist air will be separated from the biomass via liquid–gas 
separation process in the moist air separator (default ID as Flash2 in Aspen Plus 
environment). The dry biomass will then be transferred to the decomposer that is 
the RYield reactor to be broken down into its conventional elemental state (i.e., 
carbon, hydrogen, nitrogen, sulfur, oxygen, ash, volatile matter, and fixed carbon) 
using another FORTRAN calculator. It is worthy to note that the energy consumed 
by the gasifier is provided by the heat released during decomposition process. This
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is achieved by using the energy stream, QDECOMP, to link the decomposer to 
the gasifier. After undergoing decomposition process, the dry biomass stream that 
has been broken down into their conventional elemental state will enter a separator 
(default ID Sep2 in Aspen Plus environment). The separator is used to separate a 
portion of the carbon to be treated as the unreacted char, whereby the split fraction 
used is 0.1. The solid dry biomass stream exiting the separator will be mixed with 
heated air (comprised of 78% nitrogen and 21% oxygen) of temperature 150 °C 
using Mixer_2 before transferred to the gasifier to undergo gasification process. 
The gasifier reactor’s default ID in Aspen Plus simulation is RGibbs reactor. The 
downdraft biomass gasification process can be split into three zones (i.e., pyrol-
ysis, oxidation, and reduction) as shown in Table 2. Different reactions will occur at 
different zones. The first zone, pyrolysis zone, dried biomass is pyrolyze into volatiles 
and char. Several processes occur in the next zone, oxidation zone (i.e., hydrogen 
oxidation, carbon monoxide oxidation, light hydrocarbon oxidation, heavy hydro-
carbon oxidation, and char partial oxidation). Last zone, reduction zone will have 
the water gas shift reaction, Boudouard reaction, water gas reaction, methanation, 
and steam methane reforming. The reactions occurring at the reduction zone were 
input as restricting chemical reactions. At the same time, the previously separated 
portion of unreacted char will be heated to the same temperature (856.17 °C) as 
GASOUT stream from the gasifier to mix the two streams using Mixer_3. The outlet 
gas stream from Mixer_3, MGAS, is the final gas product stream of the gasification 
process with unreacted char being a minor constituent in the stream. The last stage 
will be the syngas clean-up. The stream MGAS leaving Mixer_3 will move into the 
cyclone (default ID in Aspen Plus environment is SSplit) to remove the unreacted 
char. The main product stream leaving the cyclone is HSYNGAS (syngas containing 
water). The syngas stream will be cooled to ambient temperature using a cooler 
before heading into Separator_2 (default ID is Sep2 in Aspen Plus). The function of 
Separator_2 is to remove the water content from the clean syngas stream.

Validation of the simulated process with literature sources is required to ensure the 
accuracy of the simulated process. Subsequently, the design matrix can be extracted 
from DoE software. The design matrix represents the required number of simulation 
runs to be fulfilled in order to extract the formulated generic correlation equation. 
The selection of design mode is the first step in the DoE software to extract the design 
matrix. There are several available design modes within the DoE software, i.e., (i) 
factorial design mode, (ii) response surface design mode, (iii) mixture design mode, 
and (iv) custom design mode. 

In this case, a full factorial design mode has been adopted (Teng et al., 2019). 
Six factorial was selected based on the number of input biomass quality variables. 
The biomass quality variables selected for input in the design matrix are (i) moisture 
content, (ii) ash content, (iii) carbon content, (iv) hydrogen content, (v) oxygen 
content, and (vi) sulfur content. 

The DoE software will then require an input of the maximum and minimum 
value for each biomass quality. Subsequently, the response or result intended will be 
required to be defined in the model. In this case, the specific syngas yield, SBI  O  M  ASS  

(kg syngas/kg biomass) was defined as the desired response. Once the required input
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Fig. 2 Process simulation of biomass gasification process 

Table 1 Fixed parameters 
used for this case study (Han 
et al., 2017) 

Parameter Unit Value 

Split fraction for unreacted carbon – 0.1 

Air inlet to gasifier kg/hr 110 

Air to fuel ratio kg/kg 1.38 

Temperature of inlet air °C 150 

Wet biomass into the system kg/hr 80 

Moisture content after drying wt% 8.91 

Outlet temperature of gasifier °C 856.17

has been entered, the design matrix is then generated by the software. It is worthy 
to note that all the simulated runs of the design matrix require manual screening to 
ensure they meet the constraints shown in Eqs. (1) and (2). Both constraint equations 
require ensuring the summation of both proximate analysis and ultimate analysis to 
be at 100%, once the design matrix has been fulfilled, the generic correlation equation 
relating biomass quality to specific syngas yield can be extracted.
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Table 2 Biomass gasification process reactions (adopted from Han et al., 2017) 

Reaction name Reaction equation Reaction zone 

Pyrolysis Dried biomass → volatiles + char Pyrolysis 

H2 oxidation H2 + 0.5O2 → H2O Oxidation 

CO oxidation CO + 0.5O2 → CO2 Oxidation 

Light hydrocarbon oxidation C1.16H4 + 1.58O2 → 1.16CO + 2H2O Oxidation 

Heavy hydrocarbon oxidation C6H6.2O1.2 + 4.45O2 → 6CO + 3.1H2O Oxidation 

Char partial oxidation C + 0.5O2 → CO Oxidation 

Water gas shift CO + H2O ↔ CO2 + H2 Reduction 

Boudouard C + CO2 ↔ 2CO Reduction 

Water gas C + H2O ↔ CO + H2 Reduction 

Methanation C + 2H2 ↔ CH4 Reduction 

Steam methane reforming CH4 + H2O ↔ CO + 3H2 Reduction 

H2S formation H2 + S → H2S – 

NH3 formation 0.5N2 + 1.5H2 ↔ NH3 –

QFC + QVM + Q A + QMC wt% (1) 

QH + QC + QO + QS + QN = 100wt% (2) 

QFC, QVM, Q A, and QMC denote the weight composition of fixed carbon, volatile 
matter, ash, and moisture content of the biomass; whileQH ,QC ,QO, QS and QN 

denote the weight composition of hydrogen, carbon, oxygen, sulfur, and nitrogen of 
the biomass. 

2.2 Monte Carlo Model Formulation for Biomass Selection 

Net present value (NPV) (expressed in Eq. (3)) is used as an indicator to compare 
the feasibility of utilization of each type of biomass in consideration, where NCFt 

refers to the net cash flow in year t, while in refers to the discount rate. 

NPV =
∑

t 

NCFt 

(1 + in)t
(3) 

Equation (4) is used to determine NCFt , where the input and output cash flows 
are denoted as CFIN 

t and CFOUT 
t respectively. 

NCFt = (CFIN 
t − CFOUT 

t ) (4)
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The input cash flows, CFIN 
t depicts the revenue obtained from the sales of value-

added products from the biomass conversion process. In this case, it would be the 
sales of syngas produced from the biomass gasification process. CFIN 

t can then be 
obtained from the multiplication of three variables, specific syngas yield, SBIOMASS, 
the amount of biomass required, BiomassIN t and the selling price of syngas, CSYNGAS 

t . 

CFIN 
t = SBIOMASS × BiomassIN t × CSYNGAS 

t (5) 

CFOUT 
t , on the other hand, is contributed by the capital expenditure (CAPEX) and 

operating expenditure (OPEX) (CCAPEX and COPEX 
t , respectively); and procurement 

cost for biomass (CPROCURE 
t ) and coal (CPROCURE 

t ) as shown  in  Eq. (6). 

CFOUT 
t = CCAPEX + COPEX 

t + CPROCURE 
t (6) 

On the other hand, CPROCURE 
t can be determined by multiplying the amount of 

the material to their respective unit cost, where CBIOMASS 
t and CCOAL 

t refers to the 
acquisition cost of biomass and coal, respectively: 

CPROCURE 
t = (BiomassI N  

t × CBIOMASS 
t ) + (FCOAL 

t × CCOAL 
t ) (7) 

FCOAL 
t can be calculated using Eqs. (8) and (9) whereby Qcoal denotes the energy 

required to reduce the moisture content, MCIN 
t and MCOUT 

t represents the initial and 
final moisture content of biomass, respectively. On the other hand, TFinal and TInitial 
denotes the final and initial temperature of the biomass, respectively. c denotes the 
specific heat capacity of water and HVcoal denotes the heating value of coal. 

Qcoal = (
MCIN 

t − MCOUT
) × BiomassIN t × c × (T Final − TInitial) (8) 

FCOAL 
t = 

Qcoal 

HVcoal (9) 

There is also a noteworthy constraint shown in Eq. (10) whereby the BiomassIN t 
must be less than or equal to the BiomassSUPPLY t . If  BiomassIN t is greater than 
BiomassSUPPLY t , an alternative solution will have to be considered to ensure the 
demand is met. 

BiomassIN t ≤ BiomassSUPPLY t (10) 

Subsequently, a total of 10,000 randomized NPV samples are generated via the 
Monte Carlo simulation, where the values of BiomassQUALITY EFB , BiomassQUALITY PKS , 
BiomassQUALITY MF , BiomassSUPPLY t , CBIOMASS 

t and CSYNGAS 
t for each sample is random-

ized based on the historical statistical data collected. With this, the supply uncertainty,
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biomass quality uncertainty, price variation of biomass, and syngas can be incorpo-
rated into the model. The NPV and payback period (PBP) are the expected outcome 
from the model whereby the PBP can be determined through the subtraction method. 

2.3 Illustrative Example 

A palm-based biomass gasification plant is used as an illustrative case study to 
demonstrate the utilization of the Monte Carlo model to perform decision-making 
for biomass selection. The palm-based biomasses considered are EFB, PKS, and 
MF. The randomized parameters considered in this case study include syngas price, 
biomass supply, cost of biomass, and biomass quality whereby their respective value 
is tabulated in Table 3.

The mean, μ, and standard deviation, σ are obtained from the calculation of 
the minimum and maximum values for each of the uncertainty. The minimum and 
maximum values can be extracted from the historical statistical data for the uncer-
tainties. On the other hand, other non-randomized parameters that were used in 
developing the case study model are shown in Table 4. It is worthy to note that the 
current case study does not consider the transportation cost for the materials (i.e., 
biomass and syngas).

The validation of the simulated process flowsheet (Fig. 2) has been tabulated in 
Table 5. The process is simulated, modified, and validated based on the works of Han 
et al. (2017). It is observable that the percentage difference calculated is relatively low 
with the highest being nitrogen content with a 5.80% difference. This is partially due 
to the under-production of one of the components that is methane in the equilibrium 
modeling environment (Song et al., 2013).

After validation of the simulated process, the next step was to extract the design 
matrix from DoE software and perform the simulation based on the design matrix. 
Subsequently, the generic correlation equation relating biomass quality to specific 
syngas yield was extracted (see Eq. (11)). The equation extracted met with a few 
criteria that ensure the applicability of the equation. One of the criteria is the equa-
tion’s Prob > F value for lack of fit was 0.3668 that implies the equation provides 
high probability for good fitting. On top of that, the equation has an R2 value of 
0.9020 whereas the adjusted R2 value, and the predicted R2 value are 0.8917, and 
0.8686, respectively. If the predicted R2 value and adjusted R2 value have a difference 
smaller than 0.20, it signifies that the equation is used which is the case reflected 
here (StatEase, 2020). 

specific syngas yield = 2.09922 + 1.80801 × 10−3
(
QMC

)

− 5.26, 803 × 10−3(Q A
) + 9.59237 × 10−3(QC

)

− 0.033116
(
QH

) − 4.39309 × 10−3
(
QO

)

− 4.31267 × 10−3 (QS ) (11)
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Table 3 Randomised parameters used for this case study 

Parameter Remark Value Reference 

BiomassSUPPLY t (kg/hour) EFB 
PKS 
MF 

μ = 82,206.75; σ = 
3675.36 
μ = 26,156.69; σ = 
1169.43 
μ = 48,576.72; σ = 
2171.81 

DQS Certification 
(2018) 

BiomassQUALITY EFB (wt %) Moisture content 
Ash content 
Carbon content 
Hydrogen content 
Oxygen content 
Sulfur content 

μ = 7.79; σ = 2.60 
μ = 6.75; σ = 1.14 
μ = 42.28; σ = 9.23 
μ = 6.70; σ = 1.37 
μ = 42.88; σ = 8.74 
μ = 0.31; σ = 0.15 

Sohni et al., (2018) 
Mahlia et al., (2001) 
Yoo et al., (2019) 

BiomassQUALITY PKS (wt %) Moisture content 
Ash content 
Carbon content 
Hydrogen content 
Oxygen content 
Sulfur content 

μ = 5.87; σ = 4.03 
μ = 7.48; σ = 6.05 
μ = 47.8; σ = 6.51 
μ = 7.66; σ = 1.92 
μ = 40.22; σ = 4.12 
μ = 0.7; σ = 0.71 

Sohni et al., (2018) 
Mahlia et al., (2001) 
Ahmad et al., 
(2014) 
Aziz et al., (2011) 

BiomassQUALITY MF (wt %) Moisture content 
Ash content 
Carbon content 
Hydrogen content 
Oxygen content 
Sulfur content 

μ = 5.06; σ = 0.43 
μ = 4.9; σ = 4.95 
μ = 46.29; σ = 1.29 
μ = 8.30; σ = 3.25 
μ = 39.37; σ = 3.78 
μ = 0.49; σ = 0.26 

Mahlia et al., (2001) 
Aziz et al., (2011) 
Garba et al., (2017) 

CBIOMASS 
t 

(USD/t) 
EFB 
PKS 
MF 

μ = 120; σ = 33.6 
μ = 60; σ = 31.2 
μ = 6; σ = 5.04 

Abas et al. (2011) 
Lam et al., (2013) 
Reduan (2017) 
Lo et al., (2021) 
Agensi Inovasi 
Malaysia (2013) 

CSYNGAS 
t 

(USD/t) 
μ = 470.4; σ = 100.8 Zuldian et al., 

(2017)

Following the formulation of the generic correlation equation, the next step would 
be to evaluate the economic performance via Monte Carlo simulation. Figure 3 
illustrates the probability density result for the NPV value. It can be observed that 
MF has a greater probability to achieve a higher NPV value that is 16% to achieve a 
probability of approximately USD 24 million. On the other hand, PKS has a lower 
NPV achievable that is approximately 16.5% to achieve an NPV of approximately 
USD 22 million. EFB then poses the least favorable NPV outcome among the three 
types of palm-based biomass with a 17% of achieving an NPV value of approximately 
USD 18 million. Three factors contributed to the resulting outcome, i.e., (i) cost of 
purchasing biomass, (ii) carbon content of biomass, and (iii) standard deviation of 
uncertainties.
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Table 4 Fixed parameters 
used for this case study 

Parameter Remark Value Reference 

MCOUT(wt %) Desired 
quality 

4 – 

in(%) Common 
assumption 

10 – 

t Expected 
minimum 
lifespan 

20 – 

CCAPEX(M 
USD) 

– 5.3 Susanto et al. 
(2018) 
Aghabararnejad 
et al. (2015) 

COPEX 
t (M 

USD) 
– 0.38 AlNouss et al. 

(2020) 
Spath et al. (2005)

Table 5 Validation of simulated process flowsheet 

Syngas composition Units Simulated results Reference results Percentage difference 
(%) 

CO mol% 20.98 20.93 0.24 

H2 mol% 18.07 18.32 1.36 

CO2 mol% 13.55 12.87 5.28 

N2 mol% 47.39 44.79 5.80

Fig. 3 Probability Density 
of NPV for biomass 
gasification plant 

Firstly, it is observable from Table 3 that the mean acquisition price of MF is 
the lowest among the three types of palm-based biomass. Not to mention there is 
a significant difference between MF and EFB of approximately 95%. Thus, this 
will ultimately affect the total procurement cost, CPROCURE 

t (see Eq. (11)). A lower
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Fig. 4 Probability 
occurrence of PBP for 
biomass gasification plant 

biomass acquisition cost will result in a lower procurement cost and operating cost 
that will ultimately increase the profit gained by the process. Secondly, the carbon 
content of biomass would also affect the syngas produce from the biomass gasifi-
cation process. This is because there are two products formed during the biomass 
gasification process containing the carbon element that is carbon monoxide and 
carbon dioxide. On top of that, carbon monoxide is the critical component of syngas. 
Therefore, a higher amount of carbon content would be favorable. Table 3 shows that 
EFB offers the lowest average carbon content. Apart from that, it is noticeable that 
the standard deviation of the uncertainties for EFB is relatively greater in value as 
compared to MF and PKS. This is resulting from a larger difference in the minimum 
and maximum value extracted from the historical statistical data of the uncertainties. 
For instance, the mean and standard deviation of carbon content for EFB are 42.28 
wt% and 9.23 wt%, respectively, whereas the mean and standard deviation of carbon 
content for PKS are 47.8 wt% and 6.51 wt%, respectively. On the other hand, Fig. 4 
shows the payback period of the gasification process for the three types of palm-based 
biomass. In agreement with the obtained NPV results, MF has a higher probability to 
offset the capital cost expenditure earlier as compared to EFB and PKS. Specifically, 
MF has a probability of 68% to offset the capital cost expenditure in the second year 
of plant operation. Hence, the selected biomass that will be more feasible is MF. 

3 Facilities Location Decision 

Apart from the aforementioned biomass selection, Monte Carlo simulation can also 
be utilized in location selection for biomass conversion plants. Previously in Sect. 2, 
the biomass that showed a more favorable outcome was MF. Therefore, this section 
will target biomass conversion process using specifically MF as the feedstock. As 
the influence of biomass quality has been considered in the previous case study, 
biomass quality uncertainty will not be incorporated into the model developed in this
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section. This section will highlight more on location selection. Different locations 
pose different effects on the total transportation cost due to several variables (i.e., 
number of trips, distance, etc.). Hence, this section will demonstrate the use of Monte 
Carlo to select a financially feasible location for an MF-based gasification plant. 

3.1 Model Formulation for Location Selection 

Similar to the former case study, NPV and PBP are used to evaluate the economic 
feasibility of the candidate locations for setting up the biomass conversion plant. 
The same formulations (Eqs. (3) and (4)) are used to compute the overall NPV for 
this case study, while PBP is determined using the same aforementioned subtraction 
method. 

Note that in this case study, CFIN t and CFOUT t are determined using the Eqs. (12) 
and (13), respectively. 

CFIN 
t = FSYNGAS 

t × CSYNGAS 
t (12) 

CFOUT 
t = CCAPEX + COPEX 

t + CPROCURE 
t + CT R  

t (13) 

where FSYNGAS 
t refers to the amount of syngas produced, while CTR 

t denotes the total 
transportation cost. 

The procurement cost of raw material, CPROCURE 
t is determined using Eq. (7), 

whereas CT R  
t is calculated using Eq. (14), where dS refers to the traveling distance 

between biomass supply and the MF-based gasification plant; d D refers to the trav-
eling distance between the MF-based gasification plant and the demand point (port); 
CapTRUCK denotes the vehicle load limit; while the fuel consumption rate of the 
vehicle and the respective fuel price in year t is expressed as ψFUEL and CFUEL 

t , 
respectively. For a round trip, the distances traveled have to be multiplied by “2” as 
shown in Eq. (14). 

CTR 
t = 2 ×

(
BiomassIN t × dS + FSYNGAS 

t × d D
)

CapTRUCK
× ψFUEL × CFUEL 

t (14) 

Thereafter, Monte Carlo simulation (10,000 samples) is conducted to determine 
the probability profile for NPV and PBP for each location with the consideration of 
the uncertainties for five input parameters (i.e., FSYNGAS 

t , BiomassSUPPLY t , CBIOMASS 
t , 

CFUEL 
t and CSYNGAS 

t ). Then, the optimal location to set up the MF-based gasification 
plant.
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3.2 Illustrative Example 

In this illustrative example, the developed model was used to select the optimal 
location to set up an MF-based gasification plant. Three candidate locations (Plant 
A, Plant B, and Plant C) have been considered in this case study. The distance between 
each location and specifications (i.e., loading capacity and fuel consumption) for the 
transportation vehicle are the significant data required to be collected. The respective 
distance data is tabulated in Table 6. Additionally, two types of transportation modes, 
i.e., a dump truck (truck A) for MF delivery and a fuel tanker (Truck B) for syngas 
delivery, are considered in this example (note: the specifications of the transportation 
modes are tabulated in Table 7). 

On the other hand, the randomized input parameters for the developed Monte 
Carlo model are listed in Table 8, whereas Table 9 shows the fixed parameters used 
in the developed model. Note that the mean, μ, and standard deviation, σ shown in 
Table 8 are obtained from the historical statistical data.

Figure 5 showed the NPV results for the three plant locations investigated. Based 
on Fig. 5a, it shows that the plant locations seem to have minimal impact on the NPV 
result. It is worthy to note that the amount of biomass required to meet the demand 
is less than the biomass availability. However, it is assumed that all the biomass 
will be transported to the gasification plant, while the excessive biomass will be 
stored for future usage. As the biomass feed is excess, the number of trips taken to 
complete the transfer of biomass to the MF-based gasification plant will be more 
than the number of trips taken to transfer syngas from the plant to the port. Another 
noteworthy statement is that all mean and standard deviation of the uncertainty listed 
in Table 8 are the same for all three plant locations. The only variation would be 
the total transportation cost that is influenced by distance and number of trips. With 
a zoom-in view (Fig. 5b), it is found that Plant C has a slightly higher probability 
(approximately 0.1%) than that of the other two plants in obtaining an NPV value of 
USD 41.5 million. As a result, Plant C poses the lowest mean and standard deviation 
among the three plants (USD 41.58 million ± 4.94 million). Despite having the 
lowest mean, the lowest standard deviation implies that there would be less risk

Table 6 Fixed parameters 
used for this case study (Lo 
et al., 2020) 

Plant dS(km) d D(km) 

Plant A 18.6 78.5 

Plant B 42.8 41 

Plant C 80.4 24.2 

Table 7 Specification for 
transportation modes 

Truck Truck type Loading capacity 
(t) 

Fuel consumption 
(l/100 km) 

Truck A Dump truck 30 47 

Truck B Fuel tanker 30 43 
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Table 8 Randomized parameters used for this case study 

Parameter Value Reference 

BiomassSUPPLY t (t/year) μ = 48,576.72; σ = 2171.81 DQS Certification (2018) 

CBIOMASS 
t 

(USD/t) 
μ = 6; σ = 5.04 Lo et al. (2021) 

Agensi Inovasi Malaysia (2013) 

CSYNGAS 
t 

(USD/t) 
μ = 470.4; σ = 100.8 Zuldian et al. (2017) 

CFUEL 
t 

(USD/L) 
μ = 0.44; σ = 0.21 Trading Economics (2020) 

FSYNGAS 
t 

(MWth) 
μ = 3262.09; σ = 1140.58 MarketsandMarkets Research Private 

Ltd. (2020) 

Table 9 Fixed parameters 
used for this case study 

Parameter Value Reference 

in(%) 10 – 

t 20 – 

CCAPEX(M USD) 5.3 Susanto et al. (2018) 
Aghabararnejad et al. (2015) 

COPEX 
t (M USD) 0.38 AlNouss et al. (2020) 

Spath et al. (2005)

of fluctuation of the NPV for Plant C. To note, the lower mean observed in Plant 
C is partially due to the greater distance between the biomass source and Plant C 
that is dS . As previously mentioned, the biomass will be in excess, thus, requiring 
more trips taken to transport the biomass to the gasification plant. Additionally, the 
fuel consumption of the dump truck is greater than the fuel consumption of the fuel 
tanker (see Table 7). The combinatory effect of a greater dS , a greater number of 
trips and a higher fuel consumption rate for the dump truck directly increase total 
transportation cost. On the other hand, the mean and standard deviation for NPV for 
Plant A and Plant B is USD 41.66 million ± 4.98 million and USD 41.65 million 
± 4.99 million, respectively. Looking at the probability of occurrence for PBP in 
Fig. 6, it is observable that Plant B has a higher probability to offset the capital cost 
invested when it reaches 1.75 years of operations. However, looking into Fig. 6(b), 
it is observable that Plant A has a higher probability of approximately 0.4% to offset 
the capital investment earlier than is into 1 year of operation. Hence, after careful 
consideration of the results obtained, Plant A is selected as the more feasible plant 
location.
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Fig. 5 a NPV for Plant A, Plant B and Plant C, b enlargement of a section of (a) 

Fig. 6 a PBP for Plant A, Plant B and Plant C, b enlargement of a section of (a) 

4 Policy Selection Decisions 

Aside from the aforementioned process pathway selection, the utility of Monte 
Carlo simulation can be extended to policy selection. To date, it has been used as a 
supporting tool to help decision-maker in determining the optimal policy for various 
problems, including but not limited to pricing policy for parking management (Wang 
et al., 2021); E-hailing platform policy (Shou et al., 2020); replacement policy for 
equipment composed multiple non-identical components (Barde et al., 2019); and 
renewable energy schemes (Chou & Ongkowijoyo, 2014). This section, on the other 
hand, demonstrates its utility in selecting a policy (or action plan) to mitigate the 
overall business risk of a biomass-based polygeneration system.
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4.1 Model for Biomass-Based Polygeneration System 

Again, both NPV and PBP are used to evaluate the effectiveness of the available 
action plans. Note that since the monthly variations of the parameters are considered 
in this case study, the formulations used to determine NPV have now been revised 
to incorporate index m (for month). For instance, NPV is now determined using 
Eq. (15), where NCFm,t refers to the net cash flow at month m in year t. 

NPV =
∑

t

∑

m 

NC  Fm,t 

(1 + in)t 
(15) 

Equation (16) is used to determine NCFm,t , where the input and output cash flows 
are denoted as CFIN m,t and CF

OUT 
m,t respectively, TAX refers to the corporate tax rate, 

while I T  A  indicates the tax exemption indicator. It is worth noting that the qualifying 
rate and limit for the exemption are set at 80% and 85%, respectively (Lembaga Hasil 
Dalam Negeri Malaysia (LHDN), 2018). 

NCFm,t =
(
CFIN m,t − CFOUT m,t

) × (1 − TAX) + ITA × TAX∀t ∈ T , ∀m ∈ M 
(16) 

Generally, polygeneration plant yields multiple profitable products. Taking a poly-
generation plant which consists of pyrolysis process and co-generation as an example, 
the CFIN m,t can be determined using Eq. (17): 

CFIN m,t = FOIL 
m,t × COIL 

m,t + ElecEXP m,t × CFIT ∀t ∈ T, ∀m ∈ M (17) 

where the first term refers to the sales obtained from selling bio-oil (FOIL 
m,t ) with bio-

oil price of COIL 
m,t ; while the second term shows the profit obtained by exporting the 

generated power (ElecEXP m,t ) with a feed-in-tariff (FiT) rate of C
FIT. 

Equations (18) to (20) show the mass conversion equations for the three pyrolysis 
products, which include FOIL 

m,t , syngas (F
GAS 
m,t ) and biochar (F

CHAR 
m,t ): 

FOIL 
m,t = BiomassDRY m,t × yOIL ∀t ∈ T , ∀m ∈ M (18) 

FGAS 
m,t = BiomassDRY m,t × yGAS ∀t ∈ T, ∀m ∈ M (19) 

FCHAR 
m,t = BiomassDRY m,t × yCHAR ∀t ∈ T , ∀m ∈ M (20) 

where BiomassDRY m,t refers to the mass flow rate of dried biomass fed into the pyrolyser; 
while yOI  L , yGAS and yCHAR denote the product yield of bio-oil, syngas, and biochar, 
respectively.
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It is worth noting that FGAS 
m,t contains various high energy content gases g (i.e., 

CO, H2, and CH4). Therefore, it can be used to produce energy (power (ElecGEN m,t ) 
and heat (ThermalGEN m,t )) via co-generation unit (see Eqs. (21) and (22)). Based on 
commercial gas engine performance data, the amount of thermal energy recovered 
from a co-gen process is 1.2 times the amount of electricity being generated (GE, 
2018). 

ElecGEN m,t =
∑

g

(
FGAS 
m,t × yPY g × LHVg

) × ξ COGEN ∀t ∈ T, ∀m ∈ M (21) 

ThermalGEN m,t = 1.2 × ElecGEN m,t ∀t ∈ T , ∀m ∈ M (22) 

where yPY g and LHVg refer to the molar composition and low heating value of gas g, 
respectively, while ξ COG  E  N  denotes the conversion efficiency of the co-generation 
unit. 

ElecGEN m,t can be used to fulfill the power demand for the pyrolyser (ElecREQ m,t ; 

computed through Eq. (23)). If ElecGEN m,t is less than ElecREQ m,t , the balance will 
be covered by importing external power (ElecIMP 

m,t ). In contrast, the excess power 
(ElecEXP m,t ) will be exported back to the grid. This can be defined as Eq. (24), where 
ψ PY refers to the thermal energy required to try per unit mass of biomass: 

ElecREQ m,t = BiomassDRY m,t × ψPY ∀t ∈ T , ∀m ∈ M (23) 

ElecGEN m,t + ElecIMP 
m,t = ElecREQ m,t + ElecEXP m,t ∀t ∈ T , ∀m ∈ M (24) 

whereas ThermalGEN m,t can be used to compensate for the thermal energy required 

during the biomass drying (ThermalREQ m,t ; determined via Eq. (25)). Besides, the 
generated FCHAR 

m,t can also be used as a solid fuel to generate thermal energy. Coal 
(FCO  AL  

m,t ) will be imported as additional solid fuel if the generated thermal energy 
from co-generation and char burning is insufficient to meet the energy consumption 
(see Eq. (26)): 

ThermalREQ m,t = BiomassIN m,t ×
(
MC IN 

m,t − MCOUT
)

100
× ψTHERMAL ∀t ∈ T, ∀m ∈ M 

(25) 

ThermalREQ m,t = (
FCOAL 
m,t × LHVCOAL + FCHAR 

m,t × LHVCHAR
) × ξ DRY 

+ ThermalGEN m,t ∀t ∈ T , ∀m ∈ M (26) 

where BiomassIN m,t refers to the amount of raw biomass sent to the polygenera-
tion plant; MCIN 

m,t and MCOUT present the moisture content before and after the 
drying process, respectively, the low heating values of coal and char are denoted
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as LHVCOAL and LHVCHAR , respectively; ψTHERMAL indicate the thermal energy 
required to remove per mass unit of water content, while the drying efficiency is 
expressed as ξ DRY. 

CFOUT m,t , on the other hand, is contributed by the capital expenditure (CAPEX) and 
operating expenditure (OPEX) of unit u (CCAPEX 

u and COPEX 
u,m,t respectively); trans-

portation cost (CT R  
m,t ); procurement cost for imported electricity, biomass, and coal 

(CPROCURE 
m,t ); and carbon penalty (CPENALTY 

m,t ). 

CFOUT m,t = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩

∑
u 
CCAPEX 
u

∣∣∣∣
t=0

∑
u 
COPEX 
u,m,t + CTR 

m,t + CPROCURE 
m,t + CPENALTY 

m,t

∣∣∣∣
t>0 

∀t ∈ T , ∀m ∈ M 

(27) 

CTR 
m,t considers the cost associated with the transportation of the materials 

(including biomass and bio-oil). To note, the conventional 10-t truck are used as 
the transportation mode in this section. It is expressed as follow: 

CTR 
m,t = 2 ×

(
BiomassIN m,t × dS + FOIL 

m,t × d D
)

CapTRUCK
× ψFUEL × CFUEL 

m,t ∀t ∈ T , ∀m ∈ M 

(28) 

where dS refers to the traveling distance between biomass supply and the polygener-
ation plant; d D refers to the traveling distance between the polygeneration plant and 
the demand point; CapTRUCK denotes the vehicle load limit; while the fuel consump-
tion rate of the vehicle and the respective fuel price at month m in year t is expressed 
as ψFUEL and CFUEL 

m,t respectively. For a round trip, the distance traveled has to be 
multiplied by “2” as shown in Eq. (28). 

On the other hand, CPROCURE 
m,t can be determined by multiplying the capacity of the 

imported material to their respective unit cost, where CBIOMASS 
m,t , CCOAL 

m,t and CELEC 

refer to the respective cost of biomass, coal, and imported electricity, respectively: 

CPROCURE 
m,t = BiomassIN m,t × CBIOMASS 

m,t + FCOAL 
m,t × CCOAL 

m,t + ElecIMP 
m,t × CELEC 

∀t ∈ T , ∀m ∈ M (29) 

In terms of CPENALTY 
m,t , it is expressed as the compensation cost required to recover 

the environmental damage caused by the carbon emission. It can be determined using 
Eq. (30): 

CPENALTY 
m,t = CCO2 

×
(
2 ×

(
BiomassIN m,t × dS + FOIL 

m,t × d D
)

CapTRUCK
× ψFUEL × yCO2_TR
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+ElecGEN m,t × yCO2_COGEN + FGAS 
m,t × yCO2_PY

) ∀t ∈ T , ∀m ∈ M 
(30) 

where yCO2_TR, yCO2_COGEN, and yCO2_PY refer to the estimated CO2 emitted during 
transportation, co-generation unit, and pyrolysis process, while CCO2 refers to the 
compensation cost required per unit of carbon emission. 

The following two equations are applied to reflect the biomass avail-
ability constraint and bio-oil demand constraint, where BiomassAVAILABLE m,t and 
F O I  L_DE  M  AN  D  
m,t reflect the biomass availability and the bio-oil demand at month 

m in year t: 

BiomassAVAILABLE m,t ≥ BiomassIN m,t ∀t ∈ T , ∀m ∈ M (31) 

FOIL 
m,t ≤ FOIL_DEMAND 

m,t ∀t ∈ T, ∀m ∈ M (32) 

It is worth mentioning that, a total of 10,000 samples are generated through 
the Monte Carlo simulation, where the values of BiomassAVAILABLE m,t , FOIL_DEMAND 

m,t , 
CBIOMASS 
m,t , CCOAL 

m,t , CFUEL 
m,t , COIL 

m,t and MC IN 
m,t for each sample is randomized based on 

the statistical data. With this, the supply uncertainty, demand variation, price fluctua-
tion, and seasonal biomass quality can, therefore, be incorporated into the model. The 
NPV and PBP (determined via subtraction method) of these samples are determined. 
Subsequently, the effectiveness of the proposed action plans is evaluated based on 
the improvement of these two economic indicators. 

4.2 Illustrative Example 

An oil palm biomass-based polygeneration plant is used as an illustrative case study 
to demonstrate how Monte Carlo simulation can be used to aid the policy selec-
tion decision. Empty fruit bunch (EFB) is collected from a nearby palm oil mill 
(located 10 km away from the plant). They are subsequently dried before feeding 
into the pyrolyser in the polygeneration plant. The produced bio-oil can be sold to 
a demand point which is located 15 km away from the plant, while the syngas and 
biochar are used as energy sources for power and thermal energy. The energy can 
be self-consumed so that the requirement of an external energy source can be miti-
gated. As mentioned in Sect. 4.2, the excess generated electricity can be exported to 
grid for additional revenue. The visual illustration of this case study is presented in 
Fig. 7, while all the important parameters used to develop the case study model are 
summarised in Tables 10 and 11. As mentioned, the fluctuations and uncertainties in 
operations, transportation, market demand, and price can be rigorously modeled by 
Monte Carlo simulations based on the actual statistical distributions. Figure 8 shows 
the 10,000 sample points generated based on the statistical data stated in Table 10 
(i.e., the mean (μ) and standard deviation (σ )) for each randomized parameter. By
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judging on the frequency of the data points, one can estimate the occurrence prob-
ability of the parameters’ magnitude. Taking biomass moisture content (Fig. 7b) as 
an example, the probability of getting a moisture content of less than 70% during the 
rainy season is significantly lower as compared to that of the dry season. In terms 
of EFB availability, 8500–11,000 t EFB/month, 11,000–12,400 t EFB/month, and 
12,800–15,000 t EFB/month are available in low season, mid season, and the high 
season, respectively (Fig. 8a, b). Whereas the price fluctuations for EFB (24.55–73.65 
USD/t), coal (24.55–147.30 USD/t), oil (0.74–0.88 USD/L), and diesel (0.44–0.60 
USD/L) are shown in Fig. 8a, c. Aside from that Fig. 8d presents the oil demand vari-
ation, where the peak is found in the middle of the year (around June), and declines 
from December to February. Table 12, on the other hand, presents the description 
and the explanation of the seven action plans. To indicate the implementation of each 
action plan, the model settings stated in Table 12 were conducted (e.g., to represent 
the implementation of AP5, the TAX is omitted in the first five years. 

Figure 9 shows the Monte Carlo simulation results obtained under different action 
plans. As shown in Fig. 9a, it is observed that introducing a new financing incentive 
(AP3-FI) attains the most attractive result, i.e., leading to a 58.51% (equivalent to ~ 
1.6 × 106 USD) increment in the mean of NPV as compared to the base case (without

Fig. 7 Schematic diagram of the polygeneration plant case study (Ngan et al., 2020)
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Table 10 Randomized parameters used for this case study (adapted from Ngan et al., 2020) 

Parameter Remark Value Reference 

BiomassAVAILABLE m,t (t/month) Low Seasona 

Mid Seasona 

High Seasona 

μ = 9890.82; σ = 
323.69 
μ = 11,664.92; σ = 
203.37 
μ = 13,853.1; σ = 
350.30 

Malaysian Palm Oil 
Board (MPOB) (2018) 

FOIL_DEMAND 
m,t (t/month) Januaryb 

Februaryb 

Marchb 

Aprilb 

Mayb 

Juneb 

Julyb 

Augustb 

September 
Octoberb 

Novemberb 

Decemberb 

μ = 918.60; σ = 
90.86 
μ = 915.60; σ = 
65.80 
μ = 926.70; σ = 
82.86 
μ = 927.75; σ = 
69.03 
μ = 960.00; σ = 
66.95 
μ = 957.45; σ = 
48.72 
μ = 984.27; σ = 
63.89 
μ = 978.95; σ = 
59.60 
μ = 970.77; σ = 
61.26 
μ = 936.82; σ = 
68.21 
μ = 929.18; σ = 
92.27 
μ = 924.95; σ = 
89.10 

Trading Economics 
(2018) 

CBIOMASS 
m,t (USD/t) – Max = 34.18; Min 

= 70.80
-

CCOAL 
m,t (USD/t) – μ = 70.26; σ = 

19.43 
Index Mundi (2018) 

CFUEL 
m,t (USD/L) – μ = 0.52; σ = 0.03 RinggitPlus (2018) 

COIL 
m,t (USD/L) – μ = 0.82; σ = 0.03 – 

MCIN 
m,t (%) Dry season 

Rainy seasonc 
μ = 66.5; σ = 1.83 
μ = 76.5; σ = 1.83 

International Finance 
Corporation (IFC) 
(2017) 

a Classified based on the monthly palm crude oil production (Andiappan et al., 2015) 
b The local bio-oil demand is assumed similar to the pattern of the oil production in Malaysia 
c Assumed to be 10% greater than that of during dry season
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Table 11 Fixed parameters used for this case study (adapted from Ngan et al., 2020) 

Parameter Remark Value Reference 

MCOUT 
m,t (%) – 10 – 

yOIL(%) – 27 Mohd (2017) 

yGAS(%) – 24 Mohd (2017) 

yCHAR(%) – 49 Mohd (2017) 

y PY  g (%) H2 
CO 
CH4 
CO2 

3.7 
34.0 
7.8 
54.0 

Mohd (2017) 

yCO2_TR(kg CO2/L fuel) – 2.68 Gu and Bergman (2015) 

yCO2_COGEN(kg CO2/kWh) – 0.525 Gu and Bergman (2015) 

LHVg(kJ/mol) H2 
CO 
CH4 

240.2 
283.5 
801.4 

PNAS (2018) 

LHVCOAL(MJ/kg) – 23 Othman et al. (2012) 

LHVCHAR(MJ/kg) – 26 Mohamad et al. (2011) 

ξ COGEN(%) – 27a – 

ξ DRY(%) – 85 – 

ψPY(kWh/t EFB) – 240 Rogers and Brammer (2012) 

ψFUEL(L fuel/km) – 0.213 How et al. (2016) 

ψTHERMAL(MJ/kg water removed) – 4 Kovařík (2017) 

TAX(%) – 24 – 

in(%) – 10 – 

CCAPEX 
u (M USD) Pyrolyser 

Co-generation 
1.54b 

0.48 
Wright et al. (2010), Energy 
Technology Systems Analysis 
Programme (ETSAP) (2010) 

COPEX 
u,m,t (USD/unit

c) Pyrolyser 
Co-generation 

50 
60 

How and Lam (2018) 
– 

CFIT(USD/kWh) – 0.12 Sustainable Energy 
Development Authority 
Malaysia (SEDA) (2018) 

CELEC(USD/kWh) – 0.14 – 

CCO2 (USD/kg CO2) – 0.05 How et al. (2016) 

CapTRUCK – 10 – 

dS(km/trip) – 10 – 

d D(km/trip) – 15 – 

a Assumed to be 60% of the typical gas engine efficiency 
b Scaled by using six-tenths rule 
c USD/t EFB for pyrolyser; USD/MWh for co-generation unit
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Fig. 8 Randomized input for: a Mid and high season EFB availability, EFB price; b dry and rainy 
season moisture content, low season EFB availability; c coal price, oil price, and diesel price, d oil 
demand (Ngan et al., 2020)

any action plan). On the other hand, as shown in Fig. 9c, PBP is also improved by 
12.22% (equivalent to 7 months). Figure 9b shows that this action plan is capable 
to offer a maximum NPV of 6.14 million USD in 20 years, which is about 1.3 
times greater than the next highest action plan (i.e., AP6-RF). Nevertheless, AP3-FI 
has demonstrated a mean PBP of 4 years which is the second shortest PBP among 
all action plans (Fig. 9c, d). Whereas the next most convincing action plan is to 
revise Fit-in-Tariff (AP6-RF) which has an expected NPV of between 2.9 and 3.4 
million USD in 20 years and a mean PBP of 4 years. In other words, by adopting 
this action plan (increase the FiT rates to 0.132 USD/kWh), the overall NPV can be 
increased by 20.72% with a 14.04% reduction in PBP. In fact, multiple countries have 
achieved successful growth in renewable energy sectors through the implementation 
of FiT (e.g., Thailand has successfully increased the power generation capacity by 
renewable sources from 8% in 2015 to 17% by the end of 2017 with an attractive 
FiT rate (International Renewable Energy Agency (IRENA) 2017).

The action plan that ranked 3rd is AP5-TI (introducing tax incentives). Identical 
to financing incentives, the tax incentive is another type of financial instrument that 
is widely used by the government to spur up the growth of an industry. Some of 
the examples of tax incentives are tax returns, tax exemption, and tax reduction. 
The simulation result for implementing AP5-TI enhances the mean of the NPV by
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Table 12 Description for each action plant (adapted from Ngan et al., 2020) 

ID Action plan Description Model setting 

AP1-HD Engage in demand 
contract 

To hedge demand risk by 
committed into a supply 
contract with the 
consumer(s), to sell a fixed 
amount of product for a 
fixed duration, with a fixed 
price that is lower than that 
of the current market price 

Set contracted demand as 
1700 t/year 

COIL 
m,t is set 3% lesser than 

the current market price 

AP2-HS Engage in supply 
contract 

To hedge supply risk by 
committed into a purchase 
contract with supplier(s), to 
buy a fixed amount of raw 
materials for a fixed 
duration, with a fixed price 
that greater than that of the 
current market price 

St contracted supply as 
10,000 t/year 

CBIOMASS 
m,t is set 10% 

higher than the current 
market price 

AP3-FI Introduce new 
financing incentive 

To reduce financing risk by 
providing financing 
incentives in the form of 
interest rate reduction to 
lower the debt obligation of 
industry players 

Set in as 6% 

AP4-SF Substitute fossil fuel 
with biodiesel 

To encourage the 
substitution of conventional 
fossil fuel which is less 
environmentally friendly 
with biodiesel to mitigate 
the overall CO2 emissions 

Set CFUEL 
m,t as 0.69 USD/L 

and yCO2_TR as 2.1 kg 
CO2/L 

AP5-TI Introduce new tax 
incentive 

To reduce regulatory risk by 
showing favor in the form of 
tax exemption to encourage 
the utilization of biomass for 
wealth generation and 
development of green 
industry 

Set TAX as 0% for the 
first 5 years 

AP6-RF Revise Feed-in-Tariff 
(FiT) rate 

To promote higher 
utilization of renewable 
energy by revising the FiT 
rate to a higher rate to make 
it attractive for new entrants 
and investors to venture into 
the industry 

Increase CFIT by 10%

(continued)
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Table 12 (continued)

ID Action plan Description Model setting

AP7-CM Introduce carbon 
management system 

To promote sustainable 
development by introducing 
carbon management system 
upfront to avoid high carbon 
emission which could 
potentially result in carbon 
penalty 

Set the removal efficiency 
as 80%a 

a Assumed the total CAPEX to be 60% more expensive (Ooi et al., 2014) while the OPEX of the 
carbon management system is set as 0.037 USD/kg CO2 removed (Rubin et al.,  2015)

Fig. 9 The effect of the respective action plans on NPV (a probability density; b Cumulative 
probability) and PBP (c probability density; d cumulative probability) from 10,000 Monte Carlo 
simulations (Ngan et al., 2020)

12.62% (equivalent to ~ 0.34 × 106 USD), and reducing the payback period by 
11.04% (equivalent to 6 months). It is followed by AP1-HD and AP2-HS which aim 
to mitigate the risks associated with the potential fluctuations in biomass supply and 
the product demand. It is a common strategy opted in the industry for production 
plants to engage in a long-term supply or/and demand contract to supply or purchase 
a fixed quantity of the product at a fixed price, for a fixed duration. The increase 
of mean of NPV for AP1-HD and AP2-HS is 10.84% (equivalent to ~ 0.3 × 106 
USD) and 1.95% (equivalent to ~ 0.5 × 105 USD) respectively, while the mean 
PBP for each action plan is 6.68% (equivalent to 4 months) and 2.49% (equivalent to 
1 month) respectively. It is worthfully to note that the combination of both action plans 
can yield better economic performance, i.e., 15.31% in terms of NPV improvement
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(equivalent to ~ 0.4 × 106 USD) and 9.46% in terms of PBP improvement equivalent 
to 5 months), which is comparable to AP5-TI. 

Introduce carbon management system (AP7-CM) and substitute fossil fuel with 
biodiesel (AP4-SF) are ranked at the least. Both of these action plans aim to improve 
the overall economic performance via the mitigation of carbon emissions. Despite 
a significant increment (9.69% or equivalent to ~ 0.26 × 106 USD) of NPV are 
spotted for AP7-CM, the additional CAPEX required for the carbon capture system 
has prolonged the duration of PBP by 24.75% (equivalent to 2 years of additional 
project time). This shows that the uptake of CCS at this stage is categorized as a 
high-risk decision and not so favorable as compared to other action plans which 
could achieve a similar improvement in NPV, without the need to incur a higher 
upfront cost. Nevertheless, this finding is by no means an unchangeable fact as the 
incurred costs can be possibly reduced substantially as the technology matures (Mott 
MacDonald, 2012). Lastly, AP4-SF has shown a very minimal impact on both the 
NPV and PBP. This is due to the insignificant carbon penalty reduction (i.e., reduced 
about 0.03 USD/L) which is unable to compensate for the greater fuel cost (i.e., 
increased about 0.17 USD/L). 

5 Further Reading 

The following listed materials are recommended for further reading: 

(i) Overview of sustainable biomass supply chain: from concept to modeling 
(Hong et al., 2016) 

This paper provides readers with the fundamental knowledge and concept of 
sustainable biomass supply chain management, modeling, and optimization. In 
addition, key challenges and future prospects were elucidated comprehensively 
in this review article. 

(ii) PCA method for debottlenecking of sustainability performance in integrated 
biomass supply chain (How & Lam, 2019) 

This paper proposes a novel principal component analysis (PCA) aided 
debottlenecking approach to systematically remove the potential sustainability 
bottlenecks. Its effectiveness is benchmarked with another graph-theoretic 
based debottlenecking approach. 

(iii) Techno-economic analysis for biomass supply chain: A state-of-the-art review 
(Lo et al., 2021) 

This paper critically reviews the available approaches for the techno-
economic evaluation of biomass supply chain (deterministic and stochastic). In 
addition, this review article outlines the key supply chain uncertainties and their 
corresponding impacts on the economic performance of the biomass business. 

(iv) Debottlenecking of biomass element deficiency in a multiperiod supply chain 
system via element targeting approach (Lim et al., 2019)
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This paper tackles the biomass availability fluctuation in a given regional 
biomass supply chain using element targeting approach and multiperiod anal-
ysis. This article demonstrates how the element targeting approach can be used 
to improve the overall biomass resources allocation and utilization. 

(v) Synthesis of sustainable circular economy in palm oil industry using graph-
theoretic method (Yeo et al., 2020) 

This paper attempts to evaluate the feasibility of shifting the conven-
tional palm oil industry toward circular economy using a powerful graph-
theoretic approach, called process graph (P-graph). The potential bottlenecks 
that hinder the implementation of circular economy approach have also been 
discussed. 

(vi) Bottleneck Tree Analysis (BOTA) with green and lean index for process 
capacity debottlenecking in industrial refineries (Teng et al., 2020) 

This paper proposes a novel Bottleneck Tree Analysis (BOTA) to optimize 
the debottlenecking schedule in industrial refineries with the consideration of 
lean and green aspects. Such an effective scheduling approach can be easily 
adapted in palm oil refinery and biorefinery. 

6 Conclusion 

Palm biomass supply chain is deemed as a waste-to-wealth business. It contributes 
to economic development and serves as an effective strategy for waste management. 
Nevertheless, the complete shift to biomass as a feedstock is yet to be proven feasible 
and sustainable at a commercial scale. To fully explore its real potential and limits, 
sufficient knowledge and in-depth understanding of biomass supply chain modeling, 
particularly in stochastic modeling are essentially needed. This chapter, therefore, 
provides an overview of the key factors to be considered in stochastic modeling for 
biomass supply chain. It serves as a general guide to industry practitioners, academi-
cians, and researchers who have interest in equipping themselves with knowledge 
and skills regarding stochastic modeling of the biomass supply chain. Three illustra-
tive examples are used to demonstrate the utility of stochastic modeling in biomass 
supply chain research (i.e., biomass selection decision, facilities location decision, 
and policy selection decision). All these contents will help readers to understand 
stochastic biomass supply chain modeling from a wider perspective before venturing 
into this waste-to-wealth business. 
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