
Implementation of DOA Estimation Algorithm
Based on FPGA

Hengyuan Zhou1, Xiaojun Jing1(B), Bingyang Li2, Zesheng Zhou3, and Bogan Li4

1 Beijing University of Posts and Telecommunications, Beijing, China
{zhouhengyuan,jxiaojun}@bupt.edu.cn

2 Jiangsu Automation Research Institute, Lianyungang, Jiangsu, China
3 Shandong Institute of Aerospace Electronics Technology, Yantai, Shandong, China

4 University of Southampton, Southampton, UK
Bohan.Li@soton.ac.uk

Abstract. Direction of arrival (DOA) estimation is the prerequisite for beamform-
ing, which largely determines the performance of smart antennas. However, DOA
estimation algorithms usually need a large amount of computation while making
enormous demands on real-time processing, which poses challenges to hardware
implementation. Field Programmable Gate Array (FPGA) is widely used in the
implementation ofDOAestimation algorithms in recent years due to its advantages
of high throughput rate, parallelizable computing, and design flexibility. But the
traditional method of using hardware description language (HDL) to implement
algorithms on FPGA has disadvantages such as high complexity and long time-
to-market. Since the 21st century, high-level synthesis (HLS) tools have gradually
developed, allowing designers to define their algorithms with a higher abstraction
level so that effectively reduces workload and development time.

Keywords: Direction of arrival ·MUSIC · FPGA · HLS

1 Introduction

The direction of arrival (DOA) estimation is of great significance and is used in many
applications. DOA estimation can enhance the sensing ability of the communication sys-
tem, such as sensing the direction of the vehicle relative to the roadside unit (RSU) in the
vehicular communication [1] and sensing the location of the device in the communication
system in which the unmanned aerial vehicle participates [2, 3]. But DOA estimation
generally requires a large amount of computation. Researchers initially used the digital
signal processor (DSP) chips to implement the algorithm. The estimated time is at the
level of milliseconds [4, 5]. Recently, with the development of field programmable gate
array (FPGA), the advantage of parallel computing has emerged. Special designs such
as confidentiality can also be realized. More importantly, the delay jitter of algorithms
on FPGA is weak, which is very suitable for implementing various communication algo-
rithms. By designing flexible, fast, stable, and parallel processing algorithms, FPGAs
have gradually replaced DSP chips in the field of DOA estimation, compressing DOA
estimation time to the microsecond level [6].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Sun et al. (Eds.): ICSINC 2021, LNEE 895, pp. 46–52, 2022.
https://doi.org/10.1007/978-981-19-4775-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4775-9_7&domain=pdf
https://doi.org/10.1007/978-981-19-4775-9_7


Implementation of DOA Estimation Algorithm Based on FPGA 47

The shortcomings of hardware description language (HDL) have gradually been
exposed with the geometric growth of the circuit scale. First, these languages are verbose
and error-prone, have rough syntax. What’s more, they may produce sub-optimal, faulty
hardware, which is usually difficult to debug [7]. High-level synthesis (HLS) tools enable
engineers to use software programs to specify hardware functions. Compared with HDL,
the abstraction level raises from the register-transfer level (RTL) to the algorithm or
behavior level. NEC’s research shows that it takes about 300,000 lines of HDL code
to realize a million-gate FPGA design, and the use of modern HLS tools can easily
increase the code density by 7 to 10 times, requiring only 30,000 to 40,000 lines of code
[8]. HLS tools enable algorithm engineers to use high-level languages to develop FPGA
algorithms without fully grasping relevant hardware knowledge. This paper verifies the
feasibility of using C language to implement the MUSIC algorithm in Vivado HLS and
explores the effect of parallel optimization instructions.

2 Design of HLS Project

2.1 Algorithm Implement

MUSIC algorithm parameters implemented on FPGA: the number of antenna elements
is 4, the number of signals is 2, the number of snapshots is 128, and the resolution is 1°
so that there are 181 space spectrum points. The variables and main loops are shown in
Table 1 and Table 2 respectively. The specific process is as follows (Fig. 1):

Table 1. Variables used in the implementation process

Name[Size] Data

a_theta[4][181] Direction vector

X[4][128] Received signal

Rx[4][4] The covariance matrix of X

RxU[4][4] The feature vector of Rx

En[4][2] Noise subspace

a[4][1] Direction vector in a certain direction

aH_En[1][2] Product of the conjugate transpose of the direction vector and the noise
subspace

aH_En_EnH_a[1][1] Square of the aH_En’s norm

P_theta[181] Space spectrum

log_P_theta[181] The logarithm of the space spectrum



48 H. Zhou et al.

Table 2. The main loops in implementation

Name Function

calculate_P_theta Calculate space spectrum

read_a_theta Read direction vector in a certain direction

calculate_log_P_theta Calculate the logarithm of the space spectrum

do matrix multiplication to 

obtain aH_En

get X’s feature vector Matrix RxU

assign_En:

obtain the noise subspace En from RxU

multiply X and its conjugate transpose to 

get the covariance matrix Rx

read_a_theta:

read a specific direction 

vector a from a_theta

calculate_P_theta:

calculate the space spectrum

do matrix multiplication to 

obtain aH_En_EnH_a

calculate_log_P_theta: 

calculate logarithm of the space spectrum

search peaks to obtain DOA

Fig. 1. Algorithm implementation flowchart

1. Call the matrix multiplication function to multiply the received signal matrix (X)
and its conjugate transpose to obtain the covariance matrix (Rx).

2. Perform eigenvalue decomposition on the covariance matrix (Rx). Get the eigenvec-
tor matrix (RxU) of the covariance matrix.

3. Take the last 2 columns of the eigenvector matrix to get the noise subspace matrix
(En).

4. Calculate the space spectrum (calculate_P_theta). The inner loop obtains the direc-
tion vector array (a) through the loop named read_a_theta. Then the outer loop mul-
tiplies the conjugate transpose matrix of direction vector and En to calculate array
aH_En. Multiply aH_En and its conjugate transpose to calculate aH_En_EnH_a,
and store aH_En_EnH_a in the space spectrum array (P_theta).

5. Search peaks on the space spectrum array to obtain DOA.

Allmatrixmultiplications in the algorithm are implemented by thematrixmultiplica-
tion function named matrix_multiply provided in Vivado HLS, which can easily realize
various matrix transposition and parallel optimization. Eigenvalue decomposition is the
most important and most complex part of the MUSIC algorithm. In this experiment, we
call the svd_top function in the Vivado HLS algorithm library using the bilateral Jacobi



Implementation of DOA Estimation Algorithm Based on FPGA 49

method to realize the eigenvalue decomposition. The bilateral Jacobi method is more
accurate than other singular value decomposition methods and is convenient for parallel
calculation, so it is more suitable for implementation on FPGA.

2.2 Parallel Optimization

The optimizations directives for loops in Vivado HLS mainly include pipelining,
unrolling, merging, and dataflow. Pipelining adds registers before devices used in the
loop so that a cycle can start after the previous one releases the necessary resources. Sev-
eral adjacent cycles overlap in time, greatly improving resource utilization and reducing
the delay. Unrolling allocates several times the hardware resources required for a single
cycle to the entire loop so that multiple cycles can be performed on different hardware
resources at the same time to reduce the time consumption.

The loop to calculate space spectrum (calculate_P_theta) is unrolled by 2 times and
pipelined. The inner loop reading direction vector (read_a_theta) is fully unrolled. The
loop to calculate the logarithm of the space spectrum is pipelined.

Partition is the most significant directive for arrays. Due to the access bottleneck of a
single block of RAM, a single array is divided into several pieces and stored in different
blocks of RAM or registers in a specific way, which can improve the throughput of the
array. Partition methods include block partition, cyclic partition, and complete partition,
etc.

The direction vector array (a) used to calculate the space spectrum needs to be read
and written frequently, therefore it is completely partitioned and stored in the registers
to speed up the operation. The matrix multiplication operation of the direction vector (a)
and the noise subspace matrix (En) can be decomposed into the multiplications of array
a and each column of En. The operation can be accelerated by reading an entire column
of the noise subspace matrix. Therefore, the noise subspace matrix (En) is divided so
that the elements in the same row are stored in the same block of RAM.

3 Simulation and Analysis

3.1 Accuracy Compared with MATLAB

The simulation uses a 4-element uniform linear array with a half wavelength element
spacing. Its number of snapshots is 128. TheSNR is 20 dB. Space spectrums generated by
FPGA simulation and MATLAB simulation are shown in Fig. 2. They almost coincide.
The difference mainly appears where the value is small. When FPGA performs floating-
point numbers or some non-linear calculations, accuracy may be lost. But it does not
affect the DOA estimate result.



50 H. Zhou et al.

Fig. 2. Space spectrums generated by FPGA simulation and MATLAB simulation

3.2 Estimation Speed

The difference before and after optimization is mainly manifested in the number of
resources and clock cycles required by each loop and function.

Figure 3 shows the delays of the main loops before and after the optimization.
The division of the noise subspace matrix and the unrolling in the matrix multiplication
function causeVivadoHLS to automatically divide the noise subspacematrix completely
and store it in the registers. Compared with the default solution, the single-cycle delay of
the loop (calculate_P_theta) has been reduced from 41 clock cycles to 22 clock cycles.
The initial interval (II) before and after optimization is 41 clock cycles and 4 clock cycles
respectively, and the number of cycles drops from 181 to 90. Ideally, the initial interval
should be 1 clock cycle when the inner loop is fully unrolled. But if it is fully unrolled, it
will take up too many resources and not meet the resource constraints. Partial unrolling,
retaining part of the serial operation in the matrix multiplication makes II reduce to 4,
and the delay of the entire loop body is reduced from 7421 to 379.

The loop to calculate the logarithm of the space spectrum (calculate_log_P_theta)
involves non-linear floating-point operations such as division and logarithm. If optimiza-
tion is not performed, the delay will be huge. After optimization, the iteration latency
remains unchanged. The II is reduced from 28 to 1 clock cycle, and the number of cycles
is reduced from 181 to 90. Therefore, the overall delay of the loop body is reduced from
5068 to 117, and the delay is reduced by more than 97%.

As shown in Fig. 4, in comparison to the result before optimization, although the
usage of program blockmemory, look-up tables, registers, and DSP blocks all increased,
the overall latency dropped from 29023 to 16501, a drop of more than 40%.



Implementation of DOA Estimation Algorithm Based on FPGA 51

Fig. 3. Delay of the main loops before and after optimization

Fig. 4. Resources utilization and entire latency before and after optimization

4 Conclusion

In the process of implementing the MUSIC algorithm, the advantages of HLS tools can
be summarized in the following four points. First, it uses a high-level language instead of
HDL, which has a higher level of abstraction and a smaller workload. Second, HLS tools
are similar to an algorithm development environment, rather than a hardware develop-
ment environment. Thirdly, the HLS tool uses independent optimization instructions to
control FPGA synthesis, which allows developers to get different synthesis results with-
out modifying the source code. Finally, there are abundant algorithm library resources
in HLS tools. They can be easily called and integrated into various designs. In summary,
using HLS tools to write FPGA prototypes of DOA algorithms such as MUSIC is very
attractive. It can be verified relatively quickly and obtain considerable performance,
which is an effective method.

References

1. Mu, J., Gong, Y., Zhang, F., Cui, Y., Zheng, F., Jing, X.: Integrated sensing and communication-
enabled predictive beamforming with deep learning in vehicular networks. IEEE Commun.
Lett. 25, 3301–3304 (2021)

2. Gao, N., Li, X., Jin, S., Matthaiou, M.: 3-D deployment of UAV swarm for massive MIMO
communications. IEEE J. Sel. Areas Commun. 39(10), 3022–3034 (2021)

3. Gao, N., Jin, S., Li, X., Matthaiou, M.: Aerial RIS-assisted high altitude platform communi-
cations. IEEE Wirel. Commun. Lett. 10(10), 2096–2100 (2021)

4. Huang, Q.: The research of DOA estimation algorithm based on DSP. University of Electronic
Science and Technology of China (2010)



52 H. Zhou et al.

5. Zhou, Z.Y.: The research and implementation ofmulti-source super-resolutionDOAestimation
algorithm based on DSP system. Huazhong University of Science and Technology (2012)

6. Liu, T.: Implementation of classical DOA algorithm based on FPGA. Harbin Institute of
Technology (2016)

7. Zwagerman, M.D.: High-level synthesis, a use case comparison with hardware description
language. Grand Valley State University (2015)

8. Wakabayashi, K.: C-based behavioral synthesis and verification. ASP-DAC (2004)


	Implementation of DOA Estimation Algorithm Based on FPGA
	1 Introduction
	2 Design of HLS Project
	2.1 Algorithm Implement
	2.2 Parallel Optimization

	3 Simulation and Analysis
	3.1 Accuracy Compared with MATLAB
	3.2 Estimation Speed

	4 Conclusion
	References




