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Abstract This article gives an overview of some recent progress in the study of
sharp two-sided estimates for the transition density of a large class of Markov pro-
cesses having both diffusive and jumping components in metric measure spaces. We
summarize some of the main results obtained recently in [11, 18] and provide several
examples. We also discuss new ideas of the proof for the off-diagonal upper bounds
of transition densities which are based on a generalized Davies’ method developed
in [10].
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1 Introduction

Transition density function p(t, x, y) of a Markov process X , if exists, satisfies
the Kolmogorov backward equation, which is a parabolic equation involving the
infinitesimal generator L of X . Thus p(t, x, y) is also called a heat kernel of L or a
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fundamental solution of ∂t u = Lu. Analysis of heat kernels is an important research
topic both in analysis and in probability theory. Most of the studies on sharp two-
sided estimates of the heat kernel concentrate on cases when X is a diffusion or a
pure jump Markov process; that is, when the infinitesimal generator L is local or
purely non-local. However, there are classes of Markov processes that can have both
diffusive and jumping components. Discontinuous Lévy processes having Gaussian
parts are such typical examples.

Markov processes having both diffusive (continuous) and jumping components
have interesting features. Such processes run on two different scales: on the small
scale one expects the continuous component to be dominant, while on the large
scale the jumping component of the process should be the dominant one. In fact,
there are even ranges of times and sizes of distances where both components appear
together (in a short-time and short-distance region). See Figs. 1 and 2. Therefore,
both components play essential roles. These are also the source of challenges in the
study of such processes.

The literature on the potential theory ofMarkov processes having both continuous
and jumping components is scarce. Elliptic Harnack inequalities for some of these
processes are studied in [20, 25, 26]. Two-sided heat kernel estimates for a family of
Lévy processes having Gaussian components with variable drifts are derived in [8].
The first work that establishes sharp two-sided bounds for a large class of symmetric
diffusionswith jumps is [15].More precisely, consider the following regularDirichlet
form (E,F) on L2(Rd; dx) given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E(u, v) = 1

2

∫

Rd

∇u(x) · A(x)∇v(x) dx

+
∫

Rd×Rd\diag
(u(x) − u(y))(v(x) − v(y))J (x, y) dx dy,

F = C1
c (R

d)
E1

,

(1)

where C1
c (R

d) is the space of C1-functions on R
d with compact support and

E1(u, u) := E(u, u) + ∫

Rd |u(x)|2dx . Here A(x) = (ai j (x))1≤i, j≤d is a measurable
symmetric d × d matrix-valued function on Rd that is uniform elliptic and bounded
in the sense that there exists a constant c ≥ 1 such that

c−1
d∑

i=1

ξ 2
i ≤

d∑

i, j=1

ai j (x)ξiξ j ≤ c
d∑

i=1

ξ 2
i for every x and ξ = (ξ1, . . . , ξd) ∈ R

d ,

and J (x, y) is a symmetric non-negative measurable kernel on R
d × R

d \ diag that
satisfies condition

1

c1|x − y|dφ j (|x − y|) ≤ J (x, y) ≤ c1
|x − y|dφ j (|x − y|)
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for all x, y ∈ R
d × R

d \ diag, where φ j is a strictly increasing function on (0,∞)

satisfying

c−1
2

( R

r

)α∗ ≤ φ j (R)

φ j (r)
≤ c2

( R

r

)α∗
for all 0 < r ≤ R (2)

with 0 < α∗ ≤ α∗ < 2 and c1, c2 ≥ 1. Here and in what follows, diag is the diagonal
of a given state space X ; that is, diag := {(x, x) : x ∈ X }. It is shown in [15] that
the symmetric strong Markov process X associated with the regular Dirichlet form
(E,F) on L2(Rd; dx) is conservative and has a jointly Hölder continuous transition
density function p(t, x, y) that enjoys

c1
(

t−d/2 ∧ φ−1
j (t)−d

)
∧ (

p(c)(t, c2|x − y|) + p( j)(t, |x − y|)) ≤ p(t, x, y)

≤ c3
(

t−d/2 ∧ φ−1
j (t)−d

)
∧ (

p(c)(t, c4|x − y|) + p( j)(t, |x − y|)) ,
(3)

for every t > 0 and x, y ∈ R
d . Here

p(c)(t, r) := t−d/2 exp(−r2/t) and p( j)(t, r) := (φ−1
j (t))−d ∧ t

rdφ j (r)
.

Note that there are two scaling functions involved in the transition density func-
tion p(t, x, y) of diffusions with jumps on R

d ; namely the diffusive scaling func-
tion φc(r) := r2 and the scaling function φ j for the pure jump part of the pro-
cess. In the special case when X is the independent sum of a Brownian motion
B and an isotropic stable process α-stable process Z , the transition density func-
tion p(t, x, y) = p(t, x − y) for the Lévy process X is the convolution of those
of B and Z from which the estimates on p(t, x, y) can be derived. Indeed, in this
case estimates on p(t, x) have been derived in [27] by computing the convolution;
however the upper and lower bounds obtained there do not match for the case of
|x |2 < t < |x |α ≤ 1.

The study of heat kernel for symmetric diffusion with jumps has been conducted
further in two directions. One is to establish analytic characterizations of heat kernels
of the form (3) for symmetric diffusions with jumps on general metric measure
doubling spaces that are stable under bounded perturbation; see the last paragraph of
Sect. 2.1 for its precisemeaning.This has been carriedout in [18]. In addition, stability
results for upper bound heat kernel estimates and parabolic Harnack inequalities are
also established in [18]. The other direction is to obtain sufficient conditions on
the jumping kernels J (x, y) under which sharp two-sided heat kernel estimates for
symmetric diffusions with jumps can be obtained, and to investigate how the shape
of the jumps influence the behavior of the heat kernels. Our recent work [11] is in this
direction, in which the ideas and techniques from [16–18] have played an essential
role.

The purpose of this paper is to survey recent results on sharp two-sided heat kernel
estimates for symmetric diffusions with jumps obtained in [11, 18]. In this paper, we
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focus on symmetric diffusions with jumps on inner uniform domains of complete
measure metric spaces. We mention that recently in [9], heat kernel estimates are
established for quite general non-symmetric time-dependent diffusionswith jumps in
R

d . Estimates forDirichlet heat kernels of theLévy processes that are the independent
sum of a Brownian motion and an isotropic stable process have been obtained in [12,
13]. Dirichlet heat kernel estimates for more general subordinate Brownian motions
with Gaussian components can be found in [2, 14].

The rest of the article is organized as follows. In Sect. 2, we present the stability
result for heat kernel estimates (3) from [18]. In Sect. 3, we present the main results
from [11], where the jumping kernel can have exponential decays at infinity. In
both papers [11, 18], the state spaces satisfy the volume doubling condition but the
volumes of balls with same radius may not be comparable. Two different arguments
are used in [11, 18] for upper bound estimates of the heat kernels. In Sect. 3.4, we
give a brief explanation of the argument used in [11] for off-diagonal heat kernel
upper bound estimates.

Notations. We write f (s, x) 	 g(s, x), if there exist constants c1, c2 > 0 such that
c1g(s, x) ≤ f (s, x) ≤ c2g(s, x) for the specified range of the argument (s, x). Sim-
ilarly, we write f (s, x) 
 g(s, x), if there exist constants ck > 0, k = 1, . . . , 4, such
that c1g(c2s, x) ≤ f (s, x) ≤ c3 f (c4s, x) for the specified range of (s, x). We write
a ∧ b := min{a, b} and a ∨ b := max{a, b} for a, b ∈ R.

Denote log+(x) := log(x ∨ 1). For a given metric measure space (X , ρ, μ) and
for any p ∈ [1,∞], we will use ‖ f ‖p to denote the L p-norm in L p(X ;μ). For
any x ∈ X and r > 0, we use B(x, r) to denote the open ball of radius r under
the metric ρ centered at x . For a function space H = H(U ) on an open set U
in X , we let Hc(U ) := { f ∈ H(U ) : f has compact support in U} and Hb := { f ∈
H : f is bounded}.

2 Stability of Heat Kernel Estimates for Symmetric
Diffusions with Jumps

In this section, we discuss stability of heat kernel estimates for symmetric pro-
cesses that contain both diffusive and jumping components on general metric mea-
sure spaces, obtained recently in [18]. See also [19].

Let (X , ρ) be a locally compact separable metric space equipped with a positive
Radon measure μ with full support. We assume that all balls are relatively compact,
and thatμ(X ) = ∞. (Note that we do not assume (X , ρ) to be neither connected nor
geodesic.) Denote the ball centered at x with radius r by B(x, r), and set V (x, r) =
μ(B(x, r)).

Definition 1 (i) We say that (X , ρ, μ) satisfies the volume doubling property (VD),
if there exists Cμ ≥ 1 such that

V (x, 2r) ≤ CμV (x, r) for all x ∈ X , r > 0.
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(ii) We say that (X , ρ, μ) satisfies the reverse volume doubling property (RVD), if
there exist lμ, cμ > 1 such that,

V (x, lμr) ≥ cμV (x, r) for all x ∈ X , r > 0,

Note that under RVD, μ(X ) = ∞ if and only if X has infinite diameter; and if X
is connected and unbounded, then VD implies RVD.

Suppose that we have a regular Dirichlet form (E,F) on L2(X ;μ). By the
Beurling-Deny formula, such a form can be decomposed into the strongly local term,
the pure-jump term and the killing term; see [7, 21]. In this section, we consider the
Dirichlet form (E,F) having no killing term, namely

E( f, g) = E (c)( f, g) +
∫

X×X \diag
( f (x) − f (y)(g(x) − g(y)) J (dx, dy)

=: E (c)( f, g) + E ( j)( f, g), f, g ∈ F ,

where (E (c),F) is the strongly local part of (E,F) and J (·, ·) is a symmetric Radon
measure on X × X \ diag. Here and in what follows, we always take a quasi-
continuous version of a function in F . We assume that neither E (c)(·, ·) nor J (·, ·) is
identically zero.

Given the regular Dirichlet form (E,F) on L2(X ;μ), there is an associated μ-
symmetric Hunt process X := {Xt , t ≥ 0; Px , x ∈ X \ N } that is unique up to a
properly exceptional set, whereN ⊂ X is a properly exceptional set for (E,F); see
[7, 21]. In this case, X is a symmetric diffusion with jumps. We fix X and N , and
write X0 = X \ N . Define

Pt f (x) = Ex f (Xt ), x ∈ X0

for bounded Borel measurable function f on X . The heat kernel associated with the
semigroup {Pt }t≥0 (if it exists) is a jointly measurable function p(t, x, y) : (0,∞) ×
X0 × X0 → (0,∞) so that

Ex f (Xt ) = Pt f (x) =
∫

p(t, x, y) f (y) μ(dy) for all x ∈ X0, f ∈ L∞(X ;μ).

Let φc : R+ → R+ (resp. φ j : R+ → R+) be a strictly increasing continuous
functionwithφc(0) = 0, φc(1) = 1 (resp.φ j (0) = 0, φ j (1) = 1) such that there exist
constants C1 ≥ 1 and 1 < γ∗ ≤ γ ∗ (resp. C2 ≥ 1 and 0 < α∗ ≤ α∗) so that

C−1
1

( R

r

)γ∗ ≤ φc(R)

φc(r)
≤ C1

( R

r

)γ ∗
for all 0 < r ≤ R, (4)
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(resp. (2)). The function φ will serve as the diffusive scaling, while φ j corresponds
to the scaling function for the pure jump part. We assume that

φc(r) ≤ φ j (r) for r ∈ (0, 1] and φc(r) ≥ φ j (r) for r ∈ [1,∞). (5)

This assumption is natural in view of (3) where φc(r) := r2 and φ j (r) satisfies (2).
Set

φ(r) := φc(r) ∧ φ j (r) =
{

φc(r), r ∈ (0, 1],
φ j (r), r ∈ [1,∞).

It is well known that for any f ∈ Fb, there exist unique positive Radon measures
μ〈 f 〉 and μc

〈 f 〉 (called the energy measures of f for the Dirichlet forms (E,F) and
(E (c),F)) on X so that for every g ∈ F ,

∫

X

g dμ〈 f 〉 = E( f, f g) − 1

2
E( f 2, g) and

∫

X

g dμc
〈 f 〉 = E (c)( f, f g) − 1

2
E (c)( f 2, g).

Let U ⊂ V be open sets of X with U ⊂ U ⊂ V . We say a non-negative bounded
measurable function ϕ is a cut-off function for U ⊂ V , if ϕ ≥ 1 on U , ϕ = 0 on V c

and 0 ≤ ϕ ≤ 1 on X .

Definition 2 (i) We say that Jφ j holds if there exists a non-negative symmetric
function J (x, y) such that for μ × μ-almost all x, y ∈ X ,

J (dx, dy) = J (x, y) μ(dx) μ(dy),

and

J (x, y) 
 1

V (x, ρ(x, y))φ j (ρ(x, y))
.

(ii) We say that the (weak) Poincaré inequality PI(φ) holds (for E) if there exist
C > 0 and κ ≥ 1 such that for any ball Br = B(x, r) with x ∈ X , r > 0 and for
any f ∈ Fb,

∫

Br

( f − f Br
)2 dμ ≤ Cφ(r)

⎛

⎜
⎝μc

〈 f 〉(Bκr ) +
∫

Bκr ×Bκr \diag
( f (y) − f (x))2 J (dx, dy)

⎞

⎟
⎠ ,

where f Br
= 1

μ(Br )

∫

Br
f dμ.

When φ(r) is a power function rdw with dw > 1, we write PI(dw) for PI(φ).
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(iii) We say that the cut-off Sobolev inequalityCS(φ) holds if there exist δ0 ∈ [1/2, 1)
andC1, C2 > 0 such that the followingholds: for any0 < r ≤ R, x0 ∈ X and any
f ∈ F , there exists a cut-off function ϕ ∈ Fb for B(x0, R) ⊂ B(x0, R + δ0r) so
that

∫

B(x0,R+r)

f 2 dμ〈ϕ〉 ≤ C1

( ∫

B(x0,R+r)

ϕ2 dμc
〈 f 〉

+
∫

B(x0,R+r)×B(x0,R+r)\diag
ϕ2(x)( f (x) − f (y))2 J (dx, dy)

)

+ C2

φ(r)

∫

B(x0,R+r)

f 2 dμ.

2.1 Two-Sided Heat Kernel Estimates

In the following, we write φ−1
c (t) (resp. φ−1

j (t)) to denote the inverse function of the
strictly increasing function t �→ φc(t) (resp. t �→ φ j (t)). Define

p(c)(t, x, y) := 1

V (x, φ−1
c (t))

exp

(

− sup
s>0

{
ρ(x, y)

s
− t

φc(s)

})

, t > 0, x, y ∈ X ,

(6)
which arises in the two-sided estimates of heat kernels for strongly local Dirichlet forms;
see, e.g., [1]. There is another expression of heat kernels for strongly local Dirichlet
forms, which is given by

p(c)(t, x, y) = 1

V (x, φ−1
c (t))

exp

(

− ρ(x, y)

φ̄−1
c (t/ρ(x, y))

)

, t > 0, x, y ∈ X , (7)

where φ̄c(r) : R+ → R+ is a strictly increasing continuous function such that

c1
φc(r)

r
≤ φ̄c(r) ≤ c2

φc(r)

r
for all r > 0

with some c2 ≥ c1 > 0. When φc(r) = rdw with dw ≥ 2, p(c)(t, x, y) is reduced into
Gaussian (dw = 2) and sub-Gaussian (dw > 2) estimates. Set

p( j)(t, x, y) := 1

V (x, φ−1
j (t))

∧ t

V (x, ρ(x, y))φ j (ρ(x, y))
.

It can be verified that under mild conditions the expressions (6) and (7) are equivalent;
see [18, Corollary 2.3].
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Definition 3 Let φ := φc ∧ φ j .

(i) We say thatHK(φc, φ j ) holds if there exists a heat kernel p(t, x, y) for the semigroup
{Pt }t≥0 associated with (E,F) such that the following holds for all t > 0 and all
x, y ∈ X0,

c1
( 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧ (
p(c)(c2t, x, y) + p( j)(t, x, y)

))

≤ p(t, x, y)

≤ c3
( 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧ (
p(c)(c4t, x, y) + p( j)(t, x, y)

))
,

(8)

where ck > 0, k = 1, . . . , 4, are constants independent of x, y ∈ X0 and t > 0.
Below, we abbreviate the two-sided estimate (8) as

p(t, x, y) 
 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧
(

p(c)(t, x, y) + p( j)(t, x, y)
)

.

(ii) We say HK−(φc, φ j ) holds if the upper bound in (8) holds but the lower bound is
replaced by the following: there are c0, c1 > 0 so that

p(t, x, y) ≥c0

(
t

V (x, ρ(x, y))φ j (ρ(x, y))
1{ρ(x,y)>c1φ−1(t)}

+ 1

V (x, φ−1(t))
1{ρ(x,y)≤c1φ−1(t)}

)

, ∀t > 0, ∀x, y ∈ X0.

With the notations above, we now state the following stable characterizations of two-
sided heat kernel estimates for symmetric diffusions with jump from [18].

Theorem 1 Suppose that the metric measure space (X , ρ, μ) satisfies VD and RVD,
and that the scale functions φc and φ j satisfy (2), (4) and (5). Let φ := φc ∧ φ j . Then
the following are equivalent:

(i) HK−(φc, φ j ).
(ii) Jφ j , PI(φ) and CS(φ).

If in addition, (X , ρ, μ) is connected and ρ is geodesic, then all the conditions above
are equivalent to:

(iii) HK(φc, φ j ).

Note that statement (ii) in Theorem1 is stable under bounded perturbation in the
sense that if it holds for the Dirichlet form (E,F) on L2(X ;μ), then it holds for any
other Dirichlet form (E ′,F) on L2(X ;μ) with jumping kernel J ′ as long as there is
a constant c > 1 so that c−1E(c)( f, f ) ≤ E ′,(c)( f, f ) ≤ cE(c)( f, f ) for all f ∈ F and
c−1 J (x, y) ≤ J ′(x, y) ≤ cJ (x, y) for all x �= y ∈ X . We refer [18, Theorem 1.13] for
more equivalent characterizations of HK−(φc, φ j ). We note that the connectedness and
the geodesic condition (in fact, so-called chain condition suffices) of the underlyingmetric
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measure space (X , ρ, μ) are only used to derive optimal lower bounds off-diagonal esti-
mates for the heat kernel when the time is small (i.e., from HK−(φc, φ j ) to HK(φc, φ j )).

2.2 Example

In this section, we give an example to illustrate a typical application of Theorem1.

Example 1 (Transferring Method on d-Set) Let (X , ρ, μ) be an Alfhors d-regular set
and suppose that there is a strongly local Dirichlet form (Ē, F̄) on L2(X ;μ) such that
there is a transition density function q(t, x, y) with respect to the measure μ that has the
following two-sided estimates:

q(t, x, y) 
 t−d/dw exp

(

−
(

ρ(x, y)dw

t

)1/(dw−1)
)

, t > 0, x, y ∈ X

for some dw ≥ 2. Let {Zt , t ≥ 0;Px , x ∈ X } be the corresponding μ-symmetric diffu-
sion on X . A typical example is a Brownian motion on the n-dimensional unbounded
Sierpiński gasket; see for instance [4]. In this case, d = log(n + 1)/ log 2 and dw =
log(n + 3)/ log 2.

For any α ∈ (0, dw), let s = α/dw and ξt = t + ηt , where ηt is the s-subordinator
independent of Z . Then one can verify by direct computations that the subordinated
process Xt := Zξt has a transition density function that enjoys HK(φc, φ j ) with φc(r) =
rdw and φ j (r) = rα .

Now consider the following symmetric regular Dirichlet form (E, F̄) in L2(X ;μ):

E(u, v) = E(c)(u, v) +
∫

X×X\diag
(u(x) − u(y))(v(x) − v(y))

× c(x, y)

ρ(x, y)d+α
μ(dx) μ(dy),

where (E(c), F̄) is a strongly local regular Dirichlet form on L2(X ;μ) such that
E(c)( f, f ) 
 Ē( f, f ) for all f ∈ F̄ , and c(x, y) is a symmetric measurable function
on X × X \ diag that is bounded between two positive constants. Clearly, Jφ j and PI(φ)

hold for (E, F̄). CS(φ) also holds for (E, F̄) because it holds for the subordinated process
{Xt }t≥0. Hence, by Theorem1 we obtain HK(φc, φ j ).

This type of argument (i.e. first establishing heat kernel estimates for a particular
process and then use the stability results to obtain heat kernel estimates for more general
processes) is sometimes called “transferring method”.

In [18], relations between heat kernel estimates and parabolic Harnack inequalities are
also established. Unlike the cases of local operators/diffusions, for pure-jump processes,
parabolic Harnack inequalities are no longer equivalent to (in fact weaker than) the two-
sided heat kernel estimates—see [3, 17]. For the cases of diffusions with jumps, it is
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even more complex. We refer the readers to [18, Theorem 1.18], for more details and for
further characterizations of parabolic Harnack inequalities.

3 Symmetric Reflected Diffusions with Jumps in Inner
Uniform Domains

In this section, we consider the case that X is an inner uniform domain D on a Harnack-
type space E . In this framework, there exists a reflected diffusion on D whose heat kernel
enjoys two-sided Gaussian estimates (see Theorem2).We will consider this reflected dif-
fusion perturbed by jumps which may decay exponentially (even super-exponentially).
Thus, this setting does not belong to that studied in [18], where the jumps will decay
at most polynomially; see (4). This section is a survey of the recent paper [11]. In con-
trast with the previous section, this section as well as [11] is concerned with sufficient
conditions under which we have two-sided sharp heat kernel estimates rather than stable
characterization of the heat kernel estimates. However, as mentioned earlier, the ideas
and techniques developed from the study of the stability results for heat kernel estimates
and parabolic Harnack inequalities in [16–18] play an essential role in the work [11].

3.1 Reflected Diffusions on Inner Uniform Domains

Let E be a locally compact separable metric space, and m a σ -finite Radon measure with
full support on E . Suppose that there is a strongly local regular Dirichlet form (E0,F0)

on L2(E; m), and let μ0〈u〉 be the (E0-) energy measure of u ∈ F0 so that E0(u, u) =
1
2μ

0〈u〉(E). Then the intrinsic metric ρ of (E0,F0) is defined by

ρ(x, y) = sup
{

f (x) − f (y) : f ∈ F0 ∩ Cc(E) withμ0〈 f 〉(dz) ≤ m(dz)
}
.

We assume that ρ(x, y) < ∞ for any x, y ∈ E and induces the original topology on E ,
and that (E, ρ) is a complete metric space. It is known (see for example [23, Theorem
2.11]) that (E, ρ) is a geodesic length space; that is, for each x, y ∈ E , there exists a
continuous curve γ : [0, 1] → E with γ (0) = x , γ (1) = y such that for every s, t ∈
[0, 1], ρ(γ (s), γ (t)) = |t − s| ρ(x, y). In the following, we will always use the intrinsic
metric ρ for E .

We assume that (E, ρ, m) enjoys (VD) and (E0,F0) enjoys PI(2); see Definitions1
and 2(ii) for these definitions. According to [23], such a space is called a Harnack-
type Dirichlet space. It is known that the state space E for Harnack-type Dirichlet
space (E0,F0) is connected and the diffusion process Z0 associated with (E0,F0) is
conservative—see [23, Lemma 2.33].

For a domain D of the length metric space (E, ρ), define for x, y ∈ D,

ρD(x, y) = inf{length(γ ) : acurve γ in D with γ (0) = x and γ (1) = y}.
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The completion of D under the metric ρD is denoted by D̄. We extend the definition of
m|D to D̄ by setting m|D(D̄ \ D) = 0. For notational simplicity, we will use m to denote
this measure m|D .

Definition 4 ([23, Definition 3.6]) We say that D is inner uniform if there are con-
stants C1, C2 ∈ (0,∞) such that, for any x, y ∈ D, there exists a continuous map
γx,y : [0, 1] → D with γx,y(0) = x , γx,y(1) = y that satisfies the following:

(i) The length of γx,y is at most C1ρD(x, y).
(ii) For any z ∈ γx,y([0, 1]), it holds that

ρ(z, ∂ D) := inf
w∈∂ D

ρ(z, w) ≥ C2
ρD(z, x)ρD(z, y)

ρD(x, y)
.

When D is inner uniform, (D̄, ρD) is locally compact—see [23, Lemma 3.9]. It is well
known that (E0,F0

D) is the part Dirichlet form of (E0,F0) on D, whereF0
D = { f ∈ F0 :

f = 0 E0 −q.e.on Dc}. In other words, (E0,F0
D) is the Dirichlet form on L2(D; m) of

the subprocess of the diffusion process Z0 associated with (E0,F0) killed upon leaving
D. We write f ∈ F0

D,loc if for every relatively compact subset U of D, there is g ∈ F0
D

such that f = g m-a.e. on U . By [23, Proposition 2.13], it holds that for x, y ∈ D,

ρD(x, y) = sup
{

f (x) − f (y) : f ∈ F0
D,loc ∩ Cc(D)withμ0〈 f 〉(dz) ≤ m(dz)

}
.

Let F0,ref
D := { f ∈ F0

D,loc : μ0〈 f 〉(D) < ∞} and define E0,ref ( f, f ) := 1
2μ

0〈 f 〉(D) for

f ∈ F0,ref
D . (E0,ref ,F0,ref

D ∩ L2(D; m)) is the active reflected Dirichlet form of (E0,F0
D),

which is known to be a Dirichlet form on L2(D̄; m) = L2(D; m)—see [7, Chap.6].
Let BD̄(x, r) := {y ∈ D̄ : ρD(x, y) < r}, and denote VD(x, r) := m(BD̄(x, r)). Let
Lipc(D̄) be the space of compactly supported Lipschitz functions in D̄. Then the fol-
lowing holds.

Theorem 2 ([23, Sect. 3]) Suppose that (E0,F0) is a strongly local regular Dirichlet
form on L2(E; m) which admits a carré du champ operator Γ0 (that is, μ0〈u〉(dx) =
Γ0(u, u) m(dx) and Γ0(u, u) ∈ L1(E; m) for every u ∈ F). Assume that (VD) and
(PI(2)) hold for (E0,F0) on (E, ρ, m), and suppose that D is an inner uniform sub-
domain of E. Then (E0,ref ,F0,ref

D ∩ L2(D; m)) is a strongly local regular Dirichlet form

on L2(D; m) with core Lipc(D̄), and the following hold for
(E0,ref ,F0,ref

D ∩ L2(D; m)
)

on (D̄, ρD, m):

(VD) (Volume doubling property on D̄) There exists C3 > 0 such that for every
x ∈ D̄ and r > 0, VD(x, 2r) ≤ C3 VD(x, r).

(PI(2)) (Poincaré inequality on D̄) There exists C4 > 0 such that for every x ∈ D̄,
r > 0 and f ∈ F0,ref

D ∩ L2(D; m),

min
a∈R

∫

BD̄(x,r)

( f (y) − a)2 m(dy) ≤ C4r2 μ0〈 f 〉(BD̄(x, r)).
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Consequently, (E0,ref ,F0,ref
D ) admits a jointly continuous transition density function

pN
D (t, x, y) on (0,∞) × D̄ × D̄, and there exist c1, c2 ≥ 1 depending on C3, C4 such

that

c−1
1

VD(x,
√

t)
exp

(

−c2ρD(x, y)2

t

)

≤ pN
D (t, x, y) ≤ c1

VD(x,
√

t)
exp

(

−ρD(x, y)2

c2t

)

for every x, y ∈ D̄ and t > 0.

In the rest of this section we assume that the strongly local Dirichlet form (E0,F0)

on L2(E; m) and D ⊂ E satisfy the assumptions of Theorem2.

Characteristic Constants. Recall that (C1, C2) are constants appearing in the defini-
tion of the inner uniform domain D, and (C3, C4) are constants in (VD) and (PI(2)) of
Theorem2. We will call (C1, C2, C3, C4) the characteristic constants of the domain D.

3.2 Reflected Diffusions with Jumps

Let (E,F) be a symmetric Dirichlet form (E,F) on L2(D; m), where F := F0,ref
D ∩

L2(D; m), such that for u ∈ F ,

E(u, u) = E0,ref (u, u) + 1

2

∫

D×D

(u(x) − u(y))2 J (x, y) m(dx) m(dy). (9)

Here J (x, y) is a non-negative symmetric measurable function on D × D \ diag satisfy-
ing certain conditions to be specified below.

Let φ j be a strictly increasing function on [0,∞) such that φ j (0) = 0, φ j (1) = 1 and
(2) holds for 0 < α∗ ≤ α∗ < 2. Since α∗ < 2, there exists c1 > 0 such that

r∫

0

s

φ j (s)
ds ≤ c1r2

φ j (r)
for every r > 0.

Definition 5 Let β ∈ [0,∞] and φ j be a strictly increasing function on [0,∞) with
φ j (0) = 0 and φ j (1) = 1 that satisfies the condition (2) (with 0 < α∗ ≤ α∗ < 2). Let
J (x, y) be a non-negative symmetric measurable function on D × D \ diag.
(i) We say condition (Jφ j ,β,≤) holds if there are κ1, κ2 > 0 so that

J (x, y) ≤ κ1

VD(x, ρD(x, y))φ j (ρD(x, y)) exp(κ2ρD(x, y)β)
, (Jφ j ,β,≤)
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for (x, y) ∈ D × D \ diag. Similarly,we say condition (Jφ j ,β,≥) holds if the opposite
inequality holds, and we say condition (Jφ j ,β) holds if both (Jφ j ,β,≤) and (Jφ j ,β,≥)

hold with possibly different constants κi in the upper and lower bounds.
(ii) We say condition (Jφ j ,0+,≤) holds if there are κ3, κ4 > 0 so that

⎧
⎨

⎩

supx∈D

∫

{y∈D:ρD(x,y)>1}
ρD(x, y)2 J (x, y) m(dy) ≤ κ3 < ∞,

J (x, y) ≤ κ4
VD(x,ρD(x,y))φ∗(ρD(x,y))

(Jφ j ,0+,≤)

for (x, y) ∈ D × D \ diag, where

φ∗(r) := φ j (r)1{r≤1} + r21{r>1} for r ≥ 0. (10)

Clearly, (Jφ j ,β,≤) =⇒ (Jφ j ,0+,≤) =⇒ (Jφ j ,0,≤) for any β ∈ (0,∞]. When β = 0,
(Jφ j ,0) coincides with Jφ j in Definition 2(i). When β = ∞, condition (Jφ j ,∞,≤) is equiv-
alent to

J (x, y) ≤ κ̃1

VD(x, ρD(x, y))φ j (ρD(x, y))
1{ρ(x,y)≤1} for (x, y) ∈ D × D \ diag.

It can be easily proved (see [11, Proposition 2.1]) that, under condition (Jφ j ,0,≤),
(E,F) is a regular Dirichlet form on L2(D; m). Moreover, the corresponding process Y
is conservative; namely, Y has infinite lifetime almost surely.

For notational convenience, we regard 0+ as an “added" or “extended" number and
declare that it is larger than 0 but smaller than any positive real number.With this notation,
we can write, for instance, (Jφ j ,β,≤) for β ∈ [0,∞] ∪ {0+}.

In the following, we present results concerning global two-sided sharp estimates on the
heat kernel ofDirichlet form (E,F)under the assumption that J (x, y) satisfies (Jφ j,1,β∗,≤)

and (Jφ j,2,β
∗,≥) for some strictly increasing functions φ j,1 and φ j,2 satisfying φ j,i (0) =

0, φ j,i (1) = 1 and (2) (with φ j,i in place of φ j ) for 1 ≤ i ≤ 2, and for β∗ and β∗ in
[0,∞] ∪ {0+} (but excluding β∗ = β∗ = 0+).

First let us consider the case β∗ = β∗ = 0 and φ j,1 = φ j,2 =: φ j . Note that, in the
present setting, diam(D) = ∞ is equivalent tom(D) = ∞; see [22, Corollary 5.3]. In this
case, it is easy to check that, with φc(r) := r2, φ j (r) := rα and φ(r) := φc(r) ∧ φ j (r),
Jφ j , PI(φ) and CS(φ) hold; see [18, Example 1.1 and Remark 1.7] for the details. Thus we
can apply the stable characterization of Theorem1 to conclude that HK(φc, φ j ) holds.
When diam(D) < ∞, according to [18, Theorem 1.13] (noting that the results of the
paper [18] continue to hold for bounded state space with obvious localized versions), one
can obtain estimates of p(t, x, y) for t ∈ (0, 1]. Now, when D is bounded, it holds that
VD(x,

√
t) 	 1 for all x ∈ D and t ≥ 1, and the large time estimates of HK(φc, φ j ) are

simply
p(t, x, y) 	 1 for x, y ∈ D̄ and t ≥ 1,

which is a consequence of the strong ergodicity of the Markov process Y . Hence
HK(φc, φ j ) is the desired estimates for diam(D) < ∞ as well.
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The main contribution of [11] is to obtain two-sided heat kernel estimates for 0+ ≤
β∗ ≤ β∗ ≤ ∞ excluding β∗ = β∗ = 0+ when D is unbounded. Note that when D is
bounded, (Jφ j ,β,≤) and (Jφ j ,β,≥) with β ∈ {0+} ∪ (0,∞] are reduced to (Jφ j ,0,≤) and
(Jφ j ,0,≥), respectively. We present the precise statement in the next subsection.

3.3 Heat Kernel Estimates for the β∗ ≤ β∗ ≤ ∞ in
{0+} ∪ (0,∞] Case

We need some notations. Let

p(c)(t, x, r) := exp(−r2/t)

VD(x,
√

t)
, p( j)

φ (t, x, r) := 1

VD(x, φ−1(t))
∧ t

VD(x, r)φ(r)
.

For β ∈ [0,∞] and a strictly increasing function φ j on [0,∞) with φ j (0) = 0 and
φ j (1) = 1, set for x ∈ D̄, t > 0 and r ≥ 0,

p( j)
φ j ,β

(t, x, r) := 1

VD(x, φ−1
j (t))

∧ t

V (x, r)φ j (r) exp(rβ)
.

In particular, p( j)
φ j ,0

(t, x, r) 	 p( j)
φ j

(t, x, r). Define for β ∈ (0, 1],

Hφ j ,β(t, x, r) :=

⎧
⎪⎨

⎪⎩

1

VD(x,
√

t)
∧

(
p(c)(t, x, r) + p( j)

φ j ,β
(t, x, r)

)
if t ∈ (0, 1],

1

VD(x,
√

t)
exp

(− (
rβ ∧ (r2/t)

))
if t ∈ (1,∞);

for β ∈ (1,∞),

Hφ j ,β(t, x, r) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

VD(x,
√

t)
∧

(
p(c)(t, x, r) + p( j)

φ j ,β
(t, x, r)

)

if t ∈ (0, 1], r ≤ 1,
t

VD(x, r)φ j (r)
exp

(
−

(
r(1 + log+(r/t))(β−1)/β

)
∧ rβ

)

if t ∈ (0, 1], r > 1,
1

VD(x,
√

t)
exp

(
−

(
r (1 + log+(r/t))(β−1)/β

)
∧ (r2/t)

)

if t ∈ (1,∞);

where Hφ j ,∞(t, x, r) := limβ→∞ Hφ j ,β(t, x, r) for β = ∞, that is,
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Hφ j ,∞(t, x, r)

:=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

VD(x,
√

t)
∧

(
p(c)(t, x, r) + p( j)

φ j ,β
(t, x, r)

)
if t ∈ (0, 1], r ≤ 1,

t

VD(x, r)φ j (r)
exp

(−r(1 + log+(r/t))
)

if t ∈ (0, 1], r > 1,

1

VD(x,
√

t)
exp

(− (
r
(
1 + log+(r/t)

)) ∧ (r2/t)
)

if t ∈ (1,∞).

See Figs. 1 and 2 for amore explicit expression on the dominate terms in Hφ j ,β(t, x, r).
The following is the main result on the two-sided heat kernel estimates of Y .

Theorem 3 ([11, Theorem 1.6]) Suppose that D is unbounded. Assume that J (x, y)

satisfies (Jφ j,1,β∗,≤) and (Jφ j,2,β
∗,≥) for some strictly increasing functions φ j,1, φ j,2 sat-

isfying φ j,i (0) = 0, φ j,i (1) = 1 and (2) (with φ j,i in place of φ j ) for i = 1, 2, and for
β∗ ≤ β∗ in {0+} ∪ (0,∞] excluding β∗ = β∗ = 0+. Then the transition density function
p(t, x, y) of the conservative Feller process Y associated with (E,F) has the following
estimates: for every t > 0 and x, y ∈ D̄,

c1Hφ j,2,β
∗(t, x, c2ρD(x, y)) ≤ p(t, x, y) ≤ c3Hφ j,1,β∗(t, x, c4ρD(x, y)),

where ci > 0, 1 ≤ i ≤ 4, depend only on the characteristic constants (C1, C2, C3, C4)

of D and the constant parameters in (Jφ j,1,β∗,≤) and (Jφ j,2,β
∗,≥) as well as in (2) for φ j,1

and φ j,2, respectively.

Fig. 1 β ∈ (0, 1]: dominant terms in the heat kernel estimates Hφ j ,β (t, x, r) for p(t, x, y)
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Fig. 2 β ∈ (1,∞]: dominant terms in the heat kernel estimates Hφ j ,β (t, x, r) for p(t, x, y)

3.4 Discussion on Off-Diagonal Heat Kernel Upper Bound

In this subsection, we present results on the heat kernel upper bound under milder con-
dition and give a brief explanation of the argument for the off-diagonal upper bound of
heat kernels.

Assume that diam(D) = ∞. Then, from the volume doubling and the reverse volume
doubling property of D, we have that there exist positive constants c1, c2, d1, d2 such
that

c1
( R

r

)d1 ≤ VD(x, R)

VD(x, r)
≤ c2

( R

r

)d2
for R ≥ r > 0. (11)

Since one can verify the localized version of Faber-Krahn inequality and the cut-
off Sobolev inequality with order 2 for the Dirichlet form (E,F), under the condition
(Jφ j ,0+,≤), the heat kernel upper bound in the next result essentially follows from (the
local version of) [18, Theorem 1.14] and a modification of Doeblin’s result (see [5, p.
365, Theorem 3.1]).

Proposition 1 ([11, Theorem 1.5]) Suppose that condition (Jφ j ,0+,≤) holds for some
strictly increasing function φ j on [0,∞) satisfying (2). Then (E,F) in (9) is regular on
L2(D; m) and the corresponding process Y on D̄ is a conservative Feller process that
starts from every point in D̄. Moreover, Y has a jointly Hölder continuous transition
density function p(t, x, y) on (0,∞) × D̄ × D̄ with respect to the measure m, and there
exist constants c1, c2 > 0 such that
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p(t, x, y) ≤ c1
VD(x,

√
t)

∧
(

p(c)(t, x, c2ρD(x, y)) + p( j)
φ∗ (t, x, c2ρD(x, y))

)

for all x, y ∈ D̄ and t > 0, where φ∗ is given by (10). The positive constants c1, c2
depend only on the characteristic constants (C1, C2, C3, C4) of D and on the constant
parameters in (Jφ j ,0+,≤) and (2) for the function φ j .

The Meyer’s construction [24] is very useful to obtain off-diagonal upper bounds
for p(t, x, y). Based on this, the main part of proving the off-diagonal upper bounds is
to obtain the correct off-diagonal upper bounds of q〈λ〉(t, x, y), the transition density
of truncated process Y (λ) obtained from Y by removing jumps of size larger than λ.
In order to deal with the general VD setting (11), we first consider off-diagonal upper
bounds for Dirichlet heat kernel of the truncated process Y (λ). For an open set U ⊂ D̄,
let q〈λ〉,U (t, x, y) be the (Dirichlet) heat kernel of the subprocess Y (λ),U of Y (λ) killed
up exiting U .

Very recently, in [10] we have established the equivalences between on-diagonal heat
kernel upper bounds and off-diagonal heat kernel upper bounds for a large class of
symmetric Markov processes, which are generalizations of the results in [6]. The results
in [10] are applicable for q〈λ〉,U (t, x, y) in the present setting. For the remainder of this
subsection, we provide the outline of the proof of the upper bound of q〈λ〉(t, x, y).

In the following, suppose that (Jφ j ,β∗,≤) holds with β∗ ∈ (0,∞]. Using [10, Theorem
5.1], we can check that for any β∗ ∈ (0,∞] and l ≥ 2, there exists a constant c0 > 0 such
that for any x0 ∈ D̄, λ > 0, any f ∈ Lipc(D̄), any t > 0 and any x, y ∈ BD̄(x0, lλ),

q〈λ〉,BD̄(x0,lλ)(t, x, y)

≤ c0
VD(x0, λ)

((
λ√

t

)d1
∨

(
λ√

t

)d2
)

exp
(
−| f (y) − f (x)| + 2Λ〈λ〉( f )2 t

)
,

(12)

where d1, d2 > 0 are the constants in (11) and

Λ〈λ〉( f )2 = ‖e−2 f Γ〈λ〉(e f )‖∞ ∨ ‖e2 f Γ〈λ〉(e− f )‖∞

with

Γ〈λ〉( f )(ξ) = Γ0( f, f )(ξ) +
∫

BD̄(ξ,λ)

( f (ξ) − f (η))2 J (ξ, η) m(dη).

For fixed x, y ∈ BD̄(x0, lλ), by taking f (ξ) = s (ρD(ξ, x) ∧ ρD(x, y)) with s > 0, we
see that | f (y) − f (x)| = sρD(x, y) and, thanks to (Jφ j ,β∗,≤),
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e−2 f (ξ)Γ〈λ〉(e f )(ξ)

= e−2 f (ξ)Γ0(e
f , e f )(ξ) +

∫

BD̄(ξ,λ)

(e f (ξ)− f (η) − 1)2 J (ξ, η) m(dη)

≤ Γ0( f, f )(ξ) + s2
∫

BD̄(ξ,λ)

ρD(ξ, η)2e2 sρD(ξ,η) J (ξ, η) m(dη)

≤ s2 + c1s2
∫

D

ρD(ξ, η)2
e2sρD(ξ,η)−κ2ρD(ξ,η)β∗

VD(ξ, ρD(ξ, η))φ j (ρD(ξ, η))
m(dη).

(13)

In [11], we consider the cases β∗ ∈ (0, 1], β∗ ∈ (1,∞) and β∗ = ∞ separately and find
a proper s for each case to bound (12) optimally.

Let τ (λ)
B by the first exit time from the ball B by Y (λ) and τ

(λ),U
B be the first exit time

from the ball B of the process Y (λ),U . Since the size of jumps of Y (λ) is less than λ, we
see that

Px
(
τ

(λ)
B(x,r) ≤ t

) = Px
(
τ

(λ),B(x,λ+r)
B(x,r) ≤ t

)
, x ∈ D̄, λ, t, r > 0.

Using this and the strong Markov property, we have that for any x ∈ D̄ and λ, t, r>0,

∫

BD̄(x,r)c

q〈λ〉(t, x, y) m(dy)

≤ Px
(
τ

(λ)
B(x,r) ≤ t

) = Px
(
τ

(λ),B(x,r+λ)
B(x,r) ≤ t

)

≤ Px
(
ρD(Y (λ),B(x,r+λ)

2t , x) ≥ r/2
)

+ Px
(
sup

0<s≤t
ρD(Y (λ),B(x,r+λ)

s , x) ≥ r, ρD(Y (λ),B(x,r+λ)
2t , x) ≤ r/2

)

≤ Px
(
ρD(Y (λ),B(x,r+λ)

2t , x) ≥ r/2
)

+ Px

(
τ

(λ)
B(x,r) ≤ t, ρD(Y (λ),B(x,r+λ)

2t , Y (λ)

τ
(λ)
B(x,r)

) ≥ r/2
)

≤ Px
(
ρD(Y (λ),B(x,r+λ)

2t , x) ≥ r/2
)

+ sup
z∈B(x,r+λ)

sup
t≤s≤2t

Pz
(
ρD(Y (λ),B(x,r+λ)

s , z) ≥ r/2
)

≤ 2 sup
z∈B(x,r+λ)

sup
t≤s≤2t

∫

BD̄(z,r/2)c

q〈λ〉,B(x,r+λ)(s, z, y) m(dy). (14)

We now assume that ρD(x, y) ≥ C(
√

t ∨ 1) where C ≥ 1. Let R = ρD(x, y) and
λ = R/k where k will be determined later. By [16, Lemma 7.2(2)] and Proposition1,

q〈λ〉(t, x, y) ≤ c2
VD(x,

√
t)

.

Using this, (11) and (14), we obtain that
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q〈λ〉(t, x, y)

=
∫

D̄

q〈λ〉(t/2, x, z)q〈λ〉(t/2, z, y) m(dz)

≤
⎛

⎜
⎝

∫

BD̄(x,R/2)c

+
∫

BD̄(y,R/2)c

⎞

⎟
⎠ q〈λ〉(t/2, x, z)q〈λ〉(t/2, z, y) m(dz)

≤ c2
VD(y,

√
t)

∫

BD̄(x,R/2)c

q〈λ〉(t/2, x, z) m(dz)

+ c2
VD(x,

√
t)

∫

BD̄(y,R/2)c

q〈λ〉(t/2, y, z) m(dz)

≤ c3
VD(x, R)

(
R√

t

)d2
×

sup
w∈D̄

sup
z∈B(w,R/2+λ)

sup
t/2≤s≤t

∫

BD̄(z,R/4)c

q〈λ〉,B(w,R/2+λ)(s, z, u) m(du). (15)

Therefore, to obtain upper bounds of q〈λ〉(t, x, y), it suffices to bound (15). Recall
that, in (12), (13) and the sentence below, we have discussed how to get the upper
bounds of q〈λ〉,B(w,R/2+λ)(s, z, u). Using such upper bounds, with proper C and k, in
[11, Proposition 4.3] we have obtained upper bounds of (15) for the cases β∗ ∈ (0, 1],
β∗ ∈ (1,∞) and β∗ = ∞ separately. Finally, we have the following

Proposition 2 ([11, Theorem 4.4]) Suppose that (Jφ j ,β∗,≤) holds for some β∗ ∈ (0,∞].
Then there exist c1, c2 > 0 that depend only on characteristic constants (C1, C2, C3, C4)

of D and the constant parameters in (Jφ j ,β∗,≤) and (2) for φ j so that

q(t, x, y) ≤ c1Hφ j ,β∗(t, x, c2ρD(x, y)) for every t > 0 and x, y ∈ D̄.

3.5 Example

Example 2 A typical example for Theorem3 is the following. In (1) with D instead of
R

d where D is a Lipschitz domain in R
d , suppose that J (x, y) is a symmetric function

on D × D \ diag defined by

J (x, y) =
∫

[α1,α2]

c(α, x, y)

|x − y|d+α Φ(|x − y|) ν(dα),

where ν is a probability measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function on
[0,∞) with
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c1ec2rβ ≤ Φ(r) ≤ c3ec4rβ

for someβ ∈ [0,∞],

and c(α, x, y) is a jointly measurable function that is symmetric in (x, y) and is bounded
between two positive constants. When β = 0 and D = R

d , the two sided heat kernel
estimates are obtained in [15] as mentioned in the introduction.

Finally, we would like to mention that unde the setting in this section, parabolic
Harnack inequalities do not hold for the whole range. In fact under conditions (Jφ1,β∗,≤)

and (Jφ2,β∗,≥)withβ∗ < β∗ in {0+} ∪ (0,∞], the jumping kernel J (x, y)may not satisfy
the UJS condition, see [3] and [11, Sect. 6.2] for more details. Thus, it follows from (the
proof of) [17, Proposition 3.3], that parabolic Harnack inequalities of full ranges do not
hold. Thus, the results of [18] in particular give a family of Feller processes that satisfy
global two-sided heat kernel estimates, but the associated parabolic Harnack inequalities
for full ranges fail. We further mention that, under condition (Jφ,0+,≤), we always have
the joint Hölder continuity for the heat kernel q(t, x, y) so that we can establish two-sided
estimates for q(t, x, y) for every t > 0 and x, y ∈ D̄ without introducing any exceptional
set.
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