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Chapter 8
How Genome-Wide Analysis Contributes 
to Personalized Treatment in Cancer, 
Including Gynecologic Cancer?

Hisamitsu Takaya

Abstract Cancer omics analysis, which started with large-scale cancer genome 
data analysis, is becoming in this era multiomics analysis, which integrates multiple 
omics analyses with the development of analytical technologies. Omics analysis is 
being conducted in many parts of the world, the accumulated analysis data are rap-
idly growing, and new clinical trials are often conducted based on omics analysis. It 
is anticipated that future cancer treatments will require skills to search and analyze 
omics data more efficiently. In addition, different approaches are being used to vali-
date data obtained from omics analyses in clinical practice compared to those used 
in the past. Master protocols are protocols designed with multiple subtrials within 
the framework of an overall trial structure, and they represent a paradigm shift in 
clinical trials, such as biomarker-driven clinical trials across cancer types or adap-
tive designs that allow for the interruption and addition of new subtrials. They are 
expected to play a role in the development of personalized treatment, which will 
become even more individualized in the future.

Keywords Cancer genome · Omics · Precision medicine · Master protocol · 
Umbrella trial · Basket trial · Platform trial

8.1  Introduction

Large-scale cancer genome analysis, which began with The Cancer Genome Atlas 
(TCGA), has spread widely as next-generation sequencers (NGS) have become 
more widely available, research costs have decreased, and research has been con-
ducted into a variety of cancer types. As a result, not only genome analysis but also 
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various omics analyses, such as gene expression, protein, and metabolite analyses, 
have been conducted, and knowledge of cancer omics has become indispensable to 
current cancer research. Drug discovery and clinical trials using these omics data 
are also being conducted, and knowledge in this field is becoming indispensable for 
clinicians.

In this chapter, we introduce the basic knowledge about omics data, databases 
required for actual handling of omics data, and analysis methods for actual cancer 
genome data using mainly TCGA data to understand personalized therapy using 
cancer genome data. Clinical trials using the new technology are also discussed, as 
well as the current status of clinical trials in gynecological oncology.

8.2  Omics Analysis

The word “genome” was coined by H. Winkler in 1920 [1] as “the set of chromo-
somes carried by gametes” and later redefined by Hitoshi Kihara [2] as “the mini-
mum set of chromosomes essential to make an organism what it is.” It was coined 
using the Greek suffix “-ome,” meaning “all.” Subsequently, as the analysis of 
genomes progressed, analysis to grasp the entire picture of mRNA and proteins, 
which are gene transcripts, as well as metabolic products, was promoted, giving rise 
to the terms “transcriptome,” “proteome,” and “metabolome,” with “-ome” as a 
derivative of genome. In addition to molecular information, there are many other 
terms with “-ome,” such as interactome, which is comprehensive information on 
interactions between molecules in living organisms, and microbiome, which is 
comprehensive information about bacterial flora. The term “omics” refers to the 
field of research that addresses these “-omes”; the comprehensive analysis of each 
is collectively called “omics analysis,” and the information obtained by the analysis 
is called “omics information.”

Cancer is a disease that encompasses an extremely complex system. As a system, 
cancer cells are intricately involved in interactions with surrounding tissues, such as 
the microenvironment and immune system, interactions between tumor cells, and 
factors such as transcriptional regulation, gene coexpression, signal transduction, 
metabolic pathways, and protein interactions within tumor cells; these layers of fac-
tors must be elucidated to understand the phenomenon of cancer as a disease [3, 4]. 
Therefore, a method called multiomics analysis, which integrates omics informa-
tion involving cancer, is now being used to characterize the cancer system at a phe-
nomenological level [5, 6]. The main omics analyses used in multiomics analysis 
include genomics, which addresses genomic sequences and their mutations, such as 
insertions, deletions, single nucleotide variations, and copy number variations; 
epigenomics, which analyzes DNA methylation, histone modifications, chromatin 
accessibility, and chromosomal 3D structure; transcriptomics, which analyzes 
quantitative gene expression and measures transcripts, such as microRNAs and long 
noncoding RNAs; proteomics, which analyzes protein expression and quantifica-
tion, posttranslational modifications and protein–protein interactions; and 
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metabolomics, which analyzes the quantification of metabolites of small molecules, 
such as amino acids, fatty acids, and carbohydrates. NGS is mainly used for genom-
ics, epigenomics, and transcriptomics, while various mass spectrometers are used 
for proteomics and metabolomics. With the spread and advancement of next-gener-
ation sequencing technologies, more high-throughput omics analyses can be per-
formed at a lower cost, and statistical tools, such as machine learning, are becoming 
more widely used, making it possible to integrate multiple omics analyses.

In the case of solid tumors, it is necessary to collect tumor tissue itself by some 
method for omics analysis. Recently, however, a method called liquid biopsy has 
sometimes been used to extract the genome from cancer cell-derived DNA (cell-free 
DNA) [7–9] or circulating tumor cells [10, 11] in the blood for analysis, rather than 
extracting the cancer genome from the tumor tissue itself. With liquid biopsy, can-
cer genome information can be obtained only by blood sampling, even in cancer 
types for which tumor tissue is difficult to obtain, and changes over the course of 
treatment can also be analyzed because the test can be performed many times [12, 
13]. Tissues collected by biopsy or surgery contain not only tumor cells but also 
stromal cells, lymphocytes, vascular endothelial cells, and many other types of 
cells, which sometimes interfere with accurate analysis by constituting noise in 
genome analyses [14–16]. Therefore, a method called single-cell analysis has been 
developed, in which the collected tumor tissue is separated into single cells, and 
genomics analysis is performed on each cell [17, 18]. This method makes it possible 
to analyze the genomic data of each cell, and the characteristics of tumor cells and 
the relationships between cells are being clarified [19, 20] (Fig. 8.1).

Genomics Transcriptomics Epigenomics Proteomics Metabolomics

Tumor

Multiomics
analysis

Liquid biopsy

Single cell
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cell-free DNA

Circulating tumor cell

Geenomicsmi Transcriptomics Epigenomics Proteomics MetabolomicsMetabolomics

B i o i n f o r m a t i c s

Fig. 8.1 Concept of omics analysis. Omics analysis is the analysis of the genome, transcriptome, 
epigenome, proteome, metabolome, and other information obtained from tumors. Bioinformatics is 
necessary for multiomics analysis that integrates these data. Liquid biopsy, which obtains omics 
information from circulating tumor cells in the blood, and single-cell analysis, which analyzes 
single cells constituting a tumor, have been developed, and their integrated analysis is also underway
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8.3  Omics Databases and Analysis Tools

With the development of next-generation sequencing technology, sequencing has 
become faster and less expensive, and an enormous number of omics analyses are 
being conducted worldwide, resulting in an explosive increase in the amount of data 
accumulated. Conversely, the increase in the number of public databases around the 
world has made it difficult for users to obtain the data that they need for their 
research purposes. In Japan, the National Bioscience Database Center (NBDC) was 
established in 2011 to integrate various life science databases and promote data 
sharing and utilization. The database catalog [21] is available to the public, facilitat-
ing database searches. The main databases are listed below.

• Nucleotides
GenBank [22, 23] is a nucleic acid sequence database maintained by the National 
Center for Biotechnology Information (NCBI). It is part of the International 
Nucleotide Sequence Database Collaboration (INSDC), which is operated by the 
NCBI, the Nucleotide Archive (ENA) [24], and the DNA Data Bank of Japan 
(DDBJ) [25], and data are exchanged between these organizations.

• Genomes
The UCSC Genome Browser [26, 27] is a project of UCSC that automatically 
annotates eukaryotic organisms with genomes that have been decoded and 
 publishes the results in a database. The genome information used is the same as 
that of NCBI and Ensembl, but the annotated information is diverse, including 
originally calculated information and information from NCBI and Ensembl. One 
of the characteristics of this system is that the annotated information itself is 
often newer because of the high-speed automatic annotation.

Ensembl [28, 29] which is a joint project of the European Molecular Biology 
Laboratory (EMBL)-European Bioinformatics Institute (EBI) and the Sanger 
Centre, performs automated annotation of eukaryotic organisms with genomes 
that have been decoded and publishes the results in a database. The information 
provided by Ensembl is the same as the NCBI and UCSC browsers for genomes, 
but the annotations are predicted by Ensembl’s own pipeline. Therefore, the 
information differs slightly from that of NCBI Mapviewer and others. The pre-
diction pipeline focuses on predicting protein-coding genes as accurately as pos-
sible, so the prediction accuracy is high.

NCBI Genome [30] is a database of genome information managed and oper-
ated by NCBI. In recent years, genome information about many new species of 
organisms has been registered, and one can quickly determine how much nucleo-
tide sequence information has been revealed for the species in which one is inter-
ested. The Genome Data Viewer allows users to visualize molecular data in a 
genomic context and graphically display data about a given experiment or sam-
ple. Genome information about species commonly used in research can be 
 organized for easy visual and understandable retrieval from a phylogenetic tree, 
or genomes can be compared [31].
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• Epigenomes
The International Human Epigenome Consortium (IHEC) is an international 
consortium that aims to map the human epigenome in relation to various diseases 
and life phenomena, and the IHEC-Data Portal [32] is populated with data from 
various databases. By selecting the species, tissue, assay method, and provider, 
one can view the available datasets in a grid view, track them in the UCSC 
Genome Browser, and download the data in batches [33].

The NIH Roadmap Epigenomics Mapping Consortium aims to provide epig-
enomic maps of histone modifications and DNA methylation in various tissues 
and cell types related to human diseases. The Roadmap Epigenomics Project 
[34] allows users to browse data by adult, fetal, brain, stem cell, etc., and to view 
genomic information in the USCS Genome Browser. Protocols, tools, and proj-
ect information are also provided [35].

• Gene Expression
The NCBI Gene Expression Omnibus (GEO) [36, 37] is a database of gene 
expression information provided and maintained by NCBI. GEO mainly con-
tains data obtained by microarrays, and the amount of registered data is very 
large. Not only can one search for gene expression datasets and gene profiles of 
interest among them, but one can also freely download the raw data.

ArrayExpress [38, 39] is a database of gene expression information provided 
and maintained by EBI, and similar to NCBI-GEO, it mainly stores data obtained 
by microarrays and allows users to search for expression datasets and gene pro-
files and obtain raw data from them.

• Proteins
The Universal Protein Resource (UniProt) [40, 41] operated and maintained by 
EMBL-EBI, the Swiss Institute of Bioinformatics (SIB), and the Protein 
Information Resource (PIR), is a database of protein UniProt consisting of 
UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), 
and UniProt Archive (UniPrac). UniProtKB publishes SwissProt, which is man-
ually annotated with high-quality annotations based on information from the lit-
erature, and TrEMBL (Translated EMBL Nucleotide Sequence Data Library), 
which is mechanically annotated. UniRef provides the results of preformed 
sequence homology searches, and UniPrac compiles information, such as IDs of 
other databases by sequence ID.

InterPro [42, 43] is an integrated database that collects descriptions of protein 
family classifications, domains, and functional sites based on EBI.  It brings 
together multiple databases that contain the characteristics of various proteins 
and provide protein characteristics at various levels. Using InterProScan, a data-
base search tool, a single amino acid sequence can be searched in multiple data-
bases integrated by InterPro to efficiently infer protein families and domain 
repeat structures that match the queried sequence.

The PRIDE (Proteomics Identifications Archive) database [44, 45] is a public 
repository of proteomics data operated by EMBL-EBI.
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• Other
ENCODE [46] is a database that aims to compile a comprehensive list of func-
tional factor parts of the human genome. It contains information about factors 
that function at the protein and RNA levels, as well as regulatory factors that 
control the environment in which cells and genes are activated, including meth-
ods of analysis, sample outlines, replicon types, experimental conditions, and 
analysis flow for the studies [47].

The Cancer Genome Atlas (TCGA) is the largest and most comprehensive can-
cer genome database launched by the National Institutes of Health (NIH) in 2006. 
The TCGA dataset contains more than 10,000 cases of 33 different cancer types, 
and omics information, such as cancer genomes, epigenomes, and transcriptomes, 
is publicly available. The level at which this omics information is used (raw data or 
data after being processed by multiple software) depends on the researcher’s 
intended use, but software for multiomics analysis is needed to analyze the data in 
an integrated manner. Such software is developed by bioinformaticians around the 
world, and most of it is available as freeware, so it can be installed and used accord-
ing to the purpose of use, but to use such software, some knowledge of program-
ming languages such as R, Python, Perl, etc., is needed. Many cancer researchers 
have not mastered the art of bioinformatics analysis and find it difficult to explore 
TCGA data resources, but several web tools have been developed that allow them to 
analyze TCGA data. cBioPortal for Cancer Genomics [48–50] is a web tool devel-
oped at Memorial Sloan Kettering Cancer Center that integrates omics data from 
multiple public databases, including TCGA data, and integrates omics and clinical 
data for analysis and visualization. Broad GDAC Firehose [51] is a pipeline for 
processing and analyzing large datasets via dozens of quantitative algorithms devel-
oped at the Broad Institute and the results of these analyses, which can be explored 
and visualized using FireBrowse [52]. UCSC Xena [53, 54] is a web browser-based 
visualization and analysis tool for large public cancer genome datasets from TCGA, 
ICGC (International Cancer Genome Consortium), GDC (Genomic Data Commons), 
and other databases. It is possible to freely combine and analyze SNVs (single 
nucleotide variants), INDELs, large-scale structural variations, CNVs (copy num-
ber variations), gene expression, DNA methylation, ATAC-seq, and other data from 
each database. LinkedOmic [55, 56] includes multiomics data from 32 TCGA car-
cinomas, as well as proteomics data from breast, ovarian, and colorectal cancer 
TCGA was generated by the Clinical Proteomics Tumor Analysis Consortium 
(CPTAC). It is a web tool that analyzes, compares, and makes biological sense of 
data using three modules: LinkFinder, LinkInterpreter, and LinkCompare. In addi-
tion to the above, there are many web tools, including The Cancer Proteome Atlas 
Portal (TCPA) [57, 58], which is an integrated data portal for analyzing and visual-
izing TCGA proteomic data; MEXPRESS [59, 60], which enables visualization of 
TCGA clinical data, gene expression data, and DNA methylation data; and GEPIA2 
[61, 62], which can analyze and visualize data from the GTEx (Genotype Tissue 
Expression) project, which examined gene expression in TCGA, human body 
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tissue, and genotypes. As described, there are a vast number of analysis tools in 
existence, and it is difficult to determine which tool to use. For major tools, there are 
often videos on how to use them and the features of the tools, which can be used as 
a reference.

8.4  Cancer Clinical Trials Using Omics Data

With technological advances in omics analysis, molecular markers that are useful 
for predicting therapeutic efficacy have been identified in various types of cancer. 
Molecularly targeted drugs that are expected to be effective against patients with 
such biomarkers have been developed, and their efficacy has been reported in mul-
tiple clinical trials. Representative examples include vemurafenib for metastatic 
malignant melanoma with the BRAF V600E mutation [63], gefitinib for EGFR 
mutation-positive non-small cell lung cancer [64], cetuximab [65], and panitu-
mumab [66] for KRAS wild-type colon cancer, crizotinib [67], alectinib [68], and 
ceritinib [67] for ALK fusion gene-positive non-small cell lung cancer, and so on. In 
the development of such molecular-targeted drugs, which are expected to be effec-
tive against a specific biomarker, problems in terms of development cost and time 
have been considered, such as the need to conduct as many clinical trials as the 
number of drugs to be developed to verify their efficacy and the need to verify effi-
cacy for each cancer type when biomarkers are detected across multiple cancer 
types. Therefore, a comprehensive clinical trial protocol called a master protocol 
has been proposed and implemented in recent years [69]. The draft guidance pub-
lished by the US FDA in 2018 defined a master protocol as a single protocol 
designed with multiple subtrials that evaluate the effects of one or more investiga-
tional drugs on one or more disease subtypes with different objectives within the 
framework of the overall study structure and within the overall clinical trial frame-
work. Each subtrial is often categorized by population based on cancer type, histol-
ogy, and biomarkers, and by conducting each subtrial in parallel based on a 
comprehensive protocol, more hypotheses can be tested efficiently and in less time.

Master protocols are classified into three categories according to the characteris-
tics of the target population and the type and number of study treatments: basket 
trials, umbrella trials, and platform trials. Basket trials are trials designed to validate 
a single investigational drug or drug combination in different populations defined 
by specific genetic/molecular biomarkers, rather than patient eligibility being lim-
ited to a specific cancer type. Thus, each subtrial (basket) is composed of different 
types of cancer, and each subtrial tests a different treatment (Fig. 8.2). The advan-
tages of a basket trial include the potential to offer patients with a broad range of 
cancer types a treatment option with a molecular-targeted agent that might not have 
been tested in clinical trials for their disease, the short time from initial diagnosis 
and eligibility to subsequent cohort assignment and initiation of treatment, and the 
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Tumor type A

Biomarker X
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Tumor type B Tumor type C Tumor type D

Drug X

Fig. 8.2 Scheme of basket trials. Basket trials are master protocols for targeted therapy based on 
specific biomarkers from multiple cancer types. Each subtrial is often a single-arm explor-
atory study

often small number of patients in each cohort, resulting in a short time to results 
being reported. One problem is that the basket trial assumes that classification by 
molecular characteristics of the tumor can substitute for classification by tumor his-
tology but that histology might be a stronger predictor of response to targeted ther-
apy than biomarkers [70].

Umbrella trials evaluate targeted therapies in specific cancer types by assigning 
patients to one of a number of subtrials defined by genetic mutations or biomarkers. 
Subtrials are often single-arm or randomized subtrials for validation purposes, 
whereas basket trials are generally single-arm subtrials for exploratory purposes 
(Fig. 8.3). By fixing the cancer type of interest, umbrella trials are able to draw 
cancer-specific conclusions with less heterogeneity that might exist within a given 
cohort compared to basket trials. In addition, randomized trials of targeted and non-
targeted therapies in subtrials can evaluate the presumed mechanism of action of a 
therapeutic agent and empirically distinguish between prognostic and efficacy- 
predicting markers. However, the feasibility of targeting a single cancer type creates 
problems. Particularly for rare diseases, allocation to subtrials by biomarker can 
slow enrollment within a cohort and thus slow trial progression. There is also the 
challenge that, if a large, long-term protocol design is needed, changes in treatment 
status, such as the emergence of a new standard of care during the period, might 
render the subtrial less clinically meaningful in its original setting, further lengthen-
ing the duration of the trial [70].
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Fig. 8.3 Scheme of umbrella trials. Umbrella trials are master protocols in which targeted therapy 
is administered in each subtest defined by multiple biomarkers for a specific cancer type. Each 
subtrial is a single-arm or randomized trial and is often a validation trial

Platform trials are a generic term for randomized designs with a common control 
group and several different targeted treatment groups and trials that allow for the 
addition or exclusion of new treatments or eligible patients during the trial (Fig. 8.4). 
Platform trials evaluate the efficacy and futility of each targeted therapy in an interim 
analysis, and the treatment effect is often modeled as an independent parameter across 
biomarker-defined subtypes according to a Bayesian hierarchical model. Platform 
trials are often long-term trials because new trials can be added, and as with umbrella 
trials, the standard of care can change during the trial period due to the emergence of 
new treatments (and possibly the trial itself, which was originally conducted) [71]. In 
such cases, the protocol, statistical analysis plan, informed consent document, etc., 
might need to be modified, and the trial might have to be suspended [72].

Examples of these master protocol trials are listed below:

• Basket Trials
The NCI-MATCH (NCI Molecular Analysis for Therapeutic Choice) trial con-
sists of 24 substudies evaluating the efficacy of at least 17 targeted therapies in 
patients with solid tumors and lymphomas who have received at least one regi-
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Fig. 8.4 Scheme of platform trials. Platform trials are randomized designs, in which several dif-
ferent targeted therapy arms share a common control group. New target treatment groups can be 
added during the trial, and existing treatment groups can be excluded

men of therapy. The primary endpoint of each subtrial was tumor shrinkage, with 
a single-arm design based on a binomial distribution to enroll 35 patients and an 
important secondary endpoint of 6-month progression-free survival [73]. The 
NCI-MATCH study can be interpreted as a basket study because it evaluates the 
efficacy and safety of targeted agents across cancer types in a molecular marker- 
positive population. In contrast, subtrials might be conducted to evaluate the effi-
cacy and safety of multiple targeted agents against a molecular marker of interest 
in a specific cancer type, which can be interpreted as an umbrella study. Thus, the 
NCI-MATCH study can be described as a study with the characteristics of both 
a basket study and an umbrella study.

The AcSé study is a phase II study of various solid tumors (e.g., gastrointesti-
nal, breast, kidney, ovarian, and thyroid cancers), consisting of 23 substudies 
evaluating the efficacy and safety of crizotinib alone in patients with at least one 
ALK, MET, RON, or ROS-1 mutation [74]. Each substudy is defined by mutation 
and pathology and is designed according to a two-stage design. NSCLC with 
ROS-1 translocation and esophageal/gastric cancer with MET amplification has 
been reported thus far [75, 76].

The KEYNOTE-158 trial is a phase II study of solid tumors refractory to 
standard chemotherapy with MSI-high—a condition in which microsatellite 
instability (MSI) due to abnormal DNA mismatch repair (dMMR) is frequently 
observed, except for unresectable or metastatic colorectal cancer—which evalu-
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ated the efficacy and safety of pembrolizumab, an anti-PD-1 antibody. The pri-
mary endpoint was the objective response rate (ORR), with a median ORR of 
34.3% [77].

• Umbrella Studies
The ALCHEMIST (The Adjuvant Lung Cancer Enrichment Marker 
Identification and Sequencing Trial) trial is a randomized umbrella trial for 
patients with ALK- or EGFR-positive high-risk lung adenocarcinoma. Patients 
with ALK- or EGFR-positive disease will be enrolled in a randomized phase III 
subtrial of crizotinib versus placebo or erlotinib versus placebo. The primary 
endpoint of each trial will be overall survival, and interim analyses are planned; 
if both ALK and EGFR are negative, PD-L1 expression will be measured, and 
enrollment in a randomized subtrial of nivolumab plus observation will be con-
sidered. The primary endpoints of this subtrial are overall survival and disease-
free survival [78].

The Lung-MAP trial was initiated as an umbrella study to test the efficacy of 
multiple targeted therapies in advanced or recurrent squamous non-small cell 
lung cancer. All subtrials were designed as randomized phase II/III or single-arm 
phase II trials, with biomarker screening resulting in taselisib being assigned for 
PIK3CA-positive patients, palbociclib for patients positive for cell cycle gene 
mutations, rilotumumab plus erlotinib for patients positive for c-MET, and 
ADZ4547 for FGFR-positive patients; patients with positive homologous recom-
bination repair abnormalities were assigned to tarazoparib and a control group. 
Biomarker-negative patients were randomized to durvalumab plus docetaxel, 
nivolumab plus ipilimumab or nivolumab alone for anti-PD-(L)1 therapy-naive 
patients as an unmatched subtrial and durvalumab plus tremelimumab for 
patients relapsing after anti-PD-(L)1 therapy. The primary endpoint of the sub-
study was progression-free survival or overall survival [79].

The plasmaMATCH trial is a nonrandomized, phase IIa trial to test the effi-
cacy of targeted therapy in advanced recurrent breast cancer by detecting tar-
geted gene mutations and testing circulating tumor DNA (ctDNA). ctDNA 
testing identified ESR1, HER2, AKT1, and PTEN mutations. Patients were clas-
sified into four cohorts according to mutations and tumor estrogen receptor sta-
tus and were treated with fulvestrant, neratinib, and capibasertib as single agents 
or in combination. The primary endpoint was the objective response rate [80].

• Platform Trials
The FOCUS4 trial is a placebo-controlled, multiarm, multistage, randomized 
trial testing the efficacy of multiple targeted therapies for untreated colorectal 
cancer. In a population of patients with specific molecular markers, safety is 
evaluated in the first stage, proof of concept is confirmed in the second stage, 
short-term efficacy is evaluated in the third stage, and long-term efficacy is eval-
uated in the fourth stage. The efficacy endpoints are progression-free survival 
and overall survival. In such a multiarm, multistage trial, new treatments can be 
added during the trial, or treatments that prove to be futile can be excluded before 
the third or fourth stage, corresponding to a Phase III trial. All FOCUS4 trials are 
open to patients with negative molecular markers [81].
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The STAMPEDE trial is a randomized platform trial with a multiarm, multi-
stage design in high-risk prostate cancer patients. The trial was originally initi-
ated as a five-arm study comparing a control group with a single agent or a 
combination of zoledronic acid, docetaxel, and celecoxib in patients initiating 
hormone therapy [82]. It was subsequently modified multiple times, with the 
addition of treatment groups with abiraterone and enzalutamide administered as 
single agents or in combination with radiation therapy [83, 84]. The current pro-
tocol continues to study metformin and transdermal estradiol.

The I-SPY2 trial is a phase II, adaptive, randomized, controlled trial evaluat-
ing the efficacy of a new investigational agent in combination with standard neo-
adjuvant chemotherapy for stage II/III high-risk breast cancer [85]. In this trial, 
enrolled patients will be classified into ten molecular subtypes and assigned to a 
study arm according to subtype based on an adaptive randomization engine using 
predictive probability. The primary endpoint is pathologic complete response 
(pCR) or a residual cancer burden (RCB) of 0. A Bayesian design is used, in 
which the predictive probabilities are updated as needed based on treatment 
results, and new predictive probabilities are assigned. When the predicted prob-
ability of a study drug reaches a predefined level of efficacy in one or more sub-
types, the drug is “graduated” and proceeds to Phase III trials. Up to five study 
drugs can be evaluated in parallel at the same time, including combinations. To 
date, graduation has occurred for neratinib [86], veliparib with carboplatin [87], 
MK-2206 [88], and pembrolizumab [89].

There are several other issues that have been discussed regarding cancer clinical 
trials with master protocols, in addition to those listed in the brief description of 
each trial. Ethical issues include that the complexity and duration of the trials cause 
the informed consent documents to be more complex, so patients might not be able 
to understand the documents or the trial concept itself to the degree necessary to 
provide correct informed consent. In addition, in trials in which the concept of a 
final dose has not yet been fully established, the adaptive plan could lead to the 
abandonment of suboptimal dose regimens as the trial progresses, and the benefit- 
risk ratio might change during the dose optimization process [72]. A master proto-
col is a single clinical trial that encompasses multiple subtrials, but each subtrial is 
independently validated, requiring very sophisticated and complex statistics. For 
example, statistical power could be lost if a single master protocol is hypothesized 
to be accepted by the results of the subtrials, resulting in the closure or opening of 
study groups even though no adjustments are specified in the protocol. Another 
complication noted for the control of Type I error is that multiplicity adjustment 
might be required for one treatment comparison but not for another [71, 90]. 
However, master protocols offer tremendous advantages in flexibility and efficiency 
in drug development, and it is anticipated that many trials will be designed in per-
sonalized therapy using cancer genomics data. Trial designs are also expected to 
increase the sensitive allocation of patients to matched therapies, including combi-
nation therapies according to multiple driver mutations, biomarkers, and pathways. 
Master protocols could also provide insights into the molecular mechanisms of 
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exceptional responders, in whom drugs that are not effective in other patients are 
found to be significantly effective, which could be useful in designing future master 
protocols for specific disease types.

8.5  Genomic Analysis and Personalized Treatment 
in Gynecologic Cancer

There are four types of gynecological cancers for which integrated genome analysis 
was performed by TCGA—ovarian cancer (high-grade serous carcinoma; HGSC), 
endometrial cancer, cervical cancer, and uterine sarcoma—and analysis results have 
been reported for HGSC [91], endometrial cancer [92], and cervical cancer [93].

• HGSC
Whole-exome sequencing analysis of 316 HGSCs identified TP53 somatic muta-
tions in 96% of HGSCs. In addition, mutations in the BRCA1/2 gene were found 
in approximately 20% of both germline and somatic cases. BRCA1/2 is involved 
in the DNA homologous recombination repair pathway, and mutations in genes 
encoding proteins involved in homologous recombination repair other than 
BRCA1/2 were also observed in HGSCs, suggesting that approximately 50% of 
HGSCs have abnormal homologous recombination repair (HRD).

• Endometrial Cancer
Genomic analysis of 373 cases of endometrial cancer classified cancers into the 
following four categories: (1) POLE type (ultramutated) with a very high fre-
quency of gene mutations; (2) MSI type (hypermutated) with a high frequency of 
gene mutations and methylation of the MLH1 promoter region in many of them; 
(3) copy number low type (endometrioid), in which the frequency of mutations 
is low and microsatellite stable; and (4) copy number high type (serous-like), 
consisting mainly of serous-like tumors with significant copy number changes 
and low frequency of genetic mutations.

• Cervical Cancer
Integrated genomic analysis of 228 cervical cancer cases revealed genomic alter-
ations in either or both the PI3K-MAPK and TGFβ signaling pathways in more 
than 70% of cases. In addition, amplification of the CD274 gene encoding PD-L1 
and the PDCD1LG2 gene encoding PD-L2 was observed in approximately 20% 
of the cases.

Although the integrated genome analysis of these three gynecological cancers 
has revealed new cancer genome features, there are only two targeted therapies in 
practical use in the field of gynecological cancer: PARP inhibitors (olaparib, nirapa-
rib, etc.) for BRCA1/2 mutations or HRD-positive ovarian cancer [94–96]; and 
PD-1 inhibitors (pembrolizumab) for endometrial cancer with dMMR [97]. 
Compared to other types of cancer, personalized treatment in gynecological cancer 
has not progressed very much. However, efficient clinical trial designs for new 
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therapies based on master protocols have recently become possible, and new clini-
cal trials based on master protocols are being conducted in gynecological cancers.

The AMBITION trial is an umbrella study of platinum-resistant recurrent ovar-
ian cancer that uses HRD and PD-L1 biomarkers to allocate treatment groups, with 
HRD-positive patients receiving olaparib plus cediranib or durvalumab and HRD- 
negative patients receiving durvalumab plus chemotherapy or durvalumab plus 
tremelimumab plus chemotherapy based on PD-L1 expression; the primary end-
point is the objective response rate [98]. The BOUQUET trial (NCT04931342) [99] 
is a biomarker-driven phase II study of recurrent epithelial ovarian cancer in patients 
with non-high-grade serous carcinoma and non-high-grade endometrial carcinoma, 
including ipatasertib plus paclitaxel for patients with PIK3CA/AKT1/PTEN muta-
tions, obimetinib for patients with BRAF/NRAS/KRAS/NF-1 mutations, trastuzumab 
emtansine for patients with ERBB2 amplification or mutations, and atezolizumab 
plus bevacizumab for the unmatched group. The primary endpoint is the objective 
response rate, and the study is designed as a platform trial. In addition, a project to 
develop a new adaptive platform trial called Ovarian CanceRx was announced in 
2021 [100], and master protocol trials for recurrent ovarian cancer are expected to 
increase in the future. In endometrial cancer, a phase II umbrella study is underway 
of retifanlimab alone or in combination with epacadostat or pemigatinib in patients 
with advanced or metastatic endometrial cancer that has progressed on or after 
platinum- based chemotherapy (NCT04463771) [101], and more clinical trials based 
on similar master protocols are expected to follow.

8.6  Conclusion

Cancer genomics (omics) analysis is expected to become more comprehensive and 
detailed in the future, and more personalized medicine based on cancer characteris-
tics is being sought. As cancer research progresses, a new clinical trial framework 
called “master protocols” has been proposed and implemented to promote more 
efficient and flexible clinical trials. With the rapid evolution of cancer omics analy-
sis from bulk tumor analysis to single-cell analysis and from single-omics analysis 
to multiomics analysis, it is highly likely that such omics analysis will be applied in 
clinical practice. Although it is impossible for clinicians to examine each individual 
datum, it is necessary to accumulate knowledge to prepare for the advent of omics 
medicine in the trend of genomic medicine.
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