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Abstract. In the Internet of things (IoT), the extensive use of IoT devices makes
the problemof spectrum sharing among devices increasingly prominent. Spectrum
sensing is very significant to promote spectrum efficiency in IoT. However, due to
network security and industry privacy issues, it is difficult to obtain large-scale data
sets needed for spectrum sensing. Therefore, federated learning (FL) is an effective
technique to solve the problems that may be encountered in the establishment
of data sets and the problem of data leakage. In this paper, FL is utilized to
study the problem of spectrum sensing, and a value evaluation mechanism of
IoT devices is proposed to improve the performance of FL and resist poisoning
attacks. Simulation shows that the proposed value evaluationmechanism canmake
the global model of FL converge more quickly and stably, and at the same time it
is almost unaffected by malicious nodes when poisoning attacks occur.

Keywords: Spectrum sensing · Federated learning · Value evaluation
mechanism · Poisoning attack

1 Introduction

With the popularity of 5G technology, the IoT paradigm and a variety of emerging
applications (such as smart home, industrial IoT, etc.) are developing rapidly. During
this period, the number of connections between smart devices and terminals increased
explosively. In any case, the rapid growth in the number of connections in the IoT
is bound to take up all the 5G spectrum. Therefore, both now and in the future, it is
an important challenge for the network to improve spectrum efficiency. In this regard,
cognitive radio is regarded as a potential solution [1–3]. Cognitive radio technology
can monitor the spectrum utilization in real-time and dynamically adjust the devices
accessing the spectrum [4, 5].

Before spectrum allocation, it is necessary to determine whether the target spectrum
is available or not. Recently, machine learning has been used in spectrum sensing [6].
Sarikhani et al. [7] have proposed Deep Reinforcement Learning based cooperative
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spectrum sensing algorithm. Zheng et al. [8] have proposed a sensing method based on
deep learning classification.

However, in these methods combined with machine learning, it is troublesome to
build a centralized dataset containing a large number of samples. At present, some
people have proposed methods to expand the data set [9, 10]. However, if the data sets
in the IoT devices are required to be transmitted to the cloud to build a large data set,
which is then used to train machine learning models, it may lead to serious network
security or user privacy problems [11]. FL [12] solved this problem. In FL, IoT devices
train the model independently, and then the central node aggregates the local model
to get the global model. Google proposed a FederatedAveraging algorithm [13], which
averages the neural network parameters of each edge device to improve the globalmodel.
However, the average aggregation method can not resist poisoning attacks. Therefore,
this paper proposes a value evaluation mechanism, which can accurately evaluate the
effectiveness of IoT devices and resist poisoning attacks.

This paper is organized as follows. Section 2 introduces the framework of FL and the
systemmodel. In Sect. 3, the workflow of the model and the value evaluation mechanism
of IoT devices are introduced. The simulation and analysis are conducted in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 System Work

In this paper, the OFDM signal is used as the signal of the primary user (PU). Different
Internet of things devices will correspond to different signal acquisition devices, so they
will produce their own local data sets that are different from other devices. The device
Di regards the spectrum sensing problem as a binary classification problem and uses
local data sets to train the local model. The system model is shown in Fig. 1.

Fig. 1. System model

The essence of FL a distributed machine learning. FL mainly includes IoT devices
and cloud servers. IoT devices jointly train the model under the coordination of the cloud
server (CS). Each of these IoT devices has a copy of the global model, which is called
the local model. IoT devices use their local data to update the local model, and the cloud
server aggregates all the local models to get a global model ω, which is similar to the
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result of centralized machine learning after many iterations. In this way, problems such
as data leakage can be effectively avoided.

However, if there is a device Dj that maliciously uses the wrong dataset to update
the model, the effectiveness of the global model may be seriously affected.

In FL, the collection of devices can be defined as D = {
D1,D2, . . . ,DND

}
, where

Di(i = 1, 2, . . . ,ND) represents the i-th device, ND = |D| indicates the total number of
devices. Each device stores its own local dataset. The local dataset of the device Di is
represented as Si, where |Si| = Ni.

The model of device Di utilizes an Mi-element antenna system to receive signals
based on Ni observation vectors, then get the dataset by the method in [14]. Then we
use mathematical methods to calculate the covariance matrix and finally get true color
pictures as dataset Si [9].

3 Spectrum Sensing Based on FL

3.1 Work Flow

As shown in Fig. 2, the operation at the l-th epoch consists of the following five moves:

a. Get and store datasets. Follow the method in Sect. 2 to create a dataset Si for device
Di;

b. Global model distribution. The CS sends the global model ωl−1 to each device;
c. Edgemodel update. The deviceDi updates the edgemodel based on the global model

ωl−1. Then the parameter ω
(m,l)
i of the m-th iteration of the local model at the l-th

epoch can be expressed as

ω
(m,l)
i = ω

(m−1,l)
i − γ∇Fi

(
ω

(m,l)
i

)
(1)

where γ represents the learning rate, Fi

(
ω

(m,l)
i

)
is the loss function. The final

parameter is taken as the local model parameter ωl
i of the l-th epoch.

d. Local model upload. the device Di upload the parameter ωl
i of the updated edge

model to the CS.
e. Global model aggregation. In FL, the aggregation at the l-th epoch can be expressed

as

ωl =
∑ND

i=1
αiω

l
i . (2)

where αi = ST i
ST is the weight of the device Di, ST i indicates the score of the device

Di, ST represents the total score of all devices.

Repeat these steps until the global model converges or themodel reaches the required
accuracy.
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3.2 Value Evaluation Mechanism of Parameters

Because of the long distance between edge devices, there are many difficulties in the
correct dissemination of information. There are even some devices that tamper with an
edge or global model during move e. Therefore, it is very significant to make a complete
effectiveness evaluation of the parameters uploaded by the equipment. At present, many
objective weighting methods are widely used to determine the weight [15, 16].

The CRITIC weight method is an objective weighting method. It is based on the
contrast intensity of indicators and the conflict between the indicators to comprehensively
measure the objective weight of indicators.

In this paper, we use several indicators to evaluate the score of the parameter, such as
the size of the dataset, the correlation with the global model, and the accuracy of the local
model. The CRITIC weight method is utilized to evaluate the weight of the indicators.
The score for the edge device is generated during the global model aggregation. The
score affects theweight of the parameters of the local model in FL. Due to the complexity
of deep learning, it is difficult to assess the validity of parameters by simply comparing
the accuracy of local models. Therefore, we determine the local training performance
by calculating the correlation between the parameters of the edge model and the global
model.

Suppose ωi = {ωi1, ωi2, . . . , ωiP}, (i = 1, 2, . . . ,ND) are all the parameters of the
local model uploaded by the device Di, ω′ = {

ω′
1, ω

′
2, . . . , ω

′
P

}
are all parameters of

the global model. We use Pearson product-moment correlation coefficient (PPMCC) to
represent the degree of correlation between the edge model and the global model:

ri =
∑P

j=1

(
ωij − ωi

)(
ω′
j − ω′

)

√∑P
j=1

(
ωij − ωi

)2
√

∑P
j=1

(
ω′
j − ω′

)2
(3)

The larger the ri, the greater the correlation between the edge model and the global
model. In addition, we can make further improvements to ri,

rj =
{
rj if rj > 0
0 if rj ≤ 0

(4)

CRITIC Weight Method
The number of dataset in the device Dj is Nj, the accuracy of edge model ωj is Aj, and
the correlation between the local parameter ωj and the global parameter ω′ is rj. In the
following sections, we use xij(i = 1, 2, 3, j = 1, 2, . . . ,NT ) to denote Nj, Aj and rj,
that is, x1j = Nj, x2j = Aj, x3j = rj.

Then the proportion of xij can be expressed as

Pij = xij
∑NT

j=1 xij
(5)

First of all, we use the standard deviation SDi to express the contrast intensity of
the i-th indicator. First calculate the mean value xi = 1

n

∑NT
j=1 xij, and then the standard
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deviation of the i-th indicator is obtained,

SDi =
√∑NT

j=1

(
xij − xi

)2

n − 1
(6)

Secondly, the correlation coefficientRi is used to express the conflict of the indicators.
First of all, we need to calculate the correlation degree rik between different indicators.
According to PPMCC,

rik =
∑ND

j=1(xij − xi)(xkj − xk)
√∑ND

j=1 (xij − xi)2
√∑ND

j=1 (xkj − xk)
2

(7)

Then

Ri =
∑3

k=1
(1 − rik) (8)

Then the amount of information Ci of the i-th indicator is calculated according to
the standard deviation SDi and the correlation coefficient Ri.

Ci = SDi ×
∑3

k=1
(1 − rik) = SDi × Ri. (9)

So the objective weight of the i-th indicator is

Wi = Ci
∑3

1 Ci
(10)

Therefore, the score of the device Di can be expressed as

STj =
∑3

i=1
Wi × Pij. (11)

After the above steps, we adjust the weight of each edge device in themodel aggrega-
tion to prevent the bad model uploaded by malicious nodes from affecting the accuracy
of the global model. This method significantly improves the accuracy, convergence and
anti-interference of the global model.

4 Numerical Result

In this paper, we set up 10 nodes in FL and establish local datasets for each node under
different signal-to-noise ratios (SNR).At the same time, two cases are set, one is that there
is nomalicious node in 10 nodes, and the other is that there are twomalicious nodes in 10
nodes, which is called a poisoning attack. The dataset of themalicious node iswrong, and
the distribution of the wrong dataset is opposite to that of the normal dataset. As a result,
the local model of themalicious node has the opposite effect on the aggregation of FL. At
the same time, we compare the performance of average aggregation, called FLavg, and
weighted aggregation with value evaluation mechanism, called FLvem, under different
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SNR. The probability of detection (PD) and probability of false alarm (PFA) are shown
in Fig. 2.

When there are no malicious nodes, the performance of FLavg is almost the same
as that of FLvem. with the increase of SNR, PD increases and PFA decreases. However,
when subjected to poisoning attacks, the performance of FLvem is almost unchanged
under most SNR, while the performance of FLavg degrades sharply.

At the same time, we can also see the advantages of FLvem from loss function.
Figure 3 shows the loss function of FLavg and FLvem when subjected to poisoning
attacks under SNR = −2 dB, respectively. It can be seen that the loss function of FLavg
can not always decrease steadily, but will increase when it decreases to a certain extent,
which shows that the malicious nodes have a serious impact on the global model, and the
loss function of the global model is difficult to converge to the lowest value. However,
the loss function of FLvem can maintain a steady and continuous decline, and its global
model can gradually converge to the lowest value, which indicates that malicious nodes
have almost no effect on the global model.

Fig. 2. The probability of detection and the probability of false alarm

In fact, not only in the case of poisoning attack, the performance of FLvem is superior,
but also the loss function of FLvem converges faster when there is no poisoning attack.

Fig. 3. The loss function of FLavg and FLvem
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5 Conclusion

In summary, we design a spectrum sensing framework based on federated learning in
IoT. At the same time, in federated learning, we propose a value evaluation mechanism
for IoT devices, which can effectively strengthen the positive role of beneficial nodes
and weaken the impact of malicious nodes. In federation learning, this mechanism not
only plays a significant role in making the model converge more quickly and stably but
also can effectively resist poisoning attacks.
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