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Abstract Twitter is a fast emerging form of social media. People use Twitter as 
a platform to report real-life events. The present paper focuses on extracting those 
events by analyzing the text stream on Twitter. This paper presents methods that take 
the tweets in real time as input and generate clusters of tweets denoting different 
communities as output. The tweets are collected using spark streaming and then 
pre-processed, and a key graph of keywords is constructed using the tf-idf method. 
Further community detection is applied on this key graph to generate clusters of 
tweets as a result. 

Keywords Event detection · Live tweets · Tf-Idf · K-mean clustering algorithms ·
Key graph 

1 Introduction 

Twitter has been the most promising news delivery and social media platform for the 
internet user. As time is passing, the number of users on Twitter is also increasing 
exponentially. Since the requirements are too high, so we need some technology to 
satisfy those requirements. A large amount of data in the form of tweets, images, 
videos and animation is being generated very frequently. There are social media 
platforms like Facebook, Instagram and YouTube which have changed the way of 
satisfying needs by using technology. All these social media giants have changed the 
traditional way of connecting people over the internet. Since Twitter is one of the 
most popular platforms, that’s why we are using Twitter for Event Detection purposes. 
Twitter is a platform where tweets related to any local or global events are written 
by users in a few seconds. Natural events like earthquakes, disease outbreaks, etc. 
are significantly detected by performing event detection on Twitter data [2]. Twitter 
easily figure out what is happening right now. Tweets are real time data for analysis 
covering different subjects from various sources. Event detection about emerging
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events is highly important if it is performed on real time data [9]. Different people 
are interested in different types of news and events. Some people want to know about 
local events [18]. Business oriented organizations are interested in sponsoring their 
product and services to their favourite customers [4, 5, 13]. Event detection can fulfill 
the requirements of these people. Event detection can also help in the detection of 
natural disasters and warning people faster than any other media [7]. Event detection 
is also helpful in crime detection for example bomb blast or terrorist attack. Event 
detection in Twitter is effected due to a large amount of meaningless data [15]. Data 
which is being generated on Twitter is not of high quality, So various high scalable 
and efficient techniques are being for the pre-processing of the data to make it usable 
for event detection. Users prefer to write short tweets and they generally use distorted 
words [12]. Different events consist of different numbers of participants, different 
time periods and relationships [14]. Real time collection is a big challenge in real time 
event detection because every time a large amount of data is created on Twitter. Real 
time event detection has different applications and with technology support. In the 
present paper, we have proposed the detection of events in live Twitter streams. For 
construction, the key graph tf-idf scheme is used. The key graph is further used for 
detecting the communities using the Betweenness Centrality score and then finally 
clusters are formed using k-mean with cosine similarity. The rest of this paper is 
structured as follows: Sect. 2 introduces the most relevant related works. Section 3 
provides the used dataset description. Section 4 provides a detailed description of 
the proposed approach. Experimental Setup and Results are discussed in Sect. 5. 
Section 6 finally concludes the paper with future work. 

2 Related Work 

New Event Detection models do a single step increscent clustering algorithm. When 
a new document is collected similarity is found betweenthe document along with 
computation on known events and selection is done on the basis of maximum simi-
larity. A threshold is set, if similarity is more than threshold then the document 
belongs to a known event else considered as a new event. A Key Graph based approach 
is used by Hassan Sayyadi, Matthew Hurst and Alexey Markov [6]. They built a key 
graph based on co-occurrence and used betweenness centrality algorithm for clus-
tering keywords. In this algorithm, they count all keywords in a single community, 
though a subgroup of the keyword may be better. Modified version of TF/IDF was 
developed by Allen et al. [1] also penalized the threshold in which the threshold is 
amerced by the time distance between the event and the document. Calculation of IDF 
using online clustering algorithm is required as to know future document features. 
The same method is used by Sayyadi et al. in [14]. A supplementary data set is used 
by Allen et al. [1] in order to find IDF while Yang et al. [16] proposed an increscent 
IDF factor. Time difference was the basis to find the similarity between documents 
and events along with consideration of time window and a decay factor that Yang 
et al. used. To take out past event Yang et. al [16] put forwarded an agglomerative
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clustering, GAC (augmented Group Average Clustering). In order to handle cluster 
quality, they used looping bucketing and re-clustering. A probabilistic model was put 
forwarded by (Li et al. 2005) for RED and in order to maximize log-likelihood of the 
distributions they used the Expectation Maximization (EM) algorithm. A significant 
number of events is required by such algorithm which is not feasible in practice. 
Li et al. found an approximation of event counts from the article count- time distri-
bution [11]. Event detection models usually use similar algorithms, many different 
document representation, distance or similarity metrics, and clustering algorithms 
mentioned in the theory [3, 8, 10, 17]. 

3 Dataset Used 

In this paper, we have collected the tweets from Twitter based on a search keyword 
(hashtag) of “Facebook” and then, this data is given to the spark client where the 
data is processed in batches. The batch interval used is 1 min in which 80–90 
tweets are collected in one batch of spark. So, our one iteration of algorithm runs on 
approximately 80–90 tweets. 

4 Proposed Approach 

We have collected the data set from Twitter in form of batches in real time using Spark 
streaming API. Prepossessing is performed on each batch of data which includes 
Tokenization, removal of Stop words and Stemming. Our approach comprises the 
following phases: (1) Construction of Key Graph; (2) Identifying Communities in 
Key Graph; (3) Document Clustering using K-Mean with Cosine similarity. 

4.1 Construction of Key Graph 

Key graph is made using pre-processed data. We first calculate term frequency (TF), 
document frequency (DF) and inverse document frequency (IDF). Remove keywords 
with low DF because these keywords are not useful. Key graph is constructed by 
taking the remaining keyword as a node of the graph. Co-occurrence of keyword 
represents the relationship between keywords. Make an edge between keywords 
which co-occur in the same document. Some edges are present as noise in the key 
graph. We remove edges which are not satisfying following two conditions-

(1) If the co-occurrence of two keywords is below some specified threshold value 
then the edge between these two keywords is removed. 

(2) For the edge of the node ‘X’ and ‘Y’, if there is a potential probability of viewing.
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‘X’ in the documents if ‘Y’ is present in the document and if ‘X’ exists then 
the condition of ‘Y’ in the documents are calculated and if both are smaller than 
the threshold, then the edge will be removed. 

Algorithm 1 Construction of Key graph from tweets 

Input: Keyword (hashtag) of tweets 

Output: Key graph (kgi) of keywords ki 

1 BEGIN 

2 FOR Extracted all tweets ti (specified time limit) in real time for corresponding 
hashtag 

3 Pull out words wi, noun ni, noun phrases npi, adverb ai adjective adi and named 
entities nei from ti as keywords ki 

4 END FOR 

5 FOR all keywords ki extracted from tweets ti do 

6 Calculate Document frequency df of all tweets ti 

7 END FOR 

8 Remove keywords ki with low Document frequency df 

9 Construct the keyword ki co-occurrence graph cgi as follows: 

– Generate single vertex vk for each keyword ki 

– Generate single link li;j for every set of co-occurring keywords ki and kj 

10 END 

4.2 Identifying Communities in Key Graph 

Edges of the graph represent the relationship of keywords and the whole key graph 
presents a social network of keywords. Communities of keywords are represented 
by highly dense graphs. Communities have a large number of edges because there 
exist more relationships between keywords in the community. Between different 
communities, there are few links. Betweenness Centrality score is used to find the 
edges between communities. Betweenness centrality score for any node is the number 
of shortest paths between all pairs of graphs which pass through that node. Edges 
between communities come across many shortest paths so these edges have a high 
betweenness centrality score. These edges are connecting the different communities 
so after removing edges with high betweenness centrality score we will get different 
clusters of keywords and each cluster represent different communities. Each commu-
nity is the hypothesis of an event. This is an iterative process. In each iteration, we 
remove edges with low BC scores. For this, we first calculate the BC score by finding 
the shortest path between all node pairs of graphs. We use BFS to find the shortest 
path. If two edges have the same BC then the edge with low conditional probability 
is removed. If the edges which are removed belong to two different communities and 
have high conditional probability then edge is duplicated in both communities and
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then removed. We again calculate BC score for the next iteration and perform the 
same operation until all edges with a high score are not removed. Finally, we get a 
cluster of keywords representing events. 

Algorithm 2 Identifying Topic Features 

Input: Set of key graphs (kgi) 

Output: Topic (Ti = t1;t2;t3:::tn) feature sets (Fi = f1; f2; f3::: fm) 

1 Separate Key Graph (kgi) in communities coi of strongly related ( kiecoi) keywords 
ki as topics Ti 

2 FOR all topic tieT do 

3 Place all keywords ki in the related feature vector (FVi = f v1; f v2; f v3::: f vn) of 
related keyword partition fp 

4 END FOR 

4.3 Document Clustering Using K-Mean 

Each group of keywords make a synthetic document called as Key Document. All 
documents can be grouped in the original collection, similar to this synthetic docu-
ment, thus a group of periodical documents is obtained. To discover document clus-
ters, k-mean with cosine similarity is used. Sometimes keywords are common in an 
important document, or the main document has few keywords. It makes a general 
class of documents. These important documents make a set of documents related 
to higher levels. For example, a key document containing only “Modi”, “Rahul”, 
“Votes”, and “Election” indicate the Indian general elections which is not a separate 
event. We can find such important documents with help of the similarity of docu-
ments related to an important document. Documents are data points, and the variance 
of documents related to such key documents will be very large. So, we calculate the 
variance of documents for every main document and then filter those key documents 
that have a large variance. This makes it easier to find those key documents which 
truly represent events. However, documents allocated to key clusters are based on 
the cosine similarity of documents to the key documents, some of the documents are 
filtered later to reduce noise. Apart from these, the similarity between the documents 
and the centroid of each cluster are also calculated and filter those documents which 
have low cosine similarity to the centroid.
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Algorithm 3 Document Clustering (K-mean with cosine similarity) using Topics 

Input: Topic (Ti = t1;t2;t3:::tn) feature sets (Fi = f1; f2; f3::: fm) 

Output: Topics (Tl = t1;t2;t3:::tm) under the cluster documents (cd1;cd2;cd3:::cdn) 

1 FOR all topic ti 

2 Initialize the k value and select as the initial centroid value ci&cj 

3 Calculate the similarity (s) of topic ti for document di: 
s(ti = di) = =  cos(di;FVi)

Σ
(tieT)cos(di;FVi) 

4 Recalculate the centroid of each cluster until centroid value not changed 

5 END FOR 

6 FOR complete topic ti and tl do 

7 IF the topic T overlap of ti and tl 

8 Combined ti and tl into a new topic NT where FVi = f vti  + f vtl  
9 END IF 

10 END FOR 

4.4 Example of Construction Keygrpah, Identifying Topic 
Features and Document Clustering (K-means 
with Cosine Similarities) Using Topics 

Consider the graph in the above Fig. 1, the nodes represent the keywords and the 
edges represent the co-occurrence of the two keywords between which it is present. 
Consider all the edge weights to be equal to 1. The following table gives the values 
of betweenness centrality scores calculated for every edge using the Breadth First 
Search algorithm.

Cosine Similarity 

Let us say we have multiple documents and we need to determine the similarity 
between those documents. Let us name the two documents as document1 and docu-
ment2 respectively. A document can be represented by a bag of terms or a long 
vector, with each attribute recording the frequency of a particular term (such as 
word, keyword or phrase) in the document. We will be having two term frequency 
vectors (d1 and d2). Table 2 shows that d1 and d2 denote term frequency in doc1 and 
doc2 respectively. 

cosθ = 
d1.d2 

|d1||d2|



Event Detection in Live Twitter Streams Using Tf-Idf … 475

Fig. 1 Initial keyword graph

Finding similarity between document d1 and d2: 

d1 = 5,0,3,0,2,0 and d2 = 3,0,2,0,1,1 

1. First, calculate the dot product of these two documents 

d1.d2 = 5 ∗ 3 + 0 ∗ 0 + 3 ∗ 2 + 0 ∗ 0 + 2 ∗ 1 + 0 ∗ 1 = 23 

2. Then calculate kd1kandkd2k 

||d1|| = √
5 ∗ 5 + 0 ∗ 0 + 3 ∗ 3 + 0 ∗ 0 + 2 ∗ 2 + 0 ∗ 0 = 6.164 

||d2|| = √
3 ∗ 3 + 0 ∗ 0 + 2 ∗ 2 + 0 ∗ 0 + 1 ∗ 1 + 1 ∗ 1 = 3.873 

3. Calculate cosine similarity: 

cos(d1, d2) = 23 

6.164 ∗ 3.873 
= 0.96 

5 Experimental Setup and Results 

We have used the above presented algorithms on batches of tweets formed by passing 
the live tweets coming from the spark streaming API by using a search keyword. 
Batch interval used for the experiment is 1 min in which 80–90 tweets are collected in 
one batch of spark. So, our one iteration of the algorithm runs on approximately 80–90 
tweets. In the first step of the algorithm, a key graph is formed which contains nodes 
and edges between any two nodes if they co-occur. Here we obtained approximately
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40 keywords(nodes). After that, clusters of keywords are formed from the key graph 
and then tweets are categorized into these clusters of keywords using cosine similarity 
(Tables 1 and 2). 

Table 1 Betweenness centrality score 

Node 1 Node 2 Betweenness centrality 

1 2 1 

1 3 1 

1 4 10 

1 5 0 

1 6 0 

1 7 0 

1 8 0 

2 3 1 

2 4 0 

2 5 0 

2 6 0 

2 7 0 

2 8 0 

3 4 0 

3 5 0 

3 6 0 

3 7 0 

3 8 0 

4 5 16 

4 6 0 

4 7 0 

4 8 0 

5 6 10 

5 7 0 

5 8 5 

6 7 6 

6 8 2 

7 8 0 

Table 2 Calculation example 

Doc Team Coach Hockey Baseball Soccer Penalty 

d 1 5 0 3 0 2 0 

d 2 3 0 2 0 1 1
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5.1 Batch wise Key graphs And Categorization of Tweets 

In this section, we have shown the results obtained by running the above approach 
in batches. The algorithm is applied on each batch and the results are hence depicted 
batch-wise. 

Batch 1 Results In Fig. 2, the initial key graph and final graph of batch 1 results. 
The figure shows the graph formed initially after pre-processing of tweets and also 
filtering of keywords based on document frequency. Here, the keywords represent 
the node of the graph and the edges between them show their co-occurrence. The 
final key graph is the formed after clustering of keywords phase of the algorithm. 
It contains edges only between those nodes which belong to a particular cluster. 
Table 3 shows the tweets belonging to a particular category. For example, number 2 
represents the tweet belonging to this category. 

Fig. 2 Initial and Final Key Graph of Batch 1 Results 

Table 3 Categorization of tweets btach-1 

Category No Tweets Belonging to this category 

2 [‘WhatsApp co-founder flees Facebook just as fb gets underway 
http://t.co/yF6wsKEnOi’] 

6 [‘TR @Mdproductionsmd: HELLO MAY- What a month it is going to be with 
some exciting 
things happening. Check out what we have on at MD HQ th’] 

16 [‘Facebook partners with RED to develop a high-end, professional VR camera 
https://t.coMSVSdADKVg] 

35 [‘Dont worry Son day of judgement is for a reason.’] 

37 [‘#facebook #facebookmarketing #zuck #page #b’] 

41 [‘RI @blackmirror: 1000 simulations completed. https://t.co/mpxcDitBVQ’]

http://t.co/yF6wsKEnOi
https://t.coMSVSdADKVg
https://t.co/mpxcDitBVQ
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Batch 2 Results Similarly, for batch 2, Fig. 3 represents the initial key graph and 
final key graph. Table 4 shows the categorization of tweets. 

Fig. 3 Initial and Final Key Graph of Batch 2 Results 

Table 4 Categorization of tweets btach-2 

Category No Tweets Belonging to this category 

12 [‘And that is why heaven and hell are for ETERNITY! 
https://t.co/k2RQZA74KT’] 

17 [‘Worth a quick refresher, for all of us parents, https://t.co/ptGLaWp5kZ’] 

22 [‘Facebook. Into twitter. http’] 

23 [‘Facebook is trying to close the book on Cambridge Analytica: https://t.co/SYc 
xIfCRcY’] 

24 [‘Seven year old girl owns riding in the rain’] 

25 [‘Reminder- in 1 h Online Marketing Facebook Series, click on the link an d 
register! https://t.co/XgoeDMuNJO’] 

33 [1- red coloured vinyl I https://t.co/rRiGAUatt6’] 

40 [‘RT @blackmirror: 1000 simulations completed. https://t.co/mpxcDitBVQ’] 

71 [Spotify, Soundcloud, and GoPro can now let their users to share to facebook and 
Instagram stories https://t.co/mqkISPEHmv] 

72 [‘I want this!! https://t.co/fa1Xz8YF8P’] 

82 Not new product on Product Hunt: Facebook Analytics Facebook’s new analytics 
app on iOS and Android https://t.co/cRFz82Akw8’]

https://t.co/k2RQZA74KT
https://t.co/ptGLaWp5kZ
https://t.co/SYcxIfCRcY
https://t.co/SYcxIfCRcY
https://t.co/XgoeDMuNJO
https://t.co/rRiGAUatt6
https://t.co/mpxcDitBVQ
https://t.co/mqkISPEHmv
https://t.co/fa1Xz8YF8P
https://t.co/cRFz82Akw8
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6 Conclusion and Future Work 

In this paper, we have used a key graph based approach for clustering keywords 
to find out events from live tweets. Presently, the batch interval used is small due 
to the amount of memory spark needed. Therefore, further work can be done to 
run the above algorithm on a distributed system so that algorithm can be run on 
a large dataset and can produce better results. Apart from that, the complexity of 
the algorithm becomes too high when used for live processing therefore, another 
approach needs to be formulated to reduce the complexity. 
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