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Abstract The on-going climate change is leading to a progressively warmer world 
where extreme weather events, including heat waves (HWs), are going to be more 
frequent and intense. While limiting the anthropogenic contribution to the changing 
climate (through mitigation strategies), it is fundamental to put in place effective 
adaptation strategies for reducing overheating risks and enhancing communities’ 
resiliency. In fact, the increasing exposure to higher ambient temperatures has nega-
tive effects on human health and the overheating risk is associated with individ-
uals and communities’ heat exposure and vulnerabilities. Hyperlocal environmental 
monitoring coupled to socioeconomical assessment is needed to point out the most 
vulnerable areas in a city, thus providing references on where and how to implement 
the proper adaptation strategy. In the body of this chapter, several strategies related 
to human adaptation to higher ambient temperature are presented by grouping those 
strategies according to their scale of application and impact. The proposed spatial 
scales are human, building, and city scales. Human adaptation can be physiological 
(related to body thermoregulatory systems) or behavioural (actions taken to increase 
thermal tolerance). Building and city adaptation are related to greenery (e.g. green 
roofs and façades and green urban infrastructure) and the development and imple-
mentation of new materials. Each strategy should be evaluated in terms of its local 
benefits, but to guarantee sustained societal functioning in this progressively hotter 
climate, these adaptation actions need to be implemented now. 
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1 Introduction 

Climate change is currently one of the main concerns worldwide, with considerable 
impacts also at local and regional scales [21]. One of the consequences of climate 
change is the significant increase in frequency, intensity, and duration of extreme 
weather events, including heat waves [57]. People living in urban environments 
are even more vulnerable to heat extreme events because of the Urban Heat Island 
(UHI) phenomenon and the population density [3]. Indeed, the rapid urbanization 
and anthropogenic activities in cities contribute to increase the ambient temperature 
in considerable levels [70]. It is known that thermal properties of materials used in 
cities, urban canyons radiative distribution, urban greenhouse effect, and diminished 
evaporative surfaces and turbulent transfer are some of the factors causing urban 
overheating [70]. 

The higher air temperature in cities leads to a rise in energy consumption for 
cooling buildings and peak electricity demand [74]. It was also stated that urban 
overheating has negative impacts on air quality [35]. In addition, it harmfully affects 
human health by increasing heat-related mortality and morbidity [75]. However, 
these impacts are not the same for all. Some groups, like elderly people, subjects 
with pre-existing medical conditions, low-income communities, ethnic minorities, 
and socially isolated people, have a higher heat-related vulnerability [67]. 

Efficient reactions to the challenges involving the growing heat-related vulnera-
bility are needed [73], and adaptation is one of the most common strategies adopted 
to deal with this [38]. Cirrincione et al. [8] mention that adaptation measures are 
important to make cities more sustainable and resilient. 

According to the Intergovernmental Panel on Climate Change (IPCC, the United 
Nations body for assessing the science related to climate change), adaptation is 
the procedure of adjustments to actual or expected climate and its effects [25]. 
Some examples of adaptation include the intrinsic human acclimatization process, 
increasing the amount of greenery areas in the cities, and the development of new 
materials to be used in the built environment. 

The IPCC [26] describes two types of adaptation: autonomous and planned. 
Autonomous adaptation is a reaction to the current climate and represents an addi-
tional change in an existing system. Planned adaptation is proactive; that is, it is 
designed to eliminate or reduce a problem before it happens and is characterized by 
an adjustment or a transformation of a system. 

Rohat et al. [67] showed that the efficacy of an adaptation measure depends on “(i) 
the aspect of heat risk it targets, (ii) the type of socioeconomic development, (iii) the 
level of climate change (for strategies targeting the heat hazard), (iv) the communities 
it targets, and (v) the location where it is implemented”. They also complement that 
the efficiency of planned adaptation is supplemented by autonomous adaptation. 
Therefore, both types of strategies need to be considered. 

Despite the type of adaptation, these strategies need to be implemented. Santa-
mouris [72] highlighted the importance of adaptation at both urban and building 
scales to effectively face the future growth of cooling energy needs and the increase
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of climatic vulnerability. Then, it is essential to evaluate the benefits of adaptation 
measures on minimizing the negative overheating effects, such as reducing emerging 
demand for cooling purposes, improving thermal comfort indoors and outdoors, and 
decreasing heat-related health risks. 

This chapter explores the role of human adaptation triggered by higher ambient 
temperatures, especially in urban environments. Risks for humans and vulnerabili-
ties associated with overheating are presented, highlighting the role of environmental 
and socioeconomical factors. Environmental data collection methods and the most 
common indexes for the human heat stress assessment are briefly pointed out as 
fundamentals for an accurate overheating risk mapping and thus an efficient adap-
tation strategies’ planning. Finally, examples of adaptation in different scales are 
reported. 

2 Human Overheating Risk and Vulnerabilities 
in the Framework of Climate Change 

The IPCC recognized that human-induced warming reached approximately 1 °C 
above pre-industrial levels in 2017. This value is assessed accounting for the combi-
nation of surface air and sea surface temperatures averaged over the globe and over 
a 30-year period. Therefore, greater warming levels have already been experienced 
in many regions and during specific seasons. More specifically, land regions are 
facing higher rise in temperature than ocean regions that shows a slower warming 
rate. Within land regions, cities further experience the UHI phenomenon due to their 
specific metabolism and morphology. The construction materials in urban environ-
ments (e.g. concrete and asphalt) usually absorb heat more than natural surfaces, and 
the high density of buildings hinders air circulation, which causes an increase in air 
temperature in comparison with the surrounding less-urbanized areas [39]. 

Any further rise in temperature, beyond 1 °C, would likely be less than 0.5 °C on 
the next three decades by reducing all the anthropogenic emissions to zero imme-
diately. In this view, the 1.5 °C emission pathways are defined as those scenarios 
providing high chance in limiting global warming below 1.5 °C or returning to 
1.5 °C after an overshoot (of different magnitude according to the specific scenario) 
by 2100, at current knowledge state. The consistent 1.5 °C pathways propose to 
eliminate CO2 emissions promptly and to reduce widely other Green House Gases 
(GHG) emissions, which can be accomplished through transformations in energy, 
land, urban and infrastructure (including transportations and buildings), and indus-
trial systems. The industry sector, for example, could reach the target reductions by 
electrification, hydrogen, sustainable bio-based feedstock, product substitution, and 
carbon capture, utilization, and storage [27]. Different 1.5 °C pathways are associated 
with different projected impacts at a global average warming. 

As observed and projected by the scientific community, climate change is asso-
ciated with a global warming trend which additionally turns into weather extremes
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that are foreseen to be more frequent and intense in the coming future. Among these 
extreme events, heat waves (HW) are particularly dangerous for people due to the 
rapid increase in their occurrences and intensity, their synergistic interaction with 
the UHI, and the high mortality rate associated [18, 46, 66]. The World Meteorolog-
ical Organization (WMO) recommended HW definition as follows [83]: a period of 
marked unusual hot weather over a region persisting for at least three consecutive 
days during the warm period of the year based on local climatological conditions, 
with thermal conditions recorded above given threshold. Such a general definition 
underlines the impossibility of providing a unique common definition worldwide. 
Different thresholds for the observed temperature and different durations of these 
temperatures have been used in different studies according to site-specific climate 
conditions and accounting for physical, social, and cultural adaptation capabilities. 
McCarthy et al. [44] re-adapt the WMO definition of HW for different regions of 
the UK by setting appropriate thresholds in accordance with the UK climate. Pascal 
et al. [56] test multiple methodologies for defining temperature thresholds in different 
cities in France, further accounting for the estimated excess in mortality associated 
with different HW temperature thresholds. Robinson [66] highlights that the basic 
HW definition implicitly accounts for two fundamental aspects named as the “phys-
iological” (related to thermoregulation capability of the human body) and “soci-
ological” (centred on local adaptation to climate) aspects. In this framework, the 
main driver for the HW definition results in being its impact on human health and 
that is also the reason behind the need of developing effective warning systems [52, 
55]. The WMO [84] has also produced guidance on the development of heat-health 
warning systems, HHWS, whose aim is to alert decision-makers and the general 
public to impending dangerous hot weather. The following sub-section presents 
what are the heat-related health risks for humans, accounting for diversified popula-
tion vulnerabilities and what has been done so far in literature for their recognition 
and quantification. 

2.1 Overheating Risks for Humans 

A prolonged heat exposure has negative impact on human health as it increases 
morbidity (e.g. heat exhaustion and heat stroke) and mortality (death) [5, 39]. Indeed, 
HWs are a major cause of weather-related deaths [42]. Prolonged exposition to 
extremely high temperatures impacts human health due to heat-related illnesses with 
syndromes that vary from less severe (heat syncope), to severe and lethal (heat stroke) 
[78]. Extreme heat also worsens the effects of chronic diseases (including respiratory 
diseases, cardiovascular diseases, and kidney problems) while it has been observed 
that high temperatures and air pollution lead to synergistic negative health effects 
[11]. High temperatures negatively impact also emotional and psychological health 
[50]. Extreme weather events, in general, affect mental health in several ways [51]. 
Negative health outcomes of urban climate extremes vary according to individuals’ 
vulnerabilities meaning that some groups are more susceptible to these risks. More
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specifically, the health risk due to overheating results from the combination of both 
individuals’ exposure and specific vulnerabilities. Characteristics that affect the indi-
vidual vulnerabilities include age, pre-existing medical conditions, economic condi-
tions (including energy poverty and poor housing), level of instruction, accessibility 
to urban services and facilities (such as the Public Leisure Spaces, PLSs), and health 
education and awareness, all affecting the adaptive capacity of people to environ-
mental stressors. Greater heat-related vulnerability is associated with the elderly and 
very young, people with pre-existing medical conditions, low-income communities, 
people without access to air conditioning, ethnic minorities, and socially isolated indi-
viduals [67]. Climate change projections also show that Central and South America, 
Africa, Middle East, Pakistan, India, Bangladesh, eastern China, south-east Asia, 
and northern Australia are the regions at greater future heat-related risks [14, 48]. 

Mallen et al. [42] affirm that the vulnerability depends on the exposure, sensi-
tivity, and adaptive capacity of a person. Regarding HWs, the exposure is related to 
the event intensity and its spatial distribution, the sensitivity is associated with how 
much the increased exposure to these events will affect people physically; and the 
adaptive capacity is the capability to diminish or deal with the increased personal 
exposure. Some specialists proposed vulnerability indexes, that is, a metric that 
combines indicators considered to be representative of this issue used to describe the 
vulnerability of a population [25]. Alonso and Renard [1], for example, presented 
a proposal for vulnerability indexes that included physiological (response capacity 
of the organism) and socioeconomical aspects. These indexes are important to iden-
tify the locations and groups of people more heat-vulnerable to plan pointed inter-
ventions and strategies that will be more effective [6, 42]. Another methodology 
for assessing population overheating vulnerability in urban contexts is provided 
by Macintyre et al. [39] by combining multiple factors associated with heat-health 
outcomes, mainly spatial distribution of the UHI intensity, dwelling types, and socioe-
conomic factors. The selection of proper indexes, highlighting human overheating 
risks, and of effective methods for mapping such risks is going to be the benchmarks 
for developing decision-makers’ supporting tools, driving adaptation and mitigation 
strategies’ implementation. 

Even limiting global warming to 1.5 °C, adaptation actions still are fundamental to 
face the effects of climate change [54]. Adaptation to the changing climate accounts 
for any kind of action aimed at managing the impacts of climate change by lowering 
both vulnerability and exposure to its detrimental effects for individuals, communi-
ties, ecosystems, or the same built environment (e.g. deterioration of cultural heritage 
sites, of infrastructures, etc.). In addition to limit climate change-induced risks, to 
adapt to changing climate also means to exploit any potential benefits. Along with 
the adaptation capabilities in face of the on-going climate change, mitigation actions 
are urgent to limit the anthropogenic contribution to global warming. Indeed, miti-
gation actions are all those strategies implemented at different scales (international, 
national, local/community, and individual level) for directly limiting GHG emissions. 
While to adapt to changing climate is needed since we are already facing relevant 
effects, we cannot indefinitely adapt, and thus, mitigation is urgent to avoid wors-
ening of the same effects. Adaptation and mitigation actions can interact with each
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other resulting in synergies or trade-offs, and this is recognized in several sectors, 
such as agricultural, infrastructure planning and construction, and tourism [28, 30]. 
This is the reason why policies and measure efficacy could be significantly enhanced 
by accounting for these types of actions jointly. Furthermore, planned adaptation is 
an important strategy to decrease the negative effects of climate change on health 
within the most vulnerable groups [67]. 

A quantitative description of the achievable benefits due to the implementation of 
adaptation or mitigation actions allows to present and compare more or less effec-
tive strategies to policy and decision-makers. The following sub-section specifically 
focusses on those indexes more commonly used to quantify human health outcomes 
of overheating risks. 

2.2 Assessment of Human Heat Stress 

The most common methodologies for assessing heat stress refer to (i) single mete-
orological variables, (ii) simple biometeorological indexes, or (iii) outputs from 
numerical human heat-budget models. 

The physical environmental component of the heat accounts for the interactions 
among solar radiation, atmospheric temperature and moisture, and wind speed and 
direction. These data are generally retrieved by fix weather stations that may be 
located in not-highly populated areas, or in proximity of airports, sites that cannot be 
assumed as representative of the real conditions a citizen is exposed to. The weather 
data collection site has to be considered during the heat load analysis and forecast 
when the study output is the human health outcome. Recent studies present alternative 
methodologies for retrieving environmental data in areas more representative of daily 
citizen exposure (e.g. within the Urban Canopy). Among those proposals, Pigliautile 
and Pisello [60] developed a miniaturized weather station that can be worn as a 
common bike helmet. This system allowed to map microclimate variations within 
different neighbourhood of the same city [59]. Different microclimatic conditions 
correspond to different heat exposure within the monitored urban environment. The 
heat exposure is a main component in overheating heat assessment: the higher the 
spatial resolution of the monitoring, the higher the accuracy in risk mapping. For the 
heat exposure assessment, it is worth noting that people use to spend the majority 
of their life in indoors. In this view, the assessment of indoor climate for a range 
of dwellings typologies is needed. Important factors to be considered in the indoor 
thermal load estimation include building thermal mass and orientation, as well as 
force or passive ventilation. 

Simplified biometeorological indexes combine more than one environmental 
parameter for describing the heat exchange between the human body and the 
surroundings. Many indexes have been developed throughout years, and reasons 
beyond the choice of a specific index could concern the availability of required data. 
All those indexes aim at determining an apparent temperature that humans perceive
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given a specific combination of two or more environmental parameters. Some biome-
teorological indexes are presented along with their computation equation in Table 
1. 

Other indexes further account for human body characteristics. These are the 
outcomes of simplified heat-budget models describing heat exchanges occurring 
between the body and the environment. In addition to the internal heat produc-
tion (i.e. metabolic rate) and personal power expenditure (i.e. mechanical power) 
which are related to the individual performed activities, the heat stored in the body

Table 1 Some of the most common biometeorological indexes 

Index Acronym Equation 

Heat Index HI 

HI = −42.379 + 2.04901523(Tf) + 10.14333127(RH) 
− 0.22475541(Tf)(RH) −

(
6.83783 × 10−3)(T 2 f

)

− (
5.481717 × 10−2)(RH2) + (

1.22874 × 10−3)(T 2 f

)
(RH) 

+ (
8.5282 × 10−4)(Tf)

(
RH2) − (

1.99 × 10−6)(T 2 f

)(
RH2)

where T f is the air temperature [°F] and RH is the relative humidity 
(expressed as a whole number) 

Humidex Humidex 

Humidex = (air temperature) + h 
h = (0.5555)(e − 10.0) 
e = 6.11 × exp

(
5417.7530×

((
1 

273.16

)
−

(
1 

dewpoint

)))

Net effective 
temperature 

NET 
NET = 37 − 37 − T 

0.68 − 0.0014(RH) + 1/(1.76 + 1.4v0.75)

− 0.29T (1 − 0.01(RH)) 
where T is the air temperature [°C], v is the wind speed [m/s], and 
RH is the relative humidity [%] 

Wet-bulb 
globe 
temperature 

WBGT WBGT = 0.567 × Ta + 0.393 × e + 3.94 
where T a is the air temperature (°C) and e is the water-vapour 
pressure (hPa) 

Apparent 
temperature 

AT 

AT = Ta + 0.348 × e − 0.70 × ws 
+ 0.70 × Q 

ws + 10 − 4.25 
AT = Ta + 0.33 × e − 0.70 × ws − 4.00 
where T a is the dry-bulb temperature (°C), e is the water-vapour 
pressure (hPa), ws is the wind speed (m/s) at an elevation of 10 m, 
and Q is the net radiation absorbed per unit area of body surface 
(W/m2) 

Excess heat 
index 

EHI EHI = Ti+Ti+1+Ti+2 
3 − T95 

where T95 is the 95th percentile of daily temperature (Ti) for  a  
climate reference period, calculated using all days of the year 
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results from the balance of sensible and latent heat fluxes at the skin surface plus the 
respiratory component. Among the most used heat-budget-based indices, there are:

• Standard Effective Temperature (SET*), the equivalent temperature of an 
isothermal environment at 50% of humidity where the subject presents the same 
heat stress (i.e. skin temperature) and thermoregulatory strain (i.e. skin wetted-
ness) as the actual environment; for the SET* computation, the human physiology 
model is the Pierce “two-node” model [17]. The same index is further adapted for 
the outdoors (OUT_SET*) [58],

• Predicted Mean Vote (PMV), perceived thermal sensation computed assuming 
that it depends on the physiological strain imposed to the human body by the 
surrounding environment;

• Physiological Equivalent Temperature (PET), the equivalent temperature of an 
isothermal reference environment characterized by a water-vapour pressure of 
12 hPa and a light air of 0.1 m/s where the core and the skin temperature of a 
reference person are the same of the conditions to be assessed;

• Universal Thermal Climate Index (UTCI) [29], the equivalent temperature asso-
ciated with a strain index representing the synergistic behaviour of core temper-
ature, skin wettedness, blood flow, and sweat rate. This index resulted from the 
multidisciplinary cooperation of scientists from 22 countries. 

3 The Scales of Human Adaptation 

Despite the classification of adaptation strategies in autonomous or planned, they 
can also be differentiated among their different spatial scales [67]. Then, in this 
section, adaptation actions triggered by overheating will be explored on different 
scales, namely human, building, and city scales. 

3.1 Human Scale 

Bringing the general definition of adaptation to the human scale, it is the individual’s 
ability to adjust to current or expected climate conditions [38]. In this context, human-
scale adaptation can be physiological or behavioural. Both are autonomous adaptation 
types [70]; the previous associated with the energy balance of the body and its 
thermoregulatory systems, while the latter mainly related to individual exposure 
limitation. 

Physiological adaptation is related to human acclimatization. According to IPCC 
[26], it is defined as the adjustment of functional or morphological characteristics 
that allow the body to adapt to new climatic conditions. These adjustments can occur 
once or seasonally and enable human performance maintenance under different envi-
ronmental conditions [25]. It could take several years to get completely acclimatized 
to unfamiliar thermal environment (long-term adaptation). This process results in
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a lower rise in core temperature and a lower increase in heart rate at a given heat 
load. The main physiological responses to heat adaptation consist of “an earlier 
onset and higher rate of skin blood flow; an increased sweat rate with earlier onset 
and more dilute concentration of sweat; decreased electrolyte loss and greater resis-
tance to dehydration; a decrease in basal metabolic rate and heart rate; a decrease 
in perceived exertion; and a decrease in oxygen consumption at a given activity 
level or metabolic rate” [10]. Physiological adaptation is one of the main reasons 
why same temperatures generate different health outcomes in different population. 
Indeed, these impacts are more related to the heat wave event duration, the local 
climate, and thus the acclimatization status of the population than to the magnitude 
of experienced temperature. 

However, the physiological adaptation capability of a human body varies 
throughout life. Children [86] and elderly people [45] are more sensitive to heat than 
adults due to their different physiological characteristics. Elderly have reduced ther-
moregulatory responses (e.g. sweating rate, cardiovascular function, etc.) compared 
to young adults. Chronic diseases and the use of some medications can also limit 
acclimatization [23]. Moreover, it is still unknown to what extent physiological adap-
tation can mitigate the heat effects on health [24]. For this reason, it is impossible 
that human autonomous adaptation relies only on the physiological aspect. 

Behavioural adaptation is related to changes in actions that people take to adapt 
[22]. Some examples of behavioural adaptations related to higher ambient temper-
ature are wearing lighter clothes, reducing physical activity, going to a colder place 
outdoors (e.g. parks), opening windows, closing blinds or shades, and using air condi-
tioning systems [69]. Behaviours usually complement the physiological adaptation to 
enlarge human thermal tolerance [23]. Furthermore, social mechanisms recognized 
in specific behavioural factors are the result of a long-term community adaptation. 
Adapting behaviours more specifically associated with cultural backgrounds of a 
community include the time spent in outdoors or local-specific working schedule 
(e.g. the siesta in southern Europe). As for the adaptation physiological capability, 
specific categories can be recognized as more vulnerable to overheating risk due to 
lack in their behavioural adaptation opportunities. For instance, either age extremes 
or cognitively impaired people generally rely upon others for an adequate liquid 
intake, and thus, these population are more prone to dehydration. Dehydration slows 
sweating rate and causes cardiac outputs becoming a common cause of hyperthermia 
and death [20]. 

3.2 Building Scale 

Urban overheating will increase the air temperature and hours of discomfort in indoor 
environments, especially the non-conditioned ones [21]. Whenever active systems 
are at disposal, it will cause growth in cooling energy consumption of buildings and 
it will raise the peak in electricity demand [70]. These effects are highly correlated
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to individual building characteristics [43]. Therefore, the climate change adapta-
tion process at the building scale concerns all those solutions thought to limit the 
consequences of overheating indoors. Their benefits are mostly evaluated in terms 
of thermal comfort improvements, indoor air temperature or superficial temperature 
reduction, and cooling loads decrease. 

Many solutions of adaptation at building scale involve passive strategies to 
decrease the use of cooling systems while limiting the overheating risks for occu-
pants. As the thermal comfort indoors is affected by the thermo-physical properties 
of the building envelope [47], building adaptation has a close relation to the develop-
ment and implementation of new materials and techniques for the building envelope. 
Under hot conditions, the envelope needs to have low solar absorptance [79]. In this 
context, the application of cool materials is a good example of adaptation strategy 
at the building scale. These materials have properties that reduce solar energy gains 
and increase the longwave radiative heat dissipation leading to lower surface temper-
atures [34]. Cool clay tiles [62], cool roof membranes, and cool façade painting [61] 
are options that have already been demonstrated to contribute to reducing the indoor 
air temperature in the hot season. Figure 1 presents an example of the use of cool 
membranes and cool painting. 

Fig. 1 Original prototype building (a) and implementation of a cool membrane (b) and cool painting 
(c, d) [61]
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Fig. 2 Photoluminescent paint (a), grit (b), and tiles (c) [7] 

Cool roof solutions can be improved by thermochromic roof as proposed by 
Fabiani et al. [16]. Thermochromic materials can alter their optical properties when 
the temperature reaches a determined value, and the results of the study showed that 
thermochromic roof is still capable of significantly reducing cooling loads while 
limiting winter penalties that are typical of cool finishing solutions, e.g. not raising 
the heating load during winter [34]. 

In the same context, photoluminescent materials are presented as an innovative 
solution to be implemented in the built environment with cooling potential. Photo-
luminescent materials absorb energy and re-emit it as visible light instead of long-
wave radiation [32]. Figure 2 presents some examples of photoluminescent materials. 
Chiatti et al. [7] presented a characterization of photoluminescent paints concerning 
their thermal emissivity and solar reflectance and found that they have good perfor-
mance as cool materials. Rosso et al. [68] presented a study of applying photolu-
minescent paint as an external envelope finishing layer. They demonstrated that this 
solution can reduce indoor temperature because of its high solar reflectance. 

Additionally, incorporating different phase change materials (PCMs) in building 
elements is a topic that has been gaining attention in terms of improving building 
thermal performance. PCMs absorb and release a large amount of latent heat during 
their phase transition [37]. This technology is useful in cold climates, but other 
investigations also revealed a high potential in reducing indoor temperature and 
peak cooling loads [4, 64, 77]. 

Green roofs [8] and façades [88] are also adaptation strategies that have proven 
to be very effective in keeping the internal temperature lower in hot conditions. 
The main effect of these green elements on enhancing indoor thermal comfort is by 
reducing the heat transfer to the building [8]. 

There are also adaptation strategies related to glazing. In hot conditions, glazing 
solutions should have a low solar heat gain coefficient, which according to [13] is  
the most important factor for reducing cooling loads. Examples of glasses that have 
been shown to maintain lower indoor air temperatures are double glazing and low-e 
(low emissive) coating [76].
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Another passive adaptation option is shading, which avoids or reduces the 
amount of incoming solar radiation and that can be achieved, among others, through 
building’s geometrical elements, vegetation, and blinds [79]. Some studies have 
already shown the main benefits associated with the shading systems in reducing 
indoor or superficial temperature [15, 41]. Shading strategies are often related to 
glazing because it was already demonstrated that shading could compensate for the 
low thermal performance of some glasses [36]. 

Several investigations on these passive strategies have already shown their bene-
fits for improving the indoor environment under overheating conditions. However, 
the effectiveness of human adaptation at building scale may depend on the building 
typology and architecture and on the local climate. For this reason, simulation tools 
are important in choosing the best strategy since the design stage in order by testing 
one or combinations of different solutions and assessing their efficiency. Further-
more, given the projections in climate change, the simulation tool allows to assess 
the overheating adaptation efficacy of specific solutions even under future climate 
conditions [21]. 

Finally, it is worth noting that sometimes the passive solutions are not sufficient 
to maintain adequate thermal comfort levels, and in these cases, cooling systems 
are needed and their usage still belongs to human overheating adaptation solutions. 
The use of more efficient heat exchangers and compressors, more advanced fan 
motors, and appropriate control systems are the main factors on which the energy 
efficiency of cooling systems depends [72]. However, more efficient systems must 
be combined with actions to mitigate urban overheating and the implementation of 
buildings’ passive solutions to compensate for the expressive increase in cooling 
energy demand that will be faced in the next years due to climate changes [72]. 

3.3 City Scale 

Urban overheating is provoking a significant increase in energy consumption for 
cooling and peak energy demand, in addition to its negative effects on people’s 
vulnerability level and the raised heat-related mortality and morbidity [70]. To mini-
mize these consequences, efficient urban adaptation strategies need to be developed 
and implemented [73]. 

The urban green infrastructure has already proven to be a good alternative to 
mitigate urban heat [21, 53, 85]. The urban green infrastructure is the combination 
of planned and unplanned green areas and includes, for example, native vegetation, 
parks, street trees, green roofs, and green walls [53]. It cools the urban environments 
through evapotranspiration and shading, and the climatic factors, design, and plant 
selection affect its cooling efficiency [63]. Regarding parks, their size influence not 
only their cooling potential inside the park but also the outside effects [85]. 

In the same context, some studies have been investigating the effects of water-
bodies to minimize urban heat. The main process by which water contributes to 
reducing urban heat is evapotranspiration [82]. Its cooling potential is influenced
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by the waterbody area and shape index and the land-use characteristics in the 
surrounding [89]. Recently, the combining effects of green infrastructure and water-
bodies are also being studied, evaluating their mutual environmental results in coun-
teracting urban overheating [9, 19, 87] and attesting their social and health benefits 
[31]. 

From the material point of view, academia and industry are studying and devel-
oping different solutions capable of reducing the negative impacts of urban over-
heating [34]. They can be evaluated considering their capacity to reduce the air 
temperature and the surface temperature. 

Doulos et al. [12] compared several materials in terms of their thermal properties. 
They concluded that “cold” materials are the ones with a smooth and light-coloured 
surface made of marble, mosaic, and stone, while “warm” materials have a rough 
and dark-coloured surface made of pebble, pave stone, and asphalt. Other studies 
also found that increasing the surfaces (pavements, roofs, and/or walls) albedo can 
considerably reduce the air temperature [49, 80]. 

In fact, many adaptation measures developed for buildings (Sect. 3.2) have 
presented benefits also in the outdoor environment, such as cool roofs [40], ther-
mochromic roofs [16], and photoluminescent materials [7]. If these materials are 
implemented on a large scale in buildings, they could help on minimizing the over-
heating effects in the urban environments besides contributing to keeping the indoor 
temperature lower. 

Some adaptation strategies are also developed for being implemented in pave-
ments. Permeable pavements, for example, can minimize urban overheating effects 
through evaporative cooling [81]. Santamouris [71] showed that white pavements, 
which have a higher albedo than dark surfaces, have a significantly lower surface 
temperature than asphalt. Kousis et al. [32] proposed a solution for concrete pave-
ments with photoluminescent aggregates (Fig. 2b) to improve their reflectivity against 
surface overheating. They concluded that this pavement maintained lower superficial 
temperatures (up to 3.3 °C) than the reference (cool concrete). 

The heterogeneity of the urban environment gives rise to variations on micro-
climatic conditions on a micro-scale (hyperlocal), and these differences should be 
investigated so that personalized and site-specific interventions can be proposed 
for each situation [59]. Then, the adaptation process on a city scale should involve 
microclimatic monitoring. The most used techniques used to map urban microcli-
mate are remote sensing using satellite data [2], fixed weather station network [65], 
mobile transects equipped on dedicated vehicles [33], and, more recently, wearable 
devices able to monitor physical parameters from a pedestrian point of view [59, 
60]. Each technique has its pros and cons, but, ideally, they should be combined to 
get a granular perspective of the microclimate on a large scale. Regardless of the 
method adopted, urban microclimate monitoring is important when choosing the 
best adaptation strategy for each specific case.
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4 Conclusions 

The climate change is recognized as an on-going process, mostly influenced by 
anthropogenic activities. The observed global warming suggests that we must put 
in place effective mitigation strategies, to slow down the process by reducing the 
anthropogenic impact, along with adaptation strategies. Humans need to enhance 
their capabilities of adapting to the changing climate and to enhance their resilience 
to extreme weather events (including heat waves) that are going to become more 
frequent and intense in the coming future. In this framework, overheating risk is a 
major concern for the global population that mainly live in urbanized areas, places 
already affected by the Urban Heat Island phenomenon. A hyperlocal assessment 
of the overheating risk is needed for planning effective adaptation and mitigation 
strategies, capable of addressing site-specific criticalities and local communities’ 
vulnerabilities. 

Moving from an overview of the current and the expected overheating risks, 
specifically focussing on the synergistic effect of HWs and UHI in terms of human 
health detriment, adaptation strategies have been presented, grouped according to 
their scale of application and impact in three categories, as follows: human-, building-
, and city-scale adaptation strategies. 

Adaptation at human scale involves individuals’ capabilities of adapting to the 
changing climate by reducing their vulnerability and limiting their exposure to heat. 
Two main mechanisms are identified: physiological and behavioural adjustment. 
The human body has a thermoregulatory system that allows to keep almost constant 
its own core temperature reducing the heat stress. The physiological adjustment is 
observed on both the short and the long term. The latter guarantees the human body 
performance under different environmental conditions: it could take years to get 
acclimatized to unfamiliar thermal environment. Nevertheless, physiological adap-
tation can be compromised due to ageing or health status and cannot mitigate the 
heat-health outcomes completely. Behavioural adjustment procedures are generally 
put in place to limit the individual exposure to heat, being generally adapted to the 
cultural background and thus also related to local climate conditions (e.g. spending 
the hottest hours indoors, drinking water, adjust clothing insulation, etc.). 

Adaptation strategies at the building scale mainly aim at enhancing indoor thermal 
conditions. Active and passive solutions are both considered adaptation practices 
but in the view of limiting anthropogenic contribution to climate change (mitiga-
tion actions), passive solutions are preferable and the main purpose of enhancing 
indoor thermal comfort must be combined to the aim of minimizing building energy 
consumptions. The most effective solutions for the building envelope belong to the 
broad category of “cool materials” characterized by specific radiative and optical 
properties which limit the warming-up process during day-time and the re-emitting 
energy component during night-time (e.g. cool paintings, thermochromic, photo-
luminescent, PCMs, etc.). Other constructive elements that contribute to reducing



5 Human Adaptation to Higher Ambient Temperature 123

building internal heat loads include green roofs and green facades. A main compo-
nent of the greenery mitigation potential concerns the evapotranspiration and so the 
increment of the latent component within the element energy budget with respect to 
the sensitive one. 

Green and blue infrastructures are among the most effective overheating adap-
tation solutions at the urban scale. Cities are particularly critical areas due to a 
general lack of greenery and permeable surfaces and their complex morphology that 
limits the wind field and thus advection cooling process. A proper design of public 
spaces and parks, accounting for cool and permeable pavements and green and blue 
elements, could provide overheating mitigation not limited to the area of interven-
tion but extended to its surroundings. Furthermore, urban microclimate would benefit 
from the large-scale application of the building-scale adaptation solutions. 

In a warming world, it is fundamental to enhance humans’ adaptation capability, 
especially given the well-stated relation between urban overheating and heat-related 
mortality and morbidity. Coordinated adaptation strategies in all scales are urgent to 
cope with the climate change harmful impacts by reducing the associated risks and 
vulnerability. Each strategy should be evaluated in terms of its local benefits, even 
if the particularities and complexities of urban environments hinder this process. 
However, to avoid worse consequences and guarantee sustained societal functioning 
in this progressively hotter climate, these adaptation actions need to be implemented 
now. 
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