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Preface

ProfessorMasatoshi Fukushima is turning 88 years old this year in Japanese counting
tradition. In Japanese culture, this is a milestone birthday called Yoneju (rice
longevity or Beiju). This conference proceedings contains 27 peer-reviewed invited
papers from leading experts as well as young researchers all over the world in the
relatedfields that Professor Fukushimahasmade important contributions to. These 27
papers cover a wide range of topics in probability theory, ranging fromDirichlet form
theory, Markov processes, heat kernel estimates, entropy on Wiener spaces, anal-
ysis on fractal spaces, random spanning tree and Poissonian loop ensemble, random
Riemannian geometry, SLE, space-time partial differential equations of higher order,
infinite particle systems, Dyson model, functional inequalities, branching processes,
to machine learning and Hermitizable problems for complex matrices.

Professor Fukushima iswell known for his fundamental contributions to the theory
ofDirichlet forms and symmetricMarkov processes. In one of his first publications in
the late 1960s, Fukushima studied the boundary value problem of Brownian motion
on any bounded connected open set using the Dirichlet form method. In particular,
he [R5] succeeded in constructing reflected Brownian motions on the Kuramochi
compactification of bounded connected open sets. This method is later extended in
[R9] to the regular Dirichlet forms via a method of transformation of the underlying
spaces, which makes it possible to construct the corresponding symmetric strong
Markov processes. More precisely, the approach in his pioneering work [R9] can be
summarized as follows.

(i) For any regular symmetric Dirichlet space (E,F) on a locally compact sepa-
rable metric space E , there exists an equivalent strongly regular symmetric
Dirichlet space (E ′,F ′) on another locally compact separable metric space E ′
and there is a capacity-preserving quasi-homeomorphism φ between E and E ′.
Here, a Dirichlet form is said to be regular if the domain of the Dirichlet form
contains sufficiently many continuous functions, while strongly regular means
it is regular and the Dirichlet form generates Ray resolvent kernels.

(ii) Since the strongly regular Dirichlet form (E ′,F ′) possesses Ray resolvents, it
determines a Ray process X ′ on E ′. The pull-back process X = φ−1(X ′) by the
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quasi-homeomorphism φ is a symmetric Hunt process on E associated with the
regular Diriclet form (E,F).

Subsequently, Professor Martin L. Silverstein [8] gave a new method in
constructing the Hunt process from a regular Dirichlet form (E,F) by using the
quasi-continuous modifications of the functions in the domain F of Dirichlet form.
Fukushima felt that Silverstein’s construction is more direct, and thus, he put a modi-
fied version of Silverstein’s construction in his 1980s book [MT3] as well as in his
book [MT4, MT7] with Oshima and Takeda instead of his original one.

In 1959, Beurling and Deny have shown that symmetric Markov semigroups on
L2-spaces are generated by symmetric Dirichlet forms. Fukushima strengthened this
result as follows. If a Dirichlet form is regular, then the semigroup is represented
by the transition probability kernel of a strong Markov process. More importantly,
the strong Markov process generated by a regular Dirichlet form is a Hunt process
whose sample paths are quasi-left continuous. In the Markov process theory, quasi-
left continuity is very important for the analysis of the sample path properties and
for the probabilistic potential theory. The association of the Hunt process to a regular
Dirichlet form opened up a door for using probabilistic methods to analyze and
study various properties of the Dirichlet forms. For instance, it yields a probabilistic
interpretation of A. Beurling and J. Deny’s potential theory of Dirichlet spaces.
Fukushima’s fundamental result on the association of a Hunt process with a regular
Dirichlet form has later been extended by S. Albeverio and Z.-M. Ma [1] in 1991 to
quasi-regular symmetric Dirichlet forms. The quasi-regularity is in fact a necessary
and sufficient condition for aDirichlet form to associate a nice strongMarkov process
and works on infinite dimensional spaces as well. It is further extended in Z.-M.
Ma and M. Röckner [6] to nearly symmetric Dirichlet forms. Z.-Q. Chen, Z.-M.
Ma and M. Röckner [2] showed in 1994 that any quasi-regular Dirichlet form is
quasi-homeomorphic to a regular Dirichlet form on a locally compact separable
metric space. Hence, essentially all the results that have been established for regular
Dirchlet spaces can be carried over to quasi-regular Dirichlet forms through such a
quasi-homeomorphism. This point of view has been taken in the monograph [MT8]
by Chen and Fukushima.

Recently, we had an opportunity to conduct an interview with Professor
Fukushima. We learned the following historic remarks during this interview.
Professor Fukushima said that J. Deny had hoped to define the Dirichlet space
independently of the basic measure used in the L2-space. However, since Professor
Fukushima considered the speed measure in the one-dimensional diffusion process
as the basic measure to construct the process, he took it for granted from the begin-
ning to rely on the speedmeasure as the symmetrizingmeasure to define the Dirichlet
space. Martin L. Silverstein [8] introduced the concept of extended Dirichlet space
that is independent of the underlying symmetrizing measure. This notion plays a
crucial role in the development of the Dirichlet form theory, and it is invariant under
time change by positive continuous additive functionals having full support. As a
consequence, Dirichlet form theory becomes a big leap from Feller’s theory for
one-dimensional diffusion processes.
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The Hunt process X = {Xt , t ≥ 0; Px , x ∈ E} generated by a regular Dirichlet
form is in general not a semimartingale. As a substitution of Ito’s formula, Professor
Fukushima introduced the notion of continuous additive functional of zero energy
and showed that for any u in the domain of a regular Dirichlet form, u(Xt ) can
be decomposed as the sum of a square integrable martingale additive functional
and a continuous additive functional of zero energy of X . This decomposition has
many important implications and is nowadays called Fukushima decomposition.
Dirichlet form theory is an effective tool in many areas of probability theory and
mathematical physics, including diffusion processes in infinite dimensional spaces,
analysis on fractals andmetricmeasure spaces, optimal transports, and randomwalks
and Markov processes in random media. Fukushima’s decomposition has played an
important role in these areas.

Professor Fukushima appreciates Professor Hiroshi Kunita’s formulation [5] of
semi-Dirichlet forms. He wrote a joint paper with Uemura [R90] in this connection
and suggested Professor Yoichi Oshima (Kumamoto University) to work under the
setting of semi-Dirichlet forms rather than non-symmetric Dirichlet forms in his
book [7].

Professor Fukushima has been active in research throughout his mathematical
career. He has even started new lines of research after his retirement from Univer-
sity. For example, he has studied stochastic Komatu-Löwner’s equations in multiply
connected domains in joint work [R94, R95, R97, R92] with Z.-Q. Chen, S. Rohde,
H. Suzuki as well as with H. Kaneko. In these works, Brownian motion with darning
that arises in his study of the boundary theory of Markov processes with Chen
[R84, MT8] played an important role. Very recently, in his solo paper [R99] and in
his joint work [R100, R101] with Oshima, Professor Fukushima has studied Gaus-
sian fields, multiplicative chaos and the Markov property of the Gaussian fields
parametrized functions in extended Dirichlet spaces. For recurrent Dirichlet forms,
treatment of extended Dirichlet spaces becomes more difficult. By employing the
recurrent potential theory developed byOshima in the framework of regular Dirichlet
forms, however, they could overcome the difficulty.

Additional information about Professor Fukushima’s mathematical work and his
important contributions can be found in the article by N. Jacob in [3] and an essay
by Chen, Jacob, Takeda and Uemura in [4].

Seattle, USA
Osaka, Japan
Osaka, Japan

Zhen-Qing Chen
Masayoshi Takeda
Toshihiro Uemura

References

1. S. Albeverio and Z. M. Ma, Necessary and sufficient conditions for the existence of m-perfect
processes associated with Dirichlet forms. Séminaire de Probabilités, XXV, 374-406, Lecture
Notes in Math., 1485, Springer, Berlin, 1991.



viii Preface

2. Z.-Q. Chen, Z. M. Ma and M. Röckner, Quasi-homeomorphisms of Dirichlet forms. Nagoya
Math. J. 136 (1994), 1–15.

3. Fukushima Masatoshi Selecta. Edited by Niels Jacob, Yoichi Oshima and Masayoshi Takeda,
Walter de Gruyter, 2010

4. Festschrift Masatoshi Fukushima, In honor of Masatoshi Fukushima’s Sanju. Edited by Zhen-
Qing Chen, Niels Jacob, Masayoshi Takeda and Toshihiro Uemura, Interdisciplinary, World
Scientific, 2015

5. H. Kunita, Sub-Markov semi-group in Banach-lattice. In Proc. International Conference on
Functional Analysis and Related Topics (Tokyo, 1969), pp. 332–343 Univ. Tokyo Press, 1970

6. Z. M. Ma and M. Röckner, Introduction to the Theory of (Non-symmetric) Dirichlet Forms.
Universitext. Springer-Verlag, Berlin, 1992. vi+209 pp.

7. Y. Oshima, Semi-Dirichlet forms and Markov Processes. Walter de Gruyter, 2013
8. M. L. Silverstein, Symmetric Markov Processes. Lecture Notes in Math. 426, Springer, 1974.



List of Masatoshi Fukushima’s Publications

Research Papers (English)

[R1] On Feller’s kernel and the Dirichlet norm, Nagoya Math. J., 24 (1964) 167–
175

[R2] Resolvent kernels on a Martin space, Proc. Japan Acad., 41 (1965), 260–
263

[R3] On spectral functions related to birth and death processes, J. Math. Kyoto
Univ., 5 (1966), 151–161

[R4] On a class of Markov processes taking values on lines and the central limit
theorem, (with M. Hitsuda), Nagoya Math. J., 30 (1967), 47–56

[R5] Aconstruction of reflecting barrierBrownianmotions for bounded domains,
Osaka J. Math., 4 (1967), 183–215

[R6] On boundary conditions for multi-dimensional Brownian motions with
symmetric resolvent densities, J. Math. Soc. Japan, 21 (1969), 58–93

[R7] OnDirichlet spaces and Dirichlet rings, Proc. Japan Acad., 45 (1969), 433–
436

[R8] Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc., 155
(1971), 455–473

[R9] Dirichlet spaces and strongMarkov processes, Trans. Amer. Math. Soc., 162
(1971), 185–224

[R10] On transition probabilities of symmetric strong Markov processes, J. Math.
Kyoto Univ., 12 (1972), 431–450

[R11] On the generation of Markov processes by symmetric forms, in Proceed-
ings of the Second Japan-USSR Symposium on Probability Theory, (Kyoto,
1972), 46–79, Lecture Notes in Math., 330, Springer, Berlin, 1973

[R12] Almost polar sets and an ergodic theorem, J. Math. Soc. Japan, 26 (1974),
17–32

[R13] On the spectral distribution of a disordered system and the range of a random
walk, Osaka J. Math., 11 (1974), 73–85

ix



x List of Masatoshi Fukushima’s Publications

[R14] Local property of Dirichlet forms and continuity of sample paths, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 29 (1974), 1–6

[R15] On an asymptotic property of spectra of a random difference operator (with
H Nagai and S. Nakao), Proc. Japan Acad., 51 (1975), 100–102

[R16] Asymptotic properties of the spectral distributions of disordered systems,
in International Symposium on Mathematical Problems in Theoretical
Physics, (Kyoto Univ., Kyoto, 1975), 224–227, Lecture Notes in Phys.,
39, Springer, Berlin, 1975

[R17] On spectra of the Schrödinger operator with a white Gaussian noise poten-
tial (with S. Nakao), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 37
(1976/77), 267–274

[R18] Potential theory of symmetric Markov processes and its applications, in
Proceedings of the Third Japan-USSR Symposium on Probability Theory,
(Tashkent, 1975), 119–133. Lecture Notes in Math., 550, Springer, Berlin,
1976

[R19] On an L p-estimate of resolvents ofMarkov processes,Publ. Res. Inst. Math.
Sci., 13 (1977/78), 277–284

[R20] A decomposition of additive functionals of finite energy, Nagoya Math. J.,
74 (1979), 137–168

[R21] On additive functionals admitting exceptional sets, J. Math. Kyoto Univ.,
19 (1979), 191–202

[R22] Dirichlet spaces and additive functionals of finite energy, in Proceedings of
the International Congress of Mathematicians, (Helsinki, 1978), 741–747,
Acad. Sci. Fennica, Helsinki, 1980

[R23] A generalized stochastic calculus in homogenization, in Quantum fields–
algebras, processes, (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978), 41–
51, Springer, Vienna, 1980

[R24] On a stochastic calculus related to Dirichlet forms and distorted Brownian
motions, inNew stochasitic methods in physics, Phys. Rep., 77 (1981), 255–
262

[R25] On a representation of local martingale additive functionals of symmetric
diffusions, in Stochastic integrals, (Proc. Sympos. Durham, 1980), 110–
118, Lecture Notes in Math., 851, Springer, Berlin, 1981

[R26] Capacity and quantum mechanical tunneling (with S. Albeverio, W.
Karwowski and L. Streit), Comm. Math. Phys., 81 (1981), 501–513

[R27] On asymptotics of spectra of Schrödinger operators, in Statistical and phys-
ical aspects of Gaussian processes, (Saint-Flour, 1980), 335–347, Colloq.
Internat. CNRS, 307, CNRS, Paris, 1981

[R28] On absolute continuity of multidimensional symmetrizable diffusions, in
Functional analysis in Markov processes, (Katata/Kyoto, 1981), 146–176,
Lecture Notes in Math., 923, Springer, Berlin-New York, 1982

[R29] A note on irreducibility and ergodicity of symmetric Markov processes, in
Stochastic processes in quantum theory and statistical physics, (Marseille,
1981), 200–207, Lecture Notes in Phys., 173, Springer, Berlin, 1982



List of Masatoshi Fukushima’s Publications xi

[R30] Markov processes and functional analysis, in Proc. International Math.
Conf. Singapore, 187–202, Eds. L.H. Chen, Y.B. Ng, M.J. Wicks, North
Holland, 1982

[R31] Capacitary maximal inequalities and an ergodic theorem, in Probability
theory and mathematical statistics, (Tbilisi, 1982), 130–136, Lecture Notes
in Math., 1021, Springer, Berlin, 1983

[R32] Basic properties of Brownian motion and a capacity on the Wiener space,
J. Math. Soc. Japan 36(1984), 161–176

[R33] On conformal martingale diffusions and pluripolar sets (with M. Okada), J.
Funct. Anal., 55 (1984), 377–388

[R34] A transformationof a symmetricMarkovprocess and theDonsker-Varadhan
theory (with M. Takeda), Osaka J. Math., 21 (1984), 311–326

[R35] A Dirichlet form on the Wiener space and properties on Brownian motion,
in Théorie du potentiel, (Orsay, 1983), 290–300, Lecture Notes in Math.,
1096, Springer, Berlin, 1984

[R36] Energy forms and diffusion processes, in Mathematics + physics. Vol. 1,
65–97, World Sci. Publishing, Singapore, 1985

[R37] (r, p)-capacities for general Markovian semigroups (with H. Kaneko), in
Infinite-dimensional analysis and stochastic processes, (Bielefeld, 1983),
41–47, Res. Notes in Math., 124, Pitman, Boston, MA, 1985

[R38] On the continuity of plurisubharmonic functions along conformal diffu-
sions, Osaka J. Math., 23 (1986), 69–75

[R39] A stochastic approach to the minimum principle for the complex Monge-
Ampère operator, in Stochastic processes and their applications, (Nagoya,
1985), 38–50, Lecture Notes in Math., 1203, Springer, Berlin, 1986

[R40] Reversibility of solutions to martingale problems (with D. W. Stroock), in
Probability, statistical mechanics, and number theory, 107–123,Adv.Math.
Suppl. Stud., 9, Academic Press, Orlando, FL, 1986

[R41] On recurrence criteria in the Dirichlet space theory, in From local times
to global geometry, control and physics, (Coventry, 1984/85), 100–110,
Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986

[R42] On Dirichlet forms with random data-recurrence and homogenization (with
S.Nakao andM.Takeda), in Stochastic processes-mathematics and physics,
II, (Bielefeld, 1985), 87–97, Lecture Notes inMath., 1250, Springer, Berlin,
1987

[R43] On Dirichlet forms for plurisubharmonic functions (with M. Okada), Acta
Math., 159 (1987), 171–213

[R44] A note on capacities in infinite dimensions, in Probability theory and math-
ematical statistics, (Kyoto, 1986), 80–85, Lecture Notes in Math., 1299,
Springer, Berlin, 1988

[R45] On holomorphic diffusions and plurisubharmonic functions, in Geometry
of random motion, (Ithaca, N.Y., 1987), 65–78, Contemp. Math., 73, Amer.
Math. Soc., Providence, RI, 1988



xii List of Masatoshi Fukushima’s Publications

[R46] On two classes of smooth measures for symmetric Markov processes, in
Stochastic analysis, (Paris, 1987), 17–27, Lecture Notes in Math., 1322,
Springer, Berlin, 1988

[R47] On the skew product of symmetric diffusion processes (with Y. Oshima),
Forum Math., 1 (1989), 103–142

[R48] Capacities on Wiener space: tightness and invariance (with S. Albeverio,
W. Hansen, Z.-M.Ma andM. Roc̈kner), C. R. Acad. Sci. Paris Se’r. I Math.,
312 (1991), 931–935

[R49] On quasi-supports of smooth measures and closability of pre-Dirichlet
forms (with Y. LeJan), Osaka J. Math., 28 (1991), no. 4, 837–845

[R50] On the closable parts of pre-Dirichlet forms and the fine supports of under-
lying measures (with K. Sato and S. Taniguchi), Osaka J. Math., 28 (1991),
517–535

[R51] An invariance result for capacities on Wiener space (with S. Albeverio, W.
Hansen, Z.-M. Ma and M. Roc̈kner), J. Functional Analysis, 106 (1992),
35–49

[R52] On (r, 2)-capacities for a class of elliptic pseudo differential operators (with
N. Jacob and H. Kaneko), Math. Ann., 293 (1992), 343–348

[R53] Dirichlet forms, diffusion processes and spectral dimensions for nested
fractals, in Ideas and methods in mathematical analysis, stochastics, and
applications, (Oslo, 1988), 151–161, Cambridge Univ. Press, Cambridge,
1992

[R54] (r, p)-capacities and Hunt processes in infinite dimensions, in Proba-
bility theory and mathematical statistics, (Kiev, 1991), 96–103, World Sci.
Publishing, River Edge, NJ, 1992

[R55] On a spectral analysis for the Sierpin′ski gasket (with T. Shima), Potential
Analysis, 1 (1992), 1–35

[R56] Two topics related to Dirichlet forms: quasi-everywhere convergences
and additive functionals, in Dirichlet forms (Varenna, 1992), 21–53, G.
Dell’Antonio and U. Mosco (Eds), Lecture Notes in Math., 1563, Springer,
Berlin, 1993

[R57] On discontinuity and tail behaviours of the integrated density of states for
nested pre-fractals (with T. Shima), Comm. Math. Phys., 163 (1994), 461–
471

[R58] On a strict decomposition of additive functionals for symmetric diffusion
processes, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 277–281

[R59] On a decomposition of additive functionals in the strict sense for a
symmetric Markov processes, in Dirichlet forms and stochastic processes,
Z. Ma, M. Roeckner, J. Yan (Eds), Walter de Gruyter, (1995), 155–169

[R60] Reflecting diffusions on Lipschitz domains with cusps-analytic construc-
tion and Skorohod representation (with M. Tomisaki), in Potential theory
and degenerate partial differential operators (Parma), Potential Analysis. 4
(1995), 377–408



List of Masatoshi Fukushima’s Publications xiii

[R61] Construction and decomposition of reflecting diffusions on Lipschitz
domains with Hölder cusps (with M. Tomisaki), Probab. Theory Related
Fields, 106 (1996), 521–557

[R62] On decomposition of additive functionals of reflecting Brownian motions
(with M. Tomisaki), in Ito’s stochastic calculus and probability theory, N.
Ikeda, S.Watanabe,M. Fukushima,H.Kunita (Eds), Springer, Tokyo, 1996,
51–61

[R63] Dirichlet forms, Caccioppoli sets and the Skorohod equation, in
Stochastic Differential and Difference equations, Csiszar Michaletzky
(Eds.), Birkhauser 1997, 56–66

[R64] Distorted Brownian motions and BV functions, in Trends in probability
and related analysis, (Taipei, 1996), 143–150, N.-R. Shieh (Ed), World Sci.
Publishing, River Edge, NJ, 1997

[R65] Large deviations and related LIL’s for Brownian motions on nested fractals
(with T. Shima and M. Takeda), Osaka J. Math., 36 (1999), 497–537

[R66] On semi-martingale characterizations of functionals of symmetric Markov
processes, Electron. J. Probab., 4 (1999), Paper 18, 1–32, http://www.math.
washington.edu/~ejpecp

[R67] BV functions and distorted Ornstein Uhlenbeck processes over the abstract
Wiener space, J. Funct. Analysis., 174 (2000), 227–249

[R68] On limit theorems for Brownian motions on unbounded fractal sets, in
Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), 227–
237, Progr. Probab., S. Graf (Ed), 46, Birkhäuser, Basel, 2000

[R69] On Ito’s formulae for additive functionals of symmetric diffusion processes,
in Stochastic processes, physics and geometry: new interplays, I (Leipzig,
1999), 201–211, F. Getsztesy (Ed), CMS Conf. Proc., 28, Amer. Math. Soc.,
Providence, RI, 2000

[R70] On the space of BV functions and a related stochastic calculus in infinite
dimensions (with M. Hino), J. Funct. Analysis, 183 (2001), 245–268

[R71] Dynkin games via Dirichlet forms and singular control of one-dimensional
diffusions (with M, Taksar), SIAM J. Control Optim., 41 (2002), 682–699

[R72] On Sobolev and capacitary inequalities for contractive Besov spaces over
d-sets (with T. Uemura), Potential Analysis, 18 (2003), 59–77

[R73] Capacitary bounds of measures and ultracontractivity of time changed
processes (with T. Uemura), J. Math. Pures Appl., 82 (2003), 553–572

[R74] A note on regular Dirichlet subspaces (with J. Ying), Proc. Am. Math. Soc.,
131 (2003) 1607-1610 (2003); erratum ibid. 132 (2004), 1559

[R75] On spectral synthesis for contractive p-norms and Besov spaces (with T.
Uemura), Potential Analysis, 20 (2004), 195–206

[R76] Function spaces and symmetric Markov processes, in Stochastic analysis
and related topics in Kyoto, Advanced Studies in Pure Mathematics, 41
(2004), 75–89, Math. Soc. Japan

[R77] Time changes of symmetric diffusions and Feller measures (with P. He and
J. Ying), Ann. Probab., 32 (2004) 3138–3166

http://www.math.washington.edu/~ejpecp


xiv List of Masatoshi Fukushima’s Publications

[R78] On regular Dirichlet subspaces of H 1(I ) and associated linear diffusions
(with X. Fang and J. Ying), Osaka J. Math., 42 (2005), 27–41

[R79] Poisson point processes attached to symmetric diffusions (with H. Tanaka),
Ann. Inst. Henri Poincaré Probab. Stat., 41 (2005), 419–459

[R80] Traces of symmetric Markov processes and their characterizations (with
Z.-Q. Chen and J. Ying), Ann. Probab., 34 (2006), 1052–1102

[R81] Entrance law, exit system and Lévy system of time changed processes (with
Z.-Q. Chen and J. Ying), Illinois J. Math., 50 (2006), 269–312

[R82] On Feller’s boundary problem for Markov processes in weak duality (with
Z.-Q. Chen), J. Func. Anal., 252 (2007), 710–733

[R83] Extending Markov processes in weak duality by Poisson point processes of
excursions, (with Z.-Q. Chen and J. Ying), in The Abel Symposium 2005,
Stochastic Analysis and Applications, A Symposium in Honor of Kiyosi Itô
(Oslo), F.E. Benth, G.DiNunno, T. Lindstrom,B.Oksendal, T. Zhang (Eds),
153–196, Springer, 2007

[R84] One-point extensions of Markov processes by darning (with Z.-Q. Chen),
Probab. Th. Rel. Fields, 141 (2008), 61–112

[R85] Flux and lateral conditions for symmetric Markov processes (with Z.-Q.
Chen), Potential Anal., 29 (2008), 241–269

[R86] On unique extension of time changed reflecting Brownian motions (with
Z.-Q. Chen), Ann. Inst. Henri Poincare, Probab. Statist., 45 (2009), 864–
875

[R87] On extended Dirichlet spaces and the space of BL functions, Potential
Theory and Stochastics in Albac, Aurel Cornea Memorial Volume, Eds.
D. Bakry, L.Beznea, N. Boboc, G. Bucur, M. Roeckner, Theta Foundation,
Bucharest, AMS distribution, 2009, 101–110

[R88] From one dimensional diffusions to symmetric Markov processes, Stoch.
Proc. Appl., 210 (2010), 590–604

[R89] A localization formula in Dirichlet form theory (with Z.-Q. Chen), Proc.
Amer. Math. Soc., 140 (2012), 1815–1822

[R90] Jump-type Hunt processes generated by lower bounded semi-Dirichlet
forms (with T. Uemura), Ann. Probab., 40 (2012), 858–889

[R91] On general boundary conditions for one-dimensional diffusions with
symmetry, J. Math. Soc. Japan, 66 (2014), 289–316

[R92] On Villat’s kernels and BMD Schwarz kernels in Komatu-Loewner equa-
tions (with H. Kaneko), in: Stochastic Analysis and Applications 2014,
Springer Proceedings in Mathematics and Statistics, 100, (Eds) D. Crisan,
B. Hambly, T. Zariphopoulous, 2014, pp 327–348

[R93] One-point reflection (with Z.-Q. Chen), Stochastic Process Appl., 125
(2015), 1368–1393

[R94] Chordal Komatu-Loewner equation and Brownian motion with darning in
multiply connected domains (with Z.-Q. Chen and S. Rohde), Trans. Amer.
Math. Soc., 368 (2016), 4065–4114



List of Masatoshi Fukushima’s Publications xv

[R95] Stochastic Komatu-Loewner evolution and BMD domain constant (with
Z.-Q. Chen and H. Suzuki), Stochastic Process. Appl., 127 (2017), 2068–
2087

[R96] Reflections at infinity of time changed RBMs on a domain with Liouville
branches (with Z.-Q. Chen), J. Math. Soc. Japan, 70 (2018), 833–852

[R97] Stochastic Komatu-Loewner evolutions and BMD domain constant (with
Z.-Q. Chen), Stochastic Process. Appl., 128 (2018), 545–594

[R98] Liouville property of harmonic functions with finite energy for Dirichlet
forms, in: Stochastic Partial Differential Equations and Relaed Fields,
Springer Proceedings in Mathematics and Statistics, 229, (Eds) A.Eberle,
M. Grothaus,W. Hoh, M. Kassmann,W. Stannat, G. Trutnau, 2018, pp. 25–
42

[R99] Logarithmic and linear potentials of signed measures and Markov property
of associated Gaussian fields, Potential Analysis, 49 (2018), 359–379

[R100] Recurrent Dirichlet forms and Markov property of associated Gaussian
fields (with Y. Oshima), Potential Analysis, 49 (2018), 609–633

[R101] Gaussian fields, equilibrium potentials and multiplicative chaos for
Dirichlet forms (with Y. Oshima), Potential Analysis, 55 (2021), 285–337

Expository Writing

[E1] Boundary problems of Brownian motions and the Dirichlet spaces, S
−
ugaku,

20 (1968), 211–221 (in Japanese)
[E2] On the Theory of Markov Processes, BUTSURI (The Physical Society of

Japan), 25 (1970), 37–41 (in Japanese)
[E3] On Random Spectra, BUTSURI (The Physical Society of Japan), 34 (1979),

153–159 (in Japanese)
[E4] On Spectral Analysis on Fractal, Manufacturing and Technology, 48 no. 1

(1996), 55–59 (in Japanese)
[E5] Fractal and Random walk—Toward the function and the shape of nature, in

Shizennoshikumi to Ningennochie, Osaka University Press, 1997, 211–222
(in Japanese)

[E6] Decompositions of symmetric diffusion processes and related topics in
analysis, Sugaku Expositions, 14 (2001), 1–13. AMS

[E7] Stochastic Control Problem and Dynkin’s Game Theory, Gien (Organiza-
tion for Research and Development of Innovative Science and Technology
(ORDIST)), Kansai University, 111 (2001), 35–39 (in Japanese)

[E8] Refined solutions of optimal stopping games for symmetric Markov
processes, Technology Reports of Kansai University (with K. Menda), 48
(2006), 101–110

[E9] On the works of Kyosi Itô and stochastic analysis, Japanese J. Math., 2
(2007), 45–53



xvi List of Masatoshi Fukushima’s Publications

[E10] A brief survey on stochastic calculus inMarkov processes,RIMS Kôkyûroku,
1672 (2010), 191–197

[E11] On general boundary conditions for one-dimensional diffusions and
symmetry, MinnHoKee Lecture at Seoul National University, 2012 June

[E12] Feller’s Contributions to the One-Dimensional Diffusion Theory and
Beyond, In: William Feller—Selected Papers II, Eds. R. Schilling, Z.
Vondracek, W. Woyczynski, Springer Verlag, 2015, 63–73

[E13] Komatu-Loewner differential equations, S
−
ugaku, 69 (2017), 137–156 (in

Japanese)
[E13’] Komatu-Loewner differential equations (translation of [E13]), Sugaku

Expositions, 33 (2020), 239–260
[E14] On the works of Hiroshi Kunita in the sixties, J. Stoch. Anal., 2 (2021),

article 3

Seminar on Probability (in Japanese)

[S1] (with Kiyosi Itô and Shinzo Watanabe) On Diffusion processes, Seminar on
Probability 3, 1960

[S2] (with Ken-ichi Sato and Masao Nagasawa) Transformation of Markov
processes and boundary problems, Seminar on Probability 16, 1960

[S3] Dirichlet space and its representations, Seminar on Probability 31, 1969
[S4] (with Hiroshi Kunita) Studies on Markov processes, Seminar on Probability

40, 1969
[S5] (with Shintaro Nakao and Sin-ichi Kotani) On Random spectra, Seminar on

Probability 45, 1977

Monographs and Textbooks

[MT1] Dirichlet Forms andMarkovProcesses (Japanese),KINOKUNIYACo.Ltd.,
1975

[MT2] (with Kazunari Ishii) Natural Phenomena and Stochastic Processes
(Japanese), Nippon-Hyoron-Sha Co., Ltd., 1980, (enlarged ed.) 1996

[MT3] Dirichlet Forms andMarkovProcesses,North-Hollandmathematical library
23, North-Holland, Amsterdam-New York/ Kodansha, Tokyo, 1980
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Markov Uniqueness and
Fokker-Planck-Kolmogorov Equations

Sergio Albeverio, Vladimir I. Bogachev, and Michael Röckner

Abstract In this paperwe show thatMarkov uniqueness for symmetric pre-Dirichlet
operators L follows from the uniqueness of the corresponding Fokker-Planck-
Kolmogorov equation (FPKE). Since in recent years a considerable number of
uniqueness results for FPKE’s have been achieved, we obtain new Markov unique-
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ness results in concrete cases. A selection of such will be presented in this paper.
They include cases with killing and with degenerate diffusion coefficients.

Keywords Dirichlet frorm · Dirichlet operator · Fokker-Planck-Kolmogorov
equation · Markov uniqueness

1 Introduction and Framework

In this paper we fix a σ -finite measure space (E,B,m). Let L p := L p(m) =
L p(E,m), p ∈ [1,∞] be the corresponding (real) L p-spaces with their usual norms
‖ · ‖p and inner product ( , )2 if p = 2. On L p(m)we shall consider linear operators

L : D(L) ⊂ L p(m) → L p(m)

with their usual partial order defined by

L1 ⊂ L2 ⇔
Def.

�(L1) ⊂ �(L2),

where D(L) is a linear subspace of L p, called domain of L , and

�(L) := {(u, Lu) ∈ L p × L p : u ∈ D(L)}

is the graph of L . In particular, we shall consider those L which generate a (unique)
strongly continuous semigroup of (everywhere defined) continuous linear operators
on L p, denoted by etL , t ≥ 0. Henceforth such L will be shortly called generator (on
LP ). We refer to [17] for the notions and the well-known characterization of such
generators.We recall that a generator L is always closed, i.e.�(L) is a closed subset of
L p × L p, with domain D(L) dense in L p and that for p ∈ (1,∞), its adjoint operator
(L∗, D(L∗)) on L p′

, with p′ := p
p−1 , generates a strongly continuous semigroup of

linear operators, etL
∗
, t ≥ 0, on L p′

. This satisfies

etL
∗ = (etL)∗, t ≥ 0, (1.1)

(see [17, Chap. 1, Corollary 10.6]). We consider three cases of sets of generators on
L p for p ∈ (1,∞):

(1) Let D∗
0 be a dense linear subspace of L p′

and L∗
0 : D∗

0 ⊂ L p′ → L p′
a lin-

ear operator. Define M := M(L∗
0, D

∗
0) to be the set of all linear operators

L : D(L) ⊂ L p → L p such that L∗
0 ⊂ L∗ and L is a generator on L p.

(2) Let D0 be a dense linear subspace of L2 and L0 : D0 ⊂ L2 → L2 a symmetric
linear operator, i.e., L0 ⊂ L∗

0, which is upper bounded, i.e.
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sup
u∈D0\{0}

(L0u, u)2||u||−2
2 < ∞.

DefineMsym := Msym(L0, D0) to be the set of all linear operators L : D(L) ⊂
L2 → L2 such that L0 ⊂ L , L is a generator on L2 and L is symmetric, i.e.,
L ⊂ L∗.

(3) Let (L0, D0)be as in (2) anddefineMsym,M := Msym,M (L0, D0) to be the subset
of all (L , D(L)) inMsym(L0, D0) such that each etL , t ≥ 0, is sub-Markovian,
i.e., if u ∈ L2 such that 0 ≤ u ≤ 1, then 0 ≤ etLu ≤ 1.

Concerning (2) we note that by Ref. [17, Theorems 4.2 and 5.3] it obvi-
ously follows that Msym(L0, D0) coincides with the set of all linear operators
L : D(L) ⊂ L2 → L2 such that L0 ⊂ L and L is upper bounded and self-adjoint, i.e.,
L = L∗. Furthermore,Msym(L0, D0) is not empty, because the Friedrichs extension
of (L0, D0) is self-adjoint and upper bounded (see e.g. [12, p. 131]).

Concerning (3) we refer to [12] and [16] for more details on such sub-Markovian
operator semigroups.

The first aim of this paper is to derive a “parabolic” condition in each of the cases
(1), (2), (3) which implies that the respective sets M,Msym,Msym,M contain at
most one element. Here, “parabolic” means in terms of the corresponding Fokker-
Planck-Kolmogorov equation (FPKE). The second aim of this paper is (by refining
this “parabolic condition”) to use uniqueness results from [8] to obtain new results
on “Markov uniqueness” in the sense of the following definition:

Definition 1.1 Let (L0, D0) be as in (2) above. (L0, D0) is called Markov unique if
Msym,M contains exactly one element.

Let us note that our notion of “Markov uniqueness” is in fact stronger than the one
extensively studied in the literature, since there, uniqueness is studied in the subset
of all linear operators (L , D(L)) in Msym,M (L0, D0), which are nonpositive defi-
nite, i.e., supu∈D(L)(Lu, u)2 ≤ 0, while also assuming that (L0, D0) is nonpositive
definite.

The literature on Markov uniqueness is quite extensive and a number of types of
state spaces E , as e.g. Rd or infinite dimensional vector spaces or manifolds have
been considered . To the best of our knowledge the first paper on this subject is [22]
byMasayoshi Takeda. To give an overview of the entire literature is beyond the scope
of this paper. Instead, we refer to the references in [4, 5, 10–12, 18] and the more
recent papers [3, 19].
It seems, however, that the method to prove Markov uniqueness proposed in this
paper, i.e., by using the corresponding FPKE, is new, though it is very natural. Fur-
thermore our applications and examples in Sect. 3, even though they are all in the
classical case E := R

d , appear to be not covered by the existing literature, in par-
ticular, since they include cases with degenerate diffusion coefficients and we can
allow “killing”, more precisely in our applications, where L is a partial differential
operator on R

d , this operator is allowed to have a (negative) zero order coefficient.
Finally, we would like to recall the notion of “strong uniqueness” which is dif-
ferent from Markov uniqueness. In our context here it means that the larger set
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Msym(L0, D0) contains exactly one element which is equivalent to the fact that the
closure of (L0, D0) is self adjoint on L2. For more details we refer to [2, 10] and as
a very recent paper to [1], in particular to the lists of references in them.

2 The Main Idea and a Parabolic Condition for Uniqueness

For a set F of real-valued functions on E and T ∈ (0,∞) we define F,T to be the
set of all functions of the form

[0, T ] × E � (t, x) → f (t)ϕ(x) =: ( f ⊗ ϕ)(t, x),

where ϕ ∈ F and f ∈ C1([0, T ];R) with f (T ) = 0.
Let us start with case (1) from the introduction and consider (L , D(L)) ∈

M(L∗
0, D

∗
0).

For t ≥ 0 we set
T L
t := etL , T L∗

t = etL
∗

[cf. (1.1)]. Then for all ϕ ∈ D∗
0 , u ∈ L p and t ≥ 0 we have

∫
ϕ T L

t u dm =
∫

T L∗
t ϕ u dm

=
∫

ϕ u dm +
t∫

0

∫
T L∗
s L∗ϕ u dm ds

=
∫

ϕ u dm +
t∫

0

∫
L∗
0ϕ T L

s u dm ds. (2.1)

Hence defining the (signed) measureμt (dx) := T L
t u(x)m(dx), t ≥ 0, by the (inte-

gral) product rule for all f ⊗ ϕ ∈ D∗
0,T (defined as above with F := D∗

0 ) we have∫
( f ⊗ ϕ)(t, x) μt (dx) = f (t)

∫
ϕ(x) μt (dx)

= f (0)
∫

ϕ dμ0 +
t∫

0

f (s)
∫

L∗
0ϕ dμs ds

+
t∫

0

f ′(s)
∫

ϕ dμs ds

=
∫

( f ⊗ ϕ)(0, x) μ0(dx)

+
t∫

0

∫
(

∂

∂s
+ L∗

0)( f ⊗ ϕ) dμs ds.
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In particular, for t = T

T∫

0

∫
(

∂

∂s
+ L∗

0)( f ⊗ ϕ) dμs ds = −
∫

( f ⊗ ϕ)(0, x) μ0(dx). (2.2)

(2.1) [equivalently (2.2)] means thatμt = T L
t u · m, u ∈ L p, t ≥ 0, solves the FPKE

[up to time T for every T ∈ (0,∞)] corresponding to (L∗
0, D(L∗

0)) (see [8]).
Now it is very easy to prove the following “parabolic condition” that ensures that

#M(L∗
0, D

∗
0) ≤ 1

(where as usual # is an abbreviation for cardinality).

Proposition 2.1 Assume that for every T ∈ (0,∞)

(
∂

∂s
+ L∗

0)D
∗
0,T is dense in L p′

([0, T ] × E, dt ⊗ m). (2.3)

Then M(L∗
0, D

∗
0) contains at most one element.

Proof Let (L̃, D(L̃)) ∈ Msym(L∗
0, D

∗
0). Then, as seen above, μ̃t := T L̃

t u m,u ∈ L p,

t ≥ 0, also satisfies (2.1), hence (2.2). So, (by subtracting) for g(t, ·) := T L
t u −

T L̃
t u, t ≥ 0, we obtain for all T ∈ (0,∞)

T∫

0

∫
(

∂

∂s
+ L∗

0)( f ⊗ ϕ) g(s, ·) dm ds = 0

for all f ⊗ ϕ ∈ D∗
0,T . Since g ∈ L p([0, T ] × E, dt ⊗ m), by (2.3) it follows that

g = 0, and the assertion follows, since u ∈ L p was arbitrary. �

Now let us consider case (2) from the introduction. So, let (L , D(L)) ∈ Msym(L0,

D0). Then using the same notation as in case (1) we analogously obtain for all
ϕ ∈ D0, u ∈ L2 and t ≥ 0

∫
ϕ T L

t u dm =
∫

ϕ u dm +
t∫

0

∫
L0ϕ T L

s u dm ds, (2.4)

hence for μt := T L
t u m and for all f ⊗ ϕ ∈ D0,T , T ∈ (0,∞) we have

T∫

0

(
∂

∂s
+ L∗

0)( f ⊗ ϕ) dμs ds = −
∫

( f ⊗ ϕ)(0, x) μ0(dx), (2.5)
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i.e., μt , t ≥ 0, solves the FPKE corresponding to (L0, D0).
Analogously to Proposition 2.1 we then prove the following result.

Proposition 2.2 Assume that for every T ∈ (0,∞)

(
∂

∂s
+ L0)D0,T is dense in L2([0, T ] × E, dt ⊗ m). (2.6)

Then Msym(L0, D0) consists of exactly one element.
In case (3) if (L , D(L)) ∈ Msym,M (L0, D0), then obviously T L

t (L2 ∩ L∞) ⊂ L2 ∩
L∞, and since L2 ∩ L∞ is dense in L2, T L

t is uniquely determined on L2 ∩ L∞.

Proposition 2.3 Suppose that L0(D0) ⊂ L1 (which automatically holds if m(E) <

∞) and that for every T ∈ (0,∞)

(
∂

∂s
+ L0)D0,T is dense in L1([0, T ] × E, dt ⊗ m). (2.7)

Then Msym,M (L0, D0) consists of at most one element. If the semigroup generated
by the Friedrichs extension of (L0, D0) is sub-Markovian, then this extension is the
unique element inMsym,M (L0, D0).

Proof We repeat the proof of Proposition 2.2 (respectively, 2.1) with u ∈ L2 ∩ L∞.
Then for all T ∈ (0,∞) we have for g as in the proof of Proposition 2.3 that g ∈
L∞([0, T ] × E, dt ⊗ m). Then by (2.7) we conclude again that g = 0. Since T L

t is
uniquely determined on L2 ∩ L∞, the assertion follows. �

Clearly, conditions (2.3), (2.6) and (2.7) are not easy to check in applications and
certainly too strong, at least in case (3). So, let us discuss a weaker condition in this
case.

Let (L , D(L)) ∈ Msym,M (L0, D0) and fix u ∈ L∞ such that u ≥ 0 and
∫
u dm =

1. ThenμL
t := T L

t u m, t ≥ 0, are subprobability measures on (E,B), i.e.,μL
t (E) ≤

1 for all t ≥ 0. We note that obviously each T L
t is uniquely determined by its values

on such u. We have seen that μt := μL
t , t ≥ 0, solves the corresponding FPKE

∫
ϕ dμt =

∫
ϕ dμ0 +

t∫

0

∫
L0ϕ dμsds, t ≥ 0,∀ϕ ∈ D0, (2.8)

hence for all T ∈ (0,∞), f ⊗ ϕ ∈ D0,T

T∫

0

∫
(

∂

∂s
+ L0)( f ⊗ ϕ) dμs ds = −

∫
( f ⊗ ϕ)(0, x)μ0(dx). (2.9)

(2.8) and (2.9) are equations for paths (μt )t≥0 of subprobability measures on (E,B)

such that [0,∞) � t → μt (A) is Lebesgue measurable for all A ∈ B. Define SP to
be the set of all such paths, and SP(T) the set of their restrictions to [0,T].
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Now the following result is obvious.

Theorem 2.1 If, for every probability density u ∈ L1 ∩ L∞, (2.8) [or (2.9)] has
a unique solution (μt )t≥0 ∈ SP such that each μt , t ≥ 0, is absolutely continuous
with respect to m and such that μ0 = u · m, then Msym,M (L0, D0) consists of at
most one element. If, in addition, the semigroup generated by the Friedrichs exten-
sion of (L0, D(L0)) is sub-Markovian, then this extension is the unique element in
Msym,M (L0, D0).

In Theorem 2.1, it is enough to prove uniqueness for (2.9) [or (2.10)] in the
subclass of all (μt )t≥0 ∈ SP for which eachμt , t ≥ 0, is absolutely continuous with
respect tom with bounded density, i.e., one only needs uniqueness in a convex subset
of SP . Therefore, the following result, which was first observed in [6], is useful and
goes beyond absolutely continuous solutions.

Proposition 2.4 Let T∈ (0,∞) and ζ be a subprobabilitymeasure on (E,B) and let
Kζ ⊂ SP(T) be a non-empty convex set such that each (μ)t∈[0,T ] ∈ Kζ is a solution
to (2.8) [hence to (2.9)] with μ0 = ζ . Suppose that for every (μt )t∈[0,T ] ∈ Kζ

(
∂

∂s
+ L0)(D0,T ) is dense in L1([0, T ] × E, μt dt). (2.10)

Let (μt )t∈[0,T ], (μ̃t )t∈[0,T ] ∈ Kζ . Then μt = μ̃t for dt-a.e. t ∈ [0, T ].
Remark 2.1 Clearly for (L , D(L)) ∈ Msym,M (L0, D0) and the corresponding solu-
tions (μL

t )t≥0 defined above, condition (2.10) is weaker than condition (2.7) in Propo-
sition 2.3, since supt∈[0,T ] ‖T L

t u‖∞ < ∞.

Proof of Proposition 2.4 Since Kζ is convex, we have that νt := 1
2μt + 1

2 μ̃t , t ≥ 0,
is again in Kζ and

μt dt = gνt dt, μ̃t dt = g̃νt dt (2.11)

for some g, g̃ ∈ L∞([0, T ] × E, νt dt).
Furthermore, by (2.9) it follows that for all f ⊗ ϕ ∈ D0,T

T∫

0

∫
(

∂

∂s
+ L0)( f ⊗ ϕ)(g − g̃) dνs ds = 0. (2.12)

Hence by (2.10) this implies that g = g̃ and the assertion follows. �
Proposition 2.4 and the observation that (at least in many cases) it suffices to

check (2.10) for just one solution in Kζ , are the core of the proof of many results
on uniqueness of solutions in SP to concrete FPKEs in Chap. 9 of [8], which thus
can be applied to prove Markov uniqueness for many examples of given operators
(L0, D0) on L2(m) as above. We shall present a selection of such in the next section.
We shall restrict ourselves to the symmetric case, i.e., p = 2 and L0 ⊂ L∗

0, though
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also nonsymmetric cases (as in case (1) from Sect. 1) can be treated if one has enough
knowledge about the dual operator (L∗

0, D
∗
0) on (L p)′ for p ∈ (1,∞) (see Remark

4.2 below).

3 Some Uniqueness Results for FPKEs

In the rest of the paper we shall concentrate on the case where the state space E is
equal to Rd . By the same ideas it is, however, possible to obtain Markov uniqueness
from uniqueness results of FPKEs on more general state spaces, including infinite
dimensional vector spaces or manifolds. This will be done in future work.

3.1 Fokker-Planck-Kolmogorov Equations

As already mentioned we shall use the uniqueness results on FPKEs from [8, Chap.
9]. So, let us briefly recall the framework there, but for simplicity restricting to
solutions in SP , since we shall only use these in our applications below.

Below (E,B) from the previous sections will always be (Rd ,B(Rd)), d ∈ N,

where B(Rd) denotes the Borel σ -algebra of Rd . Consider a partial differential
operator of the form

L0ϕ = ai j∂xi ∂x j ϕ + bi∂xi ϕ + cϕ, ϕ ∈ D0 := C∞
0 (Rd), (3.1)

where we use Einstein’s summation convention, ∂xi := ∂
∂xi

, 1 ≤ i ≤ d, ai j , bi ,

c : [0, T ] × R
d → R, with c ≤ 0, are B(Rd)-measurable functions, A(t, x) :=

(ai j (t, x))1≤i, j≤d is a nonnegative definite matrix for all (t, x) ∈ [0, T ] × R
d and

T ∈ (0,∞) is fixed. For some of the results below we need to assume local bound-
edness and local strict ellipticity of A, i.e. :

(H1) For each ball U ⊂ R
d there exist γ (U ), M(U ) ∈ (0,∞) such that

γ (U ) · I ≤ A(t, x) ≤ M(U ) · I ∀ (t, x) ∈ [0, T ] × R
d ,

where I denotes the d × d identity matrix.

Let SP be defined as in Sect. 2. We say that (μt )t≥0 ∈ SP satisfies the FPKE (up
to time T for L0) if ai j , bi , c ∈ L1

loc([0, T ] × R
d , μt dt) and for every ϕ ∈ C∞

0 (Rd)

∫
ϕ dμt =

∫
ϕ dμ0 +

t∫

0

∫
L0ϕ dμs ds for dt-a.e. t ∈ [0, T ]. (3.2)
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In Sects. 3.2–3.4 below we shall only be interested in the so-called subprobability
solutions to (3.2), i.e., we a priori restrict to a classSPν ⊂ SP in whichwe search for
a (hopefully unique) solution to (3.2). So, given a subprobability measure ν onB(Rd)

(i.e., ν ≥ 0 and ν(Rd) ≤ 1), SPν is defined to be the set of all (μt )t∈[0,T ] ∈ SP(T )

with the following properties:

(μt )t∈[0,T ] solves (3.2), (3.3)

c ∈ L1([0, T ] × R
d , μt dt), (3.4)

b ∈ L2([0, T ] ×U, μt dt;Rd) for all balls U ⊂ R
d , (3.5)

μ0 = ν and μt (R
d) ≤ ν(Rd) +

t∫

0

∫
c(x, s) μs(dx) ds for dt-a.e. t ∈ [0, T ].

(3.6)

Clearly, if ν �= 0, by dividing by ν(Rd), we may assume, without loss of generality
concerning the uniqueness of solutions in SPν for (3.2), that ν(Rd) = 1. Below we
fix a probability measure ν on B(Rd).
Now let us recall several uniqueness results for (3.2) from [8, Chap. 9]. Below let
dx denote Lebesgue measure on Rd .

3.2 Nondegenerate VMO Diffusion Coefficients

Let us recall the definition of the VMO(=vanishing mean oscillation)-property of a
function (see [14] and the references therein), which is a vast generalization of local
Lipschitzianity.

Let g be a bounded Borel-measurable function on R
d+1. Set

O(g, R) := sup
(x,t)∈Rd+1

sup
r≤R

r−2|U (x, r)|−2

×
t+r2∫

t

∫ ∫

y,z∈U (x,r)

|g(s, y) − g(s, z)| dy dz ds.

If lim
R→0

O(g, R)=0, thenwe say that the function g belongs to the classV MOx(R
d+1).

Suppose that a Borel-measurable function g is defined on [0, T ] × R
d and

boundedon [0, T ] ×U for everyballU .Weextend g byzero to thewhole spaceRd+1.
If for every function ζ ∈ C∞

0 (Rd) the function gζ belongs to the class V MOx(R
d+1),

then we say that g belongs to the class V MOx,loc([0, T ] × R
d).

Theorem 3.1 Let (H1) hold and assume that

ai j ∈ V MOx,loc([0, T ] × R
d), 1 ≤ i, j ≤ d.
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Then the set

{(μt )t∈[0,T ] ∈ SPν : ai j , bi ∈ L1([0, T ] × R
d , μt dt)} (3.7)

contains at most one element.

Proof See ([8, Theorem 9.3.6]). �

3.3 Nondegenerate Locally Lipschitz Diffusion Coefficients

In this subsection and the next one we use the following condition:

(H2) For every ballU ⊂ R
d there exists	(U ) ∈ (0,∞) such that for all 1 ≤ i, j ≤

d

|ai j (t, x) − ai j t, y| ≤ 	(U )|x − y| ∀t ∈ [0, T ], x, y ∈ U.

Theorem 3.2 Suppose that conditions (H1) and (H2) hold, that c ≤ 0 and that b ∈
L p
loc([0, T ] × R

d , dt dx;Rd), c ∈ L
p
2
loc([0, T ] × R

d , dt dx) for some p > d + 2.
Assume also that there exists (μt )t≥0 ∈ SPν satisfying the condition

|ai j |/(1 + |x |2) + |bi |/(1 + |x |) ∈ L1([0, T ] × R
d , μt dt), 1 ≤ i, j ≥ d.

Then the set SPν consists of exactly one element.

Proof See ([8, Theorem 9.4.3]). �

3.4 Nondegenerate Diffusion Coefficients and the Lyapunov
Function Condition

The function V in the following theorem is called a Lyapunov function.

Theorem 3.3 Suppose that conditions (H1) and (H2) hold, c ≤ 0 and that b ∈
L p
loc([0, T ] × R

d , dt dx;Rd), c ∈ L
p
2
loc([0, T ] × R

d , dt dx) for some p > d + 2.
Suppose also that there exists a positive function V ∈ C2(Rd) such that V (x) → +∞
as |x | → +∞ and for some C ∈ (0,∞) and all (t, x) ∈ [0, T ] × R

d we have

L0V (t, x) ≤ C + CV (x).

Then the set SPν contains at most one element.
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Proof See ([8, Theorem 9.4.6]). �

Example 3.1 Let V (x) = ln(|x |2 + 1) if |x | > 1. Then the condition L0V ≤ C +
CV is equivalent to the inequality

2 tr A(t, x) − 4
〈A(t, x)x, x〉

|x |2 + 1
+ c(t, x)(|x |2 + 1) ln(|x |2 + 1) + 2〈b(t, x), x〉

≤ C(|x |2 + 1) + C(|x |2 + 1)ln(|x|2 + 1).
(3.8)

Proof See ([8, Theorem 9.4.7]). �

3.5 Degenerate Diffusion Coefficients

3.5.1 A Uniqueness Result of LeBris/Lions

Here we assume that c = 0 in (3.1), i.e., we consider a partial differential operator
of the form

L0ϕ = ai j∂xi ∂x j ϕ + bi∂xi ϕ, ϕ ∈ D0 := C∞
0 (Rd), (3.9)

where ai j , bi , 1 ≤ i, j ≤ d, are as in (3.1), and its corresponding FPKE (3.2).
Let σ i j : [0, T ] × R

d → R be B(Rd)-measurable functions such that A = σσ ∗,
where σ := (σ i j )1≥i, j≥d . Set

β i := bi − ∂x j a
i j , 1 ≤ i, j ≤ d.

The following result is due to C. LeBris and P. L. Lions (see [15, Proposition 5], and
also [8, Theorem 9.8.1]).

Theorem 3.4 Suppose that in the natural notation

σ i j ∈ L2([0, T ];W 1,2
loc (Rd , dx)), β i ∈ L1([0, T ];W 1,1

loc (Rd , dx)),

div β ∈ L1([0, T ]; L∞(Rd , dx)),
|β|

1 + |x | ∈ L1([0, T ];
L1(Rd , dx)) + L1([0, T ]; L∞(Rd , dx)),
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σ i j

1 + |x | ∈ L2([0, T ]; L2(Rd , dx)) + L2([0, T ]; L∞(Rd , dx)).

Then, for every initial condition given by density ρ0 from L1(Rd , dx) ∩ L∞(Rd , dx)
there exists a unique solution to (3.2) with μ0 := ρ0dx in the class

{ρ : ρ ∈ L∞([0, T ]; L1(Rd , dx) ∩ L∞(Rd , dx)),

σ ∗∇ρ ∈ L2([0, T ]; L2(Rd , dx)).}

3.5.2 Uniqueness in the Class of Absolutely Continuous Paths of
Probability Measures

Here we assume

(H3) (H1) is satisfied with γ = γ (U ), M = M(U ), independent of the ball U and
(t, x) → A(t, x) is Lipschitz in t and x on [0, T ] × R

d , T > 0.
(H4) b ∈ L∞([0,∞) × R

d , dt dx;Rd).

Furthermore, we fix a B([0, T ] × R
d)-measurable non-negative function

ρ̃ : [0,∞) × R
d → [0,∞).

Consider the operator

L0ϕ = ρ̃ div(A∇ϕ) + √
ρ̃〈b,∇ϕ〉, ϕ ∈ D0 := C∞

0 (Rd). (3.10)

and its corresponding FPKE (3.2).
Define Zν to be the set of all (μt )t∈[0,T ] ∈ SP(T ) such that μ0 = ν and μt dt is

absolutely continuous w.r.t. dxdt with density z := d(μt dt)
dx dt satisfying the following

properties:

(μt )t∈[0,T ] solves the FPKE corresponding to (3.10). (3.11)

μt (R
d) = 1 for dt-a.e. t ∈ [0, T ]. (3.12)

ρ̃z ∈ L2([0, T ] ×U, dt dx) for all balls U ⊂ R
d . (3.13)

lim
N→∞

T∫

0

∫

N≤|x |≤2N

[√
ρ̃(t, x) + ρ̃(t, x)

1 + |x | z(t, x) + ρ̃2(t, x)

1 + |x |2 z
2(t, x)

]
dx dt = 0.

(3.14)

Theorem 3.5 Suppose that (H3) and (H4) hold. Then Zν contains at most one
element.

Proof This follows from ([8, Theorem 9.8.2]). �
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4 Applications to the Markov Uniqueness Problem

4.1 The Framework

Also in this section we take (E,B) := (Rd ,B(Rd)) and m := ρ dx , where

ρ ∈ L1
loc(R

d , dx), ρ > 0 dx-a.e.

We consider the following partial differential operator:

L0ϕ = 1

ρ
∂xi (ρ ai j∂x j ϕ) + c ϕ, ϕ ∈ D0 := C∞

0 (Rd), (4.1)

where ai j , 1 ≤ i, j ≤ d, and c satisfy assumption (A) below, which we assume to
hold throughout this section:

(A) ai j , c : Rd → R are B(Rd) measurable, c ≤ 0, and A(x) := (ai j (x))1≤i, j≤d is a
nonnegative definite matrix for all x ∈ R

d . Furthermore,

ai j ∈ W 1,1
loc (Rd , dx) ∩ L2

loc(R
d , ρ dx);

c, ∂xi a
i j ∈ L2

loc(R
d , ρ dx), ρ

1
2 ∈ W 1,1

loc (Rd , dx)

such that
ai jρ− 1

2 ∂xi ρ
1
2 ∈ L2

loc(R
d , ρ dx)

for all 1 ≤ i, j ≤ d.

Remark 4.1 Wenote that (A) is a standard a priori assumption on L0 in (4.1), because
it implies the following:

(i) for every ϕ ∈ C∞
0 (Rd)

L0ϕ = ai j∂xi ∂x j ϕ + (∂xi a
i j )∂x j ϕ + 2ρ− 1

2 ∂xi ρ
1
2 ai j∂x j ϕ + cϕ, (4.2)

and (L0,C∞
0 (Rd)) is symmetric on L2(Rd , ρ dx), i.e., L0 ⊂ L∗

0, where the
adjoint is taken in L2(Rd , ρ dx).

(ii) The nonnegative definite symmetric bilinear from

E0(ψ, ϕ) : = −
∫

ψ L0 ϕ ρ dx

=
∫

〈A∇ψ,∇ϕ〉Rd ρ dx −
∫

c ψ ϕ ρ dx; ψ, ϕ ∈ C∞
0 (Rd),

is a symmetric pre-Dirichlet form, hence its closure (EF , D(EF )) is a symmet-
ric Dirichlet form, whose corresponding generator (−LF , D(LF )) is just the
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Friedrichs extension of (L0,C∞
0 (Rd)). In particular, T LF

t := etLF , t ≥ 0, is sub-
Markovian. We refer to ([12, Sect. 3.3] and [16, Chap. II, Sect. (1a) and (1c)])
for details on the standard proofs for the above claims. In particular, for (L0, D0)

as above

Msym,M (L0, D0) �= ∅.

Belowweshall present various sets of additional assumptions onai j , 1 ≤ i, j ≤ d,
and c so that a respective theorem from the previous section will apply to imply

# Msym,M (L0, D0) = 1,

i.e., to imply Markov uniqueness for (L0,C∞
0 (Rd)) on L2(Rd , ρ dx). We briefly

repeat the set-up in each subsection to ease selective reading.

Remark 4.2 As mentioned above, we only consider time-independent coefficients
for the operator in (4.1) and assume symmetry of L0 on some weighted L2-space
over Rd . As shown in Sect. 2, however, our approach is much more general and
could be applied also to non-symmetric cases and for more general state spaces than
merely E = R

d . By time-space homogenization one can also find applications of the
theorems in Sect. 3 to the cases of time-dependent coefficients (and the associated
generalizedDirichlet forms; see [20] and [23]). A starting point for the nonsymmetric
case could be the case of an operator L0 as in (3.1) with time-independent coefficients
and with c ≡ 0, which has an infinitesimally invariant measure μ, or equivalently
has a stationary solution μ to its corresponding FPKE (3.2). This case has been
studied intensively in [8] in Chaps. 1–5. In particular, it has been shown there that
under broad conditions μ has a reasonably regular density with respect to Lebesgue
measure and L0 can bewritten as the sum of a symmetric operator Lsym on L2(Rd , μ)

and a vector field b which has divergence zero with respect to μ. In this case L∗
0 on

L2(Rd , μ), calculated on D0(= C∞
0 (Rd)), is just given by Lsym − 〈b,∇〉Rd and then

one can proceed analogously as in the symmetric case to obtain Markov uniqueness
results in this nonsymmetric case, which falls into the class (1) introduced in the
Introduction.

4.2 Nondegenerate VMO Diffusion Coefficients

Let (L0, D0) be as in (4.1) [respectively, (4.2)] and assume that assumption (A) holds.
Let

Msym,M := Msym,M (L0, D0)

be as defined in Sect. 1.
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Theorem 4.1 Suppose (A) and (H1) holdand that ai j ∈ VMOx,loc([0, T ] × R
d), 1 ≤

i, j ≤ d. Additionally, assume that for 1 ≤ i, j ≤ d

ai j , ∂xi a
i j + ai jρ− 1

2 ∂xi ρ
1
2 , c ∈ L1(Rd , ρ dx) + L∞(Rd , ρ dx). (4.3)

Then
Msym,M = {LF },

i.e. Markov uniqueness holds for (L0,C∞
0 (Rd)) on L2(R2, ρ dx).

Proof Let L ∈ Msym,M and T L
t := etL , t ≥ 0. Let u ∈ L∞(Rd , ρ dx), u ≥ 0,

∫
u ρ

dx = 1 and μL
t := T L

t u ρ dx, t ≥ 0. Then (μL
t )t≥0 ∈ SP for all t ≥ 0 and μ0 =

uρ dx =: ν. Now let us check that (μL
t )t≥0 ∈ SPν , i.e., satisfies (3.3)–(3.6). We

have seen in (2.8) that (μL
t )t≥0 solves the FPKE (3.2), hence (3.3) holds.

From (4.2) it follows that L0 in this section is of type (3.1) with

b j := ∂xi a
i j + 2ai jρ− 1

2 ∂xi ρ
1
2 , 1 ≤ j ≤ d. (4.4)

Since T L
t u ∈ (L1 ∩ L∞)(ρ dx), it follows from (A) and condition (4.3) that also

(3.4), (3.5) holds, and additionally we have that

ai j , b j ∈ L1([0, T ] × R
d;μL

t dt) 1 ≤ i, j ≤ d. (4.5)

So, it remains to check the second half of (3.6). To this end let χn ∈ C∞
0 (Rd), n ∈ N,

such that 1Bn ≤ χn ≤ 1Bn+1 for all n ∈ N, supn∈N ‖χ ′
n‖∞, supn∈N ‖χ ′′

n‖∞ < ∞, and
χn ↗ in n, where Bn denotes the ball inRd with center 0 and radius n. Then by (4.3)
for all t ≥ 0

ν(Rd) − μL
t (Rd) =

∫
uρ dx − lim

n→∞

∫
χn T

L
t u ρ dx

= lim
n→∞

∫
(1 − T L

t χn)u ρ dx)

= lim
n→∞

∫
(1 − χn −

t∫

0

T L
s L0χn ds)u ρ dx

= − lim
n→∞

t∫

0

∫
L0 χn T

L
s u ρ dx ds

= −
t∫

0

∫
c dμL

s ds (4.6)

and the second part of (3.6) follows even with equality sign. Hence (μL
t )t≥0 ∈ SPν .

By (4.5) it thus follows that (μL
t )t≥0 also lies in the set defined in (3.7). Since
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T L
t , t ≥ 0, is uniquely determined by its values on all functions u as above and
L ∈ Msym,M was arbitrary, Theorem 3.1 implies that

#Msym,M ≤ 1.

Now the assertion follows by Remark 4.1(ii). �

4.3 Nondegenerate Locally Lipschitz Diffusion Coefficients

Let (L0, D0) be as in (4.1) [respectively, (4.2)] such that assumption (A) holds and
letMsym,M := Msym,M (L0, D0) be defined as in Sect. 1. In the following result we
shall assume (H2) for our ai j , 1 ≤ i, j ≤ d, which is stronger than the local VMO-
condition in Theorem 4.1. As a reward we can relax the global conditions in (4.3).
We need, however, to restrict to the case c ≡ 0.

Theorem 4.2 Suppose that c ≡ 0 and that conditions (A), (H1) and (H2) hold.
Additionally, assume that for 1 ≥ i, j ≥ d, and some p > d + 2

ρ− 1
2 ∂xi ρ

1
2 ∈ L p

loc(R
d , dx), (4.7)

and that

|ai j |
(1 + |x |2) + |∂xi ai j + ai jρ− 1

2 ∂xi ρ
1
2 |

(1 + |x |) ∈ L1(Rd , ρ dx) + L∞(Rd , ρ dx) (4.8)

Then
Msym,M = {LF },

i.e., Markov uniqueness holds for (L0,C∞
0 (Rd)) on L2(Rd , ρ dx).

Proof Define b = (b j )1≤i≤d as in (4.4). We note that by (H2) we have ∂xi a
i j ∈

L∞
loc(R

d , dx) for 1 ≤ i, j ≤ d. Let L ∈ Msym,M and let (μL
t )t≥0, ν, χn, n ∈ N, be as

defined in the proof ofTheorem4.1. Then for every t ≥ 0, since T L
t is sub-Markovian,

we have

μL
t (Rd) =

∫
T L
t u ρ dx

= lim
n→∞

∫
χn T

L
t u ρ dx

= lim
n→∞

∫
T L
t χn u ρ dx

≤
∫

u ρ dx = ν(Rd).
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Hence (3.6) holds and then exactly as in the proof of Theorem 4.1 on checks [without
using (4.8)] that by assumption (A) also (3.3)–(3.5) hold to conclude that (μL

t )t≥0 ∈
SPν . Furthermore, since T L

t u ∈ (L1 ∩ L∞)(Rd , ρ dx), the left-hand side of (4.8) is
also an element of L1([0, T ] × R

d , μL
t dt), henceby (4.7) all assumptions ofTheorem

3.2 are fulfilled. So, #Msym,M ≤ 1, and Remark 4.1(ii) implies the assertion. �

Remark 4.3 Let us mention the uniqueness problem studied [13] for the one-
dimensional Fokker-Planck-Kolmogorov equation. For simplicity we consider the
case of the unit diffusion coefficient (note that in [13] the opposite notation is
used, the drift is denoted by a, but we follow our notation). The problem posed
in [13, §8, p. 116] (in the case of the equation on the whole real line) is this:
to find necessary and sufficient conditions in order that for every function h ∈
L1(R) with Lh = h′′ − (bh)′ ∈ L1(R) there is a unique solution T (x, t, h) of the
equation ∂t u = ∂2

x u − ∂x (ub) with initial condition h in the sense of the relation
‖T (·, t, h) − h‖L1 → 0 as t → 0. This setting is called Problem L0, and in Prob-
lem L it is required in addition that the solutions with probability initial densities
from the domain of definition of the operator L must be probabilistic. According to
[13, Theorems 8.5 and 8.7], where the drift coefficient is assumed to be continuous, a
necessary and sufficient condition for the solvability of Problem L0 is the divergence
of the integral

x∫

0

exp B(y)

y∫

0

exp(−B(u)) du dy, where B(y) =
y∫

0

b(s) ds

at −∞ and +∞, and for the solvability of Problem L the divergence of the integral

x∫

0

exp(−B(y))

y∫

0

exp(B(u)) du dy

at −∞ and +∞ is additionally required. This is the previous condition for the drift
−b, which makes the conditions for b and −b the same. In both cited theorems of
Hille the closure of the operator L generates a semigroup on L1(R). It is proved in [7]
that a probability solution is always unique in the one-dimensional case (under the
stated assumptions about a and b). However, an example constructed in [7] shows that
the situation is possible where for an initial condition that is a probability measure
there exists a unique probability solution of the Cauchy problem, but there are also
other solutions. It is worth noting that it is asserted in Remark 4.6 in [7] that if Hille’s
condition is violated, then for some initial condition there is no solution, but this does
follow from the results in [7], because they ensure uniqueness only for probability
solutions, so that one cannot rule out the possibility that existence holds for all initial
solutions, but uniqueness fails in the class of signed solutions.
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4.4 Nondegenerate Diffusion Coefficients and Lyapunov
Function Conditions

Let (L0, D0) be as in (4.1) [respectively, (4.2)] and assume that assumption (A) holds.
Let Msym,M := Msym,M (L0, D0) be as defined in Sect. 1.

Theorem 4.3 Suppose that c ≡ 0 and that conditions (A), (H1) and (H2) hold.
Additionally, assume that (4.7) holds and that (3.8) holds with b = (b j )1≤ j≤d defined
as in (4.4). Then

Msym,M = {LF },

i.e., Markov uniqueness holds for (L0,C∞
0 (Rd)) on L2(Rd , ρ dx).

Proof The proof is completely analogous to the proof of Theorem 4.2 except for
applying Theorem 3.3 and Example 3.1 instead of Theorem 3.2 and replacing con-
dition (4.8) by (3.8). �

Remark 4.4 We would like to point out that Theorem 4.3 is close to Corollary 2.3
in [21] and to Proposition 2.9.4 in [9]. However, it is not covered by them, since ρ

is not a probability density. The function ρ is not even assumed to be in L1(Rd , dx)
here.

4.5 Degenerate Diffusion Coefficients

4.5.1 Markov Uniqueness as a Consequence of the Results of Le Bris
and Lions

Theorem 4.4 Let σ := (σ i j )1≤i, j≤d , A := σσ ∗ and ai j = (σσ ∗)i j , 1 ≤ i, j ≤ d,
where

σ i j ∈ W 1,2
loc (Rd , dx), ∂xi a

i j ∈ W 1,2
loc (Rd , dx) (4.9)

and

σ i j , ∂x j ∂xi a
i j ∈ L∞(Rd , dx),

∂xi a
i j

1 + |x | ∈ L1(Rd , dx) + L∞(Rd , dx). (4.10)

Then condition (A) holds for ρ ≡ 1, c ≡ 0, and the corresponding operator (L0.D0)

from (4.2) is symmetric on L2(Rd , dx). Let Msym,M := Msym,M (L0, D0) be as
defined in Sect. 1. Then

Msym,M = {LF },

i.e., Markov uniqueness holds for (L0,C∞
0 (Rd)) on L2(Rd , dx).
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Proof Let L ∈ Msym,M and μL
t := T L

t u dx, t ≥ 0, with u as in the proof of The-
orem 4.1. Then by assumptions (4.9), (4.10), we can apply Theorem 3.4 with
ρ0 := u, sinceT L

t u ∈ (L1 ∩ L∞)(Rd , dx) andσ ∗∇T L
t u ∈ L2(Rd , dx; Rd), because

∇T L
t u ∈ L2(Rd , dx; R

d) and σ i j ∈ L∞(Rd , dx), 1 ≤ i, j ≤ d. Hence #Msym,M ≤
1 and by Remark 4.1(ii) the assertion follows. �

4.5.2 Markov Uniqueness in Another Degenerate Case

Let ρ ∈ (L1 ∩ L3)(Rd , dx) such that

ρ > 0,
∫

ρdx = 1, ρ
1
2 ∈ W 1,1

loc (Rd , dx)

and ∇ρ
1
2 ∈ L∞(Rd , dx; R

d), and assume that (H3) holds. Consider the operator

L0ϕ := ρ div(A∇ϕ) + √
ρ〈A∇√

ρ,∇ϕ〉Rd , ϕ ∈ D0 := C∞
0 (Rd), (4.11)

and its corresponding FPKE (3.2). Note that by our assumptions on A and ρ

we have that L0 : D0 ⊂ L2(Rd , ρ dx) → L2(Rd , ρ dx) and L0ϕ = 1
ρ
div(ρ2A∇ϕ)

for all ϕ ∈ D0 = C∞
0 (Rd), hence (L0, D0) is symmetric on L2(Rd , ρ dx). Let

Msym,M := Msym,M (L0, D0) be as defined in Sect. 1.

Theorem 4.5 Assume that (H3) holds and let ρ satisfy the assumptions specified
above. Then

Msym,M = {LF },

i.e., Markov uniqueness holds for (L0,C∞
0 (Rd)) on L2(Rd , ρ dx).

Proof Let L ∈ Msym,M andμL
t := T L

t u ρ dx, t ≥ 0, with u as in the proof of Theo-
rem 4.1.We have seen in (2.8) that (μL

t )t≥0 solves the FPKE associatedwith (L0, D0)

in (4.11). To show that it is the only such solution we are going to apply Theorem
3.5. So, let us check its assumptions for z(t, ·) := T L

t u ρ and ρ̃ := ρ. First of all,
(3.11) holds as just seen. So, let us show (3.12). As in (4.6) we have for every t ≥ 0

μL
t (Rd) =

∫
uρ dx + lim

n→∞

t∫

0

∫
L0χn T

L
s u ρ dxds.

By our assumptions about A and since ∇√
ρ ∈ L∞(Rd , dx; R

d), we have that for
some C ∈ (0,∞) and all s ≥ 0

sup
n

|L0χn T
L
s u| ≤ C‖u‖∞(ρ + 1), dx − a.e.
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Since ρ ∈ (L1 ∩ L2)(Rd , dx) and L0χn → 0 dx-a.e. as n → ∞, we conclude
that

μL
t (Rd) =

∫
uρ dx = 1 for all t ≥ 0.

Next, (3.13) is clear, since T L
t u ∈ L∞(Rd , dx) and ρ ∈ L∞

loc(R
d , dx), because

∇ρ
1
2 ∈ L∞(Rd , dx).
Finally, let us show (3.14). It suffices to show that all functions under the integral

in (3.14) are in L1(Rd , dx) in our case, due to our assumptions. For the first summand
this is immediate, since

(ρ
1
2 + ρ) z(t, ·) = (ρ

1
2 + ρ)ρ T L

t u

≤ (1 + 2ρ)ρ‖u‖∞ ∈ L1(Rd , dx),

since ρ ∈ (L1 ∩ L2)(Rd , dx) by assumption. For the second summand we note that
ρ

1
2 has a Lipschitz dx-version onRd , since∇√

ρ ∈ L∞(Rd , dx; Rd) by assumption.

Hence ρ
1
2 is of at most linear growth and thus ρ of at most quadratic growth. Hence,

since ρ ∈ L3(Rd , dx), for some C ∈ (0,∞) and all t ≥ 0 we have

ρ2(x)

1 + |x |2 z2(t, ·) ≤ Cρ3‖u‖∞ ∈ L1(Rd , dx),

and altogether (3.14) follows. Since (H4) also holds by our assumptions about A and
∇√

ρ ∈ L∞(Rd , dx; Rd), we can apply Theorem 3.5 and conclude that #Msym,M ≤
1 and again by Remark 4.1(ii) the assertion follows. �
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A Chip-Firing and a Riemann-Roch
Theorem on an Ultrametric Space

Atsushi Atsuji and Hiroshi Kaneko

Abstract A Riemann-Roch theorem on an edge-weighted infinite graph with local
finiteness was established by the present authors in [1], where the spectral gap of
Laplacian associated determined by the edge-weight was investigated as the corner
stone of the proof. On the other hand, as for non-archimedean metric space, the
Laplacians in the construction of Hunt processes such as in [3, 5] based on the
Dirichlet space theory can be highlighted. However, in those studies, a positive edge-
weight was given substantially between each pair of balls with an identical diameter
with respect to the ultrametric and the spectral gap is infeasible. In the present
article, we rethink the notion of chip-firing and show an upper bound of function
given by accumulation of chip-firing to materialize a counterpart of the dimension
of linear system in ultrametric space. In the final section of this article, we establish
a Riemann-Roch theorem on an ultrametric space.

Keywords Dirichlet space · Laplacian · Riemann-Roch theorem · Ultrametric
space · Weighted graph

1 Introduction

A Riemann-Roch theorem on connected finite graph was initiated by Baker and
Norine in [2]. Originally, on the complex plane, the exponent of lowest degree in the
Laurent series around a pole admit an interpretation as multiplicity of the single pole.
We note that it is also regarded as a coefficient of divisor at the pole. In accordance
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with this fact, when unit weight is given at each vertex of a graph, the notion of
the divisor is justified by assignment of integer multiples of the unit weight given at
each vertex of the graph. In their article, a theoretical scheme for a Riemann-Roch
theorem on a locally finite graphwith uniform edge-weight was proposed and a proof
of a Riemann-Roch theorem was shown in [2].

Baker and Norine suggested in [2] a possibility of establishment of a Riemann-
Roch theorem on infinite graph in [3]. Recently, the authors of the present article
proposed a scheme for the proof of a Riemann-Roch theorem on an infinite graph.
The method relies on the spectral gap of the Laplacian for deriving a boundedness
of Z-valued chip-firing function, which was crucial for establishment of dimension
of the linear system determined by a divisor on infinite graph with local finiteness.
On the other hand, as for infinite state space with non-archimedean metric, typical
Hunt processes were constructed by Kigami in [5] and the second author in [3]
based on the complete orthonormal system associated with non-local Laplacian, i.e.,
associated with non-local Dirichlet space. However, in the formulations in those
articles, the absence of spectral gap is observed and since any pair of balls with
an identical diameter admits an edge with positive weight, the set of balls with an
identical diameter constitutes a set of vertices of a complete graph. This means that if
there are infinitely many balls with an identical diameter in such a ultrametric space,
inevitably a complete graph is brought by the set of vertices consisting of all ball
with the identical diameter is not locally finite, In this article, in order to overcome
the difficulty in dealing with infinite graph without local finiteness, we rethink the
notion of chip-firing on the basis of orthogonal system on a space of square integrable
functions with respect to a measure on the graph consistently given by edge-weight,
instead of an observation on spectral gap arising from the Laplacian. After this shift
of our focus, we demonstrate the proof of a Riemann-Roch theorem on ultrametric
space.

In Sect. 2, we look back at the methods to proof a Riemann-Roch theorem in [2]
and give a refinement of their discussion with the shift of our focus from existing
chip-firing to the one given by a function in an orthogonal family of functions with
respect to a measure given reasonably by the edge-weights. In Sect. 3, we focus on
the situation where an initial graph with an ultrametric is given and extra graphs are
added to the originally given graph to obtain an enlarged graph. We derive an upper
estimate on L2-norm of function which is given as an accumulation of chip-firings
in our scheme to determine the dimension of the linear system so that the estimate
is valid even after our procedure of enlargement of originally given graph. In the
final section, by taking procedures to obtain a family of consistent total orders on
subgraphs of the infinite graph equippedwith an ultrametric, we establish aRiemann-
Roch theorem on the space.
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2 Laplacian and Riemann-Roch Theorem on Ultrametric
Space with Finite Vertices

We take a finite graph G = (V, E) consisting of a finite set V of vertices and a
finite set E of edges without loops. To be more precise, E is given as a subset of
(V × V \ {{x, x} | x ∈ V })/ ∼, where {x, y} ∼ {y, x} ∈ E for any pair x, y ∈ V .
Accordingly, {x, y} and {y, x} are regarded as an identical element in E . We make
a basic assumption on G as follows:

(A0) The graph G admits a finite family G = { fk | k ∈ {0, 1, . . . , N }} of non-
constant Q-valued functions on V , a Radon measure μ on V and a finite
subset R ⊂ (0,∞) such that

(i) for each k ∈ {0, 1, . . . , N }, ∫V fkdμ = 0,
(ii) each k ∈ {0, 1, . . . , N } assigns an element rk ∈ R such that, for any pair

k ′, k ′′ ∈ {0, 1, . . . , N }, if fk ′ is constant on {x ∈ V | fk ′′(x) �= 0} then rk ′ >

rk ′′ ,
(iii) the space of all linear combinations of { fk | k ∈ {1, 2, . . . , N }}with rational

coefficients coincides with the potential space �(V ) = { f : V → Q with∫
V f dμ = 0}.

For any pair v,w of distinct vertices in V , we define d(v,w) = inf{rk ∈ R |
rk is associated with some fk in the condition (ii) satisfying either fk(v) > 0 and
fk(w) < 0 or fk(v) < 0 and fk(w) > 0} and then we assume that d is a metric
on V by letting d(v, v) = 0 for any v ∈ V . In what follows, for any function on V ,
{x ∈ V | f (x) �= 0} is denoted by supp[ f ] and we denote the function takingμ({x})
at each x ∈ V by μ.

We introduce a rational positive edge-weight Cx,y for each edge {x, y} ∈ E and
the Laplacian � defined by �φ(x) = ∑

{y,x}∈E Cx,y(φ(x) − φ(y)) at each x ∈ V
for any function φ on V .

Example 1 Let p be a prime number. We note that Zp admits the normalized Haar
measure μ and denote the radius of ball B in Zp with respect to the p-adic valuation
by r(B). For a positive integer M , we take the family {B | r(B) = p−M} of balls in
Zp and each element in the family is viewed as a vertex, i.e., element in the set V .
As in the articles [3, 5], we assume that, for each pair B, B ′ ∈ V , the edge {B, B ′}
admits a positive edge-weight CB,B ′ so that a Hunt process is constructed on the
basis of the Dirichlet space theory assigned by the edge-weights. Consistently with a
such construction of Hunt process on an orthonormal system on L2(μ), we note that
the orthonormal system can be taken the family { fk | k ∈ {1, 2, . . . , N }} is given as
follows:

When M = 1, Zp is represented as the union of the disjoint balls B(0, 1/p),
B(1, 1/p), . . . , B(p − 1, 1/p) andwecan take an exampleof { fk | k ∈ {1, 2, . . . , N }}
with N = p − 1:
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f1 = (p − 1)1B(0,1/p) − 1B(1,1/p) − · · · − 1B(p−1,1/p),

f2 = (p − 2)1B(1,1/p) − 1B(2,1/p) − · · · − 1B(p−1,1/p).

. . .

f p−1 = 1B(p−2,1/p) − 1B(p−1,1/p),

and then R = {1} induces the same metric d as the ordinary p-adic metric due

to the definition of our metric. By taking a uniform edge-weight CB,B ′ = 1

p(p − 1)
regardless of the choice of edge {B, B ′},we can redefine the normalizedHaarmeasure
μ on V by μ({B}) = ∑

B ′ �=B CB,B ′ = 1/p for any B ∈ V .

WhenM = 2,Zp is represented as theunionof disjoint balls B(0, 1/p), B(1, 1/p),
. . . , B(p − 1, 1/p), each B(l, 1/p) of which is given as the union of B(l, 1/p2) =
ϕp,l(B(0, 1/p)), B(p + l, 1/p2) = ϕp,l(B(1, 1/p)), . . . , B(p(p − 1) + l, 1/p2) =
ϕp,l(B(p − 1, 1/p)), where ϕp,l(x) = px + l, l ∈ {0, . . . , p − 1}. We can take an
example of { fk | k ∈ {1, 2, . . . , N }} with N = p2 − 1. In fact, in addition to

f1 = (p − 1)1B(0,1/p) − 1B(1,1/p) − · · · − 1B(p−1,1/p)

f2 = (p − 2)1B(1,1/p) − 1B(2,1/p) − · · · − 1B(p−1,1/p).

. . .

f p−1 = 1B(p−2,1/p) − 1B(p−1,1/p),

we employ also

f p = f1 ◦ ϕ−1
p,0, f p+1 = f2 ◦ ϕ−1

p,0, . . . , f p−1+(p−1)l+m = fm ◦ ϕ−1
p,l , . . . , f p2−1

= f p−1 ◦ ϕ−1
p,p−1.

as the functions in G and R = {1/p, 1} induces the same metric d as the ordinary
p-adic metric due to the definition of our metric. By taking edge-weight

CB,B ′ =

⎧
⎪⎨

⎪⎩

t

p3(p − 1)
if d(B, B ′) = 1/p,

1 − t

p2(p − 1)
if d(B, B ′) = 1

with some t ∈ Q ∩ (0, 1), we can redefine a normalized Haar measure μ on V by
μ({B}) = ∑

B ′ �=B CB,B ′ = 1/p2 for any B ∈ V .
We can classify the functions in G in the previous example withM = 2, according

to thediameter of the support of functionwith respect to themetricd:G1/p = { f ∈ G |
the diameter of supp[ f ] is 1/p} = {ϕ∗

p,k ′ fk | k, k ′ ∈ {0, 1, . . . , p − 1}} andG1 = { f
∈ G | the diameter of supp[ f ] is 1} = { fk | k ∈ {0, 1, . . . , p − 1}}.

In what follows, for any finite graph, we define � f (x) = ∑
y∈V \{x} Cx,y( f (x) −

f (y)) for anyZ-valued function f and i(x) = min{|� f (x)| | f : V → Z satisfying
f (x) = 0 and � f (x) �= 0}, which is viewed as the minimum positive absolute value
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of feasible current flows at the grounded vertex x given by integer valued voltage
f (y) with y ∈ V \ {x}.
A divisor on the graph G is given by D = ∑

x∈V �(x)i(x)1{x} and its degree
deg(D) is defined by deg(D) = ∑

x∈V �(x)i(x). A divisor D = ∑
x∈V �(x)i(x)1{x}

is said to be effective if �(x) ≥ 0 for all x ∈ V . Since f is Z-valued, � f (x) is
given as an integer multiple of i(x) at each x ∈ V and the Laplacian � f will be
identified with the divisor

∑
x∈V � f (x)1{x}. This identification makes it possible to

add the Laplacian � f to any divisor. The degree deg(D) = ∑
x∈V �(x)i(x) enjoys

the following:

Lemma 2.1 For any Z-valued function f on V , deg(� f ) = 0 and deg(D) =
deg(D + � f ).

Proof It suffices to show the first identity. It is follows from the trivial identity
Cx,y( f (x) − f (y)) = −Cy,x ( f (y) − f (x)). �

In the sequel, we define the sphere centered at v with radius s by S(v, s) = {x ∈
V | d(x, v) = s} and the ball centered at v with radius r by B(v, r).

For v ∈ V and E ⊂ S(v, s), a Q-valued function g on V satisfying
∫
V gdμ = 0

is called an inward chip-firing of E toward v if g takes positive constant on some
F ⊂ B(v, r) with r < s and negative constant on E . Without specifying E , we
may call g an inward chip-firing toward v. A Q-valued function g on V satisfying∫
V gdμ = 0 is called an outward chip-firing with respect to v if g takes a positive

constant on some B ⊂ B(v, r)c with r ∈ R and g(v) < 0. A chip-firing
1

μ
� f with

f : V → Z is said to be unit if f/k can not be Z-valued for any integer k ≥ 2.
Here after, added to (A0) above, we impose the following as well:

(A0) (iv) There exists an orthogonal family G ofQ-valued functions with respect to
some positive rational valued measure μ and each function in G is orthogonal
to constant functions and that, for any g ∈ G, there exists a Z-valued function
f on V such that g = 1

μ
� f and supp[g] =supp[ f ].

(v) There exists a reference vertex v0 such that any subset E ⊂ S(v0, r) with
r ∈ R admits an inward chip-firing of E toward v0.
(vi) For any pair v, v′ ∈ V , there is an outward chip-firing g ∈ G with respect
to v such that g(v′) > 0.

The choice of unit chip-firing as in (v) is unique under the maximal choice of
the support of chip-firing, i.e., there exists a unique unit g of chip-firing which is an
inward chip-firing of E with respect to v0 such that supp[g′] ⊂ supp[g] is satisfied
as long as g′ is inward chip-firing of E toward v0 other than g.

Lemma 2.2 For any E ⊂ V ,
1

μ
�1E = ∑

fi∈G,supp[ fi ]∩B(v0,r j )�=∅ ci fi with some

c1, . . ., cN ∈ Q.
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Proof Since each g∗ ∈ G admits expression

g∗ =
ν∑

i=1

ti
μ(F)

1Ei −
κ∑

j=1

s j
μ(E)

1Fj

with rational numbers t1, . . . , tν, s1, . . . , sκ satisfying
∑ν

i ti = ∑κ
j s j , disjoint sub-

sets E1, . . . , Eν of E satisfying ∪i Ei = E and disjoint subsets F1, . . . , Fκ of F
satisfying ∪ j Fj = F , we see that

‖g∗‖L2(μ) =
( ν∑

i=1

( ti
μ(F)

)2
μ(Ei ) +

κ∑

j=1

( s j
μ(E)

)2
μ(Fj )

)1/2

.

We note that this sort of expression on L2-norm is valid for each fi ∈ G.
Since

∫
V

1

μ
�1Edμ = 0 and assumption (iii),

1

μ
�1E = ∑

fi∈G,supp[ fi ]∩B(v0,r j )�=∅
ci fi with some c1, . . . , cN ∈ R. On the other hand, the coefficient ci is given as
( 1

μ
�1E , fi

)

L2(μ)
/‖ fi‖2L2(μ)

. By combining this with the explicit expression on

‖ fi‖L2(μ), we can conclude that c1, . . . , cN ∈ Q. �

We denote the set consisting of all total orders on V by O or more specifically
by OV and for a divisor D = ∑

x∈V �(x)i(x),
∑

x∈V,�(x)>0 �(x)i(x) by deg+(D) =∑
x∈V �(x)i(x). Similarly to observations by Baker and Norine’s article [2], for a

Riemann-Roch theorem on finite graph, the minimization of

min{deg+(D + � f − νO) | f : V → Z and O ∈ OV }

with νO = ∑
x∈V (

∑
y∈V \{x},y<x Cx,y − i(x))1{x} is required. In fact, r(D) called the

dimension of the linear system assigned by D is given by the minimized value of
deg+(D + � f − νO) − i(G,C), where i(G,C) = min{|∑x∈V �(x)i(x)| ∈ (0,∞) | � :
V → Z}.

Take an arbitrarily fixed v0 ∈ V and r jG = max{r ∈ R | supp[ f ] ⊂ B(v0, r) for
any f ∈ G}. For given D = ∑

x∈V �(x)i(x)1{x}, a jG-dimensional vector

V1(D) =
( ∑

z∈SjG ,�(z)<0

�(z)i(z), . . . ,
∑

z∈S1,�(z)<0

�(z)i(z)
)

and a jG + 1-dimensional vector

V2(D) =
( ∑

z∈S0
�(z)i(z),

∑

z∈S1
�(z)i(z), . . . ,

∑

z∈SjG

�(z)i(z)
)
,

are introduced, where Sj = {v ∈ V | d(v0, v) = r j }.
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Now we take the subfamily

D′ = {
D′ | D′ attains the maximum max

D′∼D
V1(D

′) in the sense of the

lexicographical order
}
,

of all divisors on G, we subsequently take the subfamily D′′ of D′ given by

D′′ = {
D′′ ∈ D′ | D′′ attains the maximum max

D′′∼D
V2(D

′′) in the sense of the

lexicographical order
}
.

First, to attain maxD′∼D V1(D′) in the sense of the lexicographical order, we can
use f : V → Z given as a linear combination of the functions in G with a non-zero
rational coefficient of the inward chip-firing. This is because the discussion for the
proof of Proposition 3.1 in [2] is completed even in our case by performing such non-
zero rational multiples of the inward chip-firing toward v0. Second, we take a similar
procedure to attain maxD′′∈D′ V2(D′′) in the sense of the lexicographical order. The
maximal element D′′ = ∑

x∈V �′′(z)i(z) in D′′ is called a v0-reduced divisor. The
procedures to attain those maxima are detailed as follows:

Proposition 2.3 For any divisor D = ∑
v∈V �(v)i(v)1{v} given on G with the set V

of the vertices, there exists a v0-reduced divisor D′ which is equivalent to D.

Proof If D(v) < 0 for some vertex v �= v0, then there is a vertex v′ such that v′ is
contained in the support of some outward chip-firing g with respect to v0 satisfying
g(v) > 0 and g(v′) < 0. Then we can take a Z-valued function f such that g =
1

μ
� f . In particular d(v0, v

′) < d(v0, v) and D′ = D + � f satisfies D′(v) > D(v)

and D′(w) ≥ D(w) for every w in supp[g] with d(v0, w) ≥ d(v0, v). It follows that
V1(D′) > V1(D), which contradicts the choice of D. Therefore D(v) ≥ 0 for every
v ∈ V (G) with v �= v0.

Suppose now that some non-empty subset A ⊂ V (G) \ {v0} satisfies D(v) ≥
outdegA(v) for every v ∈ A. Here and in the sequel, outdegA(v) = ∑

y∈Ac Cx,y .
Then, d(v0, A) = minv∈A d(v0, v) > 0 and, for the divisor D′ = D − �(1A), we
have D′(v) ≥ D(v) for allv ∈ V \ A and D′(v) = D(v) − outdegA(v) ≥ 0 for every
v ∈ A. ThereforeV1(D′) coincides withV1(D) as the zero vector. For r = d(v0, A),

− 1

μ
�(1A∩S(v0,r)) is a chip-firing represented as a linear combination of elements

in G with rational coefficients in which a positive rational multiple of an inward
chip-firing toward v0 is contained. Accordingly, there is a vertex v′ in the sup-
port of the chip-firing with d(v0, v

′) < r satisfying −�(1A∩S(v0,r))(v
′) > 0. It fol-

lows that D′(v′) = D(v′) − �1A(v
′) ≥ D(v′) − �1A∩S(v0,r)(v

′) > D(v′), and con-
sequently V2(D′) > V2(D), again which contradicts the choice of D. This finishes
the proof of the existence. �
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We can determine a sequence of elements in V as follows:

(S0) v0 is taken as the smallest element with respect to the total order,
(S1) the second smallest v1 is given as �′′(v1)i(v1) <

∑
y∈V \{v0} Cv1,y ,

(S2) the third smallest v2 is given as �′′(v2)i(v2) <
∑

y∈V \{v0,v1} Cv2,y , etc.

Consequently, the total order O is assigned by v0 ≤ v1 ≤ v2 ≤ · · · .
After that, we can take a minimization of deg+(D + � f − νO) subject to f :

V → Z and the dimension r(D) of linear system given by D is determined by

r(D) = deg+(D + � f − νO) − i(G,C)

with the minimized value in the right-hand side. We note also that KG = ∑
x∈V{∑y∈V \{x} Cx,y − 2i(x)}1{x} is taken as a counterpart of the canonical divisor intro-

duced in Baker and Norine’s article [2].
We can derive a Riemann-Roch theorem on ultrametric space with finite vertices,

which will be utilized in the following sections:

Theorem 2.4
r(D) − r(KG − D) = deg(D) + e(G,C),

where e(G,C) = deg(KG) = ∑
x∈V i(x) − ∑

x,y∈V,x �=y Cx,y .

We close this section with the following fundamental properties of r(D) which
are utilized later.

Lemma 2.5 (i) If D′ is effective, then r(D) + deg(D′) ≥ r(D + D′),
(ii) If −D′′ is effective, then r(D) + deg(D′′) ≤ r(D + D′′).

Proof (i) Since there exists an effective divisor E with deg(E) > r(D) such that
D − E does not admit any equivalent effective divisor. It turns out that the
effective divisor D′ + E satisfies deg(E + D′) > r(D) + deg(D′) and (D +
D′) − (E + D′) does not admit any equivalent effective divisor. Accordingly,
r(D + D′) does not exceed r(D) + deg(D′).

(ii) It suffices to show that r(D) ≤ r(D + D′′) − deg(D′′). This follows from (i) by
regarding D + D′′ and −D′′ as D and D′ respectively in the identity of (i). �

3 Unification of Ultrametric Space with Finite Verteces

In this section, we deal with the case that G = (V, E) is a complete graph equipped
with an ultrametric d determined by the family G of orthonormal functions with
respect to ameasureμV onV as in the last section, the diameter ofG is given by s ∈ R
and G is divided into G0 = (V0, E0), G1 = (V1, E1), . . . ,Gm = (Vm, Em) with
V0 = V ∩ B(v

V0
0 , r), E0 = E ∩ B(v

V0
0 , r),V1 = V ∩ B(v

V1
0 , r), E1 = E ∩ B(v

V1
0 , r),

. . . , Vm = V ∩ B(v
Vm
0 ,m), En = E ∩ B(v

Vm
0 , r), where v

V0
0 , . . . , v

Vm
0 ∈ V and r =

max{t ∈ R ∩ (0, s)}.



A Chip-Firing and a Riemann-Roch Theorem on an Ultrametric Space 31

We consider the situation where each Gi of G0, . . . ,Gm admits a divisor Di ,
the family Gi of functions as in the last section with Gi ⊂ G and a vertex v

Gi
0 such

that Di admits a v
Gi
0 -reduced equivalent divisor. Thus divisor D is determined by

D = D0 + D1 + · · · + Dm , i.e., D0 = D|V0 , D1 = D|V1 , . . . , Dm = D|Vm .
We give an algorithmic procedure to obtain an appropriate vertex v0 in V for the

dimension of the divisor D and for precedently required v0-reduced divisor which
is equivalent to D. For the purpose, we note that we can divide the current situation
into the following four cases:

(I) there is at least one i ∈ {0, 1, . . . ,m} such that Di is equivalent to an effective
divisor and so is D0 + · · · + Di−1 + Di+1 + · · · + Dm ,

(II) D0 + D1 + · · · + Dm is equivalent to an effective divisor and, for all i ∈
{0, 1, . . . ,m}, either Di is not equivalent to any effective divisors or D0 + D1 +
· · · + Di−1 + Di+1 + · · · + Dm is not equivalent to any effective divisors,

(III) D0 + D1 + · · · + Dm is not equivalent to any effective divisors and, for all i ∈
{0, 1, . . . ,m}, either Di is not equivalent to any effective divisors or D0 + D1 +
· · · + Di−1 + Di+1 + · · · + Dm is not equivalent to any effective divisors,

(IV) there is at least one i ∈ {0, 1, . . . ,m} such that either Di nor D0 + D1 + · · · +
Di−1 + Di+1 + · · · + Dm is not equivalent to any effective divisor,

In the case (I), since D = D0 + · · · + Dm is an effective divisor, similar to the
discussion of the proof of Theorem 3.3 in [2], we may take either of v

V0
0 , . . . , vVm

m
as the reference vertex v0 to obtain v0-reduced divisor. In fact, we can obtain a
v
Vi
0 -reduced divisor of D0 + · · · + Dm for any i = 0, . . . ,m on G.

In the case (II), sinceD0 + D1 + · · · + Dm = 1

m

∑m
i=0(D0 + D1 + · · · + Di−1 +

Di+1 + · · · + Dm), at least one of {D0 + D1 + · · · + Di−1 + Di+1 + · · · + Dm | i ∈
{0, . . . ,m}} is equivalent to an effective divisor, (II) says that we may assume Di is
not equivalent to any effective divisors.We see that any v

Vi
0 -reduced divisor Di onGi

takes a negative value at vVi
0 . On the other hand, since D0 + D1 + · · · + Dm is equiv-

alent to an effective divisor, by adding Di to D0 + · · · + Di−1 + Di+1 + · · · + Dm , a
divisor equivalent to an effective divisor on G is obtained. Then, vVi

0 -reduced divisor
(D0 + · · · + Dm)′ of (D0 + · · · + Dm) takes a non-negative value at vVi

0 . In this case,
we may take v

Vi
0 as the reference vertex v0 of G.

(III) SinceD0 + D1 + · · · + Dm = 1

m

∑m
i=0(D0 + D1 + · · · + Di−1 + Di+1 + · · · +

Dm), at least one of {D0 + · · · + Di−1 + Di+1 · · · + Dm | i ∈ {0, . . . ,m}} can not
be equivalent to any effective divisors. The condition (III) says we can find some Di

which is equivalent to an effective divisor. On the other hand, the divisor obtained
by adding Di to D0 + D1 + · · · + Di−1 + Di+1 + · · · + Dm can not be equivalent
to any effective divisor. By performing a chip-firing shown in the following (P3) (In
(P3), v

Vi
0 is regarded already as the reference vertex of G and denoted by v

V0
0 ), we

can obtain a divisor (D1 + · · · + Di−1 + Di+1 · · · + Dm)′ taking non-negative value
on V1 ∪ · · · ∪ Vi−1 ∪ Vi+1 ∪ · · · ∪ Vm . Then, v

Vi
0 -reduced divisor (D0 + · · · + Dm)′

takes a negative value at v
Vi
0 . In this case, we rename Gi as G0 and take v

Vi
0 as the

reference vertex v0 of G.
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In the case (IV), similarly to the case (I), we may take any of v
V0
0 , . . . , vVm

m as v0.
Corresponding to the splittingG = (V, E) intoG1 = (V1, E1), . . .Gn = (Vn, En),

we introduce the graph G = (V , E) determined by V = {V0, V1, . . . , Vm}, E =
{{Vi , Vj }}i> j , and define conductance between Vi , Vj by CVi ,Vj = ∑

x∈Vi ,y∈Vj
Cx,y .

We define i V (Vj ) = min{|�V f (Vj )| | f : V → Z satisfying f (Vj ) = 0 and �V

f (Vj ) �= 0}, where�V is determined by the edge-weights CVi ,Vj with i, j ∈ {0, . . . ,
m} and introduce the notation i Vi (x) = min{|�Vi f (x)| | f : Vi → Z satisfying
f (x) = 0 and �Vi f (x) �= 0}, where �Vi f (x) = ∑

y∈Vi\{x} Cx,y( f (x) − f (y)) for
any i ∈ {0, 1, . . . ,m}.

Here, we assume that

(A1) i V0(x), i V1(x), . . . , i Vm (x) are all integer-multiples of i V (Vj ) for any pair x, Vj

with x ∈ V = V0 ∪ V1 ∪ · · · ∪ Vm and Vj ∈ V , and
(A2) when each V i has diameter r and V has diameter s with s = min(R ∩ (r,∞)),

Gs = {g ∈ G | supp[g] ⊂ B(v0, s), g is positive on some B(w, r) and negative
on some B(w′, r) with w′ �= w} consists of linearly independent m functions
including a unique unit chip-firing function g such that g is positive on B(v0, r)
and negative on S(v0, s).

Here, we note that a uniquely given function g in this assumption gives an outward
chip-firing with respect to v0. In the sequel, we denote Gs \ { f } by Hs .

For a divisor D = ∑
x∈V �(x)i(x)1{x} on G, we introduce effective divisors

D+ and D− given respectively by D+ = ∑
x∈V,�(x)>0 �(x)i(x)1{x} and D− = −∑

x∈V,�(x)<0 �(x)i(x)1{x} and we denote
∑

x∈V,�(x)>0 �(x)
i(x) and

∑
x∈V,�(x)<0 �(x)i(x) by deg+(D) and deg−(D), respectively.

Under these assumptions and notations, we see that the following proposition
shows the existence of v0-reduced divisor of any divisor D on the complete graph
G = (V, E).

We denote D′ Hs∼ D, if D′ = D + �h with some Z-valued h with 1
μV

�h written
as a linear combination of functions inHs with rational coefficients. Let us define �

by

� = max

{

min
x∈V \V0,Vi�x

⌊
D′(x)
i V (Vi )

⌋

| D′ Hs∼ D under the minimizations of V1(D
′)

and the subsequent minimization of V2(D
′)
}

.

In the case (I) or (II), either of the following procedure (P1) or (P2) is taken and
in the case (III) or (IV), the following procedure (P3) is taken:

(P1) If � is positive, then we perform a chip-firing g including positive rational mul-
tiple of a unit inward chip-firing g′ ∈ Gs toward v

V0
0 for D = D0 + D1 + · · · +

Dm so that (D + � f )|V \V0 is effective and deg
+((D + � f )|V \V0) is minimum,

if necessary, linear combination of the functions inHs with rational coefficients
can be contained in the chip-firing g to minimize deg+((D + � f )|V \V0).
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(P2) If � is zero, then (D0 + D1 + · · · + Dm)|V \V0 admits an Hs-equivalent effec-
tive divisor D′|V \V0 . We may assume that deg+(D′|V \V0) is minimal. In fact, if
necessary, a chip-firing h written as a linear combination of the functions inHs

with rational coefficients can be performed tominimize deg+((D + �h)|V \V0).
(P3) If � is negative, then (D0 + D1 + · · · + Dm)|V \V0 does not admit any Hs-

equivalent effective divisor unless any chip-firing including negative rational
multiple of the unit outward chip-firing g is performed. Accordingly, it is
required to perform a chip-firing g including negative rational multiple of a
unit outward chip-firing g′ with respect to v

V0
0 for D = D0 + D1 + · · · + Dm

to obtain effective divisor on V \ V0. Here, we note that, if necessary, a lin-
ear combination of functions in Hs with rational coefficients other than g′
can be contained in the chip-firing g to minimize deg+((D + � f )|V \V0) with
1

μV
� f = g.

After taking these procedures, we can take maximization procedures on V1(D)

and V2(D) by lexicographical order in [2] and obtain the following proposition:

Proposition 3.1 If a divisor Di is given on graph Gi for any i ∈ {0, 1, . . . ,m}, then
there exists a permutation σ : {0, 1, . . . ,m} → {0, 1, . . . ,m} such that Gσ0 admits

a vertex v
Vσ0
0 and D0 + · · · + Dm admits v

Vσ0
0 -reduced divisor (Dσ1 + · · · + Dσm )′.

In what follows, for any i ∈ {0, 1, . . . ,m}, we renumber σi to i for a shorter
notation. We have just obtained those renumbered graphs G0,G1, . . . ,Gm each
of which admits the renumbered divisor Di . Thus by denoting m by m0, G1 by
G0

1, . . . and Gm by G0
m0
, we take an initial graph G(0) = G0 and by adding graphs

G0
1, . . . ,G

0
m0

to the initial graph G(0) we obtain a complete graph G(1) determined

by the set ∪i Vi of vertices and v
V0
0 -reduced divisor D(1) by applying the proposition.

This is the end of the first step in our algorithmic procedures. Hereafter, the family
G0 of functions inheritedly obtained through this renumbering procedures is denoted
by G(0) without confusion and the family G of functions is denoted by G(1). We
obtain a measureμ0 on the renumbered set V (0) of vertices so that G(0) constitutes an
orthogonal family of functions with respect to μ0 and obtain μ1 on V (1) so that G(1)

constitutes an orthogonal family of functions with respect to μ1 where μ0 is given
as the restriction of μ1 to V (0).

In the second step, by adding graphs G1
1, . . . ,G

1
m1

to the enlarged graph G(1) we
obtainG(2) by taking similar procedures including renumberings. By iterating similar
procedures again and again, we can construct a sequence G(0),G(1), · · · satisfying
G(0) ⊂ G(1) ⊂ · · ·G(n) ⊂ · · · .

We now focus on the situation where just G j
1, . . . ,G

j
m j has been added to G( j)

and G( j+1) is obtained. We denote the measure supported on V ( j+1) by μ j+1 and
assume that

(A3) there exists some positive constant CG > 0 such that

max{μ j+1(V
j
i ) | i ∈ {1, . . . ,m j }} ≤ CG min{CV ( j),V j

i
| i ∈ {1, . . . ,m j }},
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and we assume that

(A4) there exists a positive integer MG such that sup j m j ≤ MG .

We take the subfamily Gr j of G determined by Gr j = {g ∈ G | the diameter of
supp[g] is r j }. The family of functions represented as a linear combinations of func-
tions in ∪ j

k=1Grk with rational coefficients is denoted by L[Gr1 , . . . ,Gr j ]. In par-
ticular, the family of functions represented as the linear combination of functions
in Gr j with rational coefficients is denoted by L[Gr j ]. We denote the Laplacian
on the graph G( j) is denoted by � j . Due to Lemma2.1, as long as the validity
of deg+(D|V ( j+1) + � j+1 f ) < deg+(D|V ( j+1) ) with some accumulation f of chip-
firings is concerned, we may replace � j+1 with � j+k , where k ∈ {2, 3, 4, . . .}. This
is because deg+(D|V ( j+1) + � j+k f ) ≥ deg+(D|V ( j+1) ) for any 1

μ j+k′
� f ∈ Gr j+k′ with

k ′ satisfying k ≥ k ′ ≥ 2. In this respect, in this section we denote � j+1 simply by
�. We introduce the family of functions M[Gr j ] = {rg | g ∈ Gr j , r ∈ Q}.
Lemma 3.2 If 1

μ j+1
� f ∈ M[Gr j+1 ],

deg+(D|V ( j+1) + � f )

≥ deg+(D|V ( j+1) ) − max

{

− ∑

x∈∪i V
j
i ,�(x)<0

�(x)i(x),
∑

x∈∪i V
j
i ,�(x)>0

�(x)i(x)

}

.

Proof We recall that any function in M[Gr j+1] takes either only positive value or
only negative value on each ball with radius r j , unless the function vanishes on the
ball. This means that V ( j) can not intersect both of two subsets {x | � f (x) > 0}
and {x | � f (x) < 0}. In other words, whichever chip-firing is performed, V ( j) can
not be a source of outflow and a receptor of inflow at the same time . Accord-
ingly, � f induces increase either in deg+(D|V ( j) ) or in deg−(D|V ( j) ). As a result,

this shows that deg+(D) may decrease at most max
{

− ∑
x∈∪i V

j
i ,�(x)<0 �(x)i(x),

∑
x∈∪i V

j
i ,�(x)>0 �(x)i(x)

}
, by replacing D with D + � f , where 1

μ j+1
� f ∈ M[Gr j+1 ].

�

Lemma 3.3 If 1
μ j+1

� f ∈ M[Gr j+1 ] and deg+(D|V ( j+1) + � f ) < deg+(D|V ( j+1) ),

then ‖ f ‖L2(μ j+1) ≤ CGMG(deg+(D|V ( j+1)\V ( j) ) + deg−(D|V ( j+1)\V ( j) )) holds.

Proof It suffices to consider the case −∑
x∈∪i V

j
i ,�(x)<0 �(x)i(x) >

∑
x∈∪i V

j
i ,�(x)>0

�(x)i(x) and the case j = 0. For any function g∗ ∈ M[Gr1 ], we already know
that diam(supp[g∗]) = diam(V (1)). Even if a function 1

μ1
� f∗ ∈ M[Gr1 ] satisfies

deg+(D|V (1) + � f∗) < deg+(D|V (1) ), the last lemma shows that deg+(D|V (1) + � f∗)
≥ deg+(D|V (1) ) + ∑

x∈∪i V 1
i ,�(x)<0 �(x)i(x). We may assume that V (0) is grounded,

i.e., f∗(V (0)) = 0 and f∗ is non-negative on V (1) \ V (0) for the function f∗ satisfying
1
μ1

� f∗ = g∗ and we have the following estimate:
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0 ≥
m0∑

i=1

CV (0),V 0
i
( f∗(V (0)) − f∗(V 0

i )) ≥
∑

x∈∪i V 0
i ,�(x)<0

�(x)i(x).

Consequently, we see that

min{CV (0),V 0
i

| i ∈ {1, . . . ,m0}}max{ f∗(V 0
i ) | i ∈ {1, . . . ,m0}}

≤
m0∑

i=1

CV (0),V 0
i
f∗(V 0

i )

≤ −
∑

x∈∪ j V 0
j ,�(x)<0

�(x)i(x)

and

max{ f∗(V 0
i ) | k ∈ {1, . . . ,m0}} ≤

∑m0
i=1 CV (0),V 0

i
f∗(V 0

i )

min{CV (0),V 0
i

| i ∈ {1, . . . ,m0}}

≤ −
∑

x∈∪ j V 0
j ,�(x)<0 �(x)i(x)

min{CV (0),V 0
i

| i ∈ {1, . . . ,m0}} .

This, (A.3) and (A.4) imply

√√
√
√

m0∑

i=1

μ1(V 0
i ) f∗(V 0

i )2 ≤
√ ∑m0

i=1 μ1(V 0
i )

min{CV (0),V 0
i

| i ∈ {1, . . . ,m0}}

×
√√
√
√

∑m0
i=1 μ1(V 0

i )
( − ∑

x∈∪ j V 0
j ,�(x)<0 �(x)i(x)

)2

min{CV (0),V 0
i

| i ∈ {1, . . . ,m0}}

≤ CGMG

(

−
∑

x∈∪ j V 0
j ,�(x)<0

�(x)i(x)

)

.

This means that ‖ f∗‖L2(μ1) ≤ CGMGdeg−(D|V (1)\V (0) ). On the other hand, for the
case that the reversed inequality−∑

x∈∪i V
j
i ,�(x)<0 �(x)i(x)≤ ∑

x∈∪i V
j
i ,�(x)>0 �(x)i(x)

is satisfied, we need a discussion on the function 1
μ1

� f∗∗ ∈ M[Gr1 ] satisfies deg+

(D|V (1) + � f∗∗) ≥ deg+(D|V (1) ) − ∑
x∈∪i V 1

i ,�(x)>0 �(x)i(x). We see now that f∗∗
admits a similar estimate to the one for f∗, as a whole we have just assured the
inequality in the assertion. �
Lemma 3.4 If 1

μ j+1
� f ∈ L[Gr j+1 ] and deg+(D|V ( j+1) + � f ) < deg+(D|V ( j+1) ),

‖ f ‖L2(μ j+1) ≤ CGM2
G(deg+(D|V ( j+1)\V ( j) ) + deg−(D|V ( j+1)\V ( j) )).

Proof Since Gr j+1 constitutes an orthogonal family of at most MG functions and
each function in M[Gr j+1 ] satisfies the inequality in the last lemma, we see that
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‖ f ‖L2(μ j+1) ≤ CGM2
G(deg+(D|V ( j+1)\V ( j) ) + deg−(D|V ( j+1)\V ( j) )) for any 1

μ j+1
� f ∈

L[Gr j+1 ]. �

Remark 3.5 For any positive integers j, k, each function u + c vanishing on
B(v0, r j−1) given by u ∈ Gr j and c ∈ R is orthogonal to any element v ∈ Gr j−k with
respect to the ordinary inner product of L2(μ).

We now focus on the graph G0 = (V0, E0) with divisor D0 obtained by Proposi-
tion3.1. We note that a measure μ0 on V0 is given as μ|V0 .

Lemma 3.6 There exists a positive constant LG0 depending only on the total mass

μ0(V0) ofμ0 and	0 such that ‖ f ‖L2(μ0) ≤ 1

	0
LG0(deg

+(D0) + deg−(D0)) for any

minimizing element f of the minimum min{deg+(D0 + �0 f ) | f : V → Z}, where
the Laplacian�0 is given by�0φ(x) = ∑

{x,y}∈E0
Cx,y(φ(x) − φ(y)) for real valued

function φ on V0 and 	0 stand for the smallest positive eigenvalue of �0.

Proof It is clear that positive eigenvalues of the Laplacian �0 has the mini-
mum 	0. We note that any minimizing element f in the assertion admits the
estimate |�0 f (x)| ≤ (deg+(D0) + deg−(D0)) for any x ∈ V0. Consequently, from
‖�0 f ‖L2(μ0) ≤ √

μ0(V0)(deg+(D0) + deg−(D0)), we can derive that ‖ f ‖L2(μ0) ≤
1

	0

√
μ0(V0)(deg+(D0) + deg−(D0))). By taking LG0 as

√
μ0(V0), we obtain the

conclusion. �

In the algorithmic procedures previously shown, when G j ′
1 , . . . ,G j ′

m j are added to

G( j ′), the divisors D j ′
1 , . . . , D j ′

m j are involved in our observation. If
∑m j ′

k=1

(deg+(D j ′
k ) + deg−(D j ′

k )) is sufficiently small, D(1), . . . , D(n) with n < j ′ do not
alter even after the renumbering procedure is taken. Hereafter, we may deal only
with D(1), D(2), . . . with such persistence under the renumbering procedures.

Apair of divisors D(n′) onG(n′) and D(n′′) onG(n′′) with n′′ > n′ is said to be consis-
tent, if D(n′) = ∑

x∈V (n′) �n′(x)i V
(n′)

(x)1{x}, D(n′′) = ∑
x∈V (n′′) �n′′(x)i V

(n′′)
(x)1{x} and

�n′(x)i V
(n′)

(x) = �n′′(x)i V
(n′′)

(x) for any x ∈ V (n′). We start with the whole graph G
which is determined as the complete graph with V = ∪nV (n) and a divisor D deter-
mined by D|V (n) = D(n) with a family {D(n)} of consistent divisors in which each
D(n) is given on G(n) with n ∈ {0, 1, . . .}.
Proposition 3.7 Assume that 1

μ j+1
� f ∈ L[Gr1 , . . . ,Gr j+1 ] and deg+(D|V ( j+1) + � f )

< deg+(D|V ( j+1) ). There exists a constant LG such that‖ f ‖L2(μ j+1) ≤ LGCGM2
G(deg+

(D|V ( j+1) ) + deg−(D|V ( j+1) )).

Proof The proof is performed by an induction. First, from the last lemma, we see
that there exists a positive constant LG such that ‖ f ‖L2(μ0) ≤ LGCGM2

G(deg+(D) +
deg−(D)).

Second,weassume that‖ f ‖L2(μ j+1)≤LGCGM2
G(deg+(D|V ( j+1) ) + deg−(D|V ( j+1) ))

for any 1
μ j+1

� f ∈ L[Gr1 , . . . ,Gr j+1 ] satisfyingdeg+(D|V ( j+1) + � f ) < deg+(D|V ( j+1) ).
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Then, by Lemma3.4, for any � f ′ ∈ L[Gr j+2 ] with deg+(D|V ( j+2) + � f + � f ′) <

deg+(D|V ( j+2) + � f ), we see that ‖ f ′‖L2(μ j+2) ≤ LGCGM2
G(deg+(D|V ( j+2)\V ( j+1) ) +

deg−(D|V ( j+2)\V ( j+1) )). This is because we may assume LG ≥ 1. By an induction on
j , we conclude that the assertion is justified. �

For the dimension of the linear system assigned by divisor D|V ( j) , the equiva-

lence D′ j∼ D′′ defined by the identity D′′ = D′ + � j f with some f : V ( j) → Z is
required and the minimization of min

D′ j∼D|V ( j) ,Oj∈O( j)
(deg+(D′ − νOj ) − i(G( j),C ( j)))

should be performed. Consequently, the divisor D in the previous assertion should be
replaced with D − νOj in this section, along with an appropriate choice Oj ∈ O( j)

for the minimization, where O( j) stands for the set of total orders on V ( j). The
dimension r j (D) of linear system assigned by the divisor D is determined by
r j (D) = min

D′ j∼D|V ( j) ,Oj∈O( j)
(deg+(D′ − νOj ) − i(G( j),C ( j))). A function f : V ( j) →

Z is called aminimizer for r j (D), if the minimum is attained by D′ = D|V ( j) + � j f .
Since deg+(νO |V ( j+1)\V ( j)1{x}) + deg−(νO |V ( j+1)\V ( j)1{x}) ≤ μ(x), we have the follow-
ing proposition:

Proposition 3.8 Let f be a minimizer for min
D′ j+1∼ D|V ( j+1) j ,Oj+1∈O( j+1)

(deg+(D′ −
νOj+1) − i(G( j+1),C ( j+1))) with

1
μ j+1

� f ∈ L[Gr1 , . . . ,Gr j+1 ].
Then ‖ f ‖L2(μ j+1) ≤ LGCGM2

G(deg+(D|V ( j+1) ) + deg−(D|V ( j+1) ) + μ(V ( j+1))).

4 Riemann-Roch Theorem on Ultrametric Space
with Countably Many Vertices

In this section, we start with the situation where a sequence of graphs G(1),G(2), . . .

is obtained as the result of the last section. To be more precise, we assume that
each G(i) = (V (i), E (i)) admits a family of function G(i), a measure μi on V (i) and
a divisor D(i) such that G(i) is an orthogonal family of functions with respect to μi

and the sequence {D(i)} of consistent divisors determines a divisor D on G.
We take the complete graphG determined by the set∪i V (i) of vertices and thenwe

see also that deg+(D) + deg−(D) is given as the limit of deg+(D(i)) + deg−(D(i))

as i → ∞.
In what follows, we assume that

(A.5)
∑

y∈V \{x} Cx,y ≤ μ({x}) for any x ∈ V and μ(V ) ≤ 1,
(A.6) for any pair j, n with j > n, any function f on the complete graph V (n) obtained

in the third section admits an asymptotically harmonic extension g to V ( j), in
the sense that there exists constants IG and JGi such that �n f = � j g on V (n),
|� j g| ≤ IG

JG i on V (i+1) \ V (i) for any i ≥ n with JGi > 1 and ‖g‖L2(μ;V ( j)) ≤
IG(‖ f ‖L2(μ;V ( j)) + 1).
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Remark 4.1 We can build the example which fulfills the condition (A.6) by taking
an advantage of scheme for a construction of Hunt process on an ultrametric space
in [4]. In the article, when 1

μn+1
�n+1 f with diam(supp[ f ]) = rn+1 is represented as

a linear combination of functions in ∪n+1
k=1Grk , the linear combination may contain

a non-zero real constant times of some function in L[Grn ]. In fact, if the 	 in the
article is sufficiently small, we can construct a harmonic extension f̃ of f to V (n+1)

in the sense that f̃ = f on V (n) and �n+1 f̃ = 0 on V (n+1)\V (n). For finding such
a function f̃ , we take rn+1 = min{s ∈ R | s > rn = diam(supp[g])} and determine
f̃ as the solution

∑
i∈I ti fi of the minimizing problem

min

{

En+1

( ∑

i∈I
ti fi + f,

∑

i∈I
ti fi + f

)

| ti ∈ R with i ∈ I

}

,

where I = {i | fi ∈ Grn+1}. Since the case where maxi∈I |En+1( fi , f )/En+1( fi , fi )|
are small enough and En+1( fi , f j ) = 0 for all distinct pair i, j with i, j ∈ I is covered
in the article, a fundamental theory on the solutions of quadratic equation shows that
the all absolute values of ti ’s which attain the minimized value are so small that
(A.6) is fulfilled. To ensure the fulfillment of (A.6) with some function f , we
note that 1

μn+1
�n+1 f̃ may differ from 1

μn
�n f up to constant times of a function in

L[Gr1 , . . . ,Grn ]. To be more precise, there exists a function g ∈ L[Gr1 , . . . ,Grn ] with
supp[g] ⊂ V (n) such that (�n+1 f̃ − �n f )|V (n) = gμn . Accordingly, we replace f̃
with the function f̃ − f̃ ′ by taking the function f̃ ′ determined by supp[ f̃ ′] ⊂ V (n)

and �n+1 f̃ ′ = gμn+1 on V (n) to achieve the condition with f = f̃ − f̃ ′. In fact, we
see that the smallness of ‖g‖L2(μ) shows the fulfillment of (A.6) with f = f̃ − f̃ ′.

Lemma 4.2 Let fn be the minimizer for rn(D) with
1

μn
� fn ∈ L[Gr1 , . . . ,Grn ]. For

each n, fn admits a sequence { f (n)
j } j>n of functions such that

(i) fn = f (n)
j on V (n) for any j > n,

(ii) limn→∞ sup j>n ‖μ j (·)−1(� j f
(n)
j − D)‖L1(V ( j)\V (n);μ j ) = 0.

Proof We take the harmonic function h(n)
j on V ( j) \ V (n−1) with the same value as

fn on Sn . The function g(n)
j defined as the integer part of h(n)

j admits the estimate

|� j g
(n)
j (x)|

μ j (x)

∣
∣
V ( j)\V (n) ≤ 21V ( j)\V (n)

on � j g
(n)
j (x) = ∑

y∈V ( j)\{x} Cx,y(g
(n)
j (x) − g(n)

j (y)).

In fact, since maxx∈V ( j)\V (n) |h(n)
j (x) − g(n)

j (x)| ≤ 1, we see

Cx,y |g(n)
j (x) − h(n)

j (x) − g(n)
j (y) − h(n)

j (y)| ≤ 2Cx,y
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for any x ∈ V ( j) \ V (n) and y ∈ V ( j) \ {x}. By combining thiswith the harmonicity of
h(n)
j on V ( j) \ V (n), equivalently the fact that x ∈ V ( j) \ V (n) implies

∑
y∈V ( j)\{x} Cx,y

(h(n)
j (x) − h(n)

j (y)) = 0, we see that
| ∑y∈V ( j)\{x} Cx,y(g

(n)
j (x)−g(n)

j (y))|
μ j (x)

≤ 2 for any x ∈
V ( j) \ V (n).

Accordingly, we see that the function f (n)
j taking fn on V (n) and g(n)

j on V (n)c

enjoys ∥
∥
∥
∥
1

μ j
� j f

(n)
j 1V (n)c

∥
∥
∥
∥
L1(μ j )

≤ 2μ j (V
( j) \ V (n)).

In other words, f (n)
j meets the conditions (i) and (ii) in the assertion. �

Lemma 4.3 For any ε > 0, there exists a sequence {ON (ε/2l )} of total orders satis-
fying ON (ε/2 j ) ∈ O(N (ε/2 j )) with μ(V (N (ε/2 j ))

c
) < ε/2 j for any non-negative integer

j and a sequence {n j } satisfying n1 < n2 < · · · and n j+1 ≥ N (ε/2 j ) for any non-
negative integer j such that

rnk (D
(nl )) =

(
min

D′nk∼D(nl ),ON (ε/2l )=Onk |V (N (ε/2l )) ,Onk ∈O(nk )

deg+(D′ − νOnk
)
)

−i(G(nk ),C (nk )), (1)

whenever k > l. In particular, k > l implies ON (ε/2l ) = Onk |V (N (ε/2l )) and

deg+(νOnl
− νOnk

) + deg−(νOnl
− νOnk

) < μ(V N (ε/2min{k,l})c) < ε/2min{k,l} (2)

for any positive integers k and l.

Proof Wetake adivisor D(n0(ε)) satisfyingdeg+(D − D(n0(ε))) + deg−(D − D(n0(ε)))

< ε. Since the finitenessμ(V ) < ∞ implies limn→∞ μ(V (n)) = μ(V ), there exists a
positive integer N (ε) such thatμ(V (N (ε))c) < ε. We may assume that n0(ε) ≥ N (ε).
Since the cardinality ofO(N (ε)) is finite, the sequenceON (ε)+1 ∈ O(N (ε)+1), ON (ε)+2 ∈
O(N (ε)+2), . . . admits a subsequenceOn1(ε), On2(ε), . . .with N (ε) ≤ n0(ε) ≤ n1(ε) <

n2(ε) < · · · such that ON (ε) = Onk (ε)|V (N (ε)) and

rnk (ε)(D
(n0(ε))) =

(
min

D′nk (ε)∼ D(n0(ε)),ON (ε)=Onk (ε)|V (N (ε)) ,Onk (ε)∈O(nk (ε))

deg+(D′ − νOnk (ε)
)
)

− i(G(nk (ε)),C (nk (ε)))

for any k ≥ 1. We may assume that deg+(D − D(n1(ε))) + deg−(D − D(n1(ε))) <

ε/2.
By taking sufficiently large n2(ε), we may concentrate our attention to the

case n2(ε) ≥ N (ε/2). Since the cardinality of O(N (ε/2) is finite, the sequence
On2(ε), On3(ε), On4(ε), . . . admits a subsequence On2(ε/2), On3(ε/2), . . .with N (ε/2) ≤
n2(ε/2) < n3(ε/2) < · · · such that ON (ε/2) = Onk (ε/2)|V (N (ε/2)) and
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rnk (ε/2)(D
(n1(ε)))

=
(

min
D′nk (ε/2)∼ D(n1(ε)),ON (ε/2)=Onk (ε/2)|V (N (ε/2)) ,Onk (ε/2)∈O(nk (ε/2))

deg+(D′ − νOnk (ε/2) )
)

− i(G(nk (ε/2)),C (nk (ε/2)))

for any k ≥ 2. We may assume that deg+(D − D(n2(ε/2)))+deg−(D − D(n2(ε/2))) <

ε/4.
By repeating this procedure,weobtain a subsequencen j+1(ε/2 j ), n j+2(ε/2 j ), . . .

of n j+1(ε/2 j−1), n j+2(ε/2 j−1), . . . with N (ε/2 j ) ≤ n j+1(ε/2 j ) < n j+2(ε/2 j ) <

· · · such that ON (ε/2 j ) = Onk (ε/2 j )|V (N (ε/2 j ) and

rnk (ε/2 j )(D
(n j (ε/2 j−1)))

=
(

min
D′nk (ε/2 j )∼ D(n j (ε/2

j−1))
,ON (ε/2 j )=Onk (ε/2 j )|V (N (ε/2 j )) ,Onk (ε/2 j )∈O(nk (ε/2 j ))

deg+(D′ − νOnk (ε/2 j )
)
)

− i(G(nk (ε/2 j )),C (nk (ε/2 j )))

for any k > j .Wemayassume that deg+(D − D(n j+1(ε/2 j ))) + deg−(D − D(n j+1(ε/2 j )))

< ε/2 j .
As a result, by taking n1 = n1(ε), n2 = n2(ε/2), . . ., we obtain the sequence

n1, n2, . . . which meets all conditions in the assertion.
Equation (2) follows from the straightforward estimate |νOn (x) − νOn′ (x)| ≤ μ(x)

for any x ∈ V n ∩ V n′
with On|V (N (ε)) = On′ |V (N (ε)) . �

Proposition 4.4 If

max
x∈V (n)

∑

y /∈V (n)

Cx,y/min
x∈Vn

μ({x}) → 0 as n → ∞, (3)

then {rnk (D(nl ))}∞k=l+1 converges as k → ∞, for any fixed non-negative integer
l, where n1, n2, . . . is the subsequence satisfying (1) associated with a sequence
{ON (ε/2 j )} of total orders in Lemma4.3.
Proof Let { f j }∞j=n be the sequence consisting of Z-valued functions each of which
is the minimizer for r j (D) taken in Lemma4.2 with j ≥ n.

We take the sequence n1, n2, . . . satisfying (1) associated with the sequence
{ON (ε/2l )} of total orders in Lemma4.3 and take integers �, k with � > k. By applying
the identity

�n�
φ(x) =

⎧
⎪⎨

⎪⎩

�nkφ(x) +
(

∑

x∈B(v0,rnk )

(
∑

y∈B(v0,rnk )c
(φ(x) − φ(y))Cx,y

)

1{x}
)

(x ∈ V (nk )),

�n�
φ(x) (x ∈ V (nk )c),
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For the function f (nk )
n�

taken in Lemma4.2 by starting with the minimizer fnk , we
have

rn�
(D) = deg+(D′

n�
− νOn�

) − i(G(n�),C (n�))

= deg+(D + �n�
fn�

− νOn�
) − i(G(n�),C (n�))

≤ deg+(D + �n�
f (nk )
n�

− νOn�
) − i(G(nk ),C (nk ))

+ |i(G(n�),C (n�)) − i(G(nk ),C (nk ))|
= deg+(D + �nk fnk +

( ∑

y∈V (nk )c

Cx,y( f
(nk )
n�

(x) − f (nk )
n�

(y))
)
1V (nk )

+ �n�
f (nk )
n�

1V (nk )c − νOn�
) − i(G(nk ),C (nk ))

+ |i(G(n�),C (n�)) − i(G(nk ),C (nk ))|.

Lemma4.2 shows that

deg+
( ∑

x∈V (nk )

∑

y∈V (nk )c

Cx,y( f
(nk )
n�

(x) − f (nk )
n�

(y))

)

+ deg−
( ∑

x∈V (nk )

∑

y∈V (nk )c

Cx,y( f
(nk )
n�

(x) − f (nk )
n�

(y))

)

≤
∑

x∈V (nk )

∑

y∈V (nk )c

Cx,y(| f (nk )
n�

(x)| + | f (nk )
n�

(y)|)

≤ 4
(√

μnk (V )K (deg+(D) + deg−(D) + 1)/min{μ({x}) | x ∈ V (nk )} + 1
)

×
∑

x∈V (nk )

∑

y∈V (nk )c

Cx,y

≤ ρnkμnk (V
(nk ))

× 4
(√

μnk (V )K (deg+(D) + deg−(D) + 1)/min{μnk ({x}) | x ∈ V (nk )} + 1
)
.

Since our estimate on � j f
(n)
j obtained in (ii) of Lemma4.2 is valid for �n�

f (nk )
n�

, we
see

lim
k→∞ sup

�>k
deg±�n�

f (nk )
n�

1V (n�)\V (nk ) = 0.

Hence,

rn�
(D) ≤ rnk (D) + deg+(νOn�

− νOnk
) + deg−(νOn�

− νOnk
)

+ |i(G(n�),C (n�)) − i(G(nk ),C (nk ))| + o(1).

Combining this with deg+(νOn�
− νOnk

) + deg−(νOn�
− νOnk

) < ε/2k as obtained
in (2) and |i(G(n�),C (n�)) − i(G(nk ),C (nk ))| → 0 ( as k, � → ∞), it turns out that
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rn�
(D) ≤ rnk (D) + ε/2k + o(1) as � → ∞ for any k, which implies lim sup�→∞ rn�

(D) ≤ lim infk→∞ rnk (D), in other words, rnk (D) converges as k → ∞. �

The limit in this proposition depends on the choice of the sequence {Onk } of total
orders. However, as long as a divisor D is supported by a finite graph, we can define

r{Onk }(D) = lim
k→∞ rnk (D).

Corollary 4.5 For any divisor D = ∑
x∈VG

�(x)i(x)1{x} on G satisfying
∑

x∈VG

|�(x)|i(x) < ∞, {r{Onk }(D
(nl ))} is a Cauchy sequence, where {D(nl )} stands for a

sequence of divisors in Lemma4.3.

This and Lemma2.5 imply the convergence of the sequence {r{Onk }(D
(nl ))}∞l=1 and

allows us to define r(D) = inf {Onk } liml→∞ r{Onk }(D
(nl )) for any divisor D satisfying∑

x∈VG
|�(x)|i(x) < ∞.

Thanks to the finiteness of the total volume μ(V ), by the definition of the charac-
teristic e(G(n),C (n)) for each finite graphG(n) with edge-weightsC (n) = {Cx,y | {x, y} ∈
En} introduced in the second section, by the assumption (A.5), it is easy to see that
the sequence {e(Gn ,Cn)} converges as n → ∞.

For the graph G and divisor D on G given in the third section, we can assert the
following Riemann-Roch theorem:

Theorem 4.6 Let G = (V, E) be complete graph with finite volume satisfying (3).
For any divisor D with deg+(D) + deg−(D) < ∞, the Riemann Roch theorem holds
on G:

r(D) − r(KG − D) = deg(D) + e(G,C),

where e(G,C) = limn→∞ e(G(n),C (n)).

Proof For a divisor D with deg+(D) + deg−(D) < ∞, we take a sequence {D(nl )}
associated with D in the sense of Lemma4.2 Riemann-Roch theorem on finite
weighted graphs shows that k ≥ l implies

rnk (D
(nl )) − rnk (KG(nk ) − D(nl )) = deg(D(nl )) + e(G(nk ),C (nk )).

From Corollary 4.5 and Proposition 4.4 starting with D(nl ), by letting k → ∞, we
can derive

r{Onk }(D
(nl )) − r{Onk }(KG − D(nl )) = deg(D(nl )) + e(G,C).

By passing the limit as l → ∞ and taking the infimum of the first term of the left-
hand side over all of sequences {Onk } of total orders in Lemma4.3, it turns out that

r(D) − r(KG − D) = deg(D) + e(G,C). �
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Hermitizable, Isospectral Matrices
or Differential Operators

Mu-Fa Chen

Abstract This paper reports the study on Hermitizable problem for complex matrix
or second order differential operator. That is the existence and construction of a
positive measure such that the operator becomes Hermitian on the space of complex
square-integrable functions with respect to the measure. In which case, the spectrum
are real, and the corresponding isospectral matrix/differntial operators are described.
The problems have a deep connection to computational mathematics, stochastics,
and quantum mechanics.

Keywords Hermitizable · Matrix · Differential operators · Isospectrum
Mathematics Subject Classification 15A18 · 34L05 · 35P05 · 37A30 · 60J27

According to the different objects: matrix and differential operator, the report is
divided into two sections, with emphasis on the first one.

1 Hermitizable, Isospectral Matrices

Let us start at the countable state space E = {k ∈ Z+ : 0 ≤ k < N + 1} (N ≤ ∞).
Consider the tridiagonal matrix T or Q as follows:
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T
Q

=

⎛
⎜⎜⎜⎜⎜⎝

−c0 b0 0
a1 −c1 b1

a2 −c2 b2
. . .

. . . bN−1

0 aN −cN

⎞
⎟⎟⎟⎟⎟⎠

,

where for matrix T : the three sequences (ak), (bk), (ck) are complex; and for (birth-
death, abbrev. BD-) matrix Q: the subdiagonal sequences (ak) and (bk) are positive,
and the diagonal one satisfies ck = ak + bk for each k < N , except cN ≥ aN if N <

∞. For short, we often write T (or Q) ∼ (ak,−ck, bk) to denote the tridiagonal
matrix. It is well known that the matrix Q possesses the following property:

μnan = μn−1bn−1, 1 ≤ n < N + 1 (1)

for a positive sequence (μk)k∈E . Actually, property (1) is equivalent to

μn = μn−1
bn−1

an
, 1 ≤ n < N + 1 with initial μ0 = 1. (2)

In other words, at the present simple situation, one can write down (μk) quite easily:
starting from μ0 = 1, and then compute {μk}Nk=1 step by step (one-step iteration)
along the path

0 → 1 → 2 → · · · .

At the moment, it is somehow strange to write T and Q together, since they are
rather different. For T , three complex sequences are determined by 6 real sequences
and Q is mainly determined by two positive sequences, or equivalently, only one
real sequence. However, it will be clear later, these two sequences have some special
“blood kinship”, a fact discovered only three years ago [6, Sect. 3].

Clearly, for Q, property (1) is equivalent to

μi ai j = μ j a ji , i, j ∈ E, (3)

provided we re-express the matrix Q as (ai j : i, j ∈ E) since except the symmetric
pair (an, bn−1) given in (1), for the other i, j , the equality (3) is trivial. However, for
general real A = (ai j : i, j ∈ E), property (3) is certainly not trivial.

Definition 1 A real matrix A = (ai j : i, j ∈ E) is called symmetrizable if there
exists a positive measure (μk : k ∈ E) such that (3) holds.

The meaning of (3) is as follows. Even though A itself is not symmetric, but
once it is evoked by a suitable measure (μk), the new matrix (μi ai j : i, j ∈ E)

becomes symmetric. Every one knows that the symmetry is very important not only
in nature, but also in mathematics. Now how far away is it from symmetric matrix to
the symmetrizable one? Consider N = ∞ in particular. Then symmetry means that
μk ≡ a nonzero positive constant, and so as a measure, μk can not be normalized as
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a probability one. Hence, there is no equilibrium statistical physics since for which,
the equilibrium measure should be a Gibbs measure (a probability measure). Next,
in this case, the most part of stochastics is not useful since the system should die out.

A systemic symmetrizable theory was presented by Hou and Chen in [13] in
Chinese (note that it was too hard to obtain necessary references and so the paper
was done without knowingwhat happened earlier out of China). The English abstract
appeared in [14]. Having this tool at hand, our research group was able to go to the
equilibrium statistical physics, as shown in [2, Chaps. 7, 11 and Sect. 14.5].

One of the advantage of the symmetricmatrix is that it possesses the real spectrum.
This is kept for the symmetrizable one.Whenwego to complexmatrix, the symmetric
matrix should be replaced by the Hermitian one for keeping the real spectrum. This
leads to the following definition.

Definition 2 A complex matrix A = (ai j : i, j ∈ E) is called Hermitizable if there
exists a positive measure (μk : k ∈ E) such that

μi ai j = μ j ā j i , i, j ∈ E, (4)

where ā is the conjugate of a.

Clearly, in parallel to the real case, even though A itself is not Hermitian, but once
it is evoked by a suitable measure (μk), the new matrix (μi ai j : i, j ∈ E) becomes
Hermitian. Both A and (μi ai j : i, j ∈ E) have real spectrum.

From (4), we obtain the following simple result.

Lemma 3 In order the complex A = (ai j ) to be Hermitizable, the following condi-
tions are necessary.

• The diagonal elements {aii } must be real.
• Co-zero property: ai j = 0 iff a ji = 0 for all i, j .

• Positive ratio:
āi j
a ji

= ai j
ā j i

> 0 or equivalently, positive product: ai j a ji > 0.

Proof The last assertion of the lemma comes from the following identity:

α

β̄
= αβ

|β|2 , β 	= 0. �

Combining the lemma with the result on BD-matrix, we obtain the following con-
clusion.

Theorem 4 (Chen [6, Corollary 6]) The complex T is Hermitizable iff the following
two conditions hold simultaneously.

• (ck) is real.
• Either ak+1 = 0 = bk or ak+1bk > 0 for each k: 0 ≤ k < N.
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Then, we have

μ0 = 1, μn = μn−1
bn−1

ān
= μ0

n∏
k=1

bk−1

āk
.

In practice, we often ignore the part “ak+1 = 0 = bk” since otherwise, the matrix
T can be separated into two independent blocks.

We now come to the general setup. First, we write i → j once ai j 	= 0. Next, a
given path i0 → i1 → · · · → in is said to be closed if in = i0. A closed one is said
to be smallest if it contains no-cross or no round-way closed path. A round-way path
means i0 → i1 → i2 → i1 → i0 for example. In particular, each closed path for T
must be round-way.

Theorem 5 (Chen [6, Theorem 5]) The complex A = (ai j ) is Hermitizable iff the
following two conditions hold simultaneously.

• Co-zero property. For each pair i, j , either ai j = 0 = a ji or ai j a ji > 0 (which
implies that (akk) is real).

• Circle condition. For each smallest (no-cross-) closed path i0 → i1 → · · · → in=
i0, the circle condition holds

ai0i1ai1i2 · · · ain−1in = āin in−1 · · · āi2i1 āi1i0 .

In words, the product of aik ik+1 along the path equals to the one of product of āik+1ik
along the inversive direction of the path.

Proof One may check that our Hermitizability is equivalent to A being Hermitian
on the space L2(μ) of square-integrable complex function with the standard inner
product

( f, g) =
∫

f ḡdμ.

Hence the Hermitizability seems not new for us. However, the author does not know
up to now any book tells us how to find out the measureμ. Hence, our main task is to
find such ameasure if possible. Here we introduce a very natural proof of Theorem 5,
which is published here for the first time.

Next, in view of the construction of μ for BD-matrix Q or T , one can find out the
measure step by step along a path. We now fix a path as follows.

i0 → i1 → · · · → in−1 → in, aik ik+1 	= 0.

Comparing the jumps and their rates for BD-matrix and the present A:

k−1→k : bk−1, ik−1→ ik : aik−1ik ,

k→k−1 : āk, ik → ik−1 : āik ik−1 .
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From the iteration for BD-matrix

μn =μn−1
bn−1

ān
,

it follows that for the matrix A along the fixed path above, we should have

μin =μin−1

ain−1in

āin in−1

.

Therefore, we obtain
n∏

k=1

aik−1ik

āik ik−1

= μin

μi0

. (5)

Thus, ifwefixed i0 to be a reference point, thenwe can computeμik (k = 1, 2, · · · , n)

successively by using this formula. The essential point appears now, in the present
general situation, there may exist several paths from the same j0 = i0 to the same
jm = in , as shown in the left figure below. We have to show that along these two
paths, we obtain the same μin = μ jm . That is the so-called path-independence. This
suggests us to use the conservative field theory in analysis. The path-independence is
equivalent to the following conclusion: the work done by the field along each closed
path equals zero. This was the main idea we adopted in [13]. To see it explicitly,
from (5), it follows that

w(L1) :=
n∑

k=1

log
aik−1ik

āik ik−1

= logμin − logμi0 .

The left-hand side is the work done by the conservative field along the path L1:
i0 → · · · → in−1 → in , and the right-hand side is the difference of potential of the
field at positions in and i0. Clearly, once in = i0, the right-hand side equals zero (let
call it the conservativeness for a moment).

L2

L1

L2

L1

L2

L1

�

�

L1

Inverse L2

�

�

L1

Inverse L2�

L1

Inverse L2

Left figure: two paths from i0 to i#:L1 andL2.Right figure: combiningL1 and
inversive L2 together, we get a closed path.

For the reader’s convenience, we check the equivalence of the path-independence

w(L1) = w(L2)
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and the conservativeness of the field in terms of the right figure

w(L1) + w(InverseL2) = 0.

The conclusion is obvious by using the third assertion of Lemma 3:

w(InverseL2) = −w(L2).

The last property is exactly the circle condition given in the theorem, and so the proof
is finished. �

In the special case that A is a transition probability of a finite time-discreteMarkov
chain, the circle condition was obtained by Kolmogorov [15], as a criterion of the
reversibility of the Markov chain. It is also interesting that at the beginning and at
the end of [15], the paper by Schrödinger [17] was cited. Moreover, Kolmogorov
studied the reversible diffusion in 1937 [16]. These two papers [15, 16] begun the
research direction of reversible Markov processes (and also the modern Dirichlet
form theory). It also indicates the tight relation between the real symmetrizable
operators and equilibrium statistical physics. Nevertheless, the interacting subjects
“random fields” and “interacting particle systems” were only born in 1960s. Even
though there are some publications along this line, the “Schrödinger diffusion” for
instance [1], we are not sure how a distance now to the original aim of Schrödinger
whowas looking for an equation derived from classical probability, which is as much
close as possible to his wave equation in quantum mechanics.

It is regretted that the author had a chance to read [15, 16] only a few years ago
when “Selected Works of A. N. Kolmogorov” appeared. Hence, the author did not
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know anything earlier about Kolmogorov’s [15, 16]. There is a Chinese proverb that
says “the ignorant are fearless”. For this reason, we were brave enough to make a
restriction “smallest closed path” instead of “every closed one” in the theorem and
then we had gone for much far away, since the total number of the closed paths may
be infinite, even not countable. To illustrate the idea, let us consider a random chosen
wall above. One sees that there are a lot of closed paths. However, the smallest one
is quadrilateral. Hence, one has to check only the “quadrilateral condition”. To see
this, look at the closed path on the top, and it consists of 7 quadrilaterals. The short
path with dash line on the top separates the whole closed path into two smaller ones.
To prove that it sufficient to check the “quadrilateral condition” for this model, we
use induction. The idea goes as follows. We can make first the union of these two
smaller closed paths (choose the clockwise direction for one of the closed path and
choose anti-clockwise for the other one). Then remove the round-way path with dash
line. Thus, once the work done by the field along each of the smaller closed paths
equals zero, then so is the one along the original closed path since the work done by
the field along the round-way path equals zero.

However, for the second wall below, the smallest closed path, except the quadri-
lateral, there is also triangle, so we have the “triangle condition”. It is interesting, in
[2, Chaps. 7 and 11], we use only these two conditions; and in [2, Sect. 14.5], we use
only the triangle condition. The main reason is that for infinite-dimensional objects,
their local structures are often regular and simple. Besides, in general we have an
algorithm to justify the Hermitizability by computer, refer to [10, Algorithm 1].

We are now arrive at the core part of the paper: describing the spectrum of the
Hermitizable matrix, which is also the core part of the so-called matrix mechanics.
The next result explains the meaning of “blood kinship” mentioned at the beginning
of this section.
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Theorem 6 (Chen [6,Corollary 21]) Upa shift if necessary, each irreducibleHermi-
tizable tridiagonal matrix T is isospectral to a BD-matrix Q̃ which can be expressed
by the known sequences (ck) and (ak+1bk).

The main condition we need for the above result is ck ≥ |ak | + |bk | for every k ∈
E . For finite E , the condition is trivial since one may replace (ck) by a shift (ck + m)

for a large enough constant m. For infinite E , one may require this assumption up to
a shift.

We now state the construction of Q̃ ∼ (
ã, −c̃k, b̃k

)
. The essential point is the

sequence
(
b̃k

)
:

b̃k = ck − uk

b̃k−1

, b̃0 = c0,

where uk := akbk−1 > 0. This is one-step iteration, and we have the explicit expres-
sion

b̃k = ck − uk

ck−1 − uk−1

ck−2 − uk−2

. . .

c2 − u2

c1 − u1
c0

.

Note that here two sequences (ck) and (uk) are explicit known. Having
(
b̃k

)
at hand,

it is easy to write down ãk = c̃k − b̃k with c̃k = ck for k < N , and ãN = uN/b̃N if
N < ∞. The solution of (ãk) and (c̃k) are automatic so that Q̃ becomes a BD-matrix.

The resulting matrix Q̃ looks very simple, but it contains a deep intrinsic feature.
For instance, the reason is not obvious why the sequences

(
b̃k

)
and (ãk) are positive

even though so are (ck) and (uk). With simple description but deep intrinsic feature
is indeed a characteristic of a good mathematical result.

To see the importance of the above theorem, let compare the difference of the
principal eigenvector of these two matrices. First, for BD-matrix with four different
boundaries, the principal eigenvectors are all monotone, except in one case, it is
concave. This enables us to obtain a quite satisfactory theory of the principal eigen-
values (refer to [4]). However, since the Hermitizable T has real spectrum, form the
eigenequation

T g = λg,

one sees immediately, the eigenvector g must be complex, too far away to be mono-
tone. Thus, the principal eigenvectors of these two operators are essentially different.
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It shows that we now have a new spectral theory for the Hermitizable tridiagonal
matrices.

Because the intuition is not so clear why Theorem 6 should be true, two alternative
proofs are presented in [7].

Theorem 7 (Chen [6, Theorem 24]) The spectrum of a finite Hermitizable matrix
A is equal to the union of the spectrums of m BD-matrices, where m is the largest
multiplicity of eigenvalues of A.

Refer to ([10, Proofs in §4]) for details. The proof is based on Theorem 6 and the
“Householder transformation” which is one of the 10 top algorithms in the twentieth
century. The restriction to the finite matrix is due to the use of the transformation.
The number m is newly added here which comes from the fact that the eigenvalues
of BD-matrices must be distinct and simple, as illustrated by [10, Example 9].

Theorem 7 provides us a new architecture for the study on matrix mechanics (and
then for quantum mechanics) since we have a unified setup (BD-matrix) to describe
its spectrum. This leads clearly to a new spectrum theory, as illustrated by [7] for
tridiagonal matrix and by [11] for one-dimensional diffusions. It also leads to some
new algorithms for computational mathematics, as illustrated by [9, 10].

2 Hermitizable, Isospectral Differential Operators

Two Approaches for Studying the Schrödinger Operator

(1) The most popular approach to study the Schrödinger operator

L = 1

2
� + V

is the Feynman-Kac semigroup {Tt }t≥0:

Tt f (x) = Ex

{
f (wt ) exp

[ t∫

0

V (ws)ds

]}
,

where (wt ) is the standard Brownian motion. This is often an unbounded semi-
group. The Schrödinger operator was born for quantum mechanics, and it is 95
years older this year. In the past hundred years or so, there are a huge number
of publications devoted to the Schrödinger operator. However, for the discrete
spectrumwhich is the most important problem in quantummechanics, the useful
results are still very limited as far as we know. In particular, even in dimension
one, we have not seen the results which are comparable with [5].

(2) As in the first section, this paper introduces a new method to study the spectrum
of Schrödinger operator. That is, replacing the operator L above by
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L̃ = 1

2
� + b̃h∇,

where h is a harmonic function: Lh = 0, h 	= 0 (a.e.). Then, the operator L on
L2(dx) is isospectral to the operator L̃ on L2(μ̃) := L2(|h|2dx).

We now consider a general operator. Let ai j , bi , c : Rd → C, V : Rd → R, and
set a = (ai j )di, j=1, b = (bi )di=1. Define dμ = eV dx and

L = ∇(a∇) + b · ∇ − c.

Here is the result on the Hermitizability. Denote by aH the transpose (a∗) and con-
jugate (ā) of the matrix a.

Theorem 8 (Chen and Li [11]) Under the Dirichlet boundary condition, the oper-
ator L is Hermitizable with respect to μ iff aH = a and

Re b = (Re a)(∇V),

2 Im c=−(
(∇V )∗+∇∗)((Im a)(∇V)+Im b

)
.

Recall that a key point in the isospectral transform of T and Q̃ is that the result-
ing matrix Q̃ obeys the condition c̃k = ãk + b̃k for each k < N , and there is no
killing/potential term at the diagonal (maybe except only one at the endpoint if
N < ∞). In the next result, we also remove the potential term c in L . Since the
isospectal property is described by using the quadratic forms, we do not require
much of the regularity of h and Lh in the next result.

Theorem 9 (Chen and Li [11]) Denote byD(L) the domain of L on L2(μ) and let
h be harmonic: Lh = 0, h 	= 0 (a.e.). Then (L ,D(L)) is isospectral to the operator(
L̃, D(L̃)

)
: {

L̃ = ∇(a∇) + b̃ · ∇,

D(L̃) = {
f̃ ∈ L2(μ̃) : f̃ h ∈ D(L)

};

where

b̃ = b + 2Re(a)1l[h 	=0]
∇h

h
, μ̃ := |h|2μ.

The discrete spectrum for one-dimensional elliptic differential operator is also
illustrated in [11]. Certainly, much of the research work should be done in the near
future. For instance, Hermitizable operator is clearly the Hermitian operator on the
complex space L2(μ). It naturally corresponds to a Dirichlet form. Hence there
should be a complex process corresponding to the operator. It seems that this is still
a quite open area, except a few of papers, Fukushima and Okada [12] for instance.

In conclusion, the paper [13] published 42 years ago opened a door for us to go
to the equilibruim/nonequilibrium statistical physics (cf. [2, 3]); the paper [6] that
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appeared 3 years ago enables us to go to quantum mechanics. The motivation of the
present study from quantum mechanics was presented in details in [8] but omitted
here.
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On Strongly Continuous Markovian
Semigroups

Zhen-Qing Chen

Abstract In this short paper, we establish a sufficient condition for a symmetric
Markovian semigroup to be strongly continuous in the L2-space.
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Given a topological space E , its Borel σ -field B(E) is the σ -field generated by open
subsets of E , while its universally measurable σ -field B∗(E) is ∩μB(E)

μ
, where the

intersection is over all finite measures μ on (E,B(E)) and B(E)
μ
is the completion

of B(E) with respect to the measure μ. Recall that a topological space E is said
to be a Lusin space (resp. Radon space) if it is homeomorphic to a Borel (resp.
universally measurable) subset of a compact metric space F . For a topological space
E , a measure m on (E,B(E)) is said to be regular if for any A ∈ B(E),

m(A) = inf{m(U ):U is open and U ⊃ A}

and
m(A) = sup{m(K ): K is compact and K ⊂ A}.

It is well known that any finite measure on a Lusin or Radon space is regular.
The following provides a sufficient condition for generating a strongly continuous

m-symmetric Markovian semigroup and thus a corresponding symmetric Dirichlet
form on L2(E;m).

Theorem 1 Let E be a Lusin space equipped with the Borel σ -field B(E) (resp. a
Radon space equippedwith theσ ∗(E) of its universallymeasurableσ -field). Suppose
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that {Pt (x, dy); t > 0, x ∈ E} is a family of Markovian kernels on (E,B(E)) (resp.
(E,B∗(E))) that is m-symmetric with respect to a σ -finite measure m on E and
satisfies the following two conditions:

(t.1) Ps Pt f = Pt+s f for every s, t > 0 and f ∈ Bb(E) (resp. f ∈ B∗
b(E)), where

Pt f (x) := ∫
E f (y)Pt (x, dy),

(t.4) limt↓0 Pt f (x) = f (x) m-a.e. on E for every f ∈ Cb(E).

For each t > 0, let Tt be the symmetric linear operator on L2(E;m) uniquely
determined by {Pt (x, dy); x ∈ E}; that is, Tt f (x) := ∫

E f (y)Pt (x, dy). Then {Tt ;
t ≥ 0} is a strongly continuous m-symmetric contraction semigroup on L2(E;m)

after taking T0 to be the identity map. Moreover, Cb(E) ∩ L2(E;m) is dense in
L2(E;m).

This result was essentially stated as Lemma 1.1.14(ii) in [1] except the last state-
ment and condition (t.4) there is assumed to hold for every x ∈ E instead of m-a.e.
on E . However, there is a gap in the proof of Cb(F) ∩ L2(F;m) being dense in
L2(F;m), which was brought up to our attention by Naotaka Kajino. The proof
in [1] works only when m(E) < ∞. The purpose of this notes is to provide a cor-
rected proof by showing directly that {Tt ; t ≥ 0} is a strongly continuous contraction
semigroup on L2(E;m) under a slightly weaker condition (t.4) than that of [1,
p.13]. The proof at the same time also establishes thatCb(F) ∩ L2(F;m) is dense in
L2(F;m). Clearly, the operator Tt is Markovian in the sense that if 0 ≤ f ≤ 1, then
0 ≤ Tt f ≤ 1. The main point of Theorem 1 is that {Pt (x, dy); t > 0, x ∈ E} is not
assumed to be the transition probability function of an m-symmetric right process
on E , nor do we assume a priori that a subclass of Cb(E) is dense in L2(E;m). See
[3, Proposition IV.2.3] and [2, Lemma 1.4.3] for the corresponding results under the
assumption that E is a Hausdorff space satisfying B(E) = σ(C(E)), m is a σ -finite
measure on E and {Pt (x, dy); t > 0, x ∈ E} is the transition probability function of
an m-symmetric right process on E .

Proof of Theorem 1 Note that Pt (x, dy)m(dx) = Pt (y, dx)m(dy) on E × E by
the m-symmetry of the Markovian kernel Pt (x, dy). Using the Cauchy-Schwarz
inequality, we have for any f ∈ L2(E;m),

‖Tt f ‖2L2(E;m) =
∫

E

⎛

⎝
∫

E

f (y)Pt (x, dy)

⎞

⎠

2

m(dx)

≤
∫

E

⎛

⎝
∫

E

f (y)2Pt (x, dy)

⎞

⎠m(dx)

=
∫

E

f (y)2Pt (y, E)m(dy) ≤ ‖ f ‖2L2(E;m).
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So for each t > 0, Tt is a contraction operator on L2(E;m). For any f, g ∈ L2(E;m),
we have by the m-symmetry of Pt (x, dy) again that

∫

E

g(x)Tt f (x)m(dx) =
∫

E

g(x)

⎛

⎝
∫

E

f (y)Pt (x, dy)

⎞

⎠m(dx)

=
∫

E

f (y)

⎛

⎝
∫

E

g(x)Pt (y, dx)

⎞

⎠m(dy)

=
∫

E

f (y)Tt g(y)m(dy).

Clearly it follows from condition (t.1) that TtTs = Tt+s on L2(F;m) for any t, s > 0.
This establish that {Tt ; t ≥ 0} is a symmetric contraction semigroup on L2(E;m).

We next show that the semigroup {Tt ; t ≥ 0} is strongly continuous on L2(E;m).
Without loss of generality, we may and do assume in the following that E is a Borel
subset of a compact metric space (F, d) and identify L2(E;m) with L2(F;m) by
setting m(F \ E) = 0. As m is σ -finite, there is a partition {Ek; k ≥ 1} of F so that
m(Ek) < ∞ for every k ≥ 1. Since every f ∈ L2(F;m) can be L2-approximated
by a sequence of simple functions in L2(F;m), it suffices to show that for any
A ⊂ F having m(A) < ∞, Tt1A converges to 1A in L2(F;m) as t → 0 and 1A can
be approximated in L2(F;m) by functions from Cb(F) ∩ L2(F;m). For simplicity,
denotem|E j bym j . Since eachm j is a regularmeasure, for any ε > 0, there a compact
set K j ⊂ A and an open setUj ⊃ A so that m j (A \ K j ) < ε/2 j and m j (Uj \ A) <

ε/2 j . Asm(A) = ∑∞
j=1 m j (A), there is some N ≥ 1 so that

∑∞
j=N+1 m j (A) < ε/2.

Define K = ∪N
j=1K j . Then K is a compact subset of A,

m(A \ K ) ≤
N∑

j=1

m j (A \ K j ) +
∞∑

j=N+1

m j (A) < ε, (1)

and

m(∩∞
j=1Uj \ A) ≤

∞∑

j=1

m j (Uj \ A) < ε. (2)

For each j ≥ N , define

g j (x) = d(x, (∩ j
k=1Uk)

c)

d(x, (∩ j
k=1Uk)c)) + d(x, K )

.

Clearly g j ∈ Cb(F) with 0 ≤ g j ≤ 1 on F , g j = 1 on K , and g j = 0 on (∩ j
k=1Uk)

c.
Note that g j is decreasing in j and g∞(x) := lim j→∞ g j (x) vanishes on (∩∞

k=1Uk)
c.
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Hence by (2),

∫

F

1Ac(x)g∞(x)2m(dx) ≤ m(∩∞
k=1(Uk ∩ Ac) ≤

∞∑

k=1

mk(Uk \ A) < ε.

Thus by the monotone convergence theorem, there is some N1 ≥ N so that

∫

F

1Ac(x)gN1(x)
2m(dx) < ε. (3)

Hence by the L2-contractiveness of {Tt ; t ≥ 0}, condition (t.4), the dominated con-
vergence theorem and the Cauchy-Schwartz inequality,

lim sup
t→0

‖1AgN1 − Tt (1AgN1)‖2L2(F;m)

≤ 2‖1AgN1‖2L2(F;m) − 2 lim inf
t→0

∫

F

1AgN1Tt (1AgN1)m(dx)

= 2‖1AgN1‖2L2(F;m) − 2 lim inf
t→0

( ∫

F

1A(x)gN1(x)Pt gN1(x)m(dx)

−
∫

F

1AgN1Tt (1Ac gN1)m(dx)
)

≤ 2‖1AgN1‖L2(F;m)‖1Ac gN1‖L2(F;m)

< 2
√
m(A)ε.

On the other hand, as by (1),

‖1A − 1AgN1‖L2(F;m) ≤ m(A \ K )1/2 ≤ ε1/2, (4)

we have by the contraction property of Tt in L2(F;m)

lim sup
t→0

‖1A − Tt1A‖L2(F;m)

≤ lim sup
t→0

(‖1A − 1AgN1‖L2(F;m) + ‖1AgN1 − Tt (1AgN1)‖L2(F;m)

+ ‖Tt (1AgN1 − 1A)‖L2(F;m)

)

≤ 2ε1/2 + lim sup
t→0

‖1AgN1 − Tt (1AgN1)‖L2(F;m)

≤ 2ε1/2 + 2(m(A)ε)1/4.

Since ε > 0 is arbitrary, we get limt→0 ‖1A − Tt1A‖L2(F;m) = 0. This establishes that
the semigroup {Tt ; t ≥ 0} is strongly continuous on L2(F;m). On the other hand, it
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follows from (3) and (4) that

‖gN1‖L2(F;m) ≤ ‖1AgN1‖L2(F;m) + ‖1Ac gN1‖L2(F;m) ≤ √
m(A) + √

ε < ∞

and

‖1A − gN1‖L2(F;m) ≤ ‖1A − 1AgN1‖L2(F;m) + ‖1Ac gN1‖L2(F;m) ≤ 2ε1/2.

This shows that 1A can be approximated in L2(F;m) by functions in Cb(F) ∩
L2(F;m). Consequently, Cb(F) ∩ L2(F;m) is dense in L2(F;m). This completes
the proof of the theorem. �
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Two-Sided Heat Kernel Estimates for
Symmetric Diffusion Processes with
Jumps: Recent Results

Zhen-Qing Chen, Panki Kim, Takashi Kumagai, and Jian Wang

Abstract This article gives an overview of some recent progress in the study of
sharp two-sided estimates for the transition density of a large class of Markov pro-
cesses having both diffusive and jumping components in metric measure spaces. We
summarize some of the main results obtained recently in [11, 18] and provide several
examples. We also discuss new ideas of the proof for the off-diagonal upper bounds
of transition densities which are based on a generalized Davies’ method developed
in [10].

Keywords Diffusion process with jumps · Symmetric Dirichlet form · Heat
kernel estimate · Parabolic Harnack inequality · Inner uniform domain

Mathematics Subject Classification Primary: 60J35 · 35K08 · 60J76 · Secondary:
31C25 · 35K08 · 60J45

1 Introduction

Transition density function p(t, x, y) of a Markov process X , if exists, satisfies
the Kolmogorov backward equation, which is a parabolic equation involving the
infinitesimal generator L of X . Thus p(t, x, y) is also called a heat kernel of L or a
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fundamental solution of ∂t u = Lu. Analysis of heat kernels is an important research
topic both in analysis and in probability theory. Most of the studies on sharp two-
sided estimates of the heat kernel concentrate on cases when X is a diffusion or a
pure jump Markov process; that is, when the infinitesimal generator L is local or
purely non-local. However, there are classes of Markov processes that can have both
diffusive and jumping components. Discontinuous Lévy processes having Gaussian
parts are such typical examples.

Markov processes having both diffusive (continuous) and jumping components
have interesting features. Such processes run on two different scales: on the small
scale one expects the continuous component to be dominant, while on the large
scale the jumping component of the process should be the dominant one. In fact,
there are even ranges of times and sizes of distances where both components appear
together (in a short-time and short-distance region). See Figs. 1 and 2. Therefore,
both components play essential roles. These are also the source of challenges in the
study of such processes.

The literature on the potential theory ofMarkov processes having both continuous
and jumping components is scarce. Elliptic Harnack inequalities for some of these
processes are studied in [20, 25, 26]. Two-sided heat kernel estimates for a family of
Lévy processes having Gaussian components with variable drifts are derived in [8].
The first work that establishes sharp two-sided bounds for a large class of symmetric
diffusionswith jumps is [15].More precisely, consider the following regularDirichlet
form (E,F) on L2(Rd; dx) given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E(u, v) = 1

2

∫

Rd

∇u(x) · A(x)∇v(x) dx

+
∫

Rd×Rd\diag
(u(x) − u(y))(v(x) − v(y))J (x, y) dx dy,

F = C1
c (R

d)
E1

,

(1)

where C1
c (R

d) is the space of C1-functions on R
d with compact support and

E1(u, u) := E(u, u) + ∫

Rd |u(x)|2dx . Here A(x) = (ai j (x))1≤i, j≤d is a measurable
symmetric d × d matrix-valued function on Rd that is uniform elliptic and bounded
in the sense that there exists a constant c ≥ 1 such that

c−1
d∑

i=1

ξ 2
i ≤

d∑

i, j=1

ai j (x)ξiξ j ≤ c
d∑

i=1

ξ 2
i for every x and ξ = (ξ1, . . . , ξd) ∈ R

d ,

and J (x, y) is a symmetric non-negative measurable kernel on R
d × R

d \ diag that
satisfies condition

1

c1|x − y|dφ j (|x − y|) ≤ J (x, y) ≤ c1
|x − y|dφ j (|x − y|)
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for all x, y ∈ R
d × R

d \ diag, where φ j is a strictly increasing function on (0,∞)

satisfying

c−1
2

( R

r

)α∗ ≤ φ j (R)

φ j (r)
≤ c2

( R

r

)α∗
for all 0 < r ≤ R (2)

with 0 < α∗ ≤ α∗ < 2 and c1, c2 ≥ 1. Here and in what follows, diag is the diagonal
of a given state space X ; that is, diag := {(x, x) : x ∈ X }. It is shown in [15] that
the symmetric strong Markov process X associated with the regular Dirichlet form
(E,F) on L2(Rd; dx) is conservative and has a jointly Hölder continuous transition
density function p(t, x, y) that enjoys

c1
(

t−d/2 ∧ φ−1
j (t)−d

)
∧ (

p(c)(t, c2|x − y|) + p( j)(t, |x − y|)) ≤ p(t, x, y)

≤ c3
(

t−d/2 ∧ φ−1
j (t)−d

)
∧ (

p(c)(t, c4|x − y|) + p( j)(t, |x − y|)) ,
(3)

for every t > 0 and x, y ∈ R
d . Here

p(c)(t, r) := t−d/2 exp(−r2/t) and p( j)(t, r) := (φ−1
j (t))−d ∧ t

rdφ j (r)
.

Note that there are two scaling functions involved in the transition density func-
tion p(t, x, y) of diffusions with jumps on R

d ; namely the diffusive scaling func-
tion φc(r) := r2 and the scaling function φ j for the pure jump part of the pro-
cess. In the special case when X is the independent sum of a Brownian motion
B and an isotropic stable process α-stable process Z , the transition density func-
tion p(t, x, y) = p(t, x − y) for the Lévy process X is the convolution of those
of B and Z from which the estimates on p(t, x, y) can be derived. Indeed, in this
case estimates on p(t, x) have been derived in [27] by computing the convolution;
however the upper and lower bounds obtained there do not match for the case of
|x |2 < t < |x |α ≤ 1.

The study of heat kernel for symmetric diffusion with jumps has been conducted
further in two directions. One is to establish analytic characterizations of heat kernels
of the form (3) for symmetric diffusions with jumps on general metric measure
doubling spaces that are stable under bounded perturbation; see the last paragraph of
Sect. 2.1 for its precisemeaning.This has been carriedout in [18]. In addition, stability
results for upper bound heat kernel estimates and parabolic Harnack inequalities are
also established in [18]. The other direction is to obtain sufficient conditions on
the jumping kernels J (x, y) under which sharp two-sided heat kernel estimates for
symmetric diffusions with jumps can be obtained, and to investigate how the shape
of the jumps influence the behavior of the heat kernels. Our recent work [11] is in this
direction, in which the ideas and techniques from [16–18] have played an essential
role.

The purpose of this paper is to survey recent results on sharp two-sided heat kernel
estimates for symmetric diffusions with jumps obtained in [11, 18]. In this paper, we
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focus on symmetric diffusions with jumps on inner uniform domains of complete
measure metric spaces. We mention that recently in [9], heat kernel estimates are
established for quite general non-symmetric time-dependent diffusionswith jumps in
R

d . Estimates forDirichlet heat kernels of theLévy processes that are the independent
sum of a Brownian motion and an isotropic stable process have been obtained in [12,
13]. Dirichlet heat kernel estimates for more general subordinate Brownian motions
with Gaussian components can be found in [2, 14].

The rest of the article is organized as follows. In Sect. 2, we present the stability
result for heat kernel estimates (3) from [18]. In Sect. 3, we present the main results
from [11], where the jumping kernel can have exponential decays at infinity. In
both papers [11, 18], the state spaces satisfy the volume doubling condition but the
volumes of balls with same radius may not be comparable. Two different arguments
are used in [11, 18] for upper bound estimates of the heat kernels. In Sect. 3.4, we
give a brief explanation of the argument used in [11] for off-diagonal heat kernel
upper bound estimates.

Notations. We write f (s, x) 	 g(s, x), if there exist constants c1, c2 > 0 such that
c1g(s, x) ≤ f (s, x) ≤ c2g(s, x) for the specified range of the argument (s, x). Sim-
ilarly, we write f (s, x) 
 g(s, x), if there exist constants ck > 0, k = 1, . . . , 4, such
that c1g(c2s, x) ≤ f (s, x) ≤ c3 f (c4s, x) for the specified range of (s, x). We write
a ∧ b := min{a, b} and a ∨ b := max{a, b} for a, b ∈ R.

Denote log+(x) := log(x ∨ 1). For a given metric measure space (X , ρ, μ) and
for any p ∈ [1,∞], we will use ‖ f ‖p to denote the L p-norm in L p(X ;μ). For
any x ∈ X and r > 0, we use B(x, r) to denote the open ball of radius r under
the metric ρ centered at x . For a function space H = H(U ) on an open set U
in X , we let Hc(U ) := { f ∈ H(U ) : f has compact support in U} and Hb := { f ∈
H : f is bounded}.

2 Stability of Heat Kernel Estimates for Symmetric
Diffusions with Jumps

In this section, we discuss stability of heat kernel estimates for symmetric pro-
cesses that contain both diffusive and jumping components on general metric mea-
sure spaces, obtained recently in [18]. See also [19].

Let (X , ρ) be a locally compact separable metric space equipped with a positive
Radon measure μ with full support. We assume that all balls are relatively compact,
and thatμ(X ) = ∞. (Note that we do not assume (X , ρ) to be neither connected nor
geodesic.) Denote the ball centered at x with radius r by B(x, r), and set V (x, r) =
μ(B(x, r)).

Definition 1 (i) We say that (X , ρ, μ) satisfies the volume doubling property (VD),
if there exists Cμ ≥ 1 such that

V (x, 2r) ≤ CμV (x, r) for all x ∈ X , r > 0.



Two-Sided Heat Kernel Estimates for Symmetric Diffusion … 67

(ii) We say that (X , ρ, μ) satisfies the reverse volume doubling property (RVD), if
there exist lμ, cμ > 1 such that,

V (x, lμr) ≥ cμV (x, r) for all x ∈ X , r > 0,

Note that under RVD, μ(X ) = ∞ if and only if X has infinite diameter; and if X
is connected and unbounded, then VD implies RVD.

Suppose that we have a regular Dirichlet form (E,F) on L2(X ;μ). By the
Beurling-Deny formula, such a form can be decomposed into the strongly local term,
the pure-jump term and the killing term; see [7, 21]. In this section, we consider the
Dirichlet form (E,F) having no killing term, namely

E( f, g) = E (c)( f, g) +
∫

X×X \diag
( f (x) − f (y)(g(x) − g(y)) J (dx, dy)

=: E (c)( f, g) + E ( j)( f, g), f, g ∈ F ,

where (E (c),F) is the strongly local part of (E,F) and J (·, ·) is a symmetric Radon
measure on X × X \ diag. Here and in what follows, we always take a quasi-
continuous version of a function in F . We assume that neither E (c)(·, ·) nor J (·, ·) is
identically zero.

Given the regular Dirichlet form (E,F) on L2(X ;μ), there is an associated μ-
symmetric Hunt process X := {Xt , t ≥ 0; Px , x ∈ X \ N } that is unique up to a
properly exceptional set, whereN ⊂ X is a properly exceptional set for (E,F); see
[7, 21]. In this case, X is a symmetric diffusion with jumps. We fix X and N , and
write X0 = X \ N . Define

Pt f (x) = Ex f (Xt ), x ∈ X0

for bounded Borel measurable function f on X . The heat kernel associated with the
semigroup {Pt }t≥0 (if it exists) is a jointly measurable function p(t, x, y) : (0,∞) ×
X0 × X0 → (0,∞) so that

Ex f (Xt ) = Pt f (x) =
∫

p(t, x, y) f (y) μ(dy) for all x ∈ X0, f ∈ L∞(X ;μ).

Let φc : R+ → R+ (resp. φ j : R+ → R+) be a strictly increasing continuous
functionwithφc(0) = 0, φc(1) = 1 (resp.φ j (0) = 0, φ j (1) = 1) such that there exist
constants C1 ≥ 1 and 1 < γ∗ ≤ γ ∗ (resp. C2 ≥ 1 and 0 < α∗ ≤ α∗) so that

C−1
1

( R

r

)γ∗ ≤ φc(R)

φc(r)
≤ C1

( R

r

)γ ∗
for all 0 < r ≤ R, (4)
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(resp. (2)). The function φ will serve as the diffusive scaling, while φ j corresponds
to the scaling function for the pure jump part. We assume that

φc(r) ≤ φ j (r) for r ∈ (0, 1] and φc(r) ≥ φ j (r) for r ∈ [1,∞). (5)

This assumption is natural in view of (3) where φc(r) := r2 and φ j (r) satisfies (2).
Set

φ(r) := φc(r) ∧ φ j (r) =
{

φc(r), r ∈ (0, 1],
φ j (r), r ∈ [1,∞).

It is well known that for any f ∈ Fb, there exist unique positive Radon measures
μ〈 f 〉 and μc

〈 f 〉 (called the energy measures of f for the Dirichlet forms (E,F) and
(E (c),F)) on X so that for every g ∈ F ,

∫

X

g dμ〈 f 〉 = E( f, f g) − 1

2
E( f 2, g) and

∫

X

g dμc
〈 f 〉 = E (c)( f, f g) − 1

2
E (c)( f 2, g).

Let U ⊂ V be open sets of X with U ⊂ U ⊂ V . We say a non-negative bounded
measurable function ϕ is a cut-off function for U ⊂ V , if ϕ ≥ 1 on U , ϕ = 0 on V c

and 0 ≤ ϕ ≤ 1 on X .

Definition 2 (i) We say that Jφ j holds if there exists a non-negative symmetric
function J (x, y) such that for μ × μ-almost all x, y ∈ X ,

J (dx, dy) = J (x, y) μ(dx) μ(dy),

and

J (x, y) 
 1

V (x, ρ(x, y))φ j (ρ(x, y))
.

(ii) We say that the (weak) Poincaré inequality PI(φ) holds (for E) if there exist
C > 0 and κ ≥ 1 such that for any ball Br = B(x, r) with x ∈ X , r > 0 and for
any f ∈ Fb,

∫

Br

( f − f Br
)2 dμ ≤ Cφ(r)

⎛

⎜
⎝μc

〈 f 〉(Bκr ) +
∫

Bκr ×Bκr \diag
( f (y) − f (x))2 J (dx, dy)

⎞

⎟
⎠ ,

where f Br
= 1

μ(Br )

∫

Br
f dμ.

When φ(r) is a power function rdw with dw > 1, we write PI(dw) for PI(φ).
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(iii) We say that the cut-off Sobolev inequalityCS(φ) holds if there exist δ0 ∈ [1/2, 1)
andC1, C2 > 0 such that the followingholds: for any0 < r ≤ R, x0 ∈ X and any
f ∈ F , there exists a cut-off function ϕ ∈ Fb for B(x0, R) ⊂ B(x0, R + δ0r) so
that

∫

B(x0,R+r)

f 2 dμ〈ϕ〉 ≤ C1

( ∫

B(x0,R+r)

ϕ2 dμc
〈 f 〉

+
∫

B(x0,R+r)×B(x0,R+r)\diag
ϕ2(x)( f (x) − f (y))2 J (dx, dy)

)

+ C2

φ(r)

∫

B(x0,R+r)

f 2 dμ.

2.1 Two-Sided Heat Kernel Estimates

In the following, we write φ−1
c (t) (resp. φ−1

j (t)) to denote the inverse function of the
strictly increasing function t �→ φc(t) (resp. t �→ φ j (t)). Define

p(c)(t, x, y) := 1

V (x, φ−1
c (t))

exp

(

− sup
s>0

{
ρ(x, y)

s
− t

φc(s)

})

, t > 0, x, y ∈ X ,

(6)
which arises in the two-sided estimates of heat kernels for strongly local Dirichlet forms;
see, e.g., [1]. There is another expression of heat kernels for strongly local Dirichlet
forms, which is given by

p(c)(t, x, y) = 1

V (x, φ−1
c (t))

exp

(

− ρ(x, y)

φ̄−1
c (t/ρ(x, y))

)

, t > 0, x, y ∈ X , (7)

where φ̄c(r) : R+ → R+ is a strictly increasing continuous function such that

c1
φc(r)

r
≤ φ̄c(r) ≤ c2

φc(r)

r
for all r > 0

with some c2 ≥ c1 > 0. When φc(r) = rdw with dw ≥ 2, p(c)(t, x, y) is reduced into
Gaussian (dw = 2) and sub-Gaussian (dw > 2) estimates. Set

p( j)(t, x, y) := 1

V (x, φ−1
j (t))

∧ t

V (x, ρ(x, y))φ j (ρ(x, y))
.

It can be verified that under mild conditions the expressions (6) and (7) are equivalent;
see [18, Corollary 2.3].
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Definition 3 Let φ := φc ∧ φ j .

(i) We say thatHK(φc, φ j ) holds if there exists a heat kernel p(t, x, y) for the semigroup
{Pt }t≥0 associated with (E,F) such that the following holds for all t > 0 and all
x, y ∈ X0,

c1
( 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧ (
p(c)(c2t, x, y) + p( j)(t, x, y)

))

≤ p(t, x, y)

≤ c3
( 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧ (
p(c)(c4t, x, y) + p( j)(t, x, y)

))
,

(8)

where ck > 0, k = 1, . . . , 4, are constants independent of x, y ∈ X0 and t > 0.
Below, we abbreviate the two-sided estimate (8) as

p(t, x, y) 
 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧
(

p(c)(t, x, y) + p( j)(t, x, y)
)

.

(ii) We say HK−(φc, φ j ) holds if the upper bound in (8) holds but the lower bound is
replaced by the following: there are c0, c1 > 0 so that

p(t, x, y) ≥c0

(
t

V (x, ρ(x, y))φ j (ρ(x, y))
1{ρ(x,y)>c1φ−1(t)}

+ 1

V (x, φ−1(t))
1{ρ(x,y)≤c1φ−1(t)}

)

, ∀t > 0, ∀x, y ∈ X0.

With the notations above, we now state the following stable characterizations of two-
sided heat kernel estimates for symmetric diffusions with jump from [18].

Theorem 1 Suppose that the metric measure space (X , ρ, μ) satisfies VD and RVD,
and that the scale functions φc and φ j satisfy (2), (4) and (5). Let φ := φc ∧ φ j . Then
the following are equivalent:

(i) HK−(φc, φ j ).
(ii) Jφ j , PI(φ) and CS(φ).

If in addition, (X , ρ, μ) is connected and ρ is geodesic, then all the conditions above
are equivalent to:

(iii) HK(φc, φ j ).

Note that statement (ii) in Theorem1 is stable under bounded perturbation in the
sense that if it holds for the Dirichlet form (E,F) on L2(X ;μ), then it holds for any
other Dirichlet form (E ′,F) on L2(X ;μ) with jumping kernel J ′ as long as there is
a constant c > 1 so that c−1E(c)( f, f ) ≤ E ′,(c)( f, f ) ≤ cE(c)( f, f ) for all f ∈ F and
c−1 J (x, y) ≤ J ′(x, y) ≤ cJ (x, y) for all x �= y ∈ X . We refer [18, Theorem 1.13] for
more equivalent characterizations of HK−(φc, φ j ). We note that the connectedness and
the geodesic condition (in fact, so-called chain condition suffices) of the underlyingmetric
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measure space (X , ρ, μ) are only used to derive optimal lower bounds off-diagonal esti-
mates for the heat kernel when the time is small (i.e., from HK−(φc, φ j ) to HK(φc, φ j )).

2.2 Example

In this section, we give an example to illustrate a typical application of Theorem1.

Example 1 (Transferring Method on d-Set) Let (X , ρ, μ) be an Alfhors d-regular set
and suppose that there is a strongly local Dirichlet form (Ē, F̄) on L2(X ;μ) such that
there is a transition density function q(t, x, y) with respect to the measure μ that has the
following two-sided estimates:

q(t, x, y) 
 t−d/dw exp

(

−
(

ρ(x, y)dw

t

)1/(dw−1)
)

, t > 0, x, y ∈ X

for some dw ≥ 2. Let {Zt , t ≥ 0;Px , x ∈ X } be the corresponding μ-symmetric diffu-
sion on X . A typical example is a Brownian motion on the n-dimensional unbounded
Sierpiński gasket; see for instance [4]. In this case, d = log(n + 1)/ log 2 and dw =
log(n + 3)/ log 2.

For any α ∈ (0, dw), let s = α/dw and ξt = t + ηt , where ηt is the s-subordinator
independent of Z . Then one can verify by direct computations that the subordinated
process Xt := Zξt has a transition density function that enjoys HK(φc, φ j ) with φc(r) =
rdw and φ j (r) = rα .

Now consider the following symmetric regular Dirichlet form (E, F̄) in L2(X ;μ):

E(u, v) = E(c)(u, v) +
∫

X×X\diag
(u(x) − u(y))(v(x) − v(y))

× c(x, y)

ρ(x, y)d+α
μ(dx) μ(dy),

where (E(c), F̄) is a strongly local regular Dirichlet form on L2(X ;μ) such that
E(c)( f, f ) 
 Ē( f, f ) for all f ∈ F̄ , and c(x, y) is a symmetric measurable function
on X × X \ diag that is bounded between two positive constants. Clearly, Jφ j and PI(φ)

hold for (E, F̄). CS(φ) also holds for (E, F̄) because it holds for the subordinated process
{Xt }t≥0. Hence, by Theorem1 we obtain HK(φc, φ j ).

This type of argument (i.e. first establishing heat kernel estimates for a particular
process and then use the stability results to obtain heat kernel estimates for more general
processes) is sometimes called “transferring method”.

In [18], relations between heat kernel estimates and parabolic Harnack inequalities are
also established. Unlike the cases of local operators/diffusions, for pure-jump processes,
parabolic Harnack inequalities are no longer equivalent to (in fact weaker than) the two-
sided heat kernel estimates—see [3, 17]. For the cases of diffusions with jumps, it is
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even more complex. We refer the readers to [18, Theorem 1.18], for more details and for
further characterizations of parabolic Harnack inequalities.

3 Symmetric Reflected Diffusions with Jumps in Inner
Uniform Domains

In this section, we consider the case that X is an inner uniform domain D on a Harnack-
type space E . In this framework, there exists a reflected diffusion on D whose heat kernel
enjoys two-sided Gaussian estimates (see Theorem2).We will consider this reflected dif-
fusion perturbed by jumps which may decay exponentially (even super-exponentially).
Thus, this setting does not belong to that studied in [18], where the jumps will decay
at most polynomially; see (4). This section is a survey of the recent paper [11]. In con-
trast with the previous section, this section as well as [11] is concerned with sufficient
conditions under which we have two-sided sharp heat kernel estimates rather than stable
characterization of the heat kernel estimates. However, as mentioned earlier, the ideas
and techniques developed from the study of the stability results for heat kernel estimates
and parabolic Harnack inequalities in [16–18] play an essential role in the work [11].

3.1 Reflected Diffusions on Inner Uniform Domains

Let E be a locally compact separable metric space, and m a σ -finite Radon measure with
full support on E . Suppose that there is a strongly local regular Dirichlet form (E0,F0)

on L2(E; m), and let μ0〈u〉 be the (E0-) energy measure of u ∈ F0 so that E0(u, u) =
1
2μ

0〈u〉(E). Then the intrinsic metric ρ of (E0,F0) is defined by

ρ(x, y) = sup
{

f (x) − f (y) : f ∈ F0 ∩ Cc(E) withμ0〈 f 〉(dz) ≤ m(dz)
}
.

We assume that ρ(x, y) < ∞ for any x, y ∈ E and induces the original topology on E ,
and that (E, ρ) is a complete metric space. It is known (see for example [23, Theorem
2.11]) that (E, ρ) is a geodesic length space; that is, for each x, y ∈ E , there exists a
continuous curve γ : [0, 1] → E with γ (0) = x , γ (1) = y such that for every s, t ∈
[0, 1], ρ(γ (s), γ (t)) = |t − s| ρ(x, y). In the following, we will always use the intrinsic
metric ρ for E .

We assume that (E, ρ, m) enjoys (VD) and (E0,F0) enjoys PI(2); see Definitions1
and 2(ii) for these definitions. According to [23], such a space is called a Harnack-
type Dirichlet space. It is known that the state space E for Harnack-type Dirichlet
space (E0,F0) is connected and the diffusion process Z0 associated with (E0,F0) is
conservative—see [23, Lemma 2.33].

For a domain D of the length metric space (E, ρ), define for x, y ∈ D,

ρD(x, y) = inf{length(γ ) : acurve γ in D with γ (0) = x and γ (1) = y}.
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The completion of D under the metric ρD is denoted by D̄. We extend the definition of
m|D to D̄ by setting m|D(D̄ \ D) = 0. For notational simplicity, we will use m to denote
this measure m|D .

Definition 4 ([23, Definition 3.6]) We say that D is inner uniform if there are con-
stants C1, C2 ∈ (0,∞) such that, for any x, y ∈ D, there exists a continuous map
γx,y : [0, 1] → D with γx,y(0) = x , γx,y(1) = y that satisfies the following:

(i) The length of γx,y is at most C1ρD(x, y).
(ii) For any z ∈ γx,y([0, 1]), it holds that

ρ(z, ∂ D) := inf
w∈∂ D

ρ(z, w) ≥ C2
ρD(z, x)ρD(z, y)

ρD(x, y)
.

When D is inner uniform, (D̄, ρD) is locally compact—see [23, Lemma 3.9]. It is well
known that (E0,F0

D) is the part Dirichlet form of (E0,F0) on D, whereF0
D = { f ∈ F0 :

f = 0 E0 −q.e.on Dc}. In other words, (E0,F0
D) is the Dirichlet form on L2(D; m) of

the subprocess of the diffusion process Z0 associated with (E0,F0) killed upon leaving
D. We write f ∈ F0

D,loc if for every relatively compact subset U of D, there is g ∈ F0
D

such that f = g m-a.e. on U . By [23, Proposition 2.13], it holds that for x, y ∈ D,

ρD(x, y) = sup
{

f (x) − f (y) : f ∈ F0
D,loc ∩ Cc(D)withμ0〈 f 〉(dz) ≤ m(dz)

}
.

Let F0,ref
D := { f ∈ F0

D,loc : μ0〈 f 〉(D) < ∞} and define E0,ref ( f, f ) := 1
2μ

0〈 f 〉(D) for

f ∈ F0,ref
D . (E0,ref ,F0,ref

D ∩ L2(D; m)) is the active reflected Dirichlet form of (E0,F0
D),

which is known to be a Dirichlet form on L2(D̄; m) = L2(D; m)—see [7, Chap.6].
Let BD̄(x, r) := {y ∈ D̄ : ρD(x, y) < r}, and denote VD(x, r) := m(BD̄(x, r)). Let
Lipc(D̄) be the space of compactly supported Lipschitz functions in D̄. Then the fol-
lowing holds.

Theorem 2 ([23, Sect. 3]) Suppose that (E0,F0) is a strongly local regular Dirichlet
form on L2(E; m) which admits a carré du champ operator Γ0 (that is, μ0〈u〉(dx) =
Γ0(u, u) m(dx) and Γ0(u, u) ∈ L1(E; m) for every u ∈ F). Assume that (VD) and
(PI(2)) hold for (E0,F0) on (E, ρ, m), and suppose that D is an inner uniform sub-
domain of E. Then (E0,ref ,F0,ref

D ∩ L2(D; m)) is a strongly local regular Dirichlet form

on L2(D; m) with core Lipc(D̄), and the following hold for
(E0,ref ,F0,ref

D ∩ L2(D; m)
)

on (D̄, ρD, m):

(VD) (Volume doubling property on D̄) There exists C3 > 0 such that for every
x ∈ D̄ and r > 0, VD(x, 2r) ≤ C3 VD(x, r).

(PI(2)) (Poincaré inequality on D̄) There exists C4 > 0 such that for every x ∈ D̄,
r > 0 and f ∈ F0,ref

D ∩ L2(D; m),

min
a∈R

∫

BD̄(x,r)

( f (y) − a)2 m(dy) ≤ C4r2 μ0〈 f 〉(BD̄(x, r)).
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Consequently, (E0,ref ,F0,ref
D ) admits a jointly continuous transition density function

pN
D (t, x, y) on (0,∞) × D̄ × D̄, and there exist c1, c2 ≥ 1 depending on C3, C4 such

that

c−1
1

VD(x,
√

t)
exp

(

−c2ρD(x, y)2

t

)

≤ pN
D (t, x, y) ≤ c1

VD(x,
√

t)
exp

(

−ρD(x, y)2

c2t

)

for every x, y ∈ D̄ and t > 0.

In the rest of this section we assume that the strongly local Dirichlet form (E0,F0)

on L2(E; m) and D ⊂ E satisfy the assumptions of Theorem2.

Characteristic Constants. Recall that (C1, C2) are constants appearing in the defini-
tion of the inner uniform domain D, and (C3, C4) are constants in (VD) and (PI(2)) of
Theorem2. We will call (C1, C2, C3, C4) the characteristic constants of the domain D.

3.2 Reflected Diffusions with Jumps

Let (E,F) be a symmetric Dirichlet form (E,F) on L2(D; m), where F := F0,ref
D ∩

L2(D; m), such that for u ∈ F ,

E(u, u) = E0,ref (u, u) + 1

2

∫

D×D

(u(x) − u(y))2 J (x, y) m(dx) m(dy). (9)

Here J (x, y) is a non-negative symmetric measurable function on D × D \ diag satisfy-
ing certain conditions to be specified below.

Let φ j be a strictly increasing function on [0,∞) such that φ j (0) = 0, φ j (1) = 1 and
(2) holds for 0 < α∗ ≤ α∗ < 2. Since α∗ < 2, there exists c1 > 0 such that

r∫

0

s

φ j (s)
ds ≤ c1r2

φ j (r)
for every r > 0.

Definition 5 Let β ∈ [0,∞] and φ j be a strictly increasing function on [0,∞) with
φ j (0) = 0 and φ j (1) = 1 that satisfies the condition (2) (with 0 < α∗ ≤ α∗ < 2). Let
J (x, y) be a non-negative symmetric measurable function on D × D \ diag.
(i) We say condition (Jφ j ,β,≤) holds if there are κ1, κ2 > 0 so that

J (x, y) ≤ κ1

VD(x, ρD(x, y))φ j (ρD(x, y)) exp(κ2ρD(x, y)β)
, (Jφ j ,β,≤)
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for (x, y) ∈ D × D \ diag. Similarly,we say condition (Jφ j ,β,≥) holds if the opposite
inequality holds, and we say condition (Jφ j ,β) holds if both (Jφ j ,β,≤) and (Jφ j ,β,≥)

hold with possibly different constants κi in the upper and lower bounds.
(ii) We say condition (Jφ j ,0+,≤) holds if there are κ3, κ4 > 0 so that

⎧
⎨

⎩

supx∈D

∫

{y∈D:ρD(x,y)>1}
ρD(x, y)2 J (x, y) m(dy) ≤ κ3 < ∞,

J (x, y) ≤ κ4
VD(x,ρD(x,y))φ∗(ρD(x,y))

(Jφ j ,0+,≤)

for (x, y) ∈ D × D \ diag, where

φ∗(r) := φ j (r)1{r≤1} + r21{r>1} for r ≥ 0. (10)

Clearly, (Jφ j ,β,≤) =⇒ (Jφ j ,0+,≤) =⇒ (Jφ j ,0,≤) for any β ∈ (0,∞]. When β = 0,
(Jφ j ,0) coincides with Jφ j in Definition 2(i). When β = ∞, condition (Jφ j ,∞,≤) is equiv-
alent to

J (x, y) ≤ κ̃1

VD(x, ρD(x, y))φ j (ρD(x, y))
1{ρ(x,y)≤1} for (x, y) ∈ D × D \ diag.

It can be easily proved (see [11, Proposition 2.1]) that, under condition (Jφ j ,0,≤),
(E,F) is a regular Dirichlet form on L2(D; m). Moreover, the corresponding process Y
is conservative; namely, Y has infinite lifetime almost surely.

For notational convenience, we regard 0+ as an “added" or “extended" number and
declare that it is larger than 0 but smaller than any positive real number.With this notation,
we can write, for instance, (Jφ j ,β,≤) for β ∈ [0,∞] ∪ {0+}.

In the following, we present results concerning global two-sided sharp estimates on the
heat kernel ofDirichlet form (E,F)under the assumption that J (x, y) satisfies (Jφ j,1,β∗,≤)

and (Jφ j,2,β
∗,≥) for some strictly increasing functions φ j,1 and φ j,2 satisfying φ j,i (0) =

0, φ j,i (1) = 1 and (2) (with φ j,i in place of φ j ) for 1 ≤ i ≤ 2, and for β∗ and β∗ in
[0,∞] ∪ {0+} (but excluding β∗ = β∗ = 0+).

First let us consider the case β∗ = β∗ = 0 and φ j,1 = φ j,2 =: φ j . Note that, in the
present setting, diam(D) = ∞ is equivalent tom(D) = ∞; see [22, Corollary 5.3]. In this
case, it is easy to check that, with φc(r) := r2, φ j (r) := rα and φ(r) := φc(r) ∧ φ j (r),
Jφ j , PI(φ) and CS(φ) hold; see [18, Example 1.1 and Remark 1.7] for the details. Thus we
can apply the stable characterization of Theorem1 to conclude that HK(φc, φ j ) holds.
When diam(D) < ∞, according to [18, Theorem 1.13] (noting that the results of the
paper [18] continue to hold for bounded state space with obvious localized versions), one
can obtain estimates of p(t, x, y) for t ∈ (0, 1]. Now, when D is bounded, it holds that
VD(x,

√
t) 	 1 for all x ∈ D and t ≥ 1, and the large time estimates of HK(φc, φ j ) are

simply
p(t, x, y) 	 1 for x, y ∈ D̄ and t ≥ 1,

which is a consequence of the strong ergodicity of the Markov process Y . Hence
HK(φc, φ j ) is the desired estimates for diam(D) < ∞ as well.
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The main contribution of [11] is to obtain two-sided heat kernel estimates for 0+ ≤
β∗ ≤ β∗ ≤ ∞ excluding β∗ = β∗ = 0+ when D is unbounded. Note that when D is
bounded, (Jφ j ,β,≤) and (Jφ j ,β,≥) with β ∈ {0+} ∪ (0,∞] are reduced to (Jφ j ,0,≤) and
(Jφ j ,0,≥), respectively. We present the precise statement in the next subsection.

3.3 Heat Kernel Estimates for the β∗ ≤ β∗ ≤ ∞ in
{0+} ∪ (0,∞] Case

We need some notations. Let

p(c)(t, x, r) := exp(−r2/t)

VD(x,
√

t)
, p( j)

φ (t, x, r) := 1

VD(x, φ−1(t))
∧ t

VD(x, r)φ(r)
.

For β ∈ [0,∞] and a strictly increasing function φ j on [0,∞) with φ j (0) = 0 and
φ j (1) = 1, set for x ∈ D̄, t > 0 and r ≥ 0,

p( j)
φ j ,β

(t, x, r) := 1

VD(x, φ−1
j (t))

∧ t

V (x, r)φ j (r) exp(rβ)
.

In particular, p( j)
φ j ,0

(t, x, r) 	 p( j)
φ j

(t, x, r). Define for β ∈ (0, 1],

Hφ j ,β(t, x, r) :=

⎧
⎪⎨

⎪⎩

1

VD(x,
√

t)
∧

(
p(c)(t, x, r) + p( j)

φ j ,β
(t, x, r)

)
if t ∈ (0, 1],

1

VD(x,
√

t)
exp

(− (
rβ ∧ (r2/t)

))
if t ∈ (1,∞);

for β ∈ (1,∞),

Hφ j ,β(t, x, r) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

VD(x,
√

t)
∧

(
p(c)(t, x, r) + p( j)

φ j ,β
(t, x, r)

)

if t ∈ (0, 1], r ≤ 1,
t

VD(x, r)φ j (r)
exp

(
−

(
r(1 + log+(r/t))(β−1)/β

)
∧ rβ

)

if t ∈ (0, 1], r > 1,
1

VD(x,
√

t)
exp

(
−

(
r (1 + log+(r/t))(β−1)/β

)
∧ (r2/t)

)

if t ∈ (1,∞);

where Hφ j ,∞(t, x, r) := limβ→∞ Hφ j ,β(t, x, r) for β = ∞, that is,
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Hφ j ,∞(t, x, r)

:=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

VD(x,
√

t)
∧

(
p(c)(t, x, r) + p( j)

φ j ,β
(t, x, r)

)
if t ∈ (0, 1], r ≤ 1,

t

VD(x, r)φ j (r)
exp

(−r(1 + log+(r/t))
)

if t ∈ (0, 1], r > 1,

1

VD(x,
√

t)
exp

(− (
r
(
1 + log+(r/t)

)) ∧ (r2/t)
)

if t ∈ (1,∞).

See Figs. 1 and 2 for amore explicit expression on the dominate terms in Hφ j ,β(t, x, r).
The following is the main result on the two-sided heat kernel estimates of Y .

Theorem 3 ([11, Theorem 1.6]) Suppose that D is unbounded. Assume that J (x, y)

satisfies (Jφ j,1,β∗,≤) and (Jφ j,2,β
∗,≥) for some strictly increasing functions φ j,1, φ j,2 sat-

isfying φ j,i (0) = 0, φ j,i (1) = 1 and (2) (with φ j,i in place of φ j ) for i = 1, 2, and for
β∗ ≤ β∗ in {0+} ∪ (0,∞] excluding β∗ = β∗ = 0+. Then the transition density function
p(t, x, y) of the conservative Feller process Y associated with (E,F) has the following
estimates: for every t > 0 and x, y ∈ D̄,

c1Hφ j,2,β
∗(t, x, c2ρD(x, y)) ≤ p(t, x, y) ≤ c3Hφ j,1,β∗(t, x, c4ρD(x, y)),

where ci > 0, 1 ≤ i ≤ 4, depend only on the characteristic constants (C1, C2, C3, C4)

of D and the constant parameters in (Jφ j,1,β∗,≤) and (Jφ j,2,β
∗,≥) as well as in (2) for φ j,1

and φ j,2, respectively.

Fig. 1 β ∈ (0, 1]: dominant terms in the heat kernel estimates Hφ j ,β (t, x, r) for p(t, x, y)
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Fig. 2 β ∈ (1,∞]: dominant terms in the heat kernel estimates Hφ j ,β (t, x, r) for p(t, x, y)

3.4 Discussion on Off-Diagonal Heat Kernel Upper Bound

In this subsection, we present results on the heat kernel upper bound under milder con-
dition and give a brief explanation of the argument for the off-diagonal upper bound of
heat kernels.

Assume that diam(D) = ∞. Then, from the volume doubling and the reverse volume
doubling property of D, we have that there exist positive constants c1, c2, d1, d2 such
that

c1
( R

r

)d1 ≤ VD(x, R)

VD(x, r)
≤ c2

( R

r

)d2
for R ≥ r > 0. (11)

Since one can verify the localized version of Faber-Krahn inequality and the cut-
off Sobolev inequality with order 2 for the Dirichlet form (E,F), under the condition
(Jφ j ,0+,≤), the heat kernel upper bound in the next result essentially follows from (the
local version of) [18, Theorem 1.14] and a modification of Doeblin’s result (see [5, p.
365, Theorem 3.1]).

Proposition 1 ([11, Theorem 1.5]) Suppose that condition (Jφ j ,0+,≤) holds for some
strictly increasing function φ j on [0,∞) satisfying (2). Then (E,F) in (9) is regular on
L2(D; m) and the corresponding process Y on D̄ is a conservative Feller process that
starts from every point in D̄. Moreover, Y has a jointly Hölder continuous transition
density function p(t, x, y) on (0,∞) × D̄ × D̄ with respect to the measure m, and there
exist constants c1, c2 > 0 such that
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p(t, x, y) ≤ c1
VD(x,

√
t)

∧
(

p(c)(t, x, c2ρD(x, y)) + p( j)
φ∗ (t, x, c2ρD(x, y))

)

for all x, y ∈ D̄ and t > 0, where φ∗ is given by (10). The positive constants c1, c2
depend only on the characteristic constants (C1, C2, C3, C4) of D and on the constant
parameters in (Jφ j ,0+,≤) and (2) for the function φ j .

The Meyer’s construction [24] is very useful to obtain off-diagonal upper bounds
for p(t, x, y). Based on this, the main part of proving the off-diagonal upper bounds is
to obtain the correct off-diagonal upper bounds of q〈λ〉(t, x, y), the transition density
of truncated process Y (λ) obtained from Y by removing jumps of size larger than λ.
In order to deal with the general VD setting (11), we first consider off-diagonal upper
bounds for Dirichlet heat kernel of the truncated process Y (λ). For an open set U ⊂ D̄,
let q〈λ〉,U (t, x, y) be the (Dirichlet) heat kernel of the subprocess Y (λ),U of Y (λ) killed
up exiting U .

Very recently, in [10] we have established the equivalences between on-diagonal heat
kernel upper bounds and off-diagonal heat kernel upper bounds for a large class of
symmetric Markov processes, which are generalizations of the results in [6]. The results
in [10] are applicable for q〈λ〉,U (t, x, y) in the present setting. For the remainder of this
subsection, we provide the outline of the proof of the upper bound of q〈λ〉(t, x, y).

In the following, suppose that (Jφ j ,β∗,≤) holds with β∗ ∈ (0,∞]. Using [10, Theorem
5.1], we can check that for any β∗ ∈ (0,∞] and l ≥ 2, there exists a constant c0 > 0 such
that for any x0 ∈ D̄, λ > 0, any f ∈ Lipc(D̄), any t > 0 and any x, y ∈ BD̄(x0, lλ),

q〈λ〉,BD̄(x0,lλ)(t, x, y)

≤ c0
VD(x0, λ)

((
λ√

t

)d1
∨

(
λ√

t

)d2
)

exp
(
−| f (y) − f (x)| + 2Λ〈λ〉( f )2 t

)
,

(12)

where d1, d2 > 0 are the constants in (11) and

Λ〈λ〉( f )2 = ‖e−2 f Γ〈λ〉(e f )‖∞ ∨ ‖e2 f Γ〈λ〉(e− f )‖∞

with

Γ〈λ〉( f )(ξ) = Γ0( f, f )(ξ) +
∫

BD̄(ξ,λ)

( f (ξ) − f (η))2 J (ξ, η) m(dη).

For fixed x, y ∈ BD̄(x0, lλ), by taking f (ξ) = s (ρD(ξ, x) ∧ ρD(x, y)) with s > 0, we
see that | f (y) − f (x)| = sρD(x, y) and, thanks to (Jφ j ,β∗,≤),
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e−2 f (ξ)Γ〈λ〉(e f )(ξ)

= e−2 f (ξ)Γ0(e
f , e f )(ξ) +

∫

BD̄(ξ,λ)

(e f (ξ)− f (η) − 1)2 J (ξ, η) m(dη)

≤ Γ0( f, f )(ξ) + s2
∫

BD̄(ξ,λ)

ρD(ξ, η)2e2 sρD(ξ,η) J (ξ, η) m(dη)

≤ s2 + c1s2
∫

D

ρD(ξ, η)2
e2sρD(ξ,η)−κ2ρD(ξ,η)β∗

VD(ξ, ρD(ξ, η))φ j (ρD(ξ, η))
m(dη).

(13)

In [11], we consider the cases β∗ ∈ (0, 1], β∗ ∈ (1,∞) and β∗ = ∞ separately and find
a proper s for each case to bound (12) optimally.

Let τ (λ)
B by the first exit time from the ball B by Y (λ) and τ

(λ),U
B be the first exit time

from the ball B of the process Y (λ),U . Since the size of jumps of Y (λ) is less than λ, we
see that

Px
(
τ

(λ)
B(x,r) ≤ t

) = Px
(
τ

(λ),B(x,λ+r)
B(x,r) ≤ t

)
, x ∈ D̄, λ, t, r > 0.

Using this and the strong Markov property, we have that for any x ∈ D̄ and λ, t, r>0,

∫

BD̄(x,r)c

q〈λ〉(t, x, y) m(dy)

≤ Px
(
τ

(λ)
B(x,r) ≤ t

) = Px
(
τ

(λ),B(x,r+λ)
B(x,r) ≤ t

)

≤ Px
(
ρD(Y (λ),B(x,r+λ)

2t , x) ≥ r/2
)

+ Px
(
sup

0<s≤t
ρD(Y (λ),B(x,r+λ)

s , x) ≥ r, ρD(Y (λ),B(x,r+λ)
2t , x) ≤ r/2

)

≤ Px
(
ρD(Y (λ),B(x,r+λ)

2t , x) ≥ r/2
)

+ Px

(
τ

(λ)
B(x,r) ≤ t, ρD(Y (λ),B(x,r+λ)

2t , Y (λ)

τ
(λ)
B(x,r)

) ≥ r/2
)

≤ Px
(
ρD(Y (λ),B(x,r+λ)

2t , x) ≥ r/2
)

+ sup
z∈B(x,r+λ)

sup
t≤s≤2t

Pz
(
ρD(Y (λ),B(x,r+λ)

s , z) ≥ r/2
)

≤ 2 sup
z∈B(x,r+λ)

sup
t≤s≤2t

∫

BD̄(z,r/2)c

q〈λ〉,B(x,r+λ)(s, z, y) m(dy). (14)

We now assume that ρD(x, y) ≥ C(
√

t ∨ 1) where C ≥ 1. Let R = ρD(x, y) and
λ = R/k where k will be determined later. By [16, Lemma 7.2(2)] and Proposition1,

q〈λ〉(t, x, y) ≤ c2
VD(x,

√
t)

.

Using this, (11) and (14), we obtain that
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q〈λ〉(t, x, y)

=
∫

D̄

q〈λ〉(t/2, x, z)q〈λ〉(t/2, z, y) m(dz)

≤
⎛

⎜
⎝

∫

BD̄(x,R/2)c

+
∫

BD̄(y,R/2)c

⎞

⎟
⎠ q〈λ〉(t/2, x, z)q〈λ〉(t/2, z, y) m(dz)

≤ c2
VD(y,

√
t)

∫

BD̄(x,R/2)c

q〈λ〉(t/2, x, z) m(dz)

+ c2
VD(x,

√
t)

∫

BD̄(y,R/2)c

q〈λ〉(t/2, y, z) m(dz)

≤ c3
VD(x, R)

(
R√

t

)d2
×

sup
w∈D̄

sup
z∈B(w,R/2+λ)

sup
t/2≤s≤t

∫

BD̄(z,R/4)c

q〈λ〉,B(w,R/2+λ)(s, z, u) m(du). (15)

Therefore, to obtain upper bounds of q〈λ〉(t, x, y), it suffices to bound (15). Recall
that, in (12), (13) and the sentence below, we have discussed how to get the upper
bounds of q〈λ〉,B(w,R/2+λ)(s, z, u). Using such upper bounds, with proper C and k, in
[11, Proposition 4.3] we have obtained upper bounds of (15) for the cases β∗ ∈ (0, 1],
β∗ ∈ (1,∞) and β∗ = ∞ separately. Finally, we have the following

Proposition 2 ([11, Theorem 4.4]) Suppose that (Jφ j ,β∗,≤) holds for some β∗ ∈ (0,∞].
Then there exist c1, c2 > 0 that depend only on characteristic constants (C1, C2, C3, C4)

of D and the constant parameters in (Jφ j ,β∗,≤) and (2) for φ j so that

q(t, x, y) ≤ c1Hφ j ,β∗(t, x, c2ρD(x, y)) for every t > 0 and x, y ∈ D̄.

3.5 Example

Example 2 A typical example for Theorem3 is the following. In (1) with D instead of
R

d where D is a Lipschitz domain in R
d , suppose that J (x, y) is a symmetric function

on D × D \ diag defined by

J (x, y) =
∫

[α1,α2]

c(α, x, y)

|x − y|d+α Φ(|x − y|) ν(dα),

where ν is a probability measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function on
[0,∞) with
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c1ec2rβ ≤ Φ(r) ≤ c3ec4rβ

for someβ ∈ [0,∞],

and c(α, x, y) is a jointly measurable function that is symmetric in (x, y) and is bounded
between two positive constants. When β = 0 and D = R

d , the two sided heat kernel
estimates are obtained in [15] as mentioned in the introduction.

Finally, we would like to mention that unde the setting in this section, parabolic
Harnack inequalities do not hold for the whole range. In fact under conditions (Jφ1,β∗,≤)

and (Jφ2,β∗,≥)withβ∗ < β∗ in {0+} ∪ (0,∞], the jumping kernel J (x, y)may not satisfy
the UJS condition, see [3] and [11, Sect. 6.2] for more details. Thus, it follows from (the
proof of) [17, Proposition 3.3], that parabolic Harnack inequalities of full ranges do not
hold. Thus, the results of [18] in particular give a family of Feller processes that satisfy
global two-sided heat kernel estimates, but the associated parabolic Harnack inequalities
for full ranges fail. We further mention that, under condition (Jφ,0+,≤), we always have
the joint Hölder continuity for the heat kernel q(t, x, y) so that we can establish two-sided
estimates for q(t, x, y) for every t > 0 and x, y ∈ D̄ without introducing any exceptional
set.
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Abstract Wediscusswhen certain higher order partial differential operators in space
and time admit non-negative solutionswhich have a semigroup representation aswell
as a representation by some associated Markov process.
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operator semi-groups · Lévy processes

Mathematics Subject Classification 35B09, 35C99, 35G10, 47D06, 47F05

1 Introduction

Modelling the dependencies of a process with the help of space-time partial differen-
tial equations shall lead to solutions which capture typical observed phenomena, e.g.
the propagation of singularities, preservation of positivity, etc. The heat or diffusion
equation is an example of an equation the solutions of which preserve the positiv-
ity (more correctly, the non-negativity) of initial data. It is also an example of an
equation whose solution operator exhibits strong smoothing effects, e.g. continuous
initial data are turned into C∞-solutions. In addition, we encounter the semigroup
property. These analytic properties do have a probabilistic companion. With the heat
equation we can associate a Brownian motion and we can use Brownian motion to
represent solutions to the heat equation. Indeed, the Gaussian semigroup (T G

t )t≥0

which gives the solution to the initial value problem to the heat equation admits a
representation using Brownian motion (Bt )t≥0 by
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u(t, x) = (T G
t g)(x) = Ex (g(Bt )). (1)

Since we may construct Brownian motion with the help of the fundamental solution
to the heat equation, Formula (1) looks rather natural. An obvious question is to find
those space-time partial differential operators which allow an analogous treatment.
It is well known that this is limited to second order partial differential operators with
suitable coefficients of the type

∂

∂t
−

n∑

k,l=1

akl
∂2

∂xk∂xl
+

n∑

j=1

b j
∂

∂x j
+ c, (2)

where (akl)k,l=1,...,n is a non-negative definite (symmetric) matrix. In our paper we
are not interested in minimal smoothness assumptions for coefficients, but we are
stimulated by the fact that certain higher order (in space and/or in time) partial
differential operators still admit certain positive solutions, some of which can even
be represented with the help of Markov processes, not necessarily Brownian motion.
The simplest and best known example is the Laplace operator ∂2

∂t2 + �n in the half-
spaceR+ × R

n which is not of the type (2), but which has solutions we can represent
with the help of the Cauchy process. Indeed, the Dirichlet problem

∂2

∂t2
u(t, x) + �nu(t, x) = 0 in R+ × R

n, (3)

lim
t→0

u(t, x) = g(x) (4)

has for a suitable g a (unique) solution which is given by the Poisson integral, i.e.

u(t, x) =
∫

Rn

Pn(t, x − y)g(y) dy. (5)

However, this classical Poisson formula in the half-space is clearly related to the
Cauchy process (Ct )t≥0 and the Cauchy semigroup (TC

t )t≥0, namely by

u(t, x) = (TC
t g)(x) = Ex (g(Ct)). (6)

Note that Eq. (3) is of second order in t , not of first order. Taking in (3) the (partial)
Fourier transform with respect to x we arrive at the ordinary differential equation

d2

dt2
û(t, ξ) − |ξ |2û(t, ξ) = 0 (7)

and the “initial” condition
û(0, ξ) = ĝ(ξ). (8)
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Note that we have only one “initial” condition for the second order equation. The
Ansatz û(t, ξ) = e−λt , λ = λ(ξ), leads to the characteristic equation

λ2 − |ξ |2 = 0 (9)

with the two solutions λ1,2 = λ1,2(ξ) = ±|ξ |. The solution λ1(ξ) = |ξ | gives

u(t, x) = F−1
ξ �→x(e

−t |·|ĝ)(x) = (TC
t g)(x). (10)

We may factorise (9) according to

(λ2 − |ξ |2) = (λ − |ξ |)(λ + |ξ |) (11)

and the solution λ(ξ) = |ξ | is the one of interest. It is a continuous negative definite
function, hence it is associated with a convolution semigroup and therefore with a
Lévy process. Guided by this well known example, see [9], we want to discuss the
following problem: Let the partial differential equation with constant coefficients

∂N

∂t N
u(t, x) −

N−1∑

j=0

∑

|α|≤m

a jα
∂ j

∂t j

(
−i

∂

∂x

)α

u(t, x) = 0 (12)

subject to the initial condition

u(l−1)(0, x) = hl(x), l = 0, . . . , N − 1. (13)

Is it possible to obtain solutions to (12)/(13) of the type

u(t, x) =
L∑

j=1

(γ j T
( j)
t g j )(x) =

L∑

j=1

γ j E
x (g j (X

( j)
t )), L ≤ N , (14)

where (T ( j)
t )t≥0 is a positivity preserving semigroup acting on functions defined on

R
n and which is associated with a Markov process (X ( j)

t )t≥0? Clearly, there are quite
a few problems such as regularity or domain questions. To handle such question
we choose to work in the Hilbert space setting, i.e. we use L2(Rn) as underlying
space, a restriction which is not as restrictive as it seems, other settings e.g. the Feller
setting working with C∞(Rn), the space of all continuous functions vanishing at
infinity, is in principle possible. In addition, we are searching only for holomorphic
semigroups. Another problem is that we need to associate with (12) a total of N
independent “initial” conditions, not necessarily of the form (13), but in (14) we
have only L ≤ N conditions.
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In Sect. 1 we look at an abstract version of our problem and push it formally to a
stage such that we can derive conditions to solve (12) with the help of (14). We
then turn to equations of the form (12) and for this we need to introduce pseudo-
differential operators with constant coefficients, but rather general ξ -dependence of
their symbols, see Sect. 2. In Sect. 3 we discuss in more detail the case N = 2 in
order to understand how to transfer our problem to questions posed on the involved
symbols. Maybe the most important insight of this section is that our programme to
find solutions of the type (14) works in principle well, however only case by case
studies will allow us to cope with initial data. The final section is devoted to various
classes of examples, by no means covering the full scope of our programme. Indeed,
in some sense this paper is more about a programme to obtain positivite solutions
of higher order space-time partial differential equations which allow representations
with the help of some Markov processes.

Our notions and notation are standard and we refer to [4]. The Fourier transform is
given by

û(ξ) = (2π)−
n
2

∫

Rn

e−i x ·ξu(x) dx

which entails that the constant in Plancherel’s theorem is 1 and that in the convolution
theorem it is (2π)− n

2 , i.e. (u · v)∧ = (2π)− n
2 (û ∗ v̂). Sometimes we write Fu for û

and the inverse Fourier transform is denoted by F−1. Note that we mainly use the
partial Fourier transform with respect to x , i.e. for u = u(t, x) we denote by Fu or
û the Fourier transform with respect to x only. We write L2+(Rn) or L2+ for the cone
{u ∈ L2(Rn)|u ≥ 0 a.e.} and u ≥ 0 in the sense of L2(Rn)means u ≥ 0 a.e. The term(−i ∂

∂x

)α
means (−i)|α| ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n
. A continuous function ψ : Rn → C is called a

continuous negative definite function if ψ(0) ≥ 0 and for all t > 0 the function
ξ �→ e−tψ(ξ) is positive definite in the sense of Bochner. Equivalently, a function
is continuous and negative definite if it admits a Lévy-Khinchin representation. A
Bernstein function f : (0,∞) → R+ is aC∞-function satisfying (−1)k f (k)(s) ≤ 0,
k ∈ N. The most important result for us is that if f is a Bernstein function and ψ a
continuous negative definite function, then f ◦ ψ is a continuous negative definite
function too. The standard reference for Bernstein functions is [7].

2 An Abstract Problem

Let (A j , D(A j )), 1 ≤ j ≤ N , be a finite family of closable operators densely defined
on L2(Rn), each of which extends to a generator, denoted again by A j , of a strongly
continuous contraction semigroup (T ( j)

t )t≥0 on L2(Rn). Since

D(A j ◦ Al) = {g ∈ D(Al)|Alg ∈ D(A j )}
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it follows that the assumption

[A j , Al ] = A j Al − Al A j = 0 for all 1 ≤ j, l ≤ N (15)

implies that for any j1, . . . , jM , 1 ≤ jk ≤ N , the operator A j1 ◦ A j2 ◦ · · · ◦ A jM is
defined on

V := D(A1 ◦ · · · ◦ AN ) (16)

which we assume to be dense in L2(Rn) too. We find for the Yosida approximation
A j,λ of A j that [A j,λ, Al,λ] = 0 and it follows that for all 1 ≤ j, l ≤ N we have

[A j , T
(l)
t ] = 0, t ≥ 0. (17)

As a further assumption we pose

T ( j)
t V ⊂ V for all1 ≤ j ≤ N . (18)

Note that in later situationswewill replace V in (16) and (18)with a smaller subspace
of V . Clearly we have the equalities

d

dt
T ( j)
t g = A jT

( j)
j g, g ∈ D(A j ), (19)

as well as
d

dt
T ( j)
t g = A jT

( j)
t g on V . (20)

By (17) and (18) we have with 1 ≤ j1, . . . , jM ≤ N , 1 ≤ l1, . . . , lk ≤ N that any
permutation of the compositions A j1 ◦ · · · ◦ A jM ◦ T (l1)

t ◦ · · · ◦ T (lN )
t is defined on

V and these permutations are equal to each other. Consequently we have for each
1 ≤ j ≤ N and for g ∈ V that

(
d

dt
− A1

)
· · ·

(
d

dt
− AN

)
T ( j)
t g

=
(

d

dt
− A1

)
· · ·

(
d

dt
− A j−1

) (
d

dt
− A j+1

)
· · ·

(
d

dt
− AN

) (
d

dt
− A j

)
T ( j)
j g = 0

holds. Thus
u j (t, x) := (T ( j)

t g j )(x) (in L2(Rn)) (21)

is a solution to the equation

(
d

dt
− A1

)
· · ·

(
d

dt
− AN

)
u j = 0, 1 ≤ j ≤ N . (22)

Hence for any scalars γ j ∈ R we find for g j ∈ V a solution to (22) by
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v(t, x) :=
N∑

j=1

(γ j T
( j)
j g j )(x) (in L2(Rn)). (23)

By our assumption, (T ( j)
t )t≥0 is a strongly continuous contraction semigroup on

L2(Rn) and therefore we have in L2(Rn)

lim
t→0

T ( j)
t g j = g j , (24)

and consequently as an identity in L2(Rn)

v(0, x) =
⎛

⎝
N∑

j=1

γ jg j

⎞

⎠ (x). (25)

For t > 0 we may formally differentiate (23) k-times, k ∈ N, to find

dk

dt k
v(t, x) =

⎛

⎝
N∑

j=1

γ j A
k
j T

( j)
t g j

⎞

⎠ (x) (in L2(Rn)), (26)

however in order to justify (26) we need to assume T ( j)
t g j ∈ D(Ak

j ). Note that for a

holomorphic semigroup (T ( j)
t )t≥0 this condition is always satisfied. Passing in (26)

formally to the limit as t → 0 we arrive at

dk

dt k
v(0, x) =

⎛

⎝
N∑

j=1

γ j A
k
jg j

⎞

⎠ (x) (in L2(Rn)) (27)

and once again, if for example (T ( j)
t )t≥0 is for each 1 ≤ j ≤ N a holomorphic semi-

group, the calculation can be justified.

Now we change our point of view and consider (22) as an ordinary operator-
differential equation of order N in L2(Rn), i.e. we consider

⎛

⎝ dN

dt N
−

⎛

⎝
N∑

j=1

A j

⎞

⎠ dN−1

dt N−1
+ · · · + (−1)N A1 ◦ · · · ◦ AN

⎞

⎠ u = 0 (28)

and for this equation we prescribe the N initial conditions
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u(0, x) = h̃0(x) = h1(x)

...
...

...

u(N−1)(0, x) = h̃N−1(x) = hN (x)

⎫
⎪⎪⎬

⎪⎪⎭
(29)

The function v(t, x) := ∑N
j=1(γ j T

( j)
t g j )(x) is of course a special solution to (28) as

are u j (t, x) := (T ( j)
t g j )(x), and we shall not expect that we can always fit the initial

conditions using only these solutions. However, under certain (in general, restrictive)
conditions on h1, . . . , hN it might become possible to single out solutions to (28)
and (29) having special properties, e.g. being positivity preserving.

We want to note that when considering an operator of the type

(
d

dt
− A1

)
· · ·

(
d

dt
− AN

) M∑

j=0

m∑

l=0

a jl
d j

dt j
Bl, a jl ∈ R, (30)

where the operators Bl are densely defined on L2(Rn) and satisfy certain commu-
tator relations, then under reasonable domain conditions it is still possible to obtain
solutions of the corresponding equation

(
d

dt
− A1

)
· · ·

(
d

dt
− AN

) M∑

j=0

m∑

l=0

d j

dt j
Blu(t, x) = 0 (31)

with the help of the semigroups (T (k)
t )t≥0, 1 ≤ k ≤ N .

It is clear that, in general, no unique solution of (28) and (29) of the type v(t, x) =(∑N
j=1 γ j T

( j)
t g j

)
(x) with g depending on h1, . . . , hN exists. Indeed, neither the

existence nor the uniqueness of such a solution can be taken for granted. In order
to get some ideas we now restrict ourselves to the case N = 2 and we assume that
(T (1)

t )t≥0 is positivity preserving (or sub-Markovian) on L2(Rn) whereas (T (2)
t )t≥0

is not. For simplicity we add the assumption that (T (1)
t )t≥0 is holomorphic, which

follows for example if (Tt )t≥0 is symmetric and conservative. Thus for g ∈ L2(Rn),
g ≥ 0 in L2(Rn) a non-negative solution to

(
d

dt
− A1

)(
d

dt
− A2

)
u(t, x) = 0 (32)

is given by u(t, x) = (T (1)
t g)(x). Moreover, we have

lim
t→0

u(t, x) = lim
t→0

T (1)
t g(x) = g(x) in L2(Rn)

and differentiation yields
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d

dt
u(t, x) = A1T

(1)
t g(x) = (T (1)

t A1g)(x)

where for the last step we need to assume that g ∈ D(A1). Under this assumption
we find

lim
t→0

du(t, x)

dt
= lim

t→0

(
T (1)
t A1g

)
(x) = (A1g)(x) in L

2(Rn).

If we add to (32) the initial condition

u(0, x) := lim
t→0

u(t, x) = h1(x)

d

dt
u(0, x) := lim

t→0

d

dt
u(t, x) = h2(x)

⎫
⎪⎬

⎪⎭
(33)

we arrive at the relation
h1 = g and h2 = A1g. (34)

Thus, for the initial value problem

(
d

dt
− A1

) (
d

dt
− A2

)
u(t, x) =

(
d2

dt2
− (A1 + A2)

d

dt
+ A1A2

)
u(t, x) = 0

u(0, x) = g and
d

dt
u(0, x) = A1g

⎫
⎪⎬

⎪⎭
(35)

a solution is given by u(t, x) := (T (1)
t g)(x) and this solution is positive in the sense

that g ≥ 0 in L2(Rn) implies u(t, x) ≥ 0. Of course, a uniqueness result for (28) and
(29) (with N = 2) holds in our situation, but we have to note that the initial data h1
and h2 are not independent of each other.

We nowwant to study the more general case, namely to find positive solutions to (28)
and (29) under the assumption that for M ≤ N the semigroup (T ( j)

t )t≥0, 1 ≤ j ≤ M ,
generated by A j are positivity preserving in L2(Rn). In this case, for g j ∈ L2(Rn),
g j ≥ 0, 1 ≤ j ≤ M , and coefficients γ j ≥ 0 each of the functions

v(t, x) :=
M∑

j=1

γ j T
( j)
j g j (x) ( in L2(Rn)) (36)

gives a non-negative solution to (28) and we need to relate the functions g j to the
initial data h1, . . . , hN . Under appropriate conditions on (T ( j)

t )t≥0, for example holo-
morphy, we derive using (27) the equations

v(k−1)(0, ·) = hk =
M∑

j=1

γ j A
k−1
j g j , 1 ≤ k ≤ N . (37)
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Thus, in the situation under discussion, given γ j ≥ 0, 1 ≤ j ≤ M , and functions
g j ∈ D(AN−1

j ), 1 ≤ j ≤ M , for hk , 1 ≤ j ≤ M , determined by (37) we have a non-
negative solution to (28) and (29) by (36) provided g j ≥ 0. The more interesting
question is of coursewhetherwe can determine g j ∈ D(AN

j ), g j ≥ 0, andγ j ≥ 0, 1 ≤
j ≤ M , for given functions hk , 1 ≤ k ≤ N . These are N equations for (essentially)
M < N unknown functions, but due to the conditions g j ≥ 0, these are non-linear
equations. We have to solve for the mapping

S : M×
j=1

D+(AN−1
j ) → (

L2
(
R

n
))N

(38)

SG = H,G = (g1, . . . , gM) �→ (h1, . . . , hN ) = H (39)

where hk is given by (37) and D+(AN−1
j ) = {g j ∈ D(AN−1

j )|g ≥ 0}. Clearly

×M
j=1 D+(AN−1

j ) is a convex set in (L2(Rn))M and S maps convex combinations

onto convex combinations implying that the image of ×M
j=1 D+(AN−1

j ) under S is a
convex subset in (L2(Rn))N . For M = 1, N fixed and γ1 = 1 for simplicity, we have
the N equations

hk = Ak−1
1 g1, 1 ≤ k ≤ N , (40)

which implies of course g1 = h1 = h̃0. Moreover, for k = 2 we get formally

g2 = (A1)
−1h2 = (A1)

−1h̃0. (41)

In general, we may try to interpret (A1)
−1 as the abstract potential operator in the

sense of Yosida associated with (T (1)
t )t≥0. But of course we have to sort out domain

problems, and similarly we may try to handle gk = (A1)
−1 ◦ · · · ◦ (A1)

−1hk with
k copies of (A1)

−1. The case M ≥ 2 is obviously much more complicated and we
will pick it up in forthcoming investigations. In the next section we want to turn our
attention to concrete pseudo-differential operators and by this we can reduce our
consideration to the level of symbols, i.e. functions which are easier to handle than
abstract operators.

3 Some Translation Invariant Pseudo-differential
Operators

In order to handle operators such as (30) for concrete operators A j and Bl we now
introduce translation invariant pseudo-differential operators in a quite general man-
ner. Note that any translation invariant operator on S ′(Rn) is indeed a convolution
operator, but its kernel might be rather singular.
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Let q : Rn → R be a continuous function of at most polynomial growth, i.e. we have
for some c ≥ 0 and m ≥ 0 the estimate

|q(ξ)| ≤ c(1 + |ξ |2) m
2 for all ξ ∈ R

n. (42)

On S(Rn) we can define the pseudo-differential operator

q(D)u(x) := (2π)−
n
2

∫

Rn

eix ·ξq(ξ)û(ξ) dξ. (43)

From (42) and Plancherel’s theorem we deduce immediately that

‖q(D)u‖s ≤ cq,s‖u‖s+m (44)

for all u belonging to S(Rn), or for u ∈ Hs+m(Rn), where Ht (Rn), t ∈ R, denotes
the standard Bessel potential space (or Sobolev space of fractional order) with the
norm

‖u‖2t =
∫

Rn

(1 + |ξ |2)t |û(ξ)|2 dξ. (45)

The operator q(D) has extensions q(D) : Hm+s(Rn) → Hs(Rn), however, in gen-
eral, we cannot determine the domain of the closure of (q(D),S(Rn)) in L2(Rn) in
terms of classical Sobolev spaces. If q1 and q2 are continuous symbols each satisfy-
ing (42) with c j and m j , then their compositions q1(D) ◦ q2(D) is given on S(Rn)

by

(q1(D) ◦ q2(D)u)(x) = (2π)−
n
2

∫

Rn

eix ·ξq1(ξ)q2(ξ)û(ξ) dξ (46)

which extends to an operator on L2(R2) with domain Hm1+m2(Rn). Moreover, on
Hm1+m2(Rn)we have [q1(D), q2(D)] = 0 since all translation invariant operators on
S ′(Rn) commute. Note that q j (D) maps Hm1+m2(Rn) continuously into Hmk (Rn),
j, k = 1, 2, j �= k.
Thus, if we restrict in (30) the operators A j and Bl to be operators of the type
(43), translation invariance and hence commutativity can be taken for granted and
in addition we can always operate on some space Hm(Rn), m sufficiently large, in
order to handle various compositions of the operators A j and Bl .

We are interested in the case where some of the operators A j are generators of trans-
lation invariant sub-Markovian semigroups and in this case we know much more.
Let (μt )t≥0 be a convolution semigroup on R

n and ψ : Rn → C its associated con-
tinuous negative definite function, i.e. we have

μ̂t (ξ) = (2π)−
n
2 e−tψ(ξ), t > 0 and ξ ∈ R

n. (47)
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We can associate with (μt )t≥0 an L2-sub-Markovian semigroup

(T ψ
t g)(x) = (μt ∗ g)(x) = (2π)−

n
2

∫

Rn

eix ·ξe−tψ(ξ)ĝ(ξ) dξ, (48)

i.e. (T ψ
t )t≥0 is a strongly continuous contraction semigroup on L2(Rn) satisfying

0 ≤ g ≤ 1 in L2(Rn), i.e. λ(n)-almost everywhere, implies 0 ≤ T ψ
t g ≤ 1 in L2(Rn).

Moreover, ifψ is real-valued then (T ψ
t )t≥0 is symmetric, i.e. (T ψ

t g, h)0 = (g, T ψ
t h)0,

and if in addition ψ(0) = 0, then (T ψ
t )t≥0 is conservative, hence Markovian, which

means that its extension to L∞(Rn) has the property that T ψ
t 1 = 1 λ(n)-almost every-

where.
By a theorem of Stein [8] such a semigroup has a holomorphic extension z �→ T ψ

z

for z in a certain sector of C.
For every continuous negative definite function ψ the function ξ �→ ψ(ξ) − ψ(0)
is again a continuous negative definite function and if ψ is real-valued then
(T ψ−ψ(0)

t )t≥0 is a symmetric Markovian strongly continuous contraction semigroup
on L2(Rn), hence it has a holomorphic extension. However we have

T ψ
t g = (2π)−

n
2

∫

Rn

eix ·ξe−tψ(ξ)ĝ(ξ) dξ

= (2π)−
n
2

∫

Rn

eix ·ξe−tψ(0)e−t (ψ(ξ)−ψ(0)ĝ(ξ) dξ

= e−tψ(0)T ψ−ψ(0)
t g

implying that for every real-valued continuous negative definite function ψ : Rn →
R we can consider (T ψ

t )t≥0 as a holomorphic semigroup. We also note that on
L2(Rn) ∩ C∞(Rn) this semigroup admits the representation

(T ψ
t g)(x) =

∫

Rn

g(x − y)μt (dy), g ∈ L2(R2) ∩ C∞(Rn) (49)

which is pointwisely defined and which admits a pointwise extension to Cb(R
n). Let

(T ψ
t )t≥0 be the symmetric L2-semigroup associated by (48)withψ . The L2-generator

of (T ψ
t )t≥0 is the operator (Aψ, Hψ,2(Rn)) where

Hψ,s(Rn) := {
u ∈ L2(Rn)|‖u‖ψ,s < ∞}

, s ≥ 0, (50)

and

‖u‖2ψ,s :=
∫

Rn

(1 + ψ(ξ))s |û(ξ)|2dξ = ‖(1 + ψ(D))
s
2 u‖2L2 , (51)



96 K. P. Evans and N. Jacob

where we denote by ψ(D) and (1 + ψ(D))
s
2 the pseudo-differential operators

ψ(D)u(x) = F−1(ψ û)(x) = (2π)−
n
2

∫

Rn

eix ·ξψ(ξ)û(ξ) dξ (52)

and
(1 + ψ(D))

s
2 u(x) = F−1((1 + ψ(·)) s

2 û)(x)

= (2π)−
n
2

∫

Rn

eix ·ξ (1 + ψ(ξ))
s
2 û(ξ) dξ,

(53)

respectively. These operators are considered as extensions fromS(Rn) to their natural
L2-domains, i.e. Hψ,2(Rn) and Hψ,s(Rn), respectively. An easy calculation shows
now that

Aψ = −ψ(D), D(Aψ) = Hψ,2(Rn). (54)

(For details we refer to [4] or [2]) In order to cover interesting examples we want
to emphasise that if ϕ : Rm → R = ϕ(ξ1, . . . , ξm), m ≤ n, is a continuous nega-
tive definite function on Rm then ψ : Rn → R, ψ(ξ1, . . . , ξn) := ϕ(ξ1, . . . , ξm), is a
continuous negative definite function on R

n . Moreover, the sum ψ of finitely many
continuous negative definite functions ψ j : Rn → R, 1 ≤ j ≤ N , i.e. the function
ψ = ψ1 + · · · + ψN , is again a continuous negative definite function as isλψ ,λ > 0,
forψ continuous negative definite. Finally, we note that for every continuous negative
definite function we have the estimate

|ψ(ξ)| ≤ cψ(1 + |ξ |2) (55)

which implies that Hs(Rn) ⊂ Hψ,s(Rn) for all s ≥ 0.

We now suggest to first study problem (22), (29) [or (28), (29)] in the context of
generators of the type Aψ j , j = 1, 2, then to investigate the case where N = 2 but
only A1 is of the type Aψ . The aim is to come towards an understanding of constraints
needed to arrive at certain families of positivity preserving solutions.

4 Some Discussions on the Case N = 2

With N = 2 we choose A1 = −ψ1(D) and A2 = −ψ2(D), whereψ1, ψ2 : Rn → R

are continuous negative definite functions with corresponding operator semigroups
(T (1)

t )t≥0 and (T (2)
t )t≥0. For the moment we pretend that all data belong to S(Rn),

later we will take care on precise domains. The equation we want to solve is

(
∂

∂t
+ ψ1(D)

)(
∂

∂t
+ ψ2(D)

)
u(t, x) = 0 (56)
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under the initial conditions
u(0, x) = h1(x)

∂u

∂t
(0, x) = h2(x)

⎫
⎬

⎭ (57)

We are looking for solutions of the form

v(t, x) = γ1T
(1)
t g1(x) + γ2T

(2)
t g2(x). (58)

Ifγ1, γ2 ≥ 0 andg1, g2 ≥ 0 thenv is a non-negative solution to (56). Thus the problem
is to find g1, g2 (non-negative) for given h1, h2. From (57) and the holomorphy of
(T (1)

t )t≥0 and (T (2)
t )t≥0 we deduce

γ1g1(x) + γ2g2(x) = h1(x)

(−ψ1(D)γ1g1)(x) + (−ψ2(D)γ2g2)(x) = h2(x)

}
(59)

Using the Fourier transform we arrive at

γ1ĝ1(ξ) + γ2ĝ2(ξ) = ĥ1(ξ) (60)

and
γ1ψ1(ξ)ĝ1(ξ) + γ2ψ2(ξ)ĝ2(ξ) = −ĥ2(ξ). (61)

Under the assumptionγ1γ2(ψ2(ξ) − ψ1(ξ)) �= 0, i.e.γ1 �= 0,γ2 �= 0 andψ2(ξ) �=
ψ1(ξ) we obtain

ĝ1(ξ) = −ĥ1(ξ)ψ2(ξ) − ĥ2(ξ)

γ1(ψ1(ξ) − ψ2(ξ))
, ĝ2(ξ) = ĥ1(ξ)ψ1(ξ) + ĥ2(ξ)

γ2(ψ1(ξ) − ψ2(ξ))
(62)

In order to find g1 and g2 we now need some conditions. Even with h j in S(Rn)

we cannot expect ĝ1 or ĝ2 to belong to S(Rn), however, ĝ1 and ĝ2 need only to be
in L2(Rn) in order to find g1 and g2 in L2(Rn) too. The holomorphy of (T ( j)

t )t≥0

then implies that T ( j)
t g j ∈ ⋂

k∈N D([ψ j (D)]k) = ⋂
k∈N Hψ j ,2k(Rn), hence we can

achieve sufficient regularity to obtain a solution of (56). What becomes obvious is
that a trade-off between the behaviour of the zeroes of ψ1 − ψ2 and the zeroes of
ĥ1ψ j ∓ ĥ2 is now needed to determine g1 and g1 uniquely. This shall not surprise
us, in general we shall not expect (56) and (57) to have a unique (non-negative)
solution of the type (58). Given our initial question, it is natural to change the point
of view and to start with γ1, γ2 ≥ 0 as well as with g1, g2 ≥ 0 and to use (57) to
determine conditions for h1 and h2. In this case, h1 is already determined by (59) as
is h2 determined by (60). We introduce the mapping
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S : Hψ1,2(Rn) × Hψ2,2(Rn) → L2(Rn) × L2(Rn)

(g1, g2) �→ S(g1, g2) = (γ1g1 + γ2g2,−γ1ψ1(D)g1 − γ2ψ2(D)g2)

= (F−1(γ1ĝ1 + γ2ĝ2), F
−1(−γ1ψ1ĝ1 − γ2ψ2ĝ2))

(63)

and by construction, essentially the range of S|Hψ1 ,2×Hψ2 ,2∩L2+×L2+ will consist of
exactly those elements (h1, h2) for which we can find (g1, g2) such that u(t, x) =
γ1T

(1)
t g1(x) + γ2T

(2)
t g2(x) is a non-negative solution to (56). Since S is linear and

Hψ1,2 × Hψ2,2 ∩ L2+ × L2+ is convex the range of S|Hψ1 ,2×Hψ2 ,2∩L2+×L2+ is convex too

and it always contains the zero function. The range of S̃ := S|Hψ1 ,2×Hψ2 ,2∩L2+×L2+ can
be characterised in more detail. Since by assumption g j ≥ 0 and g j ∈ L2(Rn) its
Fourier transform ĝ j must be a positive definite distribution belonging to L2(Rn).
Thus we have

R(S̃) = {(F−1(γ1w1 + γ2w2), F
−1(−γ1ψ1w1 − γ2ψ2w2))|γ1, γ2 ≥ 0,

w1, w2 ∈ L2(Rn) positive definite, ψ jw j ∈ L2(Rn)}. (64)

Thus we have

Proposition 1 For (h1, h2) ∈ R(S̃) there exists (g1, g2) ∈ (Hψ1,2 × Hψ2,2) ∩ (L2+ ×
L2+) such that v(t, x) = (T (1)

t g1)(x) + (T (2)
t g2)(x) ≥ 0. If in addition v(t, ·), t > 0

belongs to {u ∈ L2(Rn)|(1 + ψ1(D))(1 + ψ2(D))u ∈ L2(Rn)} then v is a non-
negative solution to (56) and (57).

Remark 1 We may introduce the space Hψ1,ψ2,s(Rn) as the space of all elements in
L2(Rn) such that

‖u‖2ψ1,ψ2,s =
∫

Rn

(1 + ψ1(ξ))s(1 + ψ2(ξ))s |û(ξ)|2 dξ < ∞

and replace in Proposition 1 the condition (g1, g2) ∈ (Hψ1,2 × Hψ2,2) ∩ (L2+ × L2+)

by (g1, g2) ∈ (Hψ1,ψ2,2 × Hψ1,ψ2,2) ∩ (L2+ × L2+). A more practical, but less sharp
condition would be (g1, g2) ∈ (H 4 × H 4) ∩ (L2+ × L2+), and in the case where ψ j

satisfies |ψ j (ξ)| ≤ cψ j (1 + |ξ |2)m j , 0 < m j < 1, instead of the estimate |ψ j (ξ)| ≤
cψ j (1 + |ξ |2) we may require (g1, g2) ∈ (H 2(m1+m2) × H 2(m1+m2)) ∩ (L2+ × L2+).

We next want to look at the case where A1 = −ψ(D) is a generator of a symmetric
sub-Markovian semigroup, but A2 is not. We assume that A2 is of the type q(D)with
q satisfying (42). A positive solution to (56) with ψ2(D) being replaced by −A2 is
now sought in the form

v(t, x) = T (1)
t g1(x), (65)

since γ1 �= 0 is needed we now may chose γ1 = 1, hence we put in (58) γ2 = 0 and
γ1 = 1. This leads to

ĝ1(ξ) = ĥ1(ξ) and ψ1(ξ)ĝ1(ξ) = −ĥ2(ξ) (66)
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or ĥ2(ξ) = −ψ1(ξ)ĥ1(ξ). Thus we may obtain positive solutions to (56) and (57)
if h1 ∈ L2(R2) is a positive definite distribution such that ψ1ĥ1 ∈ L2(Rn) and if
in addition we have ĥ2 = −ψ1ĝ1, i.e. h2 = −ψ1(D)g1. However, as an additional
condition we need ψ1(D)T (1)

t g ∈ D(A2), for which g ∈ Hm+2(Rn) is a sufficient
condition.
Eventually we want to switch from (56) and (57) to

(
∂

∂t
+ ψ1(D)

)(
∂

∂t
+ ψ2(D)

)
Bu(t, x) = 0 (67)

or (
∂

∂t
+ ψ1(D)

) (
∂

∂t
− A2

)
Bu(t, x) = 0 (68)

under the initial conditions
u(0, x) = h1(x)

∂u

∂t
(0, x) = h2(x)

⎫
⎬

⎭ (69)

Here B = q(D) is a pseudo-differential operator with symbol q(ξ) satisfying (42).
For g1, g2 ∈ Hm+4(Rn) the operators ψ1(D), ψ2(D) and q(D) mutually commute
and hence we may search for the solutions of the type

v(t, x) = γ1T
(1)
t g1(x) + γ2T

(2)
t g2(x) (70)

or
v(t, x) = T (1)

t g1(x), (71)

respectively. This implies that all of our previous considerations carry over to the
new case, however we need to add additional assumptions, i.e. domain conditions.
For the case of equation (67) the precise condition is of course

γ1ψ1(D)T (1)
t g1 + γ2ψ2(D)T (2)

t g2 ∈ D(B), (72)

and only if D(B) is better known, say as an anisotropic Bessel potential space,
we can say more. In the best case we would expect D(B) = Hq,2(Rn) = {u ∈
L2(Rn)|q(D) ∈ L2(Rn)} and then we can give more detailed conditions.

We now consider operators of the type (30) where we assume that for some L ≤
N the operators A j , 1 ≤ j ≤ L , have an extension from S(Rn) to a generator of
a holomorphic sub-Markovian semigroup (Tt )t≥0 on L2(Rn). Our aim is to find
solutions to (31) of the type

v(t, x) =
L∑

j=1

(γ j T
( j)
t g j )(x), γ j ≥ 0 and g j ≥ 0 in L2(Rn). (73)
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In addition, we add the initial conditions (29). It is clear that in this generality we can-
not obtain existence or uniqueness results. Most of all we need to consider carefully
domains of suitable extensions of the operators A j , L < j ≤ N , and Bl , 1 ≤ l ≤ M ,
and further, on some suitable common domain we need the commutator relations
[A j , Al ] = 0 and [A j , Bl ] to hold. We do not want to follow the general abstract
case, but we want to assume that all operators involved are translation invariant
pseudo-differential operators of the type (43). More precisely, for 1 ≤ j ≤ L we
assume that A j = −ψ j (D) where ψ j : Rn → R is a continuous negative definite
function and for L < j ≤ N , as well as for 1 ≤ l ≤ M , we assume that the symbols
of the operators A j and Bl satisfy (42) for some growth exponent depending on m j

and m̃l respectively. We put

m := 2L +
N∑

j=L+1

m j +
M∑

l=1

m̃ j , (74)

and we consider all operators on Hm(Rn). It follows that on Hm(Rn) any compo-
sition of operators A j1 ◦ · · · ◦ A jk ◦ Bl1 ◦ · · · ◦ Bl j , 1 ≤ jα ≤ N , 1 ≤ lβ ≤ M , maps
Hm(Rn) into L2(Rn), and any of such a composition for L < jα ≤ N maps Hm(Rn)

into H 2L(Rn). Moreover we have Hm(Rn) ⊂ H 2L(Rn) and the compositions do not
depend on the ordering of the operators. Since by assumption (T ( j)

t )t≥0, 1 ≤ j ≤ L ,
extends to a holomorphic semigroup we have for every g ∈ L2(Rn) that T ( j)

t g ∈⋂
k∈N H 2k,ψ j (Rn), t > 0. In order to guarantee that T ( j)

t g ∈ Hm(Rn), t > 0, and
hence that all operators A j1 ◦ · · · ◦ A jk ◦ Bl1 ◦ · · · ◦ Bli commute with T ( j)

t , t > 0,
we add the assumption

(1 + ψ j (ξ)) ≥ κ0(1 + |ξ |2)
m ′

j

2 , κ0 > 0,m ′
j > 0, j = 1, . . . , L . (75)

Now it follows that for every collection g j ∈ L2(Rn), 1 ≤ j ≤ L , a solution to (31)
is given by

v(t, x) :=
L∑

j=1

(γ j T
( j)
t g j )(x), t > 0, (76)

and for γ j ≥ 0, g j ≥ 0 in L2(Rn) this solution is non-negative.

Next we want to adjust the initial conditions. For g j ∈ H 2L(Rn), or even g j ∈
H 2(m ′

1+···+m ′
L )(Rn), due to the holomorphy of the semigroups (T ( j)

t )t≥0 we find for
1 ≤ k ≤ N

v(k)(0, x) =
L∑

j=1

(γ j A
k−1
j g j )(x) = hk(x) (in L2(Rn)). (77)
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Switching to the Fourier transforms we obtain the following system of N equations
for the L unknown functions ĝ j :

L∑

j=1

γ j (−ψ j (ξ))k−1ĝ j (ξ) = ĥk(ξ), 1 ≤ k ≤ N . (78)

Once more, we change our point of view and we consider (78) as conditions for the
initial values h1, . . . , hN to hold in order that (31) under (29) admits a non-negative
solution.

We introduce the mappings S and S̃ analogously to (63) by

S : (Hm × · · · × Hm) → L2 × · · · × L2

g := (g1, . . . , gL) �→ Sg := (h1, . . . , hN ),
(79)

where

hk = (Sg)k :=
L∑

j=1

γ j (−ψ j (D)))k−1g j , 1 ≤ k ≤ N , (80)

i.e.

ĥk = (Sg)∧k =
L∑

j=1

γ j (−ψ j )
k−1ĝ j . (81)

If by assumption g j ≥ 0, 1 ≤ j ≤ L , then there exists positive definite distributions
w j ∈ L2(Rn) such that w j = ĝ j and we find

hk = F−1

⎛

⎝
L∑

j=1

γ j (−ψ j )
k−1w j

⎞

⎠ . (82)

For the range of S̃ := S|(Hm×···×Hm )∩(L2+×···×L2+) we derive in analogy to (64)

R(S̃) =
⎧
⎨

⎩

⎛

⎝F−1

⎛

⎝
L∑

j=1

γ jw j

⎞

⎠ , F−1

⎛

⎝
L∑

j=1

γ j (−ψ j )w j

⎞

⎠ , . . . , F−1

⎛

⎝
L∑

j=1

γ j (−ψ j )
N−1w j

⎞

⎠

⎞

⎠
∣∣∣∣

γ1, . . . , γL ≥ 0, w1, . . . , wL positive definite, ψk−1
j w j ∈ L2(Rn), 1 ≤ k ≤ N

}
.

(83)
Thus we arrive at

Proposition 2 For (h1, . . . , hN ) ∈ R(S̃) there exists (g1, . . . , gL) ∈ (Hm × · · · ×
Hm) ∩ (L2+ × · · · × L2+) such that v(t, x) := ∑L

j=1 γ j T
( j)
t g j ≥ 0. If in addition

each (T ( j)
t )t≥0 is holomorphic and (75) is satisfied, then v solves (31) under the

initial condition (29).
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Remark 2 While R(S̃) is in general difficult to determine, we may of course choose
some of the parameters γ j to be 0 and then the situation becomes more transparent.
For example, we may choose γ j = 0 for all j �= j0 for a fixed j0 ∈ {1, . . . , L} and
γ j0 = 1. In this case the condition (80) reduces to

h1 = F−1w j0 , h2 = F−1(−ψ j0w j0), . . . , hN = F−1(−ψN−1
j0

w j0).

In the following chapter we will turn to concrete partial differential operators with
constant coefficients and we will try to find families of non-negative solutions for
related initial value problems.
However, we first want to extend our considerations by allowing complex-valued
continuous negative definite functions ψ j : Rn → C as symbols of A j = −ψ j (D).
The only change in our argument is required to justify that the associated operator
semigroup (T ( j)

t )t≥0 is holomorphic on L2(Rn). As the example of the drift, which
corresponds to ψ(ξ) = −iξ, n = 1, shows us that we cannot expect for a general
complex-valued continuous negative definite function ψ j the semigroup (T ( j)

t ) to be
holomorphic. However, in the case where ψ satisfies the sector condition

|Imψ(ξ)| ≤ κ0Reψ(ξ), κ0 > 0, |ξ | ≥ R ≥ 0, (84)

it follows that−ψ(D) is a sectorial operator and hence the generator of a holomorphic
semigroup on L2(Rn), see [6] or [10]. Moreover, since Reψ is a continuous negative
function too, we can form the spaces HReψ,s(Rn). Thus replacing in our previous
considerations the real-valued continuous negative definite functions by complex-
valued continuous negative definite functions each satisfying the sector condition and
using the spaces HReψ,s(Rn) with Reψ satisfying (where appropriate) additional
conditions such as (84), we obtain the previous results in the more general situation.
For more details we refer to [1] and [4].

5 Higher Order Partial Differential Equations Admitting
Non-negative Solutions

We now turn from operator-valued differential operators to partial differential equa-
tions of the type

∂N

∂t N
u(t, x) −

N−1∑

j=0

∑

|α|≤m

a jα
∂ j

∂t j

(
−i

∂

∂x

)α

u(t, x) = 0, a jl ∈ R, (85)

and we ask when does such an equation admit a solution given by
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v(t, x) =
L∑

j=1

(γ j T
( j)
t g j )(x), γ j ≥ 0, g j ≥ 0, L ≤ N , (86)

where g j ∈ L2(Rn) and (T ( j)
t )t≥0, 1 ≤ j ≤ L , is an L2-sub-Markovian semigroup.

When taking in (85) the Fourier transformwith respect to x we arrive at the parameter
dependent ordinary differential equation

dN

dt N
û(t, ξ) −

N−1∑

j=0

∑

|α|≤m

a jαξα d j

dt j
û(t, ξ) = 0. (87)

We long for solutions of (87) of the form

û(t, ξ) = v̂k(t, ξ) = e−ψk (ξ)t (88)

where ψk : Rn → C is a continuous negative definite function satisfying the sector
condition and Reψk satisfies the growth condition (75). From (87) we arrive (with
λ(ξ) = ψk(ξ)) at the characteristic equation

λN (ξ) +
N−1∑

j=0

∑

|α|≤m

a jα(−1)N− j−1ξαλ j (ξ) = 0 (89)

for whichwe seek solutions λk = λk(ξ)which are continuous negative definite, satis-
fying the sector condition and the real part ofwhich satisfies (75). Every such solution
will give rise to a holomorphic sub-Markovian semigroup (T (k)

t )t≥0 associated with
λk by

(T (k)
t u)∧(ξ) = e−tλk (ξ)û(ξ) (90)

and we may apply the considerations of the previous chapters to obtain non-negative
solutions of the type (86) for the equation (85). The problem is of course to find
such solutions λ to (89). Even in the cases where we can obtain solutions with the
help of radicals, it is not clear which properties the function ξ �→ λk(ξ) will have.
So far we have no general answer to our problem, however the following examples
show the scope of our considerations. It is clear that if we obtain solutions of the type
(86) the function λk(ξ) in (90) must be a continuous negative function satisfying the
sector condition, provided we assume that (T ( j)

t )t≥0 to be holomorphic. We prefer
to provide some rather concrete examples, but in each case it is obvious that we can
include more general and complicated cases with similar symbol structure.

Example 1 A. We take in (85) the dimension n = 1 and the values N = 2, m = 4
and a jα = δ0,4. Then we are dealing with the equation

∂2

∂t2
u(t, x) − ∂4

∂x4
u(t, x) = 0 (91)
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which yields
λ2 − ξ 4 = 0. (92)

Since λ2 − ξ 4 = (λ − ξ 2)(λ + ξ 2)we have the continuous negative definite function
λ1(ξ) = ξ 2 as a solution which satisfies all our conditions, and for g ∈ L2(R), g ≥ 0,
a non-negative solution to (91) is given by (x, t) �→ (T G

t g)(x), where (T G
t )t≥0 is the

Gaussian semigroup on L2(R).
B. Taking next N = 4 and m = 2 in (85), but again n = 1, and further a jα = δ0,2,
we get the equation

∂4

∂t4
u(t, x) + ∂2

∂x2
u(t, x) = 0 (93)

which leads to λ4 − ξ 2 = 0. Obviously λ(ξ) = |ξ | 1
2 is a solution of this equation and

this is a continuous negative definite function which fulfills all of our requirements.
The associated semigroup (T λ

t )t≥0 is the semigroup subordinate to theGaussian semi-
group with the help of the Bernstein function f (s) = s

1
4 . The polynomial λ4 − ξ 2

admits the factorisation λ4 − ξ 2 = (λ − |ξ | 1
2 )(λ + |ξ | 1

2 )(λ − i |ξ | 1
2 )(λ + i |ξ | 1

2 ) and
therefore only one solution of λ4 − ξ 2 = 0 is a continuous negative definite function
as sought.
C. Now we take a jα = δ0,2m as coefficients for n = 1 and 2N , 2m ∈ N and hence
(89) becomes λ2N = |ξ |2m . Further, by λ = |ξ | m

N we always have for m
N < 2, i.e.

m ≤ 2N , a continuous negative definite function as a solution satisfying all of
our conditions. We can phrase this differently, namely that for n = 1 to every α-
stable process (X (α)

t )t≥0 with α rational we can find a partial differential equation of
∂2N

∂t2N u(t, x) = ∂2m

∂x2m , u(t, x) = 0 such that the transition function of (X (α)
t )t≥0 gives

the solution to that equation. We refer to [11] where (fractional) differential equa-
tions being solved by transition functions of certain stable processes, i.e. densities
of certain convolution semigroups, are discussed.

Our next examples show that there aremore than just symmetric stable semigroups
which give solutions of the type (86). We still assume n = 1.

Example 2 A. Consider the differential operator ∂2

∂t2 + ∂2

∂x2 + a ∂
∂x , where a ∈ R is

a parameter. This operator leads to the characteristic equation λ2 − ξ 2 − iaξ = 0
which we can factorise according to λ2 − ξ 2 − iaξ = (λ − (ξ 2 + iaξ)

1
2 )(λ + (ξ 2 +

iaξ)
1
2 ). The function ξ �→ ξ 2 + iaξ is a continuous negative definite function

for every a ∈ R. Since s �→ f (s) = s
1
2 is a Bernstein function, it follows that

ξ �→ λ(ξ) = (ξ 2 + iaξ)
1
2 is a continuous negative definite function too. Moreover,

since Re λ2(ξ) = ξ 2 and Im λ2(ξ) = aξ , it follows that λ2(ξ) fulfills the sector con-
dition as well as the growth condition (75). Hence the semigroup generated by the
differential operator with symbol λ2(ξ) is on L2(R) holomorphic which is inherited
by the semigroup obtained by subordination with the help of the Bernstein function
f . In addition, since |λ 1

2 (ξ)| = (ξ 4 + aξ 2)
1
2 the growth condition (75) is fulfilled

too. Thus for g ≥ 0, g ∈ L2(R), a non-negative solution to ∂2u
∂t2 + ∂2u

∂x2 + a ∂u
∂x = 0 is

given by u(t, x) := F−1
ξ �→x(e

−(ξ 2+iaξ)
1
2 t ĝ(ξ))(x).
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B. The wave operator ∂2

∂t2 − ∂2

∂x2 = (
∂
∂t − ∂

∂x

) (
∂
∂t + ∂

∂x

)
needs a more careful discus-

sion. The characteristic equation λ2 + ξ 2 = 0 admits the factorisation (λ − iξ)(λ +
iξ). Although ξ �→ ±iξ are continuous negative definite functions, we cannot apply
our considerations since these functions do not satisfy the sector condition and hence
the corresponding pseudo-differential operators are not sectorial, hence do not gen-
erate a holomorphic semigroup.
C.Wewant to investigate the operator ∂2

∂t2 + a ∂
∂t + b ∂2

∂x2 with a, b ∈ R. This gives the

characteristic equationλ2 − aλ − bξ 2 = 0with solutionsλ1,2 = a
2 ± 1

2

√
a2 + 4bξ 2.

For a > 0, b > 0 the function λ1(ξ) = a
2 + 1

2 (a
2 + 4bξ 2)

1
2 is a continuous negative

definite function satisfying the sector as well as growth conditions.

Remark 3 It is easy to see that if a continuous negative definite solution to a one-
dimensional (n = 1) characteristic equation depends only on ξ 2, then we can handle
the n−dimensional case when replacing ξ 2 by |ξ |2, i.e. − ∂2

∂x2 by −�n .

Example 3 In Example 1.C. the operator ∂N

∂t N − (−1)m ∂2m

∂x2m was discussed and we

want to extend our considerations to the case ∂N

∂t N − ∂m

∂xm . This entails the characteristic
equation λN − (−iξ)m = 0 and we always have a solution λ = (−iξ)

m
N . Form ≤ N

this is a continuous negative definite function since ξ �→ −iξ is one and s �→ s
m
N ,

s ≥ 0, m ≤ N , is a Bernstein function. However, for m, N ∈ N, m < N , we find

(−iξ)
m
N = |ξ |mN e−i m

N π , or

(−iξ)
m
N = |ξ |mN (cos m

N π − i sin m
N π)

which gives

|Im (−iξ)
m
N | = |ξ | m

N sin m
N π = |ξ | m

N tan(mN π) cos m
N π = cm,NRe (−iξ)

m
N ,

where cm,N > 0 for 0 < m < N . Thus ξ �→ (−iξ)
m
N fulfills the sector condition

as well as the growth condition and for 0 < m < N our previous results apply to
∂N

∂t N − ∂m

∂xm . Note that Example 1.C. extends by Remark 3 to the case ∂N

∂t N − (−�n)
m ,

but an extension of the example ∂N

∂t N − ∂m

∂xm to higher dimensions is not obvious.
For more properties of the one-dimensional drift operator in relation to fractional
derivatives we refer to [5].

We now have a look at the Laplace operator in the half-space R+ × R
n, n ≥ 1.

Example 4 The operator is of course ∂2

∂t2 + ∂2

∂x21
+ · · · + ∂2

∂x2n
and we treat the variable

t ≥ 0 differently to the variable x = (x1, . . . , xn) ∈ R
n . The characteristic equation

becomes λ2 − |ξ |2 = 0 which we can factorise according to (λ − |ξ |)(λ + |ξ |). The
function ξ �→ |ξ | is of course a continuous negative definite function satisfying all
of our conditions. The corresponding operator semigroup is the Cauchy semigroup
and the result will lead us to the Poisson formula for the Laplacian in the half-space,
see [9] and our introduction.
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Example 5 We may now use our previous examples to study higher order equa-
tions in several space dimensions such as ∂4

∂t4 − ∂4

∂t2∂y2 + ∂3

∂t2∂x − ∂3

∂y3 the characteristic
equation of which is

λ4 − iλ2η − λ2|ξ |2 − iη|ξ |2 = (λ − (iη)
1
2 )(λ − |ξ |)(λ + (iη)

1
2 )(λ + |ξ |).

The function ψ1(η) = (iη)
1
2 and ψ2(ξ) = |ξ | are continuous negative definite func-

tions in R, both satisfying all of our conditions on R and hence the correspond-
ing semigroup (T ( j)

t )t≥0, j = 1, 2, are holomorphic sub-Markovian semigroups on
L2(R). However we cannot expect these semigroups to be holomorphic on L2(R2)

when associated with ϕ1(ξ, η) = ψ1(η) or ϕ2(ξ, η) = ψ2(ξ), respectively. Nonethe-
less, all of our results still apply provided the data g1, g2 ∈ L2(R2) when forming
u(t, x, y) = (T (1)

t g1)(x, y) + (T (2)
t g2)(x, y),where (T ( j)

t g j )
∧(·, ·) = e−ϕ j (·)t ĝ j (·, ·),

provided the data g1 and g2 are sufficiently smooth.

These examples demonstrate the scope of our results as they show how to construct
many further ones. However, the central question “How many continuous negative
definite solutions does the characteristic equation admit?” is for the general case open,
which of course should not be a surprise. In particular, we want to point out that in
higher dimensions, i.e. n ≥ 2, special combinations of terms in the characteristic
equation may lead to “unexpected” solutions, similar to the cases where we treat
(ξ1, . . . , ξn) ∈ R

n as one variable |ξ |2, or where (ξ, η) �→ (ξ 2 − iη)
1
2 is treated as

one variable when solving the characteristic equation.

In light of the results in [3], handling equations of the type (85) with t-dependent
coefficients would be of great interest.
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7. R. Schilling, R. Song, Z. Vondraček, Bernstein Functions, 2nd ed. (DeGruyter Verlag, Berlin,

2012)
8. E.M. Stein, Topics in Harmonic Analysis (Related to the Littlewood-Paley Theory) (Princeton

University Press, Princeton NJ, 1970)
9. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Space (Princeton Univer-

sity Press, Princeton NJ, 1971)



On Non-negative Solutions to Space-Time Partial Differential . . . 107

10. H. Tanabe, Equations of Evolution (Pitman Publishing, London, 1979)
11. V.M.Zolotarev,One-Dimensional StableDistributions (AmericanMathematical Society, Prov-

idence RI, 1986)



Monotonicity Properties of Regenerative
Sets and Lorden’s Inequality

P. J. Fitzsimmons

Abstract Lorden’s inequality asserts that the mean return time in a renewal pro-
cess with (iid) interarrival times Y1, Y2, . . ., is bounded above by 2E[Y1]/E[Y 2

1 ]. We
establish this result in the context of regenerative sets, and remove the factor of
2 when the regenerative set enjoys a certain monotonicity property. This property
occurs precisely when the Lévy exponent of the associated subordinator is a special
Bernstein function. Several equivalent stochastic monotonicity properties of such a
regenerative set are demonstrated.

Keywords Renewal process · Regenerative set · Subordinator · Bernstein function
Mathematics Subject Classification 60K05, 60J55, 60J30

1 Introduction

Let Y1, Y2, . . . be i.i.d. positive random variables with finite variance, and use their
partial sums Wn := ∑n

k=1 Yk , to form a renewal process W = (Wn)n≥1. For t > 0,
define N (t) := #{n ≥ 1 : Wn ≤ t}, the number of renewals up to time t , and let
Rt := WN (t)+1 − t denote the time until the next renewal after time t . Although the
distribution of Rt is not particularly simple to express, Lorden [15] has shown that

E[Rt ] ≤ E[Y 2
1 ]

E[Y1] , ∀t > 0. (1)

In view of Wald’s Identity

E[WN (t)+1] = E[Y1] · E[N (t) + 1], (2)
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the inequality (1) also provides an upper bound on the renewal function E[N (t)].
In this paper we examine the analog of (1) in the context of regenerative sets (a
continuous analog of renewal processes), and look at a class of such sets in possession
of a monotonicity property that leads to an improvement of Lorden’s inequality that
is sharp in a certain sense.

Let (�,F , (Ft )t≥0, P) be a filtered probability space. We fix once and for all a
regenerative set M . This is an (Ft )-progressively measurable set M ⊂ � × [0,∞[,
with closed sections M(ω) := {t ≥ 0 : (ω, t) ∈ M}, such that P[0 ∈ M] = 1 and
such that for each (Ft )-stopping time T with T (ω) ∈ M(ω) for each ω ∈ {T < ∞},
the (shifted) post-T portion of M , defined by its sections

θT M(ω) := (M(ω) − T (ω)) ∩ [0,∞[, (3)

is independent of FT and has the same distribution as M , on the event {T < ∞}.
The reader is referred to [6] or [13] for more details on such random sets.

It is known that theLebesguemeasure of M is either a.s. strictly positive or a.s. null.
This is Kingman’s heavy/light dichotomy [13, pp. 74–76]. The results presented here
are true with slight modifications in the heavy case, but for definiteness we assume M
to be light; that is

∫ ∞
0 1{t∈M(ω)} dt = 0 forP-a.e.ω ∈ �. There is a second dichotomy,

according as T0 := inf (M∩ ]0,∞[) satisfies P[T0 = 0] = 0 or 1. (It must be one or
the other because of Blumenthal’s 0–1 law.) In the former case, the random set M
is discrete; this is the renewal process case. We shall stick to the latter situation
(the unstable case in Kingman’s terminology), in which case M has perfect sections
M(ω) for P-a.e.ω ∈ �. The generic example of such a regenerative set is the closure
of the level set

{t ≥ 0 : Xt = x0} (4)

of a right-continuous strong Markov process X = (Xt )t≥0 started in a regular point
x0.

There are several stochastic processes associated with M that facilitate its study.
First is the last exit process G = (Gt )t≥0,

Gt := sup (M ∩ [0, t]) , t ≥ 0, (5)

and the associated age process A = (At )t≥0,

At := t − Gt , t ≥ 0. (6)

Both A and G are right continuous and adapted to (Ft ), and

M = {t : At = 0}. (7)

Moreover A is a time-homogeneous strong Markov process.
Next is the return time process
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Dt := inf{s > t : s ∈ M} = inf (M∩ ]t,∞[) , t ≥ 0, (inf ∅ := ∞), (8)

and the related remaining life process

Rt := Dt − t, t ≥ 0. (9)

These are also right-continuous processes. Notice that each Dt is an (Ft )-stopping
time and that R and D are optional with respect to the “advance” filtration (FDt )t≥0,
and (Rt ) is a strong Markov process with respect to this larger filtration, with values
in [0,∞].

Finally, there is the local time process L = L(M) = (Lt )t≥0; this is the unique
continuous increasing process adapted to the filtration of A, increasing precisely on
M , a.s., normalized so that E

∫ ∞
0 e−s d Ls = 1, and additive in the sense that

Lt+s = Lt + Ls(θt M), ∀s, t ≥ 0, a.s. (10)

Here θt M := (M − t) ∩ [0,∞[. Thus Ls(M) is a functional of the part M ∩ [0, s]
of M , while Ls(θt M) is the same functional of θt M . One can access L through the
general theory of the additive functionals of a Markov process, but Kingman [12]
has provided a direct construction that will guide intuition. Before getting to that we
need to introduce one more associated process.

The right-continuous inverse process τ = (τr )r≥0 defined by

τr = τ(r) := inf{t : Lt > r}, r ≥ 0, (11)

is a strictly increasing, pure jump process—the subordinator associated with M .
Notice that M coincides with the closure of the range {τr : r ≥ 0} of τ . The process
τ has stationary independent increments (an increasing Lévy process) with Laplace
transforms

E[exp(−ατr )] = exp(−rφ(α)], α > 0, r ≥ 0, (12)

where the Lévy exponent φ admits the representation

φ(α) =
∫

]0,∞]
(1 − e−αx ) ν(dx), α > 0, (13)

for a Borel measure ν on ]0,∞] satisfying
∫

]0,∞]
(x ∧ 1) ν(dx) < ∞, (14)

which ensures that the integral in (13) is finite for each α > 0. We write h(x) for
the tail ν (]x,∞]), and note that φ(α) = αĥ(α), where the hat indicates Laplace
transform.
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We now turn to Kingman’s construction of the local time L: for δ > 0, define

Mt (δ) := {(ω, s) ∈ � × [0,∞[: |s − v| < δ for some v ∈ M(ω) ∩ [0, t]}, (15)

and


(δ) :=
δ∫

0

h(s) ds, δ > 0. (16)

Then [12, Thm. 3], there is a constant c > 0 such that

Lt = c · lim
δ↓0

λ(Mt (δ))


(δ)
, ∀t ≥ 0, a.s., (17)

where λ denotes Lebesgue measure on [0,∞[.
The potential measure U associated with M is the mean occupation time of τ :

U (B) := E

∞∫

0

1B(τr ) dr = E
∫

B

d Lt , ∀B ∈ B(R+), (18)

and the associated distribution function

V (t) := E[Lt ], t ≥ 0,

plays the role of the renewal function. The Laplace transform of the measure U is
given by

Û (α) :=
∞∫

0

e−αtU (dt) = E

∞∫

0

e−ατ(r) dr =
∞∫

0

e−rφ(α) dr = 1/φ(α), (19)

for α > 0. For later reference we note that U is related to the potential kernel of
the strong Markov process τ : writing Er for expectation under the initial condition
τ0 = r , we have

Er

∞∫

0

f (τs) ds =
∞∫

0

f (r + x) U (dx), r ≥ 0, (20)

for f non-negative and Borel.
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2 Lorden’s Inequality

By using the regeneration property of M at the stopping time Dt (t > 0 fixed) and
the fact that L is flat off M , one sees that

E[exp(−αDt )] = φ(α) ·
∞∫

t

e−αs U (ds). (21)

Inverting this we can obtain the distribution of Dt or, equivalently, that of Rt . In fact,

E

∞∫

0

g(x + Rt ) U (dx) =
∞∫

0

g(y) U (dy + t), (22)

provided g is a positive Borel function on [0,∞]. This follows immediately from
(21) for g of the form g(x) = e−αx , and then for general g by Weierstrass’s theorem
followed by the monotone class theorem. Another direct consequence of (21) is
Wald’s Identity for regenerative sets:

E[Dt ] = μ · V (t), (23)

where μ := ∫ ∞
0 x ν(dx).

If the mean μ is finite then (as is well known in the renewal theory context) the
random variable Rt converges in distribution, as t → ∞, to a random variable R∞
whose law has density

h(x)

μ
, x > 0, (24)

with respect to Lebesgue measure on ]0,∞[; see [3, Thm. 1]. Observe that E[R∞] =
(2μ)−1

∫ ∞
0 x2 ν(dx).

The following proposition states Lorden’s inequality [15] in our context. We
reproduce the proof found in [5].

Proposition Assume that μ := ∫ ∞
0 x ν(dx) < ∞. Then E[Rt ] ≤ 2E[R∞] for all

t > 0.

Before turning to the proof we need the following lemma, both parts of which are
well known.

Lemma 1 (a) V is subadditive: V (t + s) ≤ V (t) + V (s), for all s, t > 0.
(b) E[V (t − R∞)] = t/μ for t > 0, with the understanding that V (s) = 0 for

s ≤ 0.

Proof (a) We have, using (21) with g = 1[0,s] for the first equality below,

V (t + s) − V (t) = E[V (s − Rt ); Rt ≤ s] ≤ E[V (s); Rt ≤ s] ≤ V (s). (25)
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(b) The Laplace transform of the left side of this identity is easily seen to be
Û (α)ĥ(α)/(αμ) = 1/(α2μ) because of (19). This coincides with the Laplace trans-
form of the right side, so the assertion follows by inversion because both sides are
continuous in t > 0. �

Proof of the Proposition Let Z1 and Z2 by independent random variables with
the same distribution as R∞. The subadditivity asserted in Lemma 1(a) persists for
negative values of s, t provided we agree that V vanishes on ] − ∞, 0]. Thus,

V (t) ≤ V (t + Z1 − Z2) + V (Z2 − Z1). (26)

By Lemma 1(b), the conditional expectation of the first term on the right of (26),
given Z1, is (t + Z1)/μ. Likewise, the conditional expectation of the second term,
given Z2, is Z2/μ. It follows that

μ · V (t) ≤ E[t + Z1] + E[Z2] = t + 2E[R∞], (27)

and the assertion follows because E[Rt ] = E[Dt ] − t = μ · V (t) − t by (23). �

3 Monotone Potential Density

The exponent φ is an example of what is called a Bernstein function (non-negative,
completely monotone derivative). Such a φ is a special Bernstein function provided
φ∗ : α �→ α/φ(α) is also a Bernstein function. In this case, because Û (α)φ(α) = 1,
the measure U admits a Lebesgue density given by

u(x) := ν∗ (]x,∞]) , (28)

where ν∗ is the Lévy measure in the representation (13) of φ∗. Notice that u is right-
continuous, and (more importunely) monotone decreasing. Conversely, if U admits
a monotone density with respect to Lebesgue measure, then φ is a special Bernstein
function. For discussion of special Bernstein functions see Chap. 10 of [17].

Our main result contains further (stochastic) characterizations of the class of
special Bernstein functions. For partial results in this vein, in the context of renewal
processes, see [4] and [14].

Theorem For a light unstable regenerative set M the following are equivalent:
(a) U is absolutely continuous and admits a monotone decreasing density.
(b) t �→ Rt is stochastically increasing.
(c) t �→ At is stochastically increasing.
(d) t �→ θt M is stochastically decreasing.
(e) t �→ θt L is stochastically decreasing.
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[By (d) is meant that for each 0 < s < t there is some probability space carrying

random sets Ms and Mt such that Ms d= θs M , Mt d= θt M , and Mt ⊂ Ms almost
surely. Point (e) should be interpreted in an analogous fashion, the local time being
thought of as a random measure d Ls , and (θt L)b := Lt+b − Lt = Lb(θt M).]

Proof (a)⇒(b). If U has a monotone density, then the left side of (22), which is
nothing but (πt ∗ U )(g) (πt being the distribution of Rt ), is monotone decreasing in
t . It follows that if s < t then πt is “downstream” from πs in the balayage order of
the subordinator τ . By a theorem of Rost [16] there are (randomized) stopping times
T (s) and T (t) of τ with T (s) ≤ T (t) such that τ(T (s)) has the same distribution as
Rs and τ(T (t)) has the same distribution as Rt . Since τ is increasing, P[Rs > x] ≤
P[Rt > x] for each x > 0; that is, Rt is stochastically larger than Rs .

(b)⇒(a). Conversely, if t �→ Rt is stochastically increasing, then from (22) with
g = 1[0,b] we see that t �→ U [t, t + b] is decreasing for each b > 0. In particular, V
is midpoint concave, hence concave (because x �→ V (x) = E[Lx ] is continuous).
This implies that V is concave, so the righthand derivative u := V ′+ exists and is
decreasing. Moreover, again by the concavity of V , the measure U is absolutely
continuous with density u.

(c)⇔(b). P(Rt > x) = P(M∩ ]t, t + x] = ∅) = P(At+x > x).

(a)⇒(d). From the proof of (a)⇒(b)we know that if 0 < s < t then there are (ran-

domized) stopping times T (s) and T (t) of τ such that T (s) ≤ T (t), τ(T (s))
d= Rs ,

and τ(T (t))
d= Rt . In particular, τ(T (s)) ≤ τ(T (t)). Define Ms := M ∩ [τ(T (s)),

∞[ and Mt := M ∩ [τ(T (t)),∞[. Then Mt ⊂ Ms , and the required distributional
equalities hold by regeneration at the stopping times τ(T (s)) and τ(T (t)).

(d)⇒(e). This follows immediately from Kingman’s construction (17): For fixed
0 ≤ s < t , we have Lb(Mt) − La(Mt ) ≤ Lb(Ms) − La(Ms), for all 0 ≤ a < b,
almost surely. This means that the measure with distribution function b �→ Lb(Mt)

is dominated setwise by the measure with distribution function b �→ Lb(Ms), a.s.

(e)⇒(a). U (]t, t + b]) = E[(θt L)b]. �

Remarks (a) It is shown in [4, Thm. 3], in the renewal context, that if the tail
probability P[Yk > y] (the analog of h) is log-convex then (a), (b), (c), and the
“counting” version of (e) in the Theorem hold true. This log-convexity is equivalent
to the decreasing failure rate property (DFR). Expressed in the present context this
amounts to the statement that

y �→ h(x + y)

h(y)
(29)

is non-increasing on the interval where h(y) > 0, for each x > 0. It was shown by
Hawkes [9, Thm. 2.1] that in our context, the log-convexity of the Lévy tail function
h implies thatU has a decreasing density. For more on this class of subordinators see
[17]. Brown conjectured in [4] that the DFR property is equivalent to the concavity
of the renewal function; a counterexample was found (after 31 years) by Yu [18].
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(b) The use of Rost’s theorem (on Skorokhod stopping) in the proof of (a)⇒(b)
(and again in (a)⇒(d)) was suggested by an argument of Bertoin [1, p. 568].

Observe thatwhenU has amonotone density, because Rt stochastically increasing
in t , each random variable Rt is stochastically dominated by R∞. This yields the
following improvement on Lorden’s inequality.

Corollary Under any of the conditions listed in the Theorem, we have

E[Rt ] ≤
∫ ∞
0 x2 ν(dx)

2μ
= E[R∞], ∀t > 0, (30)

and the inequality is sharp.

Whether the constant 2 in Lorden’s original inequality can be improved in the
general case is an open question.

4 Concluding Remarks

A regenerative set M is infinitely divisible (ID) provided for each positive integer n
there are i.i.d. regenerative sets Mn,k , 1 ≤ k ≤ n, such that ∩n

k=1Mn,k has the same
distribution as M . A large class of such sets (“Poisson random cutout sets”) is dis-
cussed and characterized in [7]. It has long been conjectured by the author that this
class exhausts (at least among light unstable regenerative sets) all of the ID regen-
erative sets. In unpublished work the author has shown that an ID regenerative set
whose potential measure admits a monotone density is, in fact, a Poisson cutout set.
Somewhat irritatingly, this supplementary monotonicity condition is satisfied by all
Poisson cutout sets. It should be noted that the parallel results for heavy ID sets, and
for the discrete-time situation, have been established by Kendall [10, 11]; see also
[8] for a detailed discussion of these matters and further references.

From the proof of the Theorem in Sect. 3, we know that when U has a monotone
density then for each t > 0 we have

θt M
d= M \ It , (31)

where It is a random interval [0, τ (T (t)) [growing stochastically larger as t increases.
In the Poisson cutout case, θt M and It are independent, because of the independence
properties of the Poisson process. Does this independence characterize ID regener-
ative sets?
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Doob Decomposition, Dirichlet Processes,
and Entropies on Wiener Space

Hans Föllmer

Abstract As an extension of the Doob-Meyer decomposition of a semimartingale
and the Fukushima representation of a Dirichlet process, we introduce a general
Doob decomposition in continuous time, where a square-integrable process is rep-
resented as the sum of a martingale and a process with “vanishing local risk”. For a
probability measure Q on Wiener space, we discuss how entropy conditions on Q
formulated with respect to Wiener measure P are connected with the Doob decom-
position of the coordinate process W under Q. The situation is well understood if
the relative entropy H(Q|P) is finite; in this case the decomposition is classical and
yields an immediate proof of Talagrand’s transport inequality onWiener space. To go
beyond this restriction, we consider the specific relative entropy h(Q|P) on Wiener
space that was introduced by Gantert in [11]. We discuss its interplay with the Doob
decomposition ofW under Q and a corresponding version of Talagrand’s inequality,
with special emphasis on the case where W is a Dirichlet process under Q.

Keywords Optimal transport · Coupling on Wiener space · Relative entropy ·
Talagrand’s inequality · Dirichlet processes · Doob decomposition · Fukushima
decomposition

1 Introduction

Since the Sixties, the interplay between potential theory and the theory of Markov
processes has been a rich source of inspiration for the general theory of stochastic
processes. In particular, the Riesz decomposition of a superharmonic functions has
its general counterpart in the Doob-Meyer decomposition

X = M + A (1)
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of a supermartingale. This has led to the general notion of a semimartingale X , defined
by a Doob-Meyer decomposition (1) into a local martingale M and a predictable
process A with paths of bounded variation. The canonical role of semimartingales is
emphasized by the Bichteler-Dellacherie theorem, where they are characterized as
general stochastic integrators.

M. Fukushima was the first to show that there are good reasons to go beyond
the conceptual framework provided by the theory of semimartingales. Indeed, for
a function F in the Dirichlet space of a symmetric Markov process Z , the process
X = F(Z) may not be a semimartingale, and thus may not admit a Doob-Meyer
decomposition. However, M. Fukushima showed that X admits a decomposition of
the form (1), where M is a square-integrable martingale and A is a process of “zero
energy”; cf. [10]. This Fukushima decomposition has motivated the general notion
of a Dirichlet process X ; cf. [2, 7].

But, as shown by Graversen and Rao in [14], representations of the form (1)
have an even wider scope. In Sect. 2 we introduce a version that is convenient for
our purpose. For a square-integrable adapted process X = (Xt )0≤t≤1 on a filtered
probability space and any N ≥ 1, we consider its Doob decomposition

X = MN + AN

in discrete time along the N -th dyadic partition of the unit interval. Assuming L2-
convergence of the random variables MN

1 , we are led to a Doob decomposition in
continuous time of the form (1), where M is a square-integrable martingale and A is
“predictable” in the sense that the sum of the local prediction errors along the N -th
dyadic partition converges to 0 as N increases to ∞. To avoid confusion with the
standard notion of predictability, which is defined as measurability with respect to
the predictable σ -field, we will say that A has vanishing local risk. Any process with
zero energy has this property, and so our Doob decomposition in continuous time
may be viewed as an extension of the Fukushima decomposition, and in particular of
the Doob-Meyer decomposition. On the other hand, a process Awith vanishing local
risk is orthogonal to any square-integrablemartingale. Thus, theDoob decomposition
in continuous time may be viewed as a special case of the general decomposition
obtained in [14]; cf. also the discussion of “weak Dirichlet processes” in [3, 13].

In Sect. 3 we consider probability measures Q on the path space C0[0, 1]. We
denote by Q the class of all Q such that the coordinate process W admits a Doob
decomposition W = M + A in continuous time under Q. Our aim is to understand
the impact of entropy bounds on Q ∈ Q with respect to Wiener measure P on the
Doob decomposition of W under Q.

If the relative entropy H(Q|P) is finite then Q is absolutely continuous with
respect to P , and the Doob decomposition takes the classical form

W = WQ + BQ,

where WQ is a Wiener process under Q, and where the paths of the process BQ

belong to the Cameron-Martin space H. In this case, the decomposition yields an
immediate proof of Talagrand’s transport inequality
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WH(Q, P) ≤ √
2 H(Q|P), (2)

where WH denotes the Wasserstein distance induced by the Cameron-Martin norm;
cf. [9, 16], or Corollary2.

To go beyond the absolutely continuous case, we consider the specific relative
entropy

h(Q|P) := lim inf
N↑∞ 2−N HN (Q|P),

where HN (Q|P) denotes the relative entropy of Q with respect to P on the σ -field
generated by observing the path along the N -th dyadic partition of the unit interval.
The notion of specific relative entropy onWiener space was introduced by N. Gantert
in her thesis [11],where it serves as a rate function for large deviations of the quadratic
variation from its ergodic behaviour; cf. also [12]. In our context, it allows us to prove
a version of Talagrand’s inequality of the form

WD(Q, P) ≤ √
2 h(Q|P), (3)

where the Wasserstein distance WD is defined in terms of quadratic variation. This
involves a careful analysis of the specific relative entropy, and in particular the
inequality

2 h(Q|P) ≥ EQ
[
M2

1 − 1 + H(λ|q(·)) + 〈A〉1
]
, (4)

where q(ω, dt) is the random measure on [0, 1] whose distribution function is given
by the quadratic variation of the martingale M , λ denotes the Lebesgue measure on
[0, 1], and 〈A〉 is the quadratic variation of A. For amartingale measure Q, inequality
(4)with A = 0 is proved in [9]; in the special casewhereq(·) is absolutely continuous,
it was already shown in [11]. Herewe extend it to a large class ofmeasures Q ∈ Q. As
a corollary we obtain our version (3) of Talagrand’s inequality for measures Q ∈ Q
such that W is a Dirichlet process under Q.

2 Doob Decomposition in Continuous Time

Let (Ω,F) be a measurable space endowed with a right-continuous filtration
(Ft )0≤t≤1, and let Q be a probability measure on (Ω,F). In the sequel, the measure
Q will vary, and so we do not assume that the filtration is completed with respect to
Q.

Throughout this paper, the index N will refer to the N -th dyadic partition of the
unit interval, that is,

DN = {i2−N |i = 1, . . . , 2N },

and for fixed N ≥ 1 we use the notation ti = i2N . For any square-integrable adapted
process Z = (Zt ) on (Ω,F , (Ft )0≤t≤1, Q), defined for t ∈ [0, 1] or at least for t ∈
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DN , we denote by
ΔN ,i Z = Zti − Zti−1

the increments of Z along the N -th dyadic partition, and by

ζ 2
N ,i = EQ[(ΔN ,i Z)2|Fti−1 ] − (

EQ[ΔN ,i Z |Fti−1 ]
)2

(5)

their conditional variances given the past. Note that ζ 2
N ,i can be viewed as the condi-

tional prediction error if the increment ΔN ,i Z is predicted by its conditional expec-
tation under Q.

Definition 1 For each N ≥ 1, the sum

RN (Z) :=
2N∑

i=1

ζ 2
N ,i ∈ L1(Q)

will be called the local risk of the process Z along the N-th dyadic partition. We will
say that the process Z has vanishing local risk if

lim
N↑∞ RN (Z) = 0 in L1(Q). (6)

For two square-integrable adapted processes Z and Z̃ we denote by

CVN (Z , Z̃) := 1

2

(
RN (Z + Z̃) − RN (Z) − RN (Z̃)

)

the sum of the conditional covariances of the increments along the N -th dyadic
partition, and we say that Z and Z̃ are orthogonal if

lim
N↑∞CVN (Z , Z̃) = 0 in L1(Q). (7)

Let us now fix an adapted right-continuous process X on (Ω,F , (Ft )0≤t≤1, Q)

such that
X = (Xt )0≤t≤1 ⊂ L2(Q).

For any N ≥ 1, consider its Doob decomposition

Xt = MN
t + AN

t , t ∈ DN (8)

in discrete time along the N -th dyadic partition. Thus, the process AN = (AN
t )t∈DN

is defined by AN
0 = 0 and the increments

ΔN ,i A
N = EQ[ΔN ,i X |Fti−1 ],
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and MN = (MN
t )t∈DN is a square-integrable martingale in discrete time with initial

value MN
0 = X0.

Remark 1 The process AN is “predictable” in discrete time, that is, AN
ti is Fti−1 -

measurable for each ti ∈ DN . Equivalently, this property can be expressed in terms
of actual predictions. Indeed, ifwe predict the increments of AN by taking conditional
expectations given the past, then the local prediction errors, defined as the conditional
variances (αN )2N ,i of the process A

N , are all equal to 0, i.e.,

RN (AN ) =
2N∑

i=1

(αN )2N ,i = 0 Q-a.s..

In this sense the process AN carries no local risk. In fact, the local risk of the process
X along the N -th dyadic partition is fully captured by the martingale MN , that is,

RN (X) = RN (MN ), (9)

since the conditional variances are the same for X and for MN . This alternative
interpretation of “predictability” in discrete timemotivates our definition of vanishing
local risk and the following version of the Doob decomposition in continuous time.

Theorem 1 (1) The following two properties of the process X with respect to Q
are equivalent:

(i) The random variables (MN
1 )N=1,2,... in (8) form a Cauchy sequence in

L2(Q),
(ii) X admits a Doob decomposition in continuous time of the form

X = M + A, (10)

where M = (Mt )0≤t≤1 is a square-integrable right-continuous martingale
such that M0 = X0, and where the process A = (At )0≤t≤1 has vanishing
local risk.

(2) The decomposition (10) of X into a square-integrable martingale M and a
process A with vanishing local risk is unique.

Proof (1) Suppose that (MN
1 )N=1,2,... is a Cauchy sequence in L2(Q), hence conver-

gent in L2(Q) to a random variable M1 ∈ L2(Q). We denote by M = (Mt )0≤t≤1

a right-continuous version of the square-integrable martingale given by the con-
ditional expectations EQ[M1|Ft ]; cf. [6] or [4], Ch. VI.5. Then the process
A = (At )0≤t≤1 defined by A = X − M is right-continuous, adapted, and square-
integrable. For N ≥ 1, the increments of A along the N -th dyadic partition satisfy
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ΔN ,i A − EQ[ΔN ,i A|Fti−1 ] = ΔN ,i X − ΔN ,i M − EQ[ΔN ,i X |Fti−1 ]
= ΔN ,i M

N − ΔN ,i M

= ΔN ,i (M
N − M).

Thus, the conditional variance of ΔN ,i A is given by

α2
N ,i = EQ[(ΔN ,i (M

N − M))2|Fti−1]. (11)

Since MN − M is a square-integrable martingale along DN with initial value
(MN − M)0 = 0, we obtain

EQ

⎡

⎣
2N∑

i=1

α2
N ,i

⎤

⎦ = EQ

⎡

⎣
2N∑

i=1

(ΔN ,i (M
N − M))2

⎤

⎦ = EQ[(MN
1 − M1)

2].

This implies

lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

α2
N ,i

⎤

⎦ = 0, (12)

and so we have shown that the process A has vanishing local risk.
Conversely, if X admits a decomposition (10) then the preceding Eq. (12) holds
again, and so (6) implies that (MN

1 )N=1,2,... is a Cauchy sequence in L2(Q).
(2) To check uniqueness of the decomposition (10), suppose that

X = M + A = M̃ + Ã,

where M and M̃ are square-integrable martingales, and A and Ã are processes
with vanishing local risk. For any N ≥ 1 we obtain

EQ[(M1 − M̃1)
2] =

2N∑

i=1

EQ[(ΔN ,i (M − M̃))2] =
2N∑

i=1

EQ[(ΔN ,i ( Ã − A))2]

≤ 2
2N∑

i=1

EP [α̃2
N ,i + α2

N ,i ], (13)

denoting by α̃2
N ,i and α2

N ,i the conditional variances of Ã and A; in the last step
we use the fact that

EQ[ΔN ,i Ã|Fti ] = EQ[ΔN ,i A|Fti ],
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since both terms are equal to EQ[ΔN ,i X |Fti ]. For N ↑ ∞ the right hand side
of (13) converges to 0, and this implies M1 = M̃1 Q-a.s., hence M = M̃ and
A = Ã. �

Lemma 1 Let A = (At )0≤t≤1 be a square-integrable, right-continuous, and adapted
process on (Ω,F , (Ft )0≤t≤1, Q), and consider the following properties of A:

(i) A has continuous paths of bounded variation, and the total variation process
|A| satisfies |A|1 ∈ L2(Q).

(ii) A has “zero energy” in the sense that

lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A)2

⎤

⎦ = 0, (14)

(iii) A has vanishing local risk,
(iv) A is orthogonal to any square-integrable martingale L.

Then we have
(i) =⇒ (ii) =⇒ (iii) =⇒ (iv).

Proof Since α2
N ,i ≤ EQ

[
(ΔN ,i A)2|Fti

]
, the process A has vanishing local risk as

soon as it has zero energy. As to the first implication, note that

EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A)2

⎤

⎦ ≤ EQ

⎡

⎣
2N∑

i=1

CN |ΔN ,i A|
⎤

⎦ = EQ
[
CN |A|1

]
, (15)

where CN := maxi |ΔN ,i A| ≤ |A|1. Property (i) implies limN↑∞ CN = 0 and
CN |A|1 ≤ |A|21 ∈ L1(Q). By Lebesgue’s theorem, the right hand side of (15) con-
verges to 0, and so A has energy 0. As to the last implication, note that

CVN (A, L) ≤ RN (A)1/2RN (L)1/2,

hence
EQ

[
CVN (A, L)

] ≤ EQ
[
RN (A)

]1/2
EQ

[
(L1 − L0)

2
]1/2

. �

Remark 2 Suppose that X admits a continuous Doob decomposition (10).

(1) The preceding implication (iii) =⇒ (iv) shows that this can be viewed as a
special case of the decomposition derived in [14]; see also the discussion of
“weak Dirichlet processes” in [3, 13].

(2) Applying property (iv) to the martingale M in (10), we see that

lim
N↑∞ RN (X) = lim

N↑∞ RN (M) in L1(Q),
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that is, in the limit the local risk of X is carried by M . This can be seen as the
continuous-time version of Eq. (9).

Definition 2 Let us say that X is a Dirichlet process if it admits a Doob decompo-
sition (10) such that A is a process with zero energy. In this case, (10) is also called
the Fukushima decomposition of X .

The preceding lemma shows that the notion of vanishing local risk has a wide
scope. Combined with the uniqueness of the decomposition (10), it implies the fol-
lowing corollary.

Corollary 1 The class of processes X that admit a Doob decomposition of the form
(10) includes

(i) a large class of semimartingales, and in that case (10) reduces to theDoob-Meyer
decomposition of X,

(ii) the class of Dirichlet processes, and in that case (10) reduces to the Fukushima
decomposition of X.

Remark 3 Suppose that X admits a Doob decomposition (10) under Q. Then X is
a Dirichlet process if and only if

lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
N )2

⎤

⎦ = 0. (16)

Indeed, the weaker condition (16) is in fact equivalent to condition (15) as soon as
A has vanishing local risk.

The following equivalence was stated in [7], where condition (17) is taken as the
definition of a Dirichlet process.

Theorem 2 The process X is is Dirichlet process if and only if the processes AN

appearing in the discrete Doob decompositions (8) satisfy the condition

lim
N↑∞ sup

K≥N
EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
K )2

⎤

⎦ = 0. (17)

Proof We include a proof, since the proof in [7] contains several typos.
For each L ≥ N , we obtain
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EQ
[
(AL

1 − AN
1 )2

] = EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
L − ΔN ,i A

N )2

⎤

⎦

≤ 2

⎛

⎝EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
L)2

⎤

⎦ + EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
N )2

⎤

⎦

⎞

⎠

≤ 4 sup
K≥N

EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
K )2

⎤

⎦ ,

since AL − AN = MN − ML is a martingale in discrete time along DN . Thus, con-
dition (17) implies that (AN

1 )N=1,2,..., and hence (MN
1 )N=1,2,..., is a Cauchy sequence

in L2(Q). It also implies condition (16). In view of Theorem1 and the preceding
remark, it follows that X is a Dirichlet process.
Conversely, since

ΔN ,i A
K = ΔN ,i A

N + ΔN ,i (M
N − MK ),

we obtain

EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
K )2

⎤

⎦ ≤ 2

⎛

⎝EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
N )2

⎤

⎦ + EQ
[
(MN

1 − MK
1 )2

]
⎞

⎠

≤ 2

⎛

⎝EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A
N )2

⎤

⎦ + sup
L≥N

EQ
[
(MN

1 − ML
1 )2

]
⎞

⎠

for any K ≥ N . Thus, condition (17) is satisfied as soon as X is a Dirichlet
process. �

3 Entropies and Couplings on Wiener Space

From now on, the underlying measurable space will be the path space

Ω = C0[0, 1]

of all continuous functions ω on [0, 1] with initial value ω(0) = 0. We denote by
(Ft )0≤t≤1 the right-continuous filtration on Ω generated by the coordinate process

W = (Wt )0≤t≤1
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defined by Wt (ω) = ω(t). We set F = F1, and we denote by P theWiener measure
on (Ω,F).

Let H denote the Cameron-Martin space of all absolutely continuous functions
ω ∈ Ω such that the derivative ω̇ is square integrable on [0, 1]. For ω ∈ Ω we write

||ω||H =

⎧
⎪⎨

⎪⎩

( 1∫

0
ω̇2(t)dt

)1/2
ifω ∈ H

+∞ otherwise.

Definition 3 We denote by Q the class of all probability measures Q on (Ω,F)

such that the processW admits a Doob decomposition (10) under Q with continuous
paths, that is,

W = M + A,

where M is a square-integrable continuous martingale under Q, and where A is a
continuous adapted process with vanishing local risk under Q. For Q ∈ Q we will
write

• Q ∈ QM if A = 0, that is, Q is a martingale measure,
• Q ∈ QH if A satisfies EQ

[||A||2H
]

< ∞,
• Q ∈ QS if A has continuous paths of bounded variation, and the total variation
process |A| satisfies |A|1 ∈ L2(Q),

• Q ∈ QD if A has zero energy, that is, W is a Dirichlet process under Q.

Lemma1 shows that

QM ⊂ QH ⊂ QS ⊂ QD ⊂ Q. (18)

For a given measure Q ∈ Q, we are now going to study the impact of entropy bounds
on the Doob decomposition (10) of the process W under Q. These bounds will be
formulated in terms of relative entropies with respect to Wiener measure P .

Remark 4 Recall that, for two probability measures μ and ν on some measurable
space (S,S), the relative entropy of ν with respect to μ is defined as

H(ν|μ) =
{∫

log dν
dμ

dν if ν � μ,

+∞ otherwise,

and that H(ν|μ) ≥ 0, with equality if and only if μ = ν. Moreover,

lim
n↑∞ Hn(ν|μ) = H(ν|μ) (19)

if (Sn)n=1,2... is a sequence of σ -fields increasing to S and Hn(ν|μ) denotes the
relative entropy of ν with respect to μ on (S,Sn). Note also that Eq. (19) extend to
the case where ν or μ is a non-negative finite measure.
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First we review the case where Q has finite relative entropy H(Q|P)with respect
to Wiener measure P . The following proposition is well known; cf., for example, [8,
9].

Proposition 1 For any probability measure Q on (Ω,F),

H(Q|P) < ∞ ⇐⇒ Q � P and Q ∈ QH.

In this case, the Doob decomposition (10) takes the form

W = WQ + BQ, (20)

where W Q is a Wiener process under Q and the process BQ has paths inH, and the
relative entropy is given by

H(Q|P) = 1

2
EQ

[||BQ ||2H
]
.

Remark 5 The process bQ := ḂQ will be called the intrinsic drift of Q. Note that
Eq. (20) can be read as

dWt = dW Q
t + bQ

t (W )dt.

Thus, any measure Q on path space such that H(Q|P) < ∞ can be viewed as a
weak solution of the stochastic differential equation

dX = dZ + bQ
t (X)dt,

where Z is required to be a Wiener process, and its relative entropy takes the form

H(Q|P) = 1

2
EQ

⎡

⎣
1∫

0

(bQ)2t dt

⎤

⎦ .

As first observed by Lehec in [16], Proposition1 yields an immediate proof of
Talagrand’s inequality on Wiener space, which relates the relative entropy H(Q|P)

to theWasserstein distanceWH(Q, P) defined in terms of theCameron-Martin norm.

Definition 4 For any probability measure Q on (Ω,F), we define the Wasserstein
distance WH(Q, P) between Q and P as

WH(Q, P) = inf
γ∈�(P,Q)

∫
||ω − η||2Hγ (dω, dη)1/2, (21)

where �(P, Q) denotes the class of all probability measures γ on the product space
(Ω × Ω,F × F) with marginals P and Q.
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Equivalently, we can write

WH(Q, P) = inf Ẽ[||X̃ − Ỹ ||2H]1/2, (22)

where the infimum is taken over all couples (X̃ , Ỹ ) of Ω-valued random variables
on some probability space (Ω̃, F̃ , P̃) such that X̃ and Ỹ have distributions P and
Q, respectively. Such a couple, and also any measure γ ∈ �(P, Q), will be called
a coupling of P and Q. We refer to [18] for a thorough discussion of Wasserstein
distances in various contexts.

Corollary 2 Any probability measure Q on (Ω,F) satisfies Talagrand’s inequality

WH(Q, P) ≤ √
2 H(Q|P). (23)

Proof If H(Q|P) < ∞ then the processes WQ = W − BQ and W , defined on the
probability space (Ω,F , Q), form a coupling of P and Q such that

EQ
[||W − WQ ||2H

] = 2H(Q|P). (24)

Thus, (23) follows from the definition of the Wasserstein distance WH(Q, P). �
Remark 6 Inequality (23) on Wiener space was first stated by Feyel and Üstunel
in [5]. However, using the Lévy-Ciesielski representation of Brownian motion in
terms of Schauder functions, it can also be seen as a direct translation, for n = ∞, of
Talagrand’s original inequality in [17],whereQ is a probabilitymeasure onEuclidean
space R

n with n ∈ {1, . . . ,∞}, P is the product of standard normal distributions,
and the Wasserstein distance is defined in terms of the Euclidean norm; cf. [9].

Remark 7 Note that the coupling (WQ,W ) of P and Q, defined on the filtered
probability space (Ω,F , (Ft )0≤t≤1, Q), is adaptive in the sense that both processes
are adapted and the first is a Wiener process with respect to the given filtration. As
shown by Lassalle in [15], (WQ,W ) is in fact the optimal adaptive coupling of P
and Q. Thus, Eq. (24) shows that Talagrand’s inequality reduces to the equality

WH,ad(Q, P) = √
2 H(Q|P),

if the left hand side is defined as in (22), but taking the infimum only over the
adaptive couplings of P and Q; cf. [15] or [9]. For a systematic discussion of the
optimal transport problem (22) under various constraints we refer to [1].

Let us now go beyond the case where Q has finite entropy with respect to Wiener
measure P . For any N ≥ 1, consider the discretized filtration

FN ,t = σ({Ws |s ∈ DN , s ≤ t}), 0 ≤ t ≤ 1

onΩ = C0[0, 1].We setFN = FN ,1 = σ({Ws |s ∈ DN }), andwedenote byHN (Q|P)

the relative entropy of Q with respect to P on the σ -field FN . Since the σ -fields FN
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increase to F , we have
H(Q|P) = lim

N↑∞ HN (Q|P).

From now on we assume that the finite-dimensional marginals of Q are such that

HN (Q|P) < ∞, N = 1, 2, . . . (25)

and we focus on the case H(Q|P) = ∞. It is then natural to rescale the finite-
dimensional entropies HN (Q|P) in order to obtain meaningful results.

The following concept of specific relative entropy on Wiener space was intro-
duced by N. Gantert in her thesis [11], where it plays the role of a rate function for
large deviations of the quadratic variation from its ergodic behaviour; cf. also [12].
In our context, it will allow us to extend Talagrand’s inequality on Wiener space
beyond the absolutely continuous case Q � P , and to throw new light on the Doob
decomposition in continuous time.

Definition 5 For any probability measure Q on (Ω,F), the specific relative entropy
of Q with respect to Wiener measure P is defined as

h(Q|P) = lim inf
N↑∞ 2−N HN (Q|P) (26)

To illustrate the role of specific relative entropy h(Q|P), and in particular its con-
nection with Dirichlet processes, we first consider the particularly transparent case
where the coordinate processW is square-integrable and has independent increments
under Q. Then the increments are normally distributed under Q, there are functions
a and β in C0[0, 1] such that

EQ[Wt ] = a(t) and varQ(Wt ) = β(t),

and the function β is strictly increasing due to our assumption (25). In this case, let
us write

Q = Qa,β .

Note that Qa,β ∈ Q, and that the Doob decomposition (10) under Qa,β takes the
form W = M + A, where M is a Gaussian martingale with quadratic variation

〈M〉t = β(t),

and where the deterministic process A given by At (ω) = a(t) clearly carries no local
risk.

Let q denote the finite measure on [0, 1] with distribution function β, and denote
by

q(dt) = qs(dt) + σ 2(t)dt
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its Lebesgue decomposition with respect to Lebesgue measure λ on [0, 1], where qs
denotes the singular part and σ 2(·) is the density of the absolutely continuous part.

Proposition 2 For Q = Qa,β , the specific relative entropy h(Q|P) is given by

h(Q|P) = 1

2

⎛

⎝β(1) − 1 + H(λ|q) + lim inf
N↑∞

2N∑

i=1

(ΔN ,i a)2

⎞

⎠ . (27)

In particular, H(λ|q) < ∞ implies that h(Q|P) exists as a finite limit if and only if
the function a has “finite energy”, that is,

h(Q|P) = lim
N↑∞ 2−N HN (Q|P) < ∞ ⇐⇒ ∃〈a〉1 := lim

N↑∞

2N∑

i=1

(ΔN ,i a)2 < ∞.

In this case,

h(Q|P) = 1

2
qs([0, 1]) +

1∫

0

f (σ 2(t))dt + 1

2
〈a〉1, (28)

where f is the convex function on [0, 1] defined by f (x) = 1
2 (x − 1 − log x). In

particular,

Q ∈ QD ⇐⇒ h(Q|P) = 1

2
qs([0, 1]) +

1∫

0

f (σ 2(t))dt, (29)

that is, W is a Dirichlet process under Q iff h(Q|P) only depends on β and not on
a.

Proof For two normal distributions N (m, σ 2) and N (m̃, σ̃ 2) on R
1, the relative

entropy is given by

H
(
N (m̃, σ̃ 2)|N (m, σ 2)

) = f (σ̃ 2/σ 2) + 1

2

(m̃ − m)2

σ 2
. (30)

Since the increments ΔN ,iW along the N -th dyadic partition are independent under
both Q and P , with distribution N (ΔN ,i a,ΔN ,iβ) under Q and N (0, 2−N ) under P ,
we get

HN (Q|P) =
2N∑

i=1

H
(
N (ΔN ,i a,ΔN ,iβ)|N (0, 2−N )

)

=
2N∑

i=1

f (2NΔN ,iβ) + 1

2

2N∑

i=1

2N (ΔN ,i a)2.
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Thus,

2−N HN (Q|P) =
1∫

0

f (ϕN (t))dt + 1

2

2N∑

i=1

(ΔN ,i a)2,

if we denote by ϕN the density of the finite measure q on [0, 1] with respect to
Lebesgue measure λ on the discrete σ -field BN generated by the N -th dyadic par-
tition. Note that ϕN > 0 since β is strictly increasing. Denoting by HN (λ|q) =∫
logϕ−1

N dλ the relative entropy of λ with respect to q on BN , we can write

2−N HN (Q|P) = 1

2

⎛

⎝q([0, 1]) − 1 + HN (λ|q) +
2N∑

i=1

(ΔN ,i a)2

⎞

⎠ . (31)

Since q([0, 1]) = β(1), and since HN (λ|q) increases to H(λ|q), we obtain Eq. (27).
If we assume H(λ|q) < ∞ and the existence of a finite limit 〈a〉1, then Eq. (27)
reduces to (28) since

β(1) = qs([0, 1]) +
1∫

0

σ 2(t)dt.

In particular, we obtain the characterization (29) of a measure Q = Qa,β ∈ QD. �

Let us now consider the general case Q ∈ Q. Thus, the coordinate process W
admits a continuous Doob decomposition

W = M + A (32)

under Q, where M is a continuous square-integrable martingale and A is a square-
integrable, continuous and adapted process with vanishing local risk. Consider the
continuous quadratic variation process 〈M〉ofM and the correspondingfinite random
measure q(ω, dt) on [0, 1] with distribution function 〈M〉(ω), and denote by

q(ω, dt) = qs(ω, dt) + σ 2(ω, t)dt (33)

its Lebesgue decomposition into a singular and an absolutely continuous part with
respect to Lebesgue measure λ on [0, 1]; cf. [9] for an explicit construction. Our aim
is to show how the specific relative entropy h(Q|P) depends on the Doob decompo-
sition (32), and in particular on the random measure q(·, dt).

For N ≥ 1 and i = 1, . . . , 2N , we denote by νN ,i (ω, ·) the conditional distribution
of the increment ΔN ,iW under Q given the σ -field FN ,ti−1 , by

aN ,i = EQ
[
ΔN ,iW |FN ,ti−1

] = EQ
[
ΔN ,i A|FN ,ti−1

]

its conditional mean, by
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σ̃ 2
N ,i = EQ

[
(ΔN ,iW )2|FN ,ti−1

] − a2N ,i

its conditional variance, and by

σ 2
N ,i = EQ

[
(ΔN ,i M)2|FN ,ti−1

] = EQ
[〈M〉ti − 〈M〉ti−1 |FN ,ti−1

]
(34)

the conditional variance of the martingale increment ΔN ,i M .

Lemma 2 The finite-dimensional entropy HN (Q|P) can be decomposed as follows:

HN (Q|P) = HN (Q|QN ) + EQ

⎡

⎣
2N∑

i=1

f (2Nσ 2
N ,i )

⎤

⎦ + 1

2
2N EQ

⎡

⎣
2N∑

i=1

a2N ,i

⎤

⎦

+1

2
EQ

⎡

⎣
2N∑

i=1

(σ̃ 2
N ,i − σ 2

N ,i )(2
N − σ−2

N ,i )

⎤

⎦ (35)

where f is the function defined in Proposition 2, and where QN denotes the proba-
bility measure on (Ω,FN ) such that the increments ΔN ,iW have conditional distri-
bution N (aN ,i , σ

2
N ,i ) given the σ -field FN ,ti−1 .

Proof Since

HN (Q|P) =
2N∑

i=1

EQ
[
H

(
νN ,i (ω, ·)|N (0, 2−N

)]
,

and since

H
(
νN ,i |N (0, 2−N )

) = H
(
νN ,i |N (aN ,i , σ

2
N ,i )

) + f (2Nσ 2
N ,i )

+1

2
2Na2N ,i + 1

2
(σ̃ 2

N ,i − σ 2
N ,i )(2

N − σ−2
N ,i ),

we obtain Eq. (35). �

Let us first look at the asymptotic behavior of the second term on the right hand
side of Eq. (35). We denote by Q ⊗ q the finite measure on Ω̄ = Ω × [0, 1] defined
by (Q ⊗ q)(dω, dt) = Q(dω)q(ω, dt). On the σ -field

PN := σ({At × (t, 1] | t ∈ DN , At ∈ FN ,t }),

the measure Q ⊗ q is absolutely continuous with respect to the product measure
Q ⊗ λ, and the density is given by

σ 2
N (ω, t) :=

2N∑

i=1

2Nσ 2
N ,i (ω)I(ti−1,ti ](t).
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The σ -fields PN increase to the predictable σ -field P on Ω̄ , generated by the sets
At × (t, 1] with t ∈ [0, 1] and At ∈ Ft , and we denote by

H(Q ⊗ λ|Q ⊗ q) = EQ[H(λ|q(·))]

the relative entropy of Q ⊗ λ with respect to Q ⊗ q on P .

Lemma 3

lim
N↑∞ 2−N EQ

⎡

⎣
2N∑

i=1

f (2Nσ 2
N ,i )

⎤

⎦

= 1

2

(
EQ[q(·, [0, 1])] − 1 + H(Q ⊗ λ|Q ⊗ q)

)

= 1

2
EQ[qs(·, [0, 1])] + EQ

⎡

⎣
1∫

0

f (σ 2(·, t))dt
⎤

⎦ . (36)

Proof Since

EQ

⎡

⎣
1∫

0

σ 2
N (·, t)dt

⎤

⎦ = EQ
[〈M〉1

] = EQ
[
q(·, [0, 1])]

for any N ≥ 1, we can write

2−N EQ

⎡

⎣
2N∑

i=1

f (2Nσ 2
N ,i )

⎤

⎦ = EQ

⎡

⎣
1∫

0

f (σ 2
N (·, t))dt

⎤

⎦

= 1

2

⎛

⎝EQ[q(·, [0, 1])] − 1 − EQ

⎡

⎣
1∫

0

log σ 2
N (·, t)dt

⎤

⎦

⎞

⎠

= 1

2

(
EQ[q(·, [0, 1])] − 1 + HN (Q ⊗ λ|Q ⊗ q)

)
,

where HN (Q ⊗ λ|Q ⊗ q) denotes the relative entropy of Q ⊗ λ with respect to
Q ⊗ q on PN . Since PN increases to P , these entropies increase to

H(Q ⊗ λ|Q ⊗ q) = EQ

⎡

⎣
1∫

0

log(σ−2
N (·, t))dt

⎤

⎦ ,

and this yields Eq. (36). �
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For a martingale measure Q ∈ QM with absolutely continuous quadratic varia-
tion, the following proposition is due to N. Gantert in [11]. Here we extend it to the
case where the quadration variation may have a singular component; see also [9].

Proposition 3 For a martingale measure Q ∈ QM,

h(Q|P) ≥ 1

2

(
EQ[q(·, [0, 1])] − 1 + H(Q ⊗ λ|Q ⊗ q)

)

= 1

2
EQ

[
qs(ω, [0, 1])] + EQ

⎡

⎣
1∫

0

f
(
σ 2(ω, t)

)
dt

⎤

⎦ . (37)

If h(Q|P) < ∞ then we have H(Q ⊗ λ|Q ⊗ q) < ∞, and in particular

σ 2(·, ·) > 0 Q ⊗ λ-a.s.. (38)

Moreover, equality holds in (37) if and only if Q is “almost locally normal” in the
sense that

lim
N↑∞ 2−N HN (Q|QN ) = 0. (39)

Proof For Q ∈ QM we have A = 0, hence aN ,i = 0 and σ̃ 2
N ,i = σ 2

N ,i . Thus, Eq. (35)
implies

2−N HN (Q|P) = 2−N HN (Q|QN ) + 2−N EQ

⎡

⎣
2N∑

i=1

f (2Nσ 2
N ,i )

⎤

⎦ ,

and so inequality (37) as well as the condition for equality follow fromLemma3. Due
to (37), h(Q|P) < ∞ implies H(Q ⊗ λ|Q ⊗ q)

)
< ∞, hence Q ⊗ λ � Q ⊗ q,

and in particular (38). �

Let us denote by

α̃2
N ,i = EQ[(ΔN ,i A)2|FN ,ti−1 ] − a2N ,i (40)

the conditional variance of ΔN ,i A with respect to FN ,ti−1 ⊂ Fti−1 , and recall the
definition of α2

N ,i in (11). Since α̃2
N ,i is defined with respect to the smaller σ -field,

we have
EQ[α2

N ,i ] ≤ EQ[α̃2
N ,i ] ≤ EQ[(ΔAN ,i )

2]. (41)

This shows that the condition

lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

α̃2
N ,i

⎤

⎦ = 0 (42)
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strengthens our assumption on Q ∈ Q that A has vanishing local risk, and that it is
satisfied as soon as A has energy 0 under Q.

Remark 8 Note that we have α̃2
N ,i = α2

N ,i as soon as Q is Markovian, that is, if W
is a Markov process under Q. Thus, condition (42) is satisfied for any Markovian
Q ∈ Q.

Definition 6 We denote by QE the class of all probability measures Q ∈ Q such
that

(i) Q satisfies condition (42),
(ii) the process A has “finite energy” under Q, that is,

∃〈A〉1 := lim
N↑∞

2N∑

i=1

(ΔN ,i A)2 in L1(Q). (43)

Thus, the chain of inclusions in (18) can be extended as follows:

QM ⊂ QH ⊂ QS ⊂ QD ⊂ QE ⊂ Q.

In [9], Proposition 3 for a martingale measure Q ∈ QM is extended to a large
class of semimartingale measures Q ∈ QS , where the process A appearing in the
Doob decomposition of W under Q has paths of bounded variation. Here we go
two steps further and consider the case Q ∈ QE , and in particular the case Q ∈ QD
where W is a Dirichlet process under Q.

Theorem 3 Let Q ∈ QE be such that the variance σ 2(·, ·) in (33) is bounded away
from 0. Then

h(Q|P) ≥ 1

2

(
EQ[q(·, [0, 1])] − 1 + EQ

[
H

(
λ|q(·))] + 1

2
EQ[〈A〉1]

= 1

2
EQ

[
qs(·, [0, 1])

] + EQ

⎡

⎣
1∫

0

f
(
σ 2(·, t))dt

⎤

⎦ + 1

2
EQ[〈A〉1]. (44)

If h(Q|P) < ∞ then equality holds if and only if Q satisfies condition (39). In that
case,

Q ∈ QD ⇐⇒ h(Q|P) = 1

2
EQ

[
qs(ω, [0, 1])] + EQ

⎡

⎣
1∫

0

f
(
σ 2(ω, t)

)
dt

⎤

⎦ . (45)

Proof Equation (35) can be written as
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2−N HN (Q|P) = 2−N HN (Q|QN ) + EQ

⎡

⎣
1∫

0

f (σ 2
N (·, t)dt)

⎤

⎦ + 1

2
IN

+1

2
EQ

⎡

⎣
2N∑

i=1

δN ,i (1 − 2−Nσ−2
N ,i )

⎤

⎦ , (46)

where

IN := EQ

⎡

⎣
2N∑

i=1

a2N ,i

⎤

⎦ and δN ,i := σ̃ 2
N ,i − σ 2

N ,i .

Note that

IN = EQ

⎡

⎣
2N∑

i=1

(ΔN ,i A)2

⎤

⎦ − JN ,

where

JN := EQ

⎡

⎣
2N∑

i=1

α̃2
N ,i

⎤

⎦ .

Since Q ∈ QE , we obtain
lim
N↑∞ IN = EQ[〈A〉1],

Let us now show that the last term in (46) converges to 0 as N ↑ ∞. Since

δN ,i = α̃2
N ,i + 2EQ

[
(ΔMN ,i )(ΔAN ,i )|FN ,ti−1

]

satisfies
|δN ,i | ≤ α̃2

N ,i + 2σN ,i α̃N ,i , (47)

we get

EQ

⎡

⎣
2N∑

i=1

|δN ,i |
⎤

⎦ ≤ EQ

⎡

⎣
2N∑

i=1

α̃2
N ,i

⎤

⎦ + 2
2N∑

i=1

EQ
[
σ 2
N ,i

]1/2
EQ

[
α̃2
N ,i

]1/2

≤ JN + 2 EQ
[
M2

1

]1/2
J 1/2
N ,

hence

lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

|δN ,i |
⎤

⎦ = 0, (48)
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due to condition (42). Moreover, if σ 2(·, ·) ≥ c Q ⊗ λ-a.s. for some c > 0 then

2N∑

i=1

2Nσ 2
N ,i (ω)I(ti−1,ti ](t) = σ 2

N (ω, t) ≥ EQ⊗λ

[
σ 2|PN

] ≥ c Q ⊗ λ-a.s.,

and this implies

lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

|δN ,i |2−Nσ−2
N ,i

⎤

⎦ ≤ c−1 lim
N↑∞ EQ

⎡

⎣
2N∑

i=1

|δN ,i |
⎤

⎦ = 0. (49)

Thus, the last two terms in Eq. (46) converge to 0. In view of Lemma3, this completes
the proof. �
Remark 9 The proof shows that, instead of requiring that σ 2(·, ·) is bounded away
from 0, it is enough to assume that the conditional variances σ 2

N ,i and α̃2
N ,i of M and

A under Q ∈ QE satisfy the condition

lim
N↑∞ EQ

⎡

⎣2−N
2N∑

i=1

α̃2
N ,iσ

−2
N ,i

⎤

⎦ = 0. (50)

This includes the case of a martingale measure Q ∈ QM, and also the case where
the process A is locally deterministic in the sense that α̃2

N ,i = 0 for large enough N .

Theorem3 allows us to prove an extension of Talagrand’s inequality on Wiener
space beyond the absolutely continuous case Q � P . For Q ∈ QS we refer to [9] for
an extension that covers Talagrand’s inequality (2) as a special case. Here we focus
on the case Q ∈ QD and consider the following Wasserstein distance WD(Q, P),
where the cost function is defined in terms of quadratic variation.

Definition 7 The Wasserstein distance WD(Q, P) between Q ∈ QD and Wiener
measure P is defined as

WD(Q, P) = inf
(
Ẽ

[〈Ỹ − X̃〉1
])1/2

, (51)

where the infimum is taken over all adaptive couplings (Ỹ , X̃) of Q and P on some
filtered probability space (Ω̃, F̃ , (F̃t )0≤t≤1, P̃) such that Ỹ is a Dirichlet process on
(Ω̃, F̃ , (F̃t )0≤t≤1, P̃).

For a martingale measure Q ∈ QM, the following corollary is proved in [9]. For
Q ∈ QD, the proof is essentially the same, and so we just sketch the argument and
refer to [9] for further details.

Corollary 3 For a probability measure Q ∈ QD that satisfies condition (50),

WD(Q, P) ≤ √
2 h(Q|P). (52)
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Proof We may assume h(Q|P) < ∞. As shown in [9], this implies that there
is a Wiener process WQ = (WQ

t )0≤t≤1, defined on the filtered probability space
(Ω,F , (Ft )0≤t≤1, Q), such that the coupling (WQ,W ) of P and Q is optimal for
the Wasserstein distance WD, that is,

W 2
D(Q, P) = EQ

[〈W − WQ〉1
]
. (53)

Moreover,

EQ
[〈W − WQ〉1

] = EQ

⎡

⎣
1∫

0

(
σ(·, s) − 1

)2
ds + qs(·, (0, 1])

⎤

⎦ .

Since
(σ − 1)2 ≤ σ 2 − 1 − log σ 2 = 2 f (σ 2),

we obtain

EQ
[〈W − WQ〉1

] ≤ 2 EQ

⎡

⎣
1∫

0

f
(
σ 2(·, s))dt + 1

2
qs(·, (0, 1])

⎤

⎦

≤ 2 h(Q|P), (54)

where the second inequality follows from Theorem3, and so we have shown inequal-
ity (52). �
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Analysis on Fractal Spaces and Heat
Kernels

Alexander Grigor’yan

Abstract We give overview of heat kernel estimates on fractal spaces in connection
with the notion of walk dimension.

Keywords Heat kernel · Fractal · Dirichlet form · Walk dimension

1 Introduction

Since the time of Newton and Leibniz, differentiation and integration have been
major concepts of mathematics. The theory of integration has come a long way
from Riemann’s integration of continuous functions to measure theory, including
construction of Hausdorff measures on metric spaces.

In this survey we discuss the notion of differentiation in metric spaces, especially
in fractals with self-similar structures. The existing theory of the upper gradient of
Heinonen and Koskela [24] and Cheeger [12] provides an analogue of Rademacher’s
theorem about differentiability of Lipschitz functions. However, it imposes quite
strong assumptions on themetric space in question, including the Poincaré inequality
with the quadratic scaling factor. Such assumptions are typically satisfied on the limits
of sequences of non-negatively curved manifolds, but never on commonly known
fractal spaces.

More specifically, our goal is the notion of a Laplace-type operator on general
metric measure spaces, in particular, on fractal spaces. The Laplace operator in R

n

is a second order differential operator. Hence, unlike the upper gradient that is a
generalization of the first order differential operator, we aim at a generalization of a
second order differential operator. Our present understanding is that such operators
should be carried by a larger family of metric spaces.
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By a Laplace-type operator we mean the generator of a strongly local regular
Dirichlet form. The theory of Dirichlet forms was developed byM. Fukushima et al.,
and its detailed account can be found in [15] (see also [31]). Although the original
motivation of this theory was to create a universal framework for construction of
Markov processes in R

n , it suits perfectly for development of analysis on metric
measure spaces.

Strongly local regular Dirichlet forms and associated diffusion processes have
been successfully constructed on large families of fractals, in particular, on the Sier-
pinski gasket by Barlow and Perkins [8], Goldstein [16] and Kusuoka [28], on p.c.f.
fractals by Kigami [26, 27], and on the Sierpinski carpet by Barlow and Bass [3] and
Kusuoka and Zhou [29].

It has been observed that the quantitative behavior of the diffusion processes
on fractals is drastically different from that in R

n . In particular, the expected time
needed for the diffusive particle to cover distance r is of the order rβ with someβ > 2,
whereas in R

n it is r2. In physics such a process is called an anomalous diffusion.
The parameter β is called the walk dimension of the diffusion. It also determines
sub-Gaussian estimates of the heat kernel.

It was shown in [20] that the walk dimension β is, in fact, an invariant of themetric
space alone, and it can be characterized in terms of the family of Besov seminorms.

In this note we give an overview of some results related to the notion of the walk
dimension.

2 Classical Heat Kernel

The heat kernel in Rn is the fundamental solution of the heat equation ∂u
∂t = �u:

pt (x) = 1

(4π t)n/2 exp

(
−|x |2

4t

)
.

This function is also called the Gauss-Weierstrass function. Let us briefly mention
some applications of this notion.

1. The Cauchy problem for the heat equation with the initial condition u|t=0 = f
is solved by u (t, ·) = pt ∗ f , under certain restriction on f , for example, for
f ∈ Cb (Rn) (whereCb (X) stands for the space of bounded continuous functions
on X ). Since then pt ∗ f → f as t → 0+, the smooth function pt ∗ f can be
regarded as a mollification of f . This idea was used by Weierstrass in his proof
of the celebrated Weierstrass approximation theorem.

2. It is less known but the heat kernel can be used to prove some Sobolev embedding
theorems (see [17, pp. 156–157]).

3. The function pt/2(x) coincides with the transition density of Brownian motion
{Xt } in Rn (Fig. 1).
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Fig. 1 The probability that
Xt ∈ A is given by
integration of the heat kernel
pt/2 (X0 − ·) over A

4. Approximation of the Dirichlet integral: for any f ∈ W 1,2 (Rn) we have

∫
Rn

|∇ f |2 dx = lim
t→0

1

2t

∫
Rn

∫
Rn

pt (x − y) | f (x) − f (y)|2 dxdy.

3 Examples of Fractals

Let (M, d) be a locally compact separable metric space and μ be a Radon measure
on M with full support. A triple (M, d, μ) will be referred to as a metric measure
space. A metric measure space (M, d, μ) is called α-regular for some α > 0 if all
metric balls

B (x, r) := {y ∈ M : d (x, y) < r}

are relatively compact and if for all x ∈ M and r < diam M we have

μ (B (x, r)) � rα. (1)

The sign � means that the ratio of the two sides is bounded from above and below
by positive constants, and diam M = supx,y∈M d (x, y) .

It follows from (1) that

dimH M = α and Hα � μ

where dimH M denotes the Hausdorff dimension of M (with respect to the metric d)
andHα denotes theHausdorff measure of dimensionα. The numberα is also referred
to as the fractal dimension of M. In some sense, α is a numerical characteristic of
the integral calculus on M .
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The original meaning of the popular term “fractal” refers to α-regular spaces
with fractional values of α. Such spaces first appeared in mathematics as curious
examples and initially served as counterexamples to various theorems. The most
famous example of a fractal set is the Cantor set that was introduced by Georg
Cantor in 1883. However, Mandelbrot [32] in 1982 put forward a novel point of view
according to which fractals are typical of nature rather than exceptional. This point of
view is also confirmed fromwithin puremathematics by the spectacular development
of the analysis on fractals and metric measure spaces over the past three decades,
which sheds new light on some aspects of classical analysis in Rn . See [1] for a very
good introduction to analysis on fractals.

Another example of a fractal is the Vicsek snowflake (VS) shown on Figs. 6 and 7.
There is nowadays no commonly accepted rigorous definition of the term “frac-

tal”. Typical fractal sets are obtained by some self-similar constructions as limits of
sequences of iterations. Important examples of fractal sets are the Sierpinski gasket
(SG) and Sierpinski carpet (SC) that were introduced byWacław Sierpiński in 1915.
They are shown on Figs. 2, 3 and 4, 5, respectively.

Fig. 2 Sierpinski gasket, α = log 3
log 2 ≈ 1.58

Fig. 3 Three interations of construction of SG
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Fig. 4 Sierpinski carpet, α = log 8
log 3 ≈ 1.89

Fig. 5 Two iterations of construction of SC

Fig. 6 Vicsek snowflake

Fig. 7 Three iterations of construction of VS
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4 Dirichlet Forms

On certain metric spaces, including fractal spaces, it is possible to construct a
Laplace-type operator, by means of the theory of Dirichlet forms by Fukushima
[15].

A (symmetric) Dirichlet form in L2 (M, μ) is a pair (E,F) where F is a dense
subspace of L2 (M, μ) and E is a symmetric bilinear form on F with the following
properties:

1. It is positive definite, that is, E ( f, f ) ≥ 0 for all f ∈ F .
2. It is closed, that is, F is complete with respect to the norm

⎛
⎝∫

M

f 2dμ + E ( f, f )

⎞
⎠

1/2

.

3. It is Markovian, that is, if f ∈ F then f̃ := min( f+, 1) ∈ F and E( f̃ , f̃ ) ≤
E ( f, f ).

Any Dirichlet form has the generator: a positive definite self-adjoint operator L
in L2 (M, μ) with domain dom (L) ⊂ F such that

(L f, g) = E ( f, g) for all f ∈ dom (L) and g ∈ F .

For example, the bilinear form

E ( f, g) =
∫
Rn

∇ f · ∇g dx (2)

in F = W 1,2 (Rn) is a Dirichlet form in L2 (Rn, dx), whose quadratic part is the
Dirichlet integral. Its generator is L = −� with dom (L) = W 2,2 (Rn) .

Another example of a Dirichlet form in L2 (Rn, dx):

E( f, f ) =
∫
Rn

∫
Rn

( f (x) − f (y))2

|x − y|n+s dx dy, (3)

where s ∈ (0, 2) and F = Bs/2
2,2 (Rn) . It has the generator L = cn,s (−�)s/2 with a

positive constant cn,s .

ADirichlet form (E,F) is called local if E ( f, g) = 0 for any two functions f, g ∈
F with disjoint compact supports, and (E,F) is called strongly local if E ( f, g) = 0
whenever f = const in a neighborhood of supp g. TheDirichlet form (E,F) is called
regular if C0 (M) ∩ F is dense both in F and C0 (M), where C0 (M) is the space of
continuous functions on M with compact supports endowed with the sup-norm.
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For example, both Dirichlet forms (2) and (3) are regular, the form (2) is strongly
local, while the form (3) is nonlocal.

The generator of any regular Dirichlet form determines the heat semigroup{
e−tL}

t≥0, as well as a Markov process {Xt }t≥0 on M with the transition semigroup

e−tL, that is,
Ex f (Xt ) = e−tL f (x) for all f ∈ C0 (M) .

If (E,F) is local then {Xt } is a diffusion while otherwise the process {Xt } contains
jumps.

For example, the Dirichlet form (2) determines Brownian motion in R
n, whose

transition density is exactly the Gauss-Weierstrass function

pt (x) = 1

(4π t)n/2 exp

(
−|x |2

4t

)
.

The Dirichlet form (3) determines a jump process: a symmetric stable Levy process
of the index s. In the case s = 1 its transition density is the Cauchy distribution

pt (x) = cnt(
t2 + |x |2) n+1

2

= cn
tn

(
1 + |x |2

t2

)− n+1
2

,

where cn = �
(
n+1
2

)
/π(n+1)/2. For an arbitrary s ∈ (0, 2) we have

pt (x) � 1

tn/s

(
1 + |x |

t1/s

)−(n+s)

.

If a metric measure space M possesses a strongly local regular Dirichlet form
(E,F) then we consider its generator L as an analogue of the Laplace operator. In
this case the differential calculus is defined on M .

Nontrivial strongly local regular Dirichlet forms have been successfully con-
structed on large families of fractals, in particular, on SG by Barlow and Perkins [8],
Goldstein [16] and Kusuoka [28], on SC by Barlow and Bass [3] and Kusuoka and
Zhou [29], on nested fractals (including VS) by Lindstrøm [30], and on p.c.f. fractals
by Kigami [26, 27].

In fact, each of these fractals can be regarded as a limit of a sequence of approxi-
mating graphs �n (Fig. 8).

Define on each �n a Dirichlet form En by

En ( f, f ) =
∑
x∼y

( f (x) − f (y))2

where x ∼ y means that the vertices x and y are neighbors, and then consider a
scaled limit
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Fig. 8 Approximating graphs �1, �2, �3 for SG

E ( f, f ) = lim
n→∞ RnEn ( f, f ) (4)

with an appropriately chosen renormalizing sequence {Rn} . The main difficulty is
to ensure the existence of {Rn} such that this limit exists and is nontrivial for a dense
family of f . For p.c.f. fractals one chooses Rn = ρn where, for example, ρ = 5

3 for
SG and ρ = 3 for VS, and the limit exists due to monotonicity [27].

For SC the situation is much harder. Initially a strongly local Dirichlet form on SC
was constructed by Barlow and Bass [3] in a different way by using a probabilistic
approach. After a groundbreaking work of Barlow et al. [6] proving the uniqueness
of a canonical Dirichlet form on SC, it became possible to claim that the limit (4)
exists for a certain sequence {Rn} such that Rn � ρn , where the exact value of ρ is
still unknown. Numerical computation in [7] indicates that ρ ≈ 1.25. It is also an
open question whether the limit limn→∞ ρ−n Rn exists (see [4, Sect. 5, Problem 1]).
Other ways of constructing a strongly local Dirichlet form on SC can be found in
[29] and [23].

5 Walk Dimension

In all the above examples, the heat semigroup e−tL of the Dirichlet form (E,F) is
an integral operator:

e−tL f (x) =
∫
M

pt (x, y) f (y)dμ(y),

whose integral kernel pt (x, y) is called the heat kernel of (E,F) or of L. Moreover,
in all the above examples of strongly local Dirichlet forms the heat kernel satisfies
the following estimates

pt (x, y) � C

tα/β
exp

(
−c

(
dβ(x, y)

t

) 1
β−1

)
, (5)
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for all x, y ∈ M and t ∈ (0, t0) for some t0 > 0 [5, 8]. The sign � means that the
both inequalities≤ and≥ take place but possibly with different values of the positive
constants c,C .

Here α is necessarily the Hausdorff dimension, while β is a new parameter that
is called the walk dimension of the heat kernel (or that of the Dirichlet form). It can
be regarded as a numerical characteristic of the differential calculus on M .

We say that ametric space (M, d) satisfies the chain condition (CC) if there exists
a constant C such that for all x, y ∈ M and for all n ∈ N there exists a sequence
{xk}nk=0 of points in M such that x0 = x , xn = y, and

d(xk−1, xk) ≤ C
d(x, y)

n
, for all k = 1, . . . , n.

For example, if the metric d is geodesic then this condition is satisfied with C = 1.
Assume that (5) holds with t0 = ∞. By Ref. [33], (5) implies (CC), while by

Ref. [20], (CC) together with (5) yields

α ≥ 1 and 2 ≤ β ≤ α + 1. (6)

Conversely, it was shown by Barlow [2], that any pair (α, β) satisfying (6) can be
realized in the estimate (5) on a geodesic metric space.

Hence, we obtain a large family of metric measure spaces, each of them being
characterized by a pair (α, β) where α is responsible for integration while β is
responsible for differentiation. The Euclidean space Rn belongs to this family with
α = n and β = 2. In the case β = 2 the estimate (5) is called Gaussian, while in the
case β > 2—sub-Gaussian.

On fractals the value of β is determined by the scaling parameter ρ. It is known
that:

• on SG: β = log 5
log 2 ≈ 2.32

• on VS: β = log 15
log 3 ≈ 2.46

• on SC: β = log(8ρ)

log 3 where the exact value of ρ is unknown; the approximation
ρ ≈ 1.25 indicates that β ≈ 2.10.

The walk dimension β has the following probabilistic meaning. Denote by τ
 the
first exit time of Xt from an open set 
 ⊂ M , that is,

τ
 = inf {t > 0 : Xt /∈ 
}

(Fig. 9). Then in the above setting, for any ball B (x, r) with r < const t1/β0 we have

ExτB(x,r) � rβ.
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Fig. 9 Exit from a ball
B (x, r)

6 Besov Spaces and Characterization of β

Given an α-regular metric measure space (M, d, μ) , it is possible to define a family
Bσ
p,q of Besov spaces (see [18]). However, here we need only the following special

cases: for any σ > 0 the space Bσ
2,2 consists of functions such that

‖ f ‖2Bσ
2,2

:= ‖ f ‖22 +
∫ ∫
M×M

| f (x) − f (y)|2
d (x, y)α+2σ dμ(x)dμ(y) < ∞

and Bσ
2,∞ consists of functions such that

‖ f ‖2Bσ
2,∞

:= ‖ f ‖22 + sup
0<r<1

1

rα+2σ

∫ ∫
{d(x,y)<r}

| f (x) − f (y)|2 dμ(x)dμ(y) < ∞.

It is easy to see that Bσ
2,2 shrinks as σ increases and that in the case σ < 1 the space

Bσ
2,2 contains the space Lip0 of compactly supported Lipschitz functions. In Rn the

space Bσ
2,2 becomes {0} if σ > 1, so that for σ > 1 the definition of the Besov spaces

in Rn changes. However, in our setting we are interested in the borderline value of σ

at which the space Bσ
2,2 degenerates. Hence, define the critical value of the parameter

σ by
σcri t := sup

{
σ > 0 : Bσ

2,2 is dense in L2} . (7)

In the next theorem, (M, d, μ) is a metric measure space with relatively compact
balls.
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Theorem 1 [20] Let (E,F) be a Dirichlet form on L2 (M, μ) such that its heat
kernel exists and satisfies for some α > 0, β > 1 the sub-Gaussian estimate

pt (x, y) � C

tα/β
exp

(
−c

(
dβ(x, y)

t

) 1
β−1

)
(8)

for all t > 0 and μ-almost all x, y ∈ M. Then the following is true:

1. the space (M, d, μ) is α-regular, α = dimH M and μ � Hα;
2. σcri t = β/2 (consequently, β ≥ 2);
3. F = Bβ/2

2,∞ and E ( f, f ) � ‖ f ‖2.
B

β/2

2,∞
.

Partial results in this direction were previously obtained by Jonsson [25] and
Pietruska-Paluba [34].

Corollary 2 Both α and β in (8) are invariants of the metric structure (M, d) alone.

Note that the value σcri t is defined by (7) for any α-regular metric space. In the
view of Theorem 1 itmakes sense to redefine the notion of thewalk dimension simply
as 2σcri t . In this way, the walk dimension becomes a second important invariant of
any regular metric space, after the Hausdorff dimension.

An open question Let (M, d, μ) be an α-regular metric measure space (even self-
similar). Assume that σcri t < ∞ and set β = 2σcri t .When and how can one construct
a strongly local Dirichlet form on L2 (M, μ) with the heat kernel satisfying (8)?

The result of [11] hints that such a Dirichlet form is not always possible.

7 Dichotomy of Self-similar Heat Kernels

Let (M, d) be a metric space where all metric balls are relatively compact, and let μ
be a Radon measure on M with full support. A Dirichlet form (E,F) on L2 (M, μ)

is called conservative if its heat semigroup satisfies e−tL1 ≡ 1.

Theorem 3 [22] Assume that (M, d) satisfies in addition the chain condition (CC)

(see Sect. 5). Let (E,F) be a regular conservative Dirichlet form on L2 (M, μ) and
assume that the heat kernel of (E,F) satisfies for all t > 0 and x, y ∈ M the estimate

pt (x, y) � C

tα/β
�

(
c
d (x, y)

t1/β

)
,

where α, β > 0 and � is a positive monotone decreasing function on [0,∞). Then
(M, d, μ) is α-regular, β ≤ α + 1, and the following dichotomy holds:

• either the Dirichlet form E is strongly local, β ≥ 2, and
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�(s) � C exp
(
−cs

β

β−1

)
,

• or the Dirichlet form E is non-local and

�(s) � (1 + s)−(α+β) .

That is, in the first case pt (x, y) satisfies the sub-Gaussian estimate

pt (x, y) � C

tα/β
exp

(
−c

(
dβ(x, y)

t

) 1
β−1

)
(9)

while in the second case we obtain a stable-like estimate

pt (x, y) � 1

tα/β

(
1 + d (x, y)

t1/β

)−(α+β)

� min

(
1

tα/β
,

t

d (x, y)α+β

)
. (10)

8 Estimating Heat Kernels: Strongly Local Case

Let (M, d, μ) be an α-regular metric measure space. Let (E,F) be a strongly local
regularDirichlet formon L2 (M, μ). For anyBorel set E ⊂ M and any f ∈ F denote

EE ( f, f ) =
∫
E

dν〈 f 〉,

where ν〈 f 〉 is the energy measure of f (see [15, p. 123]). For example, in R
n with

the classical Dirichlet form (2) we have dν〈 f 〉 = |∇ f |2 dx .
Definition We say that (E,F) satisfies the Poincaré inequality with exponent β if,
for any ball B = B (x, r) on M and for any function f ∈ F ,

EB ( f, f ) ≥ c

rβ

∫
εB

(
f − f

)2
dμ, (P I )

where εB = B (x, εr), f = 1
μ(εB)

∫
εB f dμ, and c, ε are small positive constants

independent of B and f . For example, in Rn (PI) holds with β = 2 and ε = 1.

Let A � B be two open subsets of M . Define the capacity of the capacitor (A, B) as
follows:

cap(A, B) := inf
{E (ϕ, ϕ) : ϕ ∈ F , ϕ|A = 1, suppϕ � B

}
.

Here E � B means that the closure E of E is a compact set and E ⊂ B.
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Definition We say that (E,F) satisfies the capacity condition if, for any two con-
centric balls B0 := B(x, R) and B := B(x, R + r),

cap(B0, B) ≤ C
μ (B)

rβ
. (cap)

For any function u ∈ L∞ ∩ F and a real number κ ≥ 1 define the generalized
capacity cap(κ)

u (A, B) by

cap(κ)
u (A, B) = inf

{E (
u2ϕ, ϕ

) : ϕ ∈ F , 0 ≤ ϕ ≤ κ, ϕ|A ≥ 1, ϕ = 0 in Bc
}
.

If u ≡ 1 then cap(κ)
u (A, B) = cap(A, B).

Definition We say that the generalized capacity condition (Gcap) holds if there exist
κ ≥ 1 and C > 0 such that, for any u ∈ F ∩L∞ and for any two concentric balls
B0 := B(x, R) and B := B(x, R + r),

cap(κ)
u (B0, B) ≤ C

rβ

∫
B

u2dμ. (Gcap)

Theorem 4 [21] The following equivalence takes place

(CC) + (P I ) + (Gcap) ⇔ (9). (11)

In fact, this result was proved in [21] in a slightly weaker form: assuming the
chain condition (CC), we have the equivalence

(P I ) + (Gcap) ⇔ (9).

It was later proved by Murugan [33] that

(9) ⇒ (CC) ,

whence (11) follows. Besides, the condition (Gcap) was formulated in [21] in a
different, more complicated form. The present form of (Gcap) was introduced in
[19].

The main open question in this field is whether the following conjecture is true.

Conjecture (CC) + (P I ) + (cap) ⇔ (9).
The implication ⇐ clearly is true by Theorem 4, so the main difficulty is in the

implication ⇒ .
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9 Estimating Heat Kernels: Jump Case

Let (M, d, μ) be an α-regular metric measure space. Let now (E,F) be a regular
Dirichlet form of jump type on L2 (M, μ), that is,

E ( f, f ) =
∫∫
M×M

( f (x) − f (y))2 J (x, y)dμ(x)dμ(y)

for all f ∈ F ∩ C0 (M) .Here J (x, y) is a symmetric non-negative function in M ×
M that is called the jump kernel of (E,F).

We use the following condition instead of the Poincaré inequality:

J (x, y) � d (x, y)−(α+β) . (J )

Theorem 5 [14] and [19]

(J ) + (Gcap) ⇔ (10).

In the case β < 2 it is easy to show that (J)⇒ (Gcap) so that in this case we obtain
the equivalence

(J ) ⇔ (10).

The latterwas also shownbyChen andKumagai [13], althoughunder some additional
assumptions about the metric structure of (M, d).

Conjecture (J ) + (cap) ⇔ (10).

10 Ultra-metric Spaces

Let (M, d) be a metric space. The metric d is called an ultra-metric and (M, d) is
called an ultra-metric space if, for all x, y, z ∈ M,

d(x, y) ≤ max{d(x, z), d(z, y)}. (12)

A famous example of an ultra-metric space is the fieldQp of p-adic numbers endowed
with the p-adic distance (here p is a prime). Also Q

n
p is an ultra-metric space with

an appropriate choice of a metric. Denoting by μ the Haar measure on Qn
p, we have

μ (B (x, r)) � rn so that Qn
p is n-regular.

Ultra-metric spaces are totally disconnected and, hence, cannot carry non-trivial
strongly local regular Dirichlet forms. However, it is easy to build jump type forms.
Let (M, d) be an ultra-metric space where all balls are relatively compact, and let μ
be a Radonmeasure onM with full support. Let us fix a cumulative probability distri-
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bution function φ (r) on (0,∞) that is strictly monotone increasing and continuous,
and consider on M × M the function

J (x, y) =
∞∫

d(x,y)

d logφ(r)

μ (Br (x))
, (13)

where the integration is done over the interval [d (x, y) ,∞) against the Lebesgue-
Stieltjes measure associated with the function r �→ logφ (r).

Theorem 6 [10] The jump kernel (13) determines a regular Dirichlet form (E,F)

in L2 (M, μ), and its heat kernel is

pt (x, y) =
∞∫

d(x,y)

dφt (r)

μ (Br (x))
. (14)

See also [9] for further heat kernel bounds on ultra-metric spaces.
For example, take M = Q

n
p and

φ(r) = exp

(
−

( p

r

)β
)

, (15)

where β > 0 is arbitrary. Then one obtains from (13) by an explicit computation that

J (x, y) = cp,n,β d(x, y)−(n+β) (16)

and

pt (x, y) � 1

tn/β

(
1 + d(x, y)

t1/β

)−(n+β)

.

It follows that, for any β > 0, the space Bβ/2
2,2 coincides with the domain of the

Dirichlet form with the jump kernel (16) and, hence, is dense in L2. Consequently,
we obtain by (7) σcri t = ∞ so that Qn

p has the walk dimension ∞.
On Fig. 10 we represent graphically a classification of regular metric spaces

according to the walk dimension β = 2σcri t . Clearly, the Euclidean spaces Rn and
p-adic spaces Qn

p form the boundaries of this scale, and the entire interior is filled
with fractal spaces.
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Fig. 10 Classification of regular metric spaces by the walk dimension β = 2σcri t
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Silverstein Extension and Fukushima
Extension

Ping He and Jiangang Ying

Abstract The extension of Dirichlet forms is concerned in this semi-survey paper.
The notion of Fukushima extension is introduced and it is proved that a Dirichlet
extension of aDirichlet formcan be decomposed uniquely into aSilverstein extension
and a Fukushima extension. Some known results on Fukushima extension of 1-dim
Brownian motion are illustrated. It will be explained how the algebraic structure on
Dirichlet forms plays a role. While Silverstein extension is constructed by changing
only the structure of the form on the boundary, Fukushima extension is obtained by
changing essentially the whole structure and much more difficult to describe.

Keywords Dirichlet forms · Extension · Silverstein extension · Fukushima
extension

Mathematics Subject Classification 31C25 · 60J55

1 Introduction

In 1959, the theory of Dirichlet space was formulated by Beurling and Deny [1],
which is an axiomatic extension of classical Dirichlet integrals in the direction of
Markovian semigroups, and related to symmetric Markov processes naturally in
terms of the regularity condition presented by Fukushima [6] in 1971. This is cer-
tainly a beautiful theory built on Hilbert space theory, which provides an alternative
approach to construct Markov processes under the conditions weaker than usual
methods, e.g., Feller semigroup or SDE, and characterizes the probabilistic structure
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of stochastic processes analytically. This theory has been greatly developed since
Fukushima’s first edition of the book [7] was published in 1980. There are still a
few interesting fundamental problems remained open. In this paper, we will explore
the extension problem of Dirichlet forms, namely how to construct Dirichlet forms
in terms of algebraic structure on a Dirichlet form. The Markov processes corre-
sponding to the extensions are not so intuitive. It is known that there is a one-to-one
correspondence between infinitesimal generators and Dirichlet forms. However the
extension ofDirichlet forms discussed in this paper is totally different from the exten-
sion for self-adjoint operators since there is no non-trivial extension for a self-adjoint
operator.

Let (E,B,m) be a measurable space where E is a locally compact space with
countable base,B is the Borel σ -field on E andm is a fully supported Radonmeasure
on (E,B). A form (E,F) is called a Dirichlet form on L2(E,m), if it satisfies the
following conditions

1. E is a non-negative definite symmetric bi-linear form on F;
2. F is a dense subspace of L2(E,m);
3. F is complete with the E1-norm, which is defined to be

‖ f ‖E1 :=
√
E( f, f ) + ‖ f ‖2L2 , f ∈ F;

4. Markov property: any normal contraction operates on (E,F).

It is called a Dirichlet form in wide sense if only 1, 3, 4 are satisfied. The Dirichlet
form (E,F) on L2(E,m) is regular if it satisfies the regularity: C0(E) ∩ F is dense
in C0(E) with uniform norm and in F with E1-norm, where C0(E) is the space
of continuous functions on E with compact support. We now fix a regular Dirichlet
form (E,F) on L2(E,m). Notice that the regularity will determine E uniquely, while
without regularity, E is determined up to an m-null set.

It is due to theMarkov property that the set of bounded functions,Fb, is an algebra.
In fact, for f, g ∈ Fb, the product f g is a normal contraction of ‖ f ‖∞g + ‖g‖∞ f ,
which is inFb, and it follows hence that f g ∈ Fb. This is the basic algebraic structure
onDirichlet forms. It is obvious thatC0(E) ∩ F is also an algebra. The two extensions
we will talk about are related to this algebraic structure.

What is an extension? Roughly speaking, it is a Dirichlet form on the same L2

space with a bigger domain and the same value on the smaller domain. An extension,
or a Dirichlet extension more precisely, of a Dirichlet form (E,F) on L2(E,m)

is another Dirichlet form (̃E, F̃) on L2(E,m), satisfying F̃ ⊃ F and for f ∈ F,
Ẽ( f, f ) = E( f, f ). In this case we dually say (E,F) is a Dirichlet sub-space of
(̃E, F̃).

Due to Fukushima’s regular representation theorem (e.g. Theorem A.4.1 [9]),
every Dirichlet form (E,F) on L2(E,m) has an equivalent regular Dirichlet form
(̂E, F̂) on L2(Ê, m̂). Precisely, there exists an algebraic isomorphism � from Fb to
F̂b such that for u ∈ Fb,
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‖u‖∞ = ‖�(u)‖∞, ‖u‖L2(m) = ‖�(u)‖L2(m̂), E(u, u) = Ê(�(u),�(u)).

Hence we may always assume that (E,F) is regular if necessary.
Silverstein introduced in his book [18] of 1975 a kind of extension in terms of

ideal, which is called Silverstein extension in [2]. In the paper [10] of 2003 another
type of extension was introduced and investigated by Fukushima and Ying for the
first time. In the current article, the relation between two extensions is explained.
Some results on Fukushima extension involving 1-dim Brownian motion, which
were obtained recently, are illustrated. It is interesting that the algebraic structure
on Dirichlet forms plays a key role. While Silverstein extension is related to ideal,
Fukushima extension is related to algebra.

This paper is organized as follows. In Sect. 2, we will briefly introduce Silverstein
extension in terms of the structure theorems in [18]. In Sects. 3 and 4, the Fukushima
extension, called regular extension before, is defined and several related results con-
cerning this notion are surveyed. Then in Sect. 5, we shall prove that a subalgebra
of a Dirichlet form induces a Fukushima subspace, while an ideal induces a Silver-
stein subspace. Finally in Sect. 6, the reflected Brownian motion is considered as an
example in which the problem of Fukushima subspaces is revisited by a different
approach.

2 Silverstein Extensions

Silverstein extension is originated from three structure theorems, more and more
general in turn, which were formulated by M. Silverstein in Chapter III [18] and
also in Theorem A.4.4 [9]. The first structure theorem is about reflected Dirichlet
space. The second structure theorem is about ideal and includes the first as a special
case. These two were discussed more specifically in Chap.6 [2]. The third structure
theorem corresponds essentially to the killing transform ofMarkov processes, which
was clarified completely in [19, 20]. Actually it can be seen that the key in all three
structure theorems is ideal, or Silverstein extension.

Let’s now state the second structure explicitly. Assume that (E,F) is a regular
Dirichlet form on L2(E,m) and (̃E, F̃) a Dirichlet form on L2(E,m) not necessarily
regular, but has a regularizing space Ẽ . Assume also that F ⊂ F̃ and Ẽ is the same
as E on F. Then Fb is an ideal of F̃b if and only if E can be embedded into Ẽ as an
open subset and

F = { f ∈ F̃ : f (x) = 0 ∀x /∈ E},

i.e., (E,F) is the absorbed space of (̃E, F̃) for E , or the part of (̃E, F̃) on the set E , as
in page 108, [2]. It follows that if (̃E, F̃) is also a regular Dirichlet form on L2(E,m),
then F̃ = F. Following §6.6 in [2], we make precise what an extension is and what
a Silverstein extension is.
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Definition 1 Assume that (E,F) is a regular Dirichlet form on L2(E,m).

1. A Dirichlet form (̃E, F̃) on L2(E,m) is called a Dirichlet extension or simply
an extension of (E,F) if F ⊂ F̃ and

Ẽ( f, f ) = E( f, f ), f ∈ F.

2. An extension (̃E, F̃) of (E,F) is called a Silverstein extension if Fb is an ideal
in F̃b.

3 Fukushima Extensions

TheSilverstein extension is certainly an important notion in theory ofDirichlet forms,
which characterizes killing a Markov process upon leaving a set. It is interesting to
know if there are other type of extensions essentially different from Silverstein’s.

Recall that Cb(E) is the set of bounded continuous functions on E . We say that
(̃E, F̃) satisfies condition (A) if Cb(E) ∩ F̃ is dense in F̃ with Ẽ1-norm.

Theorem 1 Assume now that (̃E, F̃) is an extension of (E,F) and that (E,F) is
a regular Dirichlet form on L2(E,m). Let Fo be the closure of C0(E) ∩ F̃ under
Ẽ1-norm and

Eo = Ẽ|Fo×Fo .

The following statements hold.

1. (Eo,Fo) is a regular Dirichlet form on L2(E,m).
2. (̃E, F̃) is an extension of (Eo,Fo).
3. If (̃E, F̃) satisfies condition (A), then (̃E, F̃) is a Silverstein extension of (Eo,Fo).

Proof 1. It follows from the fact C0(E) ∩ F̃ ⊃ C0(E) ∩ F that C0(E) ∩ F̃ is dense
in C0(E) and hence (Eo,Fo) is a regular Dirichlet form on L2(E,m). 2 is obvious.

3. Now let us verify that (̃E, F̃) is a Silverstein extension of (Eo,Fo). Take f ∈ Fo
b

and g ∈ F̃b. There exist fn ∈ C0(E) ∩ F̃ and gn ∈ Cb(E) ∩ F̃ such that

fn −→ f, and gn −→ g

both in Ẽ1-norm. Then fngn ∈ C0(E) ∩ F̃ and

‖ fngn − f g‖Ẽ1
≤ ‖ fn‖∞‖gn − g‖Ẽ1

+ ‖g‖∞‖ fn − f ‖Ẽ1
.

Since f is bounded, wemay also assume that supn ‖ fn‖∞ < ∞ by Theorem 1.4.2(v)
[9]. Hence fngn −→ f g in Ẽ1-norm. Then f g ∈ Fo

b , i.e., F
o
b is an ideal of F̃b.

Remark 1 It is easy to see that if (̃E, F̃) admits an algebra L satisfying (L) and (L.4)
in Lemma A.4.6 [9], then it satisfies (A). Conversely, the condition: L1(E,m) ∩



Silverstein Extension and Fukushima Extension 165

Cb(E) ∩ F̃ is dense in F̃ under Ẽ1-norm, which is slightly stronger than (A), together
with the condition that (̃E, F̃) is an extension of a regular Dirichlet form on L2(E,m),
guarantees that (̃E, F̃) admits an algebra L , for example the closure of L1(E,m) ∩
Cb(E) ∩ F̃ in L∞(E,m), satisfying (L) and (L.4) in Lemma A.4.6 [9].

On the other hand, it is easy to see that (Eo,Fo) is still a Dirichlet extension of
(E,F). However, noticing that they both are regular on L2(E,m), it is no longer a
Silverstein extension unless they coincide.

Definition 2 An extension (̃E, F̃) of (E,F) is called a Fukushima extension (regular
extension previously) if it is also a regular Dirichlet form on L2(E,m). In this case
(E,F) is called a Fukushima subspace (regular subspace previously) of (̃E, F̃).

It follows that an extension can be decomposed into two kinds of extensions: Sil-
verstein extension (F̃ ⊃ Fo) and Fukushima extension (Fo ⊃ F), where the exten-
sion (Eo,Fo) is uniquely determined. There is no non-trivial Silverstein extension
of (E,F) which is also Fukushima extension, or equivalently the intersection of
Silverstein extension and Fukushima extension is trivial.

Roughly speaking, Silverstein extension extends the Dirichlet form through the
boundary and does not change the intrinsic structure of the form, while Fukushima
extension really changes the structure of the form as we will see in next section.
Intuitively, Silverstein and Fukushima extension may be called exterior and interior
extension respectively.

4 Examples of Fukushima Extensions

The next problem is whether or not there are non-trivial Fukushima extensions or
subspaces for a given regular Dirichlet form. It was shown in [13] that the Dirich-
let forms associated to step processes, including compound Poisson processes, has
no nontrivial Fukushima subspaces. However the answer is positive for the Dirichlet
form (E,F) associated to one-dimensional Brownianmotion, which was first consid-
ered and solved by two joint papers [3, 10]1 of the second author andM. Fukushima.
Afterwards, the problem in the case of 1-dim diffusions, thanks to the perfect theory
(cf. [11]), was solved almost completely in a series papers including [5, 15–17]. Let
us briefly recall the related results now.

1 A remark by J. Ying: In 2000, I visited Professor Fukushima, who was retired from Osaka Uni-
versity and worked at Kansai University. During a discussion, I mentioned this problem which I
had thought about since I finished the paper [20] in 1996 which proves the equivalence of strong
subordination and killing transform.We decided to study the special case of 1-dimBrownianmotion
and Professor Fukushima proposed an elegant idea which leads to the breakthrough. But we made
an elementary mistake and reached a conclusion that Brownian motion has no non-trivial regular
subspaces. After the paper published, I asked a student of mine, Xing Fang, to extend this result to
1-dim diffusions. When he talked about this result to me, we caught up the mistake in [10]. Then
the current result in the joint paper [3] was obtained. Therefore it would be suitable to name what
we call regular extensions/subspaces in [10] as Fukushima extensions/subspaces.
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Let B = (Bt ) be one-dimensional Brownian motion with Dirichlet form (E,F)

where

F = H 1(R) = { f ∈ L2(R) : f ′ ∈ L2(R)};
E( f, f ) = 1

2

∫
( f ′(x))2dx, f ∈ F,

where dx is the Lebesgue measure. We introduce more notations to express
Fukushima extensions/subspaces. For an interval I = 〈a, b〉, where a, b could be
included or not, a strictly increasing and continuous function s on I is called a scale
function on I , and moreover it is called adapted to I provided

{
s(a+) = −∞, if a /∈ I, a > −∞,

s(b−) = +∞, if b /∈ I, b < +∞.

Define a form

F(s) = { f ∈ L2(I ) : f � s,
d f

ds
∈ L2(I, ds)};

E(s)( f, f ) = 1

2

∫

I

(
d f (x)

ds

)2

ds, f ∈ F(s).

Actually (E(s),F(s)) is a regular Dirichlet form on L2(I ) and the irreducible asso-
ciated process is the 1-dim diffusion with scale function s and speed measure dx
(cf. [5]2). When s is a linear function on I , it is called natural scale. The following
theorem was shown in [3].

Theorem 2 (E′,F′) is a Fukushima subspace if and only if there exists a strictly
increasing and continuous function s ∈ F which satisfies s ′ = 0 or 1 a.e. such that

(E′,F′) = (E(s),F(s)).

Let us now focus on Fukushima extensions of Brownian motion. At first it was
proved in [13] that the jumping measure and killing measure of a regular Dirichlet
form will be inherited by its Fukushima subspaces/extensions. Hence a Fukushima
extension of Brownianmotion is still strongly local.When I = R, could we carefully
choose s so that (E(s),F(s)) is a Fukushima extension of Brownian motion? If it is
true, then for any f ∈ F = H 1(R), f ∈ F(s) and

∫ (
d f (x)

ds

)2

ds =
∫

( f ′(x))2dx .

2 This result first appeared in X. Fang’s PhD thesis in 2004. A similar result also appears in [8].
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It follows that dx � ds and

∫ (
f ′(x) · dx

ds

)2

ds =
∫

( f ′(x))2dx .

We have
dx

ds
dx =

(
dx

ds

)2

ds = dx = dx

ds
ds,

and
dx

ds
= 1, a.e.-dx or equivalently

dx

ds
= 0 or 1 a.e.-ds.

Then we have the result which is taken from [5].

Theorem 3 An irreducible regular Dirichlet form (̃E, F̃) on L2(R) is a Fukushima
extension of (E,F), Brownian motion, if and only if (̃E, F̃) = (E(s),F(s)) with the
scale function s on R satisfying

dx � ds, and
dx

ds
= 1 a.e.-dx .

A continuous and increasing function is called of Cantor’s type, if it has zero
derivative a.e. It is obvious that a Fukushima extension in theorem above corresponds
uniquely to a Cantor’s type function c (up to a constant difference) in the form
of s(x) = x + c(x). Intuitively we may imagine a particle moving on a line with
resistance governed by scale function s. For instance, Brownian motion has uniform
resistance. The resistance related to the extension could be infinite on a set of zero
measure. It is known that the generator of Fukushima extension (E(s),F(s)) is the
closure of the operator (with a proper domain)

L = 1

2

d

dx

d

ds(x)
,

which differs from the generator of Brownian motion.
However the following two examples will tell us that a Fukushima extension

contains indeed much richer structure. At first, a Fukushima extension of Brownian
motionmay even not be irreducible. In order to characterize all Fukushima extensions
for Brownian motion we need first to formulate all strongly local Dirichlet forms.
The following theorem, taken from [17], establishes a representation theorem and
characterizes general Fukushima extension of Brownian motion, which shows much
more structures.

Theorem 4 (̃E, F̃) is a strongly local and regular Dirichlet form on L2(R) if and
only if there exist at most countable disjoint intervals {In} with an adapted scale
function sn on each In such that
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{
F̃ = { f ∈ L2(R) : f |In ∈ F(sn), ∀n};
Ẽ( f, f ) = ∑

n E
(sn)( f |In , f |In ), f ∈ F̃.

Moreover (̃E, F̃) is a Fukushima extension of (E,F), Brownian motion, if and only
if

(a) R \ (∪n In) is a null set,

(b) dx � dsn and
dx

dsn(x)
= 1 a.e.

The theorem tells us that a Fukushima extension (or its associated process) of
Brownian motion may not be irreducible and can be decomposed into irreducible
components In on which a 1-dim diffusion lives with scale function sn , while the pro-
cess stays still elsewhere. Intuitively there are not only infinite resistance but also insu-
lator on a null set. An interesting example is a sequence of mutually disjoint closed
intervals In = [an, bn] ∩ R with natural scale for each n such that R \ (

⋃
n≥1 In) is

null. In this case, the diffusion corresponding to Fukushima extension is a reflected
BM on each In and stays still elsewhere. For general 1-dim regular local Dirichlet
forms, it is discussed in [12] how to obtain a Fukushima extension through a series
of routine operations.

Secondly another example shows that a pure jump regular Dirichlet form has a
Fukushima extension having strongly local part. Assume that (E,F) is the Dirichlet
form of Brownian motion and G = ⋃

n On is a dense open set with F = Gc being
of positive measure, where On = (an, bn) is a sequence of disjoint open intervals.
Then

s(x) =
x∫

0

1G(y)dy

is a scale function such that (E(s),F(s)) is a Fukushima subspace of (E,F), Fukushima
extension conversely. We consider now the trace of (E,F) on F , denoted by (̂E, F̂),
and the trace of (E(s),F(s)) also on F , denoted by (̂E(s), F̂(s)). The following theorem
is taken from [15].

Theorem 5 Let μ(dx) = 1F (x)dx.

(a) (̂E, F̂) is Fukushima extension of (̂E(s), F̂(s));
(b) For f ∈ F̂ = L2(F, μ) ∩ Fe,

Ê( f, f ) = 1

2

∫

F

( f ′)2dx + 1

2

∑
n

( f (an) − f (bn))2

bn − an
;

(c) For f ∈ F̂(s) = L2(F, μ) ∩ F(s)
e ,

Ê(s)( f, f ) = 1

2

∑
n

( f (an) − f (bn))2

bn − an
.
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5 Fukushima Subspaces

It is seen that ideal defines Silverstein extension. What defines Fukushima exten-
sion/subspace? The answer is sub-algebra. Given a regular Dirichlet form (E,F) on
L2(E,m). The core C0(E) ∩ F is an algebra, which is a subalgebra of Fb. We shall
prove that a sub-algebra always generates a Dirichlet form in wide sense and a sub-
algebra of C0(E) ∩ F separating points in E always generates a regular Dirichlet
form by Stone-Weierstrass theorem.

There are some discussions in [4] about algebraic structure of a Dirichlet form,
but not clear enough. We shall re-organize it here. A continuously differentiable
function φ is called a smooth contraction if φ(0) = 0 and ‖φ′‖∞ ≤ 1, where ‖ · ‖∞
is the uniform norm.

Theorem 6 Let A be a sub-algebra of Fb and and G the closure of A in F. Then
(E,G) is Markovian.

Proof Since there is a smooth contraction satisfying (1.1.5) in [7] for any ε > 0, it
suffices to prove that every smooth contraction operates on (E,G), namely, for any
f ∈ G and a smooth contraction ψ , it holds ψ( f ) ∈ G.
Assume f ∈ A first. SinceA is an algebra, for any polynomial p without constant

term, p( f ) ∈ A. By mean-value theorem, for any x, y ∈ E ,

|p( f (x)) − p( f (y))| ≤ ‖p′‖ f | f (x) − f (y)|,

where ‖p′‖ f is the uniform norm of p′ on the range of f . Hence, by Markovian
property

E(p( f ), p( f )) ≤ ‖p′‖2f · E( f, f ).

Then taking a sequence {pn} of polynomials such that

lim
n

‖pn − ψ‖ f,C1 = 0,

where ‖ · ‖ f,C1 denotes the C1-norm on the range of f . It follows that

E(pn( f ), pn( f )) ≤ ‖p′
n‖2f · E( f, f ),

and that {E(pn( f ), pn( f )) : n ≥ 1} is bounded. Then by Banach-Alaoglu theorem,
there exists a subsequence of {pn( f )} convergent to ψ( f ) weakly and together with
Banach-Saks theorem, we have ψ( f ) ∈ G.

Assume now that f ∈ G. Then exists fn ∈ A which converges to f in E1-norm.
It follows from above result that ψ( fn) ∈ G and

E(ψ( fn), ψ( fn)) ≤ E( fn, fn).

Another argument of Banach-Alaoglu and Banach-Saks proves ψ( f ) ∈ G.
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IfA be an ideal ofC0(E) ∩ F with closure G, then there exists an open set G ⊂ E
such that

G = { f ∈ F : f (x) = 0 ∀x ∈ Gc},

which is the part of (E,F) on G. Hence every ideal corresponds to a unique open
subset of E .

In the case of sub-algebra it is known that a subalgebra A of C0(E) ∩ F gives
birth to a topological space E∗ which is obtained intuitively by shrinking those
points which can not be separated in A to one point. Its closure (E,G) is a Dirichlet
form on L2(E,m) in wide sense and a regular Dirichlet form on L2(E∗,m∗), where
m∗ = m ◦ q−1 where q is the quotient mapping from E to E∗. For example, given a
compact subsets K ⊂ E , define

A = { f ∈ C0(E) ∩ F : f |K is constant}.

Then A is a subalgebra. The following result tells us how to obtain a Fukushima
subspace.

Corollary 1 Assume that (E,F) is a regular Dirichlet form on L2(E,m). Then
(E,G) is a Fukushima subspace of (E,F) if and only if G is the closure of a sub-
algebra of C0(E) ∩ F, which separates points of E, under E1-norm.

Given a regular Dirichlet form, both Fukushima extensions and subspaces are
difficult to find. However this result provides us a clue how to find its Fukushima sub-
spaces, while finding Fukushima extensions is surely more challenging, and almost
nowhere to start.

6 Example: Revisit

There has been not so much progress on Fukushima extensions and subspaces except
in the case of 1-dim diffusions. The next interesting Dirichlet form in our scope is
the one associated to 1-dim symmetric stable process, which is very similar to 1-dim
Brownian motion in certain sense. As an example, we now revisit the problem how
to find Fukushima subspaces for 1-dim Brownian motion and see how the approach
of sub-algebra in the previous section plays a role here.

Let I = [0, 1] and (E,F) be the regular Dirichlet form on L2(I ) associated with
reflected Brownian motion on I , i.e.,

F = { f ∈ L2(I ) : f ′ ∈ L2(I )};
E( f, f ) =

∫

I

( f ′(x))2dx, f ∈ F.
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Take a strictly increasing continuous function s ∈ F and let A be the algebra gener-
ated by s, or

A = {p(s) : p is a polynomial}.

Assume s(0) = 0 for simplicity. Then we claim that the closure of A is

G = { f ∈ F : f � s},

where f � s means that there exists a g ∈ L1(ds) = L1(s ′dx) such that

f (x) − f (0) =
x∫

0

g(u)ds(u).

In fact assume that f ∈ A, the closure ofA, and a sequence of polynomials pn such
that pn(s) converges to f in E1. It follows that f ∈ F and {(pn(s))′} is L2-Cauchy.
It implies that {p′

n(s)} is L2((s ′)2dx)-Cauchy and there exists g ∈ L2((s ′)2dx), such
that

1∫

0

|p′
n(s(x)) − g(x)|2(s ′(x))2dx −→ 0.

This allows us to conclude that

1∫

0

|(pn(s(x)))′ − g(x)s ′(x)|2dx −→ 0,

and f ′(x) = g(x)s ′(x), x ∈ I , i.e., f ∈ G.
Conversely assume that f ∈ G. Itmeans that there exists g ∈ L2((s ′)2dx) such that

f ′ = gs ′. Then μ(dx) = (s ′(x))2dx is a finite measure and there exists a sequence
of polynomials {qn} such that

s(1)∫

0

(
qn(x) − g(s−1(x))

)2
μ ◦ s−1(dx) −→ 0.

Define

pn(x) :=
x∫

0

qn(u)du + f (0).

We have
E(pn(s) − f, pn(s) − f ) −→ 0.
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It follows from the inequality (2.2.32) in [2] and the fact that pn(s(0)) = f (0) that

sup
x∈I

(pn(s(x)) − f (x))2 ≤ E(pn(s) − f, pn(s) − f ).

This implies that pn(s) converges to f uniformly and also in L2(I ). That completes
the proof.

When is G a Fukushima subspace of (E,F)? Let

K = {x ∈ [0, 1] : s ′(x) = 0}.

Then we claim that (E,G) is a Fukushima subspace of (E,F) if and only if |K | > 0.
Indeed, set j (x) = x, x ∈ [0, 1]. If |K | > 0, every function in G has derivative

0 on K and it implies that G �= F because j /∈ G. Assume conversely |K | = 0. Then
(s ′)−1 · s ′ = 1 a.e. dx , and

x =
x∫

0

du =
x∫

0

(s ′)−1s ′du =
x∫

0

1

s ′(u)
ds(u).

It follows that j is absolutely continuous with respect to s, i.e., j ∈ G. This implies
that G = F.

Silverstein extensionmay be viewed as boundary theory because it is about how to
extend a Dirichlet form through its boundary and does not change the basic structure
of the form. For example, the reflected Brownian motion on [0, 1] is a Silverstein
extension of the Brownian motion absorbed at its boundary. Both are still Brownian
motion on the interior of [0, 1]. However we know very little about Fukushima
extensions/subspaces,which dramatically change the structure as seen in the previous
examples. The problems we may try to answer include the following two basic ones:
(1) whether or not are there always non-trivial Fukushima extensions for a given
regular Dirichlet form? (2) If the answer for (1) is positive, how to characterize
them? Up to now, we have made it clear for 1-dim diffusions. Many problems are
still open, for example, the existence and characterization for Fukushima extensions
of symmetric α-stable processes and multi-dimensional Brownian motions.
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Singularity of Energy Measures
on a Class of Inhomogeneous Sierpinski
Gaskets

Masanori Hino and Madoka Yasui

Abstract We study energy measures of canonical Dirichlet forms on inhomoge-
neous Sierpinski gaskets. We prove that the energy measures and suitable reference
measures are mutually singular under mild assumptions.

Keywords Fractal · Energy measure · Dirichlet form
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1 Introduction

Energy measures associated with regular Dirichlet forms are fundamental concepts
in stochastic analysis and related fields. For example, the intrinsicmetric is defined by
using energy measures and appears in Gaussian estimates of the transition probabili-
ties. Energy measures are also crucial for describing the conditions for sub-Gaussian
behaviors of transition densities. The energy measures are expected to be singular
with respect to (canonical) underlyingmeasures for canonicalDirichlet forms on self-
similar fractals, which has been confirmed in many cases [4, 9, 10, 13]. Recently,
such a singularity was proved under full off-diagonal sub-Gaussian estimates of the
transition densities [11].

In this paper, we study a class of inhomogeneous Sierpinski gaskets as examples
that have not yet been covered in the previous studies: they do not necessarily have
strict self-similar structures or nice sub-Gaussian estimates. We show that the sin-
gularity of the energy measures still holds under mild assumptions. The strategy of
our proof is based on quantitative estimates of probability measures on shift spaces,
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Fig. 1 K (ν)
i , the image of K̃ by the contractive affine map ψ

(ν)
i (ν = 2, 3, 4)

the techniques of which were used in [9, 10]. We expect this study to lead to further
progress in stochastic analysis of complicated spaces of this kind.

This paper is organized as follows: In Sect. 2, we introduce a class of inhomoge-
neous Sierpinski gaskets and canonical Dirichlet forms defined on them, and state
the main results. In Sects. 3 and 4, we provide preliminary lemmas and prove the
theorems. In Sect. 5, we make some concluding remarks.

2 Framework and Statement of Theorems

We begin by recalling 2-dimensional level-ν Sierpinski gaskets SG(ν) for ν ≥ 2. Let
N (ν) = ν(ν + 1)/2. Let K̃ be an equilateral triangle inR2 including the interior. Let
K (ν)

i ⊂ K̃ , i = 1, 2, . . . , N (ν), be equilateral triangles including the interior that are
obtained by dividing the sides of K̃ in ν, joining these points, and removing all
the downward-pointing triangles, as in Fig. 1. Let ψ

(ν)
i , i = 1, 2, . . . , N (ν), be the

contractive affine map from K̃ onto K (ν)
i of type ψ

(ν)
i (z) = ν−1z + α

(ν)
i for some

α
(ν)
i ∈ R

2. Then, the 2-dimensional level-ν Sierpinski gasket SG(ν) is defined as a
unique non-empty compact subset K in K̃ such that

K =
N (ν)⋃

i=1

ψ
(ν)
i (K ).

Let S0 = {1, 2, 3}, and let V0 = {p1, p2, p3} be the set of all vertices of K̃ . In the
definition of SG(ν), the labeling of K (ν)

i does not matter. For later convenience, we
assign K (ν)

i for i ∈ S0 to the triangle that contains pi . As a result, ψ
(ν)
i has a fixed

point pi .
For a general non-empty set X , denote by l(X) the set of all real-valued functions

on X . When X is finite, the inner product (·, ·) on l(X) is defined by

(x, y) =
∑

p∈X
x(p)y(p), x, y ∈ l(X).
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We regard l(X) as the L2-space on X equipped with the counting measure. Then,
the L2-inner product is identical with (·, ·). The induced norm is denoted by | · |.

A symmetric linear operator D = (Dp,q)p,q∈V0 on l(V0) is defined as

Dp,q =
{

−2 if p = q,

1 otherwise.

Let
Q(x, y) := (−Dx, y) = −

∑

p,q∈V0

Dp,q x(q)y(p)

for x, y ∈ l(V0). More explicitly,

Q(x, y) = (x(p1) − x(p2))(y(p1) − y(p2)) + (x(p2) − x(p3))(y(p2) − y(p3))

+ (x(p3) − x(p1))(y(p3) − y(p1)).

This is a Dirichlet form on l(V0). To simplify the notation, we sometimes write Q(x)
for Q(x, x).

Let

V (ν)
1 =

N (ν)⋃

i=1

ψ
(ν)
i (V0).

Let r (ν) > 0 and Q(ν) be a symmetric bilinear form on V (ν)
1 that is defined by

Q(ν)(x, y) =
N (ν)∑

i=1

1

r (ν)
Q(x ◦ ψ

(ν)
i |V0 , y ◦ ψ

(ν)
i |V0), x, y ∈ l(V (ν)

1 ).

Then, there exists a unique r (ν) > 0 such that, for every x ∈ l(V0),

Q(x, x) = inf
{
Q(ν)(y, y)

∣∣ y ∈ l(V (ν)
1 ) and y|V0 = x

}
. (2.1)

Hereafter, we fix such r (ν). For example, r (2) = 3/5, r (3) = 7/15, and r (4) = 41/103,
which are confirmed by the concrete calculation.

For each x ∈ l(V0), there exists a unique y ∈ l(V1) that attains the infimum in
(2.1). For i = 1, 2, . . . , N (ν), the map l(V0) � x �→ y ◦ ψ

(ν)
i |V0 ∈ l(V0) is linear,

which is denoted by A(ν)
i . Then, it holds that

Q(x, x) =
N (ν)∑

i=1

1

r (ν)
Q(A(ν)

i x, A(ν)
i x), x ∈ l(V0). (2.2)

We can construct a Dirichlet form on SG(ν) by using such data, but we omit the
explanation because we discuss it in more general situations soon.
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For reference, we give a quantitative estimate of r (ν).

Lemma 2.1 1/ν < r (ν) < N (ν)/ν2.

Proof This kind of inequality should be well-known (see, e.g., [2, Theorem 1]), and
see the Proof of [11, Proposition 5.3] (and also [1, Proposition 6.30]) for the second
inequality. For the first inequality, let

α = inf{Q(z, z) | z ∈ l(V0), z(p1) = 1, z(p2) = 0} > 0. (2.3)

Then, for general z ∈ l(V0),

Q(z, z) ≥ (z(p1) − z(p2))
2α (2.4)

by considering (z − z(p2))/(z(p1) − z(p2)).
The infimum of (2.3) is attained by x ∈ l(V0) given by x(p1) = 1, x(p2) = 0,

x(p3) = 1/2 (and α = 3/2). Take y ∈ l(V (ν)
1 ) attaining the infimum of (2.1). Let

I ⊂ {1, 2, . . . , N (ν)} be a ν-points set such that, for each i ∈ I , the intersection of
ψ

(ν)
i (V0) and the segment connecting p1 and p2 is a two-points set, say { p̌i , p̂i }. Note

that 3 /∈ I , and y is not constant on ψ
(ν)
3 (V0), which is confirmed by applying the

maximum principle (see, e.g., [12, Proposition 2.1.7]) to the graph whose vertices
are all points of V (ν)

1 included in the triangle with p1, p3 and the middle point of p1
and p2 as the three vertices. Therefore,

α = Q(ν)(y, y)

>
∑

i∈I

1

r (ν)
Q(y ◦ ψ

(ν)
i |V0 , y ◦ ψ

(ν)
i |V0)

≥ 1

r (ν)

∑

i∈I
(y( p̌i ) − y( p̂i ))

2α (from (2.4))

≥ α

r (ν)

(∑

i∈I
(y( p̌i ) − y( p̂i ))

)2(∑

i∈I
1

)−1

= α

r (ν)
· 1 · ν−1.

Thus, 1/ν < r (ν). �

See also [8] for the asymptotic behavior of r (ν) as ν → ∞.
We now introduce 2-dimensional inhomogeneous Sierpinski gaskets. We fix a

non-empty finite subset T of {ν ∈ N | ν ≥ 2}. For each ν ∈ T , let S(ν) denote the
set of the letters iν for i = 1, 2, . . . , N (ν). We set S =⋃ν∈T S(ν) and Σ = SN. For
example, if T = {2, 3}, then

S(2) = {12, 22, 32}, S(3) = {13, 23, 33, 43, 53, 63},
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Fig. 2 Examples of inhomogeneous Sierpinski gaskets (T = {2, 3})

and S = S(2) ∪ S(3) has nine elements. (Note that iν does notmean ii . . . i︸ ︷︷ ︸
ν

, the ν-letter

word consisting of only i , in this paper.)
For each v ∈ S, a shift operator σv : Σ → Σ is defined by σv(ω1ω2 . . .) =

vω1ω2 . . .. LetW0 = {∅} andWm = Sm form ∈ N, and defineW≤n =⋃n
m=0 Wm and

W∗ =⋃m∈Z+ Wm . Here,Z+ := N ∪ {0}. Forw ∈ Wm , |w| representsm and is called
the length of w. For w = w1 . . . wm ∈ Wm and w′ = w′

1 . . . w′
n ∈ Wn , ww′ ∈ Wm+n

denotes w1 . . . wmw′
1 . . . w′

n . Also, σw : Σ → Σ is defined as σw = σw1 ◦ · · · ◦ σwm ,
and let Σw = σw(Σ). For k ≤ m, [w]k denotes w1 . . . wk ∈ Wk . Similarly, for
ω = ω1ω2 . . . ∈ Σ and n ∈ N, let [ω]n denote ω1 . . . ωn ∈ Wn . By convention,
σ∅ : Σ → Σ is the identity map, [w]0 := ∅ ∈ W0 for w ∈ W∗, and [ω]0 := ∅ ∈ W0

for ω ∈ Σ .
For iν ∈ S, we define ψiν := ψ

(ν)
i and Aiν := A(ν)

i . For w = w1w2 . . . wm ∈ Wm ,
ψw denotes ψw1 ◦ ψw2 ◦ · · · ◦ ψwm and Aw denotes Awm . . . Aw2 Aw1 . Here, ψ∅ and
A∅ are the identity maps by definition. For ω ∈ Σ ,

⋂
m∈Z+ ψ[ω]m (K̃ ) is a one-point

set {p}. The map Σ � ω �→ p ∈ K̃ is denoted by π . The relation ψv ◦ π = π ◦ σv

holds for v ∈ S.
Now, we fix L = {Lw}w∈W∗ ∈ TW∗ . That is, we assign each w ∈ W∗ to Lw ∈ T .

We set W̃0 = {∅} and
W̃m =

⋃

w∈W̃m−1

{
wv
∣∣ v ∈ S(Lw)

}

for m ∈ N, inductively. Define W̃∗ =⋃m∈Z+ W̃m ⊂ W∗, Σ̃ = {ω ∈ Σ | [ω]m ∈ W̃m

for all m ∈ Z+} and G(L) = π(Σ̃). It holds that

G(L) =
⋂

m∈Z+

⋃

w∈W̃m

ψw(K̃ ).

We call G(L) an inhomogeneous Sierpinski gasket generated by L . See Fig. 2 for a
few examples. We equip G(L) with the relative topology of R2. If Lw = ν for all
w ∈ W∗, then G(L) is nothing but SG(ν).
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For m ∈ N, let
Vm =

⋃

w∈W̃m

ψw(V0),

and let V∗ =⋃m∈Z+ Vm . The closure of V∗ is equal to G(L).
Next, we define reference measures on G(L). Let

A(ν) =
{
q = {qv}v∈S(ν)

∣∣∣∣ qv > 0 for all v ∈ S(ν) and
∑

v∈S(ν)

qv = 1

}

and
A =

{
q = {qv}v∈S

∣∣∣ for each ν ∈ T, {qv}v∈S(ν) ∈ A(ν)
}
.

For q ∈ A, there exists a unique Borel probability measure λq on Σ such that

λq(Σw) =
{
qw1 . . . qwm if w = w1 . . . wm ∈ W̃m,

0 if w /∈ W̃∗.

We note that

λq(Σ \ Σ̃) = lim
m→∞ λq

(
Σ \

⋃

w∈W̃m

Σw

)
= 0.

In what follows, qw denotes qw1 . . . qwm for w = w1 . . . wm ∈ Wm . By definition,
q∅ = 1. The Borel probability measure μq on G(L) is defined by μq = (π |Σ̃ )∗λq ,
that is, the image measure of λq by π |Σ̃ : Σ̃ → G(L). It is easy to see that μq has
full support and does not charge any one points. When T = {ν}, μq is a self-similar
measure on G(L) = SG(ν).

We next construct a Dirichlet form on G(L). Let riν = r (ν) for iν ∈ S, and rw =
rw1 . . . rwm for w = w1 . . . wm ∈ Wm . By definition, r∅ = 1. For m ∈ Z+, let

E (m)(x, y) =
∑

w∈W̃m

1

rw
Q(x ◦ ψw|V0 , y ◦ ψw|V0), x, y ∈ l(Vm).

From (2.1) and (2.2), it holds that for every m ∈ Z+ and x ∈ l(Vm),

E (m)(x, x) = inf{E (m+1)(y, y) | y ∈ l(Vm+1) and y|Vm = x}.

Thus, for any x ∈ l(V∗), the sequence {E (m)(x |Vm , x |Vm )}∞m=0 is non-decreasing. We
define

F =
{
f ∈ C(G(L))

∣∣ lim
m→∞ E (m)( f |Vm , f |Vm ) < ∞

}
,

E( f, g) = lim
m→∞ E (m)( f |Vm , g|Vm ), f, g ∈ F ,
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where C(G(L)) denotes the set of all real-valued continuous functions on G(L).
Then, (E,F) is a resistance form and also a strongly local regular Dirichlet form on
L2(G(L), μq) for anyq ∈ A (see [7] and [12,Chapter 2]).Here,C(G(L)) is regarded
as a subspace of L2(G(L), μq). We equip F with the inner product ( f, g)F :=
E( f, g) + ∫G(L)

f g dμq as usual.
The energy measure μ〈 f 〉 of f ∈ F is a finite Borel measure on G(L), which is

characterized by

∫

G(L)

g dμ〈 f 〉 = 2E( f, f g) − E( f 2, g), g ∈ F .

By letting g ≡ 1, the total mass of μ〈 f 〉 is 2E( f, f ). Another expression of μ〈 f 〉 is
discussed in Sect. 3.

We introduce the following conditions for q = {qv}v∈S ∈ A to describe our main
theorem.

(A) qiν �= r (ν) for all i ∈ S0 and ν ∈ T .
(B) For each l0, l1 ∈ N, there exists l2 ∈ N such that the following (
) holds for

μq -a.e.ω ∈ Σ :

(
) there exist infinitely many k ∈ Z+ such that, for every i, j ∈ S0,

[ω]kiνk+1 . . . iνk+l0 jνk+l0+1 . . . jνk+l0+l1 jνk+l0+l1+1 . . . jνk+l0+l1+l2

∈ W̃k+l0+l1+l2 (2.5)

implies that

{νm ∈ T | k + l0 + 1 ≤ m ≤ k + l0 + l1}
⊂ {νm ∈ T | k + l0 + l1 + 1 ≤ m ≤ k + l0 + l1 + l2}. (2.6)

Remark 2.2 (1) Condition (
) is meaningful only for ω ∈ Σ̃ .
(2) For ω ∈ Σ̃ , k ∈ Z+, and i, j ∈ S0, the elements νk+1, νk+2, . . . , νk+l0+l1+l2 ∈

T so that (2.5) holds are uniquely determined. Indeed, νk+1 = L [ω]k , νk+2 =
L [ω]k iνk+1 , νk+3 = L [ω]k iνk+1 iνk+2 , and so on.

(3) A simple sufficient condition for (2.6) is

{νm | k + l0 + l1 + 1 ≤ m ≤ k + l0 + l1 + l2} = T . (2.7)

Theorem 2.3 Let q ∈ A. Suppose that Condition (A) or (B) holds. Then, μ〈 f 〉 and
μq are mutually singular for every f ∈ F .

We provide some typical examples.

Example 2.4 Let ν ∈ T and define L = {Lw}w∈W∗ by Lw = ν for allw ∈ W∗. Then,
G(L) is equal to SG(ν). In this case, Condition (
) is trivially satisfied for all ω ∈ Σ̃
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by letting l2 = 1 because both sides of (2.6) are equal to {ν}. Thus, by Theorem 2.3,
μ〈 f 〉 ⊥ μq for every f ∈ F and q ∈ A. This singularity has been proved in [10]
already.

Example 2.5 Take any sequence {τm}m∈Z+ ∈ T Z+ and let Lw = τ|w| for w ∈ W∗.
The set G(L) associated with L = {Lw}w∈W∗ has been studied in, e.g., [3, 6, 11],
and called a scale irregular Sierpinski gasket.

(1) Let q = {qw}w∈S ∈ A be given by qv = N (ν)−1 for v ∈ S(ν). The associated
measure μq is regarded as a uniform measure on G(L). Since N (ν)−1 < ν−1,
Condition (A) holds fromLemma 2.1. Therefore,μ〈 f 〉 ⊥ μq for any f ∈ F from
Theorem 2.3. This case was discussed in [11, Section5].

(2) (a) Suppose that there exists l2 ∈ N such that {τk+1, τk+2, . . . , τk+l2} = T for
infinitely many k ∈ Z+. Then, Condition (
) is satisfied for all ω ∈ Σ̃ , in
view of (2.7).

(b) Suppose that for each l ∈ N there exists k ∈ Z+ such that τk+1 = τk+2 =
· · · = τk+l . Then, Condition (
) with l2 = 1 is satisfied for all ω ∈ Σ̃ and
l0, l1 ∈ N, but (2.7) may fail to hold for any l2.

In either case, μ〈 f 〉 ⊥ μq for any f ∈ F and any q ∈ A from Theorem 2.3.

Example 2.6 Let ρ be a probability measure on T with full support. We take a
family of T -valued i.i.d. random variables {Lw(·)}w∈W∗ with distribution ρ that are
defined on some probability space (Ω̂, B̂, P̂). For each ω̂ ∈ Ω̂ , we can define an
inhomogeneous Sierpinski gasket G(L(ω̂)) associated with L(ω̂) := {Lw(ω̂)}w∈W∗ .
This is called a random recursive Sierpinski gasket [7]. Then, the following holds.

Theorem 2.7 For P̂-a.s. ω̂, G(L(ω̂)) satisfies Condition (B) for all q ∈ A. That is,
for P̂-a.s. ω̂, the Dirichlet form on G(L(ω̂)) can apply Theorem 2.3 for all q ∈ A to
conclude that the energy measures and μq are mutually singular for all q ∈ A.

Theorems 2.3 and 2.7 are proved in Sect. 4.

3 Preliminary Lemmas

In this section, we provide the necessary concepts and lemmas for proving Theo-
rem 2.3. We fix L = {Lw}w∈W∗ ∈ TW∗ and q ∈ A and retain the notation used in the
previous section.

For w ∈ W̃∗, let Kw denote π(Σw ∩ Σ̃) ( = ψw(K̃ ) ∩ G(L)).
Let m ∈ Z+ and x ∈ l(Vm). There exists a unique h ∈ F that attains

inf{E( f, f ) | f ∈ F and f |Vm = x}.
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We call such h a piecewise harmonic (more precisely, an m-harmonic) function.
When m = 0, h is called a harmonic function and is denoted by ι(x).

Lemma 3.1 For f ∈ F and m ∈ Z+, let fm be an m-harmonic function such that
fm = f on Vm. Then, fm converges to f in F as m → ∞. In particular, the totality
of piecewise harmonic functions is dense in F .

Proof The proof is standard. From the maximum principle (see, e.g., [12, Lemma
2.2.3]),

min
Kw

f ≤ min
ψw(V0)

f = min
Kw

fm ≤ max
Kw

fm = max
ψw(V0)

f ≤ max
Kw

f

for any w ∈ W̃m . Therefore, fm converges to f uniformly on G(L), in particular,
in L2(G(L), μq) as m → ∞. Because { fm}m∈Z+ is bounded in F , it converges to
f weakly in F . Because limm→∞( fm, fm)F = ( f, f )F , fm actually converges to f
strongly in F . �

Let v ∈ W∗. We define L [v] = {L [v]
w }w∈W∗ ∈ TW∗ by L [v]

w = Lvw. Then, we can
define a strongly local regular Dirichlet form (E [v],F [v]) on L2(G(L [v]), μ[v]

q ), where
μ[v]
q is defined in the same way as μq with L replaced by L [v]. The energy measure

of f ∈ F [v] is denoted by μ
[v]
〈 f 〉. The following lemma is proved in a straightforward

manner by going back to the above definition.

Lemma 3.2 (1) Let f ∈ F and m ∈ N. For each v ∈ W̃m, f [v] := f ◦ ψv|G(L [v])
belongs to F [v]. Moreover, it holds that

E( f, f ) =
∑

v∈W̃m

1

rv
E [v]( f [v], f [v]) (3.1)

and

μ〈 f 〉 =
∑

v∈W̃m

1

rv
(ψv|G(L [v]))∗μ[v]

〈 f [v]〉. (3.2)

If f is an m-harmonic function, then f [v] is a harmonic function with respect to
(E [v],F [v]).

(2) It holds that
μq =

∑

v∈W̃m

qv(ψv|G(L [v]))∗μ[v]
q . (3.3)

By applying (3.1) with E replaced by E [ξ ] for ξ ∈ W̃∗ to f = ι(x) for x ∈ l(V0),
we obtain the following identity as a special case:
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r−1
ξ Q(Aξ x) =

∑

ζ∈Wm ; ξζ∈W̃∗

r−1
ξζ Q(Aξζ x), m ∈ Z+. (3.4)

Let f ∈ F . For each m ∈ Z+, let λ(m)
〈 f 〉 be a measure on Wm defined as

λ
(m)
〈 f 〉(C) = 2

∑

v∈C∩W̃m

r−1
v E [v]( f [v], f [v]), C ⊂ Wm .

Then, we can verify that {λ(m)
〈 f 〉 }m∈Z+ are consistent in the sense that λ

(m)
〈 f 〉(C) =

λ
(m+1)
〈 f 〉 (C × S). By the Kolmogorov extension theorem, there exists a unique Borel

measure λ〈 f 〉 on Σ such that

λ〈 f 〉(ΣC) = λ
(m)
〈 f 〉(C) for any m ∈ Z+, C ⊂ Wm,

where ΣC =⋃v∈C Σv . It is easy to see that λ〈 f 〉(Σ \ Σ̃) = 0.
In particular, if f = ι(x) for x ∈ l(V0), we have

λ〈ι(x)〉(ΣC) = 2
∑

v∈C∩W̃m

r−1
v Q(Avx), C ⊂ Wm . (3.5)

For simplicity, we write λ〈x〉 for λ〈ι(x)〉.

Lemma 3.3 For f ∈ F , (π |Σ̃ )∗λ〈 f 〉 = μ〈 f 〉.

Proof This lemma is proved in [9, Lemma 4.1] when T is a one-point set. In the
general case, it suffices to modify the proof line by line by using Lemma 3.2 as a
substitution of the self-similar property. We provide a proof here for the reader’s
convenience.

We define a set function χm for m ∈ Z+ by

χm(A) =
∑

v∈W̃m

1

rv
μ

[v]
〈 f [v]〉(π(σ−1

v (A)))

for a σ -compact subset A of Σ̃ .
Let B be a closed subset of G(L). For v ∈ W̃m ,

(ψv|G(L [v]))
−1(B) = π

(
(π |Σ̃ )−1((ψv|G(L [v]))

−1(B))
)

= π
(
σ−1

v ((π |Σ̃ )−1(B))
)
.

Therefore, μ〈 f 〉(B) = χm
(
(π |Σ̃ )−1(B)

)
from (3.2).
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For C ⊂ W̃m ,

λ〈 f 〉(ΣC) = λ
(m)
〈 f 〉(C)

= 2
∑

v∈C
r−1
v E [v]( f [v], f [v])

=
∑

v∈W̃m

r−1
v μ

[v]
〈 f [v]〉
(
π(σ−1

v (ΣC))
)

= χm(ΣC).

Here, in the third equality, we used the identity

π(σ−1
v (ΣC)) =

{
G(L [v]) if v ∈ C,

∅ otherwise.

Let F be a closed subset of G(L). Then, (π |Σ̃ )−1(F) is also closed in Σ̃ . Form ∈
Z+, letCm = {w ∈ W̃m

∣∣ Σw ∩ (π |Σ̃ )−1(F) �= ∅}. Then, {ΣCm }∞m=0 is decreasing in
m and

⋂
m∈Z+ ΣCm = (π |Σ̃ )−1(F). By using the monotonicity of χm ,

μ〈 f 〉(F) = χm
(
(π |Σ̃ )−1(F)

) ≤ χm(ΣCm ) = λ〈 f 〉(ΣCm ).

Letting m → ∞, we have μ〈 f 〉(F) ≤ λ〈 f 〉(F).
The inner regularity of μ〈 f 〉 and λ〈 f 〉 implies that μ〈 f 〉(B) ≤ λ〈 f 〉(B) for all Borel

sets B. Because the total measures of μ〈 f 〉 and λ〈 f 〉 are the same, we also have the
reverse inequality by considering G(L) \ B in place of B. �

Let i ∈ S0 and ν ∈ T . From [12, Proposition A.1.1 and Theorem A.1.2], both 1
and r (ν) are simple eigenvalues of A(ν)

i , and the modulus of another eigenvalue s(ν)

of A(ν)
i is less than r (ν). In our situation, the eigenvectors are explicitly described:

the eigenvectors of eigenvalues 1, r (ν), s(ν) are constant multiples of

1 :=
⎛

⎝
1
1
1

⎞

⎠ , ṽ1 :=
⎛

⎝
0
1
1

⎞

⎠ , y1 :=
⎛

⎝
0
1

−1

⎞

⎠ for A(ν)
1 ,

1, ṽ2 :=
⎛

⎝
1
0
1

⎞

⎠ , y2 :=
⎛

⎝
−1
0
1

⎞

⎠ for A(ν)
2 ,

1, ṽ3 :=
⎛

⎝
1
1
0

⎞

⎠ , y3 :=
⎛

⎝
1

−1
0

⎞

⎠ for A(ν)
3 ,
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respectively. Here, we identify x ∈ l(V0) with

⎛

⎝
x(p1)
x(p2)
x(p3)

⎞

⎠. It is crucial for subsequent

arguments that the eigenvectors of eigenvalue r (ν) are independent of ν.
Let l̃(V0) be the set of all x ∈ l(V0) such that

∑
p∈V0

x(p) = 0. The orthogonal

linear space of l̃(V0) in l(V0) is one-dimensional and spanned by 1. The function
l̃(V0) � x �→ Q(x, x)1/2 ∈ R defines a norm on l̃(V0). Let P denote the orthogonal
projection from l(V0) onto l̃(V0). For each i ∈ S0, ui ∈ l(V0) denotes the column
vector (Dp,pi )p∈V0 .

Lemma 3.4 (see, e.g., [10, Lemma 5] and [12, Lemma A.1.4]) For each i ∈ S0 and
ν ∈ T , ui is an eigenvector of tA(ν)

i with respect to the eigenvalue r (ν). Moreover,
ui ∈ l̃(V0).

We also note that (ui , 1) = (ui , yi ) = 0. We take vi ∈ l(V0) such that vi is a constant
multiple of ṽi and (ui , vi ) = 1.

Lemma 3.5 Let i ∈ S0, x ∈ l(V0), and ν = {νk}k∈N ∈ TN. Then, it holds that

lim
n→∞ r−1

iν1 iν2 ...iνn P Aiν1 iν2 ...iνn x = (ui , x)Pvi (3.6)

and
lim
n→∞ r−2

iν1 iν2 ...iνn Q(Aiν1 iν2 ...iνn x) = (ui , x)
2Q(vi ). (3.7)

Moreover, these convergences are uniform in i ∈ S0, x ∈ C, and ν ∈ TN, where C is
the inverse image of an arbitrary compact set of l(V0) by P.

Proof Note that PAiν1 iν2 ...iνn 1 = 0 and r−1
iν1 iν2 ...iνn Aiν1 iν2 ...iνn vi = vi for all n. More-

over, |r−1
iν1 iν2 ...iνn Aiν1 iν2 ...iνn yi | ≤ θn|yi |, where θ = maxν∈T |s(ν)/r (ν)| ∈ [0, 1).

For x ∈ l(V0) in general, we can decompose x into x = x11 + x2vi + x3yi . By
taking the inner product with ui on both sides, (ui , x) = x2(ui , vi ) = x2. There-
fore, (3.6) holds, and (3.7) follows immediately from (3.6). The uniformity of the
convergences is evident from the argument above. �

Although the next lemma can be confirmed by concrete calculation, we provide a
proof that is applicable to more general situations.

Lemma 3.6 The following hold.

(1) For every i, j ∈ S0, Q(vi , vi ) = Q(v j , v j ) > 0. For j ∈ S0 and i, i ′ ∈ S0 \ { j},
(Dv j )(pi ) = (Dv j )(pi ′).

(2) For every i, j ∈ S0, (ui , v j ) �= 0.
(3) There exists δ0 > 0 such that, for each i ∈ S0, there exists some i ′ ∈ S0 satisfying

∣∣|(Dvi )(pi )| − |(Dvi )(pi ′)|
∣∣ ≥ δ0. (3.8)

Proof (1) This is proved in [10, Lemma 10] in more-general situations.
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(2) Note that (u j , v j ) = 1. From (1), (ui , v j ) = (Dv j )(pi ) is independent of i ∈
S0 \ { j}. Moreover, 0 = (Dv j , 1) =∑i∈S0(ui , v j ). Therefore,
(ui , v j ) = −1/(#S0 − 1) = −1/2 for i ∈ S0 \ { j}.

(3) From the proof of (2), we can take δ0 = 1/2. �

The following are simple estimates used in the proofs of Lemma4.1 andTheorem2.3.

Lemma 3.7 Let s, t > 0 and a > 0. If |log(t/s)| ≥ a, then

|t − s| ≥ (1 − e−a)max{s, t}.

Proof Wemay assume that s ≤ t . Then, t/s ≥ ea , which implies t − s ≥ t − te−a =
t (1 − e−a). �

Lemma 3.8 Let d ∈ N and

Pd =
{
a = (a1, . . . , ad) ∈ R

d
∣∣ ak ≥ 0 for all k = 1, . . . , d, and

d∑

k=1

ak = 1

}
.

For a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Pd , it holds that

d∑

k=1

√
akbk ≤ 1 − |a − b|2

Rd

8
.

Proof Since all ak and bk are dominated by 1,

√
akbk = ak + bk

2
− (ak − bk)2

2(
√
ak + √

bk)2

≤ ak + bk
2

− (ak − bk)2

8
.

Taking the sum with respect to k on both sides, we arrive at the conclusion. �

At the end of this section, we introduce a general sufficient condition for singu-
larity of two measures. For z ∈ R, let

z⊕ =
{
1/z (z �= 0)

0 (z = 0).

Theorem 3.9 Let (Ω,B, {Bn}n∈Z+) be ameasurable space equippedwith a filtration
such that B =∨n∈Z+ Bn. Let P1 and P2 be two probability measures on (Ω,B).
Suppose that, for each n ∈ Z+, P2|Bn is absolutely continuous with respect to P1|Bn .
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Let zn be the Radon–Nikodym derivative d(P2|Bn )/d(P1|Bn ) for n ∈ Z+ and αn =
znz

⊕
n−2 for n ≥ 2. If

∞∑

n=2

(
1 − E

P1 [√αn | Bn−2]
) = ∞ P1-a.s. (3.9)

holds, then P1 and P2 are mutually singular. Here, EP1[ · |Bn−2] denotes the condi-
tional expectation for P1 given Bn−2.

Proof We modify the proof of [9, Theorem 4.1]. By [14, Theorem VII.6.1], z∞ :=
limn→∞ zn exists (P1 + P2)-a.e. and

P2(A) =
∫

A

z∞ dP1 + P2(A ∩ {z∞ = ∞}), A ∈ B. (3.10)

Moreover, P1 and P2( · ∩ {z∞ = ∞}) are mutually singular.
Let

Z1 =
{ ∞∑

k=1

(
1 − E

P1[√α2k | B2(k−1)]
) = ∞

}
,

Z2 =
{ ∞∑

k=1

(
1 − E

P1[√α2k+1 | B2(k−1)+1]
) = ∞

}
.

From (3.9), P1(Z1 ∪ Z2) = 1. Considering the two filtrations {B2k}k∈Z+ and
{B2k+1}k∈Z+ and following the proof of [14, TheoremVII.6.4], we have {z∞ = ∞} =
Z1 = Z2 up to P2-null sets. Therefore, z∞ = ∞ P2-a.e. on Z1 ∪ Z2. Applying (3.10)
to A = Ω \ (Z1 ∪ Z2), which is a P1-null set, we have P2(A) = P2(A ∩ {z∞ = ∞}),
that is, z∞ = ∞ P2-a.e. on A. Thus, P2(z∞ = ∞) = 1 and we conclude that P1 and
P2 are mutually singular. �

4 Proof of the Main Results

We introduce some notation. Let K be a closed set of l(V0) that is defined as

K = {x ∈ l(V0) | 2Q(x, x) = 1}.

For l0 ∈ Z+ and l1, l2 ∈ N, let

L(l0, l1, l2) =
{
ν = {νk}∞k=1 ∈ TN

∣∣ {νk | l0 + 1 ≤ k ≤ l0 + l1}
⊂ {νk | l0 + l1 + 1 ≤ k ≤ l0 + l1 + l2}

}
.



Singularity of Energy Measures on a Class of Inhomogeneous … 189

We define several constants as follows:

β1 := min{|(ui , v j )| | i, j ∈ S0} = min{|(Dvi )(p)| | i ∈ S0, p ∈ V0},
β2 := min {|log(rv/qv)| | v ∈ S, rv �= qv} > 0,

β3 := min{qv | v ∈ S} > 0,

β4 := min{r (ν) | ν ∈ T } > 0,

β5 := 2Q(vi , vi ) > 0 (i ∈ S0).

By Lemma 3.6(2), β1 > 0. In the definition of β2, min ∅ = 1 by convention. By
Lemma 3.6(1), β5 is independent of the choice of i .

We fix q ∈ A. The following is a key lemma for proving Theorem 2.3.

Lemma 4.1 (1) There exist N ∈ N and N ′ ∈ N such that, for any l ∈ N, there exists
γ > 0 satisfying the following. For all ν = {νk}∞k=1 ∈ L(N , N ′, l) and x ∈ K,
there exist

i = i(x) ∈ S0,

j = j (x, ν1, ν2, . . . , νN ) ∈ S0,

m = m(l, x, ν1, ν2, . . . , νN+N ′+l) ∈ {N ′, N ′ + 1, . . . , N ′ + l}

such that
|2r−1

ξ Q(Aξ x) − qξ | ≥ γ

with ξ = iν1 . . . iνN jνN+1 . . . jνN+m . Here, “ j = j (x, ν1, ν2, . . . , νN )”means that
“ j depends only on x, ν1, ν2, . . . , νN ,” and so on.

(2) If Condition (A) holds, then the claim of item (1) holds with “ν = {νk}∞k=1 ∈
L(N , N ′, l)” replaced by “ν = {νk}∞k=1 ∈ TN.”

Proof (1) Let ϕ be a continuous function on l(V0) that is defined as

ϕ(x) =
∑

i∈S0
(ui , x)

2.

Since the range of ϕ onK is equal to that on a compact set P(K), ϕ attains aminimum
on K, say β6. Let x ∈ K. Because

0 < Q(x, x) = (−Dx, x) = −
∑

i∈S0
(ui , x)x(pi ),

(ui , x) �= 0 for some i ∈ S0. This implies that ϕ(x) > 0. (In fact, we can confirm
that ϕ(x) ≡ 3/2.) Thus, β6 > 0. Define δ′ = β6/#S0 = β6/3 and Ki = {x ∈ K |
(ui , x)2 ≥ δ′} for i ∈ S0. It holds that K =⋃i∈S0 Ki .
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We fix x ∈ K. There exists i ∈ S0 such that x ∈ Ki . From Lemma 3.6(3), there
exists i ′ ∈ S0 such that (3.8) holds. By keeping inmind that (Dvi )(pi ) = 1, it follows
that

∣∣(Dvi )(pi )
2 − (Dvi )(pi ′)

2
∣∣ = ∣∣1 + |(Dvi )(pi ′)|

∣∣ ∣∣|(Dvi )(pi )| − |(Dvi )(pi ′)|
∣∣

≥ δ0. (4.1)

Let ν = {νk}k∈N ∈ TN and define xn = r−1
iν1 ...iνn Aiν1 ...iνn x for n ∈ N. FromLemma 3.4,

(ui , xn) = (r−1
iν1 ...iνn

tAiν1 ···iνn l ui , x) = (ui , x). (4.2)

Let δ1 = √
δ′β1/2 and δ2 = δ′δ0/3. By Lemma 3.5, there exists N ∈ N independent

of the choice of x , i , and ν such that, for all p ∈ V0,

∣∣|(DxN )(p)| − |(ui , x)(Dvi )(p)|
∣∣ ≤ δ1 (4.3)

and ∣∣(DxN )(p)2 − (ui , x)
2(Dvi )(p)

2
∣∣ ≤ δ2. (4.4)

From (4.2) and (4.3), for any j ∈ S0,

|(u j , xN )| = |(DxN )(p j )|
≥ |(ui , x)(Dvi )(p j )| − δ1

≥ √
δ′β1 − δ1 = δ1.

By Lemma 3.5,

lim
m→∞ r−2

jνN+1 ... jνN+m Q(A jνN+1 ... jνN+m xN ) = (u j , xN )2Q(v j )

≥ δ21β5/2 > 0.

This convergence is uniform in x , i , j , and ν because PxN belongs to some compact
set ofK that is independent of them.We take δ3 = β5δ2/2. Then, there exists N ′ ∈ N

independent of x , i , j , and ν such that, for every n ≥ N ′,
∣∣r−2

jνN+1 ... jνN+n Q(A jνN+1 ... jνN+n xN ) − (u j , xN )2Q(v j )
∣∣ ≤ δ3/4 (4.5)

and ∣∣∣∣∣log
r−2
jνN+1 ... jνN+n−1 Q(A jνN+1 ... jνN+n−1 xN )

r−2
jνN+1 ... jνN+n Q(A jνN+1 ... jνN+n xN )

∣∣∣∣∣ ≤
β2

2
. (4.6)

From (4.1) and (4.4),
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δ′δ0 ≤ (ui , x)
2
∣∣(Dvi )(pi )

2 − (Dvi )(pi ′)
2
∣∣

≤ ∣∣(ui , x)2(Dvi )(pi )
2 − (DxN )(pi )

2
∣∣+ ∣∣(DxN )(pi )

2 − (DxN )(pi ′)
2
∣∣

+ ∣∣(DxN )(pi ′)
2 − (ui , x)

2(Dvi )(pi ′)
2
∣∣

≤ 2δ2 + ∣∣(DxN )(pi )
2 − (DxN )(pi ′)

2
∣∣,

which implies that

∣∣(DxN )(pi )
2 − (DxN )(pi ′)

2
∣∣ ≥ δ′δ0 − 2δ2 = δ2.

From the identity (DxN )(p j ) = (u j , xN ) ( j ∈ S0), we have

2δ3 = β5δ2

≤ β5

∣∣(ui , xN )2 − (ui ′ , xN )2
∣∣

≤ ∣∣2Q(vi )(ui , xN )2 − qw/rw
∣∣+ ∣∣2Q(vi ′)(ui ′ , xN )2 − qw/rw

∣∣,

where we choose w = iν1 . . . iνN ∈ WN . Then, for either j = i or i ′,
∣∣2Q(v j )(u j , xN )2 − qw/rw

∣∣ ≥ δ3. (4.7)

We fix such j . Take any l ∈ N and suppose ν ∈ L(N , N ′, l). There are two possibil-
ities:

(I) There exists some k ∈ {N ′ + 1, . . . , N ′ + l} such that r jνN+k �= q jνN+k .
(II) r jνN+k = q jνN+k for all k ∈ {N ′ + 1, . . . , N ′ + l}.

Suppose Case (I). Let w′ = jνN+1 . . . jνN+k−1 ∈ Wk−1. From (4.6) with n = k,

β2

2
≥
∣∣∣∣log
(
r2jνN+k × Q(A jνN+1 ... jνN+k−1 xN )

Q(A jνN+1 ... jνN+k xN )

)∣∣∣∣

=
∣∣∣∣∣log
(
r jνN+k

q jνN+k

2r−1
ww′ Q(Aww′x)

qww′

qww′ jνN+k

2r−1
ww′ jνN+k Q(Aww′ jνN+k x)

)∣∣∣∣∣

≥ β2 −
∣∣∣∣∣log

2r−1
ww′ Q(Aww′x)

qww′

∣∣∣∣∣−
∣∣∣∣∣log

qww′ jνN+k

2r−1
ww′ jνN+k Q(Aww′ jνN+k x)

∣∣∣∣∣ .

Therefore, either

∣∣∣∣∣log
2r−1

ww′ Q(Aww′x)

qww′

∣∣∣∣∣ ≥
β2

4
or

∣∣∣∣∣log
qww′ jνN+k

2r−1
ww′ jνN+k Q(Aww′ jνN+k x)

∣∣∣∣∣ ≥
β2

4

holds. Since qww′ ≥ qww′ jνN+k ≥ βN+N ′+l
3 , Lemma 3.7 implies that either

|2r−1
ww′ Q(Aww′x) − qww′ | ≥ (1 − e−β2/4)βN+N ′+l

3 (4.8)
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or
|2r−1

ww′ jνN+k Q(Aww′ jνN+k x) − qww′ jνN+k | ≥ (1 − e−β2/4)βN+N ′+l
3 (4.9)

holds.
Next, suppose Case (II). Since ν ∈ L(N , N ′, l), r jνN+k = q jνN+k for all

k ∈ {1, . . . , N ′}. Let ŵ = jνN+1 . . . jνN+N ′ ∈ WN ′ . Note that qŵ = rŵ. From (4.7) and
(4.5),

δ3 ≤ |2Q(v j )(u j , xN )2 − qw/rw|
≤ |2Q(v j )(u j , xN )2 − 2r−2

ŵ
Q(AŵxN )| + |2r−2

ŵ
Q(AŵxN ) − qwŵ/rwŵ|

≤ δ3/2 + β
−(N+N ′)
4 |2r−1

wŵ
Q(Awŵx) − qwŵ|.

Therefore,
|2r−1

wŵ
Q(Awŵx) − qwŵ| ≥ δ3β

N+N ′
4 /2.

In conclusion, it suffices to take

m =

⎧
⎪⎨

⎪⎩

k − 1 if (4.8) holds in Case (I),

k if (4.8) fails to hold in Case (I),

N ′ in Case (II)

and
γ = min

{
(1 − e−β2/4)βN+N ′+l

3 , δ3β
N+N ′
4 /2

}
.

(2) In the proof of (1), the condition that ν ∈ L(N , N ′, l) is used only in the discussion
of Case (II). Under Condition (A), Case (II) never happens. Therefore, the arguments
are valid for all ν ∈ TN. �
Proof of Theorem 2.3 Let N and N ′ be natural numbers that are provided in
Lemma 4.1. Under Condition (B), take l2 ∈ N associated with l0 = N and l1 = N ′
in (B). Under Condition (A), take l2 = 1.

Let M = N + N ′ + l2. For n ∈ Z+, let Bn denote the σ -field on Σ that is gener-
ated by {Σw | w ∈ WMn}. Then,∨∞

n=0 Bn is equal to the Borel σ -field on Σ .
Take x ∈ K.Wefirst prove thatλ〈x〉 andλq aremutually singular. For each n ∈ Z+,

λ〈x〉|Bn is absolutely continuous with respect to λq |Bn . Indeed, if λq(Σw) = 0 for
w ∈ WMn , then w /∈ W̃Mn , which implies λ〈x〉(Σw) = 0. Let zn denote the Radon–
Nikodym derivative d(λ〈x〉|Bn )/d(λq |Bn ).

Under Condition (B), take ω = ω1ω2 . . . ∈ Σ̃ such that Condition (
) is satisfied,
and let k ∈ Z+ in (
). Under Condition (A), take ω ∈ Σ̃ and k ∈ Z+ arbitrarily.

There exists a unique natural number n ≥ 2 such thatM(n − 2) ≤ k < M(n − 1).
Let w := [ω]M(n−2) ∈ W̃M(n−2) and ξ ∈ W2M . Using (3.5), we have

zn−2 = λ〈x〉(Σw)

λq(Σw)
= 2r−1

w Q(Awx)

qw

onΣw
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and

zn =

⎧
⎪⎨

⎪⎩

2r−1
wξ Q(Awξ x)

qwξ

if wξ ∈ W̃Mn

0 if wξ /∈ W̃Mn

onΣwξ .

Then, on Σwξ ,

αn := znz
⊕
n−2 =

⎧
⎨

⎩

Q(Awξ x)Q(Awx)⊕

qξrξ
if wξ ∈ W̃Mn,

0 if wξ /∈ W̃Mn.

If Q(Awx) = 0, then αn = 0 on Σw, which implies that

1 − E
λq [√αn | Bn−2](ω) = 1. (4.10)

Suppose that Q(Awx) �= 0. Let x ′ = Awx
/√

2Q(Awx) ∈ K. Then,

E
λq [√αn | Bn−2](ω) =

∑

ξ∈W2M ; wξ∈W̃Mn

qwξ

qw

√
Q(Awξ x)

qξrξ Q(Awx)

=
∑

ξ∈W2M ; wξ∈W̃Mn

√
qξ × 2r−1

ξ Q(Aξ x ′)

≤ 1 − 1

8

∑

ξ∈W2M ; wξ∈W̃Mn

(
qξ − 2r−1

ξ Q(Aξ x
′)
)2

. (4.11)

Here, the last inequality follows from Lemma 3.8.
Take γ > 0 in Lemma 4.1 associated with l = l2. Let

w′ = ωM(n−2)+1ωM(n−2)+2 . . . ωk ∈ Wk−M(n−2) (w′ = ∅ if k = M(n − 2))

and γ ′ = min{γ, βM
3 }. Note that qw′ ≥ βM

3 ≥ γ ′. We consider the following two
cases:

(i) |qw′ − 2r−1
w′ Q(Aw′x ′)| ≥ γ γ ′/3;

(ii) |qw′ − 2r−1
w′ Q(Aw′x ′)| < γγ ′/3.

Suppose Case (i). Letting I = {ζ ∈ WMn−k | ww′ζ ∈ W̃Mn}, we have
∑

ξ∈W2M ; wξ∈W̃Mn

(
qξ − 2r−1

ξ Q(Aξ x
′)
)2

≥
∑

ζ∈I

(
qw′ζ − 2r−1

w′ζ Q(Aw′ζ x
′)
)2
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≥
{∑

ζ∈I

(
qw′ζ − 2r−1

w′ζ Q(Aw′ζ x
′)
)}2(∑

ζ∈I
1

)−1

= (qw′ − 2r−1
w′ Q(Aw′x ′)

)2
(#I )−1 (from (3.4))

≥ (γ γ ′/3)2(#S)−2M .

Next, suppose Case (ii). We have

2r−1
w′ Q(Aw′x ′) > qw′ − γ γ ′/3

≥ γ ′ − γ ′/3 = 2γ ′/3. (4.12)

In particular, Q(Aw′x ′) �= 0. Let x ′′ = Aw′x ′/√2Q(Aw′x ′) ∈ K. We make several
choices in order as follows:

• Take i ∈ S0 associated with x ′′ ∈ K in Lemma 4.1.
• Take νk+1, νk+2, . . . , νk+N ∈ T such thatww′iνk+1 iνk+2 . . . iνk+N ∈ W̃k+N ; these are
uniquely determined.

• Take j ∈ S0 associated with x ′′ ∈ K, i ∈ S0, and {νk+s}Ns=1 in Lemma 4.1.
• Take a unique sequence {νs}∞s=k+N+1 ⊂ T such that

ww′iνk+1 iνk+2 . . . iνk+N jνk+N+1 jνk+N+2 . . . jνk+N+t ∈ Wk+N+t

for every t ∈ N.
• Take m ∈ {N ′, N ′ + 1, . . . , N ′ + l2} associated with x ′′ ∈ K, i ∈ S0, j ∈ S0, and

{νk+s}∞s=1 in Lemma 4.1.

Note that {νk+s}∞s=1 ∈ L(N , N ′, l2) under Condition (B).
Let

η = iνk+1 iνk+2 . . . iνk+N jνk+N+1 jνk+N+2 . . . jνk+N+m ∈ WN+m .

Then, letting J = {η′ ∈ WMn−k−N−m | ww′ηη′ ∈ W̃Mn}, we have
∑

ξ∈W2M ; wξ∈W̃Mn

(
qξ − 2r−1

ξ Q(Aξ x
′)
)2

≥
∑

η′∈J

(
qw′ηη′ − 2r−1

w′ηη′ Q(Aw′ηη′x ′)
)2

≥
{∑

η′∈J

(
qw′ηη′ − 2r−1

w′ηη′ Q(Aw′ηη′x ′)
)}2(∑

η′∈J

1

)−1

= (qw′η − 2r−1
w′ηQ(Aw′ηx

′)
)2

(#J )−1 (from (3.4))

≥ (qw′η − 2r−1
w′ηQ(Aw′ηx

′)
)2

(#S)−2M .
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Moreover,

∣∣qw′η − 2r−1
w′ηQ(Aw′ηx

′)
∣∣

= ∣∣qw′η − 2r−1
η Q(Aηx

′′) · 2r−1
w′ Q(Aw′x ′)

∣∣

≥ 2r−1
w′ Q(Aw′x ′)

∣∣qη − 2r−1
η Q(Aηx

′′)
∣∣− ∣∣qw′ − 2r−1

w′ Q(Aw′x ′)
∣∣ qη

≥ 2γ ′

3
· γ − γ γ ′

3
· 1 = γ γ ′/3.

Here, in the last inequality, we used (4.12) and Lemma 4.1.
Therefore, in both Case (i) and Case (ii),

∑

ξ∈W2M ; wξ∈W̃Mn

(
qξ − 2r−1

ξ Q(Aξ x
′)
)2 ≥ (γ γ ′/3)2(#S)−2M . (4.13)

By combining (4.11) with (4.13),

1 − E
λq [√αn | Bn−2](ω) ≥ (γ γ ′)2(#S)−2M/72. (4.14)

For λq -a.s.ω, there are infinitely many n that satisfy (4.10) or (4.14); therefore,

∞∑

n=2

(
1 − E

λq [√αn | Bn−2]
) = ∞ λq -a.s.

From Theorem 3.9, we conclude that λ〈x〉 ⊥ λq .
Take a σ -compact set B of Σ such that λ〈x〉(B) = 1 and λq(B) = 0. Recall that

V∗ \ V0 = {x ∈ G(L)
∣∣ #(π |Σ̃ )−1({x}) > 1

}

and μq(V∗ \ V0) = 0. Let B ′ = (π |Σ̃ )−1(V∗ \ V0) ∪ B. Because (π |Σ̃ )−1(π(B ′)) =
B ′, from Lemma 3.3

μq(π(B ′)) = λq
(
(π |Σ̃ )−1(π(B ′))

) = λq(B
′) = 0

and
μ〈ι(x)〉(π(B ′)) = λ〈x〉

(
(π |Σ̃ )−1(π(B ′))

) = λ〈x〉(B ′) ≥ λ〈x〉(B) = 1.

Therefore, μ〈ι(x)〉 ⊥ μq . We have now proved that μ〈h〉 ⊥ μq for all harmonic func-
tions h.

Next, let f be an arbitrarym-piecewise harmonic function. For v ∈ W̃m , we apply
the above result to the Dirichlet form (E [v],F [v]) on L2(G(L [v]), μ[v]

q ) and f [v] :=
f ◦ ψv|G(L [v]) to conclude thatμ

[v]
〈 f [v]〉 ⊥ μ[v]

q . Take a σ -compact subset Bv of G(L [v])
such that μ[v]

〈 f [v]〉(G(L [v]) \ Bv) = 0 and μ[v]
q (Bv) = 0. Let
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B =
⋃

v∈W̃m

ψv(Bv) and B̂ = B \ (V∗ \ V0).

From Lemma 3.2 and the property μq(V∗ \ V0) = 0, we have

μ〈 f 〉(B) ≥
∑

v∈W̃m

1

rv
μ

[v]
〈 f [v]〉(Bv) =

∑

v∈W̃m

2

rv
E [v]( f [v], f [v])

= 2E( f, f ) = μ〈 f 〉(G(L))

and
μq(B) = μq(B̂) ≤

∑

v∈W̃m

qvμ
[v]
q (Bv) = 0.

Therefore, μ〈 f 〉 ⊥ μq .
For f ∈ F in general, we can take a sequence { fn}∞n=1 of piecewise harmonic

functions that converges to f in F from Lemma 3.1. For each n ∈ N, take a Borel
set Bn of G(L) such that μq(Bn) = 0 and μ〈 fn〉(G(L) \ Bn) = 0. Let B =⋃∞

n=1 Bn .
From a general inequality

∣∣∣
√

μ〈g〉(C) −√μ〈g′〉(C)

∣∣∣ ≤ √μ〈g−g′〉(C)

for g, g′ ∈ F and a Borel set C of G(L) (see, e.g., [5, p. 111]), we obtain

μ〈 f 〉(G(L) \ B) = lim
n→∞ μ〈 fn〉(G(L) \ B) = 0,

while μq(B) = 0. Therefore, μ〈 f 〉 ⊥ μq . �
Lastly, we prove Theorem 2.7.

Proof of Theorem 2.7 Since the assertion obviously holds when #T = 1, we may
assume that #T ≥ 2.

Let q = {qv}v∈S ∈ A. Take l0, l1 ∈ N arbitrarily and let l2 = #T . For ω̂ ∈ Ω̂ ,
W̃n(ω̂) (n ∈ Z+) and μ(ω̂)

q denote the set W̃n and the measure μq associated with

L(ω̂), respectively. We define a probability measure P on (Σ × Ω̂,B(Σ) ⊗ B̂) by

P(A) =
∫

Ω̂

μ(ω̂)
q (Aω̂) P̂(dω̂), A ∈ B(Σ) ⊗ B̂,

where B(Σ) denotes the Borel σ -field onΣ and Aω̂ = {ω ∈ Σ | (ω, ω̂) ∈ A}. More
specifically, if A is expressed as A = Σw × B for w = w1w2 . . . wm ∈ Wm and B =
{ω̂ ∈ Ω̂ | Lv(ω̂) = τv for all v ∈ W≤n} for given m, n ∈ Z+ with m − 1 ≤ n and
{τv}v∈W≤n ∈ TW≤n , then
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P(A) =
∫

B

μ(ω̂)
q (Σw) P̂(dω̂) =

∫

B

qw1W̃m (ω̂)(w) P̂(dω̂)

=
⎧
⎨

⎩

qw

∏

v∈W≤n

ρ({τv}) ifwk ∈ S(τ[w]k−1 ) for all k = 1, 2, . . . ,m,

0 otherwise.

For k ∈ Z+, let Ũ (k) denote the set of all elements (w, ω̂) ∈ Wk × Ω̂ such that the
following hold:

(i) w ∈ W̃k(ω̂);
(ii) for any i, j ∈ S0, if we take νk+1, νk+2, . . . , νk+l0+l1+l2 ∈ T such that

wiνk+1 iνk+2 . . . iνk+l0 jνk+l0+1 jνk+l0+2 . . . jνk+l0+l1+l2 ∈ W̃k+l0+l1+l2(ω̂),

then {νk+l0+l1+1, νk+l0+l1+2, . . . , νk+l0+l1+l2} = T .

Define
U (k) = {(ω, ω̂) ∈ Σ × Ω̂

∣∣ ([ω]k, ω̂) ∈ Ũ (k)
}

and
Uω̂(k) = {ω ∈ Σ | (ω, ω̂) ∈ U (k)}, ω̂ ∈ Ω̂.

Then,

P(U (k)) =
∫

Ω̂

∑

w∈Wk

qw1Ũ (k)(w, ω̂) P̂(dω̂)

=
∑

w∈Wk

qw P̂
({ω̂ ∈ Ω̂ | w ∈ W̃k(ω̂)})

(
l2!
∏

ν∈T
ρ({ν})

)#(S0×S0)

= p
∑

ν1,...,νk∈T

∑

w j∈S(ν j );
j=1,...,k

k∏

m=1

qwm

k∏

m=1

ρ({νm})

(
p := (l2! ∏

ν∈T
ρ({ν}))9 ∈ (0, 1)

)

= p

(∑

ν∈T

∑

v∈S(ν)

qvρ({ν})
)k

= p.

In a similar way, we can confirm that {U ((l0 + l1 + l2)n)}n∈Z+ are independent with
respect to P.
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For 0 ≤ M < N , we define

FM,N =
N⋂

n=M+1

(
(Σ × Ω̂) \U ((l0 + l1 + l2)n)

)
,

FM,N ,ω̂ = {ω ∈ Σ | (ω, ω̂) ∈ FM,N }, FM,ω̂ =
∞⋂

N=M+1

FM,N ,ω̂ (ω̂ ∈ Ω̂),

GM,N = {ω̂ ∈ Ω̂
∣∣ μ(ω̂)

q (FM,N ,ω̂) ≥ (1 − p)N/2}, GM = lim sup
N→∞

GM,N .

Then,

P̂(GM,N ) ≤ (1 − p)−N/2
∫

Ω̂

μ(ω̂)
q (FM,N ,ω̂) P̂(dω̂)

= (1 − p)−N/2
P(FM,N )

= (1 − p)−N/2(1 − p)N−M

= (1 − p)(N/2)−M .

From the Borel–Cantelli lemma, P̂(GM) = 0. Let

Uq = {q ′ = {q ′
v}v∈S ∈ A ∣∣ q ′

v/qv < (1 − p)−1/(4(l0+l1+l2)) for all v ∈ S
}
,

which is anopenneighborhoodofq inA. By lettingFn = σ({Σw | w ∈ W(l0+l1+l2)n})
for n ∈ Z+, we have

d
(
μ

(ω̂)
q ′ |Fn

)

d
(
μ

(ω̂)
q |Fn

) ≤ (1 − p)−n/4 μ(ω̂)
q -a.e.

for all q ′ ∈ Uq and ω̂ ∈ Ω̂ . Suppose that q ′ ∈ Uq and ω̂ /∈ GM . For sufficiently large
N ∈ N, ω̂ /∈ GM,N . Because FM,N ,ω̂ belongs to FN , we have

μ
(ω̂)
q ′ (FM,N ,ω̂) ≤ (1 − p)−N/4μ(ω̂)

q (FM,N ,ω̂) ≤ (1 − p)N/4

for large N , which impliesμ
(ω̂)
q ′ (FM,ω̂) = 0. Let G(q) denote

⋃
M∈Z+ GM . (Here, we

specify the dependency of q.) This is a P̂-null set. If ω̂ /∈ G(q), then
μ

(ω̂)
q ′
(⋃

M∈Z+ FM,ω̂

) = 0 for q ′ ∈ Uq , which means that

μ
(ω̂)
q ′

(
lim sup
n→∞

Uω̂((l0 + l1 + l2)n)
)

= 1, q ′ ∈ Uq .
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BecauseA is σ -compact, we can take a countable subset {qα | α ∈ N} ofA such that⋃
α∈N Uqα

= A. Let N =⋃α∈N G(qα). Then, P̂(N ) = 0 and for ω̂ ∈ Ω̂ \ N ,

μ(ω̂)
q

(
lim sup
k→∞

Uω̂(k)
)

= 1, q ∈ A.

This implies that, for ω̂ ∈ Ω̂ \ N , (
) holds with (2.6) replaced by (2.7) for
l2 = #T . �

5 Concluding Remarks

We make some remarks about the main results.

(1) The arguments in this paper are valid for some other inhomogeneous fractals. For
example, we can obtain similar results for higher-dimensional inhomogeneous
Sierpinski gaskets. A crucial property required here is that the eigenfunctions of
A(ν)
i (i ∈ S0) associated with the eigenvalues r (ν) do not depend on ν.

(2) Since Condition (B) in Theorem 2.3 is a rather technical constraint, we focus on
arguments that are validmore generally andwe do not try tomake the assumption
as weak as possible by relying on concrete structures of fractals under consid-
eration. Indeed, in Lemma 3.6(3), the part “there exists some i ′ ∈ S0” can be
strengthened to “any i ′ ∈ S0 \ {i}.” As a result, in Condition (
), the part “for
every i, j ∈ S0” can be weakened to “for every i ∈ S0, for j = i and for some
other j ∈ S0.”

(3) We reason that Theorem 2.3 holds true without assuming Condition (A) or (B)
in practice.
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On L p Liouville Theorems for Dirichlet
Forms

Bobo Hua, Matthias Keller, Daniel Lenz, and Marcel Schmidt

Abstract We study harmonic functions for general Dirichlet forms. First we review
consequences of Fukushima’s ergodic theorem for the harmonic functions in the
domain of the L p generator. Secondly we prove analogues of Yau’s and Karp’s
Liouville theorems for weakly harmonic functions. Both say that weakly harmonic
functions which satisfy certain L p growth criteria must be constant. As consequence
we give an integral criterion for recurrence.

Keywords Dirichlet forms · Liouville property · Superharmonic functions

1 Introduction

Liouville theorems for harmonic functions have a long tradition and circle around the
idea that a harmonic function which satisfies certain boundedness conditions must
be constant. The first result of this type for analytic functions was proven by Cauchy
in 1844, see [1]. In 1847 Liouville presented the result in a lecture and that is how
the name arose. Since then numerous results in various contexts were proven.
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Our setting is the one of Dirichlet forms. This setting includes on the one hand
well studied objects such as Laplacians on (sub) Riemannian manifolds but also
non-local operators arising from jump processes.

We start by stating the results and refer for the definitions to Sects. 2 and 3. For a
general background on Dirichlet forms we refer to [6]. Let E be a Dirichlet form on
L2(m), wherem is a σ -finite measure. The associated self-adjoint operator generates
a MarkovianC0-semigroup on L2(m), which for p ∈ [1,∞) extends to aMarkovian
C0-semigroup on L p(m).

We first present a consequence of Fukushima’s ergodic theorem [5] for harmonic
functions in the domain of the generator of the L p-semigroup, which we also refer
to as the L p-generator of the Dirichlet form.

Theorem 1 (Basic L p-Liouville theorem) For p ∈ (1,∞) any harmonic function
in the domain of the L p-generator of an irreducible Dirichlet form is constant. In
particular, in case there is a non-trivial harmonic function in the domain of the
L p-generator, then m is a finite measure.

Next, we restrict ourselves to regular Dirichlet forms where one has an intrinsic
metric ρ in the sense of [4] for which all distance balls are precompact. The first
result is an analogue of Yau’s L p-Liouville type theorem [16]. For some nonlocal
operators on Euclidean space a related result is contained in [12]. Speaking about
(sub)harmonic functions we refer here to weakly (sub)harmonic functions, see Def-
inition 14.

Theorem 2 (Yau’s L p-Liouville theorem) Let E be an irreducible regular Dirichlet
form without killing with an intrinsic metric for which all distance balls are precom-
pact. Let p ∈ (1,∞) and let f ∈ L p(m) be a non-negative subharmonic function.
Then f is constant if one of the following additional conditions is satisfied:

(a) 1 < p ≤ 2.
(b) m is finite.
(c) p > 2 and f ∈ Lq(m) for some q ∈ [2p − 2,∞].
(d) p > 2, the intrinsic metric has finite jump size and f ∈ L2p−2

loc (m).

The next result is an analogue to Karp’s L p-Liouville theorem [10], which is
found for strongly local regular Dirichlet forms in [15] and for graphs in [7, 8]. Here
we additionally need that the intrinsic metric has finite jump size, see Sect. 3. We
denote the distance balls with radius r ≥ 0 about a fixed point o ∈ X with respect to
the intrinsic metric ρ by Br = {x ∈ X | ρ(x, o) ≤ r}.
Theorem 3 (Karp’s L p-Liouville theorem) Let E be an irreducible regularDirichlet
form without killing with an intrinsic metric for which all distance balls are precom-
pact and the jump size is finite. Let p ∈ (1,∞) and let q = max{p, 2p − 2}. Then
every non-negative subharmonic function f ∈ Lq

loc(m) satisfying

∞∫

r0

r

‖ f 1Br ‖p
p
dr = ∞
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for all r0 > 0 is constant.

Other than in the above mentioned references in the case p > 2 we need some
more integrability than L p for the analogue of Yau’s theorem or L p

loc for the analogue
of Karp’s theorem. The reason for this is a technical issue concerning the existence of
certain integrals in our proof. Inmany concrete applications L∞

loc-integrability (which
is sufficient for our results) of (sub)harmonic functions is known. This follows either
from hypoellipticity of the corresponding operators (which yields smoothness of
harmonic functions) or, more generally, from local Hölder estimates for nonnegative
subharmonic functions deduced byDeGiorgi-Nash-Moser iteration. In this sense, the
additional integrability assumptions wemake can be seen as rather mild assumptions
(at least when the jump size is finite).

In many special situations the positive and negative part of harmonic functions
are positive subharmonic functions. This is for example the case for strongly local
Dirichlet forms or Dirichlet forms on discrete sets. In these cases the results above
directly imply the corresponding results for harmonic functions.

We can use Karp’s Liouville theorem to prove an integral criterion for recurrence.

Theorem 4 (Recurrence) Let E be an irreducible regular Dirichlet form without
killing with an intrinsic metric for which all distance balls are precompact and the
jump size is finite. If

∞∫

r0

r

m(Br )
dr = ∞

for some r0 > 0, then E is recurrent.

2 Fukushima’s Ergodic Theorem

Letm be aσ -finitemeasure on (aσ -algebra on) X . Let E be aDirichlet formon L2(m)

with nonnegative generator L and associated Markovian semigroup (Tt ) = (e−t L).
For 1 ≤ p ≤ ∞, let (T p

t ) be the Markovian extension of the semigroup to L p(m).
For 1 ≤ p < ∞, these are C0-semigroups of contractions and we denote by L p the
corresponding generator [2]. For p = ∞, it is also a semigroup of contractions,
which is only weak-*-continuous. These extension are compatible in the sense that
for p �= q they agree on L p(m) ∩ Lq(m). Hence, on the semigroup level we often
omit the superscript p.

In this section a function f ∈ L p(m) is called L p-harmonic if it belongs to the
domain of L p and L p f = 0 holds. For p = 2, we also speak about L-harmonic
functions instead of L2-harmonic functions. Clearly, a function f is L-harmonic if
and only if E( f ) = 0.

As usualwe denote the dual pairing between L p(m) and Lq(m)with 1/q + 1/p =
1 by (·, ·).
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Recall that aDirichlet formE is called conservative if Tt1 = 1. In 1982Fukushima
[5] proved that if E is conservative (and coming from an m-symmetric Markov
transition function), then for p ∈ (1,∞) and all f ∈ L p(m)

lim
t→∞ Tt f = g m-a.e.,

where g ∈ L p(m) is a (Tt )-invariant function. In particular, if E is additionally irre-
ducible, then g is constant and equal to m(X)−1

∫
X f dm whenever m(X) < ∞ and

equal to 0 if m(X) = ∞. Now, one can argue that L p-harmonic functions are invari-
ant under the semigroup and therefore all harmonic functions must be constant in
the above setting.

Indeed, the setting of [5] starts from an m-symmetric, conservative Markov tran-
sition function on a σ -finite measure space. The proof then relies on Rota’s ergodic
theorem [3]. Here, we give an analytic proof of a related result under weaker assump-
tions. We only need a (symmetric) Dirichlet form but only show strong convergence
in L p(m) for p ∈ (1,∞). This is however enough to establish Theorem 1 along the
same lines as discussed above.

Lemma 5 If E is irreducible and 0 is an eigenvalue of L, then any corresponding
eigenfunction must be constant.

Proof Let ϕ be an eigenfunction to 0. As E is a Dirichlet form, we infer, for any
normal contraction C ,

0 ≤ E(Cϕ) ≤ E(ϕ) = 0

and, hence,
E(Cϕ) = 0.

Thus, Cϕ is an eigenfunction to 0 for any normal contraction C . Now, as E is
irreducible, we know that the eigenspace to 0 is spanned by a unique function
of fixed sign. The preceding reasoning then shows that the span of this function
must be invariant under normal contractions. This is only possible if the function is
constant. �

Definition 6 (The ground state �) If E is irreducible, we define � to be zero if 0
is not an eigenvalue of L and to be the unique positive constant eigenfunction to 0
with ‖�‖2 = 1 otherwise.

Remark 1 (a) Let us emphasize that � is a constant function in L2(m) (in all
situations). Hence, � �= 0 can only occur if m(X) < ∞. In this case, constant
functions are eigenfunctions to 0 if and only if E is conservative. Indeed, if
m(X) < ∞ and E is conservative, we have by definition Tt1 = 1 for all t > 0.
This shows

lim
h→0+ h−1(Th1 − 1) = 0
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in L2(m), so that 1 ∈ D(L) and L1 = 0. Conversely, if 1 ∈ D(L) with L1 = 0,
we have 1 ∈ D(E) and E(1) = 0. This implies conservativeness, see [6, Theo-
rem 1.6.6].
In summary we obtain

� =
{

1√
m(X)

if m(X) < ∞ and E is conservative,

else.

(b) Since � �= 0 impliesm(X) < ∞, the constant function � belongs to L p(m) for
any p ∈ [1,∞]. Thus, in both cases � = 0 and � �= 0, the map

L p(m) → L p(m), f �→ (�, f )�

is well defined and continuous. By our discussion above it is given by

(�, f )� =
⎧⎨
⎩

1
m(X)

∫
X

f dm if m(X) < ∞ and E is conservative,

else.

Lemma 7 If E is irreducible, then any L-harmonic function is a multiple of �.

Proof This is clear (as any L-harmonic function either vanishes or is an eigenfunction
to 0). �

Lemma 8 If E is irreducible, then for p ∈ (1,∞) and f ∈ L p(m)

lim
t→∞ Tt f = (�, f )� in L p(m).

Proof On the L2(m)-level, the spectral theorem implies that Tt f converges to the
projection of f to the kernel of L , as t → ∞. In our situation this reads

Tt f
L2→ 〈�, f 〉�,

see e.g. [11, Theorem 1.1]. For f ∈ L2(m) ∩ L∞(m) ∩ L1(m) ⊆ L p(m), we can
estimate by Littlewood’s inequality for L p-spaces (i.e., Hölder inequality with a
smart choice of parameters)

‖Tt f − (�, f )�‖p ≤ ‖Tt f − (�, f )�‖1−θ
r ‖Tt f − (�, f )�‖θ

2

≤ Cr‖ f ‖1−θ
r ‖Tt f − (�, f )�‖θ

2,

with r = ∞ and θ = 2/p if p ≥ 2, and r = 1 and θ = 2(p − 1)/p, if p ≤ 2. The
second inequality follows from the fact that (Tt ) is a contraction on L1(m) and L∞(m)

and that the semigroups agree on L p(m) ∩ L2(m).
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This estimate and our discussion on the L2-case show that the desired convergence
holds on a dense subspace of L p(m). Since the semigroups are uniformly bounded,
it extends to all of L p(m). �

Remark 2 Our discussion after the definition of � shows that this is a version of
Fukushima’s ergodic theorem for semigroups associated with not necessarily con-
servative Dirichlet forms but with the weaker statement on L p-convergence instead
of m-a.e. convergence.

Lemma 9 For p ∈ [1,∞), let f ∈ L p(m) be an L p-harmonic function. Then,
Tp f = f for any t ≥ 0.

Proof By abstract theory for C0-semigroups, for a given g ∈ D(L p), the func-
tion [0,∞) → L p(m), t �→ Ttg is the unique solution in C1([0,∞); L p(m)) of the
Cauchy problem {

u̇t = L put for t > 0,

u0 = g.

Now, next to the solution [0,∞) → L p(m), t �→ Tt f , the function [0,∞) →
L p(m), t �→ f is continuously differentiable and solves the problem with initial
value f . Thus, Tt f = f for t > 0. �

Theorem 1 is a direct consequence of the following theorem.

Theorem 10 Let E be an irreducible Dirichlet form and let f be an L p-harmonic
function for some p ∈ (1,∞). Then, f is constant, and in fact

f = (�, f )� =
⎧⎨
⎩

1
m(X)

∫
X

f dm if m(X) < ∞ and E is conservative

0 else
.

Proof For p ∈ (1,∞), we infer from the previous two lemmas

f = Tt f → (�, f )�, as t → ∞.

Combined with our computation of (�, f )� this yields the result. �

3 Regular Dirichlet Forms and Harmonic Functions

3.1 Basic Notions and Intrinsic Metrics

We use the notation of the previous section. Moreover, from now on we additionally
assume that X is a locally compact separable metric space, m is a Radon measure of
full support and E is a regular Dirichlet form on L2(m), see [6].
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By C(X) we denote the space of continuous functions on X and by Cc(X) the
space of continuous functions of compact support.

As for continuous functions, we write D(E)c for the functions in D(E) with
compact support. We denote by D(E)loc the space of functions locally in D(E), that
is the set of functions f such that for every open precompact set G there is a function
in D(E) which coincides with f on G.

By the Beurling-Deny formula [6, Theorems 3.2.1 and 5.2.1] we have for f, g ∈
D(E)

E( f ) =
∫

X

d�(c)( f ) +
∫

X×X\d
( f̃ (x) − f̃ (y))2d J (x, y) +

∫

X

f̃ (x)2k(dx),

where �(c) is a measure valued strongly local quadratic form on D(E) (i.e.,
�(c)( f, g) = 0 if f is constant on a neighborhood of the support of g), J is a Radon
measure on X × X \ d = {(x, y) ∈ X × X | x �= y} and k is a Radon measure on
X . Moreover, f̃ is a quasi-continuous representative of f . Such a representative
exists for f ∈ D(E) by [6, Theorem 2.1.7] and the argument given there extends
directly to f ∈ D(E)loc, see e.g. [4, Proposition 3.1]. To simplify notation, below we
will always choose a quasi-continuous representative and just write f instead of f̃ .
Since we exclusively deal with continuous functions or functions from D(E)loc, this
is always possible.

Assumption From now on we assume that E has no killing, i.e., k = 0.
Using the measure J from the decomposition we obtain a finite Radon measure

valued quadratic form �( j) on D(E), which is uniquely determined by

∫

K

d�( j)( f ) =
∫

K×X\d
( f (x) − f (y))2d J (x, y)

for all compact K ⊆ X and f ∈ D(E).
Next, we discuss how to extend �(c) and �( j) to larger classes of functions. We

denote by D(E)∗loc the space of functions in f ∈ D(E)loc such that for every compact
K ⊆ X

∫

K×X\d
( f (x) − f (y))2d J (x, y) < ∞.

This space was introduced in [4]. For later purposes, we note that any f ∈ D(E)∗loc
with compact support belongs to D(E)c, see [4, Theorem 3.5].

The bilinear forms on D(E) × D(E) induced from �(c) and �( j) by polarization
canbe (partially) extended to bilinear forms D(E)∗loc × D(E)cwith values in the space
of finite signed Radon measures. More precisely, for f ∈ D(E)∗loc and ϕ ∈ D(E)c
these extensions are characterized by
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∫

K

d�(c)( f, ϕ) =
∫

K

d�(c)( fK , ϕ),

and ∫

K

d�( j)( f, ϕ) =
∫

K×X\d
( f (x) − f (y))(ϕ(x) − ϕ(y))d J (x, y),

for all compact K ⊆ X . Here, fK ∈ D(E) is a function with f = fK on a relatively
compact open neighborhood of K . Due to the strong locality�(c)( f, ϕ) iswell defined
(i.e., independent of the choice of fK , see the remarks after the proof of [6, Theorem
3.2.2]) and the definition of D(E)∗loc ensures that �( j)( f, ϕ) is well defined (i.e., it
yields a finite signed Radon measure, see [4, Theorem 3.4]). Similarly, the quadratic
forms�(c) and�( j) can be extended to quadratic forms on D(E)∗loc taking values in the
set of nonnegative (not necessarily finite) Radon measures, see [4, Proposition 3.3].
We let � = �(c) + �( j) denote both the quadratic form on D(E)∗loc and the induced
bilinear form on D(E)∗loc × D(E)c.

Since E is a Dirichlet form, for any normal contraction C : R → R and f ∈
D(E)∗loc, we have C ◦ f ∈ D(E)∗loc and

∫

X

d�(C ◦ f ) ≤
∫

X

d�( f ).

Since the killing k vanishes, this inequality extends to 1-Lipschitz functions. Indeed,
ifC : R → R is 1-Lipschitz, thenC ◦ f = C̃( f ) + C(0)with the normal contraction
C̃ = C − C(0). Since the constant function 1 belongs to D(E)∗loc, see [4, Proposi-
tion 3.1] and satisfies �(1) = 0, this yields the claim.

The strongly local part satisfies a Leibniz rule. If f, g ∈ D(E)∗loc such that f g ∈
D(E)∗loc, then

d�(c)( f g, ϕ) = f d�(c)(g, ϕ) + gd�(c)( f, ϕ)

for all ϕ ∈ D(E)c, see the proof of [4, Theorem 3.9]. Moreover, it satisfies a chain
rule. If C ∈ C1(R) with bounded derivative, then for f ∈ D(E)∗loc, we have C ◦ f ∈
D(E)∗loc and

�(c)(C( f ), ϕ) = C ′( f )�(c)�( f, ϕ)

for all ϕ ∈ D(E)c, see [6, Theorem 3.2.2].
Let ρ : X × X → [0,∞) be a pseudo metric, that is a symmetric map with zero

diagonal satisfying the triangle inequality. For measurable sets A ⊆ X , we write
ρA = inf x∈A ρ(x, ·). The following definition is a slight modification of the one
given in [4].

Definition 11 (Intrinsic metric) A pseudo metric ρ on X is called intrinsic (for
the regular Dirichlet form E) if it is continuous with respect to the topology on X
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and there are Radon measures m(c), m( j) with m(c) + m( j) ≤ m such that for every
measurable A ⊆ X the following holds: ρA ∈ D(E)∗loc and

�(c)(ρA) ≤ m(c) and �( j)(ρA) ≤ m( j).

Remark 3 In [4], ρ is allowed to take the value infinity. In this sense our definition
is a bit more restrictive.

Definition 12 The jump size s of a continuous pseudo metric ρ with respect to the
Dirichlet form E is given by

s := inf{t ≥ 0 | J ({(x, y) ∈ X × X \ d | ρ(x, y) > t}) = 0} ∈ [0,∞].

If ρ is a fixed pseudo-metric, for U ⊆ X and r ∈ R we write

Br (U ) = {x ∈ X | ρ(x, y) ≤ r for some y ∈ U }.

The relevance of intrinsic metrics comes from the fact that Lipschitz functions
with respect to intrinsic metrics induce good cut-off functions. This is discussed next.

Fix o ∈ X and let 0 ≤ r < R. Below we will make use of

η = ηr,R : X → R, η(x) = 1 ∧
(
R − ρ(x, o)

R − r

)
+

.

It is (R − r)−1-Lipschitz and satisfies η = 1 on Br and η = 0 on X \ BR .

Lemma 13 Let ρ be an intrinsic metric for E with jump size s. Then η ∈ D(E)∗loc
and it satisfies

�(c)(η) ≤ 1

(R − r)2
1BR\Brm

(c) and �( j)(η) ≤ 1

(R − r)2
1BR+s\Br−sm

( j),

where BR+s \ Br−s = X if s = ∞. If, moreover, balls with respect to ρ are precom-
pact, then η ∈ D(E)c.

Proof The first statement and the estimates are the content of [4, Theorem 4.9 and
Proposition 8.5]. The last statement follows from the fact that functions in D(E)∗loc
with compact support belong to D(E)c. �

If ρ-balls are precompact, the previous lemma and the definitions of �(c) and �( j)

yield for f ∈ D(E)∗loc
∫

X

d�(c)( f, η) =
∫

BR\Br

d�(c)( f, η),
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and
∫

X×X\d
( f (x) − f (y))(η(x) − η(y))d J (x, y)

=
∫

Ur,R

( f (x) − f (y))(η(x) − η(y))d J (x, y)

withUr,R = (BR+s \ Br−s) × (BR+s \ Br−s) \ d, whenever the integralmakes sense.

3.2 Harmonic Functions

In this subsection we introduce (sub)harmonic functions and discuss their basic
properties.

Definition 14 A function f : X → R is called harmonic (subharmonic) if f ∈
D(E)∗loc and

∫

X

d�( f, ϕ) = 0 (≤ 0),

for all 0 ≤ ϕ ∈ D(E)c.

Remark 4 Since the domains of Dirichlet forms are lattices, a harmonic function f
satisfies

∫
X d�( f, ϕ) = 0 for all ϕ ∈ D(E)c.

Below we will need the following extension of Lemma 5 to D(E)∗loc functions. It
can also be viewed as a Liouville-type theorem.

Lemma 15 Let E be irreducible. Then any f ∈ D(E)∗loc with �( f ) = 0 is constant.

Proof We show that for each α > 0 the set Aα = { f > α} is E-invariant. Since E is
irreducible, this is only possible if f is constant. To this end, we show E(1Aα

ϕ) ≤
E(ϕ) which implies the E-invariance, see e.g. [13, Lemma 2.32].

We have
1Aα

= lim
n→∞(n( f − α)+) ∧ 1

pointwise m-a.e. Let gn = (n( f − α)+) ∧ 1. Up to a constant gn is a contraction of
f and so we have

�(gn) ≤ n2�( f ) = 0.

Now let ϕ ∈ D(E) ∩ Cc(X) be given. Then ϕgn ∈ D(E) (here we use that ϕgn
has compact support and belongs to D(E)∗loc ∩ L∞(m) by [4, Proposition 3.10]).
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The Leibniz rule for �(c), the “discrete Leibniz rule” (i.e., f (x)g(x) − f (y)g(y) =
f (x)(g(x) − g(y)) + g(y)( f (x) − f (y)) for functions f, g on X and x, y ∈ X ) and
the Cauchy-Schwarz inequality yield

E(ϕgn) =
∫

X

ϕd�(gn, gnϕ) +
∫

X

gnd�(ϕ, gnϕ)

≤
⎛
⎝

∫

X

d�(gn)

⎞
⎠
1/2 ⎛

⎝
∫

X

|ϕ|2d�(ϕgn)

⎞
⎠
1/2

+
⎛
⎝

∫

X

|gn |2d�(ϕ)

⎞
⎠
1/2 ⎛

⎝
∫

X

d�(ϕgn)

⎞
⎠
1/2

≤ E(ϕ)1/2E(ϕgn)
1/2.

This shows E(ϕgn) ≤ E(ϕ). Since by dominated convergence 1Aα
ϕ = limn→∞ ϕgn

in L2(m), the lower semicontinuity of E and this inequality yield 1Aα
ϕ ∈ D(E) and

E(1Aα
ϕ) ≤ E(ϕ).

Since D(E) ∩ Cc(X) is dense in D(E), this inequality extends to all ϕ ∈ D(E) (use
lower semicontinuity) and we obtain the E-invariance of Aα . �

4 A Caccioppoli Inequality

The following Caccioppoli-type inequality is the key to Yau’s L p-Liouville theorem.
A somewhat more subtle estimate is needed for Karp’s result. Throughout E is a
regular Dirichlet form without killing and ρ is an intrinsic metric for E .
Theorem 16 (Caccioppoli-type inequality) Assume the distance balls of ρ are pre-
compact and p ∈ (1,∞). Then, there is C > 0 such that for every non-negative
subharmonic function f and all 0 < r < R such that f 1BR+s\Br−s ∈ Lq(m) for some
q ∈ [2p − 2,∞] we have

∫

Br

f p−2d�(c)( f ) +
∫

X×Br \d
( f (x) ∨ f (y))p−2( f (x) − f (y))2d J (x, y)

≤ C

(R − r)2
‖ f 1BR+s\Br−s‖p

p,

where s is the jump size of ρ.

Remark 5 (a) Note that p ≤ 2 if and only if 2p − 2 ≤ p. Hence, in this case,
f 1BR+s\Br−s ∈ Lq(m) for some q ≥ 2p − 2 is already satisfied if the right side
of the Caccioppoli-type inequality is finite.
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(b) If the jump-size of ρ is finite, the set BR+s is precompact and hence has finite
measure. In this case, for p > 2 the assumption on the integrability on f is
satisfied for all 0 ≤ r < R if and only if f ∈ L2p−2

loc (m).

Remark 6 For p ≥ 2 the inequality above yields (with a larger constantC and under
suitable conditions on f )

∫

X

f p−2d�( f ) ≤ C

(R − r)2
‖ f 1BR+s\Br−s‖p

p.

Let Lipc(X) be the space of Lipschitz continuous functions with compact support
with respect to the intrinsic metric ρ.

Lemma 17 (The key estimate) Let p ∈ (1,∞) and let n ∈ N. For every non-
negative subharmonic function f and ϕ ∈ Lipc(X), we have

∫

An

f p−2ϕ2d�(c)( f ) +
∫

X×X\d
( fn(x) ∨ fn(y))

p−2ϕ(y)2( fn(x) − fn(y))
2d J (x, y)

≤ −C
∫

X

f p−1
n ϕd�(c)( f, ϕ)

− C
∫

X×X\d
f p−1
n (x)ϕ(y)( f (x) − f (y))(ϕ(x) − ϕ(y))d J (x, y) < ∞,

where fn = f ∧ n, An = { f < n} and C = 2/((p − 1) ∧ 1).

Proof For j ∈ N, we let g j = fn ∨ j−1. We show the inequality with fn replaced
by g j and An replaced by { j−1 < f < n}. Then the statement follows from Fatou’s
lemma and Lebegue’s dominated convergence theorem after letting j → ∞. Note
that the integral on the right hand side of the equation exists due to the boundedness
of fn and the definition of D(E)∗loc.

Since g j ∈ D(E)∗loc is bounded from below by 1/j and from above by n, we
have g p−1

j ∈ D(E)∗loc (here we use that [ j−1, n] → R, t �→ t p−1 is Lipschitz). Using

the boundedness of g p−1
j , for ϕ ∈ Lipc(X) ⊆ D(E)c ∩ L∞(m) we obtain ϕ2g

p−1
j ∈

D(E)c as D(E)c ∩ L∞(m) is an ideal in the algebra D(E) ∩ L∞(m). The subhar-
monicity and non-negativity of f yields

0 ≥
∫

X

d�(c)( f, ϕ2g
p−1
j ) +

∫

X

d�( j)( f, ϕ2g
p−1
j ).

To shorten notation, we write ∇xyg = g(x) − g(y) for x, y ∈ X and functions g. We
apply the “discrete Leibniz rules” ∇xy( f g) = g(x)∇xy f + f (y)∇xyg and ∇xy f 2 =
2 f (y)∇xy f + (∇xy f )2 to the jump term
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∫

X

d�( j)( f, ϕ2g
p−1
j )

=
∫

X×X\d
∇xy f · (

ϕ2(y)∇xyg
p−1
j + g

p−1
j (x)∇xyϕ

2)d J (x, y)

=
∫

X×X\d
∇xy f · (

ϕ2(y)∇xyg
p−1
j + 2g p−1

j (x)ϕ(y)∇xyϕ + g
p−1
j (x)(∇xyϕ)2

)
d J (x, y).

We start by estimating the first term, where we apply [8, Lemma 2.9], which states
that if ∇xyg ≥ 0 for a non-negative function g, then

∇xyg
p−1 ≥ C(g(x) ∨ g(y))p−2∇xyg

for the constant C = (p − 1) ∧ 1. Since ∇xy f ≥ 0 implies ∇xyg
p−1
j ≥ 0, ∇xy f ∇xy

g
p−1
j = ∇yx f ∇yxg

p−1
j ≥ 0 and ∇xy f ∇xyg j = ∇yx f ∇yxg j ≥ |∇xyg j |2, this gives

ϕ2(y)∇xy f · ∇xyg
p−1
j ≥ Cϕ2(y)(g j (x) ∨ g j (y))

p−2|∇xyg j |2

for the first term in the estimate above. We leave the second term as it is for now. For
third term we obtain with having ∇xy f ∇xyg j ≥ 0 in mind

0 ≤
∫

X×X\d
∇xyg

p−1
j ∇xy f (∇xyϕ)2d J (x, y)

= 2
∫

X×X\d
g
p−1
j (x)∇xy f (∇xyϕ)2d J (x, y),

where the equality holds as the term on the right hand side converges absolutely by
Hölder’s inequality. Hence, we obtain

∫

X

d�( j)( f, ϕ2g
p−1
j ) ≥ C

∫

X×X\d
ϕ2(y)(g j (x) ∨ g j (y))

p−2|∇xyg j |2d J (x, y)

+ 2
∫

X×X\d
g
p−1
j (x)ϕ(y)∇xy f ∇xyϕd J (x, y).

Applying the Leibniz rule and the chain rule to the strongly local term we get imme-
diately
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∫

X

d�(c)( f, ϕ2g
p−1
j ) = (p − 1)

∫

X

ϕ2g
p−2
j d�(c)( f, g j ) + 2

∫

X

g
p−1
j ϕd�(c)( f, ϕ)

= (p − 1)
∫

{m−1< f <n}
ϕ2 f p−2d�(c)( f ) + 2

∫

X

g
p−1
j ϕd�(c)( f, ϕ).

For the last equality we used the truncation property of �(c) discussed in [15,
Appendix 4.1]. Putting the two estimates for the terms

∫
X d�( j)( f, ϕ2g

p−1
j ) and∫

X d�(c)( f, ϕ2g
p−1
j ) into the inequality at the beginning of the proof yields the state-

ment. �

Proof (Proof of the Caccioppoli-type inequality, Theorem 16) Let η = ηr,R be the
cut-off functions discussed in Lemma 13. We use ϕ = η = ηr,R in our key estimate
and deal with the terms on the right-hand side separately. Without loss of generality
we can assume f 1BR+s\Br−s ∈ L p(m) for otherwise there is nothing to show. We
further assume q < ∞ as it will become clear in the course of the proof that the case
q = ∞ is simpler and follows along the same lines.

We use the inequality |Q(u, v)| ≤ εQ(u, u)2 + 1
4ε Q(v, v)2, which holds for non-

negative bilinear forms Q and ε > 0, and η ≤ 1 to estimate

C

∣∣∣∣∣∣
∫

An

f p−1
n ηd�(c)( f, η)

∣∣∣∣∣∣ ≤ 1

2

∫

An

f p−2
n η2d�(c)( f ) + C ′

∫

An

f pd�(c)(η)

≤ 1

2

∫

An

f p−2
n η2d�(c)( f ) + C ′

(R − r)2
‖ f p1BR\Br ‖p

p,

where fn = f ∧ n and An = { f < n}. Moreover, f p−1
n = np−1 on X \ An , Cauchy-

Schwarz inequality, the cut-off properties of η and Chebyshev’s inequality yield

∣∣∣∣∣∣∣
∫

X\An

f p−1
n ηd�(c)( f, η)

∣∣∣∣∣∣∣
≤ np−1

⎛
⎜⎝

∫

X\An

d�(c)(η)

⎞
⎟⎠

1/2 ⎛
⎜⎝

∫

X\An

η2d�(c)( f )

⎞
⎟⎠

1/2

≤ np−1

(R − r)
m({ f ≥ n} ∩ BR \ Br )

1/2

⎛
⎜⎝

∫

X\An

η2d�(c)( f )

⎞
⎟⎠

1/2

≤ np−1−q/2

(R − r)
‖ f 1BR\Br ‖q/2

⎛
⎜⎝

∫

X\An

η2d�(c)( f )

⎞
⎟⎠

1/2

.
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Since ∞ > q ≥ 2p − 2 and f 1BR\Br ∈ Lq(m), the right side of this inequality con-
verges to 0, as n → ∞. A similar reasoning yields

C

∣∣∣∣∣∣∣
∫

An×X\d
f p−1
n (x)η(y)( f (x) − f (y))(η(x) − η(y))d J (x, y)

∣∣∣∣∣∣∣
≤ C

∫

An×X\d
( fn(x) ∨ fn(y))

p−1η(y)| f (x) − f (y)||η(x) − η(y)|d J (x, y)

≤ 1

2

∫

An×X\d
( fn(x) ∨ fn(y))

p−2η2(y)( f (x) − f (y))2d J (x, y)

+ C ′
∫

An×X\d
( fn(x) ∨ fn(y))

p(η(x) − η(y))2d J (x, y)

≤ 1

2

∫

An×X\d
( fn(x) ∨ fn(y))

p−2η2(y)( f (x) − f (y))2d J (x, y)

+ C ′′

(R − r)2
‖ f p1BR+s\Br−s‖p

p.

For the last inequality we used the properties of η and (a ∧ b)p ≤ a p + bp as well
as the symmetry of J . Moreover, as for the strongly local part we obtain using the
cut-off properties of η

∫

(X\An)×X\d
fn(x)

p−1η(y)| f (x) − f (y)||η(x) − η(y)|d J (x, y)

≤ np−1−q/2

R − r
‖ f 1BR+s\Br−s‖q/2

⎛
⎜⎝

∫

X\An

η2d�( j)( f )

⎞
⎟⎠

1/2

,

with the right side converging to 0, as n → ∞.
Plugging these estimates into our key estimate in Lemma 17, using f = fn on

An and η = 1 on Br , yields a constant C > 0 such that for all n ∈ N

∫

An∩Br

f p−2d�(c)( f ) +
∫

An×(An∩Br )\d
( f (x) ∨ f (y))p−2( f (x) − f (y))2d J (x, y)

≤ C

(R − r)2
‖ f 1BR+s\Br−s‖p

p + En,

with En → 0, as n → ∞. With this at hand the statement follows after letting
n → ∞.
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In the case q = ∞ we can use the same estimates as above without invoking
the limit n → ∞, as in this case An = X for some n ∈ N and En = 0 for some
n ∈ N. �

For proving Yau’s theorem the Caccioppoli-type inequality is sufficient. For
Karp’s theorem we need one further estimate, which follows from our key estimate
and the Caccioppoli-type inequality. Here, η = ηr,R denotes the cut-off function dis-
cussed in Lemma 13.

Lemma 18 Assume the distance balls of ρ are precompact and the jump-size s is
finite. For p ∈ (1,∞) there is C > 0 such that for every non-negative subharmonic
function f ∈ Lq

loc(m) with q = max{p, 2p − 2} and all 0 < r < R we have

( ∫

X

f p−2η2d�(c)( f ) +
∫

X×X\d
( f (x) ∨ f (y))p−2η2(y)( f (x) − f (y))2d J (x, y)

)2

≤ C

(R − r)2
‖ f 1BR+s\Br−s‖p

p

( ∫

BR\Br

f p−2η2d�(c)( f )

+
∫

UR+s\Ur−s

( f (x) ∨ f (y))p−2η2(y)( f (x) − f (y))2d J (x, y)

)
,

with η = ηr,R and Ur = Br × Br \ d.
Proof We apply our key estimate Lemma 17 to f with the cut-off function η = ηr,R .
Then, the Cauchy-Schwarz inequality and the cut-off properties of η yield

( ∫

An

f p−2η2d�(c)( f ) +
∫

X×X\d
( fn(x) ∨ fn(y))

p−2η(y)2( fn(x) − fn(y))
2d J (x, y)

)2

≤ C

(R − r)2
‖ fn1BR+s\Br−s ‖pp

( ∫

BR\Br
f p−2
n η2d�(c)( f )

+
∫

UR+s\Ur−s

( fn(x) ∨ fn(y))
p−2η2(y)( f (x) − f (y))2d J (x, y)

)
.

By our Caccioppoli-type inequality Theorem 16 all of the integrals on the right side
exist when fn is replaced by f (here we use that BR+s is precompact, 0 ≤ η ≤ 1
with η = 0 on X \ BR and the integrability assumption on f ). Hence, we can take
the limit n → ∞ to obtain the statement. �
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5 Proof of Yau’s and Karp’s Theorem and Recurrence

In this section we use the results from the previous sections to prove Yau’s and
Karp’s theorem, Theorems 2 and 3. Later in this section we prove the growth test for
recurrence, Theorem 4.

5.1 Proof of Yau’s and Karp’s Theorem

The proofs of our Liouville theorems are based on the following observation.

Lemma 19 Let E be irreducible and let f ∈ D(E)∗loc be non-negative. If for some
p ∈ (1,∞)

∫

X

f p−2d�(c)( f ) +
∫

X×X\d
( f (x) ∨ f (y))p−2( f (x) − f (y))2d J (x, y) = 0,

then f is constant.

Proof By the truncation property of the strongly local measure �(c) and f ≥ 0 we
have

�(c)( f ) = �(c)( f+) = 1{ f >0}�(c)( f ),

see [15, Appendix 4.1]. Hence,
∫
X f p−2d�(c)( f ) = 0 implies �(c)( f ) = 0. Simi-

larly,
∫
X×X\d( f (x) ∨ f (y))p−2( f (x)− f (y))2d J (x, y) = 0 implies

∫
X×X\d( f (x) −

f (y))2d J (x, y) = 0. These two observations and Lemma 15 show the claim. �

Proof (Proof of Yau’s L p-Liouville theorem, Theorem 2) The assumptions we made
guarantee that we can apply the Caccioppoli-type inequality Theorem 16 for all
0 < r < R. In this inequality letting first R → ∞ and then r → ∞ yields

∫

X

f p−2d�(c)( f ) +
∫

X×X\d
( f (x) ∨ f (y))p−2( f (x) − f (y))2d J (x, y) = 0.

Hence, the previous lemma implies that f is constant. �

Proof (Proof of Karp’s theorem, Theorem 3) With Lemma 18 at hand we basically
follow [15]. Suppose f �= 0. Let R ≥ 4s be such that f 1BR �= 0. For n ∈ N, we
define Rn = 2n R, ηn = ηRn−1+s,Rn−s , vn = ‖ f 1BRn \BRn−1

‖p
p and

Qn =
∫

BRn

f p−2η2
nd�(c)( f ) +

∫

URn

( f (x) ∨ f (y))p−2η2
n(y)( f (x) − f (y))2d J (x, y),



218 B. Hua et al.

with Ur = Br × Br \ d. The assumption
∫ ∞ r/‖ f 1Br ‖p

pdr = ∞ implies

∞∑
n=1

R2
n

vn
= ∞.

Once we show Q1 = 0, the assertion follows from Lemma 19 after letting R → ∞.
Lemma 18 (applied to r = Rn−1 + s and R = Rn + s) and ηn−1 ≤ ηn yield

Qn−1Qn ≤ Q2
n ≤ Cvn

(Rn − Rn−1 − 2s)2
(Qn − Qn−1) ≤ 16Cvn

R2
n

(Qn − Qn−1) .

For the last inequality we used R ≥ 4s and Rn = 2n R. If Q1 > 0, this would imply

R2
n

vn
≤ 16C

(
1

Qn−1
− 1

Qn

)

and hence ∞∑
n=2

R2
n

vn
≤ 16C

Q1
< ∞,

a contradiction. �

5.2 Proof of the Growth Test for Recurrence

In this subsection we discuss how our version of Karp’s theorem can be used to
deduce the volume growth test for recurrence Theorem 4. As in the previous sections
we assume that E is a regular Dirichlet form without killing.

In order to prove the theorem we employ some abstract results from [9], to which
we also refer to for the following facts about extended Dirichlet spaces. Recall that a
function f ∈ L0(m) is said to be in the extended Dirichlet space D(Ee) of E if there
is an approximating sequence for f , i.e., an E-Cauchy sequence ( fn) in D(E) such
that m-a.e. fn → f . Let f ∈ D(Ee) and let ( fn) be an approximating sequence. We
define

Ee( f ) = lim
n→∞ E( fn).

This is indeed independent of the choice of the sequence ( fn) such that Ee is an exten-
sion of E . Moreover, it holds that D(E) = D(Ee) ∩ L2(m). We need the following
observation, which shows that our extension of the form via the measure-valued
quadratic form � is compatible with the extended Dirichlet space.
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Lemma 20 Let f ∈ D(Ee) ∩ L∞(m). Then f ∈ D(E)∗loc and

Ee( f ) =
∫

X

d�( f ).

Proof Let f ∈ D(Ee) ∩ L∞(m). We first show f ∈ D(E)loc. For a compact K ⊆ X
we choose ϕ ∈ D(E) ∩ Cc(X) with 0 ≤ ϕ ≤ 1 and ϕ = 1 on K . According to [6,
Exercise 1.4.1] such a function always exists. Then ϕ f = f on K and ϕ f ∈ L2(m).
Since D(Ee) ∩ L∞(m) is an algebra and D(Ee) ∩ L2(m) = D(E), we obtain ϕ f ∈
D(E). This shows f ∈ D(E)loc.

Now let ( fn) be an approximating sequence for f . Without loss of generality
‖ fn‖∞ ≤ ‖ f ‖∞ and according to [6, Theorem 2.1.7] we can additionally assume
fn → f q.e. (recall that we always choose quasi-continuous representatives). Since
the jump measure does not charge sets of capacity 0, Fatou’s lemma yields

∫

X×X\d
( f (x) − f (y))2d J (x, y) ≤ lim inf

n→∞

∫

X×X\d
( fn(x) − fn(y))

2d J (x, y)

≤ lim inf
n→∞ E( fn)

= Ee( f ) < ∞.

In particular, this implies f ∈ D(E)∗loc.
We will show

∫
X d�( fn) → ∫

X d�( f ) as this yields

∫

X

d�( f ) = lim
n→∞

∫

X

d�( fn) = lim
n→∞ E( fn) = Ee( f ).

According to [14, Theorem 3.1], for ϕ ∈ D(E) ∩ Cc(X) with 0 ≤ ϕ ≤ 1 and
g ∈ D(Ee) ∩ L∞(m) we have (using ϕg, ϕg2 ∈ D(E) ∩ L∞(m), see first part of the
proof)

E(ϕg) − E(ϕg2, ϕ) ≤ Ee(g).

Using the Leibniz rule for �(c) and the discrete Leibniz rule for the integration with
respect to J we obtain

∫

X

ϕ2d�(c)(g) +
∫

X×X\d
ϕ(x)ϕ(y)(g(x) − g(y))2d J (x, y) = E(ϕg) − E(ϕg2, ϕ).

Letting ϕ ↗ 1 this implies ∫

X

d�(g) ≤ Ee(g).
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In particular, since the LHS is a quadratic form in g, for (gn) in D(Ee) ∩ L∞(m) the
convergence gn → g with respect to Ee implies

∫
X d�(gn) → ∫

X d�(g).
Since ( fn) is an approximating sequence for f , the lower semicontinuity of Ee

with respect to m-a.e. convergence, see e.g. [14, Lemma 2.3], yields

Ee( f − fn) ≤ lim inf
m→∞ Ee( fm − fn) = lim inf

m→∞ E( fm − fn) → 0, as n → ∞.

Hence, we obtain the claimed convergence of �( fn) to �( f ). �

Proof (Proof of the volume growth test for recurrence, Theorem 4) According to
[9, Theorem 1 and Proposition 3] it suffices to show that any non-negative h ∈
D(Ee) ∩ L∞(m) with Ee(h, ϕ) ≥ 0 for all nonnegative ϕ ∈ D(E) is constant (such
functions are called excessive). By Lemma 20 such a function h satisfies h ∈ D(E)∗loc
and ∫

X

d�(h, ϕ) ≥ 0

for all non-negative ϕ ∈ D(E)c. Now assume without loss of generality ‖h‖∞ ≤ 1.
Since �(1) = 0, the function f = 1 − h is nonnegative and subharmonic in our
sense. Moreover, ‖ f 1Br ‖p

p ≤ ‖ f ‖p
∞m(Br ). Hence, the assumption on m(Br ) and

Theorem 3 yield that f is constant. �
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On Singularity of Energy Measures
for Symmetric Diffusions with Full
Off-Diagonal Heat Kernel Estimates II:
Some Borderline Examples

Naotaka Kajino

Abstract We present a concrete family of fractals, which we call the
(two-dimensional) thin scale irregular Sierpiński gaskets and each of which is
equipped with a canonical strongly local regular symmetric Dirichlet form.We prove
that any fractal K in this family satisfies the full off-diagonal heat kernel estimates
with some space-time scale function ΨK and the singularity of the associated energy
measures with respect to the canonical volume measure (uniform distribution) on K ,
and also that the decay rate of r−2ΨK (r) to 0 as r ↓ 0 can be made arbitrarily slow
by suitable choices of K . These results together support the energy measure singu-
larity dichotomy conjecture [Ann. Probab. 48 (2020), no. 6, 2920–2951, Conjecture
2.15] stating that, if the full off-diagonal heat kernel estimates with space-time scale
function Ψ satisfying limr↓0 r−2Ψ (r) = 0 hold for a strongly local regular symmet-
ric Dirichlet space with complete metric, then the associated energy measures are
singular with respect to the reference measure of the Dirichlet space.

Keywords Thin scale irregular Sierpiński gasket · Singularity of energy measure ·
Sub-Gaussian heat kernel estimate
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1 Introduction

This paper is a follow-up of the author’s recent joint work [26] withMathavMurugan
on singularity of energy measures associated with a strongly local regular symmetric
Dirichlet space (K, d , m, E,F) satisfying full off-diagonal heat kernel estimates. The
E-energy measure μ〈u〉 of u ∈ F is a Borel measure on K which plays, in the theory
of regular symmetric Dirichlet forms as presented in [13, 17], the same roles as the
classical energy integralmeasure |∇u|2 dx onRN . It is defined for u ∈ F ∩ L∞(K, m)
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as the unique Borel measure on K such that

∫

K

f dμ〈u〉 = E(u, fu) − 1

2
E(u2, f ) for any f ∈ F ∩ Cc(K), (1.1)

where Cc(K) denotes the space ofR-valued continuous functions on K with compact
supports, and then for u ∈ F by μ〈u〉(A) := limn→∞ μ〈(−n)∨(u∧n)〉(A) for each Borel
subset A of K ; see [17, Theorem 1.4.2-(ii),(iii), (3.2.13), (3.2.14) and (3.2.15)] for
the details of this definition.

The main results of [26] concern the singularity and the absolute continuity of
the E-energy measures μ〈u〉 with respect to the reference measure m. While μ〈u〉 is
easily identified as 〈∇u,∇u〉x dm(x) if E = ∫

K 〈∇·,∇·〉x dm(x) for some linear dif-
ferential operator ∇ satisfying the Leibniz rule and some measurable field 〈·, ·〉x

of non-negative definite symmetric bilinear forms, there is no simple expression of
μ〈u〉 and the nature of μ〈u〉 is a deep mystery when K is a fractal. The question of
whether μ〈u〉 is singular with respect to m is probably the most fundamental one
toward better understanding of μ〈u〉 in such cases, had been answered affirmatively
for essentially all known examples of self-similar Dirichlet forms on self-similar
fractals in [11, 23, 24, 30, 31], but had been studied only under the assumption of
exact self-similarity until [26]. As the main results of [26], it has been now proved
that the E-energy measuresμ〈u〉 are singular or absolutely continuous with respect to
m according to whether the behavior of the associated heat kernel pt(x, y) in infinites-
imal scale is “sufficiently sub-Gaussian” or “Gaussian”, as stated in the following
theorem. Recall that a family {pt}t∈(0,∞) of [−∞,∞]-valued Borel measurable func-
tions on K × K is called a heat kernel of (K, d , m, E,F) if and only if the symmetric
Markovian semigroup {Tt}t∈(0,∞) on L2(K, m) associated with (E,F) is expressed
as Ttu = ∫

K pt(·, y)u(y) dm(y) m-a.e. for any t ∈ (0,∞) and any u ∈ L2(K, m).
We set diam(K, d) := supx,y∈K d(x, y) and Bd (x, r) := {y ∈ K | d(x, y) < r} for
(x, r) ∈ K × (0,∞).

Theorem 1.1 (A simplification of [26, Theorem 2.13]) Let (K, d , m, E,F) be a
metric measure Dirichlet space, i.e., a strongly local regular symmetric Dirich-
let space with (K, d) complete and K containing at least two elements, so that
diam(K, d) ∈ (0,∞]. Let Ψ : [0,∞) → [0,∞) be a homeomorphism satisfying

c−1
Ψ

(
R

r

)β0

≤ Ψ (R)

Ψ (r)
≤ cΨ

(
R

r

)β1

for any r, R ∈ (0,∞) with r ≤ R (1.2)

for some cΨ , β0, β1 ∈ [1,∞) with 1 < β0 ≤ β1, and define �Ψ : [0,∞) → [0,∞)

by �Ψ (s) := supr∈(0,∞)(s/r − 1/Ψ (r)). Suppose further that (K, d , m, E,F) satis-
fies the full off-diagonal heat kernel estimates fHKE(Ψ ), i.e., that there exist a heat
kernel {pt}t∈(0,∞) of (K, d , m, E,F) and c1, c2, c3, c4 ∈ (0,∞) such that
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c1 exp
(−c2t�Ψ (d(x, y)/t)

)
m
(
Bd (x, Ψ −1(t))

) ≤ pt(x, y)

≤ c3 exp
(−c4t�Ψ (d(x, y)/t)

)
m
(
Bd (x, Ψ −1(t))

) fHKE(Ψ )

for m-a.e. x, y ∈ K for each t ∈ (0,∞). Then the following hold:

(1) (fHKE(Ψ ) with “sufficiently sub-Gaussian” Ψ implies singularity) If

lim inf
λ→∞ lim inf

r↓0
λ2Ψ (r/λ)

Ψ (r)
= 0, (1.3)

then μ〈u〉 is singular with respect to m for any u ∈ F .
(2) (fHKE(Ψ ) with “Gaussian” Ψ implies absolute continuity) If

lim sup
r↓0

Ψ (r)

r2
> 0, (1.4)

then m(A) = 0 if and only if supu∈F μ〈u〉(A) = 0 for each Borel subset A of K ,
thus in particular μ〈u〉 is absolutely continuous with respect to m for any u ∈ F ,
and there exist r1 ∈ (0, diam(K, d)) and c5 ∈ [1,∞) such that

c−1
5 r2 ≤ Ψ (r) ≤ c5r2 for any r ∈ (0, r1). (1.5)

Remark 1.2 Let Ψ : [0,∞) → [0,∞) be a homeomorphism satisfying (1.2) for
some cΨ , β0, β1 ∈ [1,∞) with 1 < β0 ≤ β1, and let (K, d , m, E,F) be a metric
measure Dirichlet space satisfying fHKE(Ψ ).

(1) It is known that in this situation (K, d , m, E,F) satisfies the assumptions of
[26, Theorem 2.13], namely VD, PI(Ψ ), CS(Ψ ) and the chain condition for
(K, d). Indeed, VD follows in the same way as [8, Proof of Lemma 5.1-(i)] by
integrating the lower inequality in fHKE(Ψ ) on Bd (x, 2Ψ −1(t)) with respect
to m and applying the upper bound on �Ψ (R, t) := t�Ψ (R/t) in [20, (5.13)],
(1.2) and the inequality

∫
Bd (x,2Ψ −1(t)) pt(x, y) dm(y) ≤ ∫

K pt(x, y) dm(y) ≤ 1 for
m-a.e. x ∈ K . Then VD and fHKE(Ψ ) imply PI(Ψ ) and CS(Ψ ) by the results
in [1, 6, 7, 19] as summarized in [32, Theorem 3.2] and [26, Theorem 2.8 and
Remark 2.9], and fHKE(Ψ ) also implies the chain condition for (K, d) by [33,
Theorem 2.11].

(2) If Ψ0 : [0,∞) → [0,∞) is a homeomorphism and Ψ0(r)/Ψ (r) ∈ [c−1
0 , c0] for

any r ∈ (0,∞) for some c0 ∈ [1,∞), then (K, d , m, E,F) satisfies fHKE(Ψ0).
Indeed, this is immediate from fHKE(Ψ ), VD, which is implied by fHKE(Ψ )

as noted in (1) above, and the elementary observation based on (1.2) that

�Ψ0(s)/�Ψ (s) ∈ [
(c0cΨ )

− 1
β0−1 , (c0cΨ )

1
β0−1

]
for any s ∈ (0,∞).
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Note that, if Ψ (r) = rβ for any r ∈ [0,∞) for some β ∈ (1,∞), then �(s) =
β

− β

β−1 (β − 1)s
β

β−1 for any s ∈ [0,∞), so that fHKE(Ψ ) with this Ψ is the typical
form of heat kernel estimates known to hold widely; see, e.g., [18, 35–37] and
references therein for the studies on the case ofβ = 2 and [4, 5, 10, 16, 29] for known
results with β > 2 for self-similar fractals. For this class of Ψ , the classification by
(1.3) and (1.4) gives a complete dichotomy between β > 2 and β ≤ 2, with the
latter identified further as β = 2 by (1.5). On the other hand, (1.3) and (1.4) do
not give a complete classification of general Ψ since there are examples of Ψ , like
Ψ (r) = r2/ log(e − 1 + r−1), satisfying (1.2) but neither (1.3) nor (1.4), and it is not
clear under fHKE(Ψ ) with such Ψ whether the E-energy measures μ〈u〉 are singular
or absolutely continuouswith respect to the referencemeasurem. In view of Theorem
1.1, one might expect the following conjecture to hold.

Conjecture 1.3 (Energy measure singularity dichotomy; a simplification of [26,
Conjecture 2.15]) Theorem 1.1-(1) with (1.3) replaced by

lim
r↓0

Ψ (r)

r2
= 0 (1.6)

(fHKE(Ψ ) with “however weakly sub-Gaussian” Ψ implies singularity) holds.

As announced already in [26, Remark 2.14], this paper is aimed at giving firm
evidence that Conjecture 1.3 should be true, by presenting concrete examples of
metricmeasureDirichlet spaces satisfyingboth the singularity of the energymeasures
and fHKE(Ψ ) for someΨ , whose decay rate at 0 can be made arbitrarily close to r2.
Their state spaces are certain fractals, which we call the (two-dimensional) thin scale
irregular Sierpiński gaskets (see Fig. 2), obtained by modifying the construction of
the scale irregular (or homogeneous random) Sierpiński gaskets studied in [9, 21, 22]
(see also [28, Chap. 24]) so as to make them look very much like one-dimensional
frames in infinitesimal scale. An arbitrarily slow decay rate of Ψ (r)/r2 as r ↓ 0 can
be then realized by choosing suitably the parameters defining the fractal to make its
infinitesimal geometry arbitrarily close to being one-dimensional, which is an idea
suggested to the author byMartin T. Barlow in [3]. An important point here is to allow
infinitely many patterns of cell subdivisions to be present in the construction of the
fractal, in contrast to that of the usual scale irregular Sierpiński gaskets considered in
[9, 21, 22, 28], each ofwhich involves only finitelymany patterns of cell subdivisions
and typically falls within the scope of Theorem 1.1-(1) as illustrated in [26, Sect. 5].
We remark that the singularity of the energy measures has been proved also in [25]
for a class of (two-dimensional) spatially inhomogeneous Sierpiński gaskets, which
typically do not satisfy the volume doubling property VD and are thereby beyond
the scope of [26, Theorem 2.13].

The rest of this paper is organized as follows. In Sect. 2 we define the thin scale
irregular Sierpiński gaskets and construct the canonical Dirichlet forms (resistance
forms) on them, and we verify in Sect. 3 that they satisfy fHKE(Ψ )withΨ explicit in
terms of their defining parameters (Theorem 3.3). In Sect. 4 we prove the singularity
of the energy measures for the canonical Dirichlet form on any thin scale irregular
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Sierpiński gasket (Theorem 4.3), and Sect. 5 is devoted to stating and proving our last
main result that an arbitrarily slow decay rate of Ψ (r)/r2 can be realized by some
thin scale irregular Sierpiński gasket (Theorem 5.1 and Proposition 5.2).

Notation In this paper, we adopt the following notation and conventions.

(1) The symbols ⊂ and ⊃ for set inclusion allow the case of the equality.
(2) N := {n ∈ Z | n > 0}, i.e., 0 /∈ N.
(3) The cardinality (the number of elements) of a set A is denoted by #A.
(4) We set a ∨ b := max{a, b}, a ∧ b := min{a, b}, a+ := a ∨ 0, a− := −(a ∧ 0)

and �a� := max{n ∈ Z | n ≤ a} for a, b ∈ R, and we use the same notation also
forR-valued functions and equivalence classes of them. All numerical functions
in this paper are assumed to be [−∞,∞]-valued.

(5) The Euclidean inner product and norm on R
2 are denoted by 〈·, ·〉 and | · |,

respectively.
(6) Let K be a non-empty set. We define idK : K → K by idK (x) := x, 1A = 1K

A ∈
R

K for A ⊂ K by 1A(x) := 1K
A (x) := { 1 if x∈A,

0 if x/∈A, set 1x := 1K
x := 1{x} for x ∈ K

and ‖u‖sup := ‖u‖sup,K := supx∈K |u(x)| for u : K → R.
(7) Let K be a topological space. We set C(K) := {u ∈ R

K | u is continuous}, and
the closure of K \ u−1(0) in K is denoted by suppK [u] for each u ∈ C(K). The
Borel σ -algebra of K is denoted byB(K).

(8) Let (K, d) be a metric space. We set Bd (x, r) := {y ∈ K | d(x, y) < r} for
(x, r) ∈ K × (0,∞).

(9) Let (K,B) be a measurable space and let μ, ν be measures on (K,B). We
write ν � μ and ν ⊥ μ to mean that ν is absolutely continuous and singular,
respectively, with respect to μ.

2 The Examples: Thin Scale Irregular Sierpiński Gaskets

In this section, we introduce the (two-dimensional) thin scale irregular Sierpiński
gaskets, and construct the canonical Dirichlet forms (resistance forms) on them by
applying the standard method developed in [27, Chaps. 2 and 3]. We closely follow
[26, Sect. 5] for the presentation of this section.

To start with, the thin scale irregular Sierpiński gaskets are defined as follows.

Fig. 1 The level-l (self-similar) thin Sierpiński gaskets Kl (l = 5, 6, 7, 8)
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Definition 2.1 (Thin scale irregular Sierpiński gasket) Let q0, q1, q2 ∈ R
2 satisfy

|qj − qk | = 1 for any j, k ∈ {0, 1, 2} with j �= k, so that the convex hull � of V0 :=
{q0, q1, q2} in R

2 is a closed equilateral triangle with side length 1. For each l ∈
N \ {1, 2, 3, 4}, we set

Sl := {
(i1, i2) ∈ (N ∪ {0})2 ∣∣ i1 + i2 ≤ l − 1, i1i2(l − 1 − i1 − i2) = 0

}
, (2.1)

and for each i = (i1, i2) ∈ Sl set ql
i := q0 + ∑2

k=1(ik/l)(qk − q0) and define f l
i :

R
2 → R

2 by f l
i (x) := ql

i + l−1(x − q0). Let l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N, set
W l

n := ∏n
k=1 Slk for n ∈ N ∪ {0}, W l∗ := ⋃∞

n=0 W l
n, |w| := n and f l

w := f l1
w1

◦ · · · ◦ f ln
wn

for n ∈ N ∪ {0} and w = w1 . . . wn ∈ W l
n, where W l

0 is defined as the singleton {∅} of
the empty word ∅ and f l

∅ := idR2 . Noting that
{⋃

w∈W l
n

f l
w(�)

}∞
n=0 is a strictly decreas-

ing sequence of non-empty compact subsets of �, we define the (two-dimensional)
level-l thin scale irregular Sierpiński gasket K l as the non-empty compact subset of
� given by

K l :=
∞⋂

n=0

⋃
w∈W l

n

f l
w(�) (2.2)

(see Fig. 2), and set K l
w := K l ∩ f l

w(�) and F l
w := f l

w|K l|w| for w ∈ W l∗, where lk :=
(ln+k)

∞
n=1 for k ∈ N ∪ {0}.We also setV l

n := ⋃
w∈W l

n
f l
w(V0) for n ∈ N ∪ {0} andV l∗ :=⋃∞

n=0 V l
n, so that V l

0 = V0, {V l
n}∞n=0 is a strictly increasing sequence of finite subsets

of K l , and V l∗ is dense in K l .
In particular, for each l ∈ N \ {1, 2, 3, 4} we let ll := (l)∞n=1 denote the constant

sequence with value l, set Kl := K ll and V l
n := V ll

n for n ∈ N ∪ {0}, and call Kl the
(two-dimensional) level-l thin Sierpiński gasket, which is exactly self-similar in the
sense that Kl = ⋃

i∈Sl
f l
i (Kl) (see Fig. 1 and, e.g., [27, Sect. 1.1]).

We fix an arbitrary l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N in the rest of this section. The
following proposition is immediate from Definition 2.1.
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Fig. 2 A level-l thin scale
irregular Sierpiński gasket
K l (l = (5, 7, 6, 12, . . .))

Proposition 2.2 (1) Let w = w1 . . . w|w|, v = v1 . . . v|v| ∈ W l∗ \ {∅} satisfy wk �= vk

for some k ∈ {1, . . . , |w| ∧ |v|}. Then #(K l
w ∩ K l

v) ≤ 1 and

f l
w(�) ∩ f l

v (�) = K l
w ∩ K l

v = F l
w(V0) ∩ F l

v(V0). (2.3)

(2) K l = ⋃
w∈W l

n
K l

w for any n ∈ N ∪ {0}, and F l
w(K l|w|

) = K l
w for any w ∈ W l∗.

(3) V l
n+k = ⋃

w∈W l
n

F l
w(V ln

k ) and V l∗ = ⋃
w∈W l

n
F l

w(V ln∗ ) for any n, k ∈ N ∪ {0}.
In exactly the same way as in [9, 21, 22] (see also [28, Part 4]), we can define a

canonical strongly local regular symmetric Dirichlet space (K l, dl, ml, E l,Fl) over
K l . First, the metric dl on K l is defined as follows.

Definition 2.3 We define dl : K l × K l → [0,∞] by

dl(x, y) := inf{�R2(γ ) | γ : [0, 1] → K l, γ is continuous, γ (0) = x, γ (1) = y},
(2.4)

where �R2(γ ) denotes the Euclidean length of γ , i.e., the total variation of the R2-
valued map γ with respect to the Euclidean norm | · |. We also set Ll

n := l1 · · · ln
(Ll

0 := 1) for n ∈ N ∪ {0}.
Proposition 2.4 dl is a metric on K l , and it is geodesic, i.e., for any x, y ∈ K l

there exists γ : [0, 1] → K l such that γ (0) = x, γ (1) = y and dl(γ (s), γ (t)) = |s −
t|dl(x, y) for any s, t ∈ [0, 1]. Moreover,

|x − y| ≤ dl(x, y) ≤ 6|x − y| for any x, y ∈ K l. (2.5)

Proof This proof is similar to [9, Proof of Lemma 2.4], but some additional argument
is required to take care of the possible unboundedness of l = (ln)∞n=1. It is immediate
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from (2.4) that |x − y| ≤ dl(x, y) < ∞ for any x, y ∈ K l and thereby thatdl is ametric
on K l , which is also geodesic by [12, Proposition 2.5.19]; indeed, the infimum in
(2.4) is easily seen to be attained for each x, y ∈ K l , by choosing a sequence {γn}∞n=1
of continuous maps as in (2.4) with limn→∞ �R2(γn) = dl(x, y), reparameterizing
them by arc length on the basis of [12, Proposition 2.5.9], and applying to them
the Arzelà–Ascoli theorem [12, Theorem 2.5.14] and the lower semi-continuity [12,
Proposition 2.3.4-(iv)] of �R2 with respect to pointwise convergence.

Thus it remains to prove the upper inequality in (2.5) for any x, y ∈ K l with x �= y.
First, for any w ∈ W l∗ and any x ∈ K l

w, we easily see that

max
k∈{0,1,2}

dl(F
l
w(qk), x) ≤

∞∑
n=|w|+1

3
2 ln − 5

2

Ll
n

≤
3
2 l|w|+1 − 5

2 + ∑∞
n=0

3
2 (

1
5 )

n

Ll
|w|l|w|+1

<

3
2

Ll
|w|

,

(2.6)
from which it further follows that for any j, k ∈ {0, 1, 2} with j �= k,

dl(F
l
w(qk), x) ≤ 5|〈x − F l

w(qk), ek,j〉|, (2.7)

where ek,j := qj − qk . Now let x, y ∈ K l satisfy x �= y and set n0 := min{n ∈ N |
{x, y} �⊂ K l

w for any w ∈ W l
n}, so that x, y ∈ K l

w for a unique w ∈ W l
n0−1 by Proposi-

tion 2.2-(1). If K l
wix

∩ K l
wiy

�= ∅ for some ix, iy ∈ Sln0
with x ∈ K l

wix
and y ∈ K l

wiy
, then

ix �= iy by the definition of n0, qx,y = F l
wix (qk) = F l

wiy (qj) for the unique element qx,y

of K l
wix ∩ K l

wiy and some j, k ∈ {0, 1, 2} with j �= k by Proposition 2.2-(1), and from
(2.7) we obtain

dl(x, y) ≤ dl(x, qx,y) + dl(qx,y, y)

≤ 5|〈x − qx,y, ek,j〉| + 5|〈qx,y − y, ek,j〉| = 5|〈x − y, ek,j〉| ≤ 5|x − y|.

On the other hand, if K l
wix

∩ K l
wiy

= ∅ for any ix, iy ∈ Slk with x ∈ K l
wix

and y ∈ K l
wiy
,

then setting

n1 := min

{
n ∈ N

∣∣∣∣ there exists {ik}n
k=0 ⊂ Sln0

such that x ∈ K l
wi0

, y ∈ K l
win

and K l
wik−1

∩ K l
wik

�= ∅ for any k ∈ {1, . . . , n}
}
,

wehave2 ≤ n1 ≤ 3
2 ln0 − 5

2 ,L
l
n0dl(x, y) ≤ 3

2 + (n1 − 1) + 3
2 = n1 + 2 ≤ 3

2 ln0 by (2.6),
2√
3
Ll

n0 |x − y| ≥ ( 12 ln0 − 1) ∧ � 1
2n1�, and thus dl(x, y)/|x − y| ≤ 10√

3
< 6. �

Next, the canonical volume measure ml on K l is defined as follows.

Definition 2.5 We define ml as the unique Borel measure on K l such that

ml(K
l
w) = 1

M l
|w|

for any w ∈ W l
∗, (2.8)
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where M l
n := (#Sl1) · · · (#Sln) = ∏n

k=1(3lk − 3) (M l
0 := 1) for n ∈ N ∪ {0}.

The measure ml can be considered as the “uniform distribution on K l”. Its unique-
ness stated in Definition 2.5 is immediate from the Dynkin class theorem (see,
e.g., [15, Appendixes, Theorem 4.2]). It is also easily seen to be obtained as
ml = (∏∞

n=1 unif(Sln)
)
(π−1

l (·)), where unif(Sln) denotes the uniform distribution on
Sln ,

∏∞
n=1 unif(Sln) their product probability measure on

∏∞
n=1 Sln (see, e.g., [14,

Theorem 8.2.2] for its unique existence) and πl : ∏∞
n=1 Sln → K l the continuous

surjection given by {πl((ωn)
∞
n=1)} := ⋂∞

n=1 K l
ω1...ωn

.
Now we turn to the construction of the canonical Dirichlet form (resistance form)

(E l,Fl) onK l , which is achieved by taking the “inductive limit” of a certain canonical
sequence of discreteDirichlet forms on the finite sets {V l

n}∞n=0 via the standardmethod
presented in [27, Chaps. 2 and 3] (see also [2, Sects. 6 and 7]). Thewhole construction
is based on the following definition and lemma.

Definition 2.6 Recalling that V l
0 = V0, we define a non-negative definite symmetric

bilinear form E0 : RV0 × R
V0 → R on R

V0 = R
V l
0 by

E0(u, v) := 1

2

2∑
j,k=0

(u(qj) − u(qk))(v(qj) − v(qk)), u, v ∈ R
V0 , (2.9)

and set rl := ( 23 l + 1
9 )

−1 for each l ∈ N \ {1, 2, 3, 4}.
The value of rl is specifically chosen in order for the following lemma to hold.

Lemma 2.7 Let l ∈ N \ {1, 2, 3, 4}. Then for any u ∈ R
V0 ,

min

{∑
i∈Sl

E0
(
v ◦ Fl

i |V0 , v ◦ Fl
i |V0

) ∣∣∣∣ v ∈ R
V l
1 , v|V0 = u

}
= rlE0(u, u). (2.10)

Proof This is immediate from a direct calculation using the �–Y transform (see,
e.g., [27, Lemma 2.1.15]). �

We would like to define a bilinear form E l,n on RV l
n for each n ∈ N as the sum of

the copies of (2.9) on {F l
w(V0)}w∈W l

n
and then to take their limit as n → ∞, which

is enabled by introducing the scaling factors Rl
n suggested by Lemma 2.7 as in the

following definition.

Definition 2.8 For each n ∈ N ∪ {0}, we define a non-negative definite symmetric
bilinear form E l,n : RV l

n × R
V l

n → R on R
V l

n by

E l,n(u, v) := 1

Rl
n

∑
w∈W l

n

E0(u ◦ F l
w|V0 , v ◦ F l

w|V0

)
, u, v ∈ R

V l
n , (2.11)

where Rl
n := rl1 · · · rln = ∏n

k=1(
2
3 lk + 1

9 )
−1 (Rl

0 := 1), so that E l,0 = E0.
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Proposition 2.9 The sequence {E l,n}∞n=0 of forms is compatible, i.e., for any n, k ∈
N ∪ {0} and any u ∈ R

V l
n ,

min
{E l,n+k(v, v)

∣∣ v ∈ R
V l

n+k , v|V l
n
= u

} = E l,n(u, u). (2.12)

Proof This is immediate from an induction on k based on Lemma 2.7. �

Proposition 2.9 allows us to take the “inductive limit” of {E l,n}∞n=0 as in the following
definition. Note that {E l,n(u|V l

n
, u|V l

n
)}∞n=0 ⊂ [0,∞) is non-decreasing by (2.12) and

hence has a limit in [0,∞] for any u ∈ R
V l∗ .

Definition 2.10 We define a linear subspace Fl of RV l∗ and a non-negative definite
symmetric bilinear form E l : Fl × Fl → R on Fl by

Fl :=
{

u ∈ R
V l∗
∣∣∣ lim

n→∞ E l,n(u|V l
n
, u|V l

n
) < ∞

}
, (2.13)

E l(u, v) := lim
n→∞ E l,n(u|V l

n
, v|V l

n
) ∈ R, u, v ∈ Fl. (2.14)

Then applying [27, Lemma 2.2.2, Proposition 2.2.4, Lemma 2.2.5 and Theorem
2.2.6] on the basis of Proposition 2.9, we obtain the following proposition. See [27,
Definition 2.3.1] or [28, Definition 3.1] for the notion of resistance forms.

Proposition 2.11 (E l,Fl) is a resistance form on V l∗, i.e., the following hold:

(RF1) {u ∈ Fl | E l(u, u) = 0} = R1V l∗ .
(RF2) (Fl/R1V l∗ , E l) is a Hilbert space.
(RF3) {u|V | u ∈ Fl} = R

V for any non-empty finite subset V of V l∗.

(RF4) RE l (x, y) := sup

{ |u(x) − u(y)|2
E l(u, u)

∣∣∣∣ u ∈ Fl \ R1V l∗

}
< ∞ for any x, y ∈ V l∗.

(RF5) u+ ∧ 1 ∈ Fl and E l(u+ ∧ 1, u+ ∧ 1) ≤ E l(u, u) for any u ∈ Fl .

Moreover, RE l : V l∗ × V l∗ → [0,∞) is a metric on V l∗, called the resistance metric of
(E l,Fl), and for any u ∈ Fl and any x, y ∈ V l∗,

|u(x) − u(y)|2 ≤ RE l (x, y)E l(u, u). (2.15)

Recalling Proposition 2.2-(3), we also see from the above construction that the
following (non-exact) self-similarity of (E l,Fl) holds.

Proposition 2.12 Let n ∈ N ∪ {0}. Then

Fl = {
u ∈ R

V l∗
∣∣ u ◦ F l

w|V ln∗ ∈ Fln for any w ∈ W l
n

}
, (2.16)

E l(u, v) = 1

Rl
n

∑
w∈W l

n

E ln(u ◦ F l
w|V ln∗ , v ◦ F l

w|V ln∗

)
for any u,v ∈ Fl. (2.17)
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Proof It follows from Proposition 2.2-(3) and (2.11) that for each n, k ∈ N ∪ {0},

E l,n+k(u, v) = 1

Rl
n

∑
w∈W l

n

E ln,k(u ◦ F l
w|V ln

k
, v ◦ F l

w|V ln
k

)
for any u, v ∈ R

V l
n+k ,

which together with (2.13) and (2.14) immediately yields (2.16) and (2.17). �
Lemma 2.13 For any w ∈ W l∗ and any x, y ∈ V l|w|

∗ ,

RE l (F l
w(x), F l

w(y)) ≤ Rl
|w|RE l|w| (x, y). (2.18)

Proof This is immediate from Proposition 2.12 and Proposition 2.11-(RF4). �
Later we will use the following definition and proposition several times.

Definition 2.14 Let h ∈ R
V l∗ and n ∈ N ∪ {0}. We say that h is E l-harmonic off V l

n
if and only if h ∈ Fl and

E l(h, h) = min{E l(v, v) | v ∈ Fl, v|V l
n
= h|V l

n
},

or equivalently, E l(h, v) = 0 for any v ∈ Fl with v|V l
n
= 0.

(2.19)

We set Hl,n := {h ∈ R
V l∗ | h is E l-harmonic off V l

n}, which is a linear subspace of
Fl .

Proposition 2.15 Let n ∈ N ∪ {0}. Then for each h ∈ R
V l∗ , the following four con-

ditions (1), (2), (3) and (4) are equivalent to each other and imply (5) below:

(1) h ∈ Hl,n.
(2)

∑
y∈V l

n+k , Ll
n+k dl(x,y)=1(h(y) − h(x)) = 0 for any k ∈ N and any x ∈ V l

n+k \ V l
n.

(3) h ∈ Fl and E l(h, h) = E l,n(h|V l
n
, h|V l

n
).

(4) h ◦ F l
w|V ln∗ ∈ Hln,0 for any w ∈ W l

n.
(5) (Maximum principle) For any w ∈ W l

n and any x ∈ F l
w(V ln∗ ),

min
q∈F l

w(V0)
h(q) ≤ h(x) ≤ max

q∈F l
w(V0)

h(q). (2.20)

Also, for each u ∈ R
V l

n there exists a unique hln(u) ∈ Hl,n with hln(u)|V l
n
= u, and the

map hln : RV l
n → Hl,n is a linear isomorphism.

Proof The assertions for hln and the equivalence of (1), (2) and (3) follow from
Proposition 2.9, [27, Lemma 2.2.2] and (2.11). Moreover, noting that E ln(u, u) ≥
E0(u|V0 , u|V0) for any u ∈ Fln , we easily see from (2.16), (2.17) and (2.11) that
(3) holds if and only if h ◦ F l

w|V ln∗ ∈ Fln and E ln
(
h ◦ F l

w|V ln∗ , h ◦ F l
w|V ln∗

) = E0
(
h ◦

F l
w|V0 , h ◦ F l

w|V0

)
for any w ∈ W l

n, which is equivalent to (4) by the equivalence of
(3) and (1) with h ◦ F l

w|V ln∗ , ln, 0 in place of h, l, n. Lastly, (4) implies (5) by [27,
Lemma 2.2.3] applied to h ◦ F l

w|V ln∗ for each w ∈ W l
n. �
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Note that at this stage the domainFl of E l is only a linear subspace ofRV l∗ , unlike
that of a regular symmetric Dirichlet form on L2(K l, ml), which is a linear subspace
of L2(K l, ml) including a dense subalgebra of (C(K l), ‖ · ‖sup). As the last step of the
construction of the canonicalDirichlet formonK l , we nowfill this gap byproving that
idV l∗ : (V l∗, dl|V l∗×V l∗) → (V l∗, RE l ) is uniformly continuouswith uniformly continuous
inverse and consequently that each u ∈ Fl uniquely extends to an element of C(K l)

by virtue of (2.15).

Proposition 2.16 For any x, y ∈ V l∗ and any n ∈ N, the following hold:

(1) If dl(x, y) < 1/Ll
n, then RE l (x, y) ≤ 4Rl

n.
(2) If RE l (x, y) < 1

6Rl
n, then dl(x, y) ≤ 3/Ll

n.

In particular, RE l uniquely extends to RE l ∈ C(K l × K l), RE l is a metric on K l com-
patible with the original (Euclidean) topology of K l , and

(
(K l, RE l ), idV l∗

)
is the

completion of (V l∗, RE l ).

Proof We essentially follow [28, Chap. 22], but the possible unboundedness of
l = (ln)∞n=1 requires some additional care. First, since

RE l (qj, qk) = (
min{E0(u, u) | u ∈ R

V0 , u(qj) = 1, u(qk) = 0})−1 = 2

3

for any j, k ∈ {0, 1, 2} with j �= k by [27, (2.2.3) and Lemma 2.2.5], it follows from
Lemma 2.13 that for any w ∈ W l∗ and any j, k ∈ {0, 1, 2},

RE l (F l
w(qj), F l

w(qk)) ≤ 2

3
Rl

|w|. (2.21)

Recalling that RE l is a metric on V l∗ as stated in Proposition 2.11, we easily see from
(2.21) and the triangle inequality for RE l that for any x ∈ V l∗,

max
k∈{0,1,2}

RE l (qk , x) ≤
∞∑

n=1

3ln − 5

2
· 2
3

Rl
n ≤ l1 − 5

3 + ∑∞
n=2

3
2 (

9
31 )

n−2

2
3 l1 + 1

9

< 2, (2.22)

which together with Lemma 2.13 further implies that for any w ∈ W l∗ and any x ∈
F l

w(V l|w|
∗ ),

max
k∈{0,1,2}

RE l (F l
w(qk), x) < 2Rl

|w|. (2.23)

To see (1) and (2), let x, y ∈ V l∗, n ∈ N, choose w ∈ W l
n so that x ∈ K l

w, and set
n,w := {v ∈ W l

n | K l
w ∩ K l

v �= ∅} and Un,w := ⋃
v∈n,w

K l
v. It holds that

if y ∈ Un,w, then dl(x, y) <
3

Ll
n

and RE l (x, y) < 4Rl
n (2.24)
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by (2.3), the triangle inequality for dl and RE l , (2.6) and (2.23). On the other hand, if
y /∈ Un,w, then clearly dl(x, y) ≥ 1/Ll

n by (2.3) and (2.4), and recalling Proposition
2.15 and setting hn,w := hln(1F l

w(V0)), we have hn,w|F l
w(V ln∗ ) = 1, hn,w|F l

v(V
ln∗ ) = 0 for

any v ∈ W l
n \ n,w, E l(hn,w, hn,w) = E l,n(1F l

w(V0),1F l
w(V0)), and therefore

RE l (x, y) ≥ |hn,w(x) − hn,w(y)|2
E l(hn,w, hn,w)

= 1

E l,n(1F l
w(V0),1F l

w(V0))
=

1
2Rl

n

#n,w − 1
≥ Rl

n

6

by Proposition 2.11-(RF4), (2.11), (2.9), Proposition 2.2-(1) and #n,w ≤ 4. It
follows that, if either dl(x, y) < 1/Ll

n or RE l (x, y) < 1
6Rl

n, then y ∈ Un,w, hence
dl(x, y) < 3/Ll

n and RE l (x, y) < 4Rl
n by (2.24), proving (1) and (2), which in turn

immediately imply the existence and the stated properties of RE l . �

Definition 2.17 Throughout the rest of this paper, we identify Fl with the linear
subspace of C(K l) given by

{u ∈ C(K l) | u|V l∗ ∈ Fl} =
{

u ∈ C(K l)

∣∣∣ lim
n→∞ E l,n(u|V l

n
, u|V l

n
) < ∞

}
(2.25)

through the mapping u �→ u|V l∗ , which is a linear isomorphism from (2.25) to Fl

since each u ∈ Fl uniquely extends to an element of C(K l) by Proposition 2.16 and
(2.15). The pair (E l,Fl) is then called the canonical resistance form on K l .

Theorem 2.18 (1) (E l,Fl) is a resistance form on K l with resistance metric RE l ,
which is hereafter denoted as RE l for simplicity of the notation.

(2) (E l,Fl) is regular, i.e., Fl is a dense subalgebra of (C(K l), ‖ · ‖sup).
(3) (E l,Fl) is strongly local, i.e.,E l(u, v) = 0 for any u, v ∈ Fl that satisfy suppK [u −

a1K l ] ∩ suppK [v] = ∅ for some a ∈ R.

Proof (1) follows from Propositions 2.11, 2.16, Definition 2.17, [27, Lemma 2.3.9
and Theorem 2.3.10], (2) from (1), the compactness of (K l, RE l ), [28, Corollary 6.4
and Lemma 6.5], and (3) from 1K l ∈ Fl , E l(1K l ,1K l ) = 0 and (2.17). �

Remark 2.19 (1) To be explicit, Theorem 2.18-(1) means the following:
Proposition 2.11-(RF1), (RF2), (RF3), (RF5) with K l in place of V l∗ hold and
RE l (x, y) = sup

{|u(x) − u(y)|2/E l(u, u)
∣∣ u ∈ Fl \ R1K l

}
for any x, y ∈ K l .

(2) Under the conventions introduced in Definition 2.17 and Theorem 2.18-(1), we
easily get the following, which we will utilize below without further notice:

• (2.15) for any u ∈ Fl and any x, y ∈ K l;
• Proposition 2.12 with C(K l), F l

w in place of RV l∗ , F l
w|V ln∗ ;

• Lemma 2.13 with K l|w|
in place of V l|w|

∗ ;
• Proposition 2.15 with C(K l), F l

w, K l
w in place of RV l∗ , F l

w|V ln∗ , F l
w(V ln∗ );

• Proposition 2.16-(1), (2) for any x, y ∈ K l and any n ∈ N;
• (2.23) for any w ∈ W l∗ and any x ∈ K l

w.
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Finally, we can now consider (E l,Fl) as an irreducible, strongly local, regular
symmetric Dirichlet form over K l as follows. See [17, Sects. 1.1 and 1.6] or [13,
Sects. 1.1, 1.3 and 2.1] for the definitions of the relevant notions.

Theorem 2.20 Let μ be a Radon measure on K l with full support, i.e., a Borel
measure on K l with μ(K l) < ∞ and μ(K l

w) > 0 for any w ∈ W l∗. Then (E l,Fl) is
an irreducible, strongly local regular symmetric Dirichlet form on L2(K l, μ).

Proof Since C(K l) is dense in L2(K l, μ) by [34, Theorem 3.14], Fl is also dense in
L2(K l, μ) by Theorem 2.18-(2), and then (E l,Fl) is a regular symmetric Dirichlet
form on L2(K l, μ) by Proposition 2.11-(RF2), (2.15), Proposition 2.11-(RF5) and
Theorem2.18-(2), strongly local byTheorem2.18-(3), and irreducible byProposition
2.11-(RF1) and [13, Theorem 2.1.11]. �

3 Space-Time Scale Function Ψl and fHKE(Ψl)

In this section, we continue to fix an arbitrary l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N, define
a space-time scale function Ψl explicitly in terms of l = (ln)∞n=1, and show that
(K l, dl, ml, E l,Fl) satisfies fHKE(Ψl). First, Ψl is defined in a way analogous to
[26, (5.11)] for the usual scale irregular Sierpiński gaskets but modified so as to take
the “asymptotically one-dimensional” nature of K l into account, as follows.

Definition 3.1 We define a homeomorphism Ψl : [0,∞) → [0,∞) by

Ψl(s) :=
(

1

M l
n

+ s − 1/Ll
n

1/Ll
n−1 − 1/Ll

n

(
1

M l
n−1

− 1

M l
n

))

·
(

Rl
n + s − 1/Ll

n

1/Ll
n−1 − 1/Ll

n

(Rl
n−1 − Rl

n)

)

= 1

T l
n

(
1 + 3ln − 4

ln − 1
(Ll

ns − 1)

)(
1 +

2
3 ln − 8

9

ln − 1
(Ll

ns − 1)

)
(3.1)

for n ∈ N and s ∈ [1/Ll
n, 1/Ll

n−1] andΨl(s) := sβl,0 for s ∈ {0} ∪ [1,∞), whereT l
n :=

M l
n/Rl

n = (#Sl1/rl1) · · · (#Sln/rln) = ∏n
k=1(2l2k − 5

3 lk − 1
3 ) (T l

0 := 1) and
βl,0 := infn∈N βln withβl := logl(#Sl/rl) = logl(2l2 − 5

3 l − 1
3 ) ∈ (2, 2 + log5 2) for

l ∈ N \ {1, 2, 3, 4}; note that {βl}∞l=5 is strictly decreasing and converges to 2. We
also set βl,1 := maxn∈N βln , so that 2 ≤ βl,0 ≤ βl,1 ≤ β5 < 2 + log5 2.

Lemma 3.2 Ψl satisfies (1.2) with cΨ = 81, β0 = βl,0 and β1 = βl,1.

Proof Let r, R ∈ (0,∞) satisfy r ≤ R. If r ≥ 1, then Ψl(R)/Ψl(r) = (R/r)βl,0 ≤
(R/r)βl,1 . Next, if r, R ∈ [1/Ll

n, 1/Ll
n−1] for some n ∈ N, then we easily see from

(3.1), 1 ≤ Ll
nr ≤ Ll

nR ≤ ln and lβln −2
n = 2 − 5

3 l−1
n − 1

3 l−2
n < 2 that
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1

9

(
R

r

)βl,0

<
2

9
l2−βln
n

(
R

r

)βln

≤ 2

9

(
R

r

)2

≤ Ψl(R)

Ψl(r)
≤ 9

2

(
R

r

)2

≤ 9

2

(
R

r

)βl,1

. (3.2)

Lastly, if r < 1 and no such n ∈ N exists, then we can choose j, k ∈ N ∪ {0} with
j ≤ k so that r ∈ [1/Ll

k+1, 1/Ll
k) and R ∈ [1/Ll

j, 1/Ll
j−1), where 1/Ll−1 := ∞, and by

(3.1) and the definitions of βl,0 and βl,1 we have

Ψl(1/Ll
j)

Ψl(1/Ll
k)

= T l
k

T l
j

=
k∏

n=j+1

#Sln

rln

=
k∏

n=j+1

lβln
n ∈

[(
1/Ll

j

1/Ll
k

)βl,0

,

(
1/Ll

j

1/Ll
k

)βl,1
]
,

which together with (3.2) and the equality

Ψl(R)

Ψl(r)
= Ψl(1/Ll

k)

Ψl(r)

Ψl(1/Ll
j)

Ψl(1/Ll
k)

Ψl(R)

Ψl(1/Ll
j)

immediately yields (1.2) for Ψl with cΨ = 81, β0 = βl,0 and β1 = βl,1. �

The main result of this section is the following theorem.

Theorem 3.3 (K l, dl, ml, E l,Fl) satisfies fHKE(Ψl).

The rest of this section is devoted to the proof of Theorem 3.3.We will conclude it
from [28, Theorem 15.10] by proving that (K l, dl, ml, E l,Fl) satisfies the conditions
(DM1)Ψl ,dl and (DM2)Ψl ,dl defined in [28, Definition 15.9-(3),(4)], which are the
central assumptions in [28, Theorem 15.10]. A similar argument is given in [28,
Chap. 24] for a large class of scale irregular Sierpiński gaskets, but the possible
unboundedness of l = (ln)∞n=1 requires some additional care.

The core of the proof of Theorem 3.3 is to establish the following proposition,
which is an extension of (the proof of) Proposition 2.16 to the case where n ∈ N,
k ∈ {1, . . . , ln} and either dl(x, y) < k/Ll

n or RE l (x, y) < 1
12kRl

n.

Definition 3.4 Let n ∈ N and w ∈ W l
n. For each k ∈ {0, . . . , ln}, we define

(k)
n,w :=

{
v ∈ W l

n

∣∣∣∣ there exists {v(j)}k
j=0 ⊂ W l

n such that v(0) = w, v(k) = v

and K l
v(j−1) ∩ K l

v(j) �= ∅ for any j ∈ {1, . . . , k}
}

(3.3)
((0)

n,w := {w}) and U (k)
n,w := ⋃

v∈
(k)
n,w

K l
v, so that 2k + 1 ≤ #(k)

n,w ≤ (6k) ∨ 1.

Proposition 3.5 Let n ∈ N, w ∈ W l
n, x ∈ K l

w and k ∈ {1, . . . , ln}.
(1) If y ∈ U (k)

n,w, then dl(x, y) < (k + 2)/Ll
n and RE l (x, y) < ( 23k + 10

3 )Rl
n.

(2) If y ∈ K l \ U (k)
n,w, then dl(x, y) ≥ k/Ll

n and RE l (x, y) ≥ 1
12kRl

n.
(3) Bdl (x, k/Ll

n) ⊂ U (k)
n,w ⊂ Bdl (x, (k + 2)/Ll

n).
(4) BREl (x,

1
12kRl

n) ⊂ U (k)
n,w ⊂ BREl (x, (

2
3k + 10

3 )Rl
n).
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Proof (1) is immediate from (2.3), the triangle inequality for dl and RE l , (2.6),
(2.21) and (2.23). To see (2), let y ∈ K l \ U (k)

n,w. For dl(x, y), by Proposition 2.4
we can take γ : [0, 1] → K l such that γ (0) = x, γ (1) = y and dl(γ (s), γ (t)) =
|s − t|dl(x, y) for any s, t ∈ [0, 1], and it then follows from (2.3) and y /∈ U (k)

n,w that
#(γ −1(V l

n) ∩ (0, 1)) ≥ k + 1, which yields dl(x, y) = �R2(γ ) ≥ k/Ll
n. For RE l (x, y),

recalling Proposition 2.15, define u ∈ R
V l

n by

u(z) :=

⎧⎪⎨
⎪⎩
1 if z ∈ K l

w = U (0)
n,w,

1 − j
k if j ∈ {1, . . . , k} and z ∈ U (j)

n,w \ U (j−1)
n,w ,

0 if z ∈ K l \ U (k)
n,w

(3.4)

for each z ∈ V l
n and set h(k)

n,w := hln(u), so that E l(h(k)
n,w, h(k)

n,w) = E l,n(u, u), h(k)
n,w|K l

w
= 1,

h(k)
n,w|K l

v
= 0 for any v ∈ W l

n \ (k)
n,w, and u(F l

v(V0)) ⊂ {1 − j−1
k , 1 − j

k } for any j ∈
{1, . . . , k} and any v ∈ 

(j)
n,w \ 

(j−1)
n,w . Then combining these properties with Propo-

sition 2.11-(RF4), (2.11), (2.9) and #(k)
n,w ≤ 6k, we obtain

RE l (x, y) ≥ |h(k)
n,w(x) − h(k)

n,w(y)|2
E l(h(k)

n,w, h(k)
n,w)

= 1

E l,n(u, u)
≥

1
2k2Rl

n

#(k)
n,w − 1

≥ kRl
n

12
,

which proves (2). Lastly, we also get (3) and (4) since the conjunction of (3) and (4)
is clearly equivalent to that of (1) and (2). �

As an easy consequence of Proposition 3.5, we further obtain the following propo-
sition, which contains (DM2)Ψl ,dl as defined in [28, Definition 15.9-(4)].

Proposition 3.6 Let x, y ∈ K l , s ∈ (0,∞), n ∈ N and k ∈ {2, . . . , ln}.
(1) If s ∈ [(k − 1)/Ll

n, k/Ll
n], then

1

18

k2

T l
n

≤ Ψl(s) ≤ 9

2

k2

T l
n

and
7

36

k

M l
n

≤ ml(Bdl (x, s)) ≤ 6
k

M l
n

, (3.5)

whereas if s ∈ [1, 3], then 1 ≤ Ψl(s) ≤ 14 and 7
12 ≤ ml(Bdl (x, s)) ≤ 1.

(2) If dl(x, y) ∈ [(k − 1)/Ll
n, k/Ll

n), then

1

48
kRl

n ≤ RE l (x, y) ≤ 7

3
kRl

n, (3.6)

whereas dl(x, y) < 3, RE l (x, y) < 4, and if dl(x, y) ≥ 1 then RE l (x, y) ≥ 1
14 .

(3) If x �= y, then

6−4 Ψl(dl(x, y))

ml
(
Bdl (x, dl(x, y))

) ≤ RE l (x, y) ≤ 28
Ψl(dl(x, y))

ml
(
Bdl (x, dl(x, y))

) . (3.7)
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Proof (1) Assume that s ∈ [(k − 1)/Ll
n, k/Ll

n]. By (3.1) and (3.2) we have

1

18

k2

T l
n

≤ 2

9

(k − 1)2

T l
n

= 2

9
(k − 1)2Ψl(1/Ll

n) ≤ Ψl((k − 1)/Ll
n)

≤ Ψl(s) ≤ Ψl(k/Ll
n) ≤ 9

2
k2Ψl(1/Ll

n) = 9

2

k2

T l
n

.

(3.8)

For ml(Bdl (x, s)), choosing w ∈ W l
n so that x ∈ K l

w, we see from Proposition
3.5-(3), (2.8) and 2j + 1 ≤ #(j)

n,w ≤ 6j for j ∈ {1, . . . , ln} that

ml(Bdl (x, s)) ≤ ml(Bdl (x, k/Ll
n)) ≤ ml(U

(k)
n,w) = #(k)

n,w

M l
n

≤ 6
k

M l
n

(3.9)

and that, provided k ≥ 4,

ml(Bdl (x, s)) ≥ ml(Bdl (x, (k − 1)/Ll
n)) ≥ ml(U

(k−3)
n,w ) = #(k−3)

n,w

M l
n

≥ 2k − 5

M l
n

.

(3.10)
If k ∈ {2, 3}, then choosing v ∈ W l

n+1 so that x ∈ K l
v, by Proposition 3.5-(3),

(2.8) and #(ln+1−2)
n+1,v ≥ 2ln+1 − 3 we get

ml(Bdl (x, s)) ≥ ml(Bdl (x, 1/Ll
n)) = ml(Bdl (x, ln+1/Ll

n+1))

≥ ml(U
(ln+1−2)
n+1,v ) = #(ln+1−2)

n+1,v

M l
n+1

≥ 2ln+1 − 3

(3ln+1 − 3)M l
n

≥ 7

12

1

M l
n

.

(3.11)
(3.8), (3.9), (3.10) and (3.11) together yield (3.5).
On the other hand, if s ∈ [1, 3], then Ψl(s) = sβl,0 ∈ [1, 3β5 ] ⊂ [1, 14] and 1 =
ml(K l) ≥ ml(Bdl (x, s)) ≥ ml(Bdl (x, 1)) ≥ 7

12 by (3.11) with n = 0.
(2) Assume that dl(x, y) ∈ [(k − 1)/Ll

n, k/Ll
n). Then by Proposition 3.5-(3), (4),

it follows from dl(x, y) < k/Ll
n that RE l (x, y) ≤ ( 23k + 10

3 )Rl
n ≤ 7

3kRl
n, from

dl(x, y) ≥ (k − 1)/Ll
n that RE l (x, y) ≥ 1

12 (k − 3)Rl
n ≥ 1

48kRl
n provided k ≥ 4,

and from dl(x, y) ≥ 1/Ll
n = ln+1/Ll

n+1 that, provided k ∈ {2, 3},

RE l (x, y) ≥ 1

12
(ln+1 − 2)Rl

n+1 = 1

12

ln+1 − 2
2
3 ln+1 + 1

9

Rl
n ≥ 9

124
Rl

n >
kRl

n

48
, (3.12)

proving (3.6).
On the other hand, dl(x, y) < 3 by (2.6),RE l (x, y) < 4 by (2.23), and if dl(x, y) ≥
1 then RE l (x, y) ≥ 9

124 > 1
14 by (3.12) with n = 0.

(3) This is immediate from (1) and (2). �

We need the following definition and lemma for the proof of the other condition
(DM1)Ψl ,dl required to apply [28, Theorem 15.10].
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Definition 3.7 We define homeomorphisms ΨM
l , Ψ R

l : [0,∞) → [0,∞) by

ΨM
l (s) := 1

M l
n

+ (s − 1/Ll
n)(1/M l

n−1 − 1/M l
n)

1/Ll
n−1 − 1/Ll

n

= 1

M l
n

(
1 + 3ln − 4

ln − 1
(Ll

ns − 1)

)
,

Ψ R
l (s) := Rl

n + (s − 1/Ll
n)(R

l
n−1 − Rl

n)

1/Ll
n−1 − 1/Ll

n

= Rl
n

(
1 +

2
3 ln − 8

9

ln − 1
(Ll

ns − 1)

)
(3.13)

for n ∈ N and s ∈ [1/Ll
n, 1/Ll

n−1] and ΨM
l (s) := sβM

l,0 and Ψ R
l (s) := sβR

l,1 for s ∈
{0} ∪ [1,∞), where βM

l,0 := infn∈N logln #Sln and βR
l,1 := − infn∈N logln rln (note that

{logl #Sl}∞l=5 and {logl rl}∞l=5 are strictly decreasing), so that Ψl = ΨM
l Ψ R

l . We also
set βM

l,1 := maxn∈N logln #Sln and βR
l,0 := −maxn∈N logln rln .

Lemma 3.8 (1) ΨM
l satisfies (1.2) with cΨ = 81, β0 = βM

l,0 and β1 = βM
l,1.

(2) Ψ R
l satisfies (1.2) with cΨ = 6, β0 = βR

l,0 and β1 = βR
l,1.

Proof These are proved in exactly the same way as Lemma 3.2. �

Finally, (DM1)Ψl ,dl as defined in [28, Definition 15.9-(3)] is deduced as follows.

Proposition 3.9 Let x, y ∈ K l and s ∈ (0, 3]. Then

1

16
ΨM
l (s) ≤ ml(Bdl (x, s)) ≤ 12ΨM

l (s),
1

12
Ψ R
l (s) ≤ Ψl(s)

ml(Bdl (x, s))
≤ 16Ψ R

l (s),

(3.14)

2−14Ψ R
l (dl(x, y)) ≤ RE l (x, y) ≤ 212Ψ R

l (dl(x, y)). (3.15)

In particular, if x �= y, then for any λ ∈ (0, 1],

6−4λβR
l,1Ψl(dl(x, y))

ml
(
Bdl (x, dl(x, y))

) ≤ Ψl(λdl(x, y))

ml
(
Bdl (x, λdl(x, y))

) ≤ 64λβR
l,0Ψl(dl(x, y))

ml
(
Bdl (x, dl(x, y))

) . (3.16)

Proof If n ∈ N, k ∈ {2, . . . , ln} and s ∈ [(k − 1)/Ll
n, k/Ll

n] then we easily see
from (3.13) that 1

2k/M l
n ≤ ΨM

l (s) ≤ 3k/M l
n , and if s ∈ [1, 3] then ΨM

l (s) = sβM
l,0 ∈

[1, 3log5 #S5 ] ⊂ [1, 6]. These facts, Proposition 3.6-(1) and Ψl = ΨM
l Ψ R

l together
imply (3.14), which in turn in combination with Proposition 3.6-(3) and Lemma
3.8-(2), respectively, yields (3.15) and (3.16) since dl(x, y) ∈ [0, 3) by (2.6). �

Proof of Theorem 3.3 By Propositions 2.4, 2.16 and Theorem 2.18, (E l,Fl) is a
strongly local regular resistance form on K l whose resistance metric RE l gives the
same topology as the geodesic metric dl . We also have (ACC) as defined in [28,
Definition 7.4] by [28, Proposition 7.6], (DM1)Ψl ,dl by (3.16) and βR

l,0 > 0, and
(DM2)Ψl ,dl by Proposition 3.6-(3). Thus [28, Theorem 15.10, Cases 1 and 2] are
applicable to (K l, dl, ml, E l,Fl) and imply that it satisfies fHKE(Ψl). �
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4 Singularity of the Energy Measures

As in the previous two sections, we fix an arbitrary l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N
throughout this section. We first recall the definition of the E l-energy measures.

Definition 4.1 (E l-energy measure; [17, (3.2.14)]) Let u ∈ Fl . We define the E l-
energy measure μl

〈u〉 of u as the unique Borel measure on K l such that

∫

K l

f dμl
〈u〉 = E l(u, fu) − 1

2
E l(u2, f ) for any f ∈ Fl; (4.1)

since Fl is a dense subalgebra of (C(K l), ‖ · ‖sup) by Theorem 2.18-(2) and

0 ≤ E l(u, f +u) − 1

2
E l(u2, f +) ≤ ‖f ‖supE l(u, u) for any f ∈ Fl (4.2)

by (2.9), (2.11) and (2.14), such μl
〈u〉 exists and is unique by the Riesz(–Markov–

Kakutani) representation theorem (see, e.g., [34, Theorems 2.14 and 2.18]).

Proposition 2.12 yields the following alternative characterization of μl
〈u〉.

Proposition 4.2 Let u ∈ Fl . Then μl
〈u〉({x}) = 0 for any x ∈ K l . Moreover, μl

〈u〉 is
the unique Borel measure on K l such that

μl
〈u〉(K

l
w) = 1

Rl
|w|

E l|w|
(u ◦ F l

w, u ◦ F l
w) for any w ∈ W l

∗. (4.3)

Proof Since (E l,Fl) is a strongly local regular symmetric Dirichlet form on
L2(K l, ml) by Theorem 2.20, the Borel measure μl

〈u〉(u−1(·)) on R is absolutely
continuous with respect to the Lebesgue measure on R by [13, Theorem 4.3.8], and
therefore μl

〈u〉({x}) ≤ μl
〈u〉(u−1(u(x))) = 0 for any x ∈ K l .

The uniqueness of a Borelmeasure onK l satisfying (4.3) is immediate from (2.17)
and theDynkin class theorem (see, e.g., [15,Appendixes, Theorem4.2]). To show that
μl

〈u〉 has the property (4.3), let n, k ∈ N ∪ {0}, w ∈ W l
n and set fk := hln+k(1K l

w∩V l
n+k

),
so that 1K l

w
≤ fk ≤ 1K l

w∪⋃q∈F l
w (V0)

Bdl (q,2/Ll
n+k )

by Proposition 2.15 and (2.6). Then from

(4.2), (2.17) and (4.1) we obtain

E ln(u ◦ F l
w, u ◦ F l

w)

Rl
n

= 1

Rl
n

(
E ln(u ◦ F l

w, (fku) ◦ F l
w) − 1

2
E ln((u2) ◦ F l

w, fk ◦ F l
w)
)

≤ E l(u, fku) − 1

2
E l(u2, fk) =

∫

K l

fk dμl
〈u〉

≤ μl
〈u〉
(

K l
w ∪

⋃
q∈F l

w(V0)
Bdl (q, 2/Ll

n+k)
)

k→∞−−−→ μl
〈u〉(K

l
w)



242 N. Kajino

and hence E ln(u ◦ F l
w, u ◦ F l

w)/Rl
n ≤ μl

〈u〉(K l
w), where the equality necessarily holds

since the sum over w ∈ W l
n of each side of this inequality is equal to E l(u, u) =

μl
〈u〉(K l) by (2.17), (2.3), μl

〈u〉(V l
n) = 0 and (4.1) with f = 1K l . �

The purpose of this section is to prove the following theorem.

Theorem 4.3 μl
〈u〉 ⊥ ml for any u ∈ Fl .

The rest of this section is devoted to the proof of Theorem 4.3. First, we observe
that the proof is reduced to the case of u ∈ ⋃∞

n=0 Hl,n by the following two lemmas.

Lemma 4.4 Let u ∈ Fl and set un := hln(u|V l
n
) for each n ∈ N ∪ {0} (recall Propo-

sition 2.15). Then E l(u − un, u − un) = E l(u, u) − E l,n(u|V l
n
, u|V l

n
) for any n ∈ N ∪

{0}. In particular, limn→∞ E l(u − un, u − un) = 0.

Proof We follow [27, Proof of Lemma 3.2.17]. Let n ∈ N ∪ {0}. Then E l(un, u) =
E l(un, un) = E l,n(u|V l

n
, u|V l

n
) by un ∈ Hl,n, (2.19) and Proposition 2.15 and thus

E l(u − un, u − un) = E l(u, u) − E l,n(u|V l
n
, u|V l

n
), which converges to 0 as n → ∞

by (2.14). �

Lemma 4.5 If a Borel measure μ on K l , {un}∞n=1 ⊂ Fl and u ∈ Fl satisfy limn→∞
E l(u − un, u − un) = 0 and μl

〈un〉 ⊥ μ for any n ∈ N, then μl
〈u〉 ⊥ μ.

Proof This is a special case of [26, Lemma 3.7-(b)], whose proof works for any
regular symmetric Dirichlet space. �

To prove thatμl
〈h〉 ⊥ ml for any h ∈ ⋃∞

n=0 Hl,n, noting thatHl,0 ⊂ Hl,1 and recall-
ing Proposition 2.15, in the following lemma we calculate explicitly the matrix rep-
resentation of the linear maps RV0 � u �→ hl0(u) ◦ F l

i |V0 ∈ R
V0 , i ∈ W l

1 = Sl1 , which
we identify with the linear maps Hl,0 � h �→ h ◦ F l

i ∈ Hl1,0.

Lemma 4.6 Set l := l1, al := 1
9 rl = (6l + 1)−1, and for each i ∈ Sl let Al

i denote the
matrix representation of the linear map R

V0 � u �→ hl0(u) ◦ F l
i |V0 ∈ R

V0 with respect
to the basis (1q0 ,1q1 ,1q2) of RV0 . Then for any k ∈ {2, . . . , l − 3},

Al
(k,0) =

⎛
⎝1 − (6k + 3)al (6k − 2)al 5al

1 − (6k + 9)al (6k + 4)al 5al

1 − (6k + 6)al (6k + 1)al 5al

⎞
⎠ ,

Al
(0,k) =

⎛
⎝1 − (6k + 3)al 5al (6k − 2)al

1 − (6k + 6)al 5al (6k + 1)al

1 − (6k + 9)al 5al (6k + 4)al

⎞
⎠ ,

Al
(l−1−k,k) =

⎛
⎝5al 1 − (6k + 6)al (6k + 1)al

5al 1 − (6k + 3)al (6k − 2)al

5al 1 − (6k + 9)al (6k + 4)al

⎞
⎠ .

(4.4)

Proof This follows by solving the linear equation in (h(x))x∈V l
1\V0

for h = hl0(u) from
Proposition 2.15-(2) with (n, k) = (0, 1) under h(q) = u(q) for q ∈ V0. �
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Our proof that μl
〈h〉 ⊥ ml for h ∈ ⋃∞

n=0 Hl,n is based on the following fact.

Theorem 4.7 ([23, Theorem 4.1]) Let (�,F ,P) be a probability space and let
{Fn}∞n=0 be a non-decreasing sequence of σ -algebras in � such that

⋃∞
n=0 Fn gen-

erates F . Let P̃ be a probability measure on (�,F ) such that P̃|F n � P|F n for any
n ∈ N ∪ {0}, and for each n ∈ N define αn ∈ L1(�,Fn,P|F n) by

αn :=

⎧⎪⎨
⎪⎩

d (̃P|F n)/d(P|F n)

d (̃P|F n−1)/d(P|F n−1)
on {d (̃P|F n−1)/d(P|F n−1) > 0},

0 on {d (̃P|F n−1)/d(P|F n−1) = 0},
(4.5)

so that E[√αn | Fn−1] ≤ 1 P|F n−1-a.s. by conditional Jensen’s inequality, where
E[· | Fn−1] denotes the conditional expectation given Fn−1 with respect to P. If

∞∑
n=1

(1 − E[√αn | Fn−1]) = ∞ P-a.s., (4.6)

then P̃ ⊥ P.

We will apply Theorem 4.7 under the setting of the following lemma with P = ml .

Lemma 4.8 Set � := K l , F := B(K l) and let P, P̃ be probability measures on
(�,F ) such that P(K l

w) > 0 for any w ∈ W l∗ and P(V l∗) = P̃(V l∗) = 0. Set Fn :=
{A ∪ ⋃

w∈(K l
w \ V l

n) |  ⊂ W l
n, A ⊂ V l

n} for each n ∈ N ∪ {0}, so that {Fn}∞n=0 is a
non-decreasing sequence of σ -algebras in � by (2.3),

⋃∞
n=0 Fn generates F , and

P̃|F n � P|F n for any n ∈ N ∪ {0}. Let n ∈ N and define αn ∈ L1(�,Fn,P|F n) by
(4.5). Then for each w ∈ W l

n−1,

E[√αn | Fn−1]|K l
w\V l

n−1
=

⎧⎪⎪⎨
⎪⎪⎩

∑
i∈Sln

√
P̃(K l

wi)

P̃(K l
w)

√
P(K l

wi)

P(K l
w)

if P̃(K l
w) > 0,

0 if P̃(K l
w) = 0.

(4.7)

Proof This follows easily by direct calculations based on (4.5) and (2.3). �

The following proposition is the key step of the proof of Theorem 4.3.

Proposition 4.9 Let k ∈ N ∪ {0}, h ∈ Hl,k , x ∈ K l \ V l∗, and let ωx = (ωx
n)

∞
n=1 be

the element of
∏∞

n=1 Sln , unique by (2.3), such that {x} = ⋂∞
n=1 K l

ωx
1...ω

x
n
. Let n ∈ N ∩

[k + 2,∞)and assume that μl
〈h〉
(
K l

ωx
1...ω

x
n−1

)
> 0 and thatωx

n−1 ∈ Sln−1,1, where Sl,1 :=
{(i1, i2) ∈ Sl | i1 ∨ i2 ∈ {2, . . . , l − 3}} for l ∈ N \ {1, 2, 3, 4}. Then

∑
i∈Sln

√√√√μl
〈h〉
(
K l

ωx
1...ω

x
n−1i

)
μl

〈h〉
(
K l

ωx
1...ω

x
n−1

)
√√√√ml

(
K l

ωx
1...ω

x
n−1i

)
ml
(
K l

ωx
1...ω

x
n−1

) ≤
√
361

372
. (4.8)
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Proof Set v := ωx
1 . . . ωx

n−2 (v := ∅ if n = 2) and w := ωx
1 . . . ωx

n−1 = vωx
n−1. By h ∈

Hl,k ⊂ Hl,n−2, Proposition 2.15 and (4.3) we have h ◦ F l
v ∈ Hln−2,0, h ◦ F l

w = (h ◦
F l

v) ◦ F ln−2

ωx
n−1

∈ Hln−1,0 and E0(h ◦ F l
w|V0 , h ◦ F l

w|V0) = Rl
n−1μ

l
〈h〉(K

l
w) > 0, and there-

fore h ◦ F l
w(V0) = {c − b, c, c + b} for some b, c ∈ R with b > 0 by Lemma 4.6

with ln−2 in place of l applied to i = ωx
n−1 ∈ Sln−1,1 and u = h ◦ F l

v|V0 . Then we see
from Lemma 4.6 with ln−1 in place of l applied to i ∈ Sln,1 and u = h ◦ F l

w|V0 that
h ◦ F l

wi(V0) = (h ◦ F l
w) ◦ F ln−1

i (V0) is equal to {ci − 3aln b, ci, ci + 3aln b} for some
ci ∈ R for 2(ln − 4) elements i of Sln,1 and to {ci − 6aln b, ci, ci + 6aln b} for some
ci ∈ R for the other ln − 4 elements i of Sln,1. It follows by combining this fact with
(2.8), (4.3), h ∈ Hl,n−1 ⊂ Hl,n, Proposition 2.15, (2.9) and (2.17) that

∑
i∈Sln

√√√√μl
〈h〉(K

l
wi)

μl
〈h〉(K l

w)

√
ml(K l

wi)

ml(K l
w)

=
∑
i∈Sln

√
E ln(h ◦ F l

wi, h ◦ F l
wi)

(rln#Sln)E ln−1
(h ◦ F l

w, h ◦ F l
w)

≤ (ln − 4)
2 · 3√6aln b + 6

√
6aln b√

rln#Sln · √
6b

+ 3

√∑
i∈Sln \Sln ,1

E ln(h ◦ F l
wi, h ◦ F l

wi)

(rln#Sln) · 6b2

= 4(ln − 4)√
#Sln/aln

+ 3

√
rlnE ln−1

(h ◦ F l
w, h ◦ F l

w) − ∑
i∈Sln ,1

E ln(h ◦ F l
wi, h ◦ F l

wi)

6b2rln#Sln

= 4(ln − 4)√
#Sln/aln

+ 3

√
6b2rln − (ln − 4)(2 · 54a2

ln
b2 + 216a2

ln
b2)

6b2rln#Sln

= 4(ln − 4)√
#Sln/aln

+ 3

√
a−1

ln
− 6(ln − 4)

#Sln/aln

= 4ln − 1√
(3ln − 3)(6ln + 1)

≤
√
361

372
,

proving (4.8). �

Proof of Theorem 4.3 Let k ∈ N ∪ {0} and h ∈ Hl,k . In view of Lemmas 4.4 and 4.5 it
suffices to prove, for any such k and h, thatμl

〈h〉 ⊥ ml , which is obvious ifμl
〈h〉(K

l) =
0. Assume that μl

〈h〉(K
l) > 0, set (�,F ,P) := (K l,B(K l), ml), let {Fn}∞n=0 denote

the non-decreasing sequence of σ -algebras in � with
⋃∞

n=0 Fn generating F as
defined in Lemma 4.8, and set P̃ := μl

〈h〉(K
l)−1μl

〈h〉, so that P(K l
w) > 0 for any w ∈

W l∗ and P(V l∗) = P̃(V l∗) = 0 by (2.8) and Proposition 4.2. In particular, P̃|F n � P|F n

for any n ∈ N ∪ {0}, and define αn ∈ L1(�,Fn,P|F n) by (4.5) for each n ∈ N. Now
let ωx = (ωx

n)
∞
n=1 ∈ ∏∞

n=1 Sln for x ∈ K l \ V l∗ and Sl,1 ⊂ Sl for l ∈ N \ {1, 2, 3, 4}
be as in Proposition 4.9. Then by (2.8), the P-a.s. defined Borel measurable maps
K l \ V l∗ � x �→ ωx

n ∈ Sln , n ∈ N, form a sequence of independent random variables
on (�,F ,P) and satisfy

∞∑
n=1

P
({x ∈ K l \ V l

∗ | ωx
n ∈ Sln,1}

) =
∞∑

n=1

#Sln,1

#Sln

=
∞∑

n=1

3ln − 12

3ln − 3
≥

∞∑
n=1

1

4
= ∞,
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and hence the second Borel–Cantelli lemma implies that

#{n ∈ N | ωx
n ∈ Sln,1} = ∞ for P-a.s., x ∈ K l \ V l

∗. (4.9)

On the other hand, for each x ∈ K l \ V l∗, Lemma 4.8 and Proposition 4.9 imply that
E[√αn | Fn−1](x) = 0 for any n ∈ N with μl

〈h〉
(
K l

ωx
1...ω

x
n−1

) = 0 and that

E[√αn | Fn−1](x) =
∑
i∈Sln

√√√√μl
〈h〉
(
K l

ωx
1...ω

x
n−1i

)
μl

〈h〉
(
K l

ωx
1...ω

x
n−1

)
√√√√ml

(
K l

ωx
1...ω

x
n−1i

)
ml
(
K l

ωx
1...ω

x
n−1

) ≤
√
361

372

for any n ∈ N ∩ [k + 2,∞) with μl
〈h〉
(
K l

ωx
1...ω

x
n−1

)
> 0 and ωx

n−1 ∈ Sln−1,1, whence

∞∑
n=1

(
1 − E[√αn | Fn−1](x)

) ≥ δ#{n ∈ N ∩ [k + 2,∞) | ωx
n−1 ∈ Sln−1,1}, (4.10)

where δ := 1 −
√

361
372 ∈ (0, 1). Combining (4.9) and (4.10), we obtain (4.6), so that

Theorem 4.7 is applicable and yields P̃ ⊥ P, namely μl
〈h〉 ⊥ ml . �

5 Realizing Arbitrarily Slow Decay Rates of Ψ (r)/r2

In this last section, we show that an arbitrarily slow decay rate of Ψ (r)/r2 for a
homeomorphism Ψ : [0,∞) → [0,∞) satisfying (1.2) and (1.6) can be realized by
Ψl (recall Definition 3.1) for some l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N. We achieve this
by providing in Theorem 5.1 a simple sufficient condition for Ψ to be comparable
to Ψl for some l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N with

∑∞
n=1 l−1

n < ∞ and proving in
Proposition 5.2 that the decay rate of Ψ (r)/r2 for such Ψ can be arbitrarily slow. We
also give criteria for verifying this sufficient condition for concrete examples of Ψ in
Proposition 5.3 and apply them to the case where Ψ (r)/r2 is a multiple composition
of the function r �→ 1/ log(e − 1 + (r ∧ 1)−1) in Example 5.4.

Theorem 5.1 Let η : [0, 1] → [0, 1] be a homeomorphism with η(0) = 0 such that

∞∑
n=1

η−1(2−n)

η−1(21−n)
< ∞, (5.1)

and define a homeomorphism Ψη : [0,∞) → [0,∞) by Ψη(r) := r2η(r ∧ 1). Then
there exists l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N with

∑∞
n=1 l−1

n < ∞ such that
Ψη(r)/Ψl(r) ∈ [c−1, c] for any r ∈ (0,∞) for some c ∈ [1,∞), and consequently,
(K l, dl, ml, E l,Fl) satisfies fHKE(Ψη).
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Proof Set cη := infn∈N η−1(21−n)/η−1(2−n), so that cη ∈ (1,∞) since the sequence
{η−1(21−n)/η−1(2−n)}∞n=1 is (1,∞)-valued and tends to ∞ by (5.1). Then for any
r, R ∈ (0, 1] with r ≤ R, taking j, k ∈ N such that η(r) ∈ (2−k , 21−k ] and η(R) ∈
(2−j, 21−j], we have j ≤ k, hence

R

r
= η−1(η(R))

η−1(η(r))
≥ η−1(2−j)

η−1(21−k)
∨ 1 ≥ ck−j−1

η = 2(k−j−1)/βη ≥
(

η(R)

4η(r)

)1/βη

by the definition of cη, where βη := (log2 cη)
−1 ∈ (0,∞), and therefore

η(R)

η(r)
≤ 4

(
R

r

)βη

. (5.2)

Recalling that limn→∞ η−1(21−n)/η−1(2−n) = ∞ by (5.1), choose n0 ∈ N so
that η−1(21−n)/η−1(2−n) ≥ 5 for any n ∈ N with n ≥ n0, set l0 := 1, and define
l = (ln)∞n=1 ∈ N

N inductively by

ln :=
⌊

η−1(2−n0)

(l0 · · · ln−1)η−1(2−n−n0)

⌋
, n ∈ N. (5.3)

Then an induction on n based on (5.3) and the choice of n0 immediately shows that
l = (ln)∞n=1 ∈ (N \ {1, 2, 3, 4})N and that for any n ∈ N ∪ {0},

η−1(2−n−n0)

η−1(2−n0)
≤ 1

Ll
n

≤ 6

5

η−1(2−n−n0)

η−1(2−n0)
, (5.4)

which together with (5.1) implies in particular that

∞∑
n=1

l−1
n =

∞∑
n=1

1/Ll
n

1/Ll
n−1

≤ 6

5

∞∑
n=1

η−1(2−n−n0)

η−1(21−n−n0)
< ∞. (5.5)

We claim that Ψη(r)/Ψl(r) ∈ [c−1, c] for any r ∈ (0,∞) for some c ∈ [1,∞).
Indeed, recalling Definition 3.1, we have βl,0 = infn∈N βln = 2 by (5.5), hence
Ψη(r)/Ψl(r) = r2/rβl,0 = 1 for any r ∈ [1,∞), and also see for any n ∈ N that

2−n−n0 ≤ η

(
η−1(2−n−n0)

η−1(2−n0)

)
≤ η(1/Ll

n) ≤ η

(
6

5

η−1(2−n−n0)

η−1(2−n0)

)
≤ c2−n (5.6)

by (5.4) and (5.2), where c := 22−n0
(
6
5/η

−1(2−n0)
)βη , and thus that

Ψη(1/Ll
n)

Ψl(1/Ll
n)

= T l
nη(1/Ll

n)

(Ll
n)

2
= 2nη(1/Ll

n)

n∏
k=1

(
1 − 5

6
l−1
k − 1

6
l−2
k

)
∈ [c′, c], (5.7)
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where c′ := 2−n0
∏∞

k=1(1 − 5
6 l−1

k − 1
6 l−2

k ) ∈ (0, 1) by (5.5). Now for any n ∈ N and
any s ∈ [1, ln], by (3.1) we have

Ψl(s/Ll
n)

s2Ψl(1/Ll
n)

= 1

s2

(
1 + 3ln − 4

ln − 1
(s − 1)

)(
1 +

2
3 ln − 8

9

ln − 1
(s − 1)

)
∈ [1, 2), (5.8)

and it follows from η(s/Ll
n) ∈ [

η(1/Ll
n), η(1/Ll

n−1)
]
, (5.6), (5.8) and (5.7) that

Ψη(s/Ll
n)

Ψl(s/Ll
n)

= Ψη(s/Ll
n)

Ψη(1/Ll
n)

Ψl(1/Ll
n)

Ψl(s/Ll
n)

Ψη(1/Ll
n)

Ψl(1/Ll
n)

= η(s/Ll
n)

η(1/Ll
n)

s2Ψl(1/Ll
n)

Ψl(s/Ll
n)

Ψη(1/Ll
n)

Ψl(1/Ll
n)

∈ [c′/2, (c2 ∨ c)2n0+1],

proving that Ψη(r)/Ψl(r) ∈ [c′/2, (c2 ∨ c)2n0+1] for any r ∈ (0,∞). Lastly, com-
bining this result with Lemma 3.2, Theorem 3.3 and Remark 1.2-(2) shows that
(K l, dl, ml, E l,Fl) satisfies fHKE(Ψη). �

The decay rate of Ψη(r)/r2 = η(r ∧ 1) for η as in Theorem 5.1 can be arbitrarily
slow in the sense stated in the following proposition.

Proposition 5.2 Let Ψ : [0,∞) → [0,∞) be a homeomorphism satisfying (1.6).
Then there exists a homeomorphism η : [0, 1] → [0, 1] with the properties η(0) = 0
and (5.1) such that η(r) ≥ cΨ (r)/r2 for any r ∈ (0, 1] for some c ∈ (0,∞).

Proof Noting (1.6), define η0 : [0, 1] → [0,∞) by η0(r) := sups∈(0,r] Ψ (s)/s2

(η0(0) := 0), so that η0 is continuous and non-decreasing and η0((0, 1]) ⊂ (0,∞),
and set sn := max η−1

0 (2−nη0(1)) for n ∈ N ∪ {0}, so that s0 = 1, 0 < sn < sn−1 for
any n ∈ N and limn→∞ sn = 0. Define a homeomorphism η : [0, 1] → [0, 1] by

η(r) :=
(
1 + r − 2−n2sn

2−(n−1)2sn−1 − 2−n2sn

)
2−n (5.9)

for n ∈ N and r ∈ [2−n2sn, 2−(n−1)2sn−1] and η(0) := 0. Then since η−1(21−n) =
2−(n−1)2sn−1 and 0 < sn < sn−1 for any n ∈ N,

∞∑
n=1

η−1(2−n)

η−1(21−n)
=

∞∑
n=1

2−n2sn

2−(n−1)2sn−1
≤

∞∑
n=1

21−2n = 2

3
< ∞,

namely η satisfies (5.1), and for any n ∈ N and any r ∈ [sn, sn−1] we have

η(r) ≥ η(sn) ≥ η(2−n2sn) = 2−n = η0(sn−1)

2η0(1)
≥ η0(r)

2η0(1)
≥ Ψ (r)/r2

2η0(1)
,

i.e., η(r) ≥ cΨ (r)/r2 with c := (2η0(1))−1 ∈ (0,∞) for any r ∈ (0, 1]. �
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We conclude this paper with the following proposition, which gives criteria for
verifying (5.1) for concrete homeomorphisms η : [0, 1] → [0, 1]with η(0) = 0, and
some applications of it to η(r) = 1/ log(e − 1 + r−1) in Example 5.4 below.

Proposition 5.3 Let η : [0, 1] → [0, 1] be a homeomorphism with η(0) = 0, let
δ ∈ [0,∞), α, β ∈ (0,∞) and assume that there exists c ∈ (0,∞) such that

η(R)

η(r)
≤ 1 + δ + c(R/r)β

(log(e − 1 + R−1))α
for any r, R ∈ (0, 1] with r ≤ R. (5.10)

(1) If δ < 1 and β < α, then η satisfies (5.1).
(2) Let η̃ : [0, 1] → [0, 1] be a homeomorphism with η̃(0) = 0, let δ̃ ∈ [0, 1) and

assume that there exist α̃, c̃ ∈ (0,∞) such that η̃ satisfies (5.10) with δ̃, α̃, 1, c̃
in place of δ, α, β, c. Then η̃ ◦ η satisfies (5.10) with 1

2 (1 + δ̃), c′ in place of
δ, c for some c′ ∈ (0,∞). In particular, if β < α, then η̃ ◦ η satisfies (5.1).

Proof (1) Set sn := η−1(2−n) for n ∈ N ∪ {0}. For each n ∈ N, we see fromη(sn−1)/

η(sn) = 2, (5.10) with (r, R) = (sn, sn−1) and δ < 1 that

sn

sn−1
≤ c1/β(1 − δ)−1/β

(log(e − 1 + s−1
n−1))

α/β
, (5.11)

and from η(1)/η(sn−1) = 2n−1, (5.10) with (r, R) = (sn−1, 1) and δ < 1 that
2n−1 ≤ 1 + δ + cs−β

n−1 ≤ (2 + c)s−β

n−1, whence, provided n ≥ 2 + 2 log2(2 + c),

log(e − 1 + s−1
n−1) ≥ log(s−1

n−1) ≥ log 2

β
(n − 1 − log2(2 + c)) ≥ log 2

2β
n.

(5.12)
It follows from (5.11), (5.12) and α/β > 1 that

∞∑
n=1

η−1(2−n)

η−1(21−n)
=

∞∑
n=1

sn

sn−1
≤

nc−1∑
n=1

sn

sn−1
+

∞∑
n=nc

c1/β(2β/ log 2)α/β

(1 − δ)1/βnα/β
< ∞,

where nc := 3 + �2 log2(2 + c)�, proving (5.1).
(2) Set r̃ := η−1

(
exp

(−(2̃c(1 + δ)/(1 − δ̃))1/α̃
))

and let r, R ∈ (0, 1] satisfy r ≤ R.
By (5.10) for η̃ and η and (log(e − 1 + η(R)−1))−α̃ ≤ 1 we have

η̃ ◦ η(R)

η̃ ◦ η(r)
≤ 1 + δ̃ + c̃

(log(e − 1 + η(R)−1))α̃

η(R)

η(r)

≤ 1 + δ̃ + c̃(1 + δ)

(log(e − 1 + η(R)−1))α̃
+ c̃c(R/r)β

(log(e − 1 + R−1))α
.

(5.13)
If R ≤ r̃, then c̃(1 + δ)/(log(e − 1 + η(R)−1))α̃ ≤ 1

2 (1 − δ̃) by the definition
of r̃ and hence (5.13) yields (5.10) with η̃ ◦ η, 1

2 (1 + δ̃), c̃c in place of η, δ, c,
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whereas ifR > r̃, thenwe see from (5.13), δ̃ < 1 and (log(e − 1 + η(R)−1))−α̃ ≤
1 ≤ (log(e − 1 + r̃−1)/ log(e − 1 + R−1))α ∧ (R/r)β that (5.10) with η̃ ◦ η, 1

2
(1 + δ̃), c′ in place of η, δ, c holds, where c′ := c̃(1 + δ)(log(e − 1 + r̃−1))α +
c̃c. In particular, if β < α, then η̃ ◦ η satisfies (5.1) by 1

2 (1 + δ̃) < 1 and (1). �

Example 5.4 Define homeomorphisms ηk : [0, 1] → [0, 1], k ∈ N, inductively by

η1(r) := 1

log(e − 1 + r−1)
(η1(0) := 0) and ηk+1 := η1 ◦ ηk , k ∈ N. (5.14)

Then ηk satisfies (5.10) with δ = 1
2 and α = 1 for some c ∈ (0,∞) for any β ∈

(0,∞) and any k ∈ N. Indeed, this follows by a straightforward induction on k
based on Proposition 5.3-(2), which is applicable with η = ηk and η̃ = η1 since η1 is
easily seen to satisfy (5.10) with δ = 0, α = 1 and c = (eβ)−1 for any β ∈ (0,∞)

as follows: for any r, R ∈ (0, 1] with r ≤ R,

η1(R)

η1(r)
= 1 +

log
e − 1 + r−1

e − 1 + R−1

log(e − 1 + R−1)
= 1 +

log
R

r
+ log

1 + (e − 1)r

1 + (e − 1)R
log(e − 1 + R−1)

≤ 1 + β−1 log((R/r)β)

log(e − 1 + R−1)
≤ 1 + (eβ)−1(R/r)β

log(e − 1 + R−1)
.

(5.15)

As a consequence, for each k ∈ N, recalling that Ψηk : [0,∞) → [0,∞) is defined
by Ψηk (r) := r2ηk(r ∧ 1), we conclude from Proposition 5.3-(1) that ηk satisfies
(5.1), thus from Theorem 5.1 that there exists lk = (lk,n)

∞
n=1 ∈ (N \ {1, 2, 3, 4})N

with
∑∞

n=1 l−1
k,n < ∞ such thatΨηk (r)/Ψlk (r) ∈ [c−1

k , ck ] for any r ∈ (0,∞) for some
ck ∈ [1,∞), and thereby that (K lk , dlk , mlk , E lk ,Flk ) satisfies fHKE(Ψηk ).
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Scattering Lengths for Additive
Functionals and Their Semi-classical
Asymptotics

Daehong Kim and Masakuni Matsuura

Abstract Scattering lengths for positive additive functionals of symmetric Markov
processes are studied. The additive functionals considered here are not necessarily
continuous. After giving a systematic presentation of the fundamentals of the scat-
tering length, we study the problems of semi-classical asymptotics for scattering
length under relativistic stable processes, which extend previous results for the case
of positive continuous additive functionals.

Keywords Additive functionals · Scattering length · Semi-classical asymptotics ·
Relativistic stable processes
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1 Introduction

There is a notion of scattering length of a positive integrable function V onR3, one of
the important quantities in scattering theory. It is the limit of the scattering amplitude
−fk(ey) given by

fk(ey) = − 1

2π

∫

R3

eik
√
2x·eyhk(x)V (x)dx, ey = y/|y|, y ∈ R

3
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as the wave number k tends to 0, where hk is the solution of the scattering problem
for V , that is, the solution of the equation −(1/2)�u + Vu = k2u having a certain
asymptotic behaviour at infinity [8].

In [7, 8], Kac and Luttinger gave some applications of the probabilistic method
to scattering problems. As one of such applications, the authors studied the problem
of semi-classical asymptotics for scattering length of finite range potentials. To do
this, they used a probabilistic expression for the scattering length of V in terms of
Brownian motion X = (Bt,Px) on R3,

�(V ) = 1

2π
lim
t→∞

1

t

∫

R3

Ex

[
1 − e− ∫ t

0 V (Bs)ds
]
dx, (1)

and proved the following semi-classical limit: if V = 1K for a compact subset K ⊂
R

3 satisfying the so-called Kac’s regularity (see Sect. 4 for the definition), then ↑
limp→∞ �(pV ) = Cap(K), where Cap denotes the electrostatic capacity. Further,
they conjectured that

lim
p→∞ �(pV ) = Cap(supp[V ]) (2)

for any positive integrable function V with compact support in R
3 satisfying the

regularity as above. The Kac-Luttinger’s conjecture (2) was confirmed by Taylor
[18, 19] (also by Tamura [16] in an analytic way) who developed the notion of
scattering length further into a tool for studying the effectiveness of potential as
a perturbation of −� on R

d . For more general framework of symmetric Markov
processes, Takahashi [14] gave a new probabilistic representation of the scattering
length of a continuous potential which makes the limit (2) quite transparent. For
symmetric Markov processes again, Takeda [15] considered the behaviour of the
scattering length of a positive smooth measure potential by using the random time
change argument for Dirichlet forms and gave a simple elegant proof of the analog
of (2) without Kac’s regularity. The result in [15] was extended to a non-symmetric
case by He [6]. For general right Markov processes, Fitzsimmons, He and Ying [4]
extended Takahashi’s result by using the tool of Kutznetsov measure and proved the
analog of (2) for a positive continuous additive functional.

Scattering lengths cited so far were considered only for positive continuous addi-
tive functionals. But, there are many discontinuous additive functionals admitted to
Markov processes. Hence, it is a natural question of how to understand the notion
of scattering length of additive functionals that are not necessarily continuous. The
objective of the present paper is to provide a partial answer to this question. Let E
be a locally compact separable metric space andm is a positive Radon measure on E
with full topological support. Let X = (Xt,Px) be an m-symmetric Markov process
on E. It is natural to consider the following additive functional of the form
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Aμ
t +

∑
0<s≤t

F(Xs−,Xs) (3)

which is not necessarily continuous. Here Aμ
t is the positive continuous additive

functional of X with a positive smooth measure μ on E as its Revuz measure and
F is a positive bounded Borel function on E × E vanishing on the diagonal. Let
(N (x, dy),Ht) be a Lévy system for X. For p ≥ 1, let F(p) be a non-local linear
operator defined by

F(p)f (x) =
∫

E

(
1 − e−pF(x,y)

)
f (y)N (x, dy), x ∈ E

for any bounded measurable function f on E. Put Ff := F(1)f . We assume that
F(p)1 ∈ L1(E;μH ) for any p ≥ 1. Let Uμ+F be the capacitary potential relative to
the additive functional (3) defined by

Uμ+F(x) := Ex

[
1 − e−Aμ∞−∑t>0 F(Xt−,Xt)

]
.

In this paper, we define the scattering length �(μ + F) relative to (3) by

�(μ + F) :=
∫

E

(1 −Uμ+F)(x)μ(dx) +
∫

E

F(1 −Uμ+F)(x)μH (dx),

where μH is the Revuz measure of Ht . In Sect. 2, we explain why the expression
above is natural for the definition of the scattering length relative to (3). We will also
give another expression for the scattering length above, which plays a crucial role
throughout this paper (see Lemma 3).

Section3 is devoted to studying the semi-classical limit of the scattering length.
We investigate the behaviour of the scattering length �(pμ + pF) when p → ∞.
More precisely, let τt be the right continuous inverse of the positive continuous
additive functional Aμ

t + ∫ t
0 F1(Xs)dHs. Denote bySμ+μHF1 the fine support of A

μ
t +∫ t

0 F1(Xs)dHs,

Sμ+F1μH =
{
x ∈ E

∣∣∣ Px(τ0 = 0) = 1
}

.

Our first result of this paper is as follows:

Theorem 1 Suppose that F is symmetric. Further, assume that there exists a pos-
itive function ψ(p) satisfying ψ(p) ≤ p, ψ(p) → ∞ as p → ∞ and the non-local
operator F(p) induced by F satisfies the following condition: for large p ≥ 1 and a
constant C > 0

F(p)1(x) ≥ Cψ(p)F1(x) for x ∈ E. (4)
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Then we have
lim
p→∞ �(pμ + pF) = Cap(Sμ+F1μH ).

Note that Theorem 1 is already stated in [10, Theorem 1.1] in the framework of
symmetric stable processes. However, we will show that its proof remains valid
under general symmetric Markov processes, with the help of Lemmas 3 and 5. In
this sense, Theorem 1 can be regarded as a generalization of the result in [15]. We
also give some concrete examples of Fs under relativistic stable processes on R

d

(Example 6).
In Sect. 4, we study the problem of semi-classical asymptotics for the scattering

length of positive potentials with infinite range. It was proved analytically by Tamura
[17] that the scattering length �(V ) of a positive integrable function V induced by
3-dimensional Brownian motion obeys

�(λ−2V ) ∼ λ−2/(ρ−2) (5)

in the semi-classical limit λ → 0, if V (x) behaves like the Hardy type’s potential
|x|−ρ, ρ > 3 at infinity. As an application of the result obtained in Sect. 3, we will
extend the result (5) probabilistically for the scattering length of positive potentials
including a jumping function in the framework of relativistic stable processes. Our
second result of the present paper is as follows: letXm = (Xt,Pm

x ) be a Lévy process
on Rd with

Em
0

[
e
√−1〈ξ,Xt〉

]
= e−t((|ξ |2+m2/α)α/2−m), 0 < α ≤ 2, m ≥ 0. (6)

The limiting caseX0, corresponding tom = 0, is nothing but the usual (rotationally)
symmetric α-stable process. Let F(p)

m be the non-local operator induced by F and�(1)
m

the scattering length with respect to the 1-subprocess Xm,(1) of Xm, respectively.

Theorem 2 Let ρ > d > α and 0 < λ  1. For a compact set K ⊂ R
d , let M > 0

be such that K ⊂ B(0,M ). For some constants c1, c2 > 0, let V be a positive function
on R

d and F a positive bounded symmetric function on R
d × R

d vanishing on the
diagonal satisfying V (x) ≤ c1|x|−ρ for x ∈ B(0, λ−α/(ρ−α))c and

F(x, y) ≤ c2|x − y|α−ρ1B(x,λ−α/(ρ−α))c∩λ−α/(ρ−α)K (y)

for x ∈ B(0, λ−α/(ρ−α)M )c, respectively. Here λ−α/(ρ−α)K := {λ−α/(ρ−α)x | x ∈ K}.
If there exists a positive function ψ satisfying ψ(σ) ≤ σ , ψ(σ) → ∞ as σ → ∞
and

F(λ−α)
m 1(x) ≥ Cψ(λ−α)Fm1(x) for x ∈ B(0, λ−α/(ρ−α)M ), C > 0,
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then we have for any m ≥ 0

C1λ
− α(d−α)

ρ−α ≤ �(1)
m

(
λ−αV + λ−αF

) ≤ C2λ
− α(d−α)

ρ−α

for some constants C2 > C1 > 0.

We note that Theorem 2 is not only the extension of the result (5) (or [11, Theorem
1.1]) but also it provides us with a new semi-classical asymptotic order of the scat-
tering length for a jumping potential with infinite range under a purely discontinuous
Markov process.

Throughout this paper, we use c,C, c′,C ′, ci,Ci (i = 1, 2, . . .) as positive con-
stants which may be different at different occurrences. For notational convenience,
we let a ∨ b := max{a, b} for any a, b ∈ R.

2 Scattering Length for Additive Functionals

Let E be a locally compact separable metric space andm is a positive Radon measure
on E with full topological support. Let ∂ be a point added to E so that E∂ := E ∪ {∂}
is the one-point compactification of E. The point ∂ also serves as the cemetery point
for E. Let X = (,F∞,Ft,Xt,Px, ζ ) be an m-symmetric transient Hunt process
on E, where ζ is the lifetime of X , ζ = inf{t > 0 | Xt = ∂}. We assume that X is
conservative, that is, Px(ζ = ∞) = 1 for any x ∈ E. Here and in the sequel, unless
mentioned otherwise, we use the convention that a function defined on E takes the
value 0 at ∂ . Let (E,D(E)) be the Dirichlet form ofX on L2(E;m)which is assumed
to be regular.

Let Cap be the (0-)capacity associated with the Dirichlet form (E,D(E)) of X,
that is, for an open set O ⊂ E and the extended Dirichlet space De(E) of D(E),

Cap(O) = inf{E(u, u) | u ∈ De(E), u ≥ 1 m-a.e. on O} (7)

and for a Borel set B ⊂ E,

Cap(B) = inf{Cap(O) | O is open, B ⊂ O} (8)

(see [5, Chap. 2]).
We say that a positive continuous additive functional (PCAF in abbreviation) Aν

t
of X and a smooth measure ν are in the Revuz correspondence if they satisfy for any
t > 0,

∫

E

f (x)ν(dx) =↑ lim
t↓0

1

t
Em

⎡
⎣

t∫

0

f (Xs) dA
ν
s

⎤
⎦ , f ∈ Bb(E). (9)
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Here Em[ · ] = ∫E Ex[ · ]m(dx) and Bb(E) is the space of bounded Borel functions
on E. It is known that the family of equivalence classes of the set of PCAFs and
the family of smooth measures are in one to one correspondence under the Revuz
correspondence [5, Theorem 5.1.4]. Let (N (x, dy),Ht) be a Lévy system for X, that
is, N (x, dy) is a kernel on (E,B(E)) and Ht is a PCAF with bounded 1-potential
such that for any non-negative Borel function φ on E × E vanishing on the diagonal
and any x ∈ E,

Ex

[∑
0<s≤t

φ(Xs−,Xs)

]
= Ex

⎡
⎣

t∫

0

∫

E

φ(Xs, y)N (Xs, dy) dHs

⎤
⎦ .

Let μH be the Revuz measure of the PCAF Ht . Then the jumping measure J and
the killing measure κ of X are given by J (dxdy) = 1

2N (x, dy)μH (dx) and κ(dx) =
N (x, {∂})μH (dx). These measures feature in the Beurling-Deny decomposition of E
[5, Theorem 3.2.1].

A non-negative Borel measure ν on E (resp. a non-negative symmetric Borel
function φ on E × E vanishing on the diagonal) is said to be Green-bounded relative
to X if

sup
x∈E

Ex
[
Aν

∞
]

< ∞,

(
resp. sup

x∈E
Ex

[∑
t>0

φ(Xt−,Xt)

]
< ∞

)
.

Let μ be a positive smooth measure on E and Aμ
t the PCAF of X with μ as its

Revuzmeasure. LetF(x, y) be a bounded positive Borel function onE × E vanishing
along the diagonal. Then

∑
0<s≤t F(Xs−,Xs) is a positive (discontinuous) additive

functional ofX. Throughout this section, we assume thatF is Green-bounded relative
to X. It is natural to consider a combination of the additive functionals of the form

Aμ
t +

∑
0<s≤t

F(Xs−,Xs) (10)

because the process X admits many discontinuous additive functionals. For p ≥ 1,
let F(p) be a non-local linear operator defined by

F(p)f (x) =
∫

E

(
1 − e−pF(x,y)

)
f (y)N (x, dy), x ∈ E (11)

for any f ∈ Bb(E). Put Ff := F(1)f . We assume that F(p)1 ∈ L1(E;μH ) for any
p ≥ 1. Let Uμ+F be the capacitary potential relative to the additive functional (10)
defined by

Uμ+F(x) := Ex

[
1 − e−Aμ∞−∑t>0 F(Xt−,Xt)

]
.
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We shall define the scattering length �(μ + F) relative to the additive functional
(10) by

�(μ + F) :=
∫

E

(1 −Uμ+F)(x)μ(dx) +
∫

E

F(1 −Uμ+F)(x)μH (dx). (12)

Let us explain intuitively why the expression (12) is natural for the definition of the
scattering length relative to (10). Let L be the the infinitesimal generator associated
with (E,D(E)): E(f , g) = (

√−Lf ,√−Lg)m and D(E) = D(
√−L). In analogy

with classical one, we define �(μ + F) by the total mass of −LUμ+F ,

�(μ + F) = −
∫

E

LUμ+F dm. (13)

Note that the capacitary potential Uμ+F satisfies the following formal equation

−LUμ+F = (1 −Uμ+F)μ + F1μH − FUμ+FμH . (14)

Indeed, let X̃ = (Xt, P̃x) be the transformed process of X by the pure jump Girsanov
transform

YF
t := exp

⎛
⎝−

∑
0<s≤t

F(Xs−,Xs) +
t∫

0

F1(Xs)dHs

⎞
⎠ , t ∈ (0,∞). (15)

The multiplicative functional (15) is a uniformly integrable martingale under the
Green-boundedness of F relative to X, because e−F − 1 ≥ δ − 1 for some δ > 0 by
the boundedness of F and

sup
x∈E

Ex

⎡
⎣

∞∫

0

∫

E

(
1 − e−F(Xs,y)

)2
N (x, dy)dHs

⎤
⎦

≤ sup
x∈E

Ex

⎡
⎣

∞∫

0

∫

E

F(Xs, y)N (x, dy)dHs

⎤
⎦

= sup
x∈E

Ex

[∑
s>0

F(Xs−,Xs)

]
< ∞

(cf. [1, Theorem 3.2]). From this fact, we see that the transformed process X̃ is also a
transient and conservative Markov process on E. Let L̃ be the infinitesimal generator
of X̃. Then L̃ is formally given by
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−L̃ = −L + μHF − F1μH , (16)

where μHF denotes the measure valued operator defined by μHFf (x) = Ff (x)μH

(dx). It is known that a PCAF of X can be regarded as a PCAF of X̃. Thus we see
from [9, Lemma 4.9] that

Uμ+F(x) = Ex

[
1 − e−Aμ∞−∑t>0 F(Xt−,Xt)

]

= Ẽx

[
1 − e−Aμ∞−∫∞

0 F1(Xt)dHt

]

= Ẽx

⎡
⎣

∞∫

0

e
−Aμ

t −
t∫
0
F1(Xs)dHs (

dAμ
t + F1(Xt)dHt

)
⎤
⎦ . (17)

Equation (17) implies that Uμ+F satisfies the following formal equation

(
μ + F1μH − L̃)Uμ+F = μ + F1μH . (18)

Hencewe have (14) by applying (16)–(18), in otherwords, the totalmass of−LUμ+F

is given as the right-hand side of (12). We note that the relation (14) is rigorously
established whenever Uμ+F ∈ L2(E;m).

The following expressions of the scattering length play a crucial role throughout
this paper.

Lemma 3 Suppose that F is symmetric. Then, the scattering length (12) can be
rewritten as

�(μ + F) =
∫

E

Ex

[
e−Aμ∞−∑t>0 F(Xt−,Xt)

]
(μ(dx) + F1(x)μH (dx)) . (19)

= lim
t→∞

1

t

∫

E

Ex

[
1 − e−Aμ

t −∑0<s≤t F(Xs−,Xs)
]
m(dx). (20)

Proof The expression (19) is a consequence of the symmetry of F . Indeed,

∫

E

F(1 −Uμ+F)(x)μH (dx)

=
∫

E

∫

E

(
1 − e−F(x,y)

)
Ey

[
e−Aμ∞−∑t>0 F(Xt−,Xt)

]
N (x, dy)μH (dx)

=
∫

E

Ex

[
e−Aμ∞−∑t>0 F(Xt−,Xt)

]
F1(x)μH (dx).
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On the other hand, it follows from [9, Lemma 4.9] and (19) that

�(μ + F) =
∫

E

Ẽx

[
e
−Aμ∞−

∞∫
0
F1(Xs)dHs

]
(μ(dx) + F1(x)μH (dx))

= lim
t→∞

1

t

∫

E

Ẽx

⎡
⎣1 − e

−Aμ
t −

t∫
0
F1(Xs)dHs

⎤
⎦m(dx)

= lim
t→∞

1

t

∫

E

Ex

[
1 − e−Aμ

t −∑0<s≤t F(Xs−,Xs)
]
m(dx)

which implies the expression (20). In the second equality above, we used the result
due to [15, (2.2)] (also [4, Theorem 2.2]). �

In the rest of the paper,we always assume thatF is symmetric. It is immediate from
the expression (20) that the scattering length �(μ + F) has the monotone property:
for i = 1, 2, let μi be a non-negative finite smooth measure on E and Fi be a non-
negative symmetric bounded Borel function on E × E vanishing on the diagonal
such that F(i)1 ∈ L1(E;μH ), where F(i) is the non-local operator defined as in (11)
for Fi. If μ1 ≤ μ2 and F1 ≤ F2, then

�(μ1 + F1) ≤ �(μ2 + F2). (21)

Moreover, it follows from the elementary inequality 1 − e−a−b ≤ (1 − e−a) + (1 −
e−b) for a, b ≥ 0 that the scattering length has the subadditive property:

�(μ1 + μ2) ≤ �(μ1) + �(μ2), �(F1 + F2) ≤ �(F1) + �(F2).

Finally, we close this section with the following remark:

Remark 4 The scattering length is trivial when the underlying process X is not
transient. In fact, by virtue of [4, Lemma 2.1], the present scattering length�(μ + F)

can be represented as

�(μ + F) =
∫

{Uμ+F=0}∪{Uμ+F=1}
(1 −Uμ+F)(x)(μ + F1μH )(dx)

=
∫

E

1{Uμ+F=0}(x)(μ + F1μH )(dx)
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under the non-transience of X. Then, by the Revuz formula (9) and the Markov
property

∫

E

1{Uμ+F=0}(x)(μ + F1μH )(dx)

=↑ lim
t↓0

1

t
Em

⎡
⎣

t∫

0

1{Uμ+F=0}(Xs) dA
μ+F1μH
s

⎤
⎦

=↑ lim
t↓0

1

t
Em

⎡
⎣

t∫

0

EXs

[
1{Aμ∞+∑t>0 F(Xt−,Xt)=0}

]
dAμ+F1μH

s

⎤
⎦

=↑ lim
t↓0

1

t
Em

⎡
⎣

t∫

0

1{Aμ∞+∑t>0 F(Xt−,Xt)=Aμ
s +∑0<u≤s F(Xu−,Xu)}dAμ+F1μH

s

⎤
⎦

=↑ lim
t↓0

1

t
Em

⎡
⎣

t∫

0

1{
A

μ+F1μH∞ =A
μ+F1μH
s

}dAμ+F1μH
s

⎤
⎦

= 0.

This is the reason why we only consider the scattering length for transient processes.

3 Kac’s Scattering Length Formula

In this section, we are going to study the behaviour of the scattering length �(pμ +
pF) when p → ∞. As we mentioned in Sect. 1, this problem was decisively solved
in the case F ≡ 0 by Takeda [15], through the random time change argument for
Dirichlet forms: let ν be a positive finite smooth measure on E and Sν the fine
support of Aν

t . Then

lim
p→∞ �(pν) = Cap(Sν). (22)

However, we cannot apply time change method to our problem directly because our
scattering length contains a discontinuous additive functional.

Let τt be the right continuous inverse of the PCAF Aμ
t + ∫ t

0 F1(Xs)dHs, that is,
τt := inf{s > 0 | Aμ

s + ∫ s
0 F1(Xu)dHu > t}. Let denote by Sμ+μHF1 the fine support

of Aμ
t + ∫ t

0 F1(Xs)dHs,

Sμ+F1μH =
{
x ∈ E

∣∣∣ Px(τ0 = 0) = 1
}

.

To prove Theorem 1, we need to the following lemma.
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Lemma 5 For any ε > 0

lim
p→∞ �

(
pF + p1+εμ + p1+εF1μH

) = Cap(Sμ+F1μH ).

In particular, lim supp→∞ �(pμ + pF) ≤ Cap(Sμ+F1μH ).

Proof The last assertion easily follows from the first one with the monotonicity of
the scattering length. Put k = 1/(1 + ε) and write AF1μH

t := ∫ t
0 F1(Xs)dHs. From the

expression (19), one can easily see that

�
(
pkF + pμ + pF1μH

)

=
∫

E

Ex

[
e−pk

∑
t>0 F(Xt−,Xt)−pAμ∞−pA

F1μH∞
]

·
(
pμ(dx) + F(pk )1(x)μH (dx) + pF1(x)μH (dx)

)
.

Since F(q)1 ≤ qF1 for any q ≥ 1,

�
(
pkF + pμ + pF1μH

)

≤
∫

E

Ex

[
e−pAμ∞−pA

F1μH∞
] ((

1 + pk−1
)
pμ(dx) + (pkF1 + pF1

)
(x)μH (dx)

)

= (1 + pk−1
)
� (pμ + pF1μH ) .

Therefore we have from the monotonicity of the scattering length that

� (pμ + pF1μH ) ≤ �
(
pkF + pμ + pF1μH

) ≤ (1 + pk−1
)
� (pμ + pF1μH ) .

In view of (22), the scattering lengths of both sides of the above converge to
Cap(Sμ+F1μH ) as p → ∞, which implies the first assertion. �

Proof of Theorem 1 Let ψ(p) be the function which appeared in the condition (4).
By the monotonicity of the scattering length, we have for some C > 0

�

(
ψ(p)

n
μ + Cψ(p)

n
F1μH

)

≤ �

(
pF + ψ(p)

n
μ + Cψ(p)

n
F1μH

)
≤ �

(
pF + p1+εμ + p1+εF1μH

)

for any n ≥ 1 and ε > 0. Then, by Lemma 5 and applying (22) again, one can get
that

lim
p→∞ �

(
pF + ψ(p)

n
μ + Cψ(p)

n
F1μH

)
= Cap(Sμ+F1μH ).
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From this and the condition (4), we see that

lim inf
p→∞ � (pμ + pF) ≥ lim inf

p→∞ �

(
ψ(p)

n
μ + pF

)

= lim inf
p→∞

∫

E

Ex

[
e−p

∑
t>0 F(Xt−,Xt)− ψ(p)

n Aμ∞
](ψ(p)

n
μ(dx) + F(p)1(x)μH (dx)

)

= n

n + 1
lim inf
p→∞

∫

E

Ex

[
e−p

∑
t>0 F(Xt−,Xt)− ψ(p)

n Aμ∞
]

·
(
n + 1

n

ψ(p)

n
μ(dx) + F(p)1(x)μH (dx) + 1

n
F(p)1(x)μH (dx)

)

≥ n

n + 1
lim inf
p→∞

∫

E

Ex

[
e−p

∑
t>0 F(Xt−,Xt)− ψ(p)

n Aμ∞− Cψ(p)
n A

F1μH∞
]

·
(
F(p)1(x)μH (dx) + ψ(p)

n
μ(dx) + Cψ(p)

n
F1(x)μH (dx)

)

= n

n + 1
lim
p→∞ �

(
pF + ψ(p)

n
μ + Cψ(p)

n
F1μH

)

= n

n + 1
Cap(Sμ+F1μH ).

Letting n → ∞, we have

Cap(Sμ+F1μH ) ≤ lim inf
p→∞ �(pμ + pF). (23)

The proof will be finished by the last assertion of Lemma 5 and (23). �

Let Xm = (Xt,Pm
x ) be a Lévy process on R

d with

Em
0

[
e
√−1〈ξ,Xt〉

]
= e−t((|ξ |2+m2/α)α/2−m), 0 < α ≤ 2, m ≥ 0. (24)

If m > 0 and 0 < α < 2, it is called the relativistic α-stable process with mass m. In
particular, if m > 0 and α = 1, it is called the relativistic free Hamiltonian process.
The limiting caseX0, corresponding tom = 0, is nothing but the usual (rotationally)
symmetric α-stable process. It is known that Xm is transient if and only if d > 2
under m > 0 or d > α under m = 0, and it is a doubly Feller conservative process.
From (24), one can easily see that Xm has the following scaling property: for any
r > 0

(rXt,Pm
x )

d=
(
Xrα t,Pr−αm

rx

)
, (25)
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where
d= means the equality in distribution. Let (Em,D(Em)) be the Dirichlet

form on L2(Rd ) associated with Xm. It follows from Fourier transform f̂ (x) :=
1

(2π)d/2

∫
Rd ei〈x,y〉f (y)dy that

D(Em) :=
⎧⎨
⎩f ∈ L2(Rd )

∣∣∣
∫

Rd

|f̂ (ξ)|2 ((|ξ |2 + m2/α)α/2 − m
)
dξ < ∞

⎫⎬
⎭,

Em(f , g) :=
∫

Rd

f̂ (ξ) ¯̂g(ξ)
(
(|ξ |2 + m2/α)α/2 − m

)
dξ for f , g ∈ D(Em)

[5, Example 1.4.1]. The Dirichlet form (E0,D(E0)) forX0 can also be characterized
similarly, only with |ξ |α in place of (|ξ |2 + m2/α)α/2 − m above. Thus, there exist
positive constants c1 := c1(m) and c2 := c2(m) such that

c1E0
1 (u, u) ≤ Em

1 (u, u) ≤ c2E0
1 (u, u)

and soD(Em) = D(E0). Here E∗
1 (u, u) := E∗(u, u) + (u, u)m. From this, we see that

for any m ≥ 0 and a Borel set B ⊂ R
d

c1Cap
(1)(B) ≤ Cap(1)

m (B) ≤ c2Cap
(1)(B), (26)

where Cap(1)
m (resp. Cap(1)) denotes the 1-capacity associated with (Em,D(Em))

(resp. (E0,D(E0))), that is, it is the capacity defined by replacing De(Em) and Em

(resp. De(E0) and E0) in (7) and (8) with D(Em) and Em
1 (resp. D(E0) and E0

1 ). Let
denote by B(a, b) the open ball in R

d with center a and radius b. It is known that

Cap(1)(B(0, r)) = rd−αCap(1)(B(0, 1)) (27)

(cf. [12, (42.22)]). It is shown in [3] that the corresponding jumping measure J of
(Em,Fm) satisfies

J (dxdy) = Jm(x, y)dxdy with Jm(x, y) = Cd ,α

ϕ(m1/α|x − y|)
|x − y|d+α

,

where Cd ,α = α2d+α�( d+α
2 )

2d+1πd/2�(1− α
2 )

and

ϕ(r) := 2−(d+α)�

(
d + α

2

)−1
∞∫

0

s
d+α
2 −1e− s

4 − r2

s ds,
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which is a decreasing function satisfying ϕ(0) = 1 and

c−1e−rr
d+α−1

2 ≤ ϕ(r) ≤ ce−rr
d+α−1

2 , r ≥ 1 (28)

for some constant c > 1 (cf. [3]). In particular,

D(Em) =

⎧⎪⎨
⎪⎩f ∈ L2(Rd )

∣∣∣
∫

Rd×Rd

|f (x) − f (y)|2Jm(x, y)dxdy < ∞

⎫⎪⎬
⎪⎭,

Em(f , g) := 1

2

∫

Rd×Rd

(f (x) − f (y))(g(x) − g(y))Jm(x, y)dxdy

for f , g ∈ D(Em). It is known that Xm has a Lévy system (N (x, dy),Ht) given by
N (x, dy) = Jm(x, y)dy andHt = t. In this case, the non-local linear operator (11) for
a symmetric positive bounded Borel function F(x, y) on R

d × R
d vanishing on the

diagonal is given by

F(p)
m f (x) =

∫

Rd

(1 − e−pF(x,y))f (y)ϕ(m1/α|x − y|)
|x − y|d+α

dy, p ≥ 1, x ∈ R
d .

Now, we give some concrete examples of Fs satisfying the condition (4).

Example 6 Let F be the function on Rd × R
d such that for β > α

F(x, y) = 1

2
|x − y|βχR,R′(x, y),

where χR,R′(x, y) is the indicator function given by

χR,R′(x, y)

= (1B(x,R′)(y)1B(0,R)(x) + 1B(y,R′)(x)1B(0,R)(y)

+1B(y,R′)(x)1B(x,R′)(y)1B(0,R+R′)\B(0,R)(x)1B(0,R+R′)\B(0,R)(y)
)

for R,R′ > 0. Then the condition (4) holds for this F . First, take x ∈ B(0,R). In this
case, F is given by

F(x, y) =
⎧⎨
⎩

|x − y|β y ∈ B(x,R′) ∩ B(0,R)
1
2 |x − y|β y ∈ B(x,R′) ∩ B(0,R)c

0 otherwise
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and thus we have

Fm1(x) = Cd ,α

∫

Rd

(1 − e−F(x,y))ϕ(m1/α|x − y|)
|x − y|d+α

dy

= Cd ,α

∫

B(x,R′)

(1 − e−F(x,y))ϕ(m1/α|x − y|)
|x − y|d+α

dy

= Cd ,α

⎧⎪⎨
⎪⎩

∫

B(x,R′)∩B(0,R)

(1 − e−|x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

+
∫

B(x,R′)∩B(0,R)c

(1 − e− 1
2 |x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

⎫⎪⎬
⎪⎭

≤ Cd ,α

∫

B(x,R′)

(1 − e−|x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy.

By using integration by parts, the right-hand side of the above inequality is equal to

C ′
d ,α

R′∫

0

(1 − e−rβ

)ϕ(m1/αr)

r1+α
dr

= C ′
d ,α

{
(e−(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

R′∫

0

r−α
(
βrβ−1e−rβ

ϕ(m1/αr) + (1 − e−rβ

)m1/αϕ′(m1/αr)
)
dr

⎫⎬
⎭

= C ′
d ,α

{
(e−(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

(R′)β∫

0

t−α/β

(
e−tϕ(m1/αt1/β) + m1/α(1 − e−t)

ϕ′(m1/αt1/β)

βt(β−1)/β

)
dt

⎫⎪⎬
⎪⎭ , (29)

where C ′
d ,α is a positive constant depending on d and α. On the other hand, by a

similar calculation as above with the inequality 1 − e−a−b ≤ (1 − e−a) + (1 − e−b)

for any a, b ≥ 0, we see
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F(p)
m 1(x)

= Cd ,α

⎧⎪⎨
⎪⎩

∫

B(x,R′)∩B(0,R)

(1 − e−p|x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

+
∫

B(x,R′)∩B(0,R)c

(1 − e− p
2 |x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

⎫⎪⎬
⎪⎭

≥ Cd ,α

∫

B(x,R′)

(1 − e− p
2 |x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

≥ Cd ,α

2

∫

B(x,R′)

(1 − e−p|x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

= C ′
d ,α

2

{
(e−p(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

p(R′)β∫

0

pα/β t−α/β
(
e−tϕ(m1/α(p−1t)1/β)

+m1/α(1 − e−t)
ϕ′(m1/α(p−1t)1/β)

β(p−1t)(β−1)/β

)
dt

}

≥ pα/β

2
C ′
d ,α

{
(e−(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

(R′)β∫

0

t−α/β
(
e−tϕ(m1/α(p−1t)1/β)

+m1/α(1 − e−t)
ϕ′(m1/α(p−1t)1/β)

βt(β−1)/β

)
dt

}
(30)

for large p ≥ 1. Since ϕ(r) is decreasing, ϕ(m1/α(p−1t)1/β) ≥ ϕ(m1/αt1/β) and ϕ′(r)
is a non-positive function on [0,∞) taking a value close to 0 near r = 0, that is,
ϕ′(m1/α(p−1t)1/β) ≥ ϕ′(m1/αt1/β) for large p ≥ 1. From these facts with (29) and
(30), we can confirm that

F(p)
m 1(x) ≥ pα/β

2
Fm1(x), x ∈ B(0,R), large p ≥ 1. (31)
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Next, take x ∈ B(0,R + R′) \ B(0,R). In this case, F is given by

F(x, y) =
⎧⎨
⎩

1
2 |x − y|β y ∈ B(x,R′) ∩ B(0,R)
1
2 |x − y|β y ∈ B(x,R′) ∩ B(0,R)c

0 otherwise.

Then, by the same calculations as above

Fm1(x)

≤ Cd ,α

∫

B(x,R′)

(1 − e−|x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

= C ′
d ,α

{
(e−(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

(R′)β∫

0

t−α/β

(
e−tϕ(m1/αt1/β) + m1/α(1 − e−t)

ϕ′(m1/αt1/β)

βt(β−1)/β

)
dt

⎫⎪⎬
⎪⎭

and

F(p)
m 1(x)

≥ Cd ,α

2

∫

B(x,R′)

(1 − e−p|x−y|β )ϕ(m1/α|x − y|)
|x − y|d+α

dy

≥ pα/β

2
C ′
d ,α

{
(e−(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

(R′)β∫

0

t−α/β
(
e−tϕ(m1/α(p−1t)1/β)

+m1/α(1 − e−t)
ϕ′(m1/α(p−1t)1/β)

βt(β−1)/β

)
dt

}

≥ pα/β

2
C ′
d ,α

{
(e−(R′)β − 1)ϕ(m1/αR′)

α(R′)α

+ 1

α

(R′)β∫

0

t−α/β

(
e−tϕ(m1/αt1/β) + m1/α(1 − e−t)

ϕ′(m1/αt1/β)

βt(β−1)/β

)
dt

⎫⎪⎬
⎪⎭

= pα/β

2
Fm1(x)
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for large p ≥ 1. Therefore, we can confirm (31) for x ∈ B(0,R + R′) \ B(0,R). For
x ∈ B(0,R + R′)c, (31) is trivial becauseF(p)

m 1(x) = 0 for anyp ≥ 1.Henceweobtain
(31) for any x ∈ R

d . Moreover, for x ∈ B(0,R + R′)

F(p)
m 1(x) = Cd ,α

⎛
⎜⎝

∫

B(0,R+R′)∩B(x,1)

(1 − e−pF(x,y))ϕ(m1/α|x − y|)
|x − y|d+α

dy

+
∫

B(0,R+R′)∩B(x,1)c

(1 − e−pF(x,y))ϕ(m1/α|x − y|)
|x − y|d+α

dy

⎞
⎟⎠

≤ Cd ,α

∫

B(x,1)

1 − e− 3p
2 |x−y|β

|x − y|d+α
dy

+ Cd ,α

∫

B(0,R+R′)∩B(x,1)c

(
1 − e− 3p

2 (R+R′)β
)
dy

≤ C ′
d ,α

1∫

0

1 − e− 3p
2 r

β

rα+1
dr + Cd ,α

∣∣∣B(0,R + R′)
∣∣∣

and from which it follows that F(p)
m 1 is bounded on B(0,R + R′) and is zero on

B(0,R + R′)c for any p ≥ 1. This shows that F(p)
m 1 ∈ L1(Rd ) for any p ≥ 1. In fact,

by a similar way as in the proof of [2, Proposition 7.10(3)], one can also prove that
F(p)
m 1 ∈ L�(Rd )(� ≥ 1) for any p ≥ 1 and thus F is to be Green-bounded with respect

to Xm,(1). Here Xm,(1) is the 1-subprocess of Xm, the killed process by e−t . We omit
the details.

Remark 7 There are many functions satisfying the condition (4). In fact, they can
be given by the following form:

F(x, y) = 1

2
φ(|x − y|)χR,R′(x, y)

with φ(t) = tβ , φ(t) = tβ/(1 + t)β , φ(t) := φ(1)(t) = log(1 + tβ) and its iterated
function φ(n)(t) = φ(φ(n−1)(t)) (n ≥ 2) for β > α. Further, we see that Fs induced
by these functions are Green-bounded relative to Xm,(1) (cf. [2, Proposition 7.10])
and we can take the function ψ(p) which appeared in (4) as

ψ(p) = pα/β .

Hence, the scattering length �(1)
m (pμ + pF) induced by the functions φ above con-

verges to Cap(1)
m (Sμ+Fm1) as p → ∞, in view of Theorem 1. Here �(1)

m denotes the
scattering length with respect to Xm,(1).
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4 Semi-classical Asymptotics for Scattering Length

In this section, we study the semi-classical asymptotics for scattering length by non-
negative potentials with infinite ranges. We consider the case that μ(dx) = V (x)dx
withV being a non-negativeL1(Rd )-function.Note that the scattering length�(pV +
pF)may diverge as p → ∞ if V or F has a non-compact support. So the question we
are interested in is to find the asymptotic order of �(pV + pF) to infinity as p → ∞.

In the sequel, let Xm, Xm,(1), �(1)
m and Cap(1)

m be as in Example 6 and Remark
7. Clearly, Xm,(1) is transient. For a > 0 and b ≥ 0, let Vb

a and Fb
a be the scaling

potentials of V and F , respectively, which are defined by

Vb
a (x) := abV (ax), Fb

a (x, y) := abF(ax, ay), x, y ∈ R
d .

The following simple scaling property of the scattering length plays a role.

Lemma 8 For any β ≥ 0 and r > 0, it holds that

�(1)
m (V β

r + Fβ−α
r ) = rα−d�

(r−α)

r−αm(rβ−αV + rβ−αF).

Proof For notational convenience, set

AV β
r

t :=
t∫

0

V β
r (Xs)ds, AFβ−α

r
t :=

∑
0<s≤t

Fβ−α
r (Xs−,Xs).

It follows from the scaling property (25) that AV β
r

t and AFβ−α
r

t under Pm
x are equal

to rβ−αAV
rα t and rβ−αAF

rα t under P
r−αm
rx , respectively. Then, by the expression of the

scattering length (20) and Ito’s formula

�(1)
m (V β

r + Fβ−α
r )

= lim
t→∞

1

t

∫

Rd

Em,(1)
x

[
1 − e−A

V
β
r

t −A
F

β−α
r

t

]
dx

= lim
t→∞

1

t

∫

Rd

Em
x

⎡
⎣

t∫

0

e−s−A
V

β
r

s −A
F

β−α
r

s

(
V β
r (Xs) + rαF(rβ−α)

m 1(rXs)
)
ds

⎤
⎦ dx

= lim
t→∞

1

t

∫

Rd

Er−αm
rx

⎡
⎣

t∫

0

e−s−rβ−αAV
rα s−rβ−αAF

rα s

·
(
rβV (Xrαs) + rαF(rβ−α)

r−αm 1(Xrαs)
)
ds
]
dx
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= rα−d lim
t→∞

1

rαt

∫

Rd

Er−αm
y

⎡
⎣

rα t∫

0

e−r−αs′−rβ−αAV
s′ −rβ−αAF

s′

·
(
rβ−αV (Xs′) + F(rβ−α)

r−αm 1(Xs′)
)
ds′
]
dy

= rα−d lim
t→∞

1

rαt

∫

Rd

Er−αm,(r−α)
y

[
1 − e−rβ−αAV

rα t−rβ−αAF
rα t

]
dy

= rα−d�
(r−α)

r−αm(rβ−αV + rβ−αF),

where we used in the second equality above that the non-local operator defined in
(11) for Fb

a is given by aαF(ab)
m 1(a ·). �

For an open set B ⊂ R
d , let τ 1Bc

0 be the first penetrating time of Xm into Bc,

τ
1Bc
0 := inf

⎧⎨
⎩t > 0

∣∣∣
t∫

0

1Bc(Xs) ds > 0

⎫⎬
⎭ .

We say that B is a Kac’s regular set with respect to Xm, if τ
1Bc
0 is the same as

τB := inf{t > 0 | Xt ∈ Bc}, the first exit time of Xm from B (with probability one).
Note that any open subset of Rd having a smooth boundary, thus any open ball
in R

d , is Kac regular. Let supp [U ] be the topological support of a non-negative
potential U . Then the set SU \ supp [U ] is of zero capacity, while supp [U ] \ SU is
not necessarily of zero capacity. It is known that if supp [U ] is a Kac’s regular set,
then Cap(SU ) = Cap(supp [U ]) (cf. [15, §3]).
Lemma 9 Let B be an open ball inRd . Under the hypotheses in Theorem 1, it holds
that

lim
p→∞ �(1)

m (pV1B + pF1B) = Cap(1)
m (B),

where F1B := F(x, y)1B(x).

Proof Note that we can not obtain the assertion as an immediate consequence of
Theorem 1 because F1B is not necessarily a symmetric function. Let

F1B2(x, y) := F(x, y)1B(x)1B(y).

Clearly F1B2 is symmetric. Denote by Fm1B2 the non-local operator induced by F1B2

which is given as

Fm1B2(x) = Cd ,α

⎛
⎝
∫

B

(
1 − e−F(x,y)

)
ϕ(m1/α|x − y|)

|x − y|d+α
dy

⎞
⎠ 1B(x).
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Then, by a similar way as in the proof of Theorem 1, we can see that

lim inf
p→∞ �(1)

m (pV1B + pF1B) ≥ lim inf
p→∞ �(1)

m (pV1B + pF1B2)

≥ Cap(1)
m

(
SV1B+Fm1B2

) = Cap(1)
m (B), (32)

where we used the equality in (32) that B is a Kac’s regular set with respect toXm,(1).
For an open ball D ⊂ R

d such that B ⊂ D, let U (1)
D be its capacitary potential,

which is given byU (1)
D (x) := Em,(1)

x [1 − e− ∫∞
0 vD(Xt)dt] for vD = ∞ onD and 0 offD.

Then U (1)
D = Um

1 νD, where Um
1 is the 1-potential operator of Xm and νD is the (1-

)equilibrium measure on D (cf. [5, 13]). From the definition of the scattering length
(13) and the fact that U (1)

D = 1 on B, for any p ≥ 1

�(1)
m (pV1B + pF1B) = −

∫

Rd

Lm,(1)U (1)
pV1B+pF1B(x) dx

= −
∫

Rd

U (1)
D (x)Lm,(1)U (1)

pV1B+pF1B(x) dx

= Em
1

(
Um

1 νD,U (1)
pV1B+pF1B

)

=
∫

Rd

U (1)
pV1B+pF1B(x)νD(dx),

where Lm,(1) is the infinitesimal generator of Xm,(1) andU (1)
pV1B+pF1B is the capacitary

potential relative to pV1B + pF1B underXm,(1). On the other hand, sinceCap(1)
m (B) =∫

Rd U
(1)
B (x)νD(dx), we can see that

lim sup
p→∞

�(1)
m (pV1B + pF1B) ≤ Cap(1)

m (B) (33)

becauseU (1)
pV1B+pF1B ≤ U (1)

B for any p ≥ 1. HereU (1)
B denotes the capacitary potential

of B defined as above. The proof will be finished by (32) and (33). �

Proposition 10 Let ρ > d > α and 0 < λ  1. If a non-negative function V sat-
isfies V (x) ≤ c1 |x|−ρ for x ∈ B(0, λ−α/(ρ−α))c for some constant c1 > 0, then we
have for any m ≥ 0

C1λ
− α(d−α)

ρ−α ≤ �(1)
m

(
λ−αV

) ≤ C2λ
− α(d−α)

ρ−α (34)

for some constants C2 ≥ C1 > 0.

Proof Let W be the function defined by W (x) = |x|−ρ1B(0,1)c(x). By applying W
with F ≡ 0, β = α and r = λα/(ρ−α) to Lemma 8, we have
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�(1)
m

(
W α

λα/(ρ−α)

) = λ
− α(d−α)

ρ−α �
(λ−α2/(ρ−α))

λ−α2/(ρ−α)m
(W ). (35)

Since

W α
λα/(ρ−α) (x) = λα2/(ρ−α)|λα/(ρ−α)x|−ρ1B(0,1)c(λ

α/(ρ−α)x)

= λ−α|x|−ρ1B(0, λ−α/(ρ−α))c(x),

(35) can be rewritten as

�(1)
m

(
λ−α|x|−ρ1B(0, λ−α/(ρ−α))c

) = λ
− α(d−α)

ρ−α �
(λ−α2/(ρ−α))

λ−α2/(ρ−α)m
(W ). (36)

It is clear from the definition of scattering length that for some constant C > 0

�
(λ−α2/(ρ−α))

λ−α2/(ρ−α)m
(W ) ≤

∫

B(0,1)c

|x|−ρdx = ωd

∞∫

1

rd−ρ−1dr ≤ C.

So by which and (36), it follows that

�(1)
m

(
λ−α|x|−ρ1B(0, λ−α/(ρ−α))c

) ≤ C λ
− α(d−α)

ρ−α . (37)

On the other hand, we see by Lemma 9 with F = 0 that for any ε > 0 there exists
0 < λ0 := λ0(ε)  1 such that for every 0 < λ ≤ λ0,

C ′ Cap(1)
m

(
B(0, λ−α/(ρ−α))

)
≤ �(1)

m

(
λ−αV1B(0, λ−α/(ρ−α))

) ≤ Cap(1)
m (B(0, λ−α/(ρ−α)))

for some constant C ′ := C ′(ε) > 0. From which, with (26) and (27), it follows that

C1λ
− α(d−α)

ρ−α ≤ �(1)
m

(
λ−αV1B(0, λ−α/(ρ−α))

) ≤ C ′
1λ

− α(d−α)

ρ−α (38)

for some constants C1,C ′
1 > 0. Now, on account of (37) and (38), the monotonicity

and subadditivity of scattering length we can confirm (34). Indeed,

C1 λ
− α(d−α)

ρ−α ≤ �(1)
m

(
λ−αV1B(0, λ−α/(ρ−α))

)
≤ �(1)

m (λ−αV )

≤ �(1)
m

(
λ−αV1B(0, λ−α/(ρ−α))

)+ �(1)
m

(
λ−αV1B(0, λ−α/(ρ−α))c

)
≤ �(1)

m

(
λ−αV1B(0, λ−α/(ρ−α))

)+ c′�(1)
m

(
λ−α|x|−ρ1B(0, λ−α/(ρ−α))c

)
≤ C2 λ

− α(d−α)

ρ−α
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where we used in the fourth inequality above that for any non-negative L1(Rd )-
functionU and a constant c > 0, there exists a constant c′ > 0 such that �(1)

m (cU ) ≤
c′�(1)

m (U ). �

Remark 11 Ifm = 0, d = 3 and α = 2, then (26) holds for (0-)capacity. As a result,
Tamura’s result (5) can be easily reproduced from (34).

In the sequel, we let α ∈ (0, 2).

Proposition 12 Let d > α, ρ > d+α−1
2 ∨ α and 0 < λ  1. For a compact set K ⊂

R
d , let M > 0 be such that K ⊂ B(0,M ). Assume that for x ∈ B(0, λ−α/(ρ−α)M )c,

F(x, y) ≤ c2|x − y|−(ρ−α)1B(x, λ−α/(ρ−α))c∩λ−α/(ρ−α)K (y) (39)

for some constant c2 > 0, where λ−α/(ρ−α)K := {λ−α/(ρ−α)x | x ∈ K}. Assume in
addition that

F(λ−α)
m 1(x) ≥ Cψ(λ−α)Fm1(x) for x ∈ B(0, λ−α/(ρ−α)M ) (40)

for a constant C > 0 and for some positive function ψ such that ψ(σ) ≤ σ and
ψ(σ) → ∞ as σ → ∞. Then, for any m ≥ 0

C3λ
− α(d−α)

ρ−α ≤ �(1)
m (λ−αF) ≤ C4λ

− α(d−α)

ρ−α (41)

for some constants C4 ≥ C3 > 0.

Proof Let
G(x, y) := |x − y|−(ρ−α)1B(0,M )c(x)1B(x,1)c∩K (y)

and Gm1(x) the associated non-local function defined as in (11). Note that the state-
ment in Lemma 8 with V ≡ 0 is valid for any non-negative symmetric bounded
function on R

d × R
d vanishing on the diagonal such that its non-local operator

defined as in (11) being integrable. By applying G with β = α and r = λα/(ρ−α) to
Lemma 8, one has

�(1)
m

(
G0

λα/(ρ−α)

) = λ
− α(d−α)

ρ−α �(λ−α2/(ρ−α))
mλ

(G), (42)

where mλ := λ−α2/(ρ−α)m and

G0
λα/(ρ−α) (x, y)

= λ−α|x − y|−(ρ−α)1B(0,λ−α/(ρ−α)M )c(x)1B(x, λ−α/(ρ−α))c∩ λ−α/(ρ−α)K (y).

From the definition of scattering length and (28),
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�(λ−α2/(ρ−α))
mλ

(G) ≤
∫

Rd

Gmλ
1(x)dx

≤ Cd ,α

∫

B(0,M )c

∫

K

(1 − e−|x−y|−(ρ−α)

)ϕ(m1/α
λ |x − y|)

|x − y|d+α
dydx

≤ C ′
d ,αm

d+α−1
2α

λ

∫

K

∫

B(0,M )c

|x − y|−(ρ−α)e−m1/α
λ |x−y||x − y| d+α−1

2

|x − y|d+α
dxdy

= C ′
d ,αωdm

d+α−1
2α

λ

∫

K

∞∫

d(y,B(0,M )c)

e−m1/α
λ r

r(2ρ−d−α+3)/2
drdy

≤ Cmλ
− α(d+α−1)

2(ρ−α) exp

(
−λ

− α
ρ−α m

1
α inf
y∈K d(y,B(0,M )c)

)

·
∫

K

1

d(y,B(0,M )c)(2ρ−d−α+1)/2
dy

= C ′
4λ

− α(d+α−1)
2(ρ−α) exp

(
−c3λ

− α
ρ−α

)
, (43)

where

C ′
4 = Cm

∫

K

1

d(y,B(0,M )c)(2ρ−d−α+1)/2
dy with Cm := 2C ′

d ,αm
d+α−1

2α ωd

2ρ − d − α + 1

and c3 = m1/α infy∈K d(y,B(0,M )c). Thus, it follows from (42) and (43) that

�(1)
m

(
G0

λα/(ρ−α)

) ≤ C ′
4λ

− α(3d−α−1)
2(ρ−α) exp

(
−c3λ

− α
ρ−α

)
. (44)

On the other hand, we see by Lemma 9 with V = 0 that for any ε > 0 there exists
0 < λ0 := λ0(ε)  1 such that for every 0 < λ ≤ λ0,

C ′
5 Cap

(1)
m

(
B(0, λ−α/(ρ−α))

)
≤ �(1)

m

(
λ−αF1B(0, λ−α/(ρ−α))

) ≤ Cap(1)
m (B(0, λ−α/(ρ−α)))

for some constant C ′
5 := C ′

5(ε) > 0. From this fact with (26) and (27), it follows that

C3λ
− α(d−α)

ρ−α ≤ �(1)
m

(
λ−αF1B(0, λ−α/(ρ−α))

) ≤ C ′
3λ

− α(d−α)

ρ−α (45)

for some constants C ′
3 ≥ C3 > 0. Now, by combining (44) and (45), we have
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C3λ
− α(d−α)

ρ−α ≤ �(1)
m

(
λ−αF1B(0,λ−α/(ρ−α)M )

)
≤ �(1)

m

(
λ−αF

)
≤ �(1)

m

(
λ−αF1B(0,λ−α/(ρ−α)M )

)+ �(1)
m

(
λ−αF1B(0,λ−α/(ρ−α)M )c

)
≤ �(1)

m

(
λ−αF1B(0,λ−α/(ρ−α)M )

)+ c′�(1)
m

(
G0

λα/(ρ−α)

)
≤ C ′

3λ
− α(d−α)

ρ−α + c′C ′
4λ

− α(3d−α−1)
2(ρ−α) exp

(
−c3λ

− α
ρ−α

)

≤
(
C ′
3 + c′C ′

4λ
− α(d+α−1)

2(ρ−α) exp
(
−c3λ

− α
ρ−α

))
λ

− α(d−α)

ρ−α

≤ C4λ
− α(d−α)

ρ−α

for some constant C4 > 0. �

Now, we are ready to prove Theorem 2.

Proof of Theorem 2 The proof is an immediate consequence of Propositions 10 and
12 with the subadditivity of the scattering length. �
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Equivalence of the Strong Feller
Properties of Analytic Semigroups
and Associated Resolvents

Seiichiro Kusuoka, Kazuhiro Kuwae, and Kouhei Matsuura

Abstract In this paper, we give sufficient conditions for the equivalence between
semigroup strong Feller property and resolvent strong Feller property.

Keywords Feller property of semigroup · semigroup strong Feller property ·
Resolvent strong Feller property · Analytic semigroup · Sobolev inequality · Ultra
contractivity of semigroup

Mathematics Subject Classification 60J46 · 60J45 · 60J35 · 31C25

1 Introduction

The notion of the Feller property was initiated by Feller [14]. In the paper, a pair of
one-dimensional parabolic diffusion equations is exhaustively studied through the
associated semigroups,wherewe canobserve the origin of the present Feller property.
In [13], the Feller property is defined forMarkov processes on compactmetric spaces,
which states that the associated semigroups map the family of continuous functions
on the state space into itself. Later, this notion was extended beyond the compactness
of the state space. The semigroup {Pt }t≥0 of a Markov process on a locally compact
separable metric space E is now said to have the Feller property if each Pt leaves
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invariant the family C∞(E) of continuous functions on E vanishing at infinity. It
is known that any Feller semigroup generates a Markov process on the state space
with strong Markov property and càdlàg path, which is called the Feller process. An
important subclass is formedby the strongFeller processes initiated byGirsanov [17].
They are generated by transition semigroupswith the strong Feller property, i.e., each
Pt maps the family Bb(E) of bounded Borel functions on E into the family Cb(E)

of bounded continuous functions on it. In fact, Markov processes other than Feller
processes can have such property, and they are also called strong Feller processes.
For example, it is known that non-degenerate diffusion processes on Riemannian
manifolds are strong Feller processes (see [24]).

The strong Feller property is one of fundamental notions for Markov processes,
and has been studied from various sources. For example, the transition semigroups of
Markov processes with strong Feller property often possess density functions (with
respect to canonicalmeasures), and somepotential theoretic aspects of the process are
studied. One remarkable result is that the concepts of polar sets and semi-polar sets
coincide with each other for such Markov processes associated with semi-Dirichlet
forms. See [16, §4, Theorems 4.1.2 and 4.2.7] and [26, §3.5, Theorem 3.5.4] for the
precise statement. It is also important to point out that the strong Feller property is
used to determine the uniqueness of invariant measures for Markov processes (see,
e.g., [9, Sect. 11.3.2]). Hence, the strong Feller property plays a crucial role for the
ergodic theory of Markov processes.

Although the definition of the strong Feller property stated above is for semi-
groups, this is also defined for resolvents in a natural way (Definition 1). It is well-
known that the semigroup strong Feller property (SF) implies the resolvent strong
Feller property (RSF). As this fact suggests, it is often easier to confirm (RSF) than
(SF). Then, the question of under what conditions (RSF) means (SF) naturally arises.
This is not obvious. In fact, the uniform motion to the right satisfies (RSF), but not
(SF). See [19, Remark 1.1 (1)] for details. This is in contrast to the fact that the Feller
property for a resolvent kernel is equivalent to the Feller property for the associated
transition semigroup kernel (see [19, Sect. 1]). However, the uniform motion to the
right is a little extreme example of non-symmetric Markov processes. Therefore,
under an appropriate framework, (RSF) can imply (SF).

In the present paper, we study the question stated above, and provide several
sufficient conditions for it. For a given Markov process, we consider a situation
in which the semigroup is extended to an analytic semigroup on some L p-space
with p ∈ [1,+∞). Then, we utilize the theory of analytic semigroups to describe
a general conditions that strengthen (RSF) to (SF), which is the first main result of
this paper (Theorem 2). We also show that the semigroup of the uniform motion to
the right is not extended to an analytic semigroup on any L p-space with respect to
the invariant measure. Theorem 2 can be applied to Hunt processes associated with
lower bounded semi-Dirichlet forms (Theorem3).As a result,wefind that (SF) can be
obtainedmainly from the assumptions of (RSF) and a kind of ultracontractivity of the
resolvent. Even if the ultracontractivity is replaced with the ultracontractivity of the
semigroup, the same conclusion holds (Theorem 4). However, we think Theorem 4
does not follow immediately from Theorem 3. These theorems may be restrictive in
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that the semigroups of Ornstein-Uhlenbeck processes have the strong Feller property,
but does not satisfy the ultracontractivity. Because of this fact, we introduce the
notion of local ultracontractivity, and extend the Theorems (Theorem 6). Here, it is
also necessary to study (RSF) for part processes of a given Markov process.

The organization of this paper is as follows. In Sect. 2, we prepare several related
notions, for example, the Feller, and strong Feller properties of transition semigroup
and resolvent kernels, analyticity of strongly continuous semigroup on L p-spaces,
lower bounded semi-Dirichlet forms and so on. In Sect. 3, we establish a general
criterion from the strong Feller property of resolvents to that for semigroups in terms
of the analyticity of the semigroup on L p-spaces. In Sect. 4, we apply the result in the
framework of lower bounded semi-Dirichlet forms. We also provide some examples
to clarify when our results are effective.
Notation. The following symbols and conventions are used in the paper.

• For p ∈ [1,+∞] and a measure space (E,E , μ), we denote by L p(E; μ) the L p-
space on it. For f ∈ L p(E; μ), we set ‖ f ‖L p(E;μ) = {∫

E
| f (x)|p μ(dx)}1/p. For

p, q ∈ [1,+∞] and a bounded linear operator T from L p(E; μ) to Lq(E; μ),
we denote by ‖T ‖L p(E;μ)→Lq (E;μ) the operator norm. If (E,E , μ) is clear from
the context, we simply write ‖T ‖p→q in stead of ‖T ‖L p(E;μ)→Lq (E;μ).

• For a topological space E , we denote byB(E) the Borel σ -algebra on E . We set

C(E) := {u | u is a real valued continuous function on E},
C0(E) := {u ∈ C(E) | the closure of u−1(R \ {0}) in E is compact},
B(E) := {u | u is a Borel measurable [−∞,+∞]-valued function on E},

B+(E) := {u ∈ B(E) | u is [0,+∞]-valued},
Bb(E) := {u ∈ B(E) | ‖u‖∞ < ∞}.

Hereafter, ‖u‖∞ := supx∈E |u(x)| for u : E → R. When E is a locally compact
separable metric space, we denote by C∞(E) the completion of C0(E) under
‖ · ‖∞.

• We denote by i := √−1 the imaginary unit. The real and imaginary parts of z ∈ C

are denoted by Re z and Im z, respectively.
• We set inf ∅ = ∞.
• For a, b ∈ R, we write a ∨ b := max{a, b} and a ∧ b := min{a, b}.

2 Preliminaries

Let (E, d) be a locally compact separable metric space, and let E∂ = E ∪ {∂} be
the one-point compactification. Let X = ({Xt }t∈[0,+∞], {Px }x∈E∂

) be a Hunt process
on E . That is, X is a right continuous process on E with strong Markov property
and satisfies the right continuity of sample paths on [0,+∞) and the existence of
left limits in E∂ of sample paths on (0,+∞) (see [7, Definition A.1.23]). Define the
transition semigroup of X by



282 S. Kusuoka et al.

Pt f (x) := Ex [ f (Xt )], x ∈ E; t ≥ 0, f ∈ Bb(E),

where Ex denotes the expectation under Px . The resolvent of X is defined by

Rα f (x) =
∞∫

0

e−αt Pt f (x) dt, x ∈ E; f ∈ Bb(E), α > 0.

We first formulate the strong Feller property of semigroups and resolvents.

Definition 1 (a) The semigroup {Pt }t≥0 is said to have the strong Feller property
if for any f ∈ Bb(E) and t > 0, Pt f is bounded continuous on E .

(b) The resolvent {Rα}α>0 is said to have the strong Feller property if for any f ∈
Bb(E) and α > 0, Rα f is bounded continuous on E .

It is easy to see that the semigroup strong Feller property implies the resolvent strong
Feller property. Next, we introduce theCb-Feller property, which is a weaker concept
of the strong Feller property.

Definition 2 (a) The semigroup {Pt }t≥0 is said to have the Cb-Feller property if for
any f ∈ Cb(E) and t > 0, Pt f is bounded continuous on E .

(b) The resolvent {Rα}α>0 is said to have theCb-Feller property if for any f ∈ Cb(E)

and α > 0, Rα f is bounded continuous on E .

The Feller properties of semigroups and resolvents are defined as follows.

Definition 3 (a) The semigroup {Pt }t≥0 is said to have theFeller property if for any
f ∈ C∞(E) and t > 0, Pt f belongs to C∞(E), and limt→0 ‖Pt f − f ‖∞ = 0.

(b) The resolvent {Rα}α>0 is said to have the Feller property if for any f ∈ C∞(E)

and α > 0, Rα f belongs to C∞(E), and limα→∞ ‖αRα f − f ‖∞ = 0.

By the same argument as in [19, Sect. 1], we see that {Pt }t≥0 possesses the Feller
property if and only if so does {Rα}α>0. We refer the reader to [1, Proposition 3.1] or
[32, Proposition 3.1] for probabilistic characterizations of the Feller property under
the (resolvent) strong Feller property.

Hereafter, we consider the following two assumptions:

(A1): There exists a positive Radon measure m on E with full support such that

∫

E

Pt f (x)m(dx) ≤
∫

E

f (x)m(dx), t ≥ 0, f ∈ B+(E). (1)
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(A2): There exists a lower bounded regular semi-Dirichlet form on L2(E; m)

associated with X, where m is a positive Radon measure having full topological
support.

Let (E ,F ) be a lower bounded semi-Dirichlet form on L2(E; m). Here (E ,F )

is said to be a lower bounded semi-Dirichlet form on L2(E; m) if F is a dense
linear subspace of L2(E; m) and E : F × F → R is a closed bilinear form in the
following sense (E. 1), (E. 2) and (E. 3), and satisfies the semi-Dirichlet property
(E. 4):

(E. 1): There exists a non-negative constant α0 such that

Eα0(u, u) := E (u, u) + α0(u, u)L2(E;m) ≥ 0 for all u ∈ F .

(E. 2): E satisfies the (strong) sector condition: there exists a constant K ≥ 1 such
that

|E (u, v)| ≤ KEα0(u, u)1/2Eα0(v, v)1/2 for all u, v ∈ F ,

where α0 is the non-negative constant specified in (E. 1).
(E. 3): F is a Hilbert space relative to the inner product

E (s)
α (u, v) := 1

2
(Eα(u, v) + Eα(v, u)) for all α > α0,

where α0 is the non-negative constant specified in (E. 1).
(E. 4): for all u ∈ F and a ≥ 0, u ∧ a ∈ F and E (u ∧ a, u − u ∧ a) ≥ 0.

Under (E. 2), we can deduce the following (weak) sector condition: For α > α0,

|Eα(u, v)| ≤ KEα(u, u)1/2Eα(v, v)1/2 for all u, v ∈ F , (2)

where K (≥ 1) is the constant appeared in (E. 2). Remark that (2) is a stronger form
of the weak sector condition stated in [26, § 1.1, (1.1.3)].

Under (E. 1), (E. 2) and (E. 3), we see from [22, Chapter I, Theorems 1.12 and
2.8] that (E ,F ) admits strongly continuous semigroups {Tt }t≥0 and {T ∗

t }t≥0 on
L2(E; m) such that ‖Tt‖L2(E;m)→L2(E;m) ≤ eα0t , ‖T ∗

t ‖L2(E;m)→L2(E;m) ≤ eα0t ,

(Tt f, g)L2(E;m) = ( f, T ∗
t g)L2(E;m).

Hereafter, (·, ·)L2(E;m) denotes the L2 inner product with respect to m. That is,
{T ∗

t }t≥0 is the dual semigroup of {Tt }t≥0. For α > α0 and f ∈ L2(E; m), we define
Gα f = ∫∞

0 e−αt Tt f dt andG∗
α f = ∫∞

0 e−αt T ∗
t f dt , the integrals being defined as the

Bochner integral in L2(E; m). It then follows from [22, Chapter I, Proposition 1.10
and Theorem 2.13] that

Eα(Gα f, u) = ( f, u)L2(E;m) = Eα(u,G∗
αg),
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for all f ∈ L2(E; m), u ∈ F , and α > α0. The resolvents {Gα}α>α0 and {G∗
α}α>α0

are strongly continuous on L2(E; m) in the sense that limα→∞ αGα f = limα→∞ α

G∗
α f = f in L2(E; m).
The condition (E. 4) is equivalent to the following conditions (E. 4c), or (E. 4d):

(E. 4c): {Tt }t≥0 is sub-Markov: If f ∈ L2(E; m) satisfies 0 ≤ f ≤ 1 m-a.e., then
0 ≤ Tt f ≤ 1 m-a.e.
(E. 4d): {T ∗

t }t≥0 is positivity preserving and contractive in L1(E; m): If f ∈
L1(E; m) satisfies f ≥ 0 m-a.e., then T ∗

t f ≥ 0 m-a.e. and ‖T ∗
t f ‖L1(E;m) ≤

‖ f ‖L1(E;m).

Under (E. 1), (E. 2), (E. 3) and (E. 4), {Tt }t≥0 and {T ∗
t }t≥0 are positivity preserving

in the sense that for f ∈ L2(E; m), f ≥ 0m-a.e. implies Tt f ≥ 0m-a.e. and T ∗
t f ≥

0 m-a.e. (see [23, Remark 1.4 (i), (iii) and Theorem 1.5)]). Under (E. 4), {Tt }t≥0

(resp. {Gα}α>0) can be extended to a bounded linear operator on L∞(E; m) for
t > 0 (resp. α > 0) (see [26, p. 8]. As shown in [26, p. 20], for t > 0, α > 0, and f ∈
L0+(E; m), we define Tt f andGα f (resp. T ∗

t f andG∗
α f ) by Tt f = limn→∞ Tt ( f ∧

nh) and Gα f = limn→∞ Gα( f ∧ nh) (resp. T ∗
t f = limn→∞ T ∗

t ( f ∧ nh) and
G∗

α f = limn→∞ G∗
α( f ∧ nh)). Here, L0+(E; m) denotes the family of all non-

negative m-measurable functions and h ∈ L∞(E; m) ∩ L1(E; m) is a strictly pos-
itive function. Then, we have the following generalized duality relation: for non-
negative measurable functions f, g,

∫

E

Tt f g dm =
∫

E

f T ∗
t g dm,

∫

E

Gα f g dm =
∫

E

f G∗
αg dm

for t > 0 and α > 0.
The lower bounded semi-Dirichlet form (E ,F ) on L2(E; m) is said to be regular

if F ∩ C0(E) is E 1/2
α0+1-dense in F and F ∩ C0(E) is uniformly dense in C0(E).

Under the regularity of (E ,F ), there exists a Hunt processX associatedwith (E ,F )

in the sense that for u ∈ L∞(E; m) ∩ B(E), Gαu = Rαu m-a.e. for each α > 0
(see [26, §3.3, Theorem 3.3.4]). Moreover, we can prove that the semigroup Ptu
with u ∈ L2(E; m) ∩ B(E) is a quasi-continuousm-version of Ttu for t > 0 by the
same way of the proof of [22, Chapter IV, Proposition 2.8] with the help of [26, §2.2,
Theorem 2.2.5]. Then, we obtain the next proposition.

Proposition 1 (a) Suppose that (A1) is satisfied. For any p ∈ [1,+∞), the semi-
group {Pt }t≥0 of X is extended to a strongly continuous contraction semigroup
{Tt }t≥0 on L p(E; m).

(b) Suppose that (A2) is satisfied and let −α0 be the lower bound of (E ,F ). Then,
for any p ∈ [2,+∞), the semigroup {e−α0(2/p)t Pt }t≥0 from Pt is extended to a
strongly continuous contraction semigroup {e−α0(2/p)t Tt }t≥0 on L p(E; m). In
particular, {Tt }t≥0 is strongly continuous on L p(E; m).

Proof We first prove (a). Suppose that (A1) is satisfied. Jensen’s inequality and (1)
imply that for f ∈ C0(E) and t ∈ [0,+∞)
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‖Pt f ‖p
L p(E;m) =

∫

E

|Ex [ f (Xt )]|p m(dx) ≤
∫

E

Ex [| f (Xt )|p]m(dx)

≤
∫

E

Pt (| f |p)(x)m(dx) ≤
∫

E

| f (x)|p m(dx) ≤ ‖ f ‖p
L p(E;m). (3)

Note that C0(E) is dense in L p(E; m). Then, (3) implies that {Pt }t≥0 is extended to
a contraction semigroup on L p(E; m), which is denoted by {Tt }t≥0.

Let f ∈ L p(E; m) given. Then, for any ε > 0, there exists g ∈ C0(E) such that
‖ f − g‖L p(E;m) < ε/2. By using (3), we obtain that for any t > 0,

‖Tt f − f ‖L p(E;m) ≤ ‖Tt f − Tt g‖L p(E;m) + ‖Tt g − g‖L p(E;m) + ‖g − f ‖L p(E;m)

≤ ε + ‖Tt g − g‖L p(E;m). (4)

It is easy to see that for any f ∈ L p(E; m) ∩ Bb(E), Tt f (x) = Pt f (x) for m-a.e.
x ∈ E . Then, by using the sample path (right-)continuity of X, we have

lim
t↓0 ‖Tt g − g‖L p(E;m) = lim

t↓0 ‖Pt g − g‖L p(E;m) = 0.

Therefore, (4) implies limt↓0 ‖Tt f − f ‖L p(E;m) ≤ ε. Since ε > 0 is arbitrarily cho-
sen, we complete the proof.

Next we prove (b). Suppose (A2) is satisfied. Since {T ∗
t }t≥0 is L1(E; m)-

contractive and {e−α0t T ∗
t }t≥0 is L2(E; m)-contractive, we get {e−α0(2(q−1)/q)t T ∗

t }t≥0

is Lq(E; m)-contractive for q ∈ [1, 2] in view of the Riesz-Thorin interpolation the-
orem (see [10, 1.1.5]). Take a relatively compact open set G. For f ∈ C0(E) and
p ∈ [2,+∞), we see Pt f ∈ L p(G; m):

‖Pt f ‖p
L p(G;m) ≤

∫

G

Pt | f |p dm =
∫

E

T ∗
t 1G(x)| f (x)|p m(dx)

≤ ‖ f ‖p
∞

∫

E

T ∗
t 1G(x)m(dx) = ‖ f ‖p

∞

∫

E

Tt1E (x)1G(x)m(dx) (5)

≤ ‖ f ‖p
∞m(G) < ∞.

Let q = p/(p − 1) ∈ (1, 2). Since {e−α0(2(q−1)/q)t T ∗
t }t≥0 is Lq(E; m)-contractive

and {T ∗
t }t≥0 is positivity preserving, we obtain that for any t > 0,

∫

G

|Pt f (x)|p m(dx) = sup
g∈Lq (G;m),‖g‖Lq (G;m)=1

∣
∣
∣
∣
∣
∣

∫

G

Pt f (x)g(x)m(dx)

∣
∣
∣
∣
∣
∣

= sup
g∈Lq (G;m),‖g‖Lq (G;m)=1

∣
∣
∣
∣
∣
∣

∫

E

f (x)T ∗
t (1Gg)(x)m(dx)

∣
∣
∣
∣
∣
∣
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≤ sup
g∈Lq (E;m),‖g‖Lq (E;m)=1

∫

E

∣
∣ f (x)T ∗

t g(x)
∣
∣ m(dx)

≤ sup
g∈Lq (E;m),‖g‖Lq (E;m)=1

‖ f ‖L p(E;m)T
∗
t ‖g‖Lq (E;m)

≤ eα0(2(q−1)/q)t sup
g∈Lq (E;m),‖g‖Lq (E;m)=1

‖ f ‖L p(E;m)‖g‖Lq (E;m)

= eα0(2/p)t‖ f ‖L p(E;m).

Since G is arbitrary, {e−α0(2/p)t Pt }t≥0 is extended to a contraction semigroup on
L p(E; m), which is denoted by {e−α0(2/p)t Tt }t≥0. Let f ∈ L p(E; m) given. Then,
for any ε > 0, there exists g ∈ C0(E) such that ‖ f − g‖L p(E;m) < ε/2. By using
(5), we obtain that for any t > 0,

‖Tt f − f ‖L p(E;m)

≤ ‖Tt f − Tt g‖L p(E;m) + ‖Tt g − g‖L p(E;m) + ‖g − f ‖L p(E;m)

≤ ε(1 + eα0(2/p)t ) + ‖Tt g − g‖L p(E;m).

The rest of the proof is similar to that of (a).

Remark 1 In the proof of Proposition 1, the sample path right-continuity of X is
used. However, the right-continuity of {Pt }t≥0 on C0(E) and the fact that C0(E) is a
dense subset of L p(E;m) play an essential role.

In the sequel, we fix p ∈ (1,+∞) under (A1) with α0 := 0 (resp. p ∈ [2,+∞)

under (A2)), and let {Tt }t≥0 be the strongly continuous contraction semigroup as in
Proposition 1. For f ∈ L p(E; m) and α ∈ (2α0/p,+∞), we put

Gα f =
∞∫

0

e−αt Tt f dt,

the integral being defined as the Bochner integral in L p(E; m). Then, {Gα}α>2α0/p

becomes a strongly continuous contraction resolvent on L p(E; m) in the following
sense that limα→∞ αGα f = f for f ∈ L p(E; m); (α − 2α0/p)‖Gα f ‖L p(E;m) ≤
‖ f ‖L p(E;m) for f ∈ L p(E; m) and α > 2α0/p; Gα − Gβ + (α − β)GαGβ = 0
for all α, β > 2α0/p. Moreover, we have Rα f = Gα f m-a.e. on E for any f ∈
L p(E; m) ∩ Bb(E) and α ∈ (2α0/p,+∞). The generator (A,Dom(A)) of {Tt }t≥0

is defined by

Dom(A) :=
{

f ∈ L p(E; m)

∣
∣
∣
∣ limt→0

(Tt f − f )/t exists in L p(E; m)

}

,

A f := lim
t→0

Tt f − f

t
, f ∈ Dom(A).
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It is known that Dom(A) is equal toGα(L p(E; m)) for some/anyα ∈ (2α0/p,+∞).
See [22, Chapter I, Proposition 1.5] for details.

Next, we define the transition kernel of X. For t > 0, x ∈ E , and B ∈ B(E), we
set

Pt (x, B) := Ex [1B(Xt )] = Px (Xt ∈ B).

The resolvent kernel of X is defined as

Rα(x, B) =
∞∫

0

e−αt Pt (x, B) dt, α > 0, x ∈ E , and B ∈ B(E).

The transition kernel (resp. the resolvent kernel) is often said to be absolutely con-
tinuous with respect to m if Pt (x, ·) (resp. Rα(x, ·)) is absolutely continuous with
respect to m for any x ∈ E and t > 0 (resp. α > 0).

Lemma 1 (a) If {Pt }t≥0 has the strong Feller property, then Pt (x, ·) is absolutely
continuous with respect to m for all x ∈ E and t > 0.

(b) If {Rα}α>0 has the strong Feller property, then Rα(x, ·) is absolutely continuous
with respect to m for all x ∈ E and α > 0.

Proof Weprove (a). Fix t > 0 and B ∈ B(E)withm(B) = 0.Then,1B ∈ L2(E; m)

and for any g ∈ L2(E; m),

∫

E

g(x)Tt1B(x)m(dx) =
∫

B

T ∗
t g(x)m(dx) = 0.

This implies that Tt1B(x) = 0 for m-a.e. x ∈ E , and hence Pt1B(x) = 0 for m-a.e.
x ∈ E . On the other hand, by the strong Feller property of {Pt }t≥0, Pt1B is continuous
on E . Thus, Pt1B(x) = 0 for any x ∈ E , and it yields the absolute continuity. The
proof of (b) is almost same. So, we omit it.

In what follows, if no confusion will arise, the complexifications of subspaces
of any real Banach space and linear operators on them are denoted by the same
symbols. So any functions in L p(E; m) are regarded as complex valued if there is
no special remark. With this notation, we give the definitions of analytic semigroups
and sectorial operators. For θ ∈ (0, π), we define

Sθ := {λ ∈ C \ {0} | | arg λ| < θ}.

Definition 4 ([28, Definition 2.5.1]) The semigroup {Tt }t≥0 on L p(E; m) is said to
be analytic if there exists δ ∈ (0, π/2] such that {Tt }t≥0 is extended to a family of
operators {Tz}z∈Sδ∪{0} on L p(E; m) with the following properties:

(a) Tz1+z2 = Tz1Tz2 for z1, z2 ∈ Sδ ,
(b) z �→ Tz is analytic on Sδ ,
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(c) limz∈Sε, z→0 Tz f = f for any f ∈ L p(E; m) and ε ∈ (0, δ).

The resolvent set and the resolvent operator of the generator (A,Dom(A)) are
denoted byρ(A) and {R(z ; A)}z∈ρ(A), respectively. From the definitions, it is obvious
that ρ(A) includes the positive half line (0,+∞).

Definition 5 ([28, (5.1), (5.2)], [21, Definition 2.0.1]) The generator (A,Dom(A))

on L p(E; m) is said to be sectorial if there exist constants θ ∈ (π/2, π) and M ∈
(0,+∞) such that ρ(A) ⊃ Sθ and

‖zR(z ; A) f ‖L p(E;m) ≤ M‖ f ‖L p(E;m), z ∈ Sθ , f ∈ L p(E; m). (6)

We often say that (A,Dom(A)) is a sectorial operator on L p(E; m) with constants
θ ∈ (π/2, π) and M ∈ (0,+∞) if it satisfies (6).

The next proposition is a special case of [28, Theorems 1.7.7 and 2.5.2]

Proposition 2 Let {Tt }t≥0 be the strongly continuous semigroup on L p(E; m) con-
structed in Proposition 1. Then, {Tt }t≥0 is analytic if and only if its generator A is
sectorial. In this case, {Tt }t≥0 is expressed by the Dunford integral as

Tt = 1

2π i

∫

�θ,ε

ezt R(z ; A) dz, t ∈ (0,+∞),

where θ is the constant as in Definition 5, and

�θ,ε := {λ ∈ C \ {0} | |λ| ≥ ε, | arg λ| = θ − ε}
∪ {λ ∈ C \ {0} | |λ| = ε, | arg λ| ≤ θ − ε}, ε ∈ (0, θ − π/2).

Theorem 1 Let {Tt }t≥0 be the strongly continuous semigroup constructed in Propo-
sition 1. Then we have the following:

(a) Suppose that (A1) holds and {Tt }t≥0 is analytic on L2(E; m) with the sector Sδ

for some δ ∈ (0, π/2]. Then {Tt }t≥0 is analytic on L p(E; m) for p ∈ (1,+∞)

with the sector Sδ′ , where δ′ := δ (1 − |(2/p) − 1|).
(b) Suppose that (A2) holds. Then {Tt }t≥0 is analytic on L p(E; m) for p ∈ [2,+∞)

with the sector Sδ′ , where δ′ := (2/p) arctan K−1 and K ≥ 1 is the constant
specified in (E. 2).

Proof The proof can be done similarly as in the proof of [31, Chapter III, Theorem 1]
by using the convexity theorem in [31, p. 69]. Combining the same proof of [22,
Chapter I, Corollary 2.21] with (2), (A2) implies that {e−αt Tt }t≥0 with α > α0 is
analytic on L2(E; m) with sector Sarctan K−1 .

Remark 2 (i) Let {Tt }t≥0 be a strongly continuous symmetric semigroup on
L2(E; m). Then {Tt }t≥0 is analytic on L2(E; m) with the sector Sπ/2 as proved
in [31, Chapter III, Theorem 1].
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(ii) Let {Tt }t≥0 be a strongly continuous contraction semigroup on L2(E; m) asso-
ciated with a coercive closed form (E ,F ) on L2(E; m) in the sense of [22,
Chapter I, Definition 2.4]. Then {e−t Tt }t≥0 (equivalently, {Tt }t≥0) is analytic on
L2(E; m) with the sector Sδ for δ := arctan K−1, where K ≥ 1 is the constant
appeared in the weak sector condition for (E ,F ) (see [22, Chapter I, (2.3) and
Corollary 2.21], where K > 0 is only noted, but indeed, K ≥ 1 holds automat-
ically). If further (E ,F ) satisfies the strong sector condition with K ≥ 1 (see
[22, Chapter I, (2.4)] for strong sector condition), then {Tt }t≥0 is analytic on
L2(E; m) with the sector Sδ having the same expression as above. This asser-
tion is not so sharp when {Tt }t≥0 is m-symmetric, in this case K = 1 so that
δ = π/4.

(iii) Let {Tt }t≥0 be a strongly continuous contraction semigroup on L2(E; m) asso-
ciated with a (non-negative definite) non-symmetric Dirichlet form (E ,F ) on
L2(E; m) (see [22, Chapter I, Definition 4.5] for non-symmetricDirichlet form).
Then, for p ∈ (1,+∞), one can prove that {e−t Tt }t≥0 (equivalently, {Tt }t≥0) is
analytic on L p(E; m) with the sector Sδ′ in the same way of the proof of The-
orem 1, where δ′ := (arctan K−1) (1 − |(2/p) − 1|) for some K ≥ 1 derived
from the weak sector condition for (E ,F ). If further (E ,F ) satisfies the strong
sector condition with K ≥ 1, then {Tt }t≥0 is analytic on L p(E; m) with the
sector Sδ′ having the same expression as above.

3 Equivalence of the Strong Feller Properties

In this section,we use the same notation as in Sect. 2.Weonly consider aHunt process
X and assume that the semigroup {Pt }t≥0 can be extended to a strongly continuous
semigroup {Tt }t≥0 on L p(E; m) for some p ∈ [1,+∞). We fix such a p ∈ [1,+∞).

Proposition 3 Fix p ∈ [1,+∞) as above and assume the following conditions are
satisfied:

(i) (A,Dom(A)) is a sectorial operator on L p(E; m) with constants θ ∈ (π/2, π)

and M ∈ (0,+∞).
(ii) There exists ε ∈ (0, θ − π/2) such that for any z ∈ �θ,ε and f ∈ Cb(E) ∩

L p(E; m), R(z ; A) f possesses a bounded continuous m-version on E.
(iii) {Rα}α>0 has the strong Feller property.

Then, for any f ∈ L p(E; m) ∩ Bb(E), there exist a C-valued Borel measurable
function R f on �θ,ε × E and an m-null set N ⊂ E with the following properties:

(a) R f (z, x) = R(z ; A) f (x) for |dz| ⊗ m-almost every (z, x) ∈ �θ,ε × E,
(b) R f (·, x) has a {(p − 1)/p}-Hölder continuous version for any x ∈ E,
(c) for any compact subset K ⊂ E,

lim
j→∞ sup

x,y∈K\N ; d(x,y)<1/j

∣
∣R f (·, x) − R f (·, y)∣∣ = 0, |dz|-a.e. on �θ,ε.
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Proof Fix f ∈ L p(E; m) ∩ Bb(E). In view of the definitions of {Rα}α>0 and
{R(z ; A)}z∈ρ(A),

R(1 ; A) f (x) = R1 f (x), m-a.e. x ∈ E . (7)

The resolvent equation implies that

R(z ; A) = R(1 ; A) + (1 − z)R(z ; A)R(1 ; A), z ∈ ρ(A), (8)

in the sense of bounded linear operators on L p(E; m). Hence, by (7) and (8), we
have for any z ∈ ρ(A),

R(z ; A) f (x) = R1 f (x) + (1 − z)R(z ; A)R1 f (x), m-a.e. x ∈ E . (9)

Then, the assumption and (9) imply that for any z ∈ �θ,ε, there exist Vz f ∈ Cb(E)

and an m-null set N1(z) (depending on z) such that

Vz f (x) = R(z ; A) f (x), x ∈ E \ N1(z). (10)

By [12, Theorem 1.3.2], the mappings (z, x) �→ R(z ; A) f (x) and (z, x) �→
Vz f (x) possess Borel measurable versions on �θ,ε × E . Then, we see from (10)
that

∫∫

�θ,ε×E

|Vz f (x) − R(z ; A) f (x)|p |dz| ⊗ m(dx) = 0. (11)

Hence, by Fubini’s theorem, there exists an m-null set N1 ⊂ E such that for any
x ∈ E \ N1

Vz f (x) = R(z ; A) f (x), |dz|-a.e. z ∈ �θ,ε. (12)

On the other hand, we see from [28, (5.21)] that (d/dz)R(z ; A) = −R(z ; A)2,
z ∈ ρ(A), in the sense of bounded linear operators on L p(E; m). Therefore, we
obtain that for any z ∈ Sθ ,

∥
∥
∥
∥
d

dz
R(z ; A) f

∥
∥
∥
∥
L p(E;m)

≤ ‖R(z ; A)‖2L p→L p‖ f ‖L p(E;m) ≤ M2|z|−2‖ f ‖L p(E;m).

Hence, we obtain that
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∫

E

⎛

⎜
⎝

∫

�θ,ε

∣
∣
∣
∣
d

dz
R(z ; A) f (x)

∣
∣
∣
∣

p

|dz|
⎞

⎟
⎠m(dx) =

∫

�θ,ε

∥
∥
∥
∥
d

dz
R(z ; A) f

∥
∥
∥
∥

p

L p(E;m)

|dz|

≤ M2p‖ f ‖p
L p(E;m)

∫

�θ,ε

|z|−2p|dz| < ∞.

This estimate implies

R( · ; A) f (x) ∈ W 1,p(�θ,ε;C), m-a.e. x ∈ E,

where we denote by W 1,p(�θ,ε;C) the C-valued p-th order Sobolev space on �θ,ε.
Then, by using the Sobolev embedding theorem and the Fubini’s theorem, we obtain
an m-null set N2 ⊂ E with the following property: for any x ∈ E \ N2, there exists
W• f (x) ∈ C (p−1)/p(�θ,ε;C) such that

R(z ; A) f (x) = Wz f (x), |dz|-almost every z ∈ �θ,ε. (13)

Here, we denote by C (p−1)/p(�θ,ε;C) the space of C-valued {(p − 1)/p}-Hölder
continuous functions on �θ,ε.

Finally, we let N := N1 ∪ N2, and define a C-valued function R f on �θ,ε × E
by

R f (z, x) :=
{
Vz f (x), (z, x) ∈ �θ,ε × (E \ N ),

0, (z, x) ∈ �θ,ε × N .

Then, properties (a) and (b) follow from (11)–(13). The property (c) is a consequence
of the continuity of Vz f (x) in x ∈ E .

We do not know whether the following local uniform estimates can be obtained
only from the conditions in Proposition 3: for any t ∈ (0,+∞), f ∈ L p(E; m) ∩
Bb(E), and compact subsets K ⊂ E and L ⊂ C,

∥
∥
∥
∥
∥
∥
∥

∫

�θ,ε

et Rez
∣
∣R f (z, ·)∣∣ |dz|

∥
∥
∥
∥
∥
∥
∥
L∞(K ;m)

< ∞, (14)

∥
∥R f (·, ·)∥∥

L∞((L∩�θ,ε)×K ; |dz|⊗m)
< ∞. (15)

To confirm (15), we provide the following criterion as a proposition.

Proposition 4 Fix p ∈ [1,+∞) as above, and assume that (A,Dom(A)) is a sec-
torial operator on L p(E; m) with constants θ ∈ (π/2, π) and M ∈ (0,+∞). Let
ε ∈ (0, θ − π/2), and assume in addition that L p(E; m) ∩ L∞(E;m) is invariant
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under R(z; A) for any z ∈ �θ,ε. Then, for any f ∈ L p(E;m) ∩ L∞(E;m), the map
�θ,ε � z �→ ‖R(z; A) f ‖L∞(E;m) is continuous.

Proof For f ∈L p(E; m) ∩ L∞(E; m), we set ‖ f ‖p,∞=‖ f ‖L p(E;m) ∨ ‖ f ‖L∞(E;m).
Then, L p(E; m) ∩ L∞(E; m) is a Banach space under ‖ · ‖p,∞. We fix ε ∈ (0, θ −
π/2) and z ∈ �θ,ε. By noting that R(z; A) is a bounded linear operator on L p(E; m)

and makes invariant L p(E; m) ∩ L∞(E; m), we immediately find that R(z; A) is a
closed operator on L p(E; m) ∩ L∞(E; m). Hence, the closed graph theorem implies
that there exists Cz > 0 such that for any f ∈ L p(E; m) ∩ L∞(E; m),

‖R(z; A) f ‖p,∞ ≤ Cz‖ f ‖p,∞.

In particular, we have that for f ∈ L p(E; m) ∩ L∞(E;m),

‖R(z; A) f ‖p,∞ ≤ Cz(‖ f ‖L p(E;m) + ‖ f ‖L∞(E;m)). (16)

We fix f ∈ L p(E; m) ∩ L∞(E;m) and z0 ∈ �θ,ε. From the resolvent equation and
(16), we obtain that for any z ∈ �θ,ε,

‖R(z; A) f − R(z0; A) f ‖L∞(E;m) ≤ |z − z0|‖R(z0; A)R(z; A) f ‖L∞(E;m)

≤ Cz0 |z − z0|(‖R(z; A) f ‖L p(E;m) + ‖R(z; A) f ‖L∞(E;m)) (17)

≤ Cz0
M |z − z0|

|z| ‖ f ‖L p(E;m) + Cz0 |z − z0|‖R(z; A) f ‖L∞(E;m).

In the last line, we use the fact that A is a sectorial operator. Therefore, for any
z ∈ �θ,ε with Cz0 |z − z0| < 1/2,

1

2
‖R(z; A) f ‖L∞(E;m) ≤ ‖R(z0; A) f ‖L∞(E;m) + Cz0

M |z − z0|
|z| ‖ f ‖L p(E;m). (18)

By using (17) and (18), we have for any z ∈ �θ,ε with Cz0 |z − z0| < 1/2,

‖R(z; A) f − R(z0; A) f ‖L∞(E;m)

≤ Cz0
M |z − z0|

|z| ‖ f ‖L p(E;m) + 2Cz0 |z − z0||R(z0; A) f ‖L∞(E;m)

+ 2C2
z0

M |z − z0|2
|z| ‖ f ‖L p(E;m).

This shows that the map z �→ ‖R(z; A)‖L∞(E;m) is continuous at z0.

Theorem 2 Fix p ∈ [1,+∞) as above, and assume the conditions in Proposition 3,
(14) and (15). Assume in addition that the transition kernel ofX is absolutely contin-
uous with respect to m. Then, for any t > 0 and f ∈ L p(E;m) ∩ Bb(E), we have
Pt f ∈ Cb(E). In particular, {Pt }t≥0 has the strong Feller property if Pt1E ∈ Cb(E)

for any t > 0.
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Proof For the moment, we fix f ∈ Bb(E) ∩ L p(E; m) and t > 0. For x ∈ E , we
define

T̂t f (x) := 1

2π i

∫

�θ,ε

ezt R f (z, x) dz,

where R f is the function obtained in Proposition 3. Note that the line integral is
well-defined by Proposition 3 (b). Let K be a compact subset of E .

Then, by (14), there exists an m-null subset N0 of E such that

sup
x,y∈K\N0

∫

�θ,ε

et Rez
∣
∣R f (z, x) − R f (z, y)

∣
∣ |dz| < ∞.

Let N be anm-null set constructed in Proposition 3. We may assume N0 ⊂ N . Then,
for any δ > 0, there exists a compact subset L ⊂ C such that

1

2π
sup

x,y∈K\N

∫

�θ,ε

et Rez
∣
∣R f (z, x) − R f (z, y)

∣
∣ |dz|

≤ 1

2π
sup

x,y∈K\N

∫

�θ,ε∩L

et Rez
∣
∣R f (z, x) − R f (z, y)

∣
∣ |dz| + δ.

For x, y ∈ K \ N and j ∈ N,

∣
∣T̂t f (x) − T̂t f (y)

∣
∣ ≤ 1

2π

∫

�θ,ε

etRe z
∣
∣R f (z, x) − R f (z, y)

∣
∣ |dz|

≤ 1

2π
sup

x,y∈K\N

∫

�θ,ε∩L

etRe z
∣
∣R f (z, x) − R f (z, y)

∣
∣ |dz| + δ (19)

≤ δ|L|
2π

× etε + |L ∩ �θ,ε,δ, j |
π

× etε × ∥
∥R f (·, ·)∥∥

L∞((L∩�θ,ε)×K ; |dz|⊗m)
+ δ,

where �θ,ε,δ, j = {z ∈ �θ,ε | supx,y∈K\N , d(x,y)<1/j |R f (z, x) − R f (z, y)| > δ}. By
letting j → ∞ in (19), the Markov inequality, (15), and Lebesgue convergence
theorem together lead us to

lim
j→∞ sup

x,y∈K\N , d(x,y)<1/j

∣
∣T̂t f (x) − T̂t f (y)

∣
∣ ≤ δ|L|

2π
× etε + δ.

Since δ is arbitrarily chosen, we see that T̂t f is uniformly continuous on K \ N .
Because K \ N is a dense subset of K , we find that T̂t f is extended to a continuous
function on K , which is denoted by the same symbol. Since K is arbitrary, T̂t f is
continuous on E . From Proposition 2 and Proposition 3(a),
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Pt f (x) = Tt f (x) = T̂t f (x) m-a.e. x ∈ E . (20)

From this, T̂t f is bounded on E . In particular, if f ∈ L p(E;m) ∩ Cb(E), the absolute
continuity and the sample path (right-)continuity imply

Pt f = lim
s→0

Ps+t f = lim
s→0

Ps(Pt f ) = lim
s→0

Ps(T̂t f ) = T̂t f.

This implies that Pt maps any function in L p(E;m) ∩ Cb(E) to Cb(E). Even if
f ∈ L p(E; m) ∩ Bb(E), we already know T̂t f ∈ L p(E;m) ∩ Cb(E). Therefore,
by using the Cb-Feller property, (20), and the absolute continuity, we obtain that for
any t > 0,

Pt f = Pt/2(Pt/2 f ) = Pt/2(T̂t/2 f ) ∈ Cb(E).

This implies that Pt maps any function in L p(E;m) ∩ Bb(E) to Cb(E).
“In particular” part is proved as follows. We take a non-decreasing sequence

{ fn}∞n=1 ⊂ L p(E; m) ∩ Bb(E) such that limn→∞ fn(x) = f (x) for any x ∈ E . By
the non-negativity of f and the monotone convergence theorem, it holds that

Pt f (x) = Ex

[
lim
n→∞ fn(Xt )

]
= lim

n→∞Ex [ fn(Xt )] = lim
n→∞ Pt fn(x), x ∈ E .

Hence, we have the lower semicontinuity of Pt f from the continuity of Pt fn , n ∈ N.
Since the function ‖ f ‖∞ − f is also a nonnegative bounded Borel function, we have
that Pt (‖ f ‖∞ − f ) is lower semicontinuous on E . From this fact and the assumption
that Pt1E ∈ Cb(E) for any t > 0, we find that Pt f is upper semicontinuous. Thus
Pt maps any non-negative function in Bb(E) to Cb(E). For general f ∈ Bb(E),
decomposing f into f+ := f 1{ f >0} and f− := − f 1{ f ≤0} and applying the result
above to f+ and f−, we obtain the semigroup strong Feller property.

In the case that {Tt }t≥0 is not an analytic semigroup on L p(E; m), even if {Rα}α>0

has the strong Feller property, {Pt }t≥0 may not be strong Feller. To see this, let {Pt }t≥0

be the semigroup of the space-time Brownian motion:

Pt f (x, τ ) := E(1)
x ⊗ E(2)

τ [ f (Bt , t)] f ∈ B(R2), (t, x) ∈ R
2, t > 0.

Here, ({Bt }t≥0, {P(1)
x }x∈R) is a one-dimensional Brownian motion, and P (2)

τ denotes
the law of uniformmotion to the right starting from τ ∈ Rwith unit speed. It is known
that the semigroup {Pt }t≥0 does not have the strong Feller property, but the associated
resolvent has the strong Feller property [19, Remark 1.1]. Now we let p ∈ [1,+∞)

and m be the Lebesgue measure on R
2, and see the fact that the semigroup {Tt }t≥0

on L p(R2;m) which is generated by the operator

A = 1

2

∂2

∂x21
+ ∂

∂x2
, x = (x1, x2),
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is not an analytic semigroup. It is easy to see that m is the invariant measure of
{Tt }t≥0, and {Tt }t≥0 is the transition semigroup generated by {(Bt , t)}t≥0. Let a ∈ R

and

fn(x1, x2) :=
( p

πn

)1/p
exp

(

i ax2 − x21 + x22
n

)

, (x1, x2) ∈ R
2

for n ∈ N. Then,

∫

R2

| fn|p dm = p

πn

⎛

⎝
∫

R

exp

(

− py2

n

)

dy

⎞

⎠

2

= 1

and
∫

R2

|A fn − i a fn|p dm

= p

πn

∫

R2

∣
∣
∣
∣

(
1

n
+ 2x21

n2
+ 2x2

n

)

exp

(

i ax2 − x21 + x22
n

)∣∣
∣
∣

p

m(dx)

= p

πnp/2

∫

R2

(
1√
n

+ 2ξ 2
1√
n

+ 2ξ2

)p

exp
(−p(ξ 2

1 + ξ 2
2 )
)
m(dξ)

→ 0, n → ∞.

These imply that i a /∈ ρ(A) for all a ∈ R. Therefore, A is not a sectorial operator,
and equivalently, {Tt }t≥0 is not analytic on L p(R2;m).

4 Application to Markov Processes Associated with Lower
Bounded Semi-Dirichlet Forms

Throughout this section, we assume that (E, d) is a locally compact separable metric
space with its one point compactification E∂ andm is a positive Radon measure on E
with full support, and (A2) is satisfied. By Theorem 1 (b), for any p ∈ [2,+∞), the
semigroup {Tt }t≥0 is analytic on L p(E; m) with a sector Sδ′ for some δ′ ∈ (0, π/2].
Therefore, the generator (A,Dom(A)) on L p(E; m) is also sectorial with some con-
stants θp ∈ (π/2, π) and Mp ∈ (0,+∞) depending on p. See [10, Theorem 1.4.2]
for a quantitative bound of θp.

As noted before, the semigroup Ptu with u ∈ L2(E; m) ∩ Bb(E) is a quasi-
continuousm-version of Ttu for t > 0. On the basis of this fact, we follow [26, §3.5,
Theorem 3.5.4] to obtain the next proposition.
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Proposition 5 If the resolvent kernel of X is absolutely continuous with respect to
m, so is the transition kernel,

Pt (x, dy) = Pt (x, y)m(dy), t > 0, x ∈ E .

Now, we apply Theorem 2 to X under (A2) for p ∈ [2,+∞). In the sequel, we
write Rα(x, y) for the resolvent kernel Rα(x, ·) of X with respect to m (if it exists).

Theorem 3 Suppose that (A2) is satisfied. Assume that {Rα}α>0 has the strong
Feller property, and there exist C > 0, α > α0, and p > 2 such that

‖Gαg‖L∞(E;m) ≤ C(‖g‖L p(E;m) + ‖g‖L2(E;m)), g ∈ L p(E; m) ∩ L2(E; m).

(21)
In addition, we assume either of the following conditions is satisfied:

(i) m(E) is finite,
(ii) for any t > 0, Pt1E is continuous on E.

Then, the semigroup of X has the strong Feller property.

Proof In view of Theorem 2 with p = 2, Lemma 1, and Proposition 5, it suffices to
confirm the conditions in Proposition 3 with p = 2, (14) and (15).

We take positive constants C > 0, α > α0, and p > 2 so that (21) holds. On
both L p(E; m) and L2(E; m), we see that (A,Dom(A)) is a sectorial operator
with constants θ = θ2 ∧ θp ∈ (π/2, π) and M = M2 ∨ Mp. We fix z ∈ Sθ and f ∈
L2(E; m) ∩ Cb(E). Then, we have f ∈ L p(E; m) ∩ Cb(E). From the resolvent
equation and (21),

‖R(z ; A) f ‖L∞(E;m) = ‖R(α ; A) f + (α − z)R(α ; A)R(z ; A) f ‖L∞(E;m)

= ‖Gα f + (α − z)GαR(z ; A) f ‖L∞(E;m)

≤ ‖Gα f ‖L∞(E;m) + ‖(α − z)GαR(z ; A) f ‖L∞(E;m)

≤ C(‖ f ‖L p(E;m) + ‖ f ‖L2(E;m))

+ C |α − z|(‖R(z ; A) f ‖L p(E;m) + ‖R(z ; A) f ‖L2(E;m))

≤ C(‖ f ‖L p(E;m) + ‖ f ‖L2(E;m)) (22)

+ CM
|α − z|

|z| (‖ f ‖L p(E;m) + ‖ f ‖L2(E;m)) < ∞.

By using the resolvent equation again, we have

R(z ; A) f = R(α ; A) f + (α − z)R(α ; A)R(z ; A) f in L2(E; m). (23)

Then, (22) and (23) imply that R(z ; A) f possesses a continuous m-version on E .
Because�θ,ε ⊂ Sθ for any ε ∈ (0, θ − π/2), the condition (ii) in Proposition 3 holds.
The conditions (14) and (15) immediately follow from (22).
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Remark 3 (i) Assume that (A2) is satisfied. Then, [15, Corollary] (see also [26,
p. 98]) implies that (21) holds for p > (q/(q − 2)) ∨ 2 and α > α0 if there exist
q > 2, α ≥ α0 and S > 0 such that Lq(E; m) ⊂ F and

‖ f ‖2Lq (E;m) ≤ SEα( f, f ), f ∈ F . (24)

The inequality (24) is often called the Sobolev type inequality. Next we assume
that (E ,F ) is a symmetric Dirichlet form on L2(E; m). Then (24) implies that
the associated semigroup {Tt }t>0 is ultracontractive, i.e., each Tt is extended to
a bounded linear operator from L1(E;m) to L∞(E; m), and more strongly, we
have

‖Tt‖1→∞ ≤ Ct−q/(q−2)eαt , t > 0 (25)

for some positive constant C > 0. We also see from [11, Lemma 2.1.2] that
for any t > 0, ‖Tt/2‖22→∞ = ‖Tt‖1→∞ under the symmetry of {Tt }t>0. It is also
known that the ultracontractivity of the semigroup and (25) together imply (24).
See [6, Theorems (2.1), (2.9), and (2.16)], [16, Theorem 4.2.7], or [33, Theo-
rem 1] for the proof.

(ii) When (E ,F ) is a symmetric Dirichlet form on L2(E; m), the following con-
dition implies (24) by [25, Theorem 4.1(i)]:

sup
x∈E

∫

E

Rα(x, y)q m(dy) < ∞ (26)

for some α ∈ (0 + ∞) and q ∈ (1,+∞). We also see that (26) for such α, q
yields that there exists C ∈ (0,+∞) such that ‖Gα f ‖L∞(E;m) ≤ C‖ f ‖L p(E;m)

for any f ∈ L p(E; m) with p = q/(q − 1).

Even if (E ,F ) is a symmetric Dirichlet form, it cannot be expected that (21)
follows from the condition that the associated semigroup {Tt }t>0 is ultracontractive
only. In fact, in this case, we do not know a quantitative estimate of ‖Tt‖1→∞(=
‖Tt/2‖22→∞) in t > 0. However, under the ultracontractivity, we can improve the
proof of [4, Proposition 3.4] to obtain the same result as Theorem 3.

Theorem 4 Suppose that (A2) is satisfied. Assume that {Rα}α>0 has the strong
Feller property, and ‖Tt‖L2→L∞ is finite for any t > 0. In addition, we assume either
of the following conditions is satisfied:

(i) m(E) is finite,
(ii) for any t > 0, Pt1E is continuous on E.

Then, the semigroup of X has the strong Feller property.

Proof We fix t > 0. By the duality, we have ‖T ∗
t ‖1→2 = ‖Tt‖2→∞. That is, T ∗

t
is extended to a bounded linear operator from L1(E; m) to L2(E; m). Fix f ∈
L2(E; m) ∩ Bb(E), and let
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h = (α − A)Tt f. (27)

Here, α is a positive number with α > α0. We see from [22, Chapter I, Exercise 1.9]
that Tt f ∈ Dom(A). Therefore, h ∈ Dom(A) ⊂ L2(E; m) and

ATt f = ATt/2Tt/2 f = Tt/2(ATt/2 f ). (28)

By noting that {e−α0t Tt }t≥0 is an analytic semigroup on L2(E; m), we have from
[28, Chap.2, Theorem 5.2 (d)] that

‖ATt/2 f ‖L2(E;m) ≤ (C/t)‖ f ‖L2(E;m) (29)

for some C independent of t and f . Combining (28) and (29), we obtain that for any
g ∈ L1(E; m),

∣
∣
∣
∣
∣
∣

∫

E

hg dm

∣
∣
∣
∣
∣
∣
= ∣
∣((α − A)Tt f, g)L2(E;m)

∣
∣ = ∣

∣((α − A)Tt/2 f, T
∗
t/2g)L2(E;m)

∣
∣

≤ (
αeα0t/2‖ f ‖L2(E;m) + ‖ATt/2 f ‖L2(E;m)

) ‖T ∗
t/2g‖L2(E;m)

≤
(

αeα0t/2 + C

t

)

‖ f ‖L2(E;m)‖T ∗
t/2g‖L2(E;m)

≤
(

αeα0t/2 + C

t

)

‖ f ‖L2(E;m)‖T ∗
t/2‖L1→L2‖g‖L1(E;m).

This shows that the functional L1(E; m) � g �→ ∫
E hg dm is continuous. Therefore,

we find that h belongs to L2(E; m) ∩ L∞(E; m), and obtain

Pt f = Rαh. (30)

From this and the resolvent strong Feller property, we find that Pt f possesses a
bounded continuous m-version. Then, by following the same argument after (20),
we know that Pt maps any function in L2(E;m) ∩ Bb(E) to Cb(E). The rest of the
proof is exactly similar to that of Theorem 3.

Remark 4 (i) Note that (30) is obtained without the following assumptions: E is
locally compact, and {Tt }t≥0 is associated with a lower bounded semi-Dirichlet
form. Consider a Markov process on a metric space with right continuous path
and the resolvent strong Feller property. Then, if the semigroup is extended to
an L2-space with respect to a suitable measure and has the ultracontractivity, we
get the same bounded function as (27), which leads us to (30). Therefore, we
obtain the semigroup strong Feller property if either of the same conditions as
(i) and (ii) in Theorem 4 holds.
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(ii) A similar equation to (30) is also obtained in the proof of [4, Proposition 3.4],
where the spectral decomposition theorem is used.

(iii) Let (E ,F ) be a lower bounded semi-Dirichlet form on L2(E; m) which sat-
isfies (24) for some positive constants q > 2, α ≥ α0 and S > 0. Then, for any
f ∈ L2(E; m) and t > 0, we haveUt f := e−α0t Tt f ∈ Dom(A) ⊂ F . The ana-
lyticity of {Ut }t>0 implies that for any t > 0 and f ∈ L2(E; m),

‖Ut f ‖Lq (E;m) ≤ SEα(Ut f,Ut f ) = −S(AUt f,Ut f )L2(E;m) ≤ C

t
‖ f ‖L2(E;m)

for someC > 0. Then, applying [27, Lemma 6.1] to {Ut }t≥0, we find that {Tt }t≥0

is extended to a bounded linear operator from L2(E; m) to L∞(E; m).

Next, we localize conditions in Theorems 3 and 4 in an appropriate framework.
Then, we introduce subprocesses of X. For an open subset U ⊂ E , we set τU =
inf{t ∈ [0,+∞) | Xt /∈ U }. Then, the subprocess of X killed upon leaving U is
defined by

XU
t :=

{
Xt , if t < τU ,

∂, if t ≥ τU .

We see from [26, §3.5, Theorem 3.5.7] that XU = ({XU
t }t∈[0,+∞], {Px }x∈U ) is asso-

ciated with the lower bounded semi-Dirichlet form (EU ,FU ) on L2(U ; m), and
it is a Hunt process on U . We call XU the part process of X on U . Here, FU is
identified with the completion of {u ∈ C0(E) ∩ F | supp[u] ⊂ U } with respect to
E 1/2

α0+1, and EU (u, v) := E (u, v) for u, v ∈ FU . It is also proved in [26, §3.5, The-
orem 3.5.7] that (EU ,FU ) is a regular semi-Dirichlet form on L2(U ; m) having
the same lower bound −α0 on L2(U ; m). Therefore, by Proposition 1, the semi-
group {PU

t }t≥0 and the resolvent {RU
α }α>0 are extended to bounded linear operators

on L p(E; m), p ∈ [2,+∞). The extensions are denote by {TU
t }t≥0 and {GU

α }α>0,
respectively. Furthermore, Theorem 1 implies that {TU

t }t≥0 is analytic on L p(U ;m)

for p ∈ [2,+∞). For t, α ∈ (0,+∞), x ∈ U , f ∈ Bb(U ), we have

PU
t f (x) = Ex [ f (Xt ) : t < τU ], RU

α f (x) = Ex

⎡

⎣
τU∫

0

e−αt f (Xt ) dt

⎤

⎦ . (31)

Therefore, if the resolvent kernels of X is absolutely continuous with respect to m,
so is the resolvent kernel of XU ,

RU
α (x, dy) = RU

α (x, y)m(dy), α > 0, x ∈ U.

The following theorem provides a sufficient condition for the resolvent strong
Feller property of part processes of X.
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Theorem 5 ([19, Theorem 3.1]) Assume that the resolvent of X has both the strong
Feller property and the Feller property. Then, for any open subset U ⊂ E, the resol-
vent of XU has the strong Feller property.

LetU be an open subset of E . A boundedBorelmeasurable function h : U → R is
said to be harmonic (with respect toX) if for any relatively compact open set V ⊂ U ,
{h(Xt∧τV )}t≥0 is a uniformly integrable martingale with respect toPx , x ∈ V . A Hunt
processX is said to be a diffusion process without killing inside ifX is of continuous
sample paths and Px (Xζ− ∈ E, ζ < +∞) = 0 for every x ∈ E . Here ζ denotes the
lifetime of X. With these definitions, we give another sufficient condition for the
resolvent strong Feller property for part processes of X.

Proposition 6 Suppose that X is a diffusion process without killing inside, and the
resolvent has the strong Feller property. In addition, we assume that any bounded
harmonic function h onanopen subsetU ⊂ E is continuous there. Then, the resolvent
of XU has the strong Feller property.

Proof Wefixα > 0, f ∈ Bb(U ), and set f = 0 on E \U . In view of (31), it suffices
to show that φα

U := E• [
∫∞
τU

e−αt f (Xt ) dt] is continuous on K for any compact subset
K ⊂ U .

We fix a compact subset K ⊂ U , and let V be a relatively compact open subset
of U such that K ⊂ V ⊂ V ⊂ U . Here we denote by V the closure of V in E . For
n ∈ N and x ∈ U , we define

ψn
U (x) = Ex

[
e−nτU

]
.

The assumption “no killing inside” ensures that τV < τU forPx -a.s. x ∈ V . It follows
that τU = τV + τU ◦ θτV ≥ τU ◦ θτV for Px -a.s. x ∈ V . Here, {θt }t∈[0,+∞] denotes the
shift operators of X . Then, by using the strongMarkov property [7, TheoremA.1.21]
of X, we have for any x ∈ V and n ∈ N,

ψn
U (x) = Ex

[
e−nτU : τV < τU

] ≤ Ex
[
EXτV

[
e−nτU

]] =: hn(x). (32)

We see from the strong Markov property and the same argument as in the proof of
[7, Lemma 6.1.5] that hn is a harmonic function on V with respect to X. Noting this
fact and the assumption that hn is bounded continuous on K , we use Dini’s theorem
to obtain that limn→∞ supx∈K hn(x) = 0. In particular, we have from (32) that

lim
n→∞ sup

x∈K
ψn
U (x) = 0. (33)

The same argument as in [19, Theorem 3.1] and (33) imply

lim
n→∞ sup

x∈K

∣
∣φα

U − nRn+αφα
U (x)

∣
∣ ≤ 2 sup

x∈U
| f (x)| × lim

n→∞ sup
x∈K

ψn
U (x) = 0.

Finally, by using the strong Feller property, we see φα
U is continuous on U.
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Remark 5 By assuming both the Feller and the strong Feller property of the resol-
vent, we have the continuity of bounded harmonic functions. The proof is almost the
same as [30, Theorem 3.4].

Let U be an open subset of E . Then, under both the situations of Theorem 5 and
Proposition 6, we see that for any compact subset K ⊂ U ,

lim
s→0

sup
x∈K

Px [τU ≤ s] = 0. (34)

In fact, under the situation of Theorem 5, we use [19, Lemma 2.2] to see that (34)
is valid. For the latter situation, we take an open subset V ⊂ E such that K ⊂ V ⊂
V ⊂ U . It then holds that τU ≥ τU ◦ θτV , Px -a.s. x ∈ V . This and the strong Markov
property [7, Theorem A.1.21] of X together imply

Px [τU ≤ s] ≤ Ex
[
PXτV

[τU ≤ s]] =: us(x), x ∈ V, s > 0.

Since us is harmonic on V with respect to X, it is continuous on V . Then, it is
straightforward to see that lims→0 supx∈K Px [τU ≤ s] ≤ lims→0 supx∈K us(x) = 0.

In what follows, we say that X has the local ultracontracitivity if either of the
following conditions is satisfied:

(a) for any relatively compact open set U ⊂ E , there exist C > 0, α > α0, and
p > 2 such that for any g ∈ L p(U ; m) ∩ L2(U ; m),

‖GU
α g‖L∞(U ;m) ≤ C(‖g‖L p(U ;m) + ‖g‖L2(U ;m)). (35)

(b) for any relatively compact open setU ⊂ E and t > 0, ‖TU
t ‖L2(U ;m)→L∞(U ;m) is

finite.

The condition (35) is weaker than ‖GU
α ‖L2(U ;m)→L∞(U ;m) < ∞. The localized ver-

sion of Theorems 3 and 4 are as follows:

Theorem 6 Assume that the resolvent of X has the strong Feller property, and the
local ultracontractivity. In addition, we assume either of the following conditions is
satisfied:

(i) the resolvent of X has the Feller property,
(ii) X is a diffusion process without killing inside, and for any relatively compact

open subset U ⊂ E, any bounded harmonic function on U is continuous there.

Then, the semigroup of X has the strong Feller property.

Proof LetU be a relatively compact open subset of E . FromTheorem 5 and Proposi-
tion 6, it follows that the resolvent ofXU has the strong Feller property. Furthermore,
Theorems 3 and 4, and the local ultracontractivity together imply that the semigroup
of XU has the strong Feller property. Let K be a compact subset of U . We obtain
from (34) that for any t > 0 and f ∈ Bb(E),
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lim
s→0

sup
x∈K

∣
∣Pt f (x) − PU

s Pt−s f (x)
∣
∣ ≤ sup

x∈E
| f (x)| × lim

s→0
sup
x∈K

Px [τU ≤ s] = 0.

Thus, Pt f is a continuous function on K . Because K and U are arbitrarily chosen,
we see Pt f is continuous on E .

In the proof of Theorem 6, after establishing the semigroup strong Feller property
of the part process, (34) is used. However, this can be replaced by the condition that
Pt1E is continuous on E for any t > 0. To clarify this fact, and for future reference,
we prove the following lemma.

Lemma 2 The semigroup of X has the strong Feller property if the following con-
ditions are satisfied:

• for any relatively compact open subset U ⊂ E, the semigroup of XU is strong
Feller.

• for any t > 0, Pt1E is continuous on E.

Proof We follow the argument in [8, Theorem 1.4]. Fix t > 0 and a compact subset
K of E . Let {Un}∞n=1 be a sequence of relatively compact open subsets such that
K ⊂ U1 andUn ⊂ Un+1 for any n ∈ N. The assumptions imply that for any n ∈ N,

x �→ Px [τUn ≤ t < ζ ](= Pt1E (x) − PUn
t 1E (x))

is continuous on K . Thus, there exists {xn}∞n=1 ⊂ K such that

Pxn [τUn ≤ t < ζ ] = sup
x∈K

{Pt1E (x) − PUn
t 1E (x)}, n ∈ N.

Because K is compact, there exists a subsequence of {xn}∞n=1 which converges to
some x ∈ K . We denote the subsequence {xn}∞n=1 again. For any n,m ∈ N with
n > m,

Pxn [τUn ≤ t < ζ ] ≤ Pxn [τUm ≤ t < ζ ].

By using the continuity of the map x �→ Px [τUm ≤ t < ζ ], we obtain that for any
m ∈ N,

lim
n→∞Pxn [τUn ≤ t < ζ ] ≤ Px [τUm ≤ t < ζ ].

Thus, we arrive at

lim
n→∞Pxn [τUn ≤ t < ζ ] ≤ lim

m→∞Px [τUm ≤ t < ζ ] = 0,

wherewe use the fact that quasi-left continuity up to ζ ofX impliesPx (limn→∞ τUn =
ζ ) = 1. This shows that for any f ∈ Bb(E) and t > 0,

lim
n→∞ sup

x∈K
|Pt f (x) − PUn

t f (x)| ≤ ‖ f ‖∞ × lim
n→∞ sup

x∈K
Px [τUn ≤ t < ζ ] = 0.
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Since the semigroups of {XUn }∞n=1 are strong Feller, so is the semigroup of X.

We close this section to provide some examples.

Example 1 LetB = ({Bt }t≥0, {Px }x∈R) be a one-dimensional Brownianmotion. For
t ≥ 0, define At = ∫ t

0 (1 + |Bs |4)−1 ds. Then, A = {At }t≥0 is a positive continuous
additive functional (PCAF) of B, and the Revuz measure is identified with ν(dx) =
(1 + |x |4)−1 dx (see [16, Sect. 5.1]) for the definition of Revuz measures and the cor-
respondencewith PCAFs).Here, dx denotes the one-dimensional Lebesguemeasure.
Let Xt = BA−1

t
, t ≥ 0 be the time changed process by A−1

t := inf{s > 0 | As > t}.
By [16, Theorem 6.2.1], X := ({Xt }t≥0, {Px }x∈R) is a ν-symmetric Hunt process on
R, and the Dirichlet form associated with X is regular on L2(Rd; ν). It is straight-
forward to see that

lim
t→0

sup
x∈R

Ex [At ] = 0.

In other words, ν is of Kato class with respect to B. Then, [18, Lemma 4.1] shows
that the resolvent of X is strong Feller. On the other hand, since the generator of X is
(1 + x4)(d2/dx2) (x ∈ R), the conditions (iii) and (iv) in [29, Theorem 8.4.1] hold,
which implies that the resolvent ofX is not Feller. However,X satisfies condition (b)
in Theorem 6 since any harmonic function with respect toX is harmonic with respect
to B. Let U be a bounded open interval, and let TU = inf{t > 0 | Bt /∈ U }. Noting
τU := inf{t > 0 | Xt /∈ U } = ATU and using [7, Proposition 4.1.10], we obtain that
for any f ∈ L2(R; ν), x ∈ U , and α > 0,

Ex

⎡

⎣

τU∫

0

e−αt | f (Xt )| dt
⎤

⎦ ≤ Ex

⎡

⎢
⎣

ATU∫

0

| f (Xt )| dt
⎤

⎥
⎦ = Ex

⎡

⎣

TU∫

0

| f (Bt )| dAt

⎤

⎦

=
∫

U

| f (y)|gU (x, y) ν(dy).

Here, gU (x, y) denotes the green function of BU . Since supx,y∈U gU (x, y) < ∞, we
see that X has the local ultracontractivity. Therefore, by Theorem 6, the semigroup
of X is strong Feller.

Example 2 Let X = ({Xt }t≥0, {Px }x∈Rd ) be an Ornstein–Uhlenbeck process:

Xt = e−t/2x +
t∫

0

e(1/2)(t−s) dBs, t ≥ 0, x ∈ R
d .

Here, B = {Bt }t≥0 is a d-dimensional Brownian motion starting at the origin. Define
a Borel measure μ on R

d by μ(dx) = exp(−|x |2/2) dx , where dx denotes the d-
dimensional Lebesgue measure. X is a μ-symmetric Hunt process. The Dirichlet
form (E ,F ) associated with X is regular on L2(Rd; μ), and the core is identified
with C∞

0 (Rd), the space of smooth functions on R
d with compact support. For
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u, v ∈ C∞
0 (Rd), we have

E (u, v) = 1

2

∫

Rd

〈∇u(x),∇v(x)〉μ(dx).

Hereafter, ∇ denotes the standard gradient and 〈·, ·〉 the inner product on R
d . The

semigroup of X has both the strong Feller property and Feller property. However,
Theorems 3 and 4 are not available for X. Indeed, we have

Ex
[|Xt |2

] = Ex
[|Xt − e−t/2x |2] + 2Ex

⎡

⎣

〈

e−t/2x,

t∫

0

e(1/2)(t−s) dBs

〉⎤

⎦ + e−t |x |2

≥ 0 + 0 + e−t |x |2, x ∈ R
d .

Hereafter, we define | · | = 〈·, ·〉1/2. Although the map R
d � x �→ |x |2 belongs to

L p(Rd; μ) for any p > 0, we see

sup
x∈Rd

Ex [|Xt |2] = ∞ and sup
x∈Rd

Ex

⎡

⎣
∞∫

0

e−αt |Xt |2 dt
⎤

⎦ = ∞

for any t > 0 andα > 0. This implies that both ‖Tt‖L2→L∞ < ∞ and (21) fail. On the
other hand,X has the local ultracontractivity. To see this, letU be an open ball inRd .
Then, [16, Theorem 4.4.3 (i)] shows that the core of the Dirichlet form (E U ,FU ) of
XU is identified with C∞

0 (U )(= C∞
0 (Rd) ∩ C0(U )) and E U (u, u) = E (u, u), u ∈

C∞
0 (U ). From [20, Theorems 11.2, 11.23, and 11.34], there exists C ∈ (0,+∞)

such that

‖u‖2Lq (U ; dx) ≤ C

⎛

⎝
∫

U

|∇u(x)|2 dx + ‖u‖2L2(U ; dx)

⎞

⎠ , u ∈ C∞
0 (U ). (36)

Here, q is given by

q =

⎧
⎪⎨

⎪⎩

2d/(d − 2), if d ≥ 3,

any number in(2,+∞), if d = 2,

∞, if d = 1.

By (36) and the boundedness of U , there exists C > 0 such that

‖u‖2Lq (U ; μ) ≤ C
(
E U (u, u) + ‖u‖2L2(U ; μ)

)
, u ∈ C∞

0 (U ). (37)
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Since C∞
0 (U ) is a core of (E U ,FU ), we see that (37) is valid for any u ∈ FU . This

and Remark 3 (i) imply that X has the local ultracontractivity.

The following example appears in [26, §1.5.2, (1.5.17)].

Example 3 Let α, α, M , and δ be positive numbers and let α : Rd → R be a con-
tinuous function such that (1/2)(2α − α) < δ < 1, α < 1 + α/2, and

|α(x) − α(y)| ≤ M |x − y|δ, 0 < α ≤ α(x) ≤ α < 2, x, y ∈ R
d .

Let C2
0 (R

d) the space of C2-functions on R
d with compact support. We define

L u(x) =
∫

Rd

{u(x + h) − u(x) − 〈∇u(x), h1B1(0)(h)〉} w(x)

|h|d+α(x)
dh, u ∈ C2

0 (R
d).

Here, B1(0) denotes the open ball centered at the origin with radius 1, and the
weight function w : Rd → R is chosen so that L e−i〈h,x〉 = −|h|α(x)e−i〈h,x〉, x, h ∈
R

d . Then, we have

w(x) = 2α(x)−1π−(d/2)−1�((1 + α(x))/2)�((α(x) + d)/2) sin(πα(x)/2), x ∈ R
d .

From [26, §1.5.2, (1.5.18)], (L ,C2
0 (R

d)) is associated with a lower bounded semi-
Dirichlet form (E ,F ) on L2(Rd; dx), which is described as

E (u, v) = lim
n→∞

∫∫

|x−y|>1/n

(u(x) − u(y))v(x)
w(x)

|x − y|d+α(x)
dxdy, u, v ∈ C1

0(R
d).

Here,C1
0(R

d) denotes the space ofC1-functions onRd with compact support. Denote
byX = ({Xt }t≥0, {Px }x∈Rd ) theHunt process associatedwith (E ,F ). For x, y ∈ R

d ,
we set j (x, y) = w(x)/|x − y|d+α(x), and suppose that there exists C > 0 such that

j (x, y) ≥ C |x − y|−d−1, x, y ∈ R
d with 0 < |x − y| < 1.

Then, by the argument in [26, § 3.5, Example 3.5.5] and Remark 4(iii), the semigroup
{Tt }t>0 of (E ,F ) satisfies ‖Tt‖L2(Rd ; dx)→L∞(Rd ; dx) < ∞ for any t > 0. Hence, the
semigroup of X is strong Feller if the resolvent is. In [2, 3], the Harnack inequality
for bounded harmonic functions on domains with respect to non-local operators with
variable orders are obtained. Thus, by using [2, Proposition 3.1] and the argument
in [4, Proposition 3.3], we can also give a sufficient condition for the resolvent of X
being Hölder continuous in the spatial variable.

The final example is due to [5], which is a diffusion process on an infinite-
dimensional space.

Example 4 LetT = R/Z be the one-dimensional torus, and denote byT∞ the prod-
uct of countably many copies of T. That is, T∞ is the infinite-dimensional torus. T∞
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becomes a compact space by the Tychonoff’s theorem. We simply denote by dx the
product measure on T∞ of the normalized Haar measure on T. Let A = {ak}∞k=1 be
a sequence of strictly positive numbers, and set

E A (u, v) =
∫

T∞

∞∑

k=1

ak
∂u

∂xk
(x)

∂v

∂xk
(x) dx, u, v ∈ D .

Hereafter,D denotes the set of cylindrical smooth functions onT∞. It is shown in [5,
Sect. 1] that (E A ,D) is well-defined, and closable on L2(T∞; dx). Let (E A ,FA )

be the smallest closed extension. Then, (E A ,FA ) is a regular Dirichlet form on
L2(T∞; dx). It is straightforward to see that (E A ,FA ) is recurrent. In particular,
it is conservative. Under a suitable condition, we see from [5, Lemma 7] that the
associated semigroup {TA

t }t>0 on L2(T∞; dx) possesses an integral kernel which is
continuous on (0,+∞) × T

∞ × T
∞. From this fact, the conservativeness, and the

compactness of the state space, {TA
t }t>0 generates a Feller process with the semi-

group strong Feller property. We also see that {TA
t }t>0 is ultracontractive. How-

ever, [5, Theorem 6] implies that the Sobolev type inequality (24) does not hold for
(E A ,FA ).
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Interactions Between Trees and Loops,
and Their Representation in Fock Space

Yves Le Jan

Abstract It has been observed that on a weighted graph, an extension of Wilson’s
algorithm provides an independent pair (T ,L), T being a spanning tree and L a
Poissonian loop ensemble. This association can be interpreted in the framework of
symmetric and skew symmetric Fock spaces. Given a weighted graph, we show
how to define a natural interaction between the random spanning tree and the loop
ensemble, which corresponds to a local interaction between two Fock spaces.

Keywords Free fields · Markov loops · Spanning trees · Fock space

Mathematics Subject Classification 60J27 · 60G60

1 Framework and Definitions

We first recall some results presented in [2] about loop ensembles and random span-
ning trees.Consider a systemof conductances on afinite connected graphG = (X , E)

without loop edges nor multiple edges (note that many of the following results are
actually valid on infinite graphs, under the transience hypothesis).

After the choice of a root �, we denote by E the set of edges not incident to �

and by Eo the set of oriented such edges. Consider the Dirichlet form defined on
X = X − � by the conductances C on edges of E and the non-vanishing killing
measure κx = Cx,�, x ∈ X :

e( f, g) = 1

2

∑

x,y∈X
Cx,y( f (x) − f (y))(ḡ(x) − ḡ(y)) +

∑

x∈X
κx f (x)ḡ(x)
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On X , we define a measure λ by setting λx = ∑
y Cx,y + κx and denote by Mλ

the diagonal matrix representing the multiplication by λ. The Green function on
X × X associated with e is G = [Mλ − C]−1. Recall that e(Gx,.,Gy,.) = Gx,y . The
determinant of G will be denoted by Ze.

An extension ofWilson’s algorithm (Cf [2] 8-2, Remark 21) yields an independent
pair (T ,L),T being a spanning tree rooted in� andL a Poissonian loop ensemble on
X with intensity given by the loopmeasureμ defined by the λ-symmetric continuous
time Markov chain associated with e. (Recall that after running Wilson’s algorithm,
the loops are obtained by dividing, at each vertex, the concatenation of the erased
excursions according to a Poisson-Dirichlet distribution, then by forgetting the base
points.) We denote by PL and PT their distributions.

We denote by Ne(L) (by Neo(L)) the number of crossings of the edge e (of the
oriented edge eo) by the loops of L and by L̂x the total time spent by the loops of L
at the vertex x .

Recall that for any complex function q, |q| ≤ 1, defined on the set Eo of oriented
edges, and χ ≥ 0 defined on X , denoting by ◦ the Hadamard product,

E

(
∏

eo
qNeo (L)
eo e− ∑

x χx L̂x

)
= det(Mλ − C)

det(Mλ+χ − C ◦ q)
. (1)

Definition 1 The real Gaussian free field is φ the real centered Gaussian process
indexed by X whose covariance function is given by the Green function G. Let φ1

and φ2 be two independent copies of φ. The complex free field φ1 + iφ2 will be
denoted by ϕ.

Remind also the following:

Theorem 1 The fields L̂ and 1
2 |ϕ|2 have the same distribution.

Note also that in the finite case, if ϕ is the complex Gaussian free field associated
with the energy e and e′ denotes a different energy, by Eq.1,

E

⎛

⎝
∏

(x,y)

[
C ′

x,y

Cx,y

]Nx,y(L)

e−〈λ′−λ,L̂〉
⎞

⎠ =
[Ze′

Ze

]
= Eϕ(e− 1

2 [e′−e](ϕ)) (2)

If ω is a real one-form, i.e. if ωx,y = −ωy,x we set:

e′(ω)(ϕ, ϕ) = 1

2

∑

x,y

Cx,y(ϕ(x) − eiωx,yϕ(y))(ϕ(x) − e−iωx,yϕ(y)) +
∑

x

κxϕ(x)ϕ(x).

Then, more generally

E

⎛

⎝
∏

(x,y)

[
C ′

x,ye
iωx,y

Cx,y

]Nx,y(L)

e−〈λ′−λ,L̂〉
⎞

⎠ =
[Ze′,ω

Ze

]
= Eϕ(e− 1

2 [e′,ω−e](ϕ)) (3)
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2 Interaction Between Tree and Loops

Given a parameter 0 < β < 1 we can define an interacting pair (T ,L) by the joint
distribution:

P
(β)

T ,L(T, dL) = 1

Z (β)

∏

e∈T
βNe(L)

PL1(dL)PT (T ),

Z (β) denoting the normalization constant
∑

T [∫ ∏
e∈T βNe(L)

PL1(dL)]PT (T ),

As β tends to 0, the loops of L tend to avoid the tree. If β = 1, T and L are
independent.

We can also define another interaction by the joint distribution:

P
(β−)

T ,L (T, dL) = 1

Z (β−)

∏

e/∈T
βNe(L)

PL1(dL)PT (T ),

Z (β−) being a normalization constant.
As β tends to 0, the loops of L tend to be carried by T . In particular, they tend to

be contractible to a point.

3 Fock Spaces

In the beginning of this section, we allow the graph to be infinite, assuming only the
transience hypothesis. We recall and complete the presentation of Fock spaces given
in [2].

Let us first recall the construction of the Bosonic Fock space and its relation with
the free field. Let Dn be the Hilbert space of complex functions v on Xn invariant
under any permutation of the variables such that

εn(v) = n!
∑

x,y∈Xn

v(x)v̄(y)Per(Gxi ,y j , 1 ≤ i, j ≤ n) < ∞.

εn induces naturally a scalar product on Dn . By definition, D0 = C.
Note that If v1, . . . , vn belong to D1, 1√

n!
∑

σ∈Sn
vσ(1)(x1) . . . vσ(n)(xn), denoted

v1 � . . . � vn(x1, . . . , xn), belongs to Dn with

εn(v1 � . . . � vn ) = Per

(
∑

x,y

Gx,yvi (x)v̄ j (y), 1 ≤ i, j ≤ n

)
,

and linear combinations of such elements are dense in Dn . In particular, If v belong
to D1, εn(v

�n) = n!ε1(v)n . The symmetric Fock space FB is defined as the space
of sequences u = (un, n ≥ 0), un ∈ Dn such that the series ε(u) = ∑

εn(un) con-
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verges. In particular, If v belong to D1, exp�(v) belongs to FB , with energy

ε(exp�(v)) = exp(ε1(v))

The construction of FB is known as the bosonic second quantization.
It is well known that there exists a unique isomorphism of Hilbert spaces mapping

FB onto the space of square integrable functionals of the Gaussian free field, such
that, for any real function u in D1,

exp�(u) � e
∑

x φ(x) u(x)− 1
2

∑
x,y Gx,yu(x)u(y). (4)

Elements of the non-completed Fock space ⊕∞
0 Dn , i.e. the space of finite

sequences are mapped by the isomorphism onto square integrable polynomial func-
tions of the free field which can be computed from identity 4.

For any v ∈ D1, the annihilation operator av and the creation operator a∗
v are

defined on ⊕∞
0 Dn: For all v in D1, av1 = 0 and a∗

v1 = v. For any un in Dn ,

avun(x1, . . . , xn − 1) =
√

n!
(n − 1)!

∑

y,z

Gy,zv(y)
∑

k

un(x1 . . . xk − 1, z, xk , . . . , xn−1)

a∗
vun(x1, . . . , xn+1)=

√
(n − 1)!

n!
∑

k

v(xk)un(x1 . . . xk − 1, xk+1, . . . , xn+1)

In particular

av(μ1 � ... � μn) =
∑

k

∑

x,y

Gx,yv(x)μk(y)μ1 � μk−1... � μk+1... � μn.

a∗
v � μ1 � . . . � μn = v � μ1 � . . . � μn.

These operator av and a∗
v are easily seen to be dual of each other. Set ax = aδx and

a∗
x =, a∗

δx
. These operators verify the bosonic canonical commutation relations:

[ax , a∗
y ] = Gx,y ; [a∗

x , a
∗
y ] = [ax , ay] = 0.

which determine the whole structure. The isomorphism allows to represent these
operators on polynomials of the free field as follows:

ax �
∑

y

Gx,y
∂

∂φ(y)

a∗
x � φ(x) −

∑

y

Gx,y
∂

∂φ(y)

Here, φ(x) is identified to the operator of multiplication by φ(x). Hence,
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φ(x) = ax + a∗
x

Therefore, the Fock space structure is entirely transported on the space of square
integrable functionals of the free field. Conversely, expectation calculations of func-
tionals of the Gaussian free field can be expressed in terms of the Fock space scalar
product.

In the case of a complex field ϕ, the space of square integrable functionals of ϕ

and ϕ is isomorphic to the tensor product of two copies of the symmetric Fock space
FB , which is the closure of⊕n,mDn ⊗ Dm , and which we will denote byFB . We now
get two commuting sets of creation and annihilation operators verifying the Bososnic
canonical commutation relations. The Fock space structure is transported as before to
the space of square integrable functionals of ϕ and ϕ using these two commuting sets
of adjoint creation and annihilation operators defined on polynomials of the field:

ax = √
2

∑

y

Gx,y
∂

∂ϕ(y)
a∗
x = ϕ(x)√

2
− √

2
∑

y

Gx,y
∂

∂ϕ(y)

bx = √
2

∑

y

Gx,y
∂

∂ϕ(y)
b∗
x = ϕ(x)√

2
− √

2
∑

y

Gx,y
∂

∂ϕ(y)

(Recall that if z = x + iy, ∂
∂z = ∂

∂x − i ∂
∂y and ∂

∂z = ∂
∂x + i ∂

∂y ).
We have

ϕ(x) = √
2(bx + a∗

x ) and ϕ(x) = √
2(ax + b∗

x )

We now present the skew symmetric counterpart of the free field, defined on the
fermionic Fock space.

Let In be the Hilbert space of skew-symmetric complex functions w on Xn , i.e.
such that for any permutation σ , w(xσ(1), . . . , xσ(n)) = (−1)m(σ )w(x1, . . . , xn) and
such that

εn(w) = n!
∑

x,y∈Xn

w(x)w̄(y) det(Gxi ,y j , 1 ≤ i, j ≤ n) < ∞.

εn induces naturally a scalar product on In . By definition, I0 = C.
If v1, . . . vn belong to D1, 1√

n!
∑

σ∈Sn
(−1)m(σ )vσ(1)(x1) . . . vσ(n)(xn) is denoted

v1 ∧ . . . ∧ vn(x1, . . . , xn) and belongs to In with

εn(v1 ∧ . . . ∧ vn) = det

(
∑

x,y

Gx,yvi (x)v̄ j (y), 1 ≤ i, j ≤ n

)
.

The skew-symmetric Fock space FF is defined as the space of sequences u =
(wn, n ≥ 0), wn ∈ In such that the series ε(w,w) = ∑

εn(wn, wn) converges. Note
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that if X is finite, these series have at most |X | + 1 non vanishing terms. The con-
struction of FF is known as the fermionic second quantization.

For any v ∈ D1, the annihilation operator cv and the creation operator c∗
v are

defined on the uncompleted Fock space⊕∞
0 In of finite sequences as follows: cv1 = 0

and c∗
v1 = v, and for any un in In ,

cvun(x1, . . . , xn−1)

=
√

n!
(n − 1)! (−1)k−1

∑

y,z

Gy,zv(y)
∑

k

un(x1 . . . xk − 1, z, xk, . . . , xn−1),

c∗
vun(x1, . . . , xn + 1) =

√
(n − 1)!

n!
∑

k

(−1)k−1v(xk)un(x1 . . . xk−1, xk+1, . . . , xn+1).

In particular

cv(μ1 ∧ . . . ∧ μn)

= (−1)k−1
∑

k

∑

y,z

Gy,zv(y)μk(y)μ1 ∧ . . . ∧ μk−1 ∧ μk+1 ∧ . . . ∧ μn,

c∗
v(μ1 ∧ . . . ∧ μn) = v ∧ μ1 ∧ . . . ∧ μn.

We set cx = cδx and c∗
x =, c∗

δx
. It can be easily checked that c∗

y is the dual of
cy . The anticommutator cxc∗

y + c∗
ycx denoted [cx , c∗

y]+ equals Gx,y and all others
anticommutators vanish.

We will work on the complex fermionic Fock space FF defined as the tensor
product of two copies of FF . The complex Fock space structure is defined by the
two sets of creation and annihilation operators acting on the two copies of FF . FF is
generated by the vector 1 ⊗ 1 and creation/annihilation operators cx , c∗

x , dx , d
∗
x with

[cx , c∗
y]+ = [dx , d∗

y ]+ = Gx,y and all others anticommutators vanishing.

Anticommuting Grassmann operators ψ(x), ψ(x) are defined as operators on the
Fermionic Fock space FF by:

ψ(x) = √
2(dx + c∗

x ) and ψ(x) = √
2(−cx + d∗

x ).

The following anticommutation relations hold

[ψ(x), ψ(y)]+ = [ψ(x), ψ(y)]+ = [ψ(x), ψ(y)]+ = 0

In particular, (
∑

x λxψ(x))2 = (
∑

x λxψ(x))2 = 0. A simple calculation yields this
property of the scalar product on FF :

〈
1, ψ(xm) . . . ψ(x1)ψ(y1) . . . ψ(yn)1

〉
FF

= δnm2
n det(Gxi ,y j ). (5)
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Therefore 〈
1, ψ(xn)ψ(yn) . . . ψ(x1)ψ(y1)1

〉
FF

= 2n det(Gxi ,y j ).

We now consider again a finite graph.

Proposition 1 If e′ is a Dirichlet form defined by another set of conductances and
another killing measure:

〈
1, exp(−1

2
e(ψ,ψ) + 1

2
e′(ψ,ψ))1

〉

FF

= det(G)

det(G ′)
= Ze

Ze′
. (6)

Proof Indeed, if fi is an orthonormal basis of the Dirichlet space in which e′ is
diagonal with eigenvalues λi , the first side equals

〈
1,

∏

i

exp(
1

2
(−1 + λi ) 〈ψ, fi 〉

〈
ψ, fi

〉
)1

〉

FF

=
〈
1,

∏

i

(1 + 1

2
(−1 + λi ) 〈ψ, fi 〉

〈
ψ, fi

〉
)1

〉

FF

= 1 +
∑

k

∑

i1<...ik

(−1 + λi1) . . . (−1 + λi ) =
∏

λi .

In particular, for any positive measure χ on X ,

〈
1, exp(

1

2

∑

x

χxψ(x)ψ(x))1

〉

FF

= det(G)

det(Gχ )
.

More generally

〈
1, exp(

1

2
e′(ω)(ψ,ψ) − 1

2
e(ψ,ψ))1

〉

FF

= Ze

Ze′,(ω)

. (7)

More results on Fock spaces calculations and their relation to Grassmann integration
(Cf [1]) and Wick products can be found in [3].

In the finite case, we can find a fermionic analogue of the elementary definition
of the free field through the Gaussian density function and provide a slightly more
elementary approach to fermionic calculations which is also closer from the formal
path integrals calculations performed in theoretical physics.

Proposition 2 Let ux and ūx be the canonical basis of two copies of R|X |. Set η =∧
x ux ∧ ūx . σ = ∑

x λx ux ∧ ūx − ∑
x,y Cx,yux ∧ ū y and ν = 1 + ∑|X |

1
σ∧k
k! . Then,

for any antisymmetric polynomial P:

〈1, P(ψ, ψ̄)1)〉FF = det(G)〈P∧(
√
2 u,

√
2 ū) ∧ ν, η〉∧R|X |⊕ R|X | .
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Here P∧ denotes the polynomial in which the product is replaced by the wedge
product.

Note that 1 + ∑|X |
1

σ∧k
k!! is formally equal to exp∧(e∧(u, ū)) and that η does not

depend on an order on vertices. Moreover, note that σ and ν is formally obtained by
replacing the product by the wedge product respectively in the Dirichlet form and
in the Gaussian density function of the complex free field with respect to Lebesgue
measure. This formulation is essentially equivalent to the use of Grassmann variables
[1].

Proof It is clear that to get a non-vanishing result, the total degrees of P in u and ū
have to be equal.

For anyONBαi = ∑
x a

i
xux ofR|X |, setting ᾱi = ∑

x a
i
x ūx , we have η = ∧

i αi ∧
ᾱi . We choose the αi to be the eigenvectors of M(λ) − C and denote by ri the
associated eigenvalues, so that Gx,y = ∑

i
1
ri
aixa

i
y and σ = ∑

i ri αi ∧ ᾱi . Note that

ux = ∑
i a

i
xα

i and ūx = ∑
i a

i
x ᾱ

i .
〈∧n

j=1 ux j ∧ ū y j ∧ 1
k!σ

∧k, η〉 vanishes if k �= |X | − n, and for k = |X | − n:

n∧

j=1

ux j ∧ ū y j ∧ 1

k!σ
∧k =

∑

i1<···<ik

k∏

l=1

ril
∧

j

ux j ∧ ū y j ∧ αi1 ∧ ᾱi1 ∧ . . . αik ∧ ᾱik .

Note that det(G) = ∏|X |
1

1
ri
, ux = ∑

i a
i
xα

i and ūx = ∑
i a

i
x ᾱ

i . Then

n∧

j=1

ux j ∧ ū y j ∧ 1

k!σ
∧k

= 1

det(G)

∑

h1<···<hn

det(ahlxl , 1 ≤ l ≤ n) det(ahlyl , 1 ≤ l ≤ n)

n∏

l=1

1

rhl

= det(Gxi ,y j 1 ≤ i, j ≤ n)

det(G)

The proof then follows directly from Eq.5.

Recall finally the following result of [2] which provides a relation between the
Grassmann operators and the random spanning tree.

Theorem 2 For distinct edges ±ξ1, . . . ± ξk:

P
e
ST (±ξ1, . . . ± ξk ∈ T ) = 2−k

∏
Cxi ,yi

〈
1, (

∏
(ψ(yi ) − ψ(xi ))(ψ(yi ) − ψ(xi ))1

〉

FF
.

For distinct vertices x1, . . . , xk:

P
e
ST ((xi , δ) ∈ τ) = 2−k

∏
κxi

〈
1,

∏
(ψ(xi )ψ(xi ) 1

〉

FF

.
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4 Local Interaction in Supersymmetric Fock Space

The independent pair (T ,L), associating a spanning tree T and a Poissonian loop
ensemble L can be interpreted in the framework of these symmetric and skew sym-
metric Fock spaces. We now show how the natural interactions between the random
spanning trees and the loop ensemble defined in Sect. 2 correspond to local inter-
actions between these two Fock spaces. The partition function and more generally
expectations of various functionals of the random pair (T ,L) can be expressed in
terms of the supersymmetric Fock space associated with G.

First note that it follows from (1) and from Fock space calculations that for any
complex function q, |q| ≤ 1, defined on the set Eo of oriented edges, and χ ≥ 0
defined on X ,

E(
∏

eo
qNeo (L)

eo e− ∑
x χx L̂x ) = 〈1, exp(−1

2

∑

x,y

Cx,y[qx,y − 1]ϕx ϕ̄y − 1

2

∑

x

χxϕx ϕ̄x ) 1〉 (8)

Then it follows from Theorem 2 and an inclusion-exclusion argument that for any
pair of functions b and c defined on edges, setting

|dψ{x,y}|2 = 1

2
Cx,y(ψ(x) − ψ(y))(ψ(x) − ψ(y)),

E(
∏

e

(be1e/∈T + ce1e∈T )) = 〈1,
∏

e

(be(1 − |dψe|2) + ce|dψe|2) 1〉 (9)

Theorem 3 For 0 < β ≤ 1, setting ϕϕ(x, y) = ϕ(x)ϕ(y) + ϕ(y)ϕ(x):

Z (β) = 〈1, e
∑

{x,y} |dψ{x,y}|2(e 1
2 Cx,y [β−1](ϕϕ(x,y))−1) 1〉

and for any positive functional F,

∑

T

∫
F(L̂)P

(β+)

T ,L (T, dL) = 1

Z (β)
〈1, F(

1

2
ϕϕ) e

∑
{x,y}[|dψ{x,y}|2(e 1

2 Cx,y [1−β](ϕϕ(x,y))−1)] 1〉

Note that Proposition 2 allows to give another expressionof
∑

T

∫
F(L̂)P

(β+)

T ,L (T, dL)

in term of Lebesgue and Grassmann integrals, which is similar to the expressions
obtained in theoretical physics for some interacting fields.

Proof It is enough to prove the result for Laplace transforms.
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∑

T

∫
e− ∑

x χx L̂ x
∏

e∈T
βNe(L)

PL(dL)PT (T ) equals

∑

T

∫
〈1, e− 1

2

∑
x χxϕ(x)ϕ(x)

∏

{x,y}∈T
e

1
2Cx,y [β−1](ϕϕ(x,y)) 1〉PT (T )

= 〈1, e− 1
2

∑
x χxϕ(x)ϕ(x)

∏

{x,y}
[e 1

2Cx,y [β−1](ϕϕ(x,y))|dψ{x,y}|2 + 1 − |dψ{x,y}|2] 1〉

= 〈1, e− 1
2

∑
x χxϕ(x)ϕ(x)

∏

{x,y}
[1 − |dψ{x,y}|2(1 − e

1
2Cx,y [β−1](ϕϕ(x,y)))] 1〉

= 〈1, e− 1
2

∑
x χxϕ(x)ϕ(x)

∏

{x,y}
e|dψ{x,y}|2(e 1

2 Cx,y [β−1](ϕϕ(x,y))−1) 1〉

= 〈1, e− 1
2

∑
x χxϕ(x)ϕ(x) e

∑
{x,y} |dψ{x,y}|2(e 1

2 Cx,y [β−1](ϕϕ(x,y))−1) 1〉

Remarks

• Note that forβ close to 1, the joint distributionP(β)

T ,L is a perturbation of the product
PL ⊗ PT . The Fock space representation allows to expand the partition function
and related expressions according to powers of 1 − β.

• More general formulas relating trees and loop observables expectations to Fock
space expressions can be derived from Eqs. 3, 7, and Theorem 2.

• A similar representation (in terms of ψψ) can be given with the random set of
vertices connected to the root by the spanning tree.

Similar results hold for P(β−)

T ,L :

Proposition 3 Assuming in addition κ > 1 − β so that e
1
2Cx,y [β−1](ϕϕ(x,y)) is well

defined in Fock space:

Z (β−) = 〈1, e+ 1
2

∑
{x,y}[(Cx,y [β−1](ϕϕ(x,y))+|dψ{x,y}|2(e+ 1

2 Cx,y [β−1](ϕϕ(x,y))−1)] 1〉.

Proof
∑

T

∫ ∏
e/∈T βNe(L)

PL(dL)PT (T ) equals

∑

T

∫
〈1,

∏

{x,y}/∈T
e

1
2Cx,y [β−1](ϕϕ(x,y)) 1〉PL(T )

= 〈1,
∏

{x,y}
[e 1

2Cx,y [β−1](ϕϕ(x,y))(1 − |dψ{x,y}|2) + |dψ{x,y}|2] 1〉

= 〈1,
∏

{x,y}
[e 1

2Cx,y [β−1](ϕϕ(x,y)) + |dψ{x,y}|2(1 − e− 1
2Cx,y [β−1](ϕϕ(x,y)))] 1〉

= 〈1,
∏

{x,y}
e

1
2Cx,y [β−1](ϕϕ(x,y))[1 + |dψ{x,y}|2(e− 1

2Cx,y [β−1](ϕϕ(x,y)) − 1)] 1〉

= 〈1, e+ 1
2

∑
{x,y}[(Cx,y [β−1](ϕϕ(x,y))+|dψ{x,y}|2(e− 1

2 Cx,y [β−1](ϕϕ(x,y))−1)] 1〉
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More generally,
∑

T

∫
F(L̂)P

(β−)

T ,L (T, dL) equals

1

Z (β−)
〈1, F(

1

2
ϕϕ) e+ 1

2

∑
{x,y}[(Cx,y [β−1](ϕϕ(x,y))+|dψ{x,y}|2(e+ 1

2 Cx,y [β−1](ϕϕ(x,y))−1)] 1〉.
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Remarks on Quasi-regular Dirichlet
Subspaces

Liping Li

Abstract Some remarks on quasi-regularDirichlet subspaces are given in this paper.
We first introduce this concept by extending the notion of regular Dirichlet subspaces
and then derive a basic type theorem for quasi-regular Dirichlet subspaces. Further
remarks on quasi-regular Dirichlet subspaces of concrete Dirichlet forms, especially
associated with Brownian motions, are also presented.

Keywords Dirichlet forms · Quasi-regular Dirichlet subspaces · Regular Dirichlet
subspaces · Brownian motions.

1 Introduction

Let E be a Hausdorff space endowed with the Borel σ -algebra, m a fully sup-
ported σ -finite measure on E , and (E ,F ) a symmetric Dirichlet form on L2(E,m).
It is well known that when (E ,F ) satisfies some condition (say regularity or
quasi-regularity), it would correspond to an m-symmetric Markov process on E
(see [1, 3, 7]). On the other hand,F is a Hilbert space with respect to the inner prod-
uct E1(·, ·) := E (·, ·) + (·, ·)m , where (·, ·)m is the inner product of L2(E,m). Then
it is a very basic problem to explore the closed subspaces of F with probabilistic
meaning: The existence of proper ones and how to characterize them if exist.

The notion of Dirichlet subspaces was first raised in [2] for so-called regular
Dirichlet forms. Precisely, further let E be a locally compact separable metric space,
m a fully supported Radon measure on E , and (E ,F ) a regular Dirichlet form on
L2(E,m). Another regular Dirichlet form (E ′,F ′) on L2(E,m) is called a regular
Dirichlet subspace of (E ,F ) if

F ′ ⊂ F , E (u, v) = E ′(u, v), u, v ∈ F ′. (1)
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We need to emphasize that (E ′,F ′) is on the same L2-space (strictly speaking, the
same state space E and symmetric measure m) as (E ,F ). By this definition, F ′ is
clearly a closed subspace of F under the inner product E1, and moreover, enjoys
two additional properties:

(1) Dirichlet property: u ∈ F ′ implies u+ ∧ 1 ∈ F ′, where u+ := u ∨ 0;
(2) Regularity: F ′ ∩ Cc(E) is dense in F ′ with respect to E1-norm and dense

in Cc(E) with respect to the uniform norm, where Cc(E) is the family of all
continuous functions on E with compact supports.

As we know, these two properties bring the probabilistic significance of F ′: There
exists anotherm-symmetric Markov process associated with (E ′,F ′). Furthermore,
the Dirichlet property (1) is equivalent to the Markovian property of this associ-
ated process and the regularity (2) is a sufficient condition for the existence of this
Markov process. Further considerations on regular Dirichlet subspaces are included
in [2, 4–6]. Particularly, not only for the existence and characterization of proper
regular Dirichlet subspaces, it is also possible to analyse the structures of associated
Markov processes through some special methods, see [6] for the discussions about
the regular Dirichlet subspaces of one-dimensional Brownian motion.

Note that the regularity is not a necessary condition for a Dirichlet form associated
with a Markov process. Quasi-regular Dirichlet forms are more general (especially
on an infinite dimensional state space) and in one-to-one correspondence with good
Markov processes due to [7]. This inspires us to replace the regularity (2) by the
quasi-regularity (Clearly, the Dirichlet property (1) cannot be removed) and to con-
sider another kind of Dirichlet subspaces. We name them the quasi-regular Dirichlet
subspaces.

This paper is organized as follows. In Sect. 2, we shall introduce the concept of
quasi-regular Dirichlet subspaces imposing an additional condition (S2) to ensure the
inclusion relation in the sense of quasi-continuous equivalence classes. Particularly,
a regular Dirichlet subspace is always a quasi-regular one. Then a basic type theorem
for the quasi-regularDirichlet subspaces is derived inTheorem1. In Sect. 3, the quasi-
regular Dirichlet subspaces of Brownian motions are considered. It is shown that for
one-dimensional Brownian motion, its quasi-regular Dirichlet subspaces and regular
Dirichlet subspaces coincide, but for multi-dimensional Brownian motion, we can
raise some quasi-regular Dirichlet subspaces, which are not regular. Further remarks
are presented in Sect. 3.2.2 for other attempts onmulti-dimensional Brownianmotion
and in Sect. 4 for our future plans.

2 Quasi-regular Dirichlet Subspaces

As in Sect. 1, let E be a Hausdorff space and m a fully supported σ -finite measure
on E . We are given a quasi-regular Dirichlet form (E ,F ) on L2(E,m). For the
definition of quasi-regularity and other concepts related to Dirichlet forms, we refer
to [1, 3, 7]. The quasi-regular Dirichlet subspace is defined as follows.
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Definition 1 Let (E ,F ) and (E ′,F ′) be two quasi-regular symmetric Dirichlet
forms on L2(E,m).We say (E ′,F ′) is aquasi-regularDirichlet subspaceof (E ,F ),
if

(S1) F ′ ⊂ F , E (u, v) = E ′(u, v), ∀u, v ∈ F ′;
(S2) Any E ′-nest is also an E -nest.

Remark 1 (S2) implies

(1) E ′-quasi-continuous function is also E -quasi-continuous;
(2) E ′-exceptional set is also E -exceptional.

In (S1) of the above definition, F ′ ⊂ F is an inclusion relation in the sense of
L2-equivalence class. Precisely speaking, for any u ∈ F ′, it means that u is an L2-
equivalence class (not quasi-continuous equivalence class) and u ∈ F . The quasi-
continuous equivalence classes of u relative to E and E ′ may not satisfy the inclusion
relation if without (S2), see the following example.

Example 1 Let E = [0, 1] and m be the Lebesgue measure on [0, 1]. We first take
(E ′,F ′) to be the associated Dirichlet form of absorbing Brownianmotion on (0, 1),
i.e.

F ′ := {
u ∈ L2((0, 1)) : u is absolutely continuous,

u′ ∈ L2((0, 1)), u(0) = u(1) = 0
}
,

E ′(u, v) := 1

2

1∫

0

u′(x)v′(x)dx, u, v ∈ F ′.

Since (E ′,F ′) is a regular Dirichlet form on L2((0, 1)), it is quasi-regular on
L2([0, 1]). Note that {0, 1} is an E ′-exceptional set.

Define another quadratic form on L2([0, 1]) as follows:

F := {u ∈ L2([0, 1]) : u is absolutely continuous, u′ ∈ L2([0, 1])},

E (u, u) := 1

2

1∫

0

u′(x)2dx + j (u(0) − u(1))2 + k0u(0)2 + k1u(1)2, u ∈ F ,

where j, k0 and k1 are fixed non-negative constants. We assert (E ,F ) is a regular
Dirichlet form on L2([0, 1]). In fact, let D be the Dirichlet integral on [0, 1], i.e. for
any u, v ∈ F , D(u, v) := ∫ 1

0 u′(x)v′(x)dx . By [1, (2.2.31)], we have

sup
x∈[0,1]

u(x)2 ≤ cD1(u, u), ∀u ∈ F ,

where c is independent of u. Thus there exists another constant C > 0 such that for
any u ∈ F ,

C−1D1(u, u) ≤ E1(u, u) ≤ CD1(u, u).
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From the regularity of ( 12D,F ) (associated with the reflected Brownian motion
on [0, 1]), we can conclude that (E ,F ) is a regular Dirichlet form on L2([0, 1]).
Furthermore, the E -exceptional set must be the empty set.

Clearly, (E ,F ) and (E ′,F ′) satisfy (S1). However, (S2) does not hold. For
example, {[ 1n , 1 − 1

n ] : n ≥ 1} is an E ′-nest, but not an E -nest.
Finally, we show that the inclusion relation in the sense of quasi-continuous equiv-

alence class does not hold for E and E ′. Take a function ϕ ∈ C∞
c ((0, 1)) ⊂ F ′ ⊂ F .

Denote the families of all E and E ′ quasi-continuous functions, which are E -q.e.
and E ′-q.e. equal to ϕ, by [ϕ]E and [ϕ]E ′ respectively. Then we have

[ϕ]E ′ = {
φ on [0, 1] : φ|(0,1) = ϕ

}
,

[ϕ]E = {
φ on [0, 1] : φ|(0,1) = ϕ, φ(0) = φ(1) = 0

}
.

Notice that the function φ in [ϕ]E ′ can be arbitrarily defined at {0, 1} but however,
[ϕ]E has only one element. Therefore, [ϕ]E ′ is not contained in [ϕ]E .

The following lemma indicates that in the context of regular Dirichlet forms, (S2)
is not necessary for Dirichet subspaces. This is the reason why the regular Dirichlet
subspace is defined as (1) in §1.

Lemma 1 Assume that E is a locally compact separable metric space and m is a
fully supported Radon measure on E. Let (E ,F ) and (E ′,F ′) be two Dirichlet
forms on L2(E,m). Assume further that

(1) (E ′,F ′) is regular;
(2) (E ,F ) has an E -nest {Kn : n ≥ 1} of compact sets.
Then (S1) implies (S2). Particularly, a regular Dirichlet subspace is always a quasi-
regular Dirichlet subspace.

Proof Take a positive function ϕ ∈ L2(E,m) with 0 < ϕ ≤ 1 and set h := G1ϕ,
where G1 is the 1-resolvent of (E ,F ). Clearly, we have 0 < h ≤ 1. The h-capacity
relative to (E ,F ) is denoted by Caph . Precisely, for any open set D ⊂ E , set

LD,h := {u ∈ F : u ≥ h, m-a.e. on D}.

Then
Caph(D) = E1(hD, hD),

where hD ∈ LD,h is the reduced function of h on D. Since (E ′,F ′) is regular, we
can define its 1-capacity, which is denoted by Cap′. Note that by (S1)

Cap′(D) = inf{E ′
1(u, u) : u ∈ LD,1} = inf{E1(u, u) : u ∈ LD,1},

where
LD,1 = {u ∈ F ′ : u ≥ 1, m-a.e. on D}.
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Since F ′ ⊂ F and h ≤ 1, it follows that LD,1 ⊂ LD,h and thus Cap′(D) ≥
Caph(D) for any open set D. This implies

Cap′(A) ≥ Caph(A)

for any Borel subset A of E .
Now let {Fn} be an E ′-nest. Equivalently, for any compact set K ⊂ E ,

lim
n→∞Cap′(K \ Fn) = 0.

Fix a small constant ε > 0. Since {Kn} is an E -nest, we can take an integer m such
that Caph(K

c
m) < ε/2. Notice that Km is compact, hence we can take another integer

nm such that Cap′(Km \ Fnm ) < ε/2. It follows that

Caph(F
c
nm ) ≤ Caph

(
Kc

m ∪ (Km \ Fnm )
)

≤ Caph(K
c
m) + Caph(Km \ Fnm )

≤ Caph(K
c
m) + Cap′(Km \ Fnm )

< ε.

Therefore, limn→∞ Caph(F
c
n ) = 0 and thus {Fn} is also an E -nest. That completes

the proof.

Next, we shall show a basic type theorem for quasi-regular Dirichlet subspaces.
Every quasi-regular symmetric Dirichlet form (E ,F ) on L2(E,m) satisfies the so-
called Beurling-Deny decomposition: For any u ∈ F ,

E (u, u) = E (c)(u, u) +
∫

E×E\d
(ũ(x) − ũ(y))2 J (dxdy) +

∫

E

ũ(x)2k(dx),

where ũ is the quasi-continuous version of u, E (c) is the strongly local part, J is a
σ -finite symmetric measure on E × E \ d such that J does not charge any subset
whose marginal projection is E -polar and k is a σ -finite measure on E charging no
E -exceptional set. The following theorem is an extended result of [4, Theorem 2.1].

Theorem 1 Let (E ′,F ′) be a quasi-regular Dirichlet subspace of (E ,F ) on
L2(E,m). Denote the jumping and killing measures of (E ,F ) and (E ′,F ′) by
J, J ′ and k, k ′ respectively. Then J = J ′ and k = k ′.

Mimicking the proof of [7, VI, Theorem 1.2], we can assume, without loss of
generality, E is a locally compact separable metric space, m is Radon and (E ′,F ′)
is regular on L2(E,m). Particularly, J ′ and k ′ are Radon measures. Then the rest of
the proof is similar to that of [4, Theorem 2.1] and we omit it.
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Remark 2 We have several facts relevant to this theorem:

(1) If without (S2) in Definition 1, then the conclusion of Theorem 1 may not hold.
See Example 1.

(2) Both or neither of (E ,F ) and (E ′,F ′) have jumping or killing parts.
(3) Clearly, E (c) ≡ 0 implies E ′(c) ≡ 0, where E ′(c) is the strongly local part of

(E ′,F ′), but however not vice versa. There is an example in [6, Theorem 2.1]
for ‘not vice versa’.

(4) When (E ,F ) is of pure-jump type, i.e. E (c) ≡ 0 and k = 0, then a proper
regular (hence quasi-regular) Dirichlet subspace for (E ,F ) may exist, see [5,
Corollary 5.5].

3 Quasi-regular Dirichlet Subspaces of Concrete Dirichlet
Forms

3.1 One-Dimensional Brownian Motion

The associated Dirichlet form of one-dimensional Brownian motion on L2(R) is(
1
2D, H 1(R)

)
, where

H 1(R) = {
u ∈ L2(R) : u is absolutely continuous and u′ ∈ L2(R)

}
,

1

2
D(u, v) = 1

2

∫

R

u′(x)v′(x)dx, u, v ∈ H 1(R).

Clearly,
(
1
2D, H 1(R)

)
is regular on L2(R). It is shown in [2] that each regular Dirich-

let subspace of
(
1
2D, H 1(R)

)
can be characterized by an absolutely continuous and

strictly increasing function s on R such that

s′ = 0 or 1, a.e. (2)

The function s is usually called the scale function of the associated diffusion process
of regular Dirichlet subspace. Following [6], we can give an alternative expression
of the regular Dirichlet subspaces. In fact, set a family of a.e. defined sets as follows:

F := {F ⊂ R : λ
(
Fc ∩ (a, b)

)
> 0, ∀a < b},

where λ is the Lebesguemeasure onR. Some typical examples for F ∈ F are the gen-
eralizedCantor sets. Note that every set F ∈ F corresponds to a scale functions satis-
fying (2): F = {x : s′(x) = 0} and on the contrary, s(x) = s(0) + ∫ x

0 1Fc(y)λ(dy).
The following lemma is taken from [6, Lemma 2.1].
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Lemma 2 (E ′,F ′) is a regular Dirichlet subspace of
(
1
2D, H 1(R)

)
on L2(R) if and

only if there exists a set F ∈ F such that

F ′ = {u ∈ H 1(R) : u′ = 0, a.e. on F},
E ′(u, v) = 1

2
D(u, v), u, v ∈ F ′.

Now we turn to consider the quasi-regular Dirichlet subspaces of
(
1
2D, H 1(R)

)
.

The following theorem indicates that the quasi-regular Dirichlet subspaces and reg-
ular Dirichlet subspaces for one-dimensional Brownian motion coincide.

Theorem 2 Let (E ′,F ′) be a quasi-regular Dirichlet subspace of
(
1
2D, H 1(R)

)
on

L2(R). Then (E ′,F ′) is regular on L2(R).

Proof By Remark 1, the E ′-quasi-continuous function is continuous and the E ′-
exceptional set must be the empty set. Particularly, F ′ ⊂ H 1(R) ⊂ C∞(R), where
C∞(R) is the family of all continuous functions vanishing at infinity. Since (E ′,F ′)
is quasi-regular, it follows thatF ′ is an algebra separatingR and there exists a strictly
positive continuous function inF ′. These implyF ′ is dense in C∞(R) with respect
to the uniform norm by Stone-Weierstrass theorem. Therefore, (E ′,F ′) is regular
on L2(R). That completes the proof.

3.2 Multi-dimensional Brownian Motion

3.2.1 Quasi-regular but Non-regular Dirichlet Subspaces

Given an integer d ≥ 2, the associated Dirichlet form of d-dimensional Brown-
ian motion on L2(Rd) is

(
1
2D, H 1(Rd)

)
, where H 1(Rd) is the 1-Sobolev space on

R
d . Analogically to Theorem 2, one may conjecture that the quasi-regular Dirichlet

subspaces of
(
1
2D, H 1(Rd)

)
coincide with the regular ones. However, the case of d-

dimensional Brownian motion with d ≥ 2 is totally different to the one-dimensional
case. Especially, any singleton set is exceptional and not all quasi-continuous func-
tions in H 1(Rd) are continuous. In fact, we can find quasi-regular but non-regular
Dirichlet subspaces of

(
1
2D, H 1(Rd)

)
via the skew-product method, whichwas intro-

duced in [5].

Example 2 Fix d ≥ 3. The Brownian motion (Bt )t≥0 on R
d may be written as

Bt = rtϑAt , (3)

where (rt ) is the d-Bessel process on [0,∞), ϑ is the spherical Brownian motion on
Sd−1 and (At ) is a positive continuous additive functional (PCAF in abbreviation)
of (rt ). Note that the restriction of (rt ) to (0,∞) (0 is an entrance boundary of (rt ))
is a regular diffusion with no killing inside, the speed (also, symmetric) measure
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ld(dx) := xd−1dx and the scale function s(x) = (1/(2 − d)) · x2−d . The associated
regular Dirichlet form of (rt ) on L2((0,∞), ld) is given by

F (s) :=
⎧
⎨

⎩
u ∈ L2 ((0,∞), ld) : u � s,

∞∫

0

(
du

ds

)2

ds < ∞
⎫
⎬

⎭
,

E (s)(u, v) := 1

2

∞∫

0

du

ds

dv

ds
ds, u, v ∈ F (s),

(4)

where ‘u � s’ is read as ‘u is absolutely continuous with respect to s’. In fact,
one may easily check that (E (s),F (s)) is also regular on L2([0,∞), ld). Note that
{0} is an ld -polar set relative to (rt ) and the Revuz measure of (At ) relative to (rt )
is μ(dx) = xd−3dx . Notice that μ is Radon on [0,∞) since d ≥ 3. We refer the
skew product expression of the associated Dirichlet form on L2([0,∞) × Sd−1) or
L2((0,∞) × Sd−1) of (3) to [5] and [8]. Particularly, since (E (s),F (s)) is regular
both on L2((0,∞), ld) and L2([0,∞), ld), we can deduce from [8, Theorem 1.3]
that ( 12D, H 1(Rd)) is regular both on L2(Rd \ {0}) and L2(Rd).

Now take another continuous and strictly increasing function ŝ on [0,∞) such
that

dŝ � ds,
dŝ

ds
= 0 or 1, a.e., ŝ(0) = 0.

We refer the existence of ŝ to [2, (4.4)]. Let (E (ŝ),F (ŝ)) be the Dirichlet form (4)
replacing s by ŝ. It follows from [1, Theorem 2.2.11] that (E (ŝ),F (ŝ)) is regular
on L2([0,∞), ld). Denote its associated diffusion process on [0,∞) by (r̂t ). Partic-
ularly, {0} is not an ld -polar set relative to (r̂t ) since ŝ(0) > −∞. Then by using [8,
Theorem 1.3] again, the associated Dirichlet form (Ê , F̂ ) of

Xt := r̂tϑ Ât
, t ≥ 0,

where ( Ât ) is the PCAF of (r̂t ) associated with the Radon smooth measure μ, is
a regular Dirichlet form on L2(Rd) and {0} is of positive Ê -capacity. Furthermore,
from [5, Theorem 3.1], we can conclude that (Ê , F̂ ) is a regular Dirichlet subspace
of ( 12D, H 1(Rd)) on L2(Rd). Let (E ′,F ′) be the part Dirichlet form of (Ê , F̂ ) on
R

d \ {0}, i.e.
F ′ = {u ∈ F̂ : ũ(0) = 0}.

Clearly, (E ′,F ′) is a regular Dirichlet form on L2(Rd \ {0}) and thus quasi-regular
on L2(Rd). Since any quasi-continuous function ũ inF ′ satisfies ũ(0) = 0, we can
obtain that (E ′,F ′) is not regular on L2(Rd).

Finally, we assert (E ′,F ′) is a quasi-regular Dirichlet subspace of ( 12D, H 1(Rd))

on L2(Rd). Clearly, (S1) holds for ( 12D, H 1(Rd)) and (E ′,F ′). We need only to
prove that any E ′-nest is also a 1

2D-nest. To do this, fix an E ′-nest {Fn : n ≥ 1}
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relative to (E ′,F ′) on L2(Rd). Firstly, we assert that {Fn \ {0} : n ≥ 1} is an E ′-nest
relative to (E ′,F ′) on L2(Rd \ {0}). Note the Fn \ {0} is closed inRd \ {0} since Fn

is closed in R
d . By the definition of E ′-nest, we know that ∪n≥1F

′
Fn

is E ′
1-dense in

F ′ (on L2(Rd)), where

F ′
Fn := {u ∈ F ′ ⊂ L2(Rd) : u = 0 a.e. on R

d \ Fn}
= {u ∈ F ′ ⊂ L2(Rd \ {0}) : u = 0 a.e. on (Rd \ {0}) \ (Fn \ {0})}
=: F ′

Fn\{0}.

In this equality, F ′
Fn

(resp. F ′
Fn\{0}) is defined with respect to (E ′,F ′) on L2(Rd)

(resp. L2(Rd \ {0}). Hence ∪n≥1F
′
Fn\{0} is also E ′

1-dense in F ′ (on L2(Rd \ {0})),
and as a result, {Fn \ {0} : n ≥ 1} is an E ′-nest relative to (E ′,F ′) on L2(Rd \
{0}). Secondly, on account of Lemma 1, {Fn \ {0} : n ≥ 1} is a 1

2D-nest relative to
( 12D, H 1(Rd)) on L2(Rd \ {0}), because (E ′,F ′) is a regular Dirichlet subspace of
( 12D, H 1(Rd)) on L2(Rd \ {0}). Thirdly, since

H 1(Rd)Fn := {u ∈ H 1(Rd) ⊂ L2(Rd) : u = 0 a.e. on R
d \ Fn}

= {u ∈ H 1(Rd) ⊂ L2(Rd \ {0}) : u = 0 a.e. on (Rd \ {0}) \ (Fn \ {0})}
=: H 1(Rd)Fn\{0},

an analogous argument of the first step leads to that {Fn : n ≥ 1} is a 1
2D-nest rel-

ative to ( 12D, H 1(Rd)) on L2(Rd). Therefore we eventually arrive at the desirable
conclusion.

3.2.2 Other Attempts

The characterization of quasi-regular (or regular) Dirichlet subspaces for multi-
dimensional Brownian motion is not complete yet. Except for the skew-product
method in [5], another available method, i.e. the direct-product method, was intro-
duced in [4] for the regular Dirichlet subspaces. Roughly speaking, the family of all
regular Dirichlet subspaces, corresponding to the diffusion processes with indepen-
dent components, of multi-dimensional Brownian motion can be completely char-
acterized. We refer the details of direct-product method to [4, Theorem 3.2].

The result of Lemma 2 for one-dimensional Brownian motion inspires us to take
the following problem into consideration: Is there any singular set F ⊂ R

d (like the
set in F for d = 1) such that

F ′ := {u ∈ H 1(Rd) : ∇u = 0 a.e. on F} (5)

is a proper (quasi-regular) Dirichlet subspace of H 1(Rd) with the quadratic form
1
2D? We have no idea till now. The advantage of (5) isF ′ is that clearly closed and
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satisfies the Dirichlet property: u ∈ F ′ implies u+ ∧ 1 ∈ F ′. However to check its
quasi-regularity, we need quasi-continuous functions separating points inRd (outside
an exceptional set). This almost tells us that F must be very wired, and then it seems
not easy to find suitable concrete functions (such to ∇u = 0 a.e. on F) separating
points in Rd .

4 Further Remarks

Loosely speaking, the condition∇u = 0 a.e. on F in (5) implies u is harmonic on F .
Thus generally, for a quasi-regular Dirichlet form (E ,F ) on L2(E,m) associated
with an m-symmetric Markov process (Xt )t≥0, we can introduce another family of
harmonic functions on a nearly Borel set F with m(Fc) > 0 instead of (5):

F ′ := {
u = H 1

Fc f : f ∈ F
}
, (6)

where H 1
Fc f (x) := Ex

(
e−σFc f (XσFc )

)
and σFc is the first hitting time of Fc relative

to (Xt ). Clearly, F ′ is a closed subspace of F under the inner product E1 and
separating Fc outside an exceptional set. We are not clear at moment whether and
how F ′ separates F , but it seems valuable to make an attempt since the functions
in (6) enjoy rich properties. However, what disappoints us is that F ′ given by (6)
usually does not satisfy the Dirichlet property. Note that 1 ∈ F is not essential for
the following equivalence but only simplifies the proof.

Lemma 3 Let F ′ be given by (6) with a nearly Borel set F such that m(Fc) > 0.
Assume that (E ,F ) is irreducible and 1 ∈ F . Then the following assertions are
equivalent:

(1) F ′ satisfies the Dirichlet property: u ∈ F ′ implies u+ ∧ 1 ∈ F ′;
(2) F ′ = F .

Proof Clearly, (2) implies (1) and we need only to prove the contrary. Assume that
F ′ satisfies the Dirichlet property. Let G := Fc and Gr be the set of all regular
points of G, i.e. x ∈ Gr means Px (σG = 0) = 1. Take any H 1

G f ∈ F ′ for non-
negative f ∈ F . Then H 1

G f ∧ 1 ∈ F ′. That means, there exists another function
g ∈ F such that H 1

G f ∧ 1 = H 1
Gg. Particularly, f ∧ 1 = g q.e. on G. So

H 1
G f ∧ 1 = H 1

Gg = H 1
G( f ∧ 1).

Now let f := 2 ∈ F by 1 ∈ F . Then 2p1G ∧ 1 = p1G , where p1G = Exe−σG . This
implies

p1G = 0 or 1, q.e.

Note that {p1G = 1} = Gr . Thus for q.e. x /∈ G ∪ Gr ,



Remarks on Quasi-regular Dirichlet Subspaces 331

Px (σG∪Gr < ∞) = Px (σG < ∞) = 0.

Therefore, (G ∪ Gr )c is invariant and m
(
(G ∪ Gr )c

) = 0 since (E ,F ) is irre-
ducible and m(G) > 0. Note that G ∪ Gr is quasi closed. It follows that (G ∪ Gr )c

is quasi-open and thus an E -exceptional set by m
(
(G ∪ Gr )c

) = 0. On the other
hand, for any quasi-continuous f ∈ F and q.e. x ∈ G ∪ Gr (G \ Gr is semipolar,
so E -exceptional),

H 1
G f (x) = Ex

(
e−σG f (XσG )

) = f (x).

This indicates H 1
G f = f q.e. and F ′ = F . That completes the proof.

We end this section with some proposals for the topic of quasi-regular Dirichlet
subspaces. On one hand, one of our main purposes is to obtain proper quasi-regular
Dirichlet subspaces for concrete Dirichlet forms, for example, those associated with
the multi-dimensional Brownian motions, the α-stable processes and (further) the
O-U process on the abstract Wiener space. These tasks, as we showed above, are
actually not complete. We even do not know whether the Dirichlet forms associated
with α-stable processes on Rd or O-U process have a proper quasi-regular Dirichlet
subspace.On the other hand,we are also interested in the applications of quasi-regular
(also, regular) Dirichlet subspaces. Regular Dirichlet subspaces were already applied
to SDEs and diffusion processes in several recent works by the author and his co-
authors.We believe that the quasi-regular Dirichlet spaces would also play important
roles in the relevant (and more) fields.
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Power-Law Dynamic Arising
from Machine Learning

Wei Chen, Weitao Du, Zhi-Ming Ma, and Qi Meng

Abstract We study a kind of new SDE that was arisen from the research on opti-
mization in machine learning, we call it power-law dynamic because its stationary
distribution cannot have sub-Gaussian tail and obeys power-law. We prove that the
power-law dynamic is ergodicwith unique stationary distribution, provided the learn-
ing rate is small enough. We investigate its first exist time. In particular, we compare
the exit times of the (continuous) power-law dynamic and its discretization. The
comparison can help guide machine learning algorithm.

Keywords Machine learning · Stochastic gradient descent · Stochastic differential
equation · Power-law dynamic

1 Introduction

In the past ten years, we have witnessed the rapid development of machine learning
technology. We successfully train deep neural networks (DNN) and achieve big
breakthroughs in AI tasks, such as computer vision [7, 8, 14], speech recognition
[21, 23, 24] and natural language processing [5, 26, 27], etc.

Stochastic gradient descent (SGD) is amainstream optimization algorithm in deep
machine learning. Specifically, in each iteration, SGD randomly sample a minibatch
of data and update the model by the stochastic gradient. For large DNN models,
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the gradient computation over each instance is costly. Thus, compared to gradient
descent which updates the model by the gradient over the full batch data, SGD can
train DNN much more efficiently. In addition, the gradient noise may help SGD to
escape from local minima of the non-convex optimization landscape.

Researchers are investigating how the noise in SGD influences the optimization
and generalization of deep learning. Recently, more and more work take SGD as the
numerical discretization of the stochastic differential equations (SDE) and investigate
the dynamic behaviors of SGD by analyzing the SDE, including the convergence rate
[9, 15, 22], the first exit time [4, 17, 31, 32], the PAC-Bayes generalization bound [6,
19, 25] and the optimal hyper-parameters [6, 15]. Most of the results in this research
line are derived from the dynamic with state-independent noise, assuming that the
diffusion coefficient of SDE is a constant matrix independent of the state (i.e., model
parameters in DNN). However, the covariance of the gradient noise in SGD does
depend on the model parameters.

In our recent work [17, 18], we studied the dynamic behavior of SGD with state-
dependent noise. We found that the covariance of the gradient noise of SGD in the
local region of local minima can be well approximated by a quadratic function of the
state. Then, we proposed to investigate the dynamic behavior of SGD by a stochastic
differential equation (SDE)with a quadratic state-dependent diffusion coefficient. As
shown in [17, 18], the new SDEwith quadratic diffusion coefficient can better match
the behavior of SGD compared with the SDE with constant diffusion coefficient.

In this paper, we study some mathematical properties of the new SDE with
quadratic diffusion coefficient. After briefly introducing its machine learning back-
ground and investigating its preliminary properties (Sect. 2), we show in Sect. 3 that
the stationary distribution of this new SDE is a power-law distribution (hence we
call the corresponding dynamic a power-law dynamic), and the distribution possesses
heavy-tailed property, which means that it cannot have sub-Gaussian tail. Employing
coupling method, in Sect. 4 we prove that the power-law dynamic is ergodic with
unique stationary distribution, provided the learning rate is small enough. In the last
two sections we analyze the first exit time of the power-law dynamic. We obtain an
asymptotic order of the first exit time in Sect. 5, we then in Sect. 6 compare the exit
times of the (continuous) power-law dynamic and its discretization. The comparison
can help guide machine learning algorithm.

2 Background and Preliminaries on Power-Law Dynamic

2.1 Background in Machine Learning

Suppose that we have training data Sn = {(x1, y1), . . . , (xn, yn)}with inputs {xj}nj=1 ∈
R

d1×n and outputs {yj}nj=1 ∈ R
d2×n. For a model fw(x) : Rd1 → R

d2 with parameter
(vector)w ∈ R

d , its loss over the training instance (xj, yj) is l(fw(xj), yj), where �(·, ·)



Power-Law Dynamic Arising from Machine Learning 335

is the loss function. In machine learning, we are minimizing the empirical loss over
the training data, i.e.,

min
w

L(w) := 1

n

n∑

j=1

�(fw(xj), yj). (2.1)

Stochastic gradient descent (SGD) and its variants are the mainstream approaches to
minimize L(w). In SGD, the update rule at the kth iteration is

wk+1 = wk − η · g̃(wk), (2.2)

where η denotes the learning rate,

g̃(w) := 1

b

∑

j∈Sb
∇w�(fw(xj, yj)) (2.3)

is the stochastic gradient, with Sb being a random sampled subset of Sn with size
b := |Sb|. In the literature, Sb is called mini-batch.

We know that g̃(w) is an unbiased estimator of the full gradient ∇L(w). The gap
between the full gradient and the stochastic gradient, i.e.,

R(w) := ∇L(w) − g̃(w), (2.4)

is called the gradient noise in SGD. In the literature, e.g. [15, 17, 32], the gradient
noise R(w) is assumed to be drawn from Gaussian distribution,1 that is, R(w) ∼
N (0, �(R(w))), where�(R(w)) is the covariance matrix of R(w).Denote�(R(w))

by C(w), the update rule of SGD in Eq. (2.2) is then approximated by:

wk+1 = wk − η∇L(wk) + ηξk , ξk ∼ N (0,C(wk)). (2.5)

Further, for small enough learning rate η, Eq. (2.5) can be viewed as the numerical
discretization of the following stochastic differential equation (SDE) [9, 15, 17],

dwt = −∇L(wt)dt + √
ηC(wt)dBt, (2.6)

where Bt is the standard Brownian Motion in R
d . This viewpoint enable the

researchers to investigate the dynamic properties of SGD by means of stochastic
analysis. In this line, recent work studied the dynamic of SGD with the help of SDE.
However, most of the quantitative results in this line of work were obtained for the
dynamics with state-independent noise. More precisely, the authors assumed that
the covariance C(wt) in Eq. (2.6) is a constant matrix independent with the state

1 Under mild conditions the assumption is approximately satisfied by the Central Limit Theorem.
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wt . This assumption of constant diffusion coefficient simplifies the calculation and
the corresponding analysis. But it is over simplified because the noise covariance in
SGD does depend on the model parameters.

In our recent work [17, 18], we studied the dynamic behavior of SGD with
state-dependent noise. The theoretical conduction and empirical observations of our
research show that the covariance of the gradient noise of SGD in the local region
of local minima can be well approximated by a quadratic function of the state wt as
briefly reviewed below.

Let w∗ be a local minimum of the (empirical/training) loss function defined in
(2.1). We assume that the loss function in the local region ofw∗ can be approximated
by the second-order Taylor expansion as

L(w) = L(w∗) + ∇wL(w∗)(w − w∗) + 1

2
(w − w∗)TH (w − w∗), (2.7)

whereH is theHessianmatrix of loss atw∗.Since∇wL(w∗) = 0 at the localminimum
w∗, (2.7) is reduced to

L(w) = L(w∗) + 1

2
(w − w∗)TH (w − w∗), (2.8)

Under the above setting, the full gradient of training loss is

∇L(w) = H (w − w∗), (2.9)

and the stochastic gradient (2.3) is

g̃(w) := g̃(w∗) + H̃ (w − w∗) (2.10)

where g̃(·) and H̃ (·) are the gradient and Hessian calculated by the minibatch. More
explicitly, the ith component of g̃(w) is

g̃i(w) = g̃i(w
∗) +

d∑

a=1

H̃ia(wa − w∗
a). (2.11)

Assuming that Cov(g̃i(w∗), H̃jk) = 0 for i, j, k ∈ {1, . . . , d},2 we have

C(w)ij = Cov(g̃i(w), g̃j(w)) = �ij + (w − w∗)TAij(w − w∗), (2.12)

2 This assumption holds for additive noise case and the squared loss [29]. Specifically, for �(w) =
(y − fw(x))2, the gradient and Hessian are g(w) = 2f ′

w(x)(y − fw(x)) and H (w) = 2(f ′
w(x))2 +

2f ′′
w(x)(y − fw(w)) ≈ 2(f ′

w(x))2. With additive noise, we have y = fw∗ (x) + ε where ε is white
noise independent with the input x. Then, g(w∗) = 2f ′

w(x)ε, H (w∗) ≈ 2(f ′
w∗ (x))2, and we have

Cov(g̃i(w∗), H̃jk ) ≈ 0.
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where �ij = Cov(g̃i(w∗), g̃j(w∗)), Aij is a d × d matrix with elements Aij
ab = Cov

(H̃ia, H̃jb).
Thus, we can convert C(w) into an analytic tractable form as follows.

C(w) = �g(I + (w − w∗)T�H (w − w∗)) (2.13)

where �g and �H are positive definite matrix. The empirical observations in [17,
18] is consistent with the covariance structure (2.13). Thus the SDE (2.6) takes the
form

dwt = −H (wt − w∗)dt + √
ηC(wt)dBt, (2.14)

where C(w) is given by (2.13). We call the dynamic driven by (2.14) a power-law
dynamic because its stationary distribution obeys power-law (see Theorem 1 below).
As shown in [17, 18], power-law dynamic can better match the behavior of SGD
compared to the SDE with constant diffusion coefficient.

2.2 Preliminaries on Power-Law Dynamic

For the power-law dynamic (2.14), the infinitesimal generator exists and has the
following form:

A =
∑

i

∑

j

η

2
(�g)ij(1 + wT�Hw)

∂

∂wi

∂

∂wj
−

∑

i

Hijw
j ∂

∂wi
.

We will use the infinitesimal generator to specify a coupling in the subsequent sec-
tions. Write vt = wt − w∗, then

dvt = −Hvtdt + √
ηC(vt)dBt, (2.15)

where C(v) = �g(1 + vT�Hv) (comparing with (2.14), here we slightly abused the
notation C).

In machine learning, we often assume that the dynamic in (2.15) can be decoupled
[18, 32, 33]. More explicitly, we assume that �g, �H and H are codiagonalizable
by an orthogonal matrix Q, then under the affine transformation vt = Q(wt − w∗

t ),
(2.15) is decoupled and can be written as

dvt = −hiv
i
t dt +

√
ησi + ηρi(v

i
t)
2dBi

t, i ∈ {1, . . . , d}, (2.16)

where σi, ρi are positive constants.3

3 This decoupling property is empirically observed in machine learning, i.e., the directions of eigen-
vectors of the hessian matrix and the gradient covariance matrix are often nearly coincide at the
minimum [32]. An explanation of this phenomenon is that under expectations the Hessian equals
to Fisher information [11, 32, 35].
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Following the convention of probabilistic literature, in what followswe shall write

μ(vt) = −Hvt (2.17)

σ 2(vt) = ηC(vt). (2.18)

Suppose x, y ∈ R
d , by the mean value theorem, we have the following inequality,

|
√
a + bx2 − √

a + by2| ≤ √
b|x − y|. (2.19)

Then, it is easy to check that both μ(·) and σ(·) are local Lipschitz and have linear
growth. Therefore, by standard theory of stochastic differential equations, the SDE
(2.15) has a unique strong solution v(t), which has continuous paths and possesses
strong Markov property.

Consider the decoupled dynamic in (2.16), we use the fact that as |xi| → ∞,

∣∣∣∣
μi(xi)

σ 2
i (xi)

∣∣∣∣ =
∣∣∣∣

hixi
ησi + ηρix2i

∣∣∣∣ ∼ O

(
1

|xi|
)

.

Then, for any fixed x0, we have

x0∫

−∞
exp

⎛

⎝−
x∫

x0

2μi(s)

σ 2
i (s)

ds

⎞

⎠

⎛

⎝
x0∫

x

exp(
∫ y
x0

2μi(s)
σ 2
i (s)

ds)

σ 2
i (y)

dy

⎞

⎠ dx = ∞,

and ∞∫

x0

exp

⎛

⎝−
x∫

x0

2μ(s)

σ 2(s)
ds

⎞

⎠

⎛

⎝
x∫

x0

exp(
∫ y
x0

2μ(s)
σ 2(s) ds)

σ 2(y)
dy

⎞

⎠ dx = ∞,

which implies that each component of vt will not blow up in finite time.
To conclude, the stochastic differential equation (2.16) admits a unique strong

solution v(t), which has continuous paths and will not blow up in finite time. In
subsequent sections we shall study more properties of the dynamic v(t).

3 Property of the Stationary Distribution

In this section, we show that the stationary distribution of the SDE (2.15) possesses
heavy-tailed property, and its decoupled form is a product of power-law distributions.
The existence and uniqueness of the stationary distribution will be given in the next
section.
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Let Q be an orthogonal matrix such that H ′ = QHQT is a diagonal matrix. Then

d(Qvt) = −H ′Qvtdt +
√
1 + (Qvt)T �̃HQvt ·

√
η�̃gdB̃t, (3.1)

where �̃H = Q�HQT , �̃g = Q�gQT .Note that B̃t = QBt is still aBrownianmotion.
(3.1) is just the power-law dynamic (2.15) under a new orthogonal coordinate system,
so we will abuse the notation and denote the transformed dynamic by vt as well.
Since we care about the tail behavior of the power-law dynamic, we show first that
vt does not have finite higher moments as t → ∞. This implies that vt cannot have
exponential decay on the tail.

Theorem 1 (i) We can findm ≥ 2 such that the moments of the power-law dynamic
(3.1) of order greater than m will explode as the time t → ∞.

(ii) For the decoupled case in (2.16), the probabilistic density of the stationary
distribution is a product of power-law distributions (the terminology follows
from [34]) as below:

p(x) = 1

Z

d∏

i=1

(
1 + ρi

σi
x2i

)κi

, (3.2)

where κi = − ηρi+hi
ηρi

and Z is the normalization constant.

Proof (i) Denote the 2kth moment of vt as m2k(t) := ∑
i E(vi

t)
2k . Then m0(t) =

E[v0
t ] = 1. By Ito’s formula, we have

d
∑

i

E(vi
t)
2k =

∑

i

{−H ′
ii(v

i
t)
2k + k(2k − 1)(1 + vT �̃Hv)�̃giiE(vi

t)
2k−2}.

Let hmax be themaximal diagonal element ofH ′ and gmin be theminimal diagonal
element of �̃g , then we get the recursion inequality (note that it may not hold
for the odd degree moments):

dm2k(t) ≥ (−khmax + k(2k − 1)gminHmin)m2k(t) + k(2k − 1)gminm2k−2(t),
(3.3)

where Hmin is the minimal eigenvalue of the positive definite matrix �̃H . Let
ak = −khmax + k(2k − 1)gminHmin and bk = k(2k − 1)gmin, then

m2k(t) ≥ eak t(x2k0 +
t∫

0

Rk(s) exp(−aks)ds),
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the remainder term is defined by Rk(s) := k(2k − 1)gminm2k−2(s). From the
above relation, we can prove the following inequality by induction:

dm2k(t) ≥
k∑

i=0

cik exp(a
i
k t). (3.4)

By tracking the related coefficients carefully, it is not difficult to find the recur-
rence relations for cik . For example,

ckk = m2k(0) −
k−1∑

i=0

cik .

Since gminHmin is positive, ai becomes positive when i is large. From this fact,
we can always find a k such that

lim
t→∞m2k(t) = ∞,

whichmeans themoment generating function of the stationary distribution blows
up. Therefore, the stationary distribution of vt cannot have sub-Gaussian tail.

(ii) Now we turn to the decoupled case of Eq. (2.16), since each coordinate is self-
dependent, we know that the probabilistic density is of the product form. To
investigate the probabilistic density pi(t, x) of one fixed coordinate vi

t , we need
to study the forward Kolmogolov equation satisfied by pi(t, x). Since μ(x) and
σ(x) have linear growth, we have

∂pi
∂t

= 1

2
�(σ 2p) − ∇(μp) = 1

2
�[(ησi + ηρix

2
i )p] + ∇[hixip].

We first transform the Kolmogorov forward equation into the Smoluchowski
form:

1

2
�[(ησi + ηρix

2
i )p] + ∇[hixip] = ∇ · [ηρixip + σ 2

2
∇p + hixip] (3.5)

= ∇[(hixi + ηρixi)p] + ∇[σ
2

2
∇p].

Define the fluctuation-dissipation relation κi by

κi = −ηρi + hi
ηρi

.

Then the stationary distribution ps satisfies
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0 = ∇[(hixi + ηρixi)p] + ∇[σ
2
i

2
∇pi] (3.6)

= 1

2
∇[σ 2(1 + ρi

σi
x2i )

κi∇((1 + ρi

σi
x2i )

−κi ps)] (3.7)

Therefore,

ps(x) = 1

Zi

(
1 + ρi

σi
x2i

)κi

, (3.8)

where Zi is a constant. When κi < − 1
2 , Zi can be chosen such that ps is a prob-

abilistic distribution. Since each component is decoupled, the stationary distri-
bution is the product of (3.8), then the proof is completed.

Remark 1 (i) The above calculation is inspired by the idea froma statistical physics
literature [34]. In [34], the tail index κi (depending on the hyper-parameter η)
plays an important role in locating the large learning rate region.

(ii) Another way to view the power-law dynamic is to apply the results in the ground-
breaking article [16]. Roughly speaking, the authors of [16] gave a complete
classification in the Fourier space with a determined stationary distribution. Fol-
lowing the notation in [16], suppose we write the SDE in the following form:

dz = f (z)dt + √
2D(z)dB(t),

where D(z) is a positive semi-definite diffusion matrix (a Riemannian metric).
Suppose the stationary distribution ps(z) ∝ exp(−H (z)), then the drift term f (z)
must satisfy:

f (z) = −[D(z) + Q(z)]∇H (z) + �(z),

whereQ(z) is an arbitrary skew-symmetric matrix (a symplectic form) and �(z)
is defined by

�i(z) =
d∑

j=1

∂

∂zj
(Dij(z) + Qij(z)).

When d = 1, due to the skew-symmetry,Q(z) ≡ 0. If the stationary distribution
is given by (3.8), H (z) = κ ln(1 + ρ

σ
z2). Thus,

∇H (z) = −κρz

σ + ρz2
.

We get that
f (z) = 2(1 + κ)ηρz.

In this way, we automatically obtain the fluctuation-dissipation relation.
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4 Existence and Uniqueness of the Stationary Distribution

In this section, we shall prove that the power-law dynamic is ergodic with unique
stationary distribution, provided the learning rate η is small enough (see Theorem 2
(ii) below). Note that unlike Langevin dynamics, we have a state-dependent diffusion
term in the power-law dynamic and its stationary distribution does not have a sub-
Gaussian tail, which makes the diffusion process break the log-Sobolev inequality
condition. Instead of treating vt as a gradient flow, we shall use coupling method to
bound the convergence of vt to its stationary distribution.

Let the drift vector μ(x) = −Hx and the diffusion matrix σ 2(x) = ηC(x), where
x ∈ R

d , be defined as in (2.17) and (2.18) respectively. We set

θ := inf
x,y

{− < μ(x) − μ(y), x − y > / ‖x − y‖2} , (4.1)

λ := sup
x,y

⎧
⎨

⎩max
i

∑

1≤j≤d

(σij(x) − σij(y))
2/ ‖x − y‖2

⎫
⎬

⎭ . (4.2)

Theorem 2 (i) Let p(t, x, ·) be the transition probability of the power-law dynamic
driven by (2.15), we have

W2(p(t, x, ·), p(t, y, ·)) ≤‖ x − y ‖ e(d ·λ−θ)t, (4.3)

whereW2(·, ·) is theWasserstein distance between two probability distributions.
(ii) Employing the notations used in the previous section, we write hmin for the

minimal diagonal element of the matrix H ′, gmax for the maximal element of√
�̃g, and Hsum for the sum of the eigenvalues of �̃H . Suppose that

η <
hmin

d2 · g2maxHsum
, (4.4)

then the power-law dynamic in (2.15) is ergodic and its stationary distribution
is unique.

Proof (i) We shall employ the coupling method of Markov processes in this
proof and in the rest of this paper. The reader may refer to Chap.2 of [2],
especially page 24 and Example 2.16, for the relevant contents. Recall that
every infinitesimal generator of an R

d -valued diffusion process has the form
As = ∑

x α(x) ∂2

∂x2 + ∑
x β(x) ∂

∂x . To specify a coupling between two power-law
dynamics starting from different points ofRd ,we define a coupling infinitesimal
generator As(x, y), (x, y) ∈ R

2d , as follows:

αs(x, y) =
(

σ(x)σ (x)T , σ (x)σ (y)T

σ(y)σ (x)T , σ (y)σ (y)T

)
, βs(x, y) =

(
μ(x)
μ(y)

)
,
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where σ(·) and μ(·) are specified by (2.17) and (2.18) respectively, αs(x, y)
corresponds to the second order differentiation and βs(x, y) corresponds to the
first order differentiation.
Let r(x, y) = ‖x − y‖2 and let As act on r(x, y), we get

Asr(x, y) = 2 < μ(x) − μ(y), x − y > +
∑

i

∑

j

(σij(x) − σij(y))
2

≤ −2θ ‖x − y‖2 + 2dλ ‖x − y‖2
≤ cr(x, y),

where c := 2dλ − 2θ . Denote byXt the dynamic starting at x and Yt the dynamic
starting at y, by Ito’s formula, we have

dEr(Xt,Yt)

dt
≤ cEr(Xt,Yt).

Applying Gronwall’s inequality, we get

Er(Xt,Yt) ≤ r(x, y)ect,

which implies that

W2(p(t, x, ·), p(t, y, ·)) ≤ √
r(x, y)ect/2 = ‖x − y‖ e(d ·λ−θ)t,

verifying (4.3).
(ii) In view of (4.3), we need only to check that if (4.4) holds, then (d · λ − θ) < 0.

We have

< μ(x) − μ(y), x − y >= −
∑

i

H ′
i (xi − yi)

2 ≤ −hmin ‖x − y‖2 ,

therefore
θ ≥ hmin. (4.5)

On the other hand, let gmax be the maximal element of
√

�̃g , then for all i,

∑

1≤j≤d

(σij(x) − σij(y))
2 ≤ η · g2max(

√
1 + xT �̃Hx −

√
1 + yT �̃Hy)

2.

Since ‖x − y‖ is preserved under orthogonal transformation, then by the mean
value theorem and Cauchy inequality, we can find (θ1, . . . , θd ), such that

(σij(x) − σij(y))
2 ≤ η · g2max|(

h1θ1√
1 + θT �̃H θ

, . . . ,
hdθd√

1 + θT �̃H θ
)
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· (x1 − y1, . . . , xd − yd )|2 ≤ η · g2maxHsum ‖x − y‖2 ,

where {hi} denote the eigenvalues of �̃H , and Hsum denotes the sum of the
eigenvalues. Thus,

max
i

∑

1≤j≤d

(σij(x) − σij(y))
2 ≤ d · η · g2maxHsum ‖x − y‖2 .

Consequently,
λ ≤ d · η · g2maxHsum. (4.6)

Combining (4.5) and (4.6), we see that (4.4) implies (d · λ − θ) < 0. Therefore
Assertion (ii) holds by the virtue of (4.3). The proof is completed.

Remark 2 If we restrict ourselves in the decoupled case (2.16), we can get the
exponential convergence to stationary distribution undermuchweaker condition of η.
Notice that now σ(x) is a diagonal matrix. Using short handwriting (σii(x) − σii(y))2

for
∑

1≤j≤d (σij(x) − σij(y))2, we have

(σii(x) − σii(y))
2 ≤ (

√
η(σi + ρi(xi)2) − √

η(σi + ρi(yi)2))
2

≤ ηρi(xi − yi)
2.

Then, we have

Lsr(x, y) =
∑

i

(σii(x) − σii(y))
2 − √

η(σ1 + ρi(yi)2))
2 − hi(x

i − yi)2]

≤
∑

i

(ηρi − hi)(x
i − yi)2

≤ csr(x, y),

where cs := maxi[ηρi − hi], which does not involve the dimension d .

5 First Exit Time: Asymptotic Order

From now on, we investigate the first exit time from a ball of the power-law dynamic,
which is an important issue in machine learning. By leveraging the transition rate
results from the large deviation theory (see e.g. [13]), in this section we obtain an
asymptotic order of the first exit time for the decoupled power-law dynamic.

Theorem 3 Suppose 0 is the only local minimum of the loss function inside B(0, r).
Let τ x

r (η) be the first exit time from B(0, r) of the decoupled power-law dynamic in
(2.16), with learning rate η, starting at x ∈ B(0, r), then
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lim
η→0

η logEτ x
r (η) = C · inf

ζ=(ζ 1,...,ζ d )∈∂B(0,r)

∑

i

−hi
ρi

log[σi + ρi(ζ
i)2], (5.1)

where C is a prefactor to be determined.
When d = 1, we have an explicit expression of the first exit time from an interval

[a, b] starting at x ∈ (a, b):

Eτx = g(x) := 2

b∫

x

eφ(y)

σ 2(y)
dy

y∫

a

e−φ(z)dz, (5.2)

where φ = 2 − κ ln(1 + ρ

σ
x2) and κ = − ηρ+h

ηρ
.

Proof Let τ be a stopping time with finite expectation and letA be the infinitesimal
generator of vt , then recall that Dynkin’s formula tells us:

E[f (vτ )] = f (x) + E[
τ∫

0

Af (vs)ds], f ∈ C2
0(R

d ),

where v0 = x. Suppose f solves the following boundary problem:

{Af (x) = −1, x ∈ B(0, r),
f (x) = 0, x ∈ ∂B(0, r),

(5.3)

then Eτ x
r = f (x), where τ x

r denote the first exit time of vt starting at x from the ball
B(0, r).

We consider first the situation of d = 1, let τ x
(a,b)(η) be the first exit time of

v(t) from an interval [a, b] starting at x ∈ (a, b). Note that the diffusion coefficient
function σ(x) = √

ησ + ηρx2 > 0, then by Dynkin’s formula, Eτ x
(a,b)(η) = g(x),

where g(x) solves the following second order ODE:

{A1g(x) = −1, x ∈ (a, b),
g(x) = 0, x ∈ {a, b}, (5.4)

where A1 = −hx ∂
∂x + (ησ + ηρx2) ∂2

∂x2 is the infinitesimal generator of the one
dimensional power-law diffusion. Now we introduce the integration factor φ(x) :=
−κ ln(1 + ρ

σ
x2), following (3.5),

∇[(hx + ηρx)f (x)] + ∇[σ
2

2
∇f (x)] = 1

2
∇[σ 2e−φ∇(eφ f (x))] = 0. (5.5)

Then,



346 W. Chen et al.

A1f (x) = 1

2
∇[σ 2e−φ∇(eφ f (x))] − ∇[ηρxf (x)] + hf (x) − ηρx∇f (x) − 2∇[hxf (x)]

= 1

2
∇[σ 2e−φ∇(eφ f (x))] − 1

2
∇[φ̇σ 2(x)f (x)] − 1

2
φ̇σ 2∇f (x)

= 1

2
eφ∇[e−φσ 2∇f (x)],

where we denote φ̇ = 2(ηρ + h)x/σ 2 to get the second line. Therefore (5.4) is equiv-
alent to

A1g(x) = 1

2
eφ∇[e−φσ 2∇g(x)] = −1.

Integrating the above equation, we recover (13) of [3]:

Eτ x
(a,b)(η) = g(x) = 2

b∫

x

dy
eφ(y)

σ 2(y)

y∫

a

e−φ(z)dz. (5.6)

The reader can check Sect. 12.3 of [30] for the asymptotic analysis of (5.6) as η → 0.
We now investigate the general situation of d > 1. We have only asymptotic esti-

mates on the exit time as the learning rate η → 0. For this purpose, it is convenient to
introduce the geometric reformulation of (2.16). SupposeBt is the standard brownian
motion, recall that in local coordinates, the Riemannian Brownian motion Wt with
metric {gij} has the following form (cf. e.g. [10]):

dWi
t = σ i

j (Wt)dB
j
t + 1

2
bi(Wt)dt, (5.7)

where bi(x) = gjk(x)�i
jk(x) and σij(x) = √

gij(x). Comparing (5.7) with the martin-
gale part of (2.16), we define the inverse metric as gij = (σi + ρi(xi)2)δij. Then the
metric gij is also a diagonal matrix. The Christoffel symbols can be calculated under
the new metric:

�i
jk(x) = ρix

i · (ρi + ρi(x
i)2), when i = j = k,

and�i
jk(x) = 0, otherwise. Denote the gradient vector filed of a smooth function f (x)

by ∇f (x), then
∇f (x) = (∂if )g

ij∂j(x),

where ∂i(x) := ∂
∂xi

(x), 1 ≤ i ≤ d , denotes the ith coordinate tangent vector at x ∈
R

d . To emphasis the parameter η that appears in the diffusion term in the power-
law dynamic, we denote the dynamic and its corresponding exit time by vt(η) and
τ x
r (η). Let fη(x) := −∑

i
hi
2ρi

log(σi + ρi(xi)2) −
√

η

2 ρi(
σi
2 (xi)2 + ρi

3 (xi)3), then vt(η)

in (2.16) can be seen as a diffusion process under the new metric:
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dvt(η) = ∇fη(vt)dt + √
ηdWt, (5.8)

where Wt is the Riemannian Brownian motion by (5.7) and 0 is a local minima of
the limit function: flim(x) := limη→0 fη(x) = −∑

i
hi
2ρi

log(σi + ρi(xi)2). Note that
both the drift term and the diffusion term are intrinsically defined with respect to
the metric {gij}1≤i,j≤d . By large deviation theory, the rate function Iη(φ) of a path
φ : [0,T ] → R

d is:

Ilim(φ) = 1

2

T∫

0

∥∥φ̇(t) − ∇flim(φ(t))
∥∥2

dt + 2[flim(φ(T )) − flim(φ(0))],

where the norm is with respect to the Riemannian metric gij. It follows that the
quasi-potential of the ball B(0, r) is given by

f̄lim = 2[ inf
ζ=(ζ 1,...,ζ d )∈∂B(0,r)

flim(ζ ) − flim(0)].

By Theorem 2.2 and Corollary 2.4 of [1], if 0 is the only local minima of flim in
B(0, r), then there exists a constant C > 0 such that

lim
η→0

η logEτ x
r (η) = C · 2[ inf

ζ=(ζ 1,...,ζ d )∈∂B(0,r)
flim(ζ ) − flim(0)]

= C · inf
ζ=(ζ 1,...,ζ d )∈∂B(0,r)

∑

i

−hi
ρi

log[1 + ρi

σi
(ζ i)2].

The proof is completed.

Remark 3 When the dimension d = 1, we can get similar results with a precise
prefactor by applying semiclassical approximation to the integral (5.6), see [12].
Taking exponential of (5.1), it is obvious that the leading order of the average exit
time is of the power law form with respect to the radius r.

6 First Exit Time: From Continuous to Discrete

In this section, we compare the exit times of the continuous power-law dynamic
(2.15) and its discretization:

zk+1 = zk + εμ(zk) + εεk , εk ∼ N(0, σ 2(zk)). (6.1)

Note that the first exit time of the discretized dynamic (6.1) is an integer thatmeasures
how many steps it takes to escape from the ball, thus the K time steps correspond
to Kε amount of time. In this view point, the comparison can help guide machine
learning algorithm provided the time interval ε coincides with the learning rate η.
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However, since in power law dynamic the covariance matrix σ 2(wk) contains η, for
the convenience of theoretic discussion, we should temporarily distinguish ε from η

before arriving at the conclusion.
To shorten the length of the article, we shall confine ourselves in the situation of

d = 1. Assume the local minima is located at the origin 0. Denote the ball centered
at 0 with radius r > 0 by B(0, r), let τ 0

r be the first exit time from the ball B(0, r)
of the one dimensional continuous power-law dynamic in (2.15) and let τ̄ 0

r be the
corresponding first exit time of the discretized dynamic (6.1), both starting from 0.

Remark 4 From the definition, if τ̄ 0
r equals an integer k, then it takes k steps for the

discretized dynamic to escape from the ball B(0, r). Since the time interval is set to
be ε, the corresponding exit time for the continuous dynamic to take is kε.

Given |a| < r, letτ 0
r+a be the first exit time from the ball B(0, r + a) of the one

dimensional continuous power-law dynamic in (2.15), then we have the following
comparison of P[τ̄ 0

r > K] with the corresponding quantities related to the first exit
time of the continuous dynamic.

Theorem 4 Suppose δ, δ̄ > 0 and satisfy δ + δ̄ < r, given a large integer K, we
have

P[τ 0
r−δ > Kε] − 4

3δ2
E(ε)K

cε
≤ P[τ̄ 0

r > K]

≤ P[τ 0
r+δ+δ̄

> Kε] + 4

3δ2
E(ε)K

cε
+ 1 −

(
1 − C(ε, η)

δ̄4

)K

,

where E(ε) ∼ O(ε2) and C(ε, η) ∼ O(ε) as ε → 0.

Proof For our purpose we introduce an interpolation process zt as follows:

dzt = −hzkdt +
√

ησ + ηρ(zk)2dBt, t ∈ [(k − 1)ε, kε), (6.2)

where ε is the discretization step size. More precisely, the drift coefficient and the
diffusion coefficient of (6.2) will remain unchangedwhen t ∈ [(k − 1)ε, kε) for each
1 ≤ k ≤ K . Note that if we rewrite

√
ησ + ηρ(zk)2 as σ(zk), (6.2) is expressed as

dzt = −hzkdt + σ(zk)dBt, t ∈ [(k − 1)ε, kε), (6.3)

which reduced to (6.1) when t = kε for each k.
We shall adopt a similar strategy as in [20] to transfer from the average exit time

of the power-law dynamic vt to its discretization zt . Below in the discussion we
follow also the notations in the previous sections. Roughly speaking, the proof can
be divided into two steps:

(i) Fix the number of iteration steps as K, prove that
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P((zε, . . . , zKε) − (vε, . . . , vKε) /∈ Bδ) ≤ ε̄,

where ε̄ is a small positive constant to be determined, and
Bδ = B(0, δ) × · · · × B(0, δ)︸ ︷︷ ︸

K

is the hyper-cube of radius δ > 0. This can be done

by bounding the W2-distance of vkε and zkε for 1 ≤ k ≤ K . Let

Aδ = B(0, r + δ) × · · · × B(0, r + δ)︸ ︷︷ ︸
K

,

where r > |δ| > 0. For simplicity, denote the exit time of the power-law dynamic
from Aδ by τδ . For the interpolation process zt , we denote the corresponding exit
time (an integer) with a bar above it: τδ → τ̄δ . Then,

P[(vε, . . . , vKε) ∈ A−δ] − δ̄ ≤ P[τ̄0 > K] (6.4)

≤ P[(vε, . . . , vKε) ∈ Aδ] + ε̄.

Note that the event {τ̄τ > K} indicates that the interpolation process zt remains
in Aδ when t ≤ Kε.

(ii) Step 1 guarantees that if v(t) is trapped in a ball with a different size when
t = ε, 2ε, . . . ,Kε, then the interpolation process z(t) is also trapped in a ball.
However,

P[(vε, . . . , vkε) ∈ Aδ] > P[τδ > Kε],

since v(t) may drift outside the ball when t ∈ [(k − 1)ε, kε) for 1 ≤ k ≤ K . We
define this ‘anomalous’ random event by

R := { max
0≤k≤K−1

sup
t∈(kε,(k+1)ε)

‖vt − vkε‖ > δ̄}.

Then obviously,

P[(vε, . . . , vkε) ∈ Aδ] (6.5)

≤ P[τδ+δ̄ > kε] + P[(vε, . . . , vkε) ∈ Rc],

where Rc denotes the complement of the event R. We would expect that the
probability of {(v(ε), . . . , v(kε)) ∈ Rc} to be small if the diffusion coefficient
of the dynamic is bounded, in which case we can apply Gaussian concentration
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results. However, the diffusion part of the power-law dynamic is not bounded,
so additional technical issue should be taken care of.

Now we introduce the same form of coupling as in the previous sections between
(vt, zt) for t ∈ [(k − 1)ε, kε), ∀1 ≤ k ≤ K . Following the notations in the proof of
Theorem 2, we set the αs(v, z) and βs(v, z) of the infinitesimal generator As of the
coupling as:

αs(v, z) =
(

σ(v)σ T (v), σ (v)σ (zkε)
σ (zkε)σ (z), σ (zkε)σ T (zkε)

)
, βs(v, z) =

( −hv
−hzkε

)
. (6.6)

Suppose (v0, z0) = (x, x), denote the marginal distribution of vt and zt at t = kε by
pv
k and pzk respectively.
The remainder proof of the theorem will be accomplished by three lemmas. We

first prove the following lemma for the one dimensional decoupled dynamic (2.16):

Lemma 1 Suppose that the coefficients of (2.16) satisfy:

{ηρ, ρ} ≤ h ≤ 1

ε
, (6.7)

(which is fulfilled in SGD algorithm for large batch size and small learning rate).
Let (v(t), z(t)) be the coupling process defined by (6.6), and v(0) = z(0) = x. When
t = Kε, the Wasserstein distance between the marginal distribution pzK of z(t) and
the marginal distribution pv

K of the power-law dynamic v(t) is bounded by

W2
2 (p

v
K , pzK ) ≤ 4

3

E(ε)

cε
, (6.8)

where c = 2h − ηρ > 0. Moreover, E(ε) > 0 is independent of the number of steps
K and is of order O(ε2) when the time interval ε → 0.

Proof of Lemma 1 Denote the transition probability of vt and zt from time (k − 1)ε
to (k − 1)ε + t by pv

(k−1)ε+t(v(k−1)ε, ·) and pz(k−1)ε+t(z(k−1)ε, ·) respectively. Let As

act on the function r(v, z) := ‖v − z‖2 and use the Gronwall’s inequality, we can
deduce the following recursion inequality for 1 ≤ k ≤ K :

W2
2 (p

v
k (·), pzk(·)) ≤

∫

Rd×Rd

W2
2 (p

v
(k−1)ε + t(v(k−1)ε, ·), pz(k−1)ε(z(k−1)ε, ·))

dπ(pv
k−1(v(k−1)ε), p

z
k−1(z(k−1)ε))

≤ e−cεW2
2 (p

v
k−1(·), pzk−1(·))

+
∫

R

1

2
ε3ρ(8ηρ + 4h) ‖x‖2 dpv

k−1(x)
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+
∫

R

[1
3
ε3h(4ηρ + 2h)ρ + 1

2
ε2σ(8ηρ + 3h)] ‖y‖2 dpzk−1(y)

+ ε2ηρ(4ηρ + 2h) + 1

2
ε2σ(8ηρ + 3h),

where c = 2h − ηρ > 0 and π(pv
k−1(·), pzk−1(·)) is the optimal coupling between

pv
k−1(·) and pzk−1(·). (Note that in our context the optimal coupling always exists, see
e.g. Proposition 1.3.2 and Theorem 2.3.3 in [28].)

For the interpolation process zt starting at y0, by Ito’s formula, we have the fol-
lowing estimate:

∫

Rd

‖y‖2 dpzk(y) ≤ e−(2h−ηρ)kε(y20 − ηρ

2h − ηρ
) + ηρ

2h − ηρ
.

Similarly, the second moment of the continuous dynamic vt starting at x0 can be
bounded by:

E ‖vt‖2 ≤ e−(2h−ηρ)t(x20 − ηρ

2h − ηρ
) + ηρ

2h − ηρ
. (6.9)

Notice that the distance between vt and zt is zero at initialization, then by applying
the recursion relation from k = 1 to k = K , we conclude that there exits E(ε) > 0,
such that

W2
2 (p

v
K , pxK ) ≤ 4

3

E(ε)

cε
,

where E(ε) ∼ O(ε2) is independent of K, which completes the proof of Lemma 1.
By the definition of the W2-distance,

P((zε, . . . , zKε) − (vε, . . . , vKε) /∈ Bδ) ≤
K∑

k=1

W 2
2 (pv

k , p
z
k)

δ2

≤ 4

3δ2
· E(ε)K

cε
. (6.10)

Below we denote the above right hand side 4
3δ2

E(ε)K
cε by ε̄. For the second step, from

(6.4) and (6.5), it follows that

P[τ−δ > Kε] − ε̄ ≤ P[τ̄0 > K] ≤ P[τδ+δ̄ > Kε] + P[(vε, . . . , vKε) ∈ Rc] + ε̄.

(6.11)
Therefore, we are left to estimate P[(vε, . . . , vKε) ∈ Rc]. Under the condition h >
1
2ηρ, we have the following lemma:

Lemma 2 Let δ > 0 be fixed. Conditioning on the event that vt is inside B(0, b + δ)

when t = kε for all 1 ≤ k ≤ K, we have



352 W. Chen et al.

E sup
s∈[kε,(k+1)ε)

(vs)
4 ≤ D(η, ρ, ε),

where D(η, ρ, ε) := [(2 + 2/δ) (b+δ)2ηρ

2h−ηρ
+ (5 + 1

δ
)(ησ )2ε] exp{12(1 + δ)ηρε}.

Remark 5 The above lemma tells us that the fourth moment won’t change too
much if the time interval ε is small. Intuitively, since the martingale part of vt is√

ησ + ηρv2
t dBt , if |vt| is bounded, then by the time change theorem, we know that

the marginal distribution of the martingale part behaves like a scaled Gaussian.

Proof of Lemma 2 By Ito’s formula,

d(vt)
2 = ησdt − (2h − ηρ)(vt)

2dt + 2vt
√

ησ + ηρi(vt)2dBt .

Define a localmartingaleMt := 2
∑ ∫ t

0 e
(2h−ηρ)s

√
ησ + ηρ(vs)2vsdBs, then byGron-

wall’s inequality,

(vt)
2 ≤ e−(2h−ηρ)t(v0)

2 + e−(2h−ηρ)tMt

+ e−(2h−ηρ)t

t∫

0

e(2h−ηρ)sησds.

Let
St := E sup

s∈[kε,kε+t]
(vs)

4, t ∈ [0, ε).

Then, for the fixed δ > 0,

St ≤ (1 + δ)e−2(2h−ηρ)t
E sup

s∈[0,t]
(Ms)

2 + (2 + 2/δ)e−2(2h−ηρ)t
E(vkε)

4

+ (2 + 2/δ)e−2(2h−ηρ)t
E(

t∫

0

e(2h−ηρ)sησds)2.

Applying Doob’s inequality, we get

St ≤ 2(1 + δ)e−2(2h−ηρ)t
EM 2

t + (1 + 1

δ
)
e−2(2h−ηρ)t − 1

(ηρ − 2h)t

· E
t∫

0

(ησ )2ds + (2 + 2/δ)e−2(2h−ηρ)t
E(vkε)

4.
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Now, Ito’s isometry implies that

St ≤ 12(1 + δ)ηρ

t∫

0

Ssds + (2 + 2/δ)e−2(2h−ηρ)t
E(vkε)

4

+ (5 + 1

δ
)(ησ)2t

≤ [(2 + 2/δ)E(vkε)
4 + (5 + 1

δ
)(ησ)2t] exp{12(1 + δ)ηρt},

where we used Gronwall’s inequality to derive the last line. For all 1 ≤ k ≤ K , by
taking x0 = 0 in (6.9), we get

E{(vkη)4I(vε ,...,vKε )∈Aδ
} ≤ (b + δ)2ηρ

2h − ηρ
.

Then, conditioning on the event that {vkε ∈ B(0, b + δ)}, we have

E sup
s∈[kε,(k+1)ε)

(vs)
4 ≤ [(2 + 2/δ)

(b + δ)2ηρ

2h − ηρ
+ (5 + 1

δ
)(ησ)2ε]

· exp{12(1 + δ)ηρε} := D(η, ρ, ε),

which completes the proof of Lemma 2.

Lemma 3 Let δ̄ be a positive constant, then for every k ∈ [0, . . . ,K − 1],

P( sup
t∈[kε,(k+1)ε)

‖vt − vkε‖ > δ̄) ≤ C(ε, η)

δ̄4
,

where C(ε, η) ∼ O(ε) when ε → 0.

Proof of Lemma 3 Let r(x) = ‖x − vkε‖2, then by Ito’s lemma,

dr(vt) ≤ −2hvt(vt − vkε)dt + 2
√

ησ + ηρ(vt)2(vt − vkε)dBt + (ησ + ηρ(vt)
2)dt

≤ −2h(vt − vkε)
2dt + 3h(vkε)

2dt + ησdt

+ (ηρ + h)(vt)
2dt + 2

√
ησ + ηρ(vt)2(vt − vkε)dBt,

and obviously we know that r(vkε) = 0. Let

Mt := 2

t∫

kε

e2hs
√

ησ + ηρ(vs)2(vs − vkε)dBs,
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we have

r(vt) ≤ e−2htMt + e−2ht

t∫

kε

e2hs[3h(vkε)2 + ησ + (ηρ + h)(vs)
2]ds.

Let St := E sups∈[kε,t] r2(vs), then

St ≤ 2e−4h(t−kε)
E sup

s∈[kε,t]
(Ms)

2 + 2e−4h(t−kε)

· E(

t∫

kε

e2hs[3h(vkε)2 + ησ + (ηρ + h)(vs)
2]ds)2

≤ 4e4h(t−kε)
E(Mt)

2 + 1 − e−4h(t−kε)

h
E

t∫

kε

[3h(vkε)2 + ησ + (ηρ + h)(vs)
2]2ds

≤ 16E

t∫

kε

(ησ + ηρ(vs)
2)(vs − vkε)

2ds

+ 1 − e−4h(t−kε)

h
E

t∫

kε

[3h(vkε)2 + ησ + (ηρ + h)(vs)
2]2ds.

Let t = (k + 1)ε, and denote the above right hand side as C(ε, η). Since E|vs|2 ≤√
E|vs|4, by Lemma 2,

C(ε, η) ∼ O

(
exp(ηε) − 1

η

)
= O(ε).

Therefore,

P( sup
t∈[kε,(k+1)ε)

‖v(t) − v(kε)‖ > δ̄) ≤ ES(k+1)ε

δ̄4
≤ C(ε, η)

δ̄4
.

The proof of Lemma 3 is completed.
From theprevious lemma,wecan easily deduce the followingboundonP[(vε, . . . ,

vKε) ∈ Rc]:
P[(vε, . . . , vKε) ∈ Rc] ≤ 1 − (1 − C(ε, η)

δ̄4
)K . (6.12)

Combing (6.12) and (6.11), we have finished the proof of the theorem.
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Remark 6 Theorem 4 discussed only the 1-dimensional case. For high dimensional
case, there have been some intuitive discussion in machine learning literature [32].
Roughly speaking, the escaping path will concentrate on the critical paths, i.e., the
paths on the direction of the eigenvector of the Hessian, when the noise is much
smaller than the barrier height with high probability. If there are multiple parallel
exit paths, the total exiting rate, i.e., the inverse of the expected exit time, equals to
the sum of the first exiting rate for every path (cf. Rule 1 in [32]).
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Hölder Estimates for Resolvents
of Time-Changed Brownian Motions

Kouhei Matsuura

Abstract In this paper, we study time changes of Brownian motions by positive
continuous additive functionals. Under a certain regularity condition on the associ-
ated Revuz measures, we prove that the resolvents of the time-changed Brownian
motions are locally Hölder continuous in the spatial components. We also obtain
lower bounds for the indices of the Hölder continuity.

Keywords Brownian motion · Time change · Hölder continuity · Resolvent ·
Coupling

Mathematics Subject Classification 31C25 · 60J35 · 60J55 · 60J60 · 60J45

1 Introduction

Let B = ({Bt}t≥0, {Px}x∈Rd ) be a Brownian motion on the d -dimensional Euclidean
space R

d . Let A = {At}t≥0 be a positive continuous additive functional (PCAF in
abbreviation) of B. Then, the time-changed Brownian motion B̌ = ({B̌t}t≥0, {P̌x}x∈F)

by the PCAF A is defined as

B̌t = Bτt , P̌x = Px, (t, x) ∈ [0,∞) × F .

Here, we denote by {τt}t≥0 the right continuous inverse of {At}t≥0, and F stands for
the support of A (see (3) below for the definition). From the Revuz correspondence
(see (2)), the PCAF A induces a Borel measure μ on R

d , which is called the Revuz
measure of A. It is known that the time-changed Brownian motion B̌ becomes a μ-
symmetric right process on F (see, e.g. [4, Theorem 5.2.1]). On account of this fact,
in what follows, we use the symbol Bμ (Aμ and Fμ, respectively) to denote B̌ (A and
F , respectively).
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A typical example of Revuz measures is of the form f dm. Here, f : Rd → [0,∞)

is a locally bounded Borel measurable function, and m stands for the Lebesgue
measure onRd . Then,we haveAf dm

t = ∫ t
0 f (Bs) ds, t ≥ 0.However, aRevuzmeasure

μ can be singular with respect tom. Then, the behavior ofBμ would be quite different
from that of the standard Brownianmotion. Nevertheless, ifFμ = R

d , we can simply
describe the Dirichlet form (E,Fμ) of Bμ by using the extended Dirichlet space
H 1

e (Rd ) ofB. If d ∈ {1, 2}, we see from [4, Theorem 2.2.13] thatH 1
e (Rd ) is identified

with

{f ∈ L2loc(R
d ,m) | |∇f | ∈ L2(Rd ,m)}.

Here, L2loc(R
d ,m) is the space of locally square integrable functions on R

d with
respect to m, and ∇f denotes the distributional gradient of f . Even if d > 2, the
extended Dirichlet space is characterized with distributional derivatives ([4, The-
orem 2.2.12]). From these facts and [4, (5.2.17)], we find that the Dirichlet form
(E,Fμ) is identified with

E(f , g) = 1

2

∫

Rd

(∇f (x),∇g(x)) dm(x), f , g ∈ Fμ, (1)

Fμ = {̃u ∈ H 1
e (Rd ) | ũ ∈ L2(Rd , μ)}.

Here, we denote by (·, ·) the standard inner product on R
d , and ũ is the quasi-

continuous version of u ∈ H 1
e (Rd ). See [5, Lemma 2.1.4 and Theorem 2.1.7] for the

existence and the uniqueness. However, even in this setting, it is generally difficult
to write down other analytical objects associated with Bμ, such as the semigroup and
the resolvent. Therefore, it is non-trivial to clarify how these objects depend on μ.

In this paper, we study the continuity of the resolvent of Bμ in the spatial compo-
nent. Even though this kind of problemcan be formulated for otherMarkov processes,
the current setting allows us to quantitatively clarify how the continuity depends on
μ. In the main theorem of this paper (Theorem 1), we prove that the resolvent of
Bμ is Hölder continuous in the spatial component under a certain condition on μ.
The condition is given in (5) below, and the index there represents a regularity of
μ. This also describes a lower bound for the index of the Hölder continuity of the
resolvent. In particular, we see that the resolvent is (1 − ε)-Hölder continuous if the
index is sufficiently large. Condition (5) can be regarded as a generalized concept
of the d -measure. We refer the reader to [6] for basic facts on time-changed Hunt
processes by PCAFs associated with d -measures. We also note that the Liouville
measure is one of examples which satisfies (5). The reader is referred to [7, 8] and
references therein for more details and the time changed planar Brownian motion by
the PCAF associated with the Liouvllle measure.

If Fμ = R
d , it is not very hard to see that the resolvent of Bμ is just Hölder

continuous. In fact, we see from (1) that any bounded harmonic function h onB(z, 2r)
(z ∈ R

d , r > 0) with respect to Bμ is also harmonic with respect to the standard
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Brownian motion. Here, B(z, r) denotes the open ball centered at z with radius
r > 0. Then, from [1, Chapter II (1.3) Proposition], there exists a positive constant
C independent of z and r such that

|h(x) − h(y)| ≤ C sup
z∈Rd

|h(z)| |x − y|
r

, x, y ∈ B(z, r).

Furthermore, sinceAμ is a homeomorphism on [0,∞) (here, we used the assumption
that Fμ = R

d ), Aμ
τB(x,r)

is identified with the exit time of Bμ from B(x, r), where τB(x,r)

denotes the first exit time of B from B(x, r). This observation and the regularity
condition (5) lead us to a mean exit time estimate for Bμ (see also Lemma 2). Then,
the same argument as in [2, (5.6) Proposition, SectionVII] shows that the resolvent of
Bμ is Hölder continuous. We note that this kind of argument is applicable to several
situations (see, e.g., [3, Proposition 3.3 and Theorem 3.5]); however, even if μ = m,
this only implies that the index of the Hölder continuity is greater than or equal to
2/3. This estimate is not sharp because Bm is the standard Brownian motion and the
resolvent is Lipschitz continuous. Thus, even ifFμ = R

d , our result does not directly
follow from the method stated above, and implies rather sharp result.

For the proof of Theorem 1, we use the mirror coupling of d -dimensional Brow-
nian motions. The key to our proof is an inductive argument based on the strong
Markov property (of the coupling) and some estimates of the coupling time (Lem-
mas 3 and 5). Since mirror couplings of stochastic processes are universal concepts,
our arguments may be useful for estimating the indices of Hölder continuity of resol-
vents for other time-changed Markov processes.

The remainder of this paper is organized as follows. In Sect. 2, we set up a frame-
work and state the main theorem (Theorem 1). In Sect. 3, we provide some prelim-
inary estimates for PCAFs of the d -dimensional Brownian motion. In Sect. 4, we
introduce some lemmas on the mirror coupling of Brownian motions, and prove
Theorem 1.
Notation. In the paper, we use the following symbols and conventions.

• (·, ·) and | · | denote the standard inner product and norm of Rd , respectively.
• For x ∈ R

d and r > 0, B(x, r) (resp. B(x, r)) denotes the open (resp. closed) ball
in Rd with center x and radius r.

• For a subset S ⊂ R
d and f : S → [−∞,∞], we set ‖f ‖∞ := ‖f ‖∞,S := supx∈S

|f (x)|.
• For a topological space S, we write Bb(S) for the space of bounded Borel measur-
able functions on S.

• For a, b ∈ [−∞,∞], we write a ∨ b = max{a, b} and a ∧ b = min{a, b}.
• inf ∅ = ∞ by convention.
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2 Main Results

Let B = ({Bt}t≥0, {Px}x∈Rd ) be a Brownian motion on R
d . The Dirichlet form is

identified with

E(f , g) = 1

2

∫

Rd

(∇f (x),∇g(x)) dm(x), f , g ∈ H 1(Rd ).

Here,H 1(Rd )(= H 1
e (Rd ) ∩ L2(Rd ,m)) denotes the first-order Sobolev space onRd .

For an open subset U ⊂ R
d and for a subset A ⊂ R

d , we define

cap(U ) = inf

⎧
⎨

⎩
E(f , f ) +

∫

Rd

f 2 dm

∣
∣
∣
∣
∣
∣
f ∈ H 1(Rd ), f ≥ 1, m-a.e. on U

⎫
⎬

⎭
,

Cap(A) = inf
{
cap(U ) | A ⊂ U and U is an open subset of Rd

}
.

A non-negative Radon measure μ on R
d is said to be smooth if μ(A) = 0 for any

A ⊂ R
d with Cap(A) = 0. For a smooth measure μ, by [4, Theorem 4.1.1], there

exists a unique PCAF Aμ = {Aμ
t }t≥0 of B such that for any non-negative functions

f , g ∈ Bb(R
d ) and α > 0,

∫

Rd

Ex

⎡

⎣
∞∫

0

e−αt f (Bt) dA
μ
t

⎤

⎦ g(x) dm(x) =
∫

Rd

Ex

⎡

⎣
∞∫

0

e−αt g(Bt) dt

⎤

⎦ f (x) dμ(x), (2)

where Ex denotes the expectation under Px. See [4, Sect. 4] and [5, Sect. 5] for the
definition and further details on PCAFs. We also note that the exceptional set of Aμ

can be taken to be empty (see [4, Theorem 4.1.11]).
Let {τμ

t }t≥0 be the right continuous inverse of Aμ. We define

Bμ
t = Bτ

μ
t
, Pμ

x = Px, (t, x) ∈ [0,∞) × Fμ,

where Fμ denotes the support of Aμ:

Fμ = {x ∈ R
d | inf{t > 0 | Aμ

t > 0} = 0, Px-a.s.}. (3)

We note that Fμ is a nearly Borel subset with respect to B (see the paragraph after
[4, (A.3.11)]). The support Fμ is also regarded as a topological subspace of Rd . By
[4, Theorems 5.2.1 and A.3.11], Bμ = ({Bμ

t }t≥0, {Pμ
x }x∈Fμ) is a μ-symmetric right

process on Fμ. The resolvent {Gμ
α }α>0 is given by



Hölder Estimates for Resolvents of Time-Changed Brownian Motions 363

Gμ
α f (x) = Ex

⎡

⎣
∞∫

0

e−αt f (Bμ
t ) dt

⎤

⎦ , α > 0, f ∈ Bb(F
μ), x ∈ Fμ.

Let B∗
b(R

d ) denote the space of bounded universally measurable functions on
R

d . That is, any f ∈ B∗
b(R

d ) is bounded and measurable with respect to the σ -
field B∗(Rd ); the family of universally measurable subsets of R

d : B∗(Rd ) :=⋂
μ∈P(Rd ) Bμ(Rd ). Here, P(Rd ) denotes the family of all probability measures on

R
d and Bμ(Rd ) is the completion of the Borel σ -field B(Rd ) on R

d with respect to
μ ∈ P(Rd ). For α > 0, f ∈ B∗

b(R
d ), and x ∈ R

d , we define

Vμ
α f (x) = Ex

⎡

⎣
∞∫

0

e−αAμ
t f (Bt) dA

μ
t

⎤

⎦ .

We see from [4, Exercise A.1.29] that Fμ is a universally measurable subsets of Rd .
By noting this fact and using [4, Lemma A.3.10], we have

Gμ
α f (x) = Vμ

α f (x). (4)

for any α > 0, f ∈ Bb(Fμ), and x ∈ Fμ.
Now we are in a position to state our main theorem.

Theorem 1 Let p ∈ R
d and assume that there exist κ > d − 2, R ∈ (0, 1],

and K > 0 such that
μ(B(x, r)) ≤ Krκ (5)

for any r ≤ R and x ∈ R
d with |x − p| ≤ r. Then, for any α > 0 and ε ∈ (0, (2 −

d + κ)/(3 − d + κ)), there exists C > 0 depending on d, p, κ , K, R, ε, and α such
that ∣

∣Vμ
α f (x) − Vμ

α f (y)
∣
∣ ≤ C‖f ‖∞|x − y|{(2−d+κ)∧1}−ε (6)

for any f ∈ B∗
b(R

d ) and x, y ∈ B(p, 2−C ′
R), where C ′ is a positive number depending

on d, ε and κ . In particular, we have

∣
∣Gμ

α f (x) − Gμ
α f (y)

∣
∣ ≤ C‖f ‖∞|x − y|{(2−d+κ)∧1}−ε (7)

for any f ∈ Bb(Fμ) and x, y ∈ Fμ ∩ B(p, 2−C ′
R).
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3 Preliminary Lemmas

For an open subsetU ⊂ R
d , we denote byU ∪ {∂U } the one-point compactification.

We set τU = inf{t ∈ [0,∞) | Bt /∈ U }. Then, the absorbing Brownian motion BU =
({BU

t }t≥0, {Px}x∈U ) on U is defined as

BU
t =

{
Bt, t < τU ,

∂U , t ≥ τU .

We write pU = pUt (x, y) : (0,∞) ×U ×U → [0,∞) for the transition density of
BU . That is, pU is the jointly continuous function such that

Px(B
U
t ∈ dy) = pUt (x, y) dm(y), t > 0, x ∈ U.

The Green function of BU is defined by

gU (x, y) =
∞∫

0

pUt (x, y) dt, x, y ∈ U.

Lemma 1 Let U ⊂ R
d be an open subset. Then, for any x ∈ U, t > 0, and non-

negative f ∈ Bb(U ),

Ex

⎡

⎣

t∧τU∫

0

f (Bs) dA
μ
s

⎤

⎦ =
∫

U

⎛

⎝
t∫

0

pUs (x, y) ds

⎞

⎠ f (y) dμ(y).

In particular, we have

Ex

⎡

⎣

τU∫

0

f (Bs) dA
μ
s

⎤

⎦ =
∫

U

gU (x, y)f (y) dμ(y).

Proof We fix t > 0 and non-negative functions f , g ∈ Bb(U ). We may assume that
f is compactly supported. By [4, Proposition 4.1.10], we have

∫

U

Ez

⎡

⎣
t∧τU∫

0

f (Bs) dA
μ
s

⎤

⎦ g(z) dm(z) =
t∫

0

⎛

⎝
∫

U

(PU
s g)(x)f (x) dμ(x)

⎞

⎠ ds. (8)

We use Fubini’s theorem to obtain that
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t∫

0

⎛

⎝
∫

U

(PU
s g)(x)f (x) dμ(x)

⎞

⎠ ds

=
∫

U

⎛

⎝
t∫

0

⎛

⎝
∫

U

pUs (x, z)f (x) dμ(x)

⎞

⎠ ds

⎞

⎠ g(z) dm(z). (9)

Because μ is a Radon measure, by letting g = 1U in (8) and (9), we see that

E(·)

⎡

⎣

t∧τU∫

0

f (Bs) dA
μ
s

⎤

⎦ and

t∫

0

⎛

⎝
∫

U

pUs (x, ·)f (x) dμ(x)

⎞

⎠ ds

are integrable on U with respect to m. Moreover, because g is arbitrarily taken, (8)
and (9) imply that for m-a.e. z ∈ U ,

Ez

⎡

⎣
t∧τU∫

0

f (Bs) dA
μ
s

⎤

⎦ =
t∫

0

⎛

⎝
∫

U

pUs (x, z)f (x) dμ(x)

⎞

⎠ ds. (10)

By following the convention that f (∂U ) = 0, we see that the left-hand side of (10)
is equal to Ez[

∫ t
0 f (B

U
s ) dAμ

s∧τU ]. Hence, we have for m-a.e. z ∈ U ,

Ez

⎡

⎣
t∫

0

f (BU
s ) dAμ

s∧τU

⎤

⎦ =
t∫

0

⎛

⎝
∫

U

pUs (x, z)f (x) dμ(x)

⎞

⎠ ds. (11)

We see from [4, Exercise 4.1.9 (iii)] that {Aμ
s∧τU }s≥0 is the PCAF of BU . By using the

additivity, the Markov property of BU , and (11), we obtain that for any x ∈ U ,

Ex

⎡

⎣
t∧τU∫

0

f (Bs) dA
μ
s

⎤

⎦ = lim
u↓0 Ex

⎡

⎣
t∫

u

f (BU
s ) dAμ

s∧τU

⎤

⎦

= lim
u↓0 Ex

⎡

⎣EBU
u

⎡

⎣
t−u∫

0

f (BU
s ) dAμ

s∧τU

⎤

⎦

⎤

⎦

= lim
u↓0

∫

U

pUu (x, z)

⎛

⎝
t−u∫

0

⎛

⎝
∫

U

pUs (y, z)f (y) dμ(y)

⎞

⎠ ds

⎞

⎠ dm(z)

= lim
u↓0

t∫

u

⎛

⎝
∫

U

pUs (x, y)f (y) dμ(y)

⎞

⎠ ds =
t∫

0

⎛

⎝
∫

U

pUs (x, y)f (y) dμ(y)

⎞

⎠ ds,
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which completes the proof. “In particular” part immediately follows from the mono-
tone convergence theorem. �

Let d ≥ 2, r ∈ (0, 1), and x, y ∈ R
d . Then, by [5, Example 1.5.1],

gB(x,r)(x, y) =

⎧
⎪⎨

⎪⎩

− 1

π
log |x − y|, d = 2,

	(d/2 − 1)

2πd/2
|x − y|2−d , d ≥ 3.

(12)

Here, 	 denotes the gamma function. If d = 1, we see from [9, Lemma 20.10] that
for any a, b ∈ R with a < b,

g(a,b)(x, y) = 2(x ∧ y − a)(b − x ∨ y)

b − a
, x, y ∈ (a, b). (13)

For s ∈ (0, 1] and t > 0, we define

ζd (s, t) =
{
s2−d+t, d ≥ 3 or d = 1,

−st log s, d = 2.

Lemma 2 Let p ∈ R
d and take constants κ > d − 2, R ∈ (0, 1], and K > 0 so that

(5) holds. Then, there exists C ∈ (0,∞) depending on d, p, κ , R, and K such that
for any r ∈ (0,R/2] and x ∈ B(p, r)

∫

B(x,r)

gB(x,r)(x, y) dμ(y) ≤ Cζd (r, κ).

In particular, we have Ex[Aμ
τB(x,r)

] ≤ Cζd (r, κ).

Proof In view of (5), we have for any r ∈ (0,R/2] and x ∈ B(p, r),

μ(B(x, r)) ≤ Krκ . (14)

Therefore, when d = 1, we use (13) to obtain that

∫

B(x,r)

gB(x,r)(x, y) dμ(y) ≤ 4Krκ+1.
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Equation (12) implies that for any k ∈ N,

sup
y∈Rd \B(x,r2−k )

gB(x,r)(x, y) ≤

⎧
⎪⎨

⎪⎩

− 1

π
log(r2−k), d = 2,

	(d/2 − 1)

2πd/2
(r2−k)2−d , d ≥ 3.

Thus, for d = 2, we obtain from (14) that

∫

B(x,r)

gB(x,r)(x, y) dμ(y) =
∞∑

k=1

∫

B(x,r2−(k−1))\B(x,r2−k )

gB(x,r)(x, y) dμ(y)

≤ −K

π

∞∑

k=1

(r2−(k−1))κ log(r2−k) ≤ −Crκ log r.

Here, C is a positive constant depending on κ and K . For d ≥ 3, we similarly use
(14) to obtain that

∫

B(x,r)

gB(x,r)(x, y) dμ(y) ≤ K	(d/2 − 1)

2πd/2

∞∑

k=1

(r2−(k−1))κ (r2−k)2−d

≤
(
K	(d/2 − 1)2κ

2πd/2

∞∑

k=1

2−{(2−d)+κ}k
)

r2−d+κ .

Because κ > d − 2, we have

∫

B(x,r)

gB(x,r)(x, y) dμ(y) ≤ Cr2−d+κ .

Here, C is a positive constant depending on d , K and κ. “In particular” part imme-
diately follows from Lemma 1. �

4 Proof of Theorem 1

Let x, y ∈ R
d and {Wt}t≥0 a d -dimensional Brownian motion starting at the ori-

gin. The mirror coupling (Zx, Z̃y) = ({Zx
t }t≥0, {Z̃y

t }t≥0) of d -dimensional Brownian
motions is defined as follows:
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• For any t < inf{s > 0 | Zx
s = Z̃y

s },

Zx
t = x + Wt,

Z̃y
t = y + Wt − 2

t∫

0

Zx
s − Z̃y

s

|Zx
s − Z̃y

s |2 (Zx
s − Z̃y

s , dWs). (15)

• For any t ≥ inf{s > 0 | Zx
s = Z̃y

s }, we have Zx
t = Z̃y

t .

Remark 1 (1) The mirror coupling (Zx, Z̃y) is a special case of couplings for dif-
fusion processes studied in [10, Sect. 3].

(2) For x, y ∈ R
d with x �= y and t < inf{s > 0 | Zx

s = Z̃y
s }, we have

Zx
t − Z̃y

t = x − y + 2

t∫

0

Zx
s − Z̃y

s

|Zx
s − Z̃y

s |2 (Zx
s − Z̃y

s , dWs).

This implies that the randomvectorZx
t − Zy

t is parallel to x − y.We then see from
(15) that Z̃y

t coincides with the mirror image of Zx
t with respect to the hyperplane

Hx,y = {z ∈ R
d | (z − (x + y)/2, x − y) = 0}. Further, inf{s > 0 | Zx

s = Z̃y
s } =

inf{s > 0 | Zx
s ∈ Hx,y}. Then, it is easy to see that (Zx, Z̃y) is a strong Markov

process on R
d × R

d .

For x, y ∈ R
d , we define ξx,y = inf{t > 0 | Zx

t = Zy
t }. We denote by Px,y the distri-

bution of (Zx, Z̃y). For t ≥ 0, we set

Aμ,x
t = Aμ

t (Zx), Ãμ,y
t = Aμ

t (Z̃y),

where we regard Aμ
t as [0,∞]-valued functions on C([0,∞),Rd ), the space of Rd -

valued continuous functions on [0,∞). Then, {Aμ,x
t }t≥0 and {̃Aμ,y

t }t≥0 becomePCAFs
of Zx and Z̃y, respectively. Furthermore, Aμ,x and Ãμ,y can be regarded as PCAFs of
the coupled process (Zx, Z̃y) in the natural way.

For x, y ∈ R
d , we define

Ix,y = Ex,y
[
Aμ,x

ξx,y
∧ 1

]
, Ĩx,y = Ex,y

[
Ãμ,y

ξx,y
∧ 1

]
, (16)

where Ex,y denotes the expectation under Px,y. At the end of this section (see (44)
below), we will show that for any f ∈ B∗

b(R
d ) with ‖f ‖∞ ≤ 1,

|Vμ
α f (x) − Vμ

α f (y)| ≤ 2(1 + α−1)(Ix,y + Ĩx,y), α > 0, x, y ∈ R
d .

We now introduce some lemmas to estimate the expectations in (16).



Hölder Estimates for Resolvents of Time-Changed Brownian Motions 369

Lemma 3 Let x, y ∈ R
d , and τ be a stopping time of (Zx, Z̃y). Then,

Ex,y

[∣
∣
∣Zx

ξx,y∧τ − Z̃y
ξx,y∧τ

∣
∣
∣
θ
]

≤ |x − y|θ

for any θ ∈ (0, 1].
Proof We fix t ≥ 0 and x, y ∈ R

d with x �= y. To simplify the notation, we write
Zt (resp. Z̃t , Lt , L̃t , ξ ) for Zx

t (resp. Zy
t , L

x
t , L̃

y
t , ξx,y). We also fix n ∈ N such that

|x − y| ≥ 1/n, and set ξn = inf{s > 0 | |Zs − Z̃s| ≤ 1/n}.
For s < ξn ∧ τ , we define

αs = (Zs − Z̃s)(Zs − Z̃s)
T/|Zs − Z̃s|2.

Here, (Zs − Z̃s)T denotes the transpose of Zs − Z̃s. From Itô formula,

|Zt∧ξn∧τ − Z̃t∧ξn∧τ |2 − |x − y|2 = 2

t∧ξn∧τ∫

0

(Zs − Z̃s, αs dWs) + t ∧ ξn ∧ τ

and for any θ ∈ (0, 1],

|Zt∧ξn∧τ − Z̃t∧ξn∧τ |θ − |x − y|θ

= θ

t∧ξn∧τ∫

0

|Zs − Z̃s|θ−2(Zs − Z̃s, αs dWs)

+ {θ/2 + θ (θ/2 − 1)}
t∧ξn∧τ∫

0

|Zs − Z̃s|θ−2 ds. (17)

Since the first term above is a martingale and the second one is non-positive, by
taking the expectations of both sides of (17), we arrive at

Ex,y

[∣
∣Zt∧ξn∧τ − Z̃t∧ξn∧τ

∣
∣θ
]

≤ |x − y|θ . (18)

Letting n → ∞ in (18), we complete the proof. �

Lemma 4 It holds that

Px,y(t < ξx,y) ≤ |x − y|√
2π t

for any t > 0 and x, y ∈ R
d .

Proof Let t ≥ 0 and x, y ∈ R
d with x �= y. We take n ∈ N such that |x − y| ≥ 1/n.

Letting θ = 1 in (17), we have



370 K. Matsuura

|Zt∧ξn − Z̃t∧ξn | − |x − y| =
t∧ξn∫

0

|Zs − Z̃s|−1(Zs − Z̃s, αs dWs). (19)

The quadratic variation of the right-hand side of (19) equals to t ∧ ξn, t ≥ 0. Hence,
by the Dambis–Dubins–Schwartz theorem, there is a one-dimensional Brownian
motion β = {βs}s≥0 such that

βt∧ξn =
t∧ξn∫

0

|Zs − Z̃s|−1(Zs − Z̃s, αs dWs). (20)

By using (19), (20), and the reflection principle of the Brownian motion, we have

Px,y(ξn > t) ≤ Px,y

(

−|x − y| ≤ inf
0≤s≤t

βs

)

= 1 − 2

−|x−y|∫

−∞

1√
2π t

exp(−u2/2t) du

=
|x−y|∫

−|x−y|

1√
2π t

exp(−u2/2t) du ≤ |x − y|√
2π t

. (21)

Letting n → ∞ in (21) completes the proof. �

For x, y ∈ R
d and an open subset U ⊂ R

d , we define

τ x
U = τU (Zx), τ̃

y
U = τU (Z̃y)

where we regard τU as [0,∞]-valued function on C([0,∞),Rd ). We note that τ x
U =

inf{t > 0 | (Zx
t , Z̃

y
t ) /∈ U × R

d }. Hence, τ x
U and τ̃

y
U are exit times of (Zx, Z̃y). We

also see from [11, Lemma II.1.2] that there exists C > 0 depending on d such that

Px,y(τ
x
B(x,r) ≤ t) ≤ C exp(−r2/Ct) (22)

for any (x, y, t) ∈ R
d × R

d × (0,∞) and r ∈ (0,∞).

Lemma 5 Let χ, ε ∈ (0, 1], R > 0 and n ≥ 1 be positive numbers. Then, there is a
positive constant C depending on ε, R, and n such that

Px,y(τ
x
B(x,2−nR|x−y|χ ) ≤ ξx,y) ≤ C|x − y|1−χ−ε

for any x, y ∈ R
d with |x − y| ∈ (0, 1].
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Proof We fix χ, ε ∈ (0, 1], R > 0, n ≥ 1. Let x, y ∈ R
d with |x − y| ∈ (0, 1]. By

(22) and Lemma 4, there exists C > 0 such that for any t > 0,

Px,y(τ
x
B(x,2−nR|x−y|χ ) ≤ ξx,y)

≤ Px,y(τ
x
B(x,2−nR|x−y|χ ) ≤ t) + Px,y(ξx,y > t)

≤ C exp(−2−2nR2|x − y|2χ/Ct) + |x − y|/√2π t. (23)

Then, letting t = |x − y|2χ+2ε(∈ (0, 1]) in (23), we have

Px,y(τ
x
B(x,2−nR|x−y|χ ) ≤ ξx,y)

≤ C exp(−2−2nR2|x − y|−2ε/C) + |x − y|1−χ−ε. (24)

For any δ ∈ (0, 1] and c ∈ (0,∞) there exists cδ ∈ (0,∞) depending on δ and c such
that for any r ∈ [0,∞),

exp(−cr−δ) ≤ cδr. (25)

By using (24) and (25), we obtain the desired inequality. �

Fromnowon, we fix p ∈ R
d , and take constants κ > d − 2,R ∈ (0, 1], andK > 0

so that (5) holds. Theorem1 is provedby an inductive argument. The following lemma
is the first step.

Lemma 6 Let ε ∈ (0, (2 − d + κ)/(3 − d + κ)). There exists C > 0 depending on
d, ε, p, κ , R, and K such that

Ix,y ≤ C|x − y|(2−d+κ)/(3−d+κ)−ε

for any x, y ∈ B(p,R/2).

Proof Let ε ∈ (0, (2 − d + κ)/(3 − d + κ)). We fix x, y ∈ B(p,R/2) and set

r = R|x − y|χ
2

,

where χ ∈ (0, 1] is a positive number which will be chosen later. Because |x − y| ≤
1, we have r ≤ R/2. A straightforward calculation gives

Ix,y ≤ Ex,y

[
Aμ,x

τ x
B(x,r)

]
+ Px,y(τ

x
B(x,r) ≤ ξx,y). (26)

By applying Lemmas 2 and 5 to (26), we obtain that

Ix,y ≤ C{ζd (r, κ) + |x − y|1−χ−ε}. (27)

Here, C > 0 is a positive constant depending on d , ε, χ , p, κ , R, and K .
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Next, we optimize the right-hand side of (27) in χ . Note that we have for any
a, b > 0 with b ≤ a,

−sa log s ≤ (1/b)sa−b, s ∈ (0, 1]. (28)

Thus, if d = 2, we have

ζd (r, κ) ≤ χ

ε

(
R

2

)κ−(ε/χ)

|x − y|κχ−ε

provided that ε/χ ≤ κ . Let χ be the solution to κχ − ε = 1 − χ − ε. Then, χ =
1/(κ + 1). Further, ε/χ ≤ κ and

Ix,y ≤ C ′|x − y| κ
κ+1−ε,

where C ′ is a positive constant depending on ε, χ , p, κ , R, and K .
If d ≥ 3 or d = 1, we have

ζd (r, κ) ≤ r2−d+κ−(ε/χ) =
(
R|x − y|χ

2

)2−d+κ−(ε/χ)

=
(
R

2

)2−d+κ−(ε/χ)

|x − y|χ(2−d+κ)−ε.

Let χ be the solution to χ(2 − d + κ) − ε = 1 − χ − ε. Then, χ = 1/(3 − d +
κ) ∈ (0, 1] and

Ix,y ≤ C ′′|x − y|(2−d+κ)/(3−d+κ)−ε.

Here, C ′′ is a positive constant depending on d , ε, χ , p, κ , R, and K . �

For ε ∈ (0, 1) and n ∈ N, we set

qn,κ,ε = rn − εrn−1

rn + 1
− ε,

where rn is a positive number defined by

rn = (2 − d + κ)(rn−1 + 1), r0 = 0.

We then find that rn = ∑n
l=1(2 − d + κ)l and {rn}∞n=1 is increasing. For any n ∈ N,
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qn,κ,ε > 0 ⇐⇒ rn
rn + rn−1 + 1

> ε

⇐⇒ (2 − d + κ)rn
(2 − d + κ)rn + (2 − d + κ)(rn−1 + 1)

> ε

⇐⇒ 2 − d + κ

3 − d + κ
> ε. (29)

Lemma 7 Let n ∈ N and ε ∈ (0, (2 − d + κ)/(3 − d + κ)). Then, there exists a
positive constant C1 depending on d, ε, p, κ , R, K, and n such that

Ix,y ≤ C1|x − y|qn,κ,ε (30)

for any x, y ∈ B(p, 2−nR).

Proof If n = 1, the conclusion follows from Lemma 6. In what follows, we suppose
that (30) holds for some n ∈ N. Then, for any ε ∈ (0, (2 − d + κ)/(3 − d + κ)),
there exists C1 > 0 depending on d , ε, p, κ , R, K , and n such that

Ix,y ≤ C1|x − y|qn,κ,ε (31)

for any x, y ∈ B(p, 2−nR).
Letχ ∈ (0, 1] be a positive numberwhichwill be chosen later.Wefix ε ∈ (0, (2 −

d + κ)/(3 − d + κ)), and x, y ∈ B(p, 2−n−1). To simplify the notation, we write

τ = τ x
B(x,2−n−1R|x−y|χ ), τ̃ = τ̃

y
B(y,2−n−1R|x−y|χ )

, ξ = ξx,y.

In view of Remark 1 (2), we have τ = τ̃ . It is straightforward to show that

Ix,y ≤ Ex,y
[
Aμ,x

τ ∧ 1 : ξ ≤ τ
] + Ex,y

[
Aμ,x

τ ∧ 1 : τ < ξ
]

+ Ex,y
[
(Aμ,x

ξ − Aμ,x
τ ) ∧ 1 : τ < ξ

]

= Ex,y
[
Aμ,x

τ ∧ 1
] + Ex,y

[
(Aμ,x

ξ − Aμ,x
τ ) ∧ 1 : τ < ξ

]

=: I1 + I2. (32)

On the event {ξ > τ }, we have Aμ,x
ξ − Aμ,x

τ = Aμ,x
ξ−τ ◦ θτ ≤ Aμ,x

ξ ◦ θτ , where {θt}t≥0

denotes the shift operator of the coupledprocess (Zx, Z̃y).WeknowfromRemark1 (2)
that (Zx, Z̃y) is a strong Markov process on R

d × R
d . Therefore, we obtain that

I2 = Ex,y
[(
Aμ,x

ξ−τ ◦ θτ

) ∧ 1 : τ < ξ
]

≤ Ex,y

[
EZx

τ ,̃Zy
τ

[
Aμ,x

ξ ∧ 1
] : τ < ξ

]
= Ex,y

[
IZx

τ ,̃Zy
τ

: τ < ξ
]
. (33)

Observe that Zx
τ ∈ B(x, 2−n−1R) and Z̃y

τ = Z̃y
τ̃ ∈ B(y, 2−n−1R). Furthermore, by not-

ing that x, y ∈ B(p, 2−n−1R), we have |p − Zx
τ | < 2−nR and |p − Z̃y

τ̃ | < 2−nR. Then,
we use (31) to obtain that
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Ex,y

[
IZx

τ ,̃Zy
τ

: τ < ξ
]

≤ C1Ex,y
[∣∣Zx

τ − Z̃y
τ

∣
∣qn,κ,ε : τ < ξ

]
. (34)

Let an = (rn + 1)/rn and bn = rn + 1, Then, a−1
n + b−1

n = 1. Because ε ∈ (0, (2 −
d + κ)/(3 − d + κ)), (29) implies that 0 < anqn,κ,ε and

anqn,κ,ε = rn + 1

rn

(
rn − εrn−1

rn + 1
− ε

)

≤ 1.

By using Hölder’s inequality, Lemmas 3 and 5, we obtain that

Ex,y
[∣∣Zx

τ − Z̃y
τ

∣
∣qn,κ,ε : τ < ξ

]

≤ Ex,y
[∣∣Zτ∧ξ − Z̃τ∧ξ

∣
∣anqn,κ,ε

]1/an Px,y(τ < ξ)1/bn

≤ |x − y|anqn,κ,ε/anPx,y(τ < ξ)1/bn

≤ C2|x − y|qn,κ,ε+(1−χ−ε)/bn , (35)

where C2 is a positive constant depending on ε, R, and n. Therefore, (33), (34), and
(35) imply

I2 ≤ C3|x − y|qn,κ,ε+(1−χ−ε)/bn . (36)

Here, C3 is a positive constant depending on d , ε, p, κ , R, K , and n.
On the other hand, Lemma 2 yields

I1 ≤ Ex,y
[
Aμ,x

τ

] ≤ C4ζd (2
−n−1R|x − y|χ , κ), (37)

where C4 is a positive constant depending on d , p, κ , R, and K . If d = 2, we use (28)
to obtain that

ζd (2
−n−1R|x − y|χ , κ) ≤ (χ/ε)(2−n−1R)κ−(ε/χ)|x − y|κχ−ε, (38)

provided that ε/χ ≤ κ . If d ≥ 3 or d = 1,

ζd (2
−n−1R|x − y|χ , κ) = (2−n−1R|x − y|χ )2−d+κ

≤ (2−n−1R)2−d+κ |x − y|χ(2−d+κ)−ε. (39)

Therefore, if ε ≤ (2 − d + κ)χ , regardless of the value of d , we obtain from
(37)–(39) that

I1 ≤ C5|x − y|(2−d+κ)χ−ε. (40)

Here, C5 is a positive constant depending on d , ε, p, κ , R, K , and n.
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Let η be the solution to

(2 − d + κ)η − ε = qn,κ,ε + (1 − η − ε)/bn.

Then, a direct calculation and the definition of bn imply that

η = bnqn,κ,ε + 1 + ε(bn − 1)

bn(2 − d + κ) + 1
= (rn + 1)qn,κ,ε + 1 + εrn

(2 − d + κ)(rn + 1) + 1
.

From the relation rn+1 = (2 − d + κ)(rn + 1) and the definition of qn,κ,ε,

(2 − d + κ)η − ε

= (2 − d + κ)(rn + 1)qn,κ,ε + (2 − d + κ)(1 + εrn)

rn+1 + 1
− ε

= rn+1 − εrn
rn+1 + 1

− ε = qn+1,κ,ε.

Because qn+1,κ,ε > 0, we have (2 − d + κ)η > ε. Noting the fact that {rn}∞n=1 is
increasing, we have

0 < η = rn+1 − εrn
(2 − d + κ)(rn+1 + 1)

≤ rn+1

(2 − d + κ)(rn+1 + 1)
= rn+1

rn+2
≤ 1.

Therefore, we can set χ = η. By combining (32), (36), and (40), we see (30) holds
for n + 1. �

Because {rn}∞n=1 is increasing, we have for any n ∈ N and ε ∈ (0, 1),

qn,κ,ε = rn − εrn−1

rn + 1
− ε ≥ rn

rn + 1
− 2ε.

If 2 − d + κ ≥ 1, limn→∞ rn = ∞. If 2 − d + κ ∈ (0, 1),

lim
n→∞ rn = 2 − d + κ

1 − (2 − d + κ)
.

Therefore, we obtain that limn→∞ qn,κ,ε ≥ (2 − d + κ) ∧ 1 − 2ε. Since the same
estimate as Lemma 7 holds for Ĩx,y, we have the following corollary.

Corollary 1 For any ε ∈ (0, (2 − d + κ)/(3 − d + κ)), there exists a positive con-
stants C depending on d, ε, p, κ , R, and K such that

Ix,y + Ĩx,y ≤ C|x − y|(2−d+κ)∧1−ε

for any x, y ∈ B(p, 2−C ′
R), where C ′ is a positive constant depending on d, ε and κ .

We now prove Theorem 1.
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Proof of Theorem 1 Let α > 0, x, y ∈ R
d and f ∈ B∗

b(R
d ). Without loss of gener-

ality, we may assume that ‖f ‖∞ ≤ 1. We write ξ = ξx,y for the simplicity. Then, we
have

Vμ
α f (x) − Vμ

α f (y)

= Ex,y

⎡

⎣
∞∫

ξ

exp(−αAμ,x
t )f (Zx

t ) dA
μ,x
t

⎤

⎦ − Ex,y

⎡

⎣
∞∫

ξ

exp(−αÃμ,y
t )f (Z̃y

t ) dÃ
μ,y
t

⎤

⎦

+ Ex,y

⎡

⎣

ξ∫

0

exp(−αAμ,x
t )f (Zx

t ) dA
μ,x
t

⎤

⎦ − Ex,y

⎡

⎣

ξ∫

0

exp(−αÃμ,y
t )f (Z̃y

t ) dÃ
μ,y
t

⎤

⎦

=: J1 − J2 + J3 − J4. (41)

Because {Aμ,x
t }t≥0 is a PCAF of (Zx, Z̃y), we have Aμ,x

t+ξ = Aμ,x
ξ + Aμ,x

t ◦ θξ and
dAμ,x

t+ξ = dAμ,x
t ◦ θξ . By using these equations and the strong Markov property of

(Zx, Z̃y), we obtain that

J1 = Ex,y

⎡

⎣
∞∫

0

exp(−αAμ,x
t+ξ )f (Z

x
t+ξ ) dA

μ,x
t+ξ

⎤

⎦ = Ex,y
[
exp(−αAμ,x

ξ )Vμ
α f (Z

x
ξ )
]
,

J2 = Ex,y
[
exp(−αÃμ,y

ξ )Vμ
α f (Z̃

y
ξ )
]
.

Since Zx
ξ = Z̃y

ξ , we have

J1 − J2 = Ex,y
[
exp(−αAμ,x

ξ )Vμ
α f (Z

x
ξ )
] − Ex,y

[
exp(−αAμ,x

ξ )Vμ
α f (Z̃

y
ξ )
]

+ Ex,y
[
exp(−αAμ,x

ξ )Vμ
α f (Z̃

y
ξ )
] − Ex,y

[
exp(−αÃμ,y

ξ )Vμ
α f (Z̃

y
ξ )
]

= 0 + Ex,y
[{
exp(−αAμ,x

ξ ) − exp(−αÃμ,y
ξ )

}
Vμ

α f (Z̃
y
ξ )
]
.

Because |αVμ
α f (Z̃

y
ξ )| ≤ ‖f ‖∞ = 1 and the function s �→ e−αs is α-Lipschitz contin-

uous on [0,∞), we obtain that

|J1 − J2| ≤ Ex,y
[∣∣Ax

ξ − Ãy
ξ

∣
∣ ∧ α−1

]

≤ (1 + α−1)(Ix,y + Ĩx,y). (42)

From Jensen’s inequality,

|J3 − J4| ≤ α−1Ex,y
[
1 − exp(−αAx

ξ )
] + α−1Ex,y

[
1 − exp(−αÃy

ξ )
]

≤ Ex,y
[
Ax

ξ ∧ α−1
] + Ex,y

[
Ãy

ξ ∧ α−1
]

≤ (1 + α−1)(Ix,y + Ĩx,y). (43)
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By using (41)–(43), we arrive at

∣
∣Vμ

α f (x) − Vμ
α f (y)

∣
∣ ≤ 2(1 + α−1)

(Ix,y + Ĩx,y
)
. (44)

Corollary 1 and (44) yield the desired estimate. “In particular” part immediately
follows from (4). �
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On the Continuity of Half-Plane
Capacity with Respect to Carathéodory
Convergence

Takuya Murayama

Abstract We study the continuity of half-plane capacity as a function of boundary
hulls with respect to the Carathéodory convergence. In particular, our interest lies in
the case that hulls are unbounded. Under the assumption that every hull is contained
in a fixed hull with finite imaginary part and finite half-plane capacity, we show that
the half-plane capacity is indeed continuous. We also discuss the extension of this
result to the case that the underlying domain is finitely connected.

Keywords Half-plane capacity · Carathéodory convergence · Harmonic
measure · Brownian motion with darning

Mathematics Subject Classification Primary: 60J45 · Secondary: 30C20 · 30C85

1 Introduction

The half-plane capacity is a “capacity” that measures H-hulls (or boundary hulls)
growing from the boundary of the complex upper half-plane H. This capacity has
several geometric meanings [5, 11, 17] and plays a role of time for chordal Loewner
chains, that is, families of normalized conformal mappings defined in the comple-
ments of expanding (or shrinking) H-hulls. In particular, the concept of Loewner
chain is commonly utilized not just in complex analysis but also in probability the-
ory because of the great importance of Schramm–Loewner evolution (SLE). Roughly
speaking, theSLEhull is a randomcurve in the half-planewith all of its loopsfilled-in.
Also, H-hulls of more general form appear naturally in some applications; A recent
example is the correspondence between monotone-independent increment processes
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and chordal Loewner chains established by Franz et al. [7] in non-commutative
probability theory. Under such a background, we study the continuity of half-plane
capacity, as a function of H-hulls of broad class, with respect to the Carathéodory
kernel convergence in this paper.

To be precise, concepts studied in this paper are defined as follows: A set F ⊂ H

is called an H-hull if F is relatively closed in H (i.e., F = F ∩ H) and if H \ F
is a simply connected domain. Given an appropriate sequence of H-hulls, we can
define its convergence in Carathéodory’s sense (see Definition2 in Sect. 2.1). Let
Z = ((Zt )t≥0, (Pz)z∈H) be an absorbed Brownian motion (ABM for brevity) in H.
The half-plane capacity of F is defined by1

hcap(F) := lim
y→∞ y Eiy

[
Im ZσF

] = lim
y→∞ y Eiy

[
Im ZτH\F

]
(1)

as long as this limit exists. Here, σF (resp. τH\F ) is the first hitting time (resp. exit
time) of Z to F (resp. from H \ F).

Originally, the half-plane capacity appears in a purely analytic way. Let F be a
bounded H-hull. Using Riemann’s mapping theorem, we can show that there exists
a unique conformal mapping gF : H \ F → H with Laurent expansion

gF (z) = z + aF

z
+ o(z−1), z → ∞, (2)

around the point at infinity. (gF is sometimes called the mapping-out function of F)
The non-negative constant aF is exactly the half-plane capacity of F . We note that

aF = − Res
z=∞ gF (z) dz = Res

z=∞ g−1
F (z) dz.

If hulls are assumed to be uniformly bounded, then the continuity of half-plane
capacity is proved quite easily. Let Fn , n ∈ N ∪ {∞}, be H-hulls that are contained
in a disk B(0, ρ) with center 0 and radius ρ. We suppose that Fn converges to F∞
in Carathéodory’s sense. Using a version of the Carathéodory kernel theorem [14,
Theorem 3.8] and taking the Schwarz reflection of gFn ’s across the real axis, we can
show that gFn (z) converges to gF∞(z) uniformly in z ∈ ∂ B(0, ρ). By (2) we have

lim
n→∞ aFn = lim

n→∞
1

2π i

∫

|z|=ρ

gFn (z) dz = 1

2π i

∫

|z|=ρ

gF∞(z) dz = aF∞ .

In contrast to the preceding case, the continuity of half-plane capacity fails if hulls
are allowed to be unbounded. In this case, hcap(F) should be the angular residue
of g−1

F at infinity, but the angular residue is not a continuous functional of g−1
F (see

1 We adopt the usual convention that a function on H takes value zero at the cemetery of the ABM.
The second equality in (1) is understood in this sense.
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Goryainov and Ba [9, p. 1211]). In order to retrieve the continuity of half-plane
capacity, some restriction must be imposed on H-hulls.

In this paper, we assume that our boundary hulls are contained in a fixed hull with
finite imaginary part and finite half-plane capacity. Under this assumption, our main
result is stated as follows:

Theorem 1 Let F̃ be an H-hull with

Im F̃ := sup{ Im z ; z ∈ F̃ } < ∞ and hcap(F̃) < ∞.

Suppose that H-hulls Fn, n ∈ N, and F∞ are all contained in F̃ and that Fn converges
to F∞ as n → ∞ (in the sense of Definition2). Then

lim
n→∞ hcap(Fn) = hcap(F∞). (3)

For the proof of Theorem1, we make a full use of the probabilistic definition (1)
of half-plane capacity instead of (angular) residue. The merit of our method is that
the hitting probability of the ABM to a hull F is given by the harmonic measure
of H \ F . In fact, the Carathédory convergence implies the weak convergence of
harmonic measures under a certain assumption, which is a key result to proving (3).
Modifying the original argument of Binder et al. [1], we provide a proof of this result
in Appendix 2.

After the proof of Theorem1, we discuss its extension to finitely connected
domains. Let D be a parallel slit half-plane, namely, the upper half-plane with
some line segments parallel to the real axis removed. For an H-hull F in D, its half-
plane capacity hcapD(F) relative to D is defined by replacing ABM with Brownian
motion with darning (BMD for short) in the expression (1). Such replacement is nat-
urally considered in the study of the Komatu–Loewner differential equation; See a
series of recent papers [2–4].We prove the continuity of hcapD so defined under such
assumptions as in Theorem1 (see Theorem2 in Sect. 3.1).

Remark 1 Thequestion of the continuity of half-plane capacity originally arose from
the joint work [10], which is in progress. In this work, a very similar result is proved
by means of angular residues and an integral formula for conformal mappings. (We
shall mention the relation of Theorem1 to this result again in Remark2 in Sect. 4.2.)
Thus, our main contribution lies in the simple probabilistic method, which works for
finitely connected domains as well, rather than the results themselves.

The rest of this paper is organized as follows: Sect. 2 is devoted to the case that the
underlying domain is simply connected, namely, the upper half-plane. In Sect. 2.1,
we provide the definition of Carathéodory’s convergence and prove Theorem1. In
Sect. 2.2,we show that hcap is strictlymonotone (with respect to the inclusion relation
of H-hulls) and give a partial converse of Theorem1 for a monotone sequence of
hulls. Section3 is devoted to the case that the underlying domain is finitely connected,
namely, a parallel slit half-plane. In Sect. 3.1, we generalize the definition of half-
plane capacity in terms of BMD. The proof of Theorem2 is done through Sects. 3.2
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and 3.3. The final section, Sect. 4, is devoted to some remarks on the relation of
our results to geometric function theory. (The reader can read Sect. 4 independently
of Sect. 3.) There are two appendices. In Appendix 1, we prove a lemma on some
hitting probability needed in the proof of Proposition11. In Appendix 2, we prove
the above-mentioned fact on the weak convergence of harmonic measures.

2 Study on the Upper Half-Plane

In this section, we study boundary hulls in the upper half-plane H. Our main result,
Theorem1, is proved after some definitions are given. We also discuss the case that
a sequence of hulls is monotone. Most of the results in this section will be carried
over into the setting of Sect. 3.

2.1 Basic Definitions and Proof of Theorem1

Definition 1 (Convergence of Domains) Let Dn , n ∈ N, and D∞ be domains in the
complex plane C which have a point z0 ∈ C in common. It is said that the sequence
(Dn)n∈N converges to D∞ in the kernel sense or in Carathéodory’s sensewith respect
to the reference point z0 if the following hold:

• Each compact subset K of D∞ is a subset of Dn for all but finitely many n;
• If a domainU contains z0 and is a subset of Dn for infinitelymany n, thenU ⊂ D∞.

In Definition1, we have skipped the definition of “kernel” and defined the kernel
convergence directly. The equivalence of Definition1 to the original definition (see
for instance Roseblum and Rovnyak [18, §7.9]) is easy to check and left to the
interested reader.

Definition 2 (Convergence of H-Hulls) Suppose that H-hulls Fn , n ∈ N, and F∞
are contained in another hull F̃ . We say that the sequence (Fn)n∈N converges to F∞
(in Carathéodory’s sense) if the complementH \ Fn converges toH \ F∞ as n → ∞
in the kernel sense with respect to some z0 ∈ H \ F̃ . (This definition is independent
of the choice of the reference point z0.)

We use the following notation: Z = ((Zt )t≥0, (Pz)z∈H) is an ABM in H. For a set
B ⊂ H, the symbol σB (resp. τB) denotes the first hitting time (resp. exit time) of Z
to B (resp. from B). For a domain D, the expression

hmD(z, B) := Pz(ZτD− ∈ B)

defines the harmonic measure of B in D seen from a point z. It is regarded as a Borel
measure on C. The value of any function at the cemetery of Z is set to be zero.
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Let us begin the proof of Theorem1. The following observation comes from the
expression of half-plane capacity mentioned by Lalley et al. [11]: For an H-hull F
with Im F < ∞, let y > η > Im F and Hη := { z ∈ C ; Im z > η }. Then

Eiy
[
Im ZσF

] = Eiy

[
EZτHη

[
Im ZσF

]] =
∫

∂Hη

Eζ

[
Im ZσF

]
hmHη

(iy, dζ )

= 1

π

∫

R

Eξ+iη
[
Im ZσF

] y − η

ξ 2 + (y − η)2
dξ.

Hence we have

y Eiy
[
Im ZσF

] = 1

π

∫

R

Eξ+iη
[
Im ZσF

] y(y − η)

ξ 2 + (y − η)2
dξ for y > η > Im F. (4)

Proposition 1 (Expression of hcap) Let F be an H-hull with Im F < ∞ and
hcap(F) < ∞. Then, for any η > Im F,

hcap(F) = 1

π

∫

R

Eξ+iη
[
Im ZσF

]
dξ. (5)

Proof We apply Fatou’s lemma to (4):

1

π

∫

R

Eξ+iη
[
Im ZσF

]
dξ ≤ lim inf

y→∞ y Eiy
[
Im ZσF

] = hcap(F) < ∞.

Hence the function ξ 
→ Eξ+iη
[
Im ZσF

]
is integrable. Moreover,

y(y − η)

ξ 2 + (y − η)2
≤ y

y − η
< 2 for all ξ ∈ R and y > 2η. (6)

The dominated convergence theorem thus applies to (4), which yields (5).

Proposition 2 (Weak Monotonicity) Let F and F̃ be H-hulls with F ⊂ F̃ . If F̃
satisfies Im F̃ < ∞ and hcap(F̃) < ∞, then the limit hcap(F) exists and enjoys

hcap(F) ≤ hcap(F̃). (7)

Proof The process (Im Zt )t≥0 is just a one-dimensional Brownian motion stopped
when it hits the origin. Hence it is a non-negative martingale. Since limt→∞ Im Zt =
0 a.s., it is also a supermartingle with last element zero. Thus, the optional sampling
theorem implies that

Eξ+iη
[
Im ZσF

] ≤ Eξ+iη
[
Im ZσF̃

]
for ξ ∈ R and η > Im F̃ . (8)
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The right-hand side of (8) is integrable as a function of ξ by Proposition1. Thus, by
virtue of (6), the dominated convergence theorem works in (4). This yields (7).

We now consider H-hulls Fn , n ∈ N ∪ {∞}, in Theorem1. The next proposition
then applies to the complementary domains H \ Fn .

Proposition 3 (Uniform Regularity of Simply Connected Domains) Simply con-
nected domains none of which is C are uniformly regular. Namely, for any ε > 0
there exists δ > 0 such that every simply connected domain D � C satisfies

hmD(z, B(z, ε)) > 1 − ε for any z ∈ D with dist(z, ∂ D) < δ.

Here, B(z, ε)denotes the disk with center z and radius ε, and dist(z, ∂ D) := inf{ |z −
w| ; w ∈ ∂ D }.

There are several proofs of Proposition3, and we refer the reader to Markowsky
[13, Lemma 1] for a short and elegant probabilistic one. Using this proposition, we
prove the following:

Proposition 4 Under the assumption of Theorem1, it holds that

lim
n→∞ Eζ

[
Im ZσFn

] = Eζ

[
Im ZσF∞

]
for every ζ ∈ H \ F̃ . (9)

Proof The domains H \ Fn , n ∈ N ∪ {∞}, are uniformly regular by Proposition3,
and H \ Fn converges to H \ F∞ in Carathéodory’s sense by assumption. Thus,
it follows from Theorem4 in Appendix 2 that hmH\Fn (ζ, ·) converges weakly to
hmH\F∞(ζ, ·). Putting ψ(z) := max{0,min{Im z, Im F̃}}, we have

lim
n→∞ Eζ

[
Im ZσFn

] = lim
n→∞

∫

C

ψ(z)hmH\Fn (ζ, dz)

=
∫

C

ψ(z)hmH\F∞(ζ, dz) = Eζ

[
Im ZσF∞

]
.

Proposition4 completes the proof of Theorem1. Indeed, Proposition2 ensures that
hcap(Fn) < ∞ for all n. Then by virtue of (8) and (9) with F = Fn , the dominated
convergence theorem applies to (5) with F = Fn . This yields (3).

2.2 Strict Monotonicity

In Proposition2, we have seen that the half-plane capacity is a weakly monotone
function of H-hulls. In fact, it is strictly monotone as follows:

Proposition 5 (Strict Monotonicity) Let F and F̃ be H-hulls with F � F̃ , Im F̃ <

∞, and hcap(F̃) < ∞. Then
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hcap(F) < hcap(F̃).

Proof We assume
hcap(F) = hcap(F̃) (10)

to the contrary and deduce a contradiction.
By (5), (8), and (10), we have, for each fixed η > Im F̃ ,

Eξ+iη
[
Im ZσF

] = Eξ+iη
[
Im ZσF̃

]
for a.e. ξ ∈ R.

Both sides of this equality are harmonic functions of variable ζ = ξ + iη. Hence the
identity theorem applies:

Eζ

[
Im ZσF

] = Eζ

[
Im ZσF̃

]
for any ζ ∈ H \ F̃ .

In particular, if z0 ∈ (H ∩ ∂ F̃) \ F , then

Ez0

[
Im ZσF

] = Ez0

[
Im ZσF̃

] = Im z0 (11)

because z0 is a regular point of ∂(H \ F̃) byProposition3.Here, the set (H ∩ ∂ F̃) \ F
is not empty. Otherwise, F̃ \ F = F̃◦ \ F would be open (F̃◦ stands for the interior
of F̃), and the domain H \ F would be divided into disjoint open sets H \ F̃ and
F̃ \ F .

Now, we define a harmonic function

u(z) := Ez
[
Im ZσF

] − Im z, z ∈ H \ F.

Since u(z) enjoys

lim
z→ζ

u(z) = 0 for any ζ ∈ ∂(H \ F) and lim sup
z→∞

u(z)

log|z| ≤ 0,

a corollary of the Phragmén–Lindelöf principle [16, Corollary 2.3.3] yields u ≤ 0
in H \ F . Hence (11) implies that u takes its maximum at z0. By the maximum
principle, we have u ≡ 0, namely,

Ez
[
Im ZσF

] = Im z for all z ∈ H \ F.

This is absurd.

Using the strict monotonicity, we can show that hcap(Fn) → hcap(F∞) implies
Fn → F∞, the converse of Theorem 1, if (Fn)n∈N is monotone. To this end, we recall
the limit of monotone hulls.

Proposition 6 (Limit of Monotone Hulls) Let (Fn)n∈N be a sequence of H-hulls.
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(a) Suppose that (Fn)n∈N is decreasing and set F := ⋂
n∈N Fn. Then F is an H-hull,

and Fn → F in Carathéodory’s sense (with respect to any point z0 ∈ H \ F0).
(b) Suppose that (Fn)n∈N is increasing with G := ⋃

n∈N Fn ⊂ F̃ for some hull F̃ .
Let F be the union of G ∩ H and all the connected components of H \ G that
are disjoint from H \ F̃ . Then F is an H-hull, and Fn → F in Carathéodory’s
sense (with respect to any point z0 ∈ H \ F̃).

Proposition6 is well known if H-hulls are uniformly bounded. It is also not so
difficult to prove on the basis of Definitions1 and 2. We omit the detail here.

Proposition 7 Let Fn, n ∈ N ∪ {+∞}, be a monotone sequence of H-hulls. Suppose
that there exists a hull F̃ such that

⋃

n

Fn ⊂ F̃, Im F̃ < ∞, and hcap(F̃) < ∞.

Then limn→∞ hcap(Fn) = hcap(F∞) implies Fn → F∞ in Carathéodory’s sense.

Proof Weassumefirst that Fn , n ∈ N ∪ {+∞}, are decreasing. Let F := ⋂
n∈N Fn ⊃

F∞. We have Fn → F by Proposition6(a) and hence hcap(Fn) → hcap(F) by The-
orem1. Thus, we obtain

F∞ ⊂ F and hcap(F∞) = hcap(F).

Proposition5 yields F∞ = F .
We assume next that Fn , n ∈ N ∪ {+∞}, are increasing. Let F be the hull defined

in Proposition6(b). We have Fn → F and hence hcap(Fn) → hcap(F) by Theo-
rem1. Since H \ F∞ ⊂ ⋂

n∈N(H \ Fn), Definition1 implies that H \ F∞ ⊂ H \ F .
Thus,

F∞ ⊃ F and hcap(F∞) = hcap(F).

Proposition5 yields F∞ = F again.

3 Study on Parallel Slit Half-Planes

In this section, we formulate and prove an extension of Theorem1 in parallel slit
half-planes, a standard type of finitely connected domains.

3.1 BMD Half-Plane Capacity

Let N ∈ N \ {0}. For disjoint horizontal line segments C j , j = 1, 2, . . . , N , in H,
we put K := ⋃N

j=1 C j and D := H \ K . Such a domain D is called a parallel slit
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half-plane.We also consider the quotient space D∗ ofH inwhich eachC j is identified
with one point c∗

j . With K ∗ := {c∗
1, c∗

2, . . . , c∗
N }, it is written as D∗ := D ∪ K ∗.

A BMD in D∗, which we denote by Z∗ = ((Z∗
t )t≥0, (P

∗
z )z∈D∗), is a symmetric2

diffusion process in D∗ with the following two properties:

• The killed process of Z∗ when it exits from D is an ABM in D;
• Z∗ admits no killing in K ∗.

See Chen et al. [3] for basic properties of BMD.
The (BMD) half-plane capacity of an H-hull F ⊂ D relative to D can be defined

by
hcapD(F) := lim

y→∞ y E
∗
iy

[
Im Z∗

σF

]
(12)

as long as this limit exists. Here, σF denotes the first hitting time of Z∗ to F . As
before, the right-hand side of (12) typically coincides with the (angular) residue of
some conformal mapping from or onto D \ F (see Chen and Fukushima [2, p. 591]),
which ensures the validity of this definition.

The main result of this section is the following:

Theorem 2 Let F̃ ⊂ D be an H-hull with Im F̃ < ∞ and hcapD(F̃) < ∞. Suppose
that H-hulls Fn, n ∈ N, and F∞ are all contained in F̃ and that Fn converges to F∞
as n → ∞ (in the sense of Definition2). Then

lim
n→∞ hcapD(Fn) = hcapD(F∞). (13)

Notice that D \ Fn converges to D \ F∞ in Carathéodory’s sense if Fn → F∞ in
the sense of Definition2. This is easily seen in view of Definition1.

Propositions1 and 2 hold for BMD and BMD half-plane capacity with obvious
modifications. Thus, in order to prove Theorem2, it suffices to show the following:

Proposition 8 Under the assumption of Theorem2, it holds that

lim
n→∞ E

∗
ζ

[
Im Z∗

σFn

]
= E

∗
ζ

[
Im Z∗

σF∞

]
for every ζ ∈ D \ F̃ . (14)

We take two steps to prove Proposition8:

(a) Express E
∗
ζ

[
Im Z∗

σFn

]
in terms of ABM;

(b) Prove the uniform regularity (Definition3 in Appendix 2) of D \ Fn’s to show
that hmD\Fn (ζ, ·) → hmD\F∞(ζ, ·) weakly.

To carry out the step (a), we study Markov chains on K ∗ associated with BMD in
Sect. 3.2. To implement the step (b), we make a comparison of hmD\Fn and hmH\Fn ,
the latter of which behaves well by Proposition3, in Sect. 3.3.

2 ‘Symmetric’ means “symmetric with respect to the Lebesgue measure on D∗”. The measure of
K ∗ is set to be zero.
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3.2 Markov Chains Induced by BMD

Let F and F̃ be H-hulls with F ⊂ F̃ ⊂ D and Im F̃ < ∞. Following Lawler [12,
Sects. 5.2 and 5.3] and Chen et al. [3, Appendix 1], we observe that BMD naturally
induces Markov chains in K ∗ ∪ {c∗

0} (c∗
0 represents the cemetery of the chains). We

shall use their transition probabilities to compute the expectation with respect to
BMD.

For each j = 1, 2, . . . , N , let η j be a smooth Jordan curve in D \ F̃ surrounding
C j . We define a measure on η j by

ν j (dz) := P
∗
c∗

j

(
Z∗

ση j
∈ dz

)
.

We also put

ϕ( j)(z) := hmD\F (z, C j ) = P
∗
z (Z∗

σK∗ = c∗
j , σK ∗ < σF )

for z ∈ D \ F . We consider a Markov chain X = (Xn)n∈N whose transition proba-
bility from c∗

j to c∗
k , j, k ∈ {1, 2, . . . , N }, is given by

p jk := E
∗
c∗

j

[
P

∗
Z∗

ση j

(
Z∗

σK∗ = c∗
k , σK ∗ < σF

)
]

=
∫

η j

ϕ(k)(z) ν j (dz). (15)

Hence the chain X moves from c∗
j to c∗

k when a BMD restricted in D∗ \ F moves
from c∗

j to c∗
k after passing η j . The probabilities p j0, 0 ≤ j ≤ N , are defined in an

obvious way.
We condition the chain X defined above not to stay at the same state in one step.

Then the corresponding transition probability is given by

q jk = p jk

1 − p j j
( j �= 0), q0k = δ0k .

This conditioned chain satisfies q j0 > 0 for all j . Thus, the matrix Q := (q jk)
N
j,k=1

has eigenvalues which are all less than one, and the inverse M = (M jk)
N
j,k=1 :=

(I − Q)−1 exists.
Using the transition probabilities introduced above, let us compute

V ∗(z) := E
∗
z

[
Im Z∗

σF

]
, z ∈ D∗ \ F.

We also define,3 for the ABM Z in H,

3 The symbol σ· is used for two meanings here: the hitting times of the ABM Z in H and of the
BMD Z∗ in D∗. Although this is abuse of notation, there will be no confusion.
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V (z) := Ez
[
Im ZσF ; σF < σK

]
, z ∈ D \ F.

Proposition 9 The function V ∗(z) satisfies

V ∗(z) = V (z) +
N∑

j=1

ϕ( j)(z)
N∑

k=1

M jk

1 − pkk

∫

ηk

V (z) νk(dz), z ∈ D \ F. (16)

Proof For z ∈ D \ F ,

V ∗(z) = E
∗
z

[
Im Z∗

σF
; σF < σK ∗

] + E
∗
z

[
Im Z∗

σF
; σK ∗ < σF

]

= V (z) +
N∑

j=1

V ∗(c∗
j ) P

∗
z

(
Z∗

σK∗ = c∗
j , σK ∗ < σF

)

= V (z) +
N∑

j=1

ϕ( j)(z)V ∗(c∗
j ). (17)

Integrating the both side by νk and using the strong Markov property, we have

V (c∗
k ) =

∫

ηk

V (z) νk(dz) +
N∑

j=1

pk j V
∗(c∗

j ).

This is equivalent to

N∑

j=1

(δk j − qk j )V (c∗
j ) = 1

1 − pkk

∫

ηk

V (z) νk(dz).

Hence we finally get

V ∗(c∗
j ) =

N∑

k=1

M jk

1 − pkk

∫

ηk

V (z) νk(dz). (18)

Substituting (18) into (17) yields (16).

We now consider the case that F coincides with Fn in Theorem 2. In this case,
we write the above functions V ∗, V , and ϕ( j) as V ∗

n , Vn , and ϕ
( j)
n , respectively. We

also denote the above p jk and M jk by pn
jk and Mn

jk , respectively.

Proposition 10 If

hmD\Fn (ζ, ·) w−→ hmD\F∞(ζ, ·) as n → ∞ for every ζ ∈ D \ F̃, (19)
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then Vn(ζ ), ϕ( j)
n (ζ ), pn

jk , and Mn
jk converge to V∞(ζ ), ϕ( j)

∞ (ζ ), p∞
jk , and M∞

jk , respec-
tively, as n → ∞.

Proof Suppose (19). Let ψ1(z) be a bounded continuous function which is equal to
Im z on F̃ and zero on K . Then

lim
n→∞ Vn(ζ ) = lim

n→∞

∫

C

ψ1(z)hmD\Fn (ζ, dz)

=
∫

C

ψ1(z)hmD\F∞(ζ, dz) = V∞(ζ ).

In order to show limn→∞ ϕ
( j)
n (ζ ) = ϕ

( j)
∞ (ζ ), we just replaceψ1(z) by a bounded con-

tinuous functionψ2(z)which takes value one onC j and zero on F̃ ∪ (K \ C j ). Since
0 ≤ ϕ

( j)
n (ζ ) ≤ 1, the dominated convergence theorem applies to (15), which yields

pn
jk → p∞

jk . Finally, Mn
jk → M∞

jk follows from the above-mentioned construction.

From Propositions9 and 10, we get the following:

Corollary 1 The convergence of harmonic measures (19) implies that of expecta-
tions (14) in Proposition8.

3.3 Uniform Regularity of Slit Domains

In order to verify the convergence of harmonic measures (19), we prove the uniform
regularity of domains D \ Fn .

Proposition 11 Let D and Fn, n ∈ N ∪ {∞}, be as in Theorem2. Then the domains
D \ Fn are uniformly regular (in the sense of Definition3 in Appendix 2).

Proof In this proof, we consider

Ã := F̃ ∪ ∂H and An := Fn ∪ ∂H, n ∈ N ∪ {∞},

instead of F̃ and Fn . Needless to say, D \ Fn = D \ An .
Since K and Ã are disjoint, we have r := dist(K , Ã) > 0. If ε ∈ (0, r/4), then

B(z, ε) intersects only one of the sets K and An . Therefore, we can divide the proof
of the uniform regularity into two cases:

(a) B(z, ε) ∩ An �= ∅ and B(z, ε) ∩ K = ∅;
(b) B(z, ε) ∩ An = ∅ and B(z, ε) ∩ K �= ∅.
In what follows, let Z = ((Zt )t≥0, (Pz)z∈C) be a complex Brownian motion.



On the Continuity of Half-Plane Capacity with Respect … 391

(a) We consider the case (a). Since the domains H \ An are uniformly regular by
Proposition3, there exists δ ∈ (0, ε) such that

1 − ε < hmH\An (z, B(z, ε)) = Pz
(
ZσAn

∈ B(z, ε)
)

(20)

for z ∈ D \ An with dist(z, An) < δ. We decompose the right-hand side as fol-
lows:

Pz
(
ZσAn

∈ B(z, ε)
)

= Pz
(
ZσAn

∈ B(z, ε), σAn < σK
) + Pz

(
ZσAn

∈ B(z, ε), σK < σAn

)

= hmD\An (z, B(z, ε)) + Ez
[
PZσK

(
ZσAn

∈ B(z, ε)
) ; σK < σAn

]

≤ hmD\An (z, B(z, ε)) + sup
w∈K

Pw

(
ZσAn

∈ B(z, ε)
)

≤ hmD\An (z, B(z, ε)) + sup
w∈K

Pw

(
σB(z,ε) < τ

H

)
. (21)

In the last expression, the following uniform convergence is not difficult to see:

lim
ε→0

sup
{

Pw

(
σB(z,ε) < τ

H

) ; z ∈ N̄δ( Ã), w ∈ K
}

= 0. (22)

Here, a closed subset

N̄δ( Ã) := { z ∈ H ; dist(z, Ã) ≤ δ }

of H is disjoint from K by definition. We provide the proof of (22) for the sake
of completeness in Appendix 1. Finally, (20), (21), and (22) ensure the condition
for the uniform regularity in the case (a).

(b) We consider the case (b). In this case, we have

hmD\An (z, B(z, ε)) = Pz
(
ZσK ∈ B(z, ε); σK < σAn

)

≥ Pz
(
ZσK ∈ B(z, ε); σK < σ Ã

)

≥ Pz
(
σK ≤ τB(z,ε)

) = hmB(z,ε)\K (z, K ).

Hence it suffices to show that, for some fixed ε0 ∈ (0, r/4] and for every ε ∈
(0, ε0),

lim
δ→0

inf
{
hmB(z,ε)\K (z, K ) ; z ∈ C, dist(z, K ) < δ

} = 1. (23)

There may be several ways to prove this, and one way is as follows: If ε0 is small
enough, then for every ε ∈ (0, ε0), the disk B(z, ε) intersects only one slit C j

of K , and the length of C j is greater than 2ε. For such an ε, let δ ∈ (0, ε). For
any point z with ρz := dist(z, K ) < δ, we put E := C j ∩ B(z, ε). In the disk
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B(z, ε), we consider the circular projection

Ê := { |w − z| + z ; w ∈ E }

of E onto the horizontal radius.Clearly, Ê is the line segment that connects z + ρz

and z + ε. By Beurling’s projection theorem (see, e.g., Garnett and Marshall
[8, Theorem 9.2, Chap. III]), we have

hmB(z,ε)\K (z, K ) ≥ hmB(z,ε)\Ê (z, Ê) = 2

π
arctan

[
1

2

(√
ε

ρz
−

√
ρz

ε

)]

≥ 2

π
arctan

[
1

2

(√
ε

δ
−

√
δ

ε

)]

.

The last expression goes to one as δ → 0. This proves (23).

Proposition11 and Theorem4 inAppendix 2 immediately yield the next corollary.

Corollary 2 Let D and Fn, n ∈ N ∪ {∞}, be as in Theorem2. Then (19) holds, that
is, hmD\Fn (ζ, ·) converges weakly to hmD\F∞(ζ, ·) for every ζ ∈ D \ F̃ .

Corollaries1 and 2 prove Proposition8 and hence Theorem2.

4 Relation to Geometric Function Theory

We give some remarks on Theorem1 in the case that H-hulls are unbounded. They
are also the case with Theorem2.

4.1 Half-Plane Capacity and Angular Residue at Infinity

In view of geometric function theory, a natural way to define the half-plane capacity
of an unbounded H-hull is to define it as the angular residue of the Riemann map
at infinity. More precisely, suppose that there exists a (unique) conformal mapping
fF : H → H \ F with the following two properties [9, Lemma 1(b)]:

lim
z→∞
Im z>η

( fF (z) − z) = 0 for any η > 0, (24)

and there exists aF ∈ C such that

lim
z→∞

arg z∈(θ,π−θ)

z(z − fF (z)) = aF for any θ ∈ (0, π/2). (25)
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The constant aF turns out to be non-negative and is called the angular residue at
infinity.

It is known that the inverse mapping f −1
F has angular residue −aF at infinity.

Expressing the harmonic function Im( f −1
F (z) − z) in terms of ABM, we can see that

(A) if there exists a conformal mapping fF : H → H \ F which enjoys (24) and
(25), then we have Im F < ∞ and hcap(F) = aF .

In particular, the existence of the vertical limit (1) follows from that of the angular
limit (25).On the other hand, it seems difficult to tell whether the following statement,
which is the converse of (A), is true or not:

(B) If the limit (1) exists, then there exists a conformal mapping fF : H → H \ F
which enjoys (24) and (25).

In order to explain the difficulty of the above problem, suppose that the limit (1)
exists. We can then take a conformal mapping f : H → H \ F with f (∞) = ∞ in
the sense of angular limit. Compared with (24) and (25), however, the last condition
is too weak to relate the behavior of the inverse f −1(z) around z = ∞ to the quantity
hcap(F). Typical tools concerning holomorphic self-mappings inHmight be useful,
such as the Pick–Nevanlinna integral representation, the Julia–Wolff–Carathéodory
theorem, and so on, but at thismoment they do not directly imply that f −1(z) behaves
well near ∞.

We note that some probabilistic methods could be available for constructing the
conformal mapping fF above. In the case that the hull F is bounded, such a proba-
bilistic construction of conformal mappings is studied by Lawler [12, Sect. 5.2] and
by Chen et al. [3, Theorem 7.2]. It will be a natural question whether we can obtain
such results in the present case as well.

4.2 Carathéodory Convergence and Locally Uniform
Convergence

In the classical context, the Carathéodory convergence of domains (Definition1)
is associated with the locally uniform convergence of the Riemann maps by the
following theorem (see for example Rosenblum and Rovnyak [18, p. 170]):

Theorem 3 (Carathéodory Kernel Theorem) Let fn be a conformal mapping from
the unit disk D onto Dn with fn(0) = 0 and f ′

n(0) > 0 for each n ∈ N. Then the
following are equivalent:

(a) ( fn)n∈N converges to a non-constant function locally uniformly in D;
(b) (Dn)n∈N converges to a proper subdomain of C in Carathéodory’s sense with

respect to the origin.

Compared to Theorem3, it is naturally expected that, for H-hulls (Fn)n∈N and the
corresponding conformal mappings ( fFn )n∈N with (24) and (25), the following are
equivalent:
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(a′) ( fFn )n∈N converges locally uniformly in H;
(b′) (Fn)n∈N converges in the sense of Definition2.

However, this equivalence is not obvious from the classical Carathéodory kernel
theorem. The point is that, whereas the Riemann maps in Theorem3 fix the origin,
an interior point of D, the mappings fFn fix the point at infinity, a boundary point
of H.

Although we omit their details, there are several variants of Carathéodory’s kernel
theorem known. We here notice that, in the case that the H-hulls Fn are uniformly
bounded, the author gave a proof [14, Theorem3.8] of the equivalence of (a′) and (b′).

Remark 2 We have seen that, at this moment, the probabilistic definition (1) of half-
plane capacity is not completely the same as the analytic one (25) for unbounded
H-hulls. In the joint work [10] referred to in Remark 1, it is proved in an analytic
way that, under assumptions like (24) and (25), the locally uniform convergence
fFn → fF∞ implies aFn → aF∞ . This statement is thus different than Theorem1
from a technical point of view. As it exceeds the scope of this article, we just point
out this difference and do not go into the detail of such a technicality here.

Acknowledgements The author wishes to express his thanks to Professor GregoryMarkowsky for
the comments on the first manuscript, which helped the author to improve the exposition around
uniform regularity and weak convergence of harmonic measures. This research was supported by
JSPS KAKENHI Grant Number JP21J00656.

Appendix 1: A Result on Hitting Probability

Let Z = ((Zt )t≥0, (Pz)z∈C) be a complex Brownian motion. We recall and prove
(22):

Proposition 12 Let S be a closed set in H and K be a compact set in H. Suppose
S ∩ K = ∅ and Im S < ∞. Then

lim
ε→0

sup
{

Pw

(
σB(z,ε) < τ

H

) ; z ∈ S, w ∈ K
} = 0. (26)

Here, σ· and τ· denote the first hitting and exit times of Z, respectively.

Proof We reduce the problem to the case in which S is compact. Let a > 0 be such
that K ⊂ { z ; |Re z| < a }. We take ε0 > 0 so small that a compact set

S′ := (S ∩ { z ; |Re z| < a }) ∪ { z ; a ≤ |Re z| ≤ 2a + ε0, 0 ≤ Im z ≤ Im S }.

satisfies dist(K , S′) ≥ ε0. It follows that
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sup
z∈S
w∈K

Pw

(
σB(z,ε) < τ

H

) ≤ sup
z∈S′
w∈K

Pw

(
σB(z,ε) < τ

H

)
for ε ∈ (0, ε0). (27)

This inequality is seen as follows: Let L := { z ; Re z = 2a + ε0 }. For z ∈ S with
2a + ε0 < Re z ≤ 3a + ε0, we have

Pw

(
σB(z,ε) < τ

H

) = Ew

[
PZσL

(
σB(z,ε) < τ

H

) ; σL < τ
H

]

= Ew

[
PZσL

(
σB(2a+ε0−z̄,ε) < τ

H

) ; σL < τ
H

]

= Pw

(
σL < σB(2a+ε0−z̄,ε) < τ

H

) ≤ Pw

(
σB(2a+ε0−z̄,ε) < τ

H

)
.

Hence

sup
z∈S, 2a+ε0<Re z≤3a+ε0

w∈K

Pw

(
σB(z,ε) < τ

H

) ≤ sup
z∈S′
w∈K

Pw

(
σB(z,ε) < τ

H

)
.

Repeating such a reflection argument, we can conclude (27).
By virtue of (27), it suffices to prove (26) with S replaced by S′. We define

half-planes H − z := { w − z ; w ∈ H }, z ∈ C, and H := H − i Im S. Then

Pw

(
σB(z,ε) < τ

H

) = Pw−z
(
σB(0,ε) < τ

H−z

) ≤ Pw−z
(
σB(0,ε) < τH

)
.

We now put K − S′ := { w − z ; w ∈ K , z ∈ S′ } and fε(ζ ) := Pζ

(
σB(0,ε) < τH

)

for ζ ∈ K − S′. The function fε(ζ ) is continuous in ζ and decreases to zero as
ε → 0 for each ζ . By Dini’s theorem, we have limε→0 supζ∈K−S′ fε(ζ ) = 0, which
gives (26).

Appendix 2: Weak Convergence of Harmonic Measures

Following Binder et al. [1, (3.1)], we define the uniform regularity of domains as
follows:

Definition 3 (Uniform Regularity) A collection D of proper subdomains of C is
said to be uniformly regular if, for any ε > 0 there exists δ ∈ (0, ε) such that every
D ∈ D satisfies

hmD(z, B(z, ε)) > 1 − ε for any z ∈ D with dist(z, ∂ D) < δ. (28)

Only is the Euclidean distance used in Definition3. This definition is slightly dif-
ferent from the original one, which involves the spherical distance. In the subsequent
argument, we use only the Euclidean distance and do not consider the spherical one.

The aim of this appendix is to provide a self-contained proof of the following
theorem, which is part of Binder et al. [1, Theorems 2.3 and 3.1]:
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Theorem 4 Let Dn, n ∈ N, and D∞ be proper subdomains of C which have a point
z0 in common. Suppose that these domains are uniformly regular. If Dn converges
to D∞ as n → ∞ in Carathéodory’s sense with respect to z0, then hmDn (z0, ·)
converges weakly to hmD∞(z0, ·).
Remark 3 The weak convergence of harmonic measures (in simply connected
domains) was also proved under a different (but closely related) assumption in the
earlier paper of Snipes andWard [19, Remark 1] in the context of harmonic measure
distribution functions.

In what follows, we keep the assumption of Theorem4. Namely, Dn , n ∈ N, and
D∞ are uniformly regular domains, and Dn converges to D∞ in Carathéodory’s sense
with respect to a point z0.

We construct a “common interior approximation” of Dn for sufficiently large n
(cf. [1, Definition 2.2]). Let δ0 := dist(z0, ∂ D∞) > 0. For δ ∈ (0, δ0) and r > 0, we
define Uδ,r as the connected component of an open set

{
z ∈ D∞ ; dist(z, ∂ D∞) >

δ

4
, |z − z0| < r

}

that contains z0. We also set

Γδ :=
{

z ∈ C ; dist(z, ∂ D∞) = δ

4

}
.

Lemma 1 For every δ ∈ (0, δ0) and r > 0, there exists N ∈ N such that, for any
N < n ≤ ∞, the domain Dn enjoys

Uδ,r ⊂ Dn and dist(z, ∂ Dn) < δ for all z ∈ Γδ ∩ ∂Uδ,r . (29)

Proof By definition, we have

Uδ,r � D∞ and dist(z, ∂ D∞) = δ

4
for all z ∈ Γδ ∩ ∂Uδ,r . (30)

Since Dn → D∞, there exists N ′ ∈ N such that Uδ,r ⊂ ⋂
N ′≤n<∞ Dn . We here see

that, for a fixed z ∈ Γδ ∩ ∂Uδ,r , there are onlyfinitelymanyn such that dist(z, ∂ Dn) ≥
δ/2; Otherwise, Uδ,r ∪ B(z, δ/2) would be a subdomain of Dn for infinitely many
n, and hence this domain would be a subset of D∞ by Definition1. This contradicts
(30). In this way, we can define

n(z) := max{ n ≥ N ′ ; dist(z, ∂ Dn) ≥ δ/2 }

with the maximum set to be N ′ if this set is empty.
By the compactness, we can choose finitely many points zk ∈ Γδ ∩ ∂Uδ,r so that

Γδ ∩ ∂Uδ,r ⊂ ⋃
k B(zk, δ/2). Set N := maxk n(zk). For any z ∈ Γδ ∩ ∂Uδ,r , we can
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find zk with z ∈ B(zk, δ/2), and hence

dist(z, ∂ Dn) ≤ |z − zk | + dist(zk, ∂ Dn) <
δ

2
+ δ

2
= δ

for all n > N .

Let Z = ((Zt )t≥0, (Pz)z∈C) be a planar Brownian motion. We write the exit time
of Z from Uδ,r as τδ,r := τUδ,r .

Lemma 2 For every ε > 0, there exists R > 0 such that

Pz0

(
Zτδ,r ∈ Γδ

) ≥ 1 − ε (31)

for all δ ∈ (0, δ0) and r > R.

Proof Since D∞ is a regular domain by assumption, its complement is non-polar.
Hence we can take a compact non-polar subset K of Dc∞ (see for instance Port and
Stone [15, Proposition 2.4, Chap. 2]). In two dimension, a non-polar set is recurrent
for Brownian motion [15, Propositions 2.9 and 2.10, Chap.2], which means

lim
r→∞ Pz0

(
σK < σ∂ B(z0,r)

) = Pz0 (σK < ∞) = 1.

Here, the Brownian motion starting at z0 has to hit Γδ before it hits K ⊂ Dc∞. There-
fore, for any ε > 0, there exists R > 0 such that, if r > R, then

1 − ε ≤ Pz0

(
σK < σ∂ B(z0,r)

) ≤ Pz0

(
Zτδ,r ∈ Γδ

)
.

Let Lipb(C) be the space of bounded Lipschitz functions in C with norm

‖ f ‖Lipb(C) := sup
z∈C

| f (z)| + sup
z,w∈C
z �=w

| f (z) − f (w)|
|z − w| .

A distance

d(μ, ν) := sup
f ∈Lipb(C)

‖ f ‖Lipb (C)≤1

∣∣∣∣∣
∣

∫

C

f dμ −
∫

C

f dν

∣∣∣∣∣
∣
, μ, ν ∈ P(C),

is known to metrize the weak topology of the space P(C) of Borel probability
measures on C (see for instance Dudley [6, Theorem 11.3.3]). Using this distance,
we now prove Theorem4.

Proof of Theorem4 Fix ε > 0. By Lemma2 and the assumption of the uniform
regularity, we can take δ ∈ (0, δ0) and r > 0 so that (31) and (28) with D = Dn for
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all n ∈ N ∪ {∞} hold. For these δ and r , there exists N ∈ N such that (29) holds for
all N < n ≤ ∞ by Lemma1.

For N < n ≤ ∞ and f ∈ Lipb(C) with ‖ f ‖Lipb(C) ≤ 1, let us consider the differ-
ence

∣∣
∣∣∣∣

∫

C

f (z)hmUδ,r (z0, dz) −
∫

C

f (z)hmDn (z0, dz)

∣∣
∣∣∣∣
≤ Ez0

[| f (Zτδ,r ) − f (ZτDn
)|] .

Note that the random variable Δn := | f (Zτδ,r ) − f (ZτDn
)| satisfies

Δn ≤ ‖ f ‖Lipb(C)|Zτδ,r − ZτDn
| ≤ |Zτδ,r − ZτDn

|

and
Δn ≤ 2‖ f ‖Lipb(C) ≤ 2.

We take the expectation of Δn on three disjoint events. First,

Ez0

[
Δn; Zτδ,r ∈ Γδ, |Zτδ,r − ZτDn

| < ε
] ≤ ε. (32)

Second,

Ez0

[
Δn; Zτδ,r ∈ Γδ, |Zτδ,r − ZτDn

| ≥ ε
]

≤ 2Pz0

(
Zτδ,r ∈ Γδ, |Zτδ,r − ZτDn

| ≥ ε
)

= 2Ez0

[
hmDn (Zτδ,r , B(Zτδ,r , ε)

c); Zτδ,r ∈ Γδ

] ≤ 2ε. (33)

Third,
Ez0

[
Δn; Zτδ,r /∈ Γδ

] ≤ 2Pz0(Zτδ,r /∈ Γδ) ≤ 2ε. (34)

Combining (32)–(34) yields Ez0 [Δn] ≤ 5ε. Since f was arbitrary, we have

d(hmUδ,r (z0, ·), hmDn (z0, ·)) ≤ 5ε

for all N < n ≤ ∞. Finally, it follows from the triangle inequality that

d(hmDn (z0, ·), hmD∞(z0, ·)) ≤ 10ε

for all n > N , which proves Theorem4.
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Dyson’s Model in Infinite Dimensions
Is Irreducible

Hirofumi Osada and Ryosuke Tsuboi

Abstract Dyson’s model in infinite dimensions is a system of Brownian particles
interacting via a logarithmic potential with an inverse temperature of β = 2. The
stochastic process is given as a solution to an infinite-dimensional stochastic dif-
ferential equation. Additionally, a Dirichlet form with the sine2 point process as a
reference measure constructs the stochastic process as a functional of the associated
configuration-valued diffusion process. In this paper, we prove that Dyson’s model
in infinite dimensions is irreducible.

Keywords Dyson’s model · Random matrices · Irreducibility · Diffusion
process · Interacting Brownian motion · Infinite-dimensional stochastic differential
equations · Logarithmic potential · Gaussian unitary ensembles

Mathematics Subject Classification 60B20 · 60H10 · 60J40 · 60J60 · 60K35

1 Introduction

This paper considers an infinite-dimensional stochastic differential equation (ISDE)
of the form

Xi
t − Xi

0 = Bi
t + β

2

t∫

0

lim
r→∞

∞∑
|Xi

u−X j
u |<r, j �=i

1

Xi
u − X j

u

du (i ∈ Z). (1.1)
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For β = 2, the ISDE was introduced by Spohn [27], who called it Dyson’s model.
Spohn derived (1.1) for β = 2 as an informal limit of Dyson’s Brownian motion
in finite dimensions. Here, Dyson’s Brownian motion is a solution of a finite-
dimensional stochastic differential equation (SDE) such that

X N ,i
t − X N ,i

0 = Bi
t + β

2

t∫

0

N∑
j �=i

1

X N ,i
u − X N , j

u

du − β

2N

t∫

0

1

X N ,i
u

du. (1.2)

If β = 2, then SDE (1.2) describes the dynamics of the eigenvalues of Gaussian
unitary ensembles of order N ∈ N [3, 16]. Spohn [27] constructed the limit dynamics
as the L2-Markovian semi-group given by the Dirichlet form

E( f, g) =
∫

S

D[ f, g]dμ (1.3)

on L2(S, μ), where S is the configuration space over R, D is the standard carré du
champ on S, and μ is the sine2 random point field. Furthermore, the domain of the
Dirichlet form is taken to be the closure of the polynomials on S.

Let μ be the sineβ-random point field. If β = 2, then μ becomes a determinan-
tal random point field whose m-point correlation function ρm with respect to the
Lebesgue measure is given by

ρm(x) = det[Ksin,2(xi , x j )]m
i, j=1.

Here, K is the sine kernel given by

K(x, y) = sin{θ√
2(x − y)}

π(x − y)
.

Spohn [27] proved the closability of E on L2(S, μ) with a predomain consisting
of polynomials on S for β = 2.

In [17], the first author proved that (E,Dμ◦ ) is closable on L2(S, μ), and that its
closure is a quasi-regular Dirichlet form. Here, D◦ is the set consisting of local and
smooth functions on S and Dμ◦ is given by

Dμ
◦ = { f ∈ D◦ ; E1( f, f ) < ∞}.

Thus, Osada constructed the L2-Markovian semi-group as well as the diffusion

X(t) =
∑
i∈Z

δXi (t)
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associated with the Dirichlet form (E,D) on L2(S, μ). We call X the unlabeled
dynamics or unlabeled diffusion because the state space of the process is S. The
unlabeled diffusion can be constructed for β = 1, 4 [21], and the associated labeled
processX = (Xi )i∈N satisfies ISDE (1.1) for β = 1, 2, 4 [20]. These cases have been
proved as examples of the general theory developed in various papers [19–22]. In
[20], the meaning of a solution to an ISDE is a weak solution; the uniqueness of a
weak solution of an ISDE and the Dirichlet form is left open in [20, 21]. (See [8] for
the concept of strong and weak solutions of stochastic differential equations).

Tsai [29] solved ISDE (1.1) for all β ∈ [1,∞). He proved the existence of a
strong solution and the path-wise uniqueness of this solution. The method used by
Tsai depends on an artistic coupling specific to Dyson’s model. A non-equilibrium
solution is obtained in the sense that the ISDE is solved by starting at each point in
an explicitly given subset S0 ⊂ S such that μ(S0) = 1.

The μ-reversibility of the associated unlabeled diffusion is left open in [29].
Combining [20] and [29], we find that the unlabeled process given by the solution
of (1.2) obtained in [29] is reversible with respect to μ for β = 1, 4. For a general
β > 0, note that the reversible probability measure of the unlabeled diffusion given
by the solution to ISDE (1.1) is expected to be a sineβ-random point field. This
remains an open problem, except for β = 1, 2, 4 [21].

Oneof the authors andTanemura [24] also proved the existence of a strong solution
and the path-wise uniqueness of this solution for β = 1, 2, 4. Their method can be
applied to quite a wide range of examples. Using the result in [24], Kawamoto et al.
proved the uniqueness of Dirichlet forms [11]. They checked the infinite system of
finite-dimensional SDEs with consistency (IFC) condition in [12], which plays an
important role in the theory developed in [24]. Kawamoto and the second author of
[12] derive a solution to the ISDE from N -particle systems [9, 10].

The goal of this paper is to prove that the solution of (1.3) for β = 2 is irreducible
(Theorem 1). In the remainder of this paper, we consider the case β = 2. Hence, we
take μ to be the sine2 random point field.

By definition, the configuration S over R is given by

S =
{
s =

∑
i

δsi ; s(K ) < ∞ for any compact K
}
.

We endowSwith the vague topology. Under the vague topology,S is a Polish space.
A probability measure on (S,B(S)) is called a random point field (also called a
point process). Let

Ss,i =
{
s ∈ S ; s({s}) ≤ 1 for all s ∈ R, s(R) = ∞

}
.

In [18, 21], we proved that the sine2 random point field μ satisfies

Cap((Ss,i)
c) = 0. (1.4)



404 H. Osada and R. Tsuboi

Furthermore, μ is translation invariant and tail trivial [15, 23]. Hence, by the indi-
vidual ergodic theorem, we have that, for μ-a.s.s,

lim
R→∞

s([−R, R])
R

=
∫

S

s([−1, 1])dμ.

Then, we set

Sn =
{
s ∈ S ; 1

n
≤ s([−R, R])

R
≤ n for all R ∈ N

}
. (1.5)

Using the argument in the proof of Theorem 1 in [17, p.127], we see that

Cap
(( ∞⋃

n=1

Sn
)c

)
= 0. (1.6)

We write s = (si )i∈Z ∈ R
Z, and we set

R
Z

< = {s = (si )i∈Z ∈ R
Z ; si < si+1 for all i }.

Let u be amap onRZ

< such that u(s) = ∑
i∈Z δsi . Let l : Ss,i → R

Z

< be a function such
that u ◦ l = id.. We call u an unlabeling map and l a labeling map. There exist many
labelingmaps.Wecan take l in such away that l0(s) = min{si ; si ≥ 0, s = ∑

i∈Z δsi }
and li (s) < li+1(s) for all i ∈ Z, where l(s) = (li (s))i∈Z. This choice of l is just for
convenience and has no specific meaning. Let

W = C([0,∞);RZ

<). (1.7)

Let lpath = {lpath(w)t }t∈[0,∞) be the label path map generated by l (see [24, pp. 1148–
1149] and (2.6) in [12]). By definition, lpath is the map from C([0,∞);Ss,i) to W
such that lpath(w)0 = l(w0), where w = {wt }t∈[0,∞) ∈ C([0,∞);Ss,i).

Let X = (Xi )i∈Z be a solution to ISDE (1.1) with β = 2 defined on a filtered
space (�,F , P, {Ft }). We set

μ∞ = μ ◦ l−1 (1.8)

and assume that

μ∞ = P(X0 ∈ ·). (1.9)

The associated unlabeled process

X =
∑
i∈Z

δXi
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is a μ-reversible diffusion given by the Dirichlet form (E,D) in (1.3) [24]. Note
also that the labeled process X = lpath(X) obtained by the Dirichlet form in [20, 24]
coincides with the solution obtained by Tsai [29].

From (1.4) and X = lpath(X) we find that

P(X ∈ W) = 1.

We set w = (wi )i∈Z ∈ W and

P∞ = P ◦ X−1, P∞
x = P∞(·|w0 = x). (1.10)

Theorem 1 {P∞
x } is irreducible. That is, if A and B ∈ B(RZ

<) satisfy

P∞(w0 ∈ A, wt ∈ B) = 0, (1.11)

then P∞(w0 ∈ A) = 0 or P∞(wt ∈ B) = 0.

We do not know whether X has an invariant probability measure that is absolutely
continuous with respect to μ∞. If this is the case, then Theorem 1 implies that X is
irreducible in the usual sense.

From Theorem 1, (1.8), and (1.10), we immediately have the following.

Corollary 1 The solution of (1.1) with β = 2 is irreducible in the sense that, if A
and B ∈ B(RZ

<) satisfy

P(X0 ∈ A, Xt ∈ B) = 0,

then P(X0 ∈ A) = 0 or P(Xt ∈ B) = 0.

To prove Theorem 1, we prepare two results, Theorems 2 and 3.
For x ∈ R

Z, we set xm = (xi )|i |<m and xm∗ = (xi )|i |≥m . We set

R
m
< = {xm = (xi )|i |<m; xi < xi+1 for all − m < i < m − 1},

R
m∗
< = {xm∗ = (xi )|i |≥m; xi < xi+1 for all i < −m, m ≤ i}.

Let Xm = (Xi )|i |<m and Xm∗ = (Xi )|i |≥m . Let wm∗ = (wi )|i |≥m for w = (wi )i∈Z. We
introduce the regular conditional probabilities such that

Pm
w =P(Xm ∈ · |Xm∗ = wm∗), (1.12)

Pm
x,w =P(Xm ∈ ·|Xm

0 = xm, Xm∗ = wm∗).

By construction,Xm under {Pm
x,w} is a time-inhomogeneous diffusion. The heat equa-

tions describing the transition probability density are given by (3.20) and (3.21).
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Theorem 2 Let Pm∗ = P ◦ (Xm∗)−1. For each m ∈ N, {Pm
x,w} is irreducible for Pm∗-

a.s.w. That is, if A and B ∈ B(Rm
<) satisfy

Pm
w (wm

0 ∈ A, wm
t ∈ B) = 0 for Pm∗-a.s. w, (1.13)

then Pm
w (wm

0 ∈ A) = 0 for Pm∗-a.s.w or Pm
w (wm

t ∈ B) = 0 for Pm∗-a.s.w.

Theorem 3 Let Pm = P ◦ (Xm)−1. For each m ∈ N, the process Pm is irreducible.
That is, if A and B ∈ B(Rm

<) satisfy

Pm(wm
0 ∈ A, wm

t ∈ B) = 0, (1.14)

then Pm(wm
0 ∈ A) = 0 or Pm(wm

t ∈ B) = 0.

Let � : Rd → R ∪ {∞} and 	 : Rd × R
d → R ∪ {∞} be measurable functions.

A stochastic process given by a solution X = (Xi )i of the ISDE

Xi
t − Xi

0 = Bi
t + 1

2

t∫

0

∇�(Xi
u)du + 1

2

t∫

0

∑
j �=ı

∇	(Xi
u, X j

u)du

is called an interacting Brownian motion (in infinite dimensions) with potential
(�,	). Here, (∇	)(x, y) = ∇x	(x, y). The study of interacting Brownianmotions
was initiated by Lang [13, 14], who solved the ISDE for (0, 	) with 	 ∈ C3

0(R
d)

such that 	 is of Ruelle’s class in the sense that it is super stable and regular. Fritz
[5] constructed non-equilibrium solutions for the same potentials as in [13, 14] with
a further restriction that the dimension d ≤ 4. Tanemura solved the ISDE for the
hard-core potential [28], while Fradon–Roelly–Tanemura solved the ISDE for the
hard-core potential with long range interactions, but still of Ruelle’s class [4]. Vari-
ous ISDEs with logarithmic interaction potentials have also been solved [7, 11, 20,
22, 24, 25, 29].

There are fewer results for the irreducibility and ergodicity of solutions of interact-
ing Brownian motions. Albeverio–Kondratiev–Röckner [1] proved the equivalence
of the ergodicity of Dirichlet forms and the extremal property of the associated
(grand canonical or canonical) Gibbs measures with potentials of Ruelle’s class
[26]. Corwin-Sun [2] proved the ergodicity of the Airy line ensembles, for which the
dynamics are related to the Airy2 random point field. A general result concerning
the ergodicity of Dirichlet forms can be found in [6].

The remainder of this paper is organized as follows. In Sect. 2, we recall the
concept of them-labeled process and the Lyons–Zheng decomposition for interacting
Brownianmotions. In Sect. 3, we prove Theorem 2 and Theorem 3. Finally, in Sect. 4,
we prove Theorem 1.
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2 The m-Labeled Process and the Lyons–Zheng
Decomposition

We introduce the m-labeled process X[m] = (Xm,Xm∗), where

Xm∗
t =

∑
| j |≥m

δX j
t
.

The process X[m] is given by the Dirichlet form (E [m],D[m]) on L2(Rm
< × S, μ[m])

such that

E [m]( f, g) =
∫

Rm
<×S

D
[m][ f, g] dμ[m].

Here, D[m] is the standard carré du champ on Rm
< × S [24], D[m] is the closure of

{ f1 ⊗ f2 ∈ C∞
0 ⊗ D◦; E [m]

1 ( f1 ⊗ f2, f1 ⊗ f2) < ∞},

and μ[m] is the m-reduced Campbell measure such that

μ[m](A × B) =
∫

A

ρm(xm)μxm (B)dxm .

Moreover, ρm is the m-point correlation function of μ, and μxm is a reduced Palm
measure conditioned at xm = (xi )|i |<m given by

μxm = μ( · −
∑
|i |<m

δxi |li (s) = xi , for all |i | < m). (2.1)

The standard definition of the reduced Palm measure μxm is

μxm = μ( · −
∑
|i |<m

δxi |s({xi }) ≥ 1 for all |i | < m).

Because the state space of process X is RZ

<, we take μxm given by (2.1). We set

P [m]
x,s = P(X[m] ∈ ·|X[m]

0 = (x, s)).

From [19, 24], we have that {P [m]
x,s } is a diffusion associated with the Dirichlet

form (E [m],D[m]) on L2(Rm
< × S, μ[m]). By construction, {P [m]

x,s } is μ[m]-symmetric
and μ[m] is an invariant measure of {P [m]

x,s }. One of the most critical properties of
{P [m]

x,s } is its consistency. To explain the consistency, we prepare some notations.
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Let lpath be the path label introduced in Sect. 1. We write lpath = (lipath)i∈Z. We set

l[m]
path from lpath as follows:

l[m]
path(w)t = ((lipath(w)t )|i |<m,

∑
| j |≥m

δl j
path(w)t

).

For an R
[m]-valued path w[m] such that w[m]

t = ((wi
t )|i |<m,

∑
| j |≥m δ

w
j
t
), we set

u[m]
path(w

[m])t =
∑
i∈Z

δwi
t
.

Clearly, u[m]
path(w

[m])t = u(wt ), where u is the unlabelingmap defined in Sect. 1. Addi-
tionally, u(x, s) = ∑

i δxi + s for x = (xi ).
We have the following consistency.

Lemma 1 For each m ∈ {0} ∪ N,

P [m]
x,s ◦ (u[m]

path)
−1 = P [0]

u(x,s),

P [0]
s ◦ (l[m]

path)
−1 = P [m]

lm (s).

Proof Applying Theorem 2.4 in [19] to Dyson’s model, we obtain Lemma 1. �

Let x[m] = (xm, xm∗) for x = (xi )i∈Z ∈ R
Z

<, where x
m∗ = ∑

|i |≥m δxi .

Lemma 2 For each m ∈ {0} ∪ N

P∞
x ◦ (u[m]

path)
−1 = P [m]

x[m] .

Proof Lemma 2 follows from (1.10) and Lemma 1. �

Note that w j under P [m] is a solution to SDE (1.1) for | j | < m. Thus, the martingale
term of the Fukushima decomposition of w j describes Brownian motion. Hence,
applying the Lyons–Zheng decomposition to w j under P [m], we obtain

w
j
t − w j

u = 1

2
{B j

t − B j
u + B̂ j

t − B̂ j
u } for 0 ≤ t, u ≤ T, (2.2)

where B̂ j
t = B j

T −t . Because P [m] is a symmetric diffusion, B̂ j
t describes Brownian

motion. Furthermore, {B j
t }| j |<m is a sequence of independent Brownian motions

under P [m]. Because B̂ j
t is a time reversal of B j

t , {B̂ j
t }| j |<m is a sequence of indepen-

dent Brownian motions under P [m]. We refer to Sect. 9 in [12] for the proof of the
Lyons–Zheng decomposition of this form. Because of the consistency in Lemma 2,
we have that (2.2) holds for all j ∈ Z under P∞. Furthermore, {B j

t } j∈Z and {B̂ j
t } j∈Z

are sequences of independent Brownian motions under P∞. Thus, {B j
t − B j

u } j∈Z
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and {B̂ j
t − B̂ j

u } j∈Z are sequences of increments of independent Brownian motions.
Collecting these statements together, we obtain the following.

Lemma 3 (1) For each j ∈ Z, we have (2.2) for P∞-a.s.
(2) {B j

t − B j
u } j∈Z and {B̂ j

t − B̂ j
u } j∈Z are sequences of increments of independent

Brownian motions under P∞.

3 Proof of Theorems 2 and 3

Let dμ be the logarithmic derivative of μ. By definition, dμ is a function defined on
R × S such that dμ ∈ L1

loc(μ
[1]) and

∫

R×S

dμ(s, s)ϕ(s, s)dμ[1] = −
∫

R×S

∇ϕ(s, s)dμ[1]

for all ϕ ∈ C∞
0 (R) ⊗ Db◦ , where Db◦ is the set consisting of bounded, local, and

smooth functions on S [24]. We write s = ∑
i δsi . In [20], it is proved that μ has a

logarithmic derivative such that

dμ(s, s) = 2 lim
R→∞

∑
si ∈SR

1

s − si
in L2

loc(μ
[1]) (3.1)

= 2 lim
R→∞

∑
|s−si |<R

1

s − si
in L2

loc(μ
[1]).

The sums in (3.1) converge becauseμ is translation invariant, d = 1, and the variance
of s([−R, R]) under μ increases logarithmically as R → ∞. The second equality
in (3.1) comes from d = 1.

Note that the Ginibre random point field μgin satisfies the following [20]:

dμgin(s, s) = −2s + 2 lim
R→∞ R

∑
si ∈SR

s − si

|s − si |2 in L2
loc(μ

[1]
gin) (3.2)

= 2 lim
R→∞ R

∑
|s−si |<R

s − si

|s − si |2 in L2
loc(μ

[1]
gin).

The Ginibre random point field μgin is the counterpart of μ in R
2, because μgin is

rotation- and translation-invariant, and the interaction potential of μgin is the log-
arithmic potential with an inverse temperature of β = 2. Compare (3.1) and (3.2).
The first equalities in (3.1) and (3.2) have different expressions according to the
dimension d.
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Recall that β = 2. Then, the ISDE in question is given by

Xi
t − Xi

0 = Bi
t +

t∫

0

lim
r→∞

∑
|Xi

u−X j
u |<r, j �=i

1

Xi
u − X j

u

du (i ∈ Z). (3.3)

Using (3.1) and (3.3), we have

Xi
t − Xi

0 = Bi
t + 1

2

t∫

0

dμ(Xi
u,

∑
j �=i

δX j
u
)du (i ∈ Z). (3.4)

From (3.1), (3.3), and (3.4), it is easy to see that, i ∈ Z,

Xi
t − Xi

0 = Bi
t +

t∫

0

m∑
| j |<m, j �=i

1

Xi
u − X j

u

du +
t∫

0

lim
r→∞

∑
|Xi

u −X
j
u |<r

m≤| j |, j �=i

1

Xi
u − X j

u

du

= Bi
t +

t∫

0

m∑
| j |<m, j �=i

1

Xi
u − X j

u

du +
t∫

0

lim
n→∞

∑
m≤| j |≤n, j �=i

1

Xi
u − X j

u

du.

Taking this equation into account, we set bm
w = (bm,i

w )|i |<m such that

bm,i
w (xm, t) =

∑
j �=i

| j |<m

1

xi − x j
+ lim

n→∞
∑

m≤| j |≤n

1

xi − w
j
t

. (3.5)

Let xm = (xi )|i |<m , x = (xi )i∈Z, and y = (yi )i∈Z. For y ∈ R
Z

<, we set

R
m
<(y) = {xm ∈ R

m
< ; y−m < x−m+1, xm−1 < ym}.

Let Om
T,w be a time-dependent open set in R

m
< such that

Om
T,w = {(xm, t) ∈ R

m
< × [0, T ] ; xm ∈ R

m
<(wt )}.

For (xm, t), we set xm
t = (xi

t )|i |<m such that (xm
t , t) = (xm, t). For ε ≥ 0, m, T ∈ N,

and w ∈ W, we set

Om,ε
T,w = {(xm, t) ∈ Om

T,w ; |xi
t − xi+1

t | > ε, −m < i < m − 1 (3.6)

|x−m+1
t − w−m

t | > ε, |xm−1
t − wm

t | > ε}.

Suppose that ε > 0 and that Om,ε
T,w is nonempty and connected. For P∞-a.s.w, we

find a connected open setQm,ε
T,w in Rm

< × [0, T ] with smooth boundary such that
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Om,ε
T,w ⊂ Qm,ε

T,w ⊂ Om,ε/2
T,w . (3.7)

Lemma 4 For each T, m ∈ N, and P∞-a.s.w, the following hold.

(1) bm
w(xm, t) is Hölder continuous in t in Qm,ε

T,w for each xm.
(2) bm

w(xm, t) is Lipschitz continuous in xm in Qm,ε
T,w.

Proof Let (xm, t), (xm, u) ∈ Qm,ε
T,w and fix i such that |i | < m. Then from (3.5)

bm,i
w (xm, t) − bm,i

w (xm, u) =
∑
| j |≥m

1

xi − w
j
t

−
∑
| j |≥m

1

xi − w
j
u

(3.8)

=
∑
| j |≥m

w
j
t − w

j
u

(xi − w
j
t )(xi − w

j
u)

.

From Lemma 3, we can deduce for P∞-a.s. that

w
j
t − w j

u = 1

2
{B j

t − B j
u + B̂ j

t − B̂ j
u }, (3.9)

where {B j
t − B j

u } j∈Z and {B̂ j
t − B̂ j

u } j∈Z are sequences of increments of independent
Brownian motions under P∞. From (3.8) and (3.9), we have that

bm,i
w (xm, t)−bm,i

w (xm, u) = 1

2

∑
| j |≥m

B j
t − B j

u + B̂ j
t − B̂ j

u

(xi − w
j
t )(xi − w

j
u)

(3.10)

= 1

2

∑
| j |≥m

B j
t − B j

u

(xi − w
j
t )(xi − w

j
u)

+ 1

2

∑
| j |≥m

B̂ j
t − B̂ j

u

(xi − w
j
t )(xi − w

j
u)

.

Let W be as in (1.7). To control the denominator in (3.10), we set

An =
{

w ∈ W ; {
min

t∈[a,b] |x
i − w

j
t |

} ≥ | j |
n

for all | j | ≥ m
}
. (3.11)

Using (3.11), we deduce that, for P∞-a.s.w ∈ An ,

sup
t∈[a,b]

{ ∑
| j |≥m

| j |
|xi − w

j
t |3

}
≤

{ ∑
| j |≥m

| j |
mint∈[a,b] |xi − w

j
t |3

}
(3.12)

≤
{ ∑

| j |≥m

| j |
(

| j |
n )3

}
by (3.11)

= n3
{ ∑

| j |≥m

1

| j |2
}

< ∞.
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We set Q(xm) = {w ∈ W ; Om,ε/2
T,w ∩ ({xm} × [0, T ]) �= ∅}. Then using (1.6), (3.6),

and (3.7), we deduce

P∞({
⋃
n∈N

An}c ; Q(xm)) = 0. (3.13)

Hence, from (3.12) and (3.13), we obtain, for P∞-a.s.w ∈ Q(xm),

c1(w) := sup
t∈[a,b]

{ ∑
| j |≥m

| j |
|xi − w

j
t |3

}
< ∞. (3.14)

Using Young’s inequality and (3.14), we have

∑
| j |≥m

∣∣∣ B j
t − B j

u

(xi − w
j
t )(xi − w

j
u)

∣∣∣ (3.15)

≤
(

sup
t∈[a,b]

∑
| j |≥m

| j |
|xi − w

j
t |3

)1/3(
sup

u∈[a,b]

∑
| j |≥m

| j |
|xi − w

j
u |3

)1/3( ∑
| j |≥m

|B j
t − B j

u |3
| j |2

)1/3

=c1(w)2/3
( ∑

| j |≥m

|B j
t − B j

u |3
| j |2

)1/3
.

Similarly, for P∞-a.s.w ∈ Q(xm), we have that

∑
| j |≥m

∣∣∣ B̂ j
t − B̂ j

u

(xi − w
j
t )(xi − w

j
u)

∣∣∣ ≤ c1(w)2/3
( ∑

| j |≥m

|B̂ j
t − B̂ j

u |3
| j |2

)1/3
. (3.16)

Recall that ct (w) < ∞ for P∞-a.s.w ∈ Q(xm) from (3.14). Note that {B j
t } j∈Z and

{B̂ j
t } j∈Z are sequences of independent Brownian motions. Then, we obtain Lemma 4

(1) from (3.10), (3.15), and (3.16).
Let (xm, t) and (ym, t) ∈ Qm,ε

T,w. From (3.5), we have that

bm,i
w (xm, t) − bm,i

w (ym, t) (3.17)

=
∑

j �=i
| j |<m

1

xi − x j
−

∑
j �=i

| j |<m

1

yi − y j
+

∑
| j |≥m

1

xi − w
j
t

−
∑
| j |≥m

1

yi − w
j
t

=
∑

j �=i
| j |<m

1

xi − x j
−

∑
j �=i

| j |<m

1

yi − y j
+

∑
| j |≥m

yi − xi

(xi − w
j
t )(yi − w

j
t )

.

Then, using (1.6) and (3.17), we obtain (2). �
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We define the probability measure on Rm
< by

Pm
w (t) = P∞(wm

t ∈ · |wm∗
0 ). (3.18)

Let Om,ε
T,w be as in (3.6). Let Om,ε

T,w(t) be the cross section of Om,ε
T,w such that

Om,ε
T,w(t) = {xm ∈ R

m
< ; (xm, t) ∈ Om,ε

T,w}. (3.19)

Proof of Theorem 2 We consider the time-inhomogeneous heat equation on Qm,ε
T,w

such that the associated backward equation is given by

{ ∂

∂t
+ 1

2

∑
|i |<m

(
∂

∂xi
)2 +

∑
|i |,| j |<m,i �= j

1

xi − x j

∂

∂xi
(3.20)

+
∑

|i |<m≤| j |

1

xi − w
j
t

∂

∂xi

}
p(t, x, u, y) = 0

and the forward equation is given by

{ ∂

∂u
− 1

2

∑
|i |<m

(
∂

∂xi
)2 −

∑
|i |,| j |<m,i �= j

1

xi − x j

∂

∂xi
(3.21)

−
∑

|i |<m≤| j |

1

xi − w
j
u

∂

∂xi

}
p(t, x, u, y) = 0.

From Lemma 4, we have constants c2 and α such that 0 < α < 1 and

|bm,i
w (xm, t) − bm,i

w (ym, u)| ≤ c2{|xm − ym | + |t − u|α}. (3.22)

From (3.22), we can apply a general theorem of heat equations to determine that
the fundamental solution (the transition probability density) of (3.20) and (3.21)
on Om,ε

T,w under a Dirichlet boundary condition on the boundary is positive and con-
tinuous. Taking ε → 0 and using the obvious inequality such that the heat kernel
dominates that with the Dirichlet boundary condition, we find that the heat kernel
p(t, x, u, y) = pm,0

T,w(t, x, u, y) on Om,0
T,w(t) × Om,0

T,w(u) is a positive density of the
transition probability with respect to the Lebesgue measure. Using (1.13), we find

∫

A×B

p(0, x, t, y)dxdy = 0. (3.23)

From (3.23) and positivity of p, we deduce that A or B have Lebesgue measure zero.
Hence, either of the following hold:
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Pm
w (wm

0 ∈ A) =
∫

A×O m,0
T,w(t)

p(0, x, t, y)dxdy = 0 (3.24)

or

Pm
w (wm

t ∈ B) =
∫

O m,0
T,w(0)×B

p(0, x, t, y)dxdy = 0. (3.25)

We thus obtain Theorem 2. �
Proof of Theorem 3 Using (1.14) and Fubini’s theorem, we deduce (1.13). Then,
applying Theorem 2, we have that

Pm
w (wm

0 ∈ A) = 0 for Pm∗-a.s.w

or

Pm
w (wm

t ∈ B) = 0 for Pm∗-a.s. w.

Integrating these with respect to Pm∗, we conclude that Theorem 3 holds from (1.12).
�

4 Proof of Theorem 1

Let Wm∗ = C([0,∞);Rm∗
< ). Let � m∗ : W → Wm∗ be the projection such that

w = (wi )i∈Z �→ wm∗ = (wi )|i |≥m . Let

T = {t = (t1, . . . , tl) ; 0 < tk < tk+1 (1 ≤ k < l), l ∈ N}.

We set � m∗
t (w) = wm∗

t = (wi
t)|i |≥m , where wi

t = (wi
t1 , . . . , w

i
tl ), and

C∞∗
path =

∨
t∈T

∞⋂
m=1

σ [� m∗
t ].

We know that μ is tail trivial [15, 23]. That is, μ(A) ∈ {0, 1} for each A ∈ T (S),
where

T (S) =
∞⋂

R=1

σ [π c
R].
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The tail triviality ofμ can be refined to the triviality ofC∞∗
path with respect to P∞ using

Lemma 5. The triviality of C∞∗
path with respect to P∞ is one of the critical properties

in the proof of the uniqueness of solutions to ISDEs in [24]. We require a rather
difficult argument for the proof of this fact.

Lemma 5 C∞∗
path is trivial with respect to P∞. That is,

P∞(A ) ∈ {0, 1} for eachA ∈ C∞∗
path .

Proof Lemma 5 follows directly from Theorem 5.3 in [24]. �

Proof of Theorem 1 Recall that � m∗
t (w) = (wi

t )m≤|i | for w = (wi )i∈Z. We set

Fm∗
0,t = σ [� m∗

0 ,� m∗
t ].

Let � m : W → Wm be the projection such that w = (wi )i∈Z �→ wm = (wi )|i |<m ,
where Wm = C([0,∞);Rm

<). We set �u(w) = wu , � m
u (w) = wm

u , and � m∗
u (w) =

wm∗
u . For A and B ⊂ W, we set

A0 = �0(A ), Am
0 = � m

0 (A ), Am∗
0 = � m∗

0 (A ),

Bt = �t (B), Bm
t = � m

t (B), Bm∗
t = � m∗

t (B).

Let A and B be as in the statement of Theorem 1. We take A = �−1
0 (A) and B =

�−1
t (B). Then we find A = A0 and B = Bt . Noting Am∗

0 , Bm∗
t ∈ Fm∗

0,t and using
(1.12), we deduce that, for Pm∗-a.s.w,

Pm
w (wm

0 ∈ Am
0 , wm

t ∈ Bm
t |Fm∗

0,t )1Am∗
0

(wm∗
0 )1Bm∗

t
(wm∗

t ) (4.1)

=Pm
w (wm

0 ∈ Am
0 , wm

t ∈ Bm
t , wm∗

0 ∈ Am∗
0 , wm∗

t ∈ Bm∗
t |Fm∗

0,t )

=Pm
w (w0 ∈ A0, wt ∈ Bt |Fm∗

0,t )

=P∞(w0 ∈ A0, wt ∈ Bt |Fm∗
0,t ) by (1.12).

From (4.1) and (1.11), we have

∫

W

Pm
w (wm

0 ∈ Am
0 , wm

t ∈ Bm
t |Fm∗

0,t )1Am∗
0

(wm∗
0 )1Bm∗

t
(wm∗

t )Pm∗(dw)

=
∫

W

P∞(w0 ∈ A0, wt ∈ Bt |Fm∗
0,t )Pm∗(dw) by (4.1)

=P∞(w0 ∈ A0, wt ∈ Bt ) = 0 by (1.11).

Using this, we obtain, for Pm∗-a.s.w,

Pm
w (wm

0 ∈ Am
0 , wm

t ∈ Bm
t |Fm∗

0,t )1Am∗
0

(wm∗
0 )1Bm∗

t
(wm∗

t ) = 0.
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From this, we easily deduce, for Pm∗-a.s.w,

Pm
w (wm

0 ∈ Am
0 , wm

t ∈ Bm
t )1Am∗

0
(wm∗

0 )1Bm∗
t

(wm∗
t ) = 0. (4.2)

Using (4.2) and Theorem 2, we deduce

Pm
w (wm

0 ∈ Am
0 )1Am∗

0
(wm∗

0 )1Bm∗
t

(wm∗
t ) = 0 for Pm∗ − a.s.w (4.3)

or
Pm

w (wm
t ∈ Bm

t )1Am∗
0

(wm∗
0 )1Bm∗

t
(wm∗

t ) = 0 for Pm∗ − a.s.w. (4.4)

Suppose (4.3). Then, using Pm∗ = P∞ ◦ (� m∗)−1, we obtain

Pm
w (wm

0 ∈ Am
0 )1Am∗

0
(wm∗

0 )1Bm∗
t

(wm∗
t ) = 0 for P∞ − a.s.w. (4.5)

Taking B = W in (4.1) and using Pm∗ = P∞ ◦ (� m∗)−1, we obtain

Pm
w (wm

0 ∈ Am
0 )1Am∗

0
(wm∗

0 ) = P∞(w0 ∈ A0|Fm∗
0,t ) for P∞ − a.s.w.

Hence, we deduce

Pm
w (wm

0 ∈ Am
0 )1Am∗

0
(wm∗

0 )1Bm∗
t

(wm∗
t ) (4.6)

=P∞(w0 ∈ A0|Fm∗
0,t )1Bm∗

t
(wm∗

t ) for P∞ − a.s.w.

From (4.5) and (4.6), we obtain

P∞(w0 ∈ A0|Fm∗
0,t )1Bm∗

t
(wm∗

t ) = 0 for P∞-a.s.w (4.7)

Integrating (4.7) with respect to P∞, we obtain

∫

W

P∞(w0 ∈ A0|Fm∗
0,t )1Bm∗

t
(wm∗

t )P∞(dw) = 0. (4.8)

Next, suppose (4.4). Then, similarly as (4.8), we obtain

∫

W

P∞(wt ∈ Bt |Fm∗
0,t )1Am∗

0
(wm∗

0 )P∞(dw) = 0. (4.9)

Thus, we see either (4.8) or (4.9) holds for each m ∈ N. Hence, (4.8) holds for
infinitely many m ∈ N or (4.9) holds for infinitely many m ∈ N.

Note that the sequence of σ -fields {Fm∗
0,t }m∈N is decreasing. Furthermore, the

sequences of sets



Dyson’s Model in Infinite Dimensions Is Irreducible 417

{(� m∗
0 )−1(Am∗

0 )}m∈N and {(� m∗
t )−1(Bm∗

t )}m∈N

are increasing and the limits

Ã :=
∞⋃

m=1

(� m∗
0 )−1(Am∗

0 ) and B̃ :=
∞⋃

m=1

(� m∗
t )−1(Bm∗

t )

are C∞∗
path-measurable. The sets Ã and B̃ contain A and B, respectively. Hence,

using the martingale convergence theorem and the Lebesgue convergence theorem,
we find that, P∞-a.s. and in L1(W, P∞),

lim
m→∞P∞(w0 ∈ A0|Fm∗

0,t )1Bm∗
t

(wm∗
t ) (4.10)

=P∞(w0 ∈ A0|
∞⋂

m=1

Fm∗
0,t )1B̃ (w),

lim
m→∞P∞(wt ∈ Bt |Fm∗

0,t )1Am∗
0

(wm∗
0 ) (4.11)

=P∞(wt ∈ Bt |
∞⋂

m=1

Fm∗
0,t )1Ã (w).

From Lemma 5 and
⋂∞

m=1 F
m∗
0,t ⊂ C∞∗

path , we deduce P∞(Ã ) ∈ {0, 1}. Furthermore,

{w; w0 ∈ A0} ⊂ Ã by construction. Hence,

∫

A

P∞(w0 ∈ A0|
∞⋂

m=1

Fm∗
0,t )d P∞ =P∞(A )P∞(w0 ∈ A0). (4.12)

Similarly, we have

∫

B

P∞(wt ∈ Bt |
∞⋂

m=1

Fm∗
0,t )d P∞ =P∞(B)P∞(wt ∈ Bt ). (4.13)

Suppose P∞(Ã ) = 0. Then P∞(w0 ∈ A0) = 0 because {w; w0 ∈ A0} ⊂ Ã .
Suppose P∞(Ã ) = 1. If, in addition, (4.8) holds for infinitely many m ∈ N, then
from (4.8), (4.10), and (4.12), we deduce P∞(w0 ∈ A0) = 0.

Similarly, P∞(B̃) = 0 implies P∞(wt ∈ Bt ) = 0. If P∞(B̃) = 1 and (4.9) holds
for infinitely many m ∈ N, then P∞(wt ∈ Bt ) = 0 from (4.9), (4.11), and (4.13).

Combining these and recalling A = A0 and B = Bt complete the proof. �
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(Weak) Hardy and Poincaré Inequalities
and Criticality Theory

Marcel Schmidt

Abstract In this paper we study Hardy and Poincaré inequalities and their weak
versions for quadratic forms satisfying the first Beurling-Deny criterion. We employ
these inequalities to establish a criticality theory for such forms.

Keywords Criticality theory · Hardy inequality · Poincaré inequality

1 Introduction

This paper dealswith (weak)Hardy/Poincaré inequalities for certain quadratic forms.
First we recall the classical inequalities for nonempty open subsets � ⊆ R

n. We let

E� : L2(Rn) → [0,∞], E�(f ) =
⎧
⎨

⎩

∫

�

|∇f |2dx if f ∈ H 1(�)

∞ else

denote the Dirichlet-integral. With this notation, for n ≥ 3 and f ∈ L2(Rn) the clas-
sical Hardy inequality reads

(n − 2)2

4

∫

Rn

|f (x)|2
|x|2 dx ≤ ERn(f ).

If � is bounded and connected, the classical Poincaré inequality states that there
exists C > 0 such that for all f ∈ L2(�) with f ⊥ 1 we have

C
∫

�

|f |2dx ≤ E�(f ).
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In this paper we consider similar inequalities with E� replaced by a more general
quadratic form and the left side of these inequalities replaced by a weighted L2-
norm. Furthermore, we discuss weak versions that incorporate perturbations of the
quadratic form on the right side.

Hardy’s inequality yields ker ERn = {0}. For bounded and connected� Poincaré’s
inequality implies ker E� = R · 1, so that f ⊥ 1 is equivalent to f ⊥ ker E�. Hence,
in both of the cases � = R

n with n ≥ 3 or � bounded and connected, the classical
Hardy respectively Poincaré inequality is an inequality between a weighted L2-norm
and the quadratic form E� that holds for all functions orthogonal to ker E�. This is
the starting point for the following more abstract discussion.

Letq : L2(X , μ) → [0,∞]be a closedquadratic formsatisfying thefirstBeurling-
Deny criterion, i.e., q(|f |) ≤ q(f ) for all f ∈ L2(X , μ). A typical example is the
Dirichlet integral E� considered above or, more generally, a quadratic form of a
(discrete) Schrödinger operator, see e.g. [12, 20, 30] or a Dirichlet form, see e.g. [5].
We deal with inequalities of the form

(♦)

∫

X

f 2wdμ ≤ α(r)q(f ) + r�(f ), f ⊥w ker q, r > 0.

Here, w : X → (0,∞) is measurable, α : (0,∞) → (0,∞) is decreasing,
� : L2(X , μ) → [0,∞] is homogenous (i.e. �(λf ) = |λ|2�(f ) for any λ ∈ R,
f ∈ L2(X , μ)) and the symbol ⊥w indicates that orthogonality is considered in
L2(X , wμ). In view of our discussion of the Dirichlet integral, we call Inequality ♦
weak Hardy inequality if ker q = {0} and weak Poincaré inequality if ker q 
= {0}.
In the case � = 0, the function α becomes a constant and Inequality ♦ is referred to
as Hardy inequality if ker q = {0}, respectively Poincaré inequality if ker q 
= {0}.

The goal of this paper is to provide abstract criteria for (weak) Hardy/Poincaré
inequalitieswith respect to thehomogeneous functionals� = 0 and�(f ) = ‖f /h‖2∞,
whereh : X → (0,∞).We studywhichw are eligible but do not aimat giving explicit
bounds for α if� 
= 0.Moreover, we apply these inequalities to establish a criticality
theory for general forms satisfying the first Beurling-Deny criterion.

It turns out that if one replaces
∫

f 2wdμ on the left side of Inequality ♦ by
(
∫

fwdμ)2, then for generic homogeneous � there exists a function α such this
inequality holds, see Theorem 4.2. For forms with the first Beurling-Deny crite-
rion and ker q = {0}, this always leads to a weak Hardy inequality with respect to
�(f ) = ‖f /h‖2∞ as long as h ∈ L2(X , μ) and w ∈ L2(X , h2μ), see Theorem 4.3.
Thus, one can say that weak Hardy inequalities hold generically for forms with the
first Beurling-Deny criterion and trivial kernel.

Forms satisfying a Hardy inequality are called subcritical and there is a large
amount of literature on subcriticality, see e.g. (and references therein) [16, 19, 21]
for elliptic operators with real coefficients, [4, 30, 32] for generalized Schrödinger
forms (Dirichlet formplus potential term) and [12] for discreteSchrödinger operators.
It turns out that weak Hardy inequalities can be employed to study subcriticality. We
give a comprehensive characterization in Theorem 5.2, which should cover most
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previous results (for quadratic forms), simplifies/unifies proofs and also gives some
new insights.

If q is irreducible, in the situations where subcriticality is well understood (see the
mentioned references on subcriticality), there is a dichotomy. Either q is subcritical
or there exists a sequence (ϕn) with q(ϕn) → 0 that converges pointwise to a strictly
positive function h. In this second case, q is called critical and the function h is
unique up to multiplication by a constant, the so-called Agmon ground state of q. Our
discussion in Theorem 5.2 shows that this dichotomy may fail in general. It becomes
a trichotomy and the third case (besides criticality and subcriticality) happens if and
only if the form q does not possess an excessive function, see Corollary 5.3. So far we
do not have a concrete example for this case. The reason is that in the situations where
subcriticality was studied previously, the corresponding semigroups are semigroups
of kernel operators and we show in Appendix 6 that irreducible semigroups of kernel
operators always admit excessive functions. Along the way we give a partial answer
to a question of Schep [24] on more general positive operators on Lp-spaces.

Weak Poincaré inequalities were introduced in [23] for conservative Dirichlet
forms on finite measure spaces to study the rate of convergence of their semigroups
to equilibrium when there is no spectral gap, i.e., when they do not satisfy a Poincaré
inequality with w = 1. Similarly, the weak Hardy inequalities mentioned above can
be employed to establish the rate of convergence to 0 of semigroups coming from
forms with trivial kernel, see the remark after Theorem 4.3.

A closed quadratic form q on L2(X , μ) with the first Beurling-Deny criterion can
be extended to a lower semicontinuous quadratic form qe on L0(X , μ), the so-called
extended form. With this at hand the Agmon ground state (if it exists) is an element
of the kernel of qe and criteria for subcriticality can be formulated conveniently in
terms of qe. One of the observations is that subcriticality is equivalent to the domain
of qe being a Hilbert space, a fact which is well-known for Dirichlet forms (where
subcriticality is called transience and the domain of the extended form is the extended
Dirichlet space), see e.g. [5, Section1.6]. Moreover, it is known for critical Dirichlet
forms (usually called recurrent Dirichlet forms) that the quotient of the extended
Dirichlet space modulo constants is a Hilbert space if a Poincaré inequality holds,
see e.g. [5, Section4.8]. We show in Theorem 6.1 that some sort of converse holds in
our setting: In the critical case completeness of the domain of qe modulo the kernel
of qe is equivalent to a weak Poincaré inequality. This observation seems to be new.
An example from [23] shows that there are irreducible conservative Dirichlet forms
without weak Poincaré inequality and as a consequence we obtain that their extended
Dirichlet space modulo constants (i.e. the domain of the extended form modulo its
kernel) is not complete, see Corollary 6.3. To the best of our knowledge it is a new
observation that such forms exist.

At the heart of the considerations regarding the completeness of the domain of the
extended form lies the following observation: If q has an excessive function, weak
Hardy/Poincaré inequalities are equivalent to the continuity of the embedding of (a
quotient) of the domain of the extended form equippedwith the norm coming from qe

into (a quotient) of L0(X , μ) equipped with (the quotient topology of) the topology
of local convergence in measure. That this continuity is equivalent to completeness
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of the the domain of the extended form is a consequence of the abstract Theorem 2.3,
which is taken from [25].

For technical reasons and in order to understand the third case besides criticality
and subcriticality in thementioned trichotomybetter,we introduce another functional
q+ onL+(X , μ) (the cone of [0,∞]-valuedμ-a.e. defined functions),which is a lower
semicontinuous extension of qe. If q is irreducible, the mentioned trichotomy then
reads either ker q+ = {0} (subcriticality) or ker q+ = {λh | λ ∈ [0,∞]} (criticality,
with Agmon ground state h) or ker q+ = {0,∞}.

As discussed above, besides new insights, our approach to criticality theory also
yields simplified/unified proofs for facts, which are known for Dirichlet forms and
some more general situations. We lay out the material such that our proofs do not
depend on known aspects of criticality theory, for otherwise they would not really
simplify/unify arguments. To this end, we discuss properties of forms with the first
Beurling-Deny criterion in Sect. 3 in some detail. Among other things we give a short
independent proof for the existence of the extended forms qe, see Proposition 3.6,
which otherwise could be deduced from [27].

The paper is structured as follows: Sect. 2 discusses closedness and closability of
quadratic forms on the topologcial vector space L0(X , μ), which is similar to situ-
ation for forms on L2(X , μ). Moreover, it recalls properties of positivity preserving
operators. In Sect. 3 we review the Beurling-Deny criteria and their consequences.
Particular emphasis is laid on the smallest closed extensions to L0(X , μ) (this is
the so-called extended form) and to L+(X , μ). Section4 discusses abstract weak
Hardy/Poincaré inequalities and why certain weak Hardy inequalities hold generi-
cally for forms with the first Beurling Deny criterion and trivial kernel. These results
are applied in Sect. 5 to obtain a comprehensive treatement of criticality theory for
forms with the first Beurling-Deny criterion. Section6 provides a characterization
for weak Poincaré inequalites and provides an example for a Dirichlet form whose
extendedDirichlet space is not complete. Existence of excessive functions is essential
for applying criticality theory. Appendix A shows the existence of excessive func-
tions for irreducible semigroups of kernel operators (and hence for the associated
forms). The given proof is somewhat more general and provides a partial answer to
a question of Schep [24] on positive operators on Lp-spaces.

2 Preliminaries

2.1 Closed Quadratic Forms on L2(X, µ) and L0(X, µ)

Throughout this text (X ,A, μ) is a σ -finite measure space. By L+(X , μ) we denote
the quotient of the space of measurable functions f : X → [0,∞] with respect to
equivalenceμ-a.e. and byL0(X , μ)wedenote the quotient of the space ofmeasurable
functions f : X → R with respect to equivalence μ-a.e. For f ∈ L+(X , μ) we write
f > 0 if f (x) > 0 for μ-a.e. x ∈ X . For any sequence (fn) in L+(X , μ) the pointwise
a.e. defined functions lim infn→∞ fn and lim supn→∞ fn exist in L+(X , μ).
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We equip L0(X , μ) and L+(m)with the topology of local convergence in measure.
More precisely,we choose an integrableϕ : X → (0,∞) and define for f ∈ L0(X , μ)

the F-norm (which is not a norm)

‖f ‖0 =
∫

X

(|f | ∧ 1)ϕdμ.

It induces a metric d on L0(X , μ) by d(f , g) = ‖f − g‖0 and a metric ρ on L+(X , μ)

by ρ(f , g) = d(arctan(f ), arctan(g)) (with the convention arctan(∞) = π/2). A
sequence (fn) in L0(X , μ) or in L+(X , μ) converges with respect to these met-
rics to a function f if and only if any subsequence of (fn) has a subsequence con-
verging to f μ-a.e. In particular, the topologies generated by d and ρ coincide on
L0+(X , μ) = L0(X , μ) ∩ L+(X , μ). Both L0(X , μ) and L+(X , μ) are complete and
L0(X , μ) is a topological vector space, i.e., addition and scalar multiplication are
continuous.

As usual, for p ∈ [1,∞] we denote by Lp(X , μ) the Lebesgue spaces of p-
integrable real-valued functions with corresponding norm ‖·‖p. The scalar product
on L2(X , μ) is denoted by 〈·, ·〉. By Lp

+(X , μ) we denote the cone of nonnegative
functions in Lp(X , μ), p ∈ {0} ∪ [1,∞]. If h ∈ L0+(X , μ) is strictly positive, we let

L∞
h (X , μ) = {f ∈ L0(X , μ) | f /h ∈ L∞(X , μ)}

and equip it with the norm ‖f ‖h,∞ = ‖f /h‖∞.
In this text we consider quadratic forms on the Hilbert space L2(X , μ) and on the

topological vector space L0(X , μ), and certain homogenous functionals on the cone
L+(X , μ).

Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a quadratic form with domain

D(q) = {f ∈ Lp(X , μ) | q(f ) < ∞}.

By polarization it induces a bilinear form on its domain, which we also denote by q.
In this sense we have q(f ) = q(f , f ) for f ∈ D(q).

We call the quadratic form q closed if D(q) is complete with respect to the metric
dq(f , g) = q(f − g)1/2 + ‖f − g‖p. The topology induced by this metric on D(q) is
called the form topology. As iswell known in the casep = 2, closedness of a quadratic
form is equivalent to lower semicontinuity. According to Lemma [26, Lemma A.4],
the same is true for quadratic forms on any complete metrizable topological vector
space. Since this is important for us we formulate it as a lemma.

Lemma 2.1 Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a quadratic form. The
following assertions are equivalent.

(i) q is closed.
(ii) q is lower semicontinuous, i.e., for all (fn) in Lp(X , μ) the convergence fn → f

in Lp(X , μ) implies
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q(f ) ≤ lim inf
n→∞ q(fn).

If p = 2, both are equivalent to:

(iii) q is weakly lower semicontinuous, i.e., for all (fn) in L2(X , μ) the convergence
fn → f weakly in L2(X , μ) implies

q(f ) ≤ lim inf
n→∞ q(fn).

Remark Whatmakes this lemma nontrivial is that in generalL0(X , μ) is not a locally
convex vector space. Hence, one can not just use a modified version of the Hilbert
space proof.

A quadratic form q′ on Lp(X , μ) is called an extension of q if D(q) ⊆ D(q′) and
q′ = q onD(q).We call q closable if it possesses a closed extension.As for closedness
the standard characterization of closability extends from the Hilbert space case to
L0(X , μ), see [26, Lemma A.3]. Again there is some difficulty because L0(X , μ) is
not locally convex.

Lemma 2.2 Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a quadratic form. The
following assertions are equivalent.

(i) q is closable.
(ii) q is lower semicontinuous on its domain, i.e., for all (fn) in D(q) and f ∈ D(q)

the convergence fn → f in Lp(X , μ) implies

q(f ) ≤ lim inf
n→∞ q(fn).

In this case, q possesses a smallest closed extension q̄ : Lp(X , μ) → [0,∞], which
is given by

q̄(f ) =
{

lim
n→∞ q(fn) if there ex. q-Cauchy sequence (fn) with fn → f in Lp(X , μ)

∞ else
.

Sometimes closedness of a quadratic form on Lp(X , μ) is equivalent to
(D(q)/ ker q, q) being a Hilbert space (i.e. to ensure completeness the convergence
with respect to ‖·‖p can be omitted). The following theorem shows that this is pre-
cisely the case if (D(q), q) continuously embeds into a quotient of Lp(X , μ). It is a
special case of [25, Theorem 1.38]. Since here we only deal with metrizable topo-
logical vector spaces, the proof simplifies and we include it for the convenience of
the reader.

Theorem 2.3 Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a quadratic form.
Each two of the following statements imply the third.
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(i) q is closed.
(ii) ker q is closed in Lp(X , μ) and the embedding

ι : (D(q)/ ker q, q) → Lp(X , μ)/ ker q, f �→ f

is continuous. Here, Lp(X , μ)/ ker q is equipped with the quotient topology.
(iii) (D(q)/ ker q, q) is a Hilbert space.

Proof In both cases p = 0, 2, we equipped Lp(X , μ) with the translation invariant
metric dp(f , g) = ‖f − g‖p. If F ⊆ Lp(X , μ) is a closed subspace, then

dF(f + F, g + F) = inf{‖f − g + h‖p | h ∈ F}

is a translation invariant metric inducing the quotient topology on Lp(X , μ)/F . With
respect to this metric the quotient space is complete.

(i) and (ii) ⇒ (iii): Let (fn + ker q) be q-Cauchy. Since the metrics are transla-
tion invariant, (ii) implies that (fn + ker q) is Cauchy in Lp(X , μ)/ ker q. By com-
pleteness of the quotient we obtain f ∈ Lp(X , μ) such that fn + ker q → f + ker q
in Lp(X , μ)/ ker q and hence fn + kn → f in Lp(X , μ) for some kn ∈ ker q. Using
lower semicontinuity guaranteed by (i), we obtain

q(f − fn) ≤ lim inf
m→∞ q(fm + km − fn) = lim inf

m→∞ q(fm − fn).

This yields fn + ker q → f + ker q with respect to q.
(i) and (iii) ⇒ (ii): Lower semicontinuity implies that ker q is closed. Since

(D(q)/ ker q, q) is complete and by the closedness of ker q the space Lp(X , μ)/ ker q
is complete, we can use the closed graph theorem (which holds for maps between
complete metrizable topological vector spaces, see e.g. [8]). Hence, it suffices to
show that the map ι is closed. To this end, consider a sequence (fn + ker q) with fn +
ker q → f + ker q with respect to q and fn + ker q → g + ker q in Lp(X , μ)/ ker q.
Using lower semicontinuity guaranteed by (i) (which passes to the quotient space),
we obtain

q(f − g) ≤ lim inf
n→∞ q(f − fn) = 0.

This yields f + ker q = g + ker q and closedness of ι is established.
(ii) and (iii) ⇒ (i): Let (fn) be Lp(X , μ)-Cauchy and q-Cauchy. We need to show

that (fn) converges with respect to the form topology. By completeness of Lp(X , μ)

there exists f ∈ Lp(X , μ)with fn → f . Since also (D(q)/ ker q, q) is a Hilbert space,
we have q(g − fn) → 0 for some g ∈ D(q). Then (ii) implies fn + kn → g inLp(X , μ)

for some kn ∈ ker q. Altogether, (kn) converges in Lp(X , μ) to k = g − f . Since ker q
is closed and kn ∈ ker q, we obtain g − f ∈ ker q. This implies q(f − fn) → 0 and
we obtain fn → f with respect to the form topology. �
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2.2 Extensions of Positivity Preserving Operators

Let T : Lp(X , μ) → Lp(X , μ) be a positivity preserving operator, i.e., f ≥ 0 implies
Tf ≥ 0. We abuse notation and extend it to an operator T : L+(X , μ) → L+(X , μ)

by letting
Tf = lim

n→∞ Tfn

for a sequence (fn) in Lp
+(X , μ) with fn ↗ f μ-a.s. The limit always exists μ-a.s.

and does not depend on the choice of the sequence (fn) (here we use the continuity
of positivity preserving operators, see e.g. [15, Proposition 1.3.5]). This extension
is a linear map on the cone L+(X , μ). It follows from the definition that T satisfies
Fatou’s lemma, i.e., for any sequence (fn) in L+(X , μ) we have

T
(
lim inf

n→∞ fn
)

≤ lim inf
n→∞ Tfn.

If f ∈ L0(X , μ) such that T |f | ∈ L0(X , μ), then we set Tf = Tf+ − Tf−. This
yields a linear operator on L0(X , μ)with domain {f ∈ L0(X , μ) | T |f | ∈ L0(X , μ)},
which extends the given operator T . Moreover, there is also a version of Lebesgue’s
dominated convergence theorem for the extension. If g ∈ L0+(X , μ) such that Tg ∈
L0+(X , μ), then fn → f in L0(X , μ) and |fn| ≤ g imply T |f | ∈ L0(X , μ) and Tf =
limn→∞ Tfn in L0(X , μ).

3 The Beurling-Deny Criteria, Excessive Functions
and Extended Forms

In this section we review properties of forms satisfying the first Beurling-Deny cri-
terion. Most of the results here are known but we include proofs for two reasons:
(1) Some of the proofs in the literature use parts of the theory we develop in sub-
sequent sections. This can lead to intransparent cross-references, which we try to
avoid. (2) Making consequent use of lower semicontinuity and excessive functions
leads to shorter proofs of some known results.

3.1 Basics and Excessive Functions

Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a quadratic form. We say that q
satisfies the first Beurling-Deny criterion if q(|f |) ≤ q(f ) for all f ∈ Lp(X , μ). A
function h ∈ L0(X , μ) (with h− ∈ L2(X , μ) in the case p = 2) is called q-excessive
if q(f ∧ h) ≤ q(f ) for all f ∈ Lp(X , μ), where f ∧ h = min{f , h}. If the constant
function 1 is q-excessive, then q is said to satisfy the second Beurling-Deny criterion.
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A form on L2(X , μ), which satisfies the second Beurling-Deny criterion and has
dense domain in L2(X , μ), is called Dirichlet form. As is common in the literature,
below E will denote a Dirichlet form on L2(X , μ).

Remark (a) For closed forms the existence of a nonnegative excessive function
implies the first Beurling-Deny criterion. In particular, closed forms with the
second Beurling-Deny criterion satisfy the first. The question which forms satis-
fying the first Beurling-Deny criterion admit an excessive function is of interest
and will be discussed in detail below.

(b) If p = 2, we could also look at lower semibounded quadratic forms. There are
two reasons why if one assumes one of the Beurling-Deny criteria, it suffices to
consider nonnegative forms: 1) A lower semibounded quadratic form satisfying
the second Beurling-Deny is always nonnegative. 2) A quadratic form q satisfies
the first Beurling-Deny criterion if and only if for one/all α ∈ R the quadratic
form q + α ‖·‖22 satisfies the first Beurling-Deny criterion. Hence, q is either
nonnegative anyway or one can add a multiple of the square of the L2-norm to
obtain a nonnegative form without loosing Beurling-Deny criteria.

Lemma 3.1 Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a quadratic form sat-
isfying the first Beurling-Deny criterion. For all f , g ∈ Lp(X , μ)

q(f ∧ g) + q(f ∨ g) ≤ q(f ) + q(g).

In particular, D(q) is a lattice and functions in ker q are q-excessive.

Proof The parallelogram identity and the first Beurling-Deny criterion yield

2q(f ∧ g) + 2q(f ∨ g) = q(f ∧ g + f ∨ g) + q(f ∧ g − f ∨ g)

= q(f + g) + q(|f − g|)
≤ q(f + g) + q(f − g)

= 2q(f ) + 2q(g). �

The following lemma shows that the set of nonnegative excessive functions is closed
under local convergence in measure.

Lemma 3.2 Let p ∈ {0, 2} and let q : Lp(X , μ) → [0,∞] be a closed quadratic
form. Let (hn) be a sequence of nonnegative q-excessive functions converging in
L0(X , μ) to h. Then h is q-excessive.

Proof Since hn and h are nonnegative, we have f ∧ hn = f+ ∧ hn − f− → f+ ∧ h −
f− = f ∧ h in Lp(X , μ) (this is clear for p = 0, for p = 2 it follows from Lebesgue’s
dominated convergence theorem). Hence, lower semicontinuity of q on Lp(X , μ)

implies
q(f ∧ h) ≤ lim inf

n→∞ q(f ∧ hn) ≤ q(f ).

This shows that h is q-excessive. �
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The following lemma is due to Ancona, see [2, Proposition 4]. It shows that
for forms satisfying the first Beurling-Deny criterion taking the absolute value
is continuous with respect to the form topology (which is induced by the metric
dq(f , g) = q(f − g)1/2 + ‖f − g‖p on D(q)). The setting of [2] is a bit different and
therefore we explain why Ancona’s proof can be applied in our situation.

Lemma 3.3 For p ∈ {0, 2} let q be a closed quadratic form on Lp(X , μ) satisfying
the first Beurling-Deny criterion. Then

|·| : D(q) → D(q), f �→ |f |

is continuous with respect to the form topology.

Proof The equations necessary for proving that fn → f with respect to the form
topology implies |fn| → |f | with respect to q are contained in the proof of [2, Propo-
sition 4]. In contrast to our assumptions, the setting of [2] requires that (D(q), q)

is a Hilbert space and that (D(q), q) continuously embeds into L0(X , μ). However,
what Ancona really uses in the proof of [2, Proposition 4] is that if (fn) in D(q) is
q-bounded and fn → f in Lp(X , μ), then f ∈ D(q) and fn → f q-weakly. This is a
standard result if p = 2 and proved in [26, Lemma A.5] for p = 0. �

Assumption From now on we assume that all quadratic forms on Lp(X , μ), p ∈
{0, 2}, are densely defined, i.e., D(q) is dense in Lp(X , μ).

Remark For forms q on Lp(X , μ), p ∈ {0, 2}, satisfying the first Beurling-Deny
criterion, this assumption is not a restriction. In this case, D(q) is a lattice and hence
the Lp(X , μ)-closure of D(q) is a closed vector lattice in Lp(X , μ). Such lattices are
given by Lp(Y ,B, μ|B), where Y ⊆ X and B is a σ -algebra on Y contained in the
original σ -algebra. Hence, q can always be considered to be densely defined on some
Lp-space.

Let q be a closed form on L2(X , μ). For α > 0 we define the quadratic form

qα : L2(X , μ) → [0,∞], qα(f ) = q(f ) + α ‖f ‖22 .

By theRiesz representation theorem forα > 0 and f ∈ L2(X , μ) there exists a unique
element Gαf ∈ D(q) such that

q(Gαf , g) + α〈Gαf , g〉 = 〈f , g〉

for all g ∈ D(q). The induced family of self-adjoint operators (Gα)α>0 on L2(X , μ)

is called resolvent family of q. Since q is densely defined, it corresponds to a unique
nonnegative self-adjoint operator L, the so-called generator of q through Gα = (L +
α)−1, α > 0. Moreover, it is strongly continuous, i.e., for f ∈ L2(X , μ) we have
αGαf → f , as α → ∞. Using spectral calculus of L, we obtain a self-adjoint C0-
semigroup (Tt)t>0 = (e−tL)t>0 on L2(X , μ), which we call semigroup associated
with q.
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It is well-known that Gα , α > 0, and Tt, t > 0, are positivity preserving if and
only if q satisfies the first Beurling-Deny criterion. Moreover, (Gα)α>0 and (Tt)t>0

are Markovian (i.e. 0 ≤ f ≤ 1 implies 0 ≤ αGαf ≤ 1 respectively 0 ≤ Ttf ≤ 1) if
and only if q satisfies the second Beurling-Deny criterion. See e.g. [22, Theorem
XIII.50 and Theorem XIII.51]. We need the following extension of this result, which
is basically taken from [9, Proposition 4].

Lemma 3.4 Let q : L2(X , μ) → [0,∞] be a quadratic form satisfying the first
Beurling-Deny criterion. For h ∈ L0+(X , μ) the following assertions are equivalent.

(i) h is q-excessive.
(ii) αGαh ≤ h for all α > 0.
(iii) Tth ≤ h for all t > 0.
If, additionally, h ∈ D(q), this is equivalent to q(h, g) ≥ 0 for all nonnegative g ∈
D(q).

Proof This follows directly from Ouhabaz’ invariance criterion for closed convex
sets under the resolvent respectively semigroup, see [18]. See also the proof of [9,
Proposition 4] for more details. �

Remark There are two immediate consequences of this lemma, which we will use
below:

(a) Assertion (ii) yields that if h ∈ L0+(X , μ) is excessive and strictly positive, then
αGα and Tt extend to contractions on L∞

h (X , μ). By duality we obtain that αGα

and Tt extend to a contraction on L1(X , hμ).
(b) The characterization of excessive functions in the form domain shows that for

nonnegative f ∈ L2(X , μ) and β ≥ α, the resolvent Gαf is qβ-excessive.

If q satisfies the first Beurling-Deny criterion, for α ≤ β the resolvent identity
Gα = Gβ + (β − α)GαGβ extends from L2+(X , μ) to the extended operators on
L+(X , μ). This implies that for f ∈ L+(X , μ) the map (0,∞) → L+(X , μ), α �→
Gαf is monotone decreasing. Hence, for each nonnegative f ∈ L+(X , μ) the limit

Gf = lim
α→0+ Gαf

exists in L+(X , μ). Themap G : L+(X , μ) → L+(X , μ) is called theGreen operator
of q.

Lemma 3.5 Let q : L2(X , μ) → [0,∞] be a quadratic form satisfying the first
Beurling-Deny criterion.

(a) Let g ∈ L+(X , μ) and suppose that Gg ∈ L0(X , μ). Then Gg is q-excessive.
(b) Suppose g ∈ L2+(X , μ) is strictly positive such that for all f ∈ D(q)

∫

X

|f |gdμ ≤ q(f )1/2.



432 M. Schmidt

Then Gg is strictly positive and Gg ∈ L1+(X , gμ).

Proof (a): According to the previous lemma, for f ∈ L2+(X , μ) and β ≤ α the resol-
vent Gβ f is qα-excessive. Now Gg is the limit in L0(X , μ) of functions of the form
Gβ f with β ≤ α and f ≤ g. Hence, Gg is also qα-excessive by Lemma 3.2. We
obtain

q(f ∧ Gg) + α ‖f ∧ Gg‖22 = qα(f ∧ Gg) ≤ qα(f ) = q(f ) + α ‖f ‖22 .

Letting α → 0+ yields the claim.
(b): Strict positivity follows from αGαg → g, as α → ∞, and the fact that α →

Gαg is decreasing. Using the definition of Gα we obtain

⎛

⎝

∫

X

gGαgdμ

⎞

⎠

2

≤ q(Gαg) = 〈g, Gαg〉 − α ‖Gαg‖22 .

This implies
∫

X gGαgdμ ≤ 1 and we obtain the statement from the monotone con-
vergence theorem. �

3.2 The Extensions qe and q+

Every quadratic form q on L2(X , μ) can be interpreted to be a quadratic form on
L0(X , μ) by letting q(f ) = ∞ for f ∈ L0(X , μ) \ L2(X , μ). The following lemma
shows that forms onL2(X , μ) satisfying the first Beurling-Deny criterion are closable
when viewed in this sense as forms on L0(X , μ).

Proposition 3.6 (Existence of the extended form) Let q be a closed quadratic form on
L2(X , μ) satisfying the first Beurling-Deny criterion. Then q is closable on L0(X , μ)

and its closure qe is a quadratic form satisfying the first Beurling-Deny criterion.
Moreover, D(qe) ∩ L2(X , μ) = D(q) and a function h ∈ L0+(X , μ) is q-excessive if
and only if it is qe-excessive.

Proof According to Lemma 2.2we need to show that q is lower semicontinuous with
respect to L0(X , μ)-convergence on its domain. Thus, let (fn) and f ∈ D(q) such that
fn → f inL0(X , μ).Without loss of generalitywe can assume lim infn→∞ q(fn) < ∞
and fn → f μ-a.e. (else choose a subsequence).

Case 1: There exists a q-excessive function h > 0.
First we assume there exists C > 0 such that |fn| ≤ Ch for all n ∈ N. For ϕ ∈

L1(X , hμ) ∩ L2(X , μ) and α > 0 we obtain

q(f , Gαϕ) = 〈f , ϕ − αGαϕ〉 = lim
n→∞〈fn, ϕ − αGαϕ〉 = q(fn, Gαϕ).
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For the second equality we used Lebesgue’s dominated convergence theorem, which
can be applied since αGαϕ ∈ L1(X , hμ) by h being excessive. Elements of the form
Gαϕ as above are dense in D(q) with respect to q. Since (fn) is q-bounded, this
implies fn → f weakly with respect to q. Using the Cauchy-Schwarz inequality,
weak convergence yields

q(f ) ≤ lim inf
n→∞ q(fn).

This shows lower semicontinuity for sequences, which are uniformly bounded by an
excessive function.

With this at hand we can treat the general case. Since h is excessive, for anyC > 0
the function Ch is excessive, and since h > 0, we have f = limC→∞(f ∧ (Ch)) ∨
(−Ch) in L2(X , μ). The L2-lower semicontinuity of q, Ch being excessive and the
lower semicontinuity for sequences which are uniformly bounded by an excessive
function yield

q(f ) ≤ lim inf
C→∞

q((f ∧ (Ch)) ∨ (−Ch))

≤ lim inf
C→∞

lim inf
n→∞ q((fn ∧ (Ch)) ∨ (−Ch))

≤ lim inf
n→∞ q(fn).

This is the claim we wanted to prove.
Case 2: q does not have a strictly positive excessive function. By pointwise con-

vergence the pointwise supremum F = supn |fn| exists and is finite μ-a.e. We let
g = ϕ/(F ∨ 1) for some 0 < ϕ ∈ L1(X , μ) ∩ L∞(X , μ). Then by construction (fn)
is bounded in L2(X , gμ).

Next, for ε > 0 we consider the quadratic form q̃ : L2(X , μ) → [0,∞] defined
by

q̃(f ) = q(f ) + ε

∫

X

f 2 gdμ.

By Lemma 3.5 the Green operator of the form q̃ applied to g exists and is strictly
positive. Therefore, q̃ has an excessive function h > 0.Moreover, lim infn→∞ q̃(fn) <

∞ by our choice of g. Hence, Case 1 shows

q̃(f ) ≤ lim inf
n→∞ q̃(fn).

Since (fn) is bounded in L2(X , gμ), we can take the limit ε → 0+ and obtain the
desired lower semicontinuity.

qe satisfies the first Beurling Deny criterion: For f ∈ D(qe) we can choose fn ∈
D(q) with fn → f in L0(X , μ) and q(fn) → qe(f ). The lower semicontinuity of qe

and qe = q on D(q) yield

qe(|f |) ≤ lim inf
n→∞ qe(|fn|) = lim inf

n→∞ q(|fn|) ≤ lim
n→∞ q(fn) = qe(f ).



434 M. Schmidt

It remains to proveD(qe) ∩ L2(X , μ) = D(q) and the statement on excessive func-
tions. The inclusion D(q) ⊆ D(qe) ∩ L2(X , μ) is trivial. Let f ∈ D(qe) ∩ L2(X , μ)

and let (fn) be a q-Cauchy sequencewith fn → f inL0(X , μ).Without loss of general-
ity we can assume fn → f μ-a.e. (else choose a subsequence). Lebesgue’s dominated
convergence theorem implies

f = lim
n→∞(f ∧ |fn|) ∨ (−|fn|) = lim

n→∞ lim
m→∞(fm ∧ |fn|) ∨ (−|fn|)

in L2(X , μ). The L2-lower semicontinuity of q and the subadditivity of q with respect
to taking suprema yield

q(f ) ≤ lim inf
n→∞ lim inf

m→∞ q((fm ∧ |fn|) ∨ (−|fn|)) ≤ 3 lim
n→∞ q(fn) < ∞.

This shows f ∈ D(q).
Since q = qe on L2(X , μ) (here we use D(qe) ∩ L2(X , μ) = D(q)), nonnegative

qe-excessive functions are q-excessive. Now suppose h ∈ L0+(X , μ) is q-excessive.
For f ∈ D(qe) we choose (fn) in D(q) with fn → f in L0(X , μ) and q(fn) → qe(f ).
The lower semicontinuity of qe and q = qe on D(q) yield

qe(f ∧ h) ≤ lim inf
n→∞ qe(fn ∧ h) = lim inf

n→∞ q(fn ∧ h) ≤ lim inf
n→∞ q(fn) = qe(f ).

This shows that h is also qe-excessive. �

Definition 3.7 (Extended form) The closed quadratic form qe on L0(X , μ) intro-
duced in the previous proposition is called the extended form of q.

Remark (a) Using the formula for qe from Lemma 2.2 and the characterization of
convergence in L0(X , μ) in terms of μ-a.e. convergent subsequences, it is easy
to see that if E is a Dirichlet form, then D(Ee) is the extended Dirichlet space
of E and Ee is the extension of E to the extended Dirichlet space, see e.g. [3,
Definition 1.1.4] for the definition of the extended Dirichlet space.

(b) The first assertion of this proposition (namely closability of q on L0(X , μ)) is
known. For Dirichlet forms it is equivalent to the fact that the extension of the
Dirichlet form to the extended Dirichlet space is well-defined, see [5, Theo-
rem 1.5.2], which has its origin in [28]. In the generality we use here, the lower
semicontinuity of q on its domain with respect to a.e.-convergence is the main
result of [27]. Asmentioned in the introduction, the proof given in [27] uses parts
of the criticality theory we develop below. Therefore, we gave an independent
proof. The idea of first proving lower semicontinuity for forms with excessive
functions and then extending it to the general case is taken from [27] but our
proof of Case 1, which is based on properties of excessive functions, is much
shorter than the one in [27]. For Dirichlet forms a version of the argument is
contained in the proof of [25, Theorem 1.59].

(c) To the best of our knowledge the literature only contains that the extension
of q to the extended space D(qe) is lower semicontinuous on its domain, i.e.,
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fn → f in L0(X , μ) and f ∈ D(qe) implies qe(f ) ≤ lim infn→∞ qe(fn), see e.g.
[3, Corollary 1.1.9]. The statement of our proposition is stronger. Since our
approach automatically gives closedness of qe, we have lower semicontinuity of
qe on the whole space L0(X , μ). This is not a mere technicality, but crucial for
our considerations below.

Lemma 3.8 Let q be a closed quadratic form on L2(X , μ) satisfying the first
Beurling-Deny criterion. For α > 0 the operator αGα : D(q) → D(q) extends by
continuity with respect to q to a contraction αGα : D(qe) → D(qe) with respect to
qe. This extension is compatible with the extension of αGα to L0(X , μ), which was
discussed in Sect. 2.2. Moreover, for any f ∈ D(qe) we have f − αGαf ∈ L2(X , μ)

and
lim

α→0+ qe(αGαf ) = 0.

Proof By the spectral theorem for the (nonnegative) generator of q we have

q(αGαf ) =
∫

[0,∞)

λα2

(λ + α)2
dσf (λ) ≤

∫

[0,∞)

λdσf (λ) = q(f )

and

α ‖f − αGαf ‖2 =
∫

[0,∞)

αλ2

(λ + α)2
dσf (λ) ≤

∫

[0,∞)

λdσf (λ) = q(f ),

where σf is the spectral measure of the generator at f ∈ L2(X , μ). Using Lebesgue’s
dominated convergence theorem, this shows limα→0+ q(αGαf ) = 0 for f ∈ D(q).

Now let f ∈ D(qe) and let (fn) be q-Cauchywith fn → f in L0(X , μ). By the lower
semicontinuity of qe we have fn → f in the qe-form topology. The inequalities above
show that (αGαfn) is q-Cauchy and that (fn − αGαfn) is L2(X , μ)-Cauchy. Hence,
there exists Rαf ∈ L0(X , μ) such that αGαfn → Rαf in L0(X , μ) with f − Rαf ∈
L2(X , μ). This implies Rαf ∈ D(qe) and

qe(Rαf ) ≤ lim inf
n→∞ q(αGαfn) ≤ lim inf

n→∞ q(fn) = qe(f ).

We proved that αGα : D(q) → D(q) extends to a contraction Rα : D(qe) → D(qe)

with the continuity property that (fn) in D(q)with fn → f in the form topology yields
αGαfn → Rαf in L0(X , μ).

It remains to show Rαf = αGαf , where the right side of this equation denotes the
extension of αGα discussed in Sect. 2.2. Lemma 3.3 yields |fn| → |f | in the qe-form
topology. Fatou’s lemma for positivity preserving operators and our definition of Rα

show
αGα|f | ≤ lim

n→∞ αGα|fn| = Rα|f | ∈ D(qe).
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This implies thatαGαf exists. Now consider gn = (fn ∧ |f |) ∨ (−|f |). SinceD(qe) ∩
L2(X , μ) = D(q), we have gn ∈ D(q). Moreover, by Lemma 3.3 (gn) converges to f
in the form topology. Using |gn| ≤ f we can apply Lebesgue’s theorem for positivity
preserving operators and obtain

αGαf = lim
n→∞ αGαgn = Rαf .

For the last equality we used our definition of Rα .
The convergence limα→0+ qe(αGαf ) = 0 follows from the fact that D(q) is dense

in D(qe) with respect to the form topology and that αGα is a contraction. �

Remark The previous lemma is a resolvent version of [32, Lemma 2.8], which treats
the semigroup.We included a short proof because in [32] the relation of the extension
of Gα to D(qe) by continuity and by positivity are not explained.

There is another lower semicontinuous extension of qe to L+(X , μ), which we
discuss next. Since the topologies of L+(X , μ) and L0(X , μ) agree on L0+(X , μ),
the restriction of qe to D(qe) ∩ L+(X , μ) is lower semicontinuous with respect to
L+(X , μ)-convergence. This implies that q+ : L+(X , μ) → [0,∞] given by

q+(f ) =
{

lim
n→∞ qe(fn) if there ex. qe-Cauchy sequence (fn) with fn → f in L+(X , μ)

∞ else

is well-defined. The same arguments used in the proof showing that qe is lower
semicontinuous also yield that q+ is lower semicontinuous, see the proof of [26,
Lemma A.3]. The functional q+ : L+(X , μ) → [0,∞] is not a quadratic form as
L+(X , μ) is not even a vector space. However, it is readily verified that it is homo-
geneous, i.e., λ2q+(f ) = q+(λf ) for all λ ≥ 0 and f ∈ L+(X , μ).

The lower semicontinuity of q+ and the corresponding inequality for qe,
Lemma 3.1, show

q+(f ∧ g) + q+(f ∨ g) ≤ q+(f ) + q+(g).

With this at hand, ifwe letD(q+) = {f ∈ L+(X , μ) | q+(f ) < ∞}, the same proof
as the one we gave for the identity D(qe) ∩ L2(X , μ) = D(q) yields

D(q+) ∩ L0
+(X , μ) = D(qe) ∩ L0

+(X , μ).

Moreover, if h is q-excessive (or equivalently qe-excessive), then also

q+(f ∧ h) ≤ q+(f ), f ∈ L+(X , μ).

The functional q+ can assign finite values to functions taking the value ∞ on a
set of positive measure. However, the following lemma shows that this is only the
case if ker q+ is nontrivial.
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Lemma 3.9 Let q be a closed quadratic form on L2(X , μ) satisfying the first
Beurling-Deny criterion. For f ∈ L+(X , μ) with q+(f ) < ∞ we have ∞ · 1{f =∞} ∈
ker q+.

Proof Leth = ∞ · 1{f =∞} = limλ→0+ λf .The lower semicontinuity andhomogene-
ity of q+ yield

q+(h) ≤ lim inf
λ→0+ q+(λf ) = lim inf

λ→0+ λ2q+(f ) = 0. �

Lemma 3.10 Let q be a closed quadratic form satisfying the first Beurling-Deny
criterion. Let (fn) be a sequence in L+(X , μ) with

∑∞
k=1 q+(fk) < ∞. Then

q+(lim inf
n→∞ fn) = q+(lim sup

n→∞
fn) = 0.

In particular, if ker q+ = {0}, then fn → 0 μ-a.e.

Proof We only treat lim sup fn, the statement on lim inf fn follows along the same
lines. We have

lim sup
n→∞

fn = lim
n→∞ sup

l≥n
fl = lim

n→∞ lim
N→∞ sup

N≥l≥n
fl

pointwise μ-a.e. and hence in L+(X , μ). Since q+ is lower semicontinuous on
L+(X , μ), we obtain

q+(lim sup
n→∞

fn) ≤ lim inf
n→∞ lim inf

N→∞ q+( sup
N≥l≥n

fl) ≤ lim inf
n→∞ lim inf

N→∞

N∑

l=n

q+(fl) = 0.

For the second inequality we used the subadditivity of q+ with respect to taking
suprema. The ’in particular’-statement follows immediately. �

Remark The previous lemma is a continuity property for the functional q+. If
ker q+ = {0}, it yields that (D(qe), qe) continuously embeds into L0(X , μ). This
observation is exploited further in Sect. 5.

3.3 Invariant Sets and Irreducibilty

Let q be a quadratic form on Lp(X , μ), p ∈ {0, 2}. We say that a measurable set
A ⊆ X is q-invariant if q(1Af ) ≤ q(f ) for all f ∈ Lp(X , μ). Indeed, this definition
of irreducibilty equals the usual one, see e.g. [25, Lemma 2.32]. The quadratic form
q is called irreducible or ergodic if every q-invariant set A satisfies μ(A) = 0 or
μ(X \ A) = 0. Using lower semicontinuity it is easy to see that for a closed form
satisfying the first Beurling-Deny criterion a set A is q-invariant if and only if it is
qe-invariant. In particular, q is irreducible if and only if qe is irreducible.
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Proposition 3.11 For p ∈ {0, 2} let q be a closed quadratic form on Lp(X , μ) sat-
isfying the first Beurling-Deny criterion. Let h ∈ L0(X , μ) be q-excessive.

(a) h− ∈ ker q. In particular, if ker q = {0}, then every excessive function is nonneg-
ative.

(b) If h is nonnegative, then {h > 0} is q-invariant. In particular, if q is irreducible,
every nontrivial nonnegative excessive function is strictly positive.

Proof (a): h− = (−h) ∨ 0 = −(h ∧ 0). We obtain

q(h−) = q(−h−) = q(h ∧ 0) ≤ q(0) = 0.

This shows h− ∈ ker q.
(b): For f ∈ Lp(X , μ) the identity

1{h>0}f = lim
n→∞(f ∧ (nh)) ∨ (−nh)

holds in Lp(X , μ). Since nh is also excessive, we obtain using lower semicontinuity

q(1{h>0}f ) ≤ lim inf
n→∞ q((f ∧ (nh)) ∨ (−nh)) ≤ q(f ).

This shows the invariance of {h > 0}. �

Corollary 3.12 For p ∈ {0, 2} let q be an irreducible closed quadratic form on
Lp(X , μ) satisfying the first Beurling-Deny criterion. Then ker q is at most one-
dimensional and if ker q 
= {0}, there exists a strictly positive h ∈ Lp(X , μ) such that
ker q = Rh.

Proof Assume there exists 0 
= h ∈ ker q (else there is nothing to show). Since q
satisfies the first Beurling-Deny criterion, we can assume h ≥ 0 (else consider |h|
instead of h). Part (b) of the previous lemma yields h > 0 (use that functions in ker q
are excessive).

Now let h′ ∈ ker qe and for α ∈ R consider the function gα = h′ − αh ∈ ker q.
Using part (b) of the previous lemma again, gα has fixed sign, i.e., either gα = 0,
gα > 0 or gα < 0. Let α0 = sup{α | gα > 0}. Then, obviously, 0 = gα0 = h′ − α0h.
�

4 (Very) Weak and Abstract Poincaré and Hardy
inequalities

In this section we discuss very weak Poincaré andHardy inequalities, which are valid
formost quadratic forms onHilbert spaces.We then showhow they yieldweakHardy
inequalities for forms satisfying the first Beurling-Deny criterion with trivial kernel.
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Moreover, we prove abstract Hardy inequalites, which hold for all forms satisfying
the first Beurling-Deny criterion.

Our very weak Poincaré and Hardy inequalities are based on the following rather
elementary observation.

Lemma 4.1 (Completeness of weakly compact sets and continuity) Let q : H →
[0,∞] be a closed quadratic form on the Hilbert space H and let C be a weakly
compact set in H. Then D(q) ∩ C equipped with the pseudometric induced by the
seminorm q1/2 is complete and for any w ∈ (ker q)⊥ the map

D(q) ∩ C → R, f �→ 〈w, f 〉

is continuous with respect to q.

Proof Let (fn) be q-Cauchy in D(q) ∩ C. By the Eberlein-Smulian theorem (fn)
has a subsequence (fnk ) that converges weakly to some f ∈ C. The weak lower
semicontinuity of q yields

q(f − fn) ≤ lim inf
k→∞

q(fnk − fn).

This shows f ∈ D(q) and fn → f with respect to q.
Let w ∈ H with w ⊥ ker q. Assume that the map f �→ 〈w, f 〉 is not continuous.

Then there exists ε > 0 and fn, f ∈ D(q) ∩ C with |〈w, f − fn〉| ≥ ε for all n ≥ 1
and q(f − fn) → 0, as n → ∞. Employing the Eberlein-Smulian theorem again, we
can assume without loss of generality f − fn → h weakly in H . The weak lower
semicontinuity of q yields

q(h) ≤ lim inf
n→∞ q(f − fn) = 0,

so that h ∈ ker q. But then

0 = |〈w, h〉| = lim
n→∞ |〈w, fn − f 〉| ≥ ε,

a contradicition. �
We recall that we call a functional � : H → [0,∞] homogeneous if �(λf ) =

|λ|2�(f ) for all λ ∈ R and f ∈ H .

Theorem 4.2 (Very weak Poincaré/Hardy inequality) Let q : H → [0,∞] be a
closed quadratic form on the Hilbert space H and let � : H → [0,∞] be a homoge-
neous functional such that for every R ≥ 0 the sublevel set B�

R = {f ∈ H | �(f ) ≤ R}
is closed and bounded in H. Then for every w ∈ (ker q)⊥ there exists a decreasing
function α = αw : (0,∞) → (0,∞) such that for any r > 0 and all f ∈ H we have

|〈w, f 〉|2 ≤ α(r)q(f ) + r�(f ).



440 M. Schmidt

Proof Suppose that the statement does not hold. Then there exist r > 0 and a
sequence (fn) in D(q) with

|〈w, fn〉|2 > nq(fn) + r�(fn).

In particular, |〈w, fn〉| > 0. Using that q is a quadratic form and that � is homoge-
neous, we can assume |〈w, fn〉| = 1. This implies q(fn) → 0 and fn ∈ B�

1/r . Since in
Hilbert spaces closed bounded convex sets are weakly compact, the previous lemma
applied to C = B�

1/r yields 〈w, fn〉 → 0, a contradiction. �
Remark (a) We call these inequalities very weak Hardy/Poincaré inequalities

because in the L2-case they have | ∫X fwdμ|2 on their left side, while for weak
Hardy/Poincaré inequalities we would like to have

∫

X f 2wdμ for some nonneg-
ative w on the left side.

(b) The statement can be strengthened a bit. Since w ∈ (ker q)⊥, the functional �

can be replaced by the homogeneous functional

�̃(f ) = inf{�(f + h) | h ∈ ker q}.

Theorem 4.3 (WeakHardy inequality) Letq be a closed quadratic formonL2(X , μ)

satisfying the first Beurling-Deny criterion with ker q = {0}. For every strictly posi-
tive h ∈ L2(X , μ) and every nonnegative w ∈ L2(X , μ) ∩ L1(X , h2μ), there exists a
decreasing function α = αw,h : (0,∞) → (0,∞) such that

∫

X

|f |2wdμ ≤ α(r)q(f ) + r ‖f /h‖2∞ , f ∈ D(q).

Proof Consider the homogeneous functional � : L2(X , μ) → [0,∞], �(f ) =
‖f /h‖2∞. It satisfies �(f ) ≤ C2 if and only if |f | ≤ Ch. Since h ∈ L2(X , μ), this
implies that the sublevel sets of � are bounded and closed. Since ker q = {0}, Theo-
rem 4.2 applied to w and � yields a decreasing function α : (0,∞) → (0,∞) with

|〈f , w〉|2 ≤ α(r)q(f ) + r ‖f /h‖2∞
for all r > 0 and f ∈ L2(X , μ). Now suppose that the claimed inequality does not
hold. Then there exists r > 0 and (fn) with ‖fn/h‖∞ = 1 and

∫

X

|fn|2wdμ > nq(fn) + r.

Since |fn| ≤ h and wh2 ∈ L1(X , μ), this implies q(fn) → 0. Moreover, by the first
Beurling-Deny criterion, we can assume without loss of generality fn ≥ 0 (else con-
sider |fn|). Inequality ♥ then yields fnw → 0 in L1(X , μ). We can assume without
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loss of generality that this convergence also holdsμ-a.e. (else pass to a suitable subse-
quence).With this at hand and |fn|2w ≤ h2w ∈ L1(X , μ), we deducewith Lebesgue’s
dominated convergence theorem

0 = lim
n→∞

∫

X

|fn|2wdμ > lim inf
n→∞ nq(fn) + r > r > 0,

a contradiction. �

Remark (a) This statement shows that for forms with the first Beurling-Deny cri-
terion, the condition ker q = {0} implies a weak Hardy inequality. So, naturally,
one may wonder whether the same is true for forms with ker q 
= {0}. Of course,
in this case, functions in D(q) should be replaced by functions in (ker q)⊥ (with
respect to the L2(X , wμ)-inner product) and hence one is looking for a weak
Poincaré inequality. However, examples from [23] show that weak Poincaré
inequalities need not hold in general and in Sect. 6 we discuss which additional
assumptions are needed.

(b) WeakPoincaré inequalitieswere systematically introduced in [23] to characterize
the rate of convergence to equilibrium for conservative Markovian semigroups
without spectral gap. In our case ker q = {0}, the associated semigroup (Tt) does
not converge to an equilibrium (or projection to a ground state) but strongly to
0, as t → ∞, see e.g. [10, Theorem 1.1]. Still one can ask for the corresponding
rate of convergence.
If q has a strictly positive excessive function h, then (Tt) is a contraction on
L∞

h (X , μ). With the same arguments as in the proof of [23, Theorem 2.1], one
can then show that the inequality

(♦)

∫

X

|f |2dμ ≤ α(r)q(f ) + r ‖f /h‖2∞ , r > 0, f ∈ D(q),

with some decreasing function α : (0,∞) → (0,∞) implies

‖Ttf ‖22 ≤ ξ(t)(‖f ‖22 + ‖f /h‖2∞), f ∈ L2(X , μ),

with ξ(t) = inf{r > 0 | − 1
2α(r) log r ≤ t}. Since ξ(t) → 0 as t → ∞, this is a

uniform rate of convergence for the semigroup.
If E is a Dirichlet form on L2(X , μ) with μ(X ) < ∞ and ker E = {0}, our theo-
rem above applied tow = 1 and the excessive function h = 1 yields Inequality♦
for an appropriate function α. Note however, that our result only yields the exis-
tence of α but does not give an estimate for α (and ξ ).

We can extend this weak Hardy inequality to all strictly positive h by passing to
extended spaces. In this case, the condition on the kernel is a condition on the kernel
of the extended form.
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Corollary 4.4 Let q be a closed quadratic form on L2(X , μ) satisfying the first
Beurling-Deny criterion with ker qe = {0}. Let h ∈ L0(X , μ) be strictly positive.
For all strictly positive w ∈ L1(X , (1 + h2)μ) there exists a decreasing function
α = αw,h : (0,∞) → (0,∞) such that for all r > 0

∫

X

|f |2wdμ ≤ α(r)q(f ) + r ‖f /h‖2∞ , f ∈ D(qe).

Proof We let μ̃ = wμ. The restriction of qe to L2(X , μ̃) is a closed quadratic form
satisfying the first Beurling-Deny criterion and it has trivial kernel. Our assumptions
on w yield 1 ∈ L2(X , μ̃) ∩ L1(X , h2μ̃). The previous theorem yields a decreasing
function α sucht that

∫

X

|f |2d μ̃ ≤ α(r)qe(f ) + r ‖f /h‖2∞ ,

for all f ∈ D(qe) ∩ L2(X , μ̃). By our choice of w the inclusion f /h ∈ L∞(X , μ)

implies f ∈ L2(X , μ̃). Hence, the above inequality is indeed true for all f ∈ D(qe).
Since μ̃ = wμ, the claim follows. �

We finish this section with an abstract Hardy inequality that is valid for all forms
satisfying the first Beurling-Deny criterion. It compares a transform of the given
form with a quadratic form, which is not necessarily positive.

Proposition 4.5 (Abstract Hardy inequality) Let q be a closed quadratic form on
L2(X , μ) satisfying the first Beurling-Deny criterion. Let h ∈ D(qe) be nonnegative
and let f ∈ D(qe) such that hf , hf 2 ∈ D(qe). Then

qe(hf ) ≥ qe(hf 2, h).

Proof Without loss of generality we can assume hf , hf 2 ∈ D(q) (else change the
measure μ to μ′ to make sure that hf , hf 2 ∈ D(qe) ∩ L2(X , μ′) = D(q′), where q′ is
the restriction of qe to L2(X , μ′)). The spectral theorem implies

q(hf ) − q(hf 2, h) = lim
α→0+ α〈(I − αGα)hf , hf 〉 − lim

α→0+ α〈(I − αGα)hf 2, h〉
= lim

α→0+ α2
(〈Gαhf 2, h〉 − 〈Gαhf , hf 〉) .

Hence, it suffices to show that 〈αGαhf 2, h〉 − 〈αGαhf , hf 〉 is positive. Sincehf , hf 2 ∈
L2(X , μ) and since the resolvents are continuous, it suffices to verify positivity for
simple functions f = ∑

i αi1Ai with pairwise disjoint sets Ai with h1Ai ∈ L2(X , μ).
Using the symmetry of Gα , for such a simple function we obtain
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〈Gαhf 2, h〉 − 〈Gαhf , hf 〉 =
∑

i

α2
i 〈Gαh1Ai , h〉 −

∑

i,j

αiαj〈Gαh1Ai , h1Aj 〉

= 1

2

∑

i,j

〈Gαh1Ai , h1Aj 〉(αi − αj)
2

+
∑

i

α2
i 〈Gαh1Ai , h〉 −

∑

i

α2
i 〈Gαh1Ai , h1∪jAj 〉.

Since Gα is positivity preserving, the right side of this equation is nonnegative. �

Corollary 4.6 (Hardy inequality for perturbed forms) Let q be a closed quadratic
form on L2(X , μ) satisfying the first Beurling-Deny criterion. For all strictly positive
g ∈ L2(X , μ) and all f ∈ D(q) and α > 0 we have

q(f ) + α ‖f ‖22 ≥
∫

X

f 2 g

Gαg
dμ.

Proof We apply the previous proposition to the closed form qα = q + α ‖·‖2 with
D(qα) = D(q) and h = Gαg. For f ∈ D(q) we have (f /h)h = f ∈ D(q). Hence, if
also (f /h)2h ∈ D(q), the previous proposition yields

qα(f ) = qα((f /h)h) ≥ qα((f /h)2 h, h)

= qα((f /Gαg)
2Gαg, Gαg) =

∫

X

f 2 g

Gαg
dμ.

Next we show (f /h)2h ∈ D(q) for all f ∈ D(q) ∩ L∞
h (X , μ). As discussed in

Lemma 3.5, the function h is qα excessive and strictly positive (here we use that
Gα is the Green operator of qα). The form qα,h : L2(X , μ) → [0,∞] defined by
qα,h(f ) = qα(hf ) is a Dirichlet form. Indeed, h > 0 implies that qα,h is densely
defined. Moreover, h is qα-excessive (see Remark after Lemma 3.4) so that

qα,h(f ∧ 1) = qα(h(f ∧ 1)) = qα(hf ∧ h) ≤ qα(hf ) = qα,h(f )

shows that the constant function 1 is qα,h-excessive. Then D(qα,h) ∩ L∞(X , μ) is an
algebra, see e.g. [5, Theorem 1.4.2]. Since D(qα,h) = {f ∈ L2(X , μ) | fh ∈ D(q)},
we obtain for f ∈ D(q) ∩ L∞

h (X , μ) that f /h ∈ D(qα,h) ∩ L∞(X , μ). The algebra
property yields (f /h)2 ∈ D(qα,h) ∩ L∞(X , μ), so that (f /h)2h ∈ D(q).

Now let f ∈ D(q). What we have shown so far yields the desired inequality for
the functions fn = (f ∧ nh) ∨ (−nh) ∈ D(q) ∩ L∞

h (X , μ). Using that nh is strictly
positive and qα-excessive shows

∫

X

f 2 g

Gαg
dμ = lim

n→∞

∫

X

f 2
n

g

Gαg
dμ ≤ lim sup

n→∞
qα(fn) ≤ qα(f ). �
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5 From Weak Hardy Inequalities to Hardy
Inequalities—Subcriticality

In this section we discuss under which conditions weak Hardy inequalities lead to
Hardy inequalities, i.e., when the function α in the weak hardy inequality is bounded.
Forms that satisfy a Hardy inequality are called subcritical in the literature. Hence,
the content of this section is devoted to characterizing subcriticality for quadratic
forms satisfying the first Beurling-Deny criterion. Our arguments will rely on our
weak and abstract Hardy inequalities and their corollaries.

Definition 5.1 (Subcriticality)Aquadratic formqonL2(X , μ) is called subcritical if
there exists a strictly positive w ∈ L0(X , μ) such that the following Hardy inequality
holds ∫

X

|f |2wdμ ≤ q(f ), f ∈ D(q).

In this case, w is called Hardy weight for q.

Remark The definition of q+ and qe and Fatou’s lemma yield that Hardy inequalities
as in the last definition extend to D(q+) and D(qe). In particular, for subcritical q we
have D(q+) = D(qe) ∩ L0+(X , μ).

The aim of this section is to prove the following theorem.

Theorem 5.2 (Characterization subcriticality) Let q be a closed quadratic form on
L2(X , μ) satisfying the first Beurling-Deny criterion. The following assertions are
equivalent.

(i) q is subcritical.
(ii) There exists a strictly positive g ∈ L0(X , μ) such that for all f ∈ D(q)

∫

X

|f |gdμ ≤ q(f )1/2.

(iii) ker q+ = {0}.
(iv) ker qe = {0} and there exists a strictly positive q-excessive function h ∈ D(qe).
(v) For one strictly positive f ∈ L0(X , μ) the limit Gf = limα→0+ Gαf exists in

L0(X , μ).
(vi) For all strictly positive q-excessive functions h ∈ L0(X , μ) and all f ∈ L1+(X ,

hμ) the limit Gf = limα→0+ Gαf exists in L0(X , μ).
(vii) ker qe = {0} and the map

D(qe) → D(qe), f �→ |f |

is continuous with respect to qe.
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(viii) The embedding (D(qe), qe) → L0(X , μ), f �→ f is continuous.
(ix) (D(qe), qe) is a Hilbert space.

Proof Step 1: We first discuss the equivalence of (iii), (iv), (vii), (viii) and (ix).
(viii) ⇔ (ix): This is the content of Theorem 2.3.
(viii) and (ix) ⇒ (iv): Let g ∈ D(qe) with g > 0 be given. By (viii) the set {f ∈

D(qe) | f ≥ g} is a closed nonempty convex set in the Hilbert space (D(qe), qe).
Hence, by the approximation theorem in Hilbert spaces, there exists h ∈ D(qe) with

qe(h) = inf{qe(f ) | f ≥ g}.

For nonnegative ϕ ∈ D(qe) and ε > 0 we have h + εϕ ≥ g such that

qe(h) ≤ qe(h + εϕ) = qe(h) + 2εqe(h, ϕ) + ε2qe(ϕ).

Letting ε → 0+ yields qe(h, ϕ) ≥ 0, so that h is qe-excessive by Lemma 3.4 (choose
a measure μ′ = ϕμ such that h ∈ L2(X , μ′) and the result follows from Lemma 3.4
applied to the restriction of qe to L2(X , μ′)).

Since L0(X , μ) is Hausdorff, the continuity of the embedding D(qe) → L0(X , μ)

implies that (D(qe), qe) is Hausdorff as well. This means ker qe = {0}.
(vii)⇒ (viii): Let h ∈ D(qe) be strictly positive. Since ker qe = {0}, Corollary 4.4

yields a function α : (0,∞) → (0,∞) and w > 0 such that

∫

X

(|f | ∧ h)2wdμ ≤ α(r)qe(|f | ∧ h) + r

for all r > 0 and f ∈ D(qe). Let (fn) in D(qe) with qe(fn) → 0 be given. The conti-
nuity of |·| with respect to qe implies that the map D(qe) → D(qe), f �→ |f | ∧ h is
also continuous with respect to qe. We obtain qe(|fn| ∧ h) → 0 and our weak Hardy
inequality implies ∫

X

(|fn| ∧ h)2wdμ → 0.

This yields fn → 0 in L0(X , μ) and we arrive at (viii).
(viii) ⇒ (vii): Assertion (viii) implies that the form topology is induced by the

norm q1/2
e . With this at hand, the assertion follows from Lemma 3.3.

(iv) ⇒ (iii): Let f ∈ ker q+ and let fn ∈ D(qe) with fn → f and qe(fn) → 0. Let
h ∈ D(qe) be excessive and strictly positive. Using fn ∧ h → f ∧ h in L0(X , μ) and
the lower semicontinuity of qe we obtain

qe(f ∧ h) ≤ lim inf
n→∞ qe(fn ∧ h) ≤ lim inf

n→∞ qe(fn) = 0.

This implies f ∧ h ∈ ker qe, so that f ∧ h = 0 by our assumption. The strict positivity
of h yields f = 0.
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(iii) ⇒ (viii): Let (fn) be in D(qe) with qe(fn) → 0. Since (fn) is an arbitrary
sequencewith this property, it suffices to show that (fn) has a subsequence converging
to 0 μ-a.e. Using the first Beurling-Deny criterion, we choose a subsequence (fnk )

such that ∞∑

k=1

q+(|fnk |) =
∞∑

k=1

qe(|fnk |) < ∞.

With this and ker q+ = {0} at hand, |fnk | → 0 μ-a.e. follows from Lemma 3.10.
Step 2: Now that we established the equivalence of (iii), (iv), (vii), (viii) and (ix),

we show that all of these are equivalent to (ii), (v) and (vi).
(vi) ⇒ (v): This is trivial.
(v) ⇒ (ii): Without loss of generality we can assume that f is strictly positive and

in L1(X , μ) ∩ L2(X , μ). Consider the function F = f /(Gf ∨ 1). Then F ≤ f and
F ≤ f /Gf , and so the monotonicity of G yields

∫

X FGFdμ ≤ ‖f ‖1 . This implies

qα(GαF) = 〈F, GαF〉 ≤ ‖f ‖1 .

For g ∈ D(q) we obtain

〈|g|, F〉 = qα(|g|, GαF) ≤ qα(|g|)1/2qα(GαF)1/2 ≤ ‖f ‖1/21 qα(g)1/2.

Letting α → 0+ yields (ii).
(ii) ⇒ (iv): If (ii) holds we have ker qe = {0} (since the inequality extends to

the extended space, see the remark before this theorem). The existence of a strictly
positive excessive function und (ii) is the content of Lemma 3.5 (b).

(iv) ⇒ (vi): Let h ∈ L0(X , μ) be striclty positive and q-excessive and let f ∈
L1+(X , hμ). Without loss of generality we can assume h ∈ D(qe) (else consider
h ∧ h′ for a strictly positive excessive function h′ ∈ D(qe)). Lemma 3.8 and (viii)
imply αGαh → 0 in L0(X , μ) as α → 0+. The resolvent identity and αGαh ≤ h,
see Lemma 3.4, show that this convergence is monotone and that

Gβ(h − αGαh) = Gαh − βGαGβh ≤ Gαh ≤ α−1h.

Let Aα = {αGαh ≤ h/2} and note that Aα ↗ X as α → 0+ by our previous con-
siderations. Hence, it suffices to show that Gf is a.s. finite on Aα . Using symmetry
of the extended resolvents and the inequality above, for β > 0 we estimate

∫

Aα

Gβ fhdμ ≤ 2
∫

X

f Gβ(h − αGαh)dμ = 1

α

∫

X

fhdμ.

Hence, we obtain 1Aα
Gf ∈ L1(X , hμ) and arrive at (ii).

Step 3: Assertions (ii) to (ix) are equivalent to (i):
(i) ⇒ (ii): Without loss of generality we can assume that the Hardy weight w is

in L1(X , μ). For f ∈ D(q) we obtain
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∫

X

|f |wdμ ≤
⎛

⎝

∫

X

|f |2wdμ

⎞

⎠

1/2 ⎛

⎝

∫

X

wdμ

⎞

⎠

1/2

≤ Cq(f )1/2.

This yields the claim.
(v) ⇒ (i): Without loss of generality we can assume Gg ∈ L0(X , μ) for some

strictly positive g ∈ L2(X , μ). Then Corollary 4.6 yields the claim for the Hardy
weight w = g/Gg after letting α → 0+. �

Remark (Hardy weights) The proof of the theorem shows that for all strictly positive
g ∈ L0(X , μ) with Gg ∈ L0(X , μ) the function w = g/Gg is a Hardy weight for q.
A criterion for the existence of Gg is given by assertion (iv).

Remark (State of the art)

(a) Let E be a Dirichlet form. In this case, the constant function 1 is E-excessive and
assertion (iii) reduces to ker Ee = {0}. This is one characterization of transience
of the Dirichlet form E and the equivalence of transience to (ii), (iii) (iv), (v),
(vi) and (ix) is well-known, see the discussion in [5, Section1.6 and Notes].
The equivalence of transience to subcriticality with Hardy weight w = g/Gg is
more or less contained in [4] for regularDirichlet forms. The additional regularity
assumption in [4] allows that themeasurewμ on one side of the Hardy inequality
can even be replaced by a smoothmeasure. The equivalence of transience to (viii)
is based on Theorem 2.3 and taken from [25].

(b) For second-order linear elliptic operators the relation of Hardy inequalities and
the behavior of the resolvent at the infimum of the spectrum (which in our case
can always be taken to equal 0), i.e., the equivalence of (i) and (v), (vi) is well
known, see e.g. [16, 19, 21] and references therein.
The connection of subcriticality to transience of h-transformed Schrödinger type
forms (Dirichlet form + form induced by a potential) is studied in the recent [32],
with previous results in [30, 31]. For Schrödinger type forms on discrete spaces
corresponding results were obtained in [12].

(c) The implication (viii) and (ix) ⇒ (iv) uses a standard argument showing that
certain minimizers of the ’energy’ q are ’superharmonic’ functions. The idea to
use the function f /(Gf ∨ 1) in the proof of implication (v) ⇒ (ii) is taken from
the proof of [5, Theorem 1.5.1].

(d) The equivalence of subcriticality to (iii) and (vii) seems to be a new observation.

With this at handweobtain that there are three types of irreducible forms satisfying
the first Beurling-Deny criterion.

Corollary 5.3 Let q be an irreducible quadratic form on L2(X , μ) satisfying the
first Beurling-Deny criterion. Then precisely one the following assertions holds.

(i) q is subcritical.
(ii) ker qe = Rh for some strictly positive h ∈ L0(X , μ).
(iii) ker q+ = {0,∞}.
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Moreover, (iii) holds if and only if q does not possess a nontrivial nonnegative exces-
sive function.

Proof Suppose (i) does not hold. According to our theorem ker q+ 
= {0}. Now there
are two cases:

Case 1: ker q+ ∩ L0(X , μ) 
= {0}. Since D(qe) ∩ L0+(X , μ)=D(q+) ∩ L0+(X , μ),
this implies ker qe 
= ∅. Now (ii) follows from Corollary 3.12. Since ker qe ∩
L0+(X , μ) ⊆ ker q+, this implies that (iii) does not hold.

Case 2: ker q+ ∩ L0(X , μ) = {0}. Let 0 
= h ∈ ker q+. Since h /∈ L0(X , μ), the
set A = {h = ∞} has positive measure. We show that it is qe-invariant as this implies
(iii) by the irreducibilty of q.

According to Lemma 3.9, we have 1A · ∞ ∈ ker q+. For nonnegative f ∈ D(qe)
we obtain

qe(1Af ) = qe(f ∧ (1A · ∞)) = q+(f ∧ (1A · ∞)) ≤ q+(f ) + q+(1A · ∞) = qe(f ).

Since qe satisfies the first Beurling-Deny criterion, this implies f 1A ∈ D(qe) for all
f ∈ D(qe) and

qe(1Af ) = qe(1Af+) + qe(1Af−) − 2qe(1Af+, 1Af−)

≤ qe(f+) + qe(f−) − 2qe(1Af+, 1Af−).

It remains to prove qe(1Af+, 1Af−) ≥ qe(f+, f−) to establish the invariance of A. Non-
negative h, h′ ∈ D(qe)with h ∧ h′ = 0 satisfy qe(h, h′) ≤ 0 (this is a consequence of
Lemma 3.1). Hence,

qe(f+, f−) = qe(1Af+, 1Af−) + qe(1Af+, 1X \Af−)

+ qe(1X \Af+, 1Af−) + qe(1Af+, 1X \Af−)

≤ qe(1Af+, 1Af−).

It remains to prove the ’Moreover’ statement. If (iii) does not hold, either (i) or (ii)
are satisfied. If (i) holds, then q has an excessive function by the previous theorem
and if (ii) holds, h is an excessive function.

Now suppose q has a nontrivial excessive function h ∈ L0+(X , μ). If ∞ were in
ker q+, we would obtain

q+(h) = q+(∞ ∧ h) ≤ q+(∞) = 0.

This implies ker q+ 
= {0,∞}, so that (iii) does not hold. �

Definition 5.4 (Criticality) An irreducible form satisfying (ii) in the previous corol-
lary is called critical and the strictly positive function h is an Agmon ground state
of q.

Remark For irreducible Dirichlet forms the dichotomy between subcriticality (tran-
sience) and criticality (recurrence) iswell-known, see [5, Section1.6]. It is also known
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for classical Schrödinger operators [20], certain generalized Schrödinger forms [30]
and discrete Schrödinger operators [12].

For general irreducible forms however, it may happen happen that they are neither
critical nor subcritical. According to the corollary, this is precisely the case if they
do not possess excessive functions.

In concrete models the existence of an excessive function is often known. Indeed,
we do not have a counterexample of a closed form satisfiying the first Beurling-
Deny criterion without excessive function. Excessive functions usually correspond
to superharmonic functions with respect to an associated ’weakly defined opera-
tor’. Existence results for such functions are sometimes referred to as Allegretto-
Piepenbrink type theorems, see e.g. [6, 14, 29] and references therein. Below in
Appendix 6 we prove existence of excessive functions for irreducible forms for
which the semigroup admits a heat kernel, an assumption that is satisfied for the
models considered in the mentioned [12, 20, 30]. Our existence result relies on a
weak Harnack principle, which is shown to hold for kernel operators with strictly
positive kernel.

6 Weak Poincaré Inequalities and Completeness
of Extended form Domains

In this section we discuss when weak Poincaré inequalities hold. For conservative
Dirichlet forms on L2(X , μ)with finiteμ, they have been introduced and extensively
studied in [23], which also contains an abundance of examples and further references.
Therefore, here we restrict ourselves to two additional abstract criteria for the validity
of such an inequality.

For simplicity we assume irreducibility of the form even though this is not nec-
essary. Moreover, we write f ⊥w h to state that the functions f and h are orthogonal
in the Hilbert space L2(X , wμ).

Theorem 6.1 Let q be an irreducible closed quadratic form on L2(X , m) satisfying
the first Beurling-Deny criterion. Assume further that q is critical such that ker qe =
Rh for some strictly positive h ∈ L0(X , μ). The following assertions are equivalent.

(i) (D(qe)/Rh, qe) is a Hilbert space.
(ii) The map

(D(qe)/Rh, qe) → L0(X , μ)/Rh, f + Rh �→ f + Rh

is continuous. Here, L0(X , μ)/Rh is equipped with the quotient topology.
(iii ) For one/all strictly positive w ∈ L1(X , h2μ) there exists a decreasing α : (0,∞)

→ (0,∞) such that for all f ∈ L2(X , wμ) with f ⊥w h and all r > 0 we have
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∫

X

f 2wdμ ≤ α(r)qe(f ) + r ‖f /h‖2∞ .

Proof The equivalence of (i) and (ii) is the content of Theorem 2.3.
(iii) ⇒ (ii): It suffices to show that if (fn) is a sequence in D(qe) with qe(fn) → 0,

then there exist Cn ∈ R such that fn − Cnh → 0 in L0(X , μ). Let w ∈ L1(X , h2μ) be
strictly positive such that the weak Poincaré inequality holds and consider

T : L0(X , μ) → L2(X , wμ), Tf = (f ∧ h) ∨ (−h).

For each n ∈ N there exists Cn ∈ R such that T (fn − Cnh) ⊥w h. Since also |Tf | =
|f | ∧ h, the weak Poincaré inequality applied to T (fn − Cnh) and h ∈ ker qe imply

∫

X

(|fn − Cnh| ∧ h)2wdμ ≤ α(r)qe(T (fn − Cnh)) + r ≤ α(r)qe(fn) + r, r > 0.

Since h, w are strictly positive, we infer fn − Cnh → 0 in L0(X , μ) from qe(fn) → 0.
(ii) ⇒ (iii): Suppose that the weak Poincaré inequality does not hold for a given

strictly positive w ∈ L1(X , h2μ). Then there exist r > 0 and a sequence (fn) in
D(qe) ∩ L∞

h (X , μ) with fn ⊥w h such that
∫

f 2
n wdμ = 1 and

1 > nqe(fn) + r2 ‖fn/h‖2∞ .

This implies |fn| ≤ h/r and qe(fn) → 0. Assertion (ii) yields Cn ∈ R such that fn −
Cnh → 0 in L0(X , μ). Without loss of generality we assume the convergence holds
μ-a.e. (else pass to a suitable subsequence). It suffices to show Cn → 0 and hence
fn → 0 μ-a.e. Indeed, using |fn| ≤ h/r and h ∈ L2(X , wμ), Lebesgue’s dominated
convergence theorem and fn → 0 μ-a.e. imply

0 = lim
n→∞

∫

X

f 2
n wdμ = 1,

a contradiction.
From h > 0 and

|Cnh| ≤ |Cnh − fn| + |fn| ≤ |Cnh − fn| + h/r → h/r, n → ∞,

it follows that Cn is bounded. Hence, fn − Cnh is bounded by some constant times
h. Using this and fn ⊥w h, we conclude with the help of Lebesgue’s dominated
convergence theorem

−Cn

∫

X

h2wdμ =
∫

X

(fn − Cnh)hwdμ → 0, n → ∞.
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This shows the required Cn → 0. �
Remark (a) Instead of working with the norm ‖·/h‖∞ on the right side of the

inequality in (iii), we could have also used δh(f ) = ess sup f /h − ess inf f /h.
Note that δh is the quotient norm on L∞

h (X , μ)/Rh.
(b) It is known for recurrent (critical) irreducibleDirichlet formsE that Poincaré type

inequalites yield that (D(Ee)/R1, Ee) is a Hilbert space, see e.g. the discussion
in [5, Section4.8], which is based on [17] and treats Harris recurrent Dirichlet
forms. The observation that the converse can be characterized by aweak Poincaré
inequality seems to be new.
Recall Theorem 5.2, which states that if (D(qe), qe) is a Hilbert space (and in
particular ker qe = {0}), not only weak Hardy inequalites but Hardy inequalites
hold with respect to certain Hardy weights. It would be interesting to know
whether Poincaré inequalites with respect to certain weights hold under the con-
dition that (D(qe)/ ker qe, qe) is a Hilbert space or what else has to be assumed.
As mentioned above, for Dirichlet forms Harris recurrence is sufficient for a
Poincaré inequality to hold.
In some sense a Poincaré inequality for q can be interpreted as subcriticality of
the form q considered on the quotient space L2(X , μ)/Rh � (Rh)⊥ (or qe on
the quotient L0(X , μ)/Rh). These quotients do not carry a good order structure.
Hence, the methods used in the proof of Theorem 5.2, which heavily rely on the
order structure of the function spaces, are not available.

For an irreducible conservative Dirichlet form E and finite μ, in [23] it is noted
that the validity of a weak Poincaré inequality (with h = w = 1) is equivalent to
Kusuoka-Aida’s weak spectral gap property discussed in [1, 13]. The weak spec-
tral gap property is said to hold if sequences (fn) in D(E) with ‖fn‖2 ≤ 1, fn ⊥ 1
and E(fn) → 0 converge to 0 in measure with respect to μ. In this sense, our main
observation is that the weak spectral gap property is the same as the continuity of
the embedding in assertion (ii). As shown in [1, Lemma 2.6], the weak spectral gap
property holds if the semigroup is a semigroup of kernel operators. Hence, we obtain
the following corollary.

Corollary 6.2 Let E be an irreducible conservative Dirichlet form on L2(X , μ) with
finite μ. If the associated semigroup admits an integral kernel, then (D(Ee)/R1, Ee)

is a Hilbert space.

Reference [23, Theorem7.1] gives a sharp criterion for theweak Poincaré inequal-
ity for a conservative irreducible Dirichlet form on a configuration space over a non-
compact manifold M (with a finite measureμ on the configuration space, h = w = 1
and with respect to the quotient norm δ(f ) = ess sup f − ess inf f on the right side
of the weak Poincaré inequality). In particular, it shows that if

λ(r) = inf{‖∇f ‖L2(M ) | f ∈ C∞
c (M ) with ‖f ‖L2(M ) = 1 and ‖f ‖2∞ ≤ r} = 0

for some r > 0, then the considered Dirichlet form on the configuration space
over M does not satisfy a weak Poincaré inequality. But for M = R it is read-
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ily verified that λ(r) = 0 for any r > 0 (for n ∈ N consider smoothed versions of
fn : R → R, fn(x) = (−|x|/n2 + 1/n)+). Hence, on M = R the Dirichlet forms on
configuration space over R described in [23, Section7] do not satisfy weak Poincaré
inequalities and according to our theorem their extended Dirichlet space is not com-
plete. The existence of such examples seems to be a new observation and therefore
we state it as a corollary to our theorem.

Corollary 6.3 There exists an irreducible Dirichlet form E with ker Ee = R1, such
that (D(Ee)/R1, Ee) is not a Hilbert space.
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Appendix: Existence of Excessive Functions and a Question
of Schep

In this appendix we show that an irreducible form with the first Beurling-Deny
criterion has a strictly positive excessive function if its semigroup is a semigroup of
kernel operators. This result is based on a more general observation for positivity
preserving kernel operators on Lp-spaces, which answers a question of Schep for this
particular class of operators.

In this section (Y , ν) denotes another σ -finite measure space.We assume 1 < p <

∞ and consider positivity preserving operators T : Lp(X , μ) → Lp(Y , ν), which are
automatically continuous, see e.g. [15, Proposition 1.3.5]. Their adjoint is denoted
by T ∗ : Lq(Y , ν) → Lq(X , μ) with 1/q + 1/p = 1. Note that if f ∈ Lp

+(X , μ), then
f p−1 ∈ Lq(X , μ). In particular, ifT is positivity preserving,T ∗(Tf )p−1 iswell-defined
for f ∈ Lp

+(X , μ) and belongs to Lq(X , μ).
We consider the quantity

λ(T ) = inf{λ ≥ 0 | ex. strictly positive f ∈ Lp
+(X , μ) with T ∗(Tf )p−1 ≤ λf p−1}.

It turns out that λ(T ) = ‖T‖p, see [24, Theorem 4 and Theorem 8], but we shall not
use this fact.

By definition, for λ > λ(T ) there exists a strictly positive f ∈ Lp
+(X , μ) with

T ∗(Tf )p−1 ≤ λf p−1. Schep asked in [24, Section8] what happens at λ = λ(T ). In
this case, one cannot expect to find a corresponding f ∈ Lp

+(X , μ), but can still hope
for a strictly positive f ∈ L0+(X , μ). The following theorem shows that this is indeed
true if T is a kernel operator with strictly positive integral kernel.
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Theorem A.1 Let 1 < p < ∞ and let T : Lp(X , μ) → Lp(Y , ν) be a kernel oper-
ator with strictly positive integral kernel. Then there exists a strictly positive
h ∈ L0(X , μ) such that

T ∗(Th)p−1 ≤ λ(T )hp−1.

This theorem and our existence result for excessive functions are a consequence
of the following lemma, whose proof we give at the end of this section.

Lemma A.2 Let 1 < p < ∞ and let T : Lp(X , μ) → Lp(Y , ν) be a kernel operator
with strictly positive integral kernel. Let λ ≥ 0 and let fn ∈ Lp(X , μ) be strictly posi-
tive with T ∗(Tfn)p−1 ≤ λf p−1

n . Then there exist Cn > 0 such that h = lim infn→∞ Cnfn
satisfies 0 < h < ∞ μ-a.e. and

T ∗(Th)p−1 ≤ λhp−1.

Proof of TheoremA.1Choose a sequenceλn ↘ λ(T ) and let fn ∈ Lp(X , μ)be strictly
positive with T ∗(Tfn)p−1 ≤ λnf p−1

n . Choose Cn according to Lemma A.2 and set
h = lim infn→∞ Cnfn. Then h is striclty positive and in L0(X , μ). Fatou’s lemma for
positivity preserving operators yields

T ∗(Th)p−1 ≤ lim inf
n→∞ T ∗(T (Cnfn))

p−1 ≤ lim inf
n→∞ λn(Cnfn)

p−1 = λ(T )hp−1.�

Theorem A.3 Let q be an irreducible quadratic form on L2(X , μ) satisfying the
first Beurling-Deny criterion. Assume that the associated semigroup is a semigroup
of kernel operators. Then there exists a strictly positive q-excessive function.

Proof Irreducibility yields that the integral kernel of the associated semigroup (Tt)

is strictly positive. We choose a strictly positive function g > 0. Then fα = Gαg is
strictly positive and Ttfα ≤ etαfα (use that Gαg is qα-excessive and that (e−tαTt)t>0

is the semigroup of qα , then apply Lemma 3.4). According to Lemma A.2 applied
to p = 2 and Tt = (Tt/2)

∗Tt/2, there exist Cα > 0 such that h = lim infα→0+ Cαfα
is strictly positive and in L0(X , μ). Using Fatou’s lemma for positivity preserving
operators we obtain

Tth ≤ lim inf
α→0+ TtCαfα ≤ lim inf

α→0+ etαCαfα = h.

Since this is true for any t > 0, Lemma 3.4 yields that h is excessive. �

Remark The existence of an integral kernel for the semigroup (the heat kernel) is
e.g. guaranteed if X is a separable metric space, μ is a Borel measure of full support
on X and TtL2(X , μ) ⊆ C(X ), t > 0, see e.g. [11]. This property is a question of
local regularity for solutions to the corresponding heat equation and satisfied in the
situations discussed in [12, 20, 30]. Another criterion ensuring the existence of heat
kernels is L1-L∞ ultracontractivity in the case of Dirichlet forms.
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We now prove Lemma A.2 for operators T which are positivity improving (f ≥ 0
and f 
= 0 implies that Tf is strictly positive) and satisfy a weak Harnack princi-
ple. Then we show that the weak Harnack principle holds for kernel operators with
strictly positive kernel. We start with two ergodicity properties for postivity improv-
ing operators.

Lemma A.4 (Ergodicity) Let 1 < p < ∞ and let T : Lp(X , μ) → Lp(Y , ν) be a
positivity improving operator. Every measurable A ⊆ X with

T ∗(T1Af )p−1 ≤ 1AT ∗(Tf )p−1

for all f ∈ Lp
+(X , μ) satisfies μ(A) = 0 or μ(X \ A) = 0.

Proof If T is positivity improving, then T ∗ is also positivity improving. Ifμ(A) 
= 0,
we can choose f ∈ Lp

+(X , μ)with f 
= 0 on A. The positivity improving property for
T and T ∗ and the inequality for A yields

0 < T ∗(T1Af )p−1 ≤ 1AT ∗(Tf )p−1.

Hence, μ(X \ A) = 0. �

Lemma A.5 Let 1 < p < ∞ and let T : Lp(X , μ) → Lp(Y , ν) be positivity improv-
ing. Then λ(T ) > 0. Let h ∈ L+(X , μ) satisfy

T ∗(Th)p−1 ≤ Khp−1

for some K ≥ λ(T ) > 0. Then either h = 0, 0 < h < ∞ or h = ∞ holds μ-a.s.

Proof λ(T ) > 0 directly follows from T (and hence T ∗) being positivity improving.
We show that the sets A1 = {h > 0} and A2 = {h = ∞} satisfy

T ∗(T1Ai f )p−1 ≤ 1Ai T
∗(Tf )p−1

for all f ∈ Lp
+(X , μ), i = 1, 2. With this at hand, the statement follows from

Lemma A.4.
For any f ∈ Lp

+(X , μ) we have

1{h>0}f = lim
n→∞ f ∧ (nh) and 1{h=∞}f = lim

n→∞ f ∧ (n−1h),

where the limits hold inLp(X , μ) due toLebesgue’s dominated convergence theorem.
Moreover, since T and T ∗ are positivity preserving, we obtain

T ∗(T (f ∧ (nh)))p−1 ≤ T ∗(Tf )p−1

and
T ∗(T (f ∧ (nh)))p−1 ≤ T ∗(T (nh))p−1 ≤ K(nh)p−1.
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These observations yield

T ∗(T1{h>0}f )p−1 = lim
n→∞ T ∗(Tf ∧ (nh))p−1

≤ lim
n→∞(K(nh)p−1) ∧ T ∗(Tf )p−1

= 1{h>0}T ∗(Tf )p−1.

A similar computation yields the statement for the set {h = ∞}. �

Definition A.6 (Weak Harnack principle) Let 1 < p < ∞ and let T : Lp(X , μ) →
Lp(Y , ν) be a positivity preserving linear operator. We say that T satisfies the weak
Harnack principle at λ ≥ 0 if there exist D > 0 and measurable sets A, B ⊆ X with
μ(A), μ(B) > 0, such that for every f ∈ Lp

+(X , μ) with

T ∗(Tf )p−1 ≤ λf p−1

we have ∫

A

fdμ ≤ D ess inf
x∈B

f .

Wecannowprove aversionofLemmaA.2 for operators satisfying aweakHarnack
principle.

Lemma A.7 Let1 < p < ∞and let T : Lp(X , μ) → Lp(Y , ν)be a positivity improv-
ing operator that satisfies the weak Harnack principle at some λ ≥ λ(T ). Let
fn ∈ Lp(X , μ) be strictly positive with T ∗(Tfn)p−1 ≤ λf p−1

n . Then there exist Cn > 0
such that h = lim infn→∞ Cnfn satisfies 0 < h < ∞ μ-a.e. and

T ∗(Th)p−1 ≤ λhp−1.

Proof LetA, B ⊆ X and letD > 0 as in the weakHarnack principle, which we apply
to fn. From

∫

A fndμ > 0 we obtain ess infx∈B fn > 0. Hence, we can choose Cn > 0
such that ess infx∈B Cnfn = 1. We set

h = lim inf
n→∞ Cnfn ∈ L+(M ).

Fatou’s lemma for positivity preserving operators yields

T ∗(Th)p−1 ≤ lim inf
n→∞ T ∗(TCnfn)

p−1 ≤ lim inf
n→∞ λ(Cnfn)

p−1 = λhp−1.

According to Lemma A.5, it suffices to exclude the cases h = 0 and h = ∞ to obtain
the desired statement. From ess infx∈B Cnfn = 1 we infer h ≥ 1 on B. Therefore,
h 
= 0. Moreover, Fatou’s Lemma yields
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∫

A

hdμ ≤ lim inf
n→∞

∫

A

Cnfndμ ≤ lim inf
n→∞ D ess inf

x∈B
Cnfn = D.

In particular, h is μ-a.s. finite on A and so we obtain h 
= ∞. �
Lemma A.8 Let k : Y × X → (0,∞) be bimeasurable. Then the function

k̃ : X × X → [0,∞), k̃(x, y) =
∫

Y

k(z, x)k(z, y)dν(z)

is bimeasurable and there exists c > 0 and a measurable set A ⊆ X with μ(A) > 0
such that

k̃ ≥ c on A × A.

Proof The measurability of k̃ follows from Fubini’s theorem. For the estimate we
can assume that μ and ν are probability measures (else restrict everything to sets of
finite measure and rescale). For n ∈ N we consider the sets Dn = {(y, x) ∈ Y × X |
k(y, x) ≥ 1/n} and for x ∈ X we consider the measurable sections (Dn)

x = {y ∈ Y |
(y, x) ∈ Dn}. By definition we have

k̃(x, y) =
∫

Y

k(z, y)k(z, x)dν(z) ≥ 1

n2
ν((Dn)

x ∩ (Dn)
y).

Hence, we need to prove that for some n ∈ N there exists C > 0 and a set A with
μ(A) > 0 and ν((Dn)

x ∩ (Dn)
y) ≥ C > 0 for all x, y ∈ A.

Our assumption k > 0 yields Dn ↗ Y × X , as n → ∞. Using the monotone con-
vergence theorem, for ε > 0 we find nε ∈ N with

(ν ⊗ μ)(Dnε
) ≥ 1 − ε.

We claim that Aε = {x ∈ X | ν((Dnε
)x) > 1 − 2ε} satisfies μ(Aε) > 0 (here we use

Fubini’s theorem for the measurability of Aε). If this were not the case, we would
have ν((Dnε

)x) ≤ 1 − 2ε for μ-a.e. x ∈ X . But then Fubini’s theorem leads to the
contradiction

(ν ⊗ μ)(Dnε
) =

∫

Y

ν((Dnε
)x)dμ(x) ≤ 1 − 2ε.

Hence, for x, y ∈ Aε we have

ν((Dnε
)x ∩ (Dnε

)y) = ν((Dnε
)x) + ν((Dnε

)y) − ν((Dnε
)x ∪ (Dnε

)y) > 1 − 4ε,

so that A = Aε for some ε < 1/4 is a set as required. �
Remark If there exists c > 0 and not neglibile setsA ⊆ X , B ⊆ Y such that k ≥ c on
B × A, then the statement of the previous lemma trivially follows from the definition
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of k̃. Note however that k > 0 does not imply the existence of such sets, see e.g. [7,
Theorem B.1].

Lemma A.9 (Weak Harnack principle for kernel operators) Let 1 < p < ∞ and let
T : Lp(X , μ) → Lp(Y , ν) be a kernel operator with strictly positive kernel. Then T
satisfies the weak harnack principle at every λ > 0.

Proof Let λ > 0 and let f ∈ Lp
+(X , μ)with T ∗(Tf )p−1 ≤ λf p−1. Using the previous

lemma we choose c > 0 and a set A with μ(A) > 0 such that

k̃(x, y) =
∫

Y

k(z, x)k(z, y)dν(z) ≥ c

for all x, y ∈ A. Let q such that 1/q + q/p = 1 and let ϕ ∈ Lq
+(X , μ). Using

Minkowski’s inequality for integrals and Fubini’s theorem we obtain

λ

∫

X

f (x)ϕ(x)dμ(x) ≥
∫

X

ϕ(x)

⎛

⎜
⎝

∫

Y

k(z, x)

⎛

⎝

∫

X

k(z, y)f (y)dμ(y)

⎞

⎠

p−1

dν(z)

⎞

⎟
⎠

1/(p−1)

dμ(x)

≥
⎛

⎜
⎝

∫

X

ϕ(x)

⎛

⎝

∫

Y

k(z, x)
∫

X

k(z, y)f (y)dμ(y)dν(z)

⎞

⎠

p−1

dμ(x)

⎞

⎟
⎠

1/(p−1)

=
⎛

⎜
⎝

∫

X

ϕ(x)

⎛

⎝

∫

X

k̃(x, y)f (y)dμ(y)

⎞

⎠

p−1

dμ(x)

⎞

⎟
⎠

1/(p−1)

≥ c
∫

A

ϕ(x)dμ(x)
∫

A

f (y)dμ(y).

Now we let ϕ = 1B, where B ⊆ A is a set wit 0 < m(B) < ∞ such that f ≤
ess infx∈A f + ε on B. We obtain

λ(ess inf
x∈A

f + ε)m(B) ≥ cm(B)

∫

A

f (y)dμ(y).

Since ε > 0 is arbitrary, this proves the claim with constant D = λ/c > 0. �

Remark We proved that in principle the weak Harnack principle holds at all λ > 0.
However, nontrivial functions with T ∗(Tf )p−1 ≤ λf p−1 only exist for λ ≥ λ(T ).

Proof of Lemma A.2 This follows directly from the previous two lemmas. �
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Maximal Displacement of Branching
Symmetric Stable Processes

Yuichi Shiozawa

Abstract We determine the limiting distribution and the explicit tail behavior for
the maximal displacement of a branching symmetric stable process with spatially
inhomogeneous branching structure. Here the branching rate is a Kato class measure
with compact support and can be singular with respect to the Lebesgue measure.

Keywords Branching symmetric stable process · Symmetric stable process · Kato
class measure · Additive functional
Mathematics Subject Classification 60J80 · 60J75 · 60F05 · 60J55 · 60J46

1 Introduction

We studied in [26] the limiting distributions for the maximal displacement of a
branching Brownian motion with spatially inhomogeneous branching structure. In
this paper, we show the corresponding results for a branching symmetric stable
process. Our results clarify how the tail behavior of the underlying process would
affect the long time asymptotic properties of the maximal displacement.

There has been great interest in the maximal displacement of branching Brownian
motions and branching randomwalkswith light tails for which the associated branch-
ing structures are spatially homogeneous. We refer to [9] as a pioneering work, and
to [8, Sects. 5–7] and references therein, and [22, 32] for recent developments on this
research subject. On the other hand, Durrett [17] proved the weak convergence of a
properly normalized maximal displacement of a branching random walk on R with
regularly varying tails. This result in particular shows that the maximal displacement
grows exponentially in contrast with the light tailed model. Bhattacharya-Hazra-Roy
[3, Theorem 2.1] further showed the weak convergence of point processes associ-
ated with the scaled particle positions. We refer to [20, 24] for related studies on
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the maximal displacement of branching stable processes or branching random walks
with regularly varying tails.

Herewe are interested in how the spatial inhomogeneity of the branching structure
would affect the behavior of the maximal displacement. For a branching Brownian
motion on R, Erickson [18] determined the linear growth rate of the maximal dis-
placement in terms of the principal eigenvalue of the Schrödinger type operator.
Lalley-Sellke [23] then showed that a properly shifted maximal displacement is
weakly convergent to a random shift of the Gumbel distribution with respect to the
limiting martingale. Bocharov and Harris [6, 7] proved the results corresponding
to [18, 23] for a catalytic branching Brownian motion on R in which reproduction
occurs only at the origin.We showed in [29, 30] that the results in [6, 18] are valid for
the branching Brownian motion motion onRd (d ≥ 1) in which the branching rate is
a Kato class measure with compact support. Under the same setting, Nishimori and
the author [26] further determined the limiting distribution of the shifted maximal
displacement as in [7, 23]. This result reveals that, even though reproduction occurs
only on a compact set unlike [23], the spatial dimension d appears in the lower order
term of the maximal displacement. We refer to [5, 25] for further developments.

Carmona-Hu [14] and Bulinskaya [11, 12] obtained the linear growth rate and
weak convergence for the maximal displacement of a branching random walk on Zd

in which reproduction occurs only on finite points and the underlying random walk
has light tails. We note that the underlying randomwalk in [11, 12, 14] is irreducible
and allowed to be nonsymmetric, and the so-called L log L condition is sufficient for
the validity of these results as proved by [11, 12]. Recently, Bulinskaya [13] showed
theweak convergence of a properly normalizedmaximal displacement of a branching
random walk on Z with regularly varying tails as in [3, 17] and reproduction occurs
only on finite points. As for the spatially homogeneous model, the growth rate of the
maximal displacement is exponential in contrast with the light tailed model.

In this paper,we prove theweak convergence and the long time tail behavior for the
maximal displacement of a branching symmetric stable process onRd with spatially
inhomogeneous branching structure (Theorems 17 and 18). We will then see that the
maximal displacement grows exponentially and the growth rate is determined by the
principal eigenvalue of the Schrödinger type operator associated with the fractional
Laplacian. The spatial dimension d also affects the limiting distribution and tail
behavior of the maximal displacement. Our results are applicable to a branching
symmetric stable process in which reproduction occurs only on singular sets.

Our results can be regarded as a continuous state space and multidimensional
analogue of [13]. In particular, we provide an explicit form of the limiting distribution
for the maximal displacement. On the other hand, since our approach is based on the
second moment method as for [26], we need the second moment condition on the
offspring distribution, which is stronger than the L log L condition as imposed in [3,
13, 17].

We note that the functional analytic approach works well for the continuous space
model. Our model of branching symmetric stable processes is closely related to the
Schrödinger type operator associated with the fractional Laplacian and Kato class
measure through the first moment formula on the expected population (Lemma 15).
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It is possible to calculate or estimate the principal eigenvalue of the Schrödinger type
operator as in Sect. 3.3.

The rest of this paper is organized as follows: In Sect. 2, we first prove the resolvent
asymptotic behaviors of a symmetric stable process. We then discuss the invariance
of the essential spectra, and the asymptotics of the integral associatedwith the ground
state, for the Schrödinger type operator. We finally determine asymptotic behaviors
of the Feynman-Kac functional. In Sect. 3, we first introduce a model of branching
symmetric stable processes. We then present our results in this paper with examples.
In Sect. 4, we prove the weak convergence result (Theorem 17) by following the
approach of [26, Theorem 2.4].

2 Symmetric Stable Processes

For α ∈ (0, 2), letM = ({Xt }t≥0, {Px }x∈Rd ) be a symmetric α-stable process on Rd

generated by −(−Δ)α/2/2. Let pt (x, y) be the transition density function of M,

Px (Xt ∈ A) =
∫

A

pt (x, y) dy, t > 0, x ∈ R
d , A ∈ B(Rd).

Here B(Rd) is the family of Borel measurable sets on R
d . By [4, Theorem 2.1] and

[37, Lemmas 2.1 and 2.2], we have

Lemma 1 There exists a positive continuous function g on [0,∞) such that

pt (x, y) = 1

td/α
g

( |x − y|
t1/α

)
. (1)

Moreover, the function g satisfies the following.

(i) The value g(0) is given by

g(0) = 2d/αΓ (d/α)

α2d−1πd/2Γ (d/2)
.

(ii) There exists c > 0 such that for any r ≥ 0,

0 ≤ g(0) − g(r) ≤ cr2. (2)

(iii) The next equality holds.

lim
r→∞ rd+αg(r) = α sin(απ/2)Γ ((d + α)/2)Γ (α/2)

22−απ1+d/2
(=: Cd,α). (3)
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2.1 Resolvent Asymptotics

In this subsection, we prove the asymptotic behaviors and the so-called 3G-type
inequality for the resolvent density of M. For β > 0, let Gβ(x, y) denote the β-
resolvent density of M,

Gβ(x, y) =
∞∫

0

e−βt pt (x, y) dt.

Define

wβ(r) =
∞∫

0

e−βt 1

td/α
g
( r

t1/α

)
dt (r ≥ 0)

so that Gβ(x, y) = wβ(|x − y|) by (1).

Lemma 2 Let β > 0.

(i) The function wβ satisfies

lim
r→∞ rd+αwβ(r) = β−2Cd,α (4)

and

wβ(r) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β(d−α)/αΓ ((α − d)/d)g(0) (d < α),

αg(0) log r−1 (d = α),

αrα−d

∞∫

0

sd−α−1g(s) ds (d > α),

(r → +0). (5)

(ii) There exists C > 0 such that for any x, y, z ∈ R
d ,

Gβ(x, y)Gβ(y, z) ≤ CGβ(x, z)
(
Gβ(x, y) + Gβ(y, z)

)
.

Proof (ii) follows by (i) and direct calculation. We now show (i). The relation (4)
follows by (3) and the dominated convergence theorem:

rd+αwβ(r) =
∞∫

0

e−βt
( r

t1/α

)d+α

g
( r

t1/α

)
t dt → β−2Cd,α (r → ∞).

We next show (5). If d < α, then as r → +0,
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wβ(r) →
∞∫

0

e−βt t−d/α dt g(0) = β(d−α)/αΓ

(
α − d

α

)
g(0).

If d > α, then (3) implies that as r → +0,

rd−αwβ(r) = α

∞∫

0

e−β(r/s)α sd−α−1g(s) ds → α

∞∫

0

sd−α−1g(s) ds.

We now assume that d = α(= 1). Let

wβ(r) =
rα∫

0

e−βt t−1g
( r

t1/α

)
dt +

∞∫

rα

e−βt t−1g
( r

t1/α

)
dt = (I) + (II).

Then by (3),

(I) ≤ c1
r2α

rα∫

0

e−βt t dt ≤ c2.

Let

(II) =
∞∫

rα

e−βt t−1
(
g
( r

t1/α

)
− g(0)

)
dt + g(0)

∞∫

rα

e−βt t−1 dt.

Then by (2),

∣∣∣∣∣∣
∞∫

rα

e−βt t−1
(
g
( r

t1/α

)
− g(0)

)
dt

∣∣∣∣∣∣ ≤ c3r
2

∞∫

rα

e−βt t−1−2/α dt ≤ c4.

Since ∞∫

rα

e−βt t−1 dt ∼ α log

(
1

r

)
(r → +0),

we obtain the desired assertion for d = α. �

If d > α, then M is transient and the Green function G(x, y) = ∫∞
0 pt (x, y) dt

is given by

G(x, y) = 21−αΓ ((d − α)/2)

πd/2Γ (α/2)
|x − y|α−d . (6)

We use the notation G0(x, y) = G(x, y) for d > α.
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2.2 Spectral Properties of Schrödinger Type Operators
with the Fractional Laplacian

In this subsection, we study spectral properties of a Schrödinger type operator asso-
ciated with the fractional Laplacian and Green tight Kato class measure. We first
introduce Kato class and Green tight measures, and the associated bilinear forms.

Definition 3 (i) Let μ be a positive Radon measure on R
d . Then μ belongs to the

Kato class (μ ∈ K in notation) if

lim
β→∞ sup

x∈Rd

∫

Rd

Gβ(x, y) μ(dy) = 0.

(ii) A measure μ ∈ K is (1-)Green tight (μ ∈ K∞(1) in notation) if

lim
R→∞ sup

x∈Rd

∫

|y|>R

G1(x, y) μ(dy) = 0.

Any Kato class measure with compact support in R
d belongs to K∞(1) by defi-

nition.
Let (E,F) be a regular Dirichlet form on L2(Rd) associated with M,

F =
⎧⎨
⎩u ∈ L2(Rd) |

∫∫

Rd×Rd

(u(x) − u(y))2

|x − y|d+α
dxdy < ∞

⎫⎬
⎭ ,

E(u, u) = 1

2
A(d, α)

∫∫

Rd×Rd

(u(x) − u(y))2

|x − y|d+α
dxdy, u ∈ F

with

A(d, α) = α2d−1Γ ((d + α)/2)

πd/2Γ (1 − α/2)

([19, Example 1.4.1]). For β > 0, we let Eβ(u, u) = E(u, u) + β
∫
Rd u2 dx . Since

any function in F admits a quasi continuous version ([19, Theorem 2.1.3]), we may
and do assume that if we write u ∈ F , then u denotes its quasi continuous version.

For μ ∈ K and β > 0, let Gβμ(x) = ∫
Rd Gβ(x, y) μ(dy). Then ‖Gβμ‖∞ < ∞

by the definition of theKato classmeasure.Moreover, the Stollmann-Voigt inequality
([33, Theorem 3.1] and [19, Exercise 6.4.4]) holds:

∫

Rd

u2 dμ ≤ ‖Gβμ‖∞Eβ(u, u), u ∈ F . (7)
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In particular, any function u ∈ F belongs to L2(μ). We also know by (7) that the
embedding

Iμ : (F ,
√Eβ) → L2(μ), Iμ f = f, μ-a.e.

is continuous. Even ifμ is a signedmeasure, we can define the continuous embedding
Iμ as above by replacing μ with |μ|.

Let ν be a signed Borel measure on R
d such that the measures ν+ and ν− in the

Jordan decomposition ν = ν+ − ν− belong to K. Let (Eν,F) be the quadratic form
on L2(Rd) defined by

Eν(u, u) = E(u, u) −
∫

Rd

u2 dν, u ∈ F .

Since ν charges no set of zero capacity ([1, Theorem 3.3]), (Eν,F) is well-defined.
Furthermore, it is a lower bounded closed symmetric bilinear form on L2(Rd) ([1,
Theorem 4.1]) so that the associated self-adjoint operatorHν on L2(Rd) is formally
written asHν = (−Δ)α/2/2 − ν.

Let {pν
t }t>0 be the strongly continuous symmetric semigroup on L2(Rd) generated

by (Eν,F). Let Aν+
t and Aν−

t be the positive continuous additive functionals in the
Revuz correspondence to ν+ and ν−, respectively (see [19, p.401] for details). If we
define Aν

t = Aν+
t − Aν−

t , then

pν
t f (x) = Ex

[
eA

ν
t f (Xt )

]
, f ∈ L2(Rd) ∩ Bb(R

d).

Here Bb(R
d) is the family of bounded Borel measurable functions onRd . Moreover,

there exists a jointly continuous integral kernel pν
t (x, y) on (0,∞) × R

d × R
d such

that pν
t f (x) = ∫

Rd pν
t (x, y) f (y) dy ([1, Theorem 7.1]).

For β ≥ 0, we define Gν
β f (x) = ∫∞

0 e−βt pν
t f (x) dt provided that the right hand

side above makes sense. Then

Gν
β f (x) = Ex

⎡
⎣

∞∫

0

e−βt+Aν
t f (Xt ) dt

⎤
⎦ .

If we defineGν
β(x, y) = ∫∞

0 e−βt pν
t (x, y) dt , thenG

ν
β f (x) = ∫

Rd Gν
β(x, y) f (y) dy.

We next discuss the invariance of the essential spectra of (−Δ)α/2/2 under the
perturbation with respect to the finite Kato class measure. For a self-adjoint operator
L on L2(Rd), let σess(L) denote its essential spectrum.

Proposition 4 If ν+ and ν− are finite Kato class measures, then σess(Hν) =
σess((−Δ)α/2/2) = [0,∞).

We refer to [2, 10] for α = 2. To prove Proposition 4, we follow the argument
of [10, Theorem 3.1]. More precisely, we show three lemmas below for the proof of
Proposition 4.
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Suppose that ν is a signed Borel measure on Rd such that ν+ and ν− are positive
Radon measures on R

d charging no set of zero capacity. For β > 0, let Gβν(x) =∫
Rd Gβ(x, y) ν(dy). Then for any f ∈ L2(|ν|), ( f ν)+ and ( f ν)− are positive Radon
measures on R

d charging no set of zero capacity and

Gβ( f ν)(x) = Ex

⎡
⎣

∞∫

0

e−βt f (Xt ) dA
ν
t

⎤
⎦ = Eβ

x

[
A f ν

ζ

]
.

Here Pβ
x is the lawof the e−βt -subprocess ofM and ζ is the lifetimeof this subprocess.

By [16, Theorem 6.7.4], we have Gβ( f ν) ∈ F and Eβ(Gβ( f ν), v) = ∫
Rd f · Iνv dν

for any v ∈ F . Hence if we define Kβ f (x) = Gβ( f ν)(x) for f ∈ L2(|ν|), then
Kβ f ∈ F .

Lemma 5 If ν+ and ν− belong to the Kato class, then for any β > 0, IνKβ is a
bounded linear operator on L2(|ν|). Moreover, there exists β0 > 0 such that for any
β > β0, the associated operator norm ‖IνKβ‖ satisfies ‖IνKβ‖ < 1.

Proof We prove this lemma only for ν− = 0 because a similar calculation applies
to the general case. By (7), we have for any f ∈ L2(ν),

∫

Rd

(IνKβ f )2 dν =
∫

Rd

(Kβ f )2 dν ≤ ‖Gβν‖∞Eβ(Kβ f, Kβ f ) < ∞

so that IνKβ f ∈ L2(ν). Combining this with the relation

Eβ(Kβ f, Kβ f ) =
∫

Rd

(IνKβ f ) f dν ≤
√√√√
∫

Rd

(IνKβ f )2 dν

√√√√
∫

Rd

f 2 dν,

we get ‖IνKβ‖ ≤ ‖Gβν‖∞. Since ν is a Kato class measure, we have ‖Gβν‖∞ → 0
as β → ∞ so that the desired assertion holds. �

Lemma 5 implies that for any β > β0, we can define (1 − IνKβ)−1 as a bounded
linear operator on L2(|ν|).
Lemma 6 Let β0 and ν± be as in Lemma 5. Then for any β > β0,

Gν
β f − Gβ f = Kβ((1 − IνKβ)−1 IνGβ f ), f ∈ L2(Rd).

Proof As in Lemma 5, we may assume that ν− = 0. Fix β > β0 and f ∈ L2(Rd).
Then by Lemma 5, we can define the bounded linear operator (1 − IνKβ)−1 on L2(ν)

and u = (1 − IνKβ)−1 IνGβ f ∈ L2(ν). For any v ∈ F ,
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Eν
β (Gβ f + Kβu, v) = Eβ(Gβ f + Kβu, v) −

∫

Rd

Iν(Gβ f + Kβu) · Iνv dν

=
∫

Rd

f v dx +
∫

Rd

u · Iνv dν −
∫

Rd

Iν(Gβ f + Kβu) · Iνv dν.

Since Iν(Gβ f + Kβu) = u, we have Eν
β (Gβ f + Kβu, v) = ∫

Rd f v dx so that the
proof is complete. �

Lemma 7 Let ν+ and ν− be finite Kato class measures, and let β0 be as in Lemma
5.

(i) For any β > 0, Kβ is a compact operator from L2(|ν|) to L2(Rd).
(ii) For any β > β0, Gν

β − Gβ is a compact operator on L2(Rd).

Proof As in the previous lemmas, we may assume that ν− = 0. We first prove (i).
For n = 1, 2, 3, . . . , we define

K (n)
β f (x) =

∫

|x−y|≥1/n

Gβ(x, y) f (y) ν(dy), f ∈ L2(ν).

Since (4) yields

∫∫

Rd×Rd

(
Gβ(x, y)1|x−y|≥1/n

)2
ν(dy)dx ≤ c1ν(Rd)

∫

|x |≥1/n

dx

|x |2(d+α)
< ∞,

K (n)
β is a Hilbert-Schmidt operator so that it is compact from L2(ν) to L2(Rd) (see,

e.g., [21, Corollary 4.6]).
We now assume that d > α. Let ε ∈ (0, α/2) and

k(n)
1 (x, y) = 1{|x−y|<1/n}

|x − y|d/2−ε
, k(n)

2 (x, y) = 1{|x−y|<1/n}
|x − y|d/2−α+ε

.

By (5), there exists c1 > 0 such that for any n = 1, 2, 3, . . . ,

Gβ(x, y)1{|x−y|<1/n} ≤ c1k
(n)
1 (x, y)k(n)

2 (x, y), x, y ∈ R
d

and

Kβ f (x) − K (n)
β f (x) =

∫

|x−y|<1/n

Gβ(x, y) f (y) ν(dy), x ∈ R
d .

Therefore,
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‖Kβ f − K (n)
β f ‖2L2(Rd ) =

∫

Rd

⎛
⎜⎝

∫

|x−y|<1/n

Gβ(x, y) f (y) ν(dy)

⎞
⎟⎠

2

dx

≤ c2

∫

Rd

⎛
⎝
∫

Rd

k(n)
1 (x, y)2 f (y)2 ν(dy)

⎞
⎠
⎛
⎝
∫

Rd

k(n)
2 (x, y)2 ν(dy)

⎞
⎠ dx

≤ c2

⎧⎨
⎩
∫

Rd

⎛
⎝
∫

Rd

k(n)
1 (x, y)2 f (y)2 ν(dy)

⎞
⎠ dx

⎫⎬
⎭ sup

x∈Rd

⎛
⎝
∫

Rd

k(n)
2 (x, y)2 ν(dy)

⎞
⎠ . (8)

Let ωd = 2πd/2Γ (d/2)−1 be the surface area of the unit ball in R
d . Then by the

Fubini theorem,

∫

Rd

⎛
⎝
∫

Rd

k(n)
1 (x, y)2 f (y)2 ν(dy)

⎞
⎠ dx

=
∫

Rd

⎛
⎝
∫

Rd

k(n)
1 (x, y)2 dx

⎞
⎠ f (y)2ν(dy) = ωd‖ f ‖2L2(ν)

2εn2ε
. (9)

Since α > 2ε, we have by (5),

∫

Rd

k(n)
2 (x, y)2 ν(dy) =

∫

|x−y|<1/n

|x − y|−d+2α−2ε ν(dy)

≤ 1

nα−2ε

∫

|x−y|<1/n

|x − y|−d+α ν(dy) ≤ c3
nα−2ε

∫

Rd

G1(x, y) ν(dy).

Hence

sup
x∈Rd

∫

Rd

k(n)
2 (x, y)2 ν(dy) ≤ c3

nα−2ε
‖G1ν‖∞.

Combining this inequality with (9), we see by (8) that

‖Kβ − K (n)
β ‖ := sup

f ∈L2(ν), f 
=0

‖Kβ f − K (n)
β f ‖L2(Rd )

‖ f ‖L2(ν)

≤ c4
εnα/2

→ 0 (n → ∞).

For d ≤ α, we also have ‖Kβ − K (n)
β ‖ → 0 as n → ∞ by (5) and direct calculation.

Since K (n)
β is compact, so is Kβ by [27, Theorem VI.12]. This completes the proof

of (i).
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Since Gβ is a bounded linear operator from L2(Rd) to (F ,
√Eβ) and (1 −

IνK )−1 Iν is a bounded linear operator from (F ,
√Eβ) to L2(ν), Lemma 6 and (i)

imply (ii). �

Proof of Proposition 4. Since σess((−Δ)α/2/2) = [0,∞), the assertion follows by
Lemma 7 and [27, Theorem VIII.14]. �

Remark 8 Let ν+ and ν− be Kato class measures such that ν = ν+ − ν− forms a
signed Borel measure on R

d . If ν̃+ − ν̃− is the Jordan decomposition of ν, then ν̃+
and ν̃− are also Kato class measures and Aν+

t − Aν−
t = Aν̃+

t − Aν̃−
t by the uniqueness

of the Revuz correspondence ([19, Theorem 5.13]). In particular, Proposition 4 is
true as it is even if ν = ν+ − ν− is not the Jordan decomposition of ν.

We next discuss the asymptotic behavior of an integral associated with the ground
state of Hν . In what follows, we may and do assume that ν can be decomposed as
ν = ν+ − ν− for some ν+, ν− ∈ K∞(1). Let λ(ν) be the bottom of the L2-spectrum
of Hν . Then

λ(ν) = inf

⎧⎨
⎩E(u, u) −

∫

Rd

u2 dν | u ∈ C∞
0 (Rd),

∫

Rd

u2 dx = 1

⎫⎬
⎭ ,

where C∞
0 (Rd) is the totality of smooth functions with compact support in R

d .
Moreover, if λ(ν) < 0, then λ(ν) is the eigenvalue and the corresponding eigen-
function, which is called the ground state, has a bounded and strictly positive con-
tinuous version ([35, Theorem 2.8 and Sect. 4]). We write h for this version with
L2-normalization ‖h‖L2(Rd ) = 1.

By the same proof as for [35, Lemma 4.1] and [30, Lemma A.1], we see that for
any positive constants p and p′ with p′ < 1 < p, there exist positive constants c and
C such that

c

|x |(d+α)p
≤ h(x) ≤ C

|x |(d+α)p′ (|x | ≥ 1). (10)

If ν+ and ν− are in addition compactly supported in R
d , then (10) is valid for

p = p′ = 1.
Let λ := λ(ν) and

c = Cd,αωd

α(−λ)2
= sin(πα/2)Γ ((d + α)/2)Γ (α/2)

(−λ)221−απΓ (d/2)
. (11)

The next lemma determines the asymptotic behavior of the ground state h integrated
outside the ball.
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Lemma 9 Suppose that λ < 0.

(i) For any x ∈ R
d ,

h(x) =
∫

Rd

G−λ(x, y)h(y) ν(dy).

(ii) If ν+ and ν− are compactly supported in Rd , then
∫
Rd

h(y) ν(dy) > 0 and

Rα

∫

|y|>R

h(y) dy → c

∫

Rd

h(y) ν(dy) (R → ∞). (12)

Proof Let ν+ and ν− belong toK∞(1) and λ < 0. Since [26, Lemma 3.1 (i)] and its
proof remain valid under the current setting, we have (i) in the same way as for the
proof of [26, Lemma 3.1 (iii)].

We assume in addition that ν+ and ν− are compactly supported in R
d . Then by

(10) with p = p′ = 1,
∫
|y|>R h(y) dy is convergent for any R > 0. Since (i) yields

∫

|y|>R

h(y) dy =
∫

|y|>R

⎛
⎝
∫

Rd

G−λ(y, z)h(z) ν+(dz)

⎞
⎠ dy

−
∫

|y|>R

⎛
⎝
∫

Rd

G−λ(y, z)h(z) ν−(dz)

⎞
⎠ dy,

we have by (4),

∫

|y|>R

⎛
⎝
∫

Rd

G−λ(y, z)h(z) ν±(dz)

⎞
⎠ dy ∼ Cd,α

(−λ)2

∫
|y|>R

dy

|y|d+α

∫

Rd

h(z) ν±(dz)

= c

Rα

∫

Rd

h(z) ν±(dz),

whence (12) holds. Moreover, since there exist c1 > 0 and c2 > 0 by (10) such that
c1 ≤ Rα

∫
|y|>R h(y) dy ≤ c2 for any R ≥ 1, we obtain

∫
Rd h(y) ν(dy) > 0. �

For α = 2, we proved in [26, Lemma 3.1 (iv)] the assertion corresponding to
Lemma9 (ii), but the scaling order there is exponential in contrastwith the polynomial
order in (12).

Suppose that ν+ and ν− are Kato class measures with compact support in Rd and
λ < 0. Then for any β > −λ, we have
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inf

⎧⎨
⎩Eβ(u, u) −

∫

Rd

u2 dν | u ∈ C∞
0 (Rd),

∫

Rd

u2 dx = 1

⎫⎬
⎭ = β + λ > 0

so that by [34, Lemma 3.5],

inf

⎧⎨
⎩Eβ(u, u) +

∫

Rd

u2 dν− | u ∈ C∞
0 (Rd),

∫

Rd

u2 dν+ = 1

⎫⎬
⎭ > 1.

Hence by [15, Lemma 3.5 (1), Theorems 3.6 and 5.2] with Lemma 2 (ii), there exist
positive constants c and C for any β > −λ such that

cGβ(x, y) ≤ Gν
β(x, y) ≤ CGβ(x, y). (13)

Let λ2(ν) be the second bottom of the spectrum forHν ,

λ2(ν) = inf

⎧⎨
⎩E(u, u) −

∫
Rd

u2 dν | u ∈ C∞
0 (Rd),

∫

Rd

u2 dx = 1,
∫

Rd

uh dx = 0

⎫⎬
⎭ .

If λ < 0, then Proposition 4 implies that (λ <)λ2(ν) ≤ 0. Then as in [26, Lemma
3.1 (ii)], there exists C > 0 such that

|pν
t (x, y) − e−λt h(x)h(y)| ≤ Ce−λ2t , t ≥ 1. (14)

2.3 Asymptotic Behaviors of Feynman-Kac Functionals

In this subsection, we prove the asymptotic properties of the Feynman-Kac function-
als for a symmetric stable process. Even though our approach is similar to that of [26,
Proposition 3.2], we need calculations by taking into account the polynomial decay
property of the tail distribution of the symmetric stable process in (3). Throughout
this subsection, we assume that ν+ and ν− are the Kato class measures with compact
support in Rd and that λ < 0.

Let
qt (x, y) = pν

t (x, y) − pt (x, y) − e−λt h(x)h(y) (15)

so that for R > 0,

Ex [eAν
t ; |Xt | > R] = Px (|Xt | > R) + e−λt h(x)

∫

|y|>R

h(y) dy +
∫

|y|>R

qt (x, y) dy.

(16)
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For r > 0, let B(r) = {y ∈ R
d | |y| < r} be an open ball with radius r centered at

the origin. Fix M > 0 so that the support of |ν| is included in B(M). For c > 0,
define

Ic(t, R) =
{
ect/Rα (λ2 < 0),

(t P0(|Xt | > R − M)) ∧ (ect/Rα) (λ2 = 0)

and

J (t, R) = e−λt (R − M)d

∞∫

t1/α

eλuα

g

(
R − M

u

)
du

ud+1
,

where g is the same function as in (1).

Proposition 10 For any c > 0 with c > −λ2, there exists C > 0 such that for any
x ∈ R

d , t ≥ 1 and R > 2M,

∣∣∣∣∣∣∣
∫

|y|>R

qt (x, y) dy

∣∣∣∣∣∣∣
≤ C (h(x)P0(|Xt | > R − M) + Ic(t, R) + h(x)J (t, R)) .

Proof As for [26, (3.19)], we have

∫

|y|>R

qt (x, y) dy =
1∫

0

(∫
Rd

pν
s (x, z)Pz(|Xt−s | > R) ν(dz)

)
ds

+
∫ t

1

⎛
⎝
∫

Rd

(pν
s (x, z) − e−λsh(x)h(z))Pz(|Xt−s | > R) ν(dz)

⎞
⎠ ds

− e−λt h(x)

∞∫

t−1

eλs

⎛
⎝
∫

Rd

h(z)Pz(|Xs | > R) ν(dz)

⎞
⎠ ds

= (I) + (II) − (III). (17)

For any s ∈ [0, t] and z ∈ R
d ,

Pz(|Xt−s | > R) ≤ P0(|Xt−s | > R − |z|) ≤ P0(|Xt | > R − |z|) (18)

by the spatial uniformity and scaling property of the symmetric stable process. Then
for any ε > 0, we see by (4), (10) (with p = p′ = 1) and (13) (with β = −λ + ε)
that
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1∫

0

⎛
⎝
∫

Rd

pν
s (x, z) |ν|(dz)

⎞
⎠ ds ≤ e−λ+ε

∫
Rd

⎛
⎝

1∫

0

e(λ−ε)s pν
s (x, z) ds

⎞
⎠ |ν|(dz)

≤ e−λ+ε

∫
Rd

Gν
−λ+ε(x, z) |ν|(dz) ≤ c1

∫

Rd

G−λ+ε(x, z) |ν|(dz) ≤ c2h(x).

Hence by (18),

(I) ≤ P0(|Xt | > R − M)

1∫

0

⎛
⎝
∫

Rd

pν
s (x, z) |ν|(dz)

⎞
⎠ ds

≤ c3P0(|Xt | > R − M)h(x).

Fix c > 0 with c ≥ −λ2. Then by (18) and Lemma 2 (i),

t∫

1

⎛
⎝
∫

Rd

e−λ2s Pz(|Xt−s | > R) |ν|(dz)
⎞
⎠ ds

≤ |ν|(Rd)

t∫

1

e−λ2s P0(|Xt−s | > R − M) ds

≤ |ν|(Rd)ect
∫

|y|>R−M

Gc(0, y) dy ≤ c4e
ct

∫

|y|>R−M

dy

|y|d+α
≤ c5ect

Rα
.

If λ2 = 0, then by (18) again,

t∫

1

(∫
Rd

Pz(|Xt−s | > R) |ν|(dz)
)

ds ≤ c6t P0(|Xt | > R − M).

Hence by (14),

|(II)| ≤
t∫

1

⎛
⎝
∫

Rd

|pν
s (x, z) − e−λsh(x)h(z)|Pz(|Xt−s | > R) |ν|(dz)

⎞
⎠ ds

≤ c7

t∫

1

(∫
Rd

e−λ2s Pz(|Xt−s | > R) |ν|(dz)
)

ds ≤ c8 Ic(t, R).

Since (1) yields
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P0(|Xs | > R) = ωd

∞∫

R/s1/α

g(r)rd−1 dr = ωd R
d

s1/α∫

0

g

(
R

u

)
du

ud+1
, (19)

we have by (19) and integration by parts formula,

∞∫

t

eλs P0(|Xs | > R) ds = eλt

−λ
P0(|Xt | > R) + ωd

−λ
Rd

∞∫

t1/α

eλuα

g

(
R

u

)
du

ud+1
.

We also see by (18) that

∞∫
t−1

eλs P0(|Xs | > R − M) ds =
∞∫
t
eλ(s−1)P0(|Xs−1| > R − M) ds

≤ e−λ
∞∫
t
eλs P0(|Xs | > R − M) ds.

Therefore,

|(III)| ≤ e−λt h(x)

∞∫

t−1

eλs P0(|Xs | > R − M) ds

⎛
⎝
∫

Rd

h(z) |ν|(dz)
⎞
⎠

≤ c9e
−λt h(x)

∞∫

t

eλs P0(|Xs | > R − M) ds

≤ c10h(x) (P0(|Xt | > R − M) + J (t, R)) ,

which completes the proof. �

Remark 11 Let us take R = 0 in (17). Then by (14) and (15), there exists c > 0
such that for any f ∈ Bb(R

d) and t ≥ 1,

sup
x∈Rd

∣∣∣∣∣∣e
λt Ex

[
eA

ν
t f (Xt )

]− h(x)
∫

Rd

f (y)h(y) dy

∣∣∣∣∣∣ ≤ c‖ f ‖∞eλt
(
t ∨ e−λ2(ν)t

)
.

The right hand side above goes to 0 as t → ∞ because λ < λ2(ν) ≤ 0. This result
extends the assertion in [26, Remark 3.4] for the Brownian motion to the symmetric
stable process, and provides a convergence rate bound in [35, (1.3)].

Let R(t) be a positive measurable function on (0,∞) such that R(t) → ∞ as
t → ∞. Then by Lemma 9 (ii),
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η(t) := e−λt
∫

|y|>R(t)

h(y) dy ∼ c∗
e−λt

R(t)α
(20)

with

c∗ = c

∫

Rd

h(y) ν(dy). (21)

The next lemma reveals the exact asymptotic behavior of the Feynman-Kac semi-
group conditioned that the particle at time t sits outside the ball with radius R(t).

Lemma 12 Let K be a compact set inRd . If R(t)/t1/α → ∞ as t → ∞, then there
exist positive constants c1, c2 and T such that for any x ∈ K, t ≥ T and s ∈ [0, t − 1],

Ex
[
eA

ν
t−s ; |Xt−s | > R(t)

] = eλsh(x)η(t)(1 + θs,x (t))

with
|θs,x (t)| ≤ c1e

−c2(t−s).

Here c1 and c2 can be independent of the choice of the function R(t). In particular,

lim
t→∞ sup

x∈K

∣∣∣∣ 1

h(x)η(t)
Ex
[
eA

ν
t ; |Xt | > R(t)

]− 1

∣∣∣∣ = 0.

Proof Take M > 0 so that B(M) includes both K and the support of |ν|. Then for
any s ∈ [0, t − 1],

(R(t) − M)/(t − s)1/α ≥ (R(t) − M)/t1/α

and the right hand above goes to ∞ as t → ∞. Hence by (1) and (3), there exist
c1 > 0, c2 > 0 and T1 > 1 such that for any x ∈ K and t ≥ T1 and s ∈ [0, t − 1],

Px (|Xt−s | > R(t)) ≤ P0(|Xt−s | > R(t) − M) = ωd

∞∫
R(t)−M
(t−s)1/α

g(u)ud−1 du

≤ c1

∞∫
R(t)−M
(t−s)1/α

du

uα+1
≤ c2

t − s

R(t)α
= c2e

λ(t−s)(t − s)
e−λ(t−s)

R(t)α
. (22)

For any c > 0,

Ic(t − s, R(t)) ≤ ec(t−s)

R(t)α
= e(c+λ)(t−s) e

−λ(t−s)

R(t)α
. (23)
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By (3), there exists T2 > 1 such that for all t ≥ T2,

R(t)∫

t1/α

eλuα

g

(
R(t) − M

u

)
du

ud+1
≤ c3

R(t)d+α

∞∫

t1/α

eλuα

uα−1 du ≤ c4eλt

R(t)d+α

and

∞∫

R(t)

eλuα

g

(
R(t) − M

u

)
du

ud+1
≤ c5

∞∫

R(t)

eλuα du

ud+1
≤ c6eλR(t)α

R(t)d+α
≤ c7eλt

R(t)d+α
.

Hence

J (t, R(t)) = e−λt (R(t) − M)d

∞∫

t1/α

eλuα

g

(
R(t) − M

u

)
du

ud+1

≤ c8
R(t)α

= c8e
λ(t−s) e

−λ(t−s)

R(t)α
. (24)

Note that all the constants ci can be independent of the choice of the function R(t).
Fix c ∈ (−λ2(ν),−λ). Then by combining (16) and Proposition 10 with (22)–

(24), there exist positive constants c9, c10 and c11, and T ≥ 1 such that for any x ∈ K ,
t ≥ T and s ∈ [0, t − 1],
∣∣Ex

[
eA

ν
t−s ; |Xt−s | > R(t)

]− eλsη(t)h(x)
∣∣

≤ Px (|Xt−s | > R(t)) +

∣∣∣∣∣∣∣
∫

|y|>R(t)

qt−s(x, y) dy

∣∣∣∣∣∣∣
≤ c9e−λ(t−s)

R(t)α
(
eλ(t−s)(t − s) + e(c+λ)(t−s) + eλ(t−s)

) ≤ c10e
λse−c11(t−s) e−λt

R(t)α
.

Then by (20), the proof is complete. �
Recall that by [28, Lemma 3.4], we have for any μ ∈ K∞(1),

sup
x∈Rd

Ex

⎡
⎣

∞∫

0

e2λs+Aν
s dAμ

s

⎤
⎦ < ∞. (25)

The next two lemmas will be used later for the second moment estimates of the
expected population for a branching symmetric stable process.

Lemma 13 Let K be a compact set inRd andμ a Kato class measure with compact
support inRd . If R(t)/t1/α → ∞ as t → ∞, then there exist C > 0 and T > 0 such
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that for any t ≥ T ,

sup
x∈K

Ex

⎡
⎣

t∫

0

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > R(t)

]2
dAμ

s

⎤
⎦ ≤ Cη(t)2.

Proof Fix x ∈ K . For t ≥ 1,

Ex

⎡
⎣

t∫

0

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > R(t)

]2
dAμ

s

⎤
⎦

= Ex

⎡
⎣

t−1∫

0

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > R(t)

]2
dAμ

s

⎤
⎦

+ Ex

⎡
⎣

t∫

t−1

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > R(t)

]2
dAμ

s

⎤
⎦ = (IV) + (V). (26)

If 0 ≤ s ≤ t − 1, then Lemma 12 yields for any z ∈ supp[μ]

Ez
[
eA

ν
t−s ; |Xt−s | > R(t)

] ≤ c1e
λsη(t)

so that by (25),

(IV) ≤ c2η(t)2 sup
x∈Rd

Ex

⎡
⎣

∞∫

0

e2λs+Aν
s dAμ

s

⎤
⎦ ≤ c3η(t)2. (27)

By [1, Theorem 6.1 (i)] and (18), there exists c4 > 0 such that for any M > 0,
R > M , t ∈ [0, 1] and x ∈ R

d with |x | ≤ M ,

Ex
[
eA

ν
t ; |Xt | > R

] ≤ c4P0(|Xt | > R − M) ≤ c4P0(|X1| > R − M).

Hence (3) implies that for any z ∈ supp[μ], all sufficiently large t ≥ 1 and any
s ∈ [t − 1, t],

Ez
[
eA

ν
t−s ; |Xt−s | > R(t)

] ≤ c5P0(|X1| > R(t) − M) ≤ c6
R(t)α

. (28)
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Since (25) yields

Ex

⎡
⎣

t∫

t−1

eA
ν
s dAμ

s

⎤
⎦ ≤ e−2λt sup

x∈Rd

Ex

⎡
⎣

∞∫

0

e2λs+Aν
s dAμ

s

⎤
⎦ ≤ c7e

−2λt ,

we have by (20),

(V) ≤ c8
R(t)2α

Ex

⎡
⎣

t∫

t−1

eA
ν
s dAμ

s

⎤
⎦ ≤ c9e−2λt

R(t)2α
≤ c10η(t)2.

Combining this with (26) and (27), we complete the proof. �

For κ > 0, let Rκ(t) = (e−λtκ)1/α . Letting R(t) = Rκ(t) in (20), we get

η(t) → c∗κ−1 (t → ∞). (29)

Lemma 14 Let K ⊂ R
d be a compact set.

(i) For any κ > 0,

lim
t→∞ sup

x∈K

∣∣∣∣ κ

h(x)
Ex
[
eA

ν
t ; |Xt | > Rκ(t)

]− c∗
∣∣∣∣ = 0.

(ii) Let μ be a Kato class measure with compact support in R
d . Then

lim
κ→∞ lim sup

t→∞
sup
x∈K

κEx

⎡
⎣

t∫

0

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > Rκ(t)

]2
dAμ

s

⎤
⎦ = 0.

Proof (i) follows by Lemma 12 and (29). We now show (ii). By Lemma 12 and (28),
there exist c1 > 0 and T = T (κ) > 1 for any κ > 0 such that, for any z ∈ supp[μ],
t ≥ T and s ∈ [0, t],

Ez
[
eA

ν
t−s ; |Xt−s | > Rκ(t)

] ≤ c1e
λsη(t).

Hence by (25), there exists c2 > 0 such that for all t ≥ T ,

sup
x∈K

κEx

⎡
⎣

t∫

0

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > Rκ(t)

]2
dAμ

s

⎤
⎦ ≤ c2

κ
(κη(t))2.
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Then by (29),

lim sup
t→∞

sup
x∈K

κEx

⎡
⎣

t∫

0

eA
ν
s EXs

[
eA

ν
t−s ; |Xt−s | > Rκ(t)

]2
dAμ

s

⎤
⎦ ≤ c2c2∗

κ
.

The right hand side above goes to 0 as κ → ∞. �

3 Maximal Displacement of Branching Symmetric Stable
Processes

In this section, we first introduce a model of branching symmetric stable processes.
We then present our main results with examples.

3.1 Branching Symmetric Stable Processes

For α ∈ (0, 2), letM = (Ω,F , {Xt }t≥0, {Px }x∈Rd , {Ft }t≥0) be a symmetric α-stable
process on R

d , where {Ft }t≥0 is the minimal augmented admissible filtration.
Let us formulate the model of a branching symmetric α-stable process on

R
d by following [28] and references therein. We first define the set X as fol-

lows: let (Rd)(0) = {Δ} and (Rd)(1) = R
d . Let n ≥ 2. For x = (x1, . . . , xn) and

y = (y1, . . . , yn) in (Rd)n , we write x ∼ y if there exists a permutation σ of
{1, 2, . . . , n} such that yi = xσ(i) for any i = 1, . . . , n. Using this equivalence rela-
tion, we define (Rd)(n) = (Rd)n/ ∼ for n ≥ 2 and X = ∪∞

n=0(R
d)(n).

Let p = {pn(x)}∞n=0 be a probability function on R
d , 0 ≤ pn(x) ≤ 1 and

∑∞
n=0

pn(x) = 1 for any x ∈ R
d . We assume that p0(x) + p1(x) 
≡ 1 to avoid the triviality.

Fixμ ∈ K andp.We next introduce a particle system as follows: a particle starts from
x ∈ R

d at time t = 0 and moves by following the distribution Px until the random
time U . Here the distribution of U is given by

Px (U > t | F∞) = e−Aμ
t (t > 0).

At time U , this particle dies leaving no offspring with probability p0(XU−), or
splits into n particles with probability pn(XU−) for n ≥ 1. For the latter case, these n
particles thenmove by following the distribution PXU− and repeat the same procedure
independently. If there exist n particles alive at time t , then the positions of these
particles determine a point in (Rd)(n). Let Xt denote such a point,

Xt = (X(1)
t , . . . ,X(n)

t ) ∈ (Rd)(n).



482 Y. Shiozawa

In this way, we can define the model of a branching symmetric α-stable process
M = ({Xt }t≥0, {Px}x∈X) onX (or simply onRd ) with branching rateμ and branching
mechanism p. Note that for x ∈ R

d , Px denotes the law of the process such that the
initial state is a single particle at x .

Let S be the first splitting time of M given by

Px (S > t | σ(X)) = Px (U > t | F∞) = e−Aμ
t (t > 0).

Let Zt be the population at time t and e0 := inf{t > 0 | Zt = 0} the extinction time
of M. Note that Zt = 0 for all t ≥ e0. For f ∈ Bb(R

d), we define

Zt ( f ) =

⎧⎪⎨
⎪⎩

Zt∑
k=1

f (X(k)
t ) (t < e0),

0 (t ≥ e0).

For A ∈ B(Rd), let Zt (A) := Zt (1A) denote the population on A at time t .
Let Q(x) =∑∞

n=0 npn(x) and νQ(dx) = Q(x)μ(dx). Let R(x) =∑∞
n=1 n(n −

1)pn(x) and νR(dx) = R(x)μ(dx). We here recall the next lemma on the first and
second moments of Zt ( f ):

Lemma 15 ([26, Lemma 2.2] and [28, Lemma 3.3]) Let μ ∈ K and f ∈ Bb(R
d).

(i) If νQ ∈ K, then

Ex [Zt ( f )] = Ex

[
eA

(Q−1)μ
t f (Xt )

]
.

(ii) If νR ∈ K, then

Ex
[
Zt ( f )2

] = Ex

[
eA

(Q−1)μ
t f (Xt )

2
]

+Ex

[
t∫
0
eA

(Q−1)μ
s EXs

[
eA

(Q−1)μ
t−s f (Xt−s)

]2
dAνR

s

]
.

3.2 Weak Convergence and Tail Asymptotics

Let M = ({Xt }t≥0, {Px}x∈X) be a branching symmetric α-stable process on R
d with

branching rate μ ∈ K and branching mechanism p. We impose the next assumption
on μ and p:

Assumption 16 (i) The support of μ is compact in Rd .
(ii) νR ∈ K.
(iii) λ((Q − 1)μ) < 0.
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Let λ = λ((Q − 1)μ). Under Assumption 16, λ is the principal eigenvalue of the
operator H(Q−1)μ on L2(Rd) as mentioned in Sect. 2.2. Let h denote the bounded
and strictly positive continuous version of the corresponding ground state with L2-
normalization. We define Mt = eλt Zt (h). Then by [28, Lemma 3.4], {Mt }t≥0 is
a nonnegative square integrable Px -martingale so that Ex [Mt ] = h(x) and M∞ =
limt→∞ Mt exists Px -a.s. with Px (M∞ > 0) > 0.

Let Lt denote the maximal Euclidean norm of particles alive at time t :

Lt =
{
max1≤k≤Zt |X(k)

t | (t < e0),

0 (t ≥ e0).

Since each particle follows the law of the symmetric stable process and Px (Zt <

∞) = 1 for any t > 0, Lt is well-defined and Px (Lt < ∞) = 1 for any t ≥ 0.
In what follows, let c∗ denote the positive constant given by (21) with ν = (Q −

1)μ. For κ > 0, let Rκ(t) = (e−λtκ)1/α . We then have

Theorem 17 For any κ > 0,

lim
t→∞Px (Lt > Rκ(t)) = Ex

[
1 − exp

(−κ−1c∗M∞
)]

.

Theorem 17 extends [26, Theorem 2.4] for the branching Brownian motion to
that for the branching symmetric stable process. Theorem 17 implies that Lt grows
exponentially fast in contrast with the linear growth for the branching Brownian
motion.

Since

Px (Lt > Rκ(t), e0 < ∞) ≤ Px (t < e0 < ∞) → 0 (t → ∞)

and {e0 < ∞} ⊂ {M∞ = 0}, we obtain

lim
t→∞Px (Lt > Rκ(t) | e0 = ∞) = Ex

[
1 − exp

(−κ−1c∗M∞
) | e0 = ∞] .

If we let Yt = eλt/αLt , then the equality above reads

lim
t→∞Px (Yt ≤ κ | e0 = ∞) = Ex

[
exp
(−κ−αc∗M∞

) | e0 = ∞] . (30)

Moreover, if d = 1 and 1 < α < 2, then [28, Remark 3.14] yields {e0 = ∞} =
{M∞ > 0}, Px -a.s. so that

lim
t→∞Px (Yt ≤ κ | M∞ > 0) = Ex

[
exp
(−κ−αc∗M∞

) | M∞ > 0
]
. (31)

Hence the distribution of Yt under Px (· | M∞ > 0) is weakly convergent to the aver-
age over the Fréchet distributions with parameter α scaled by c∗M∞ (see, e.g., [8,
Theorem 1.12] and references therein for the terminologies about external distribu-
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tions).On the other hand, ifd > α, thenM is transient so thatPx({e0 = ∞} ∩ {M∞ =
0}) > 0. In particular, we do not know the validity of (31).

For R > 0, let Z R
t = Zt (B(R)

c
). The next theorem determines the long time

asymptotic behavior of the tail distribution of Lt :

Theorem 18 Let a be a positivemeasurable function on (0,∞) such that a(t) → ∞
as t → ∞, and let R(t) = (e−λt a(t))1/α .

(i) The next equality holds locally uniformly in x ∈ R
d .

lim
t→∞

Px (Lt > R(t))

Ex

[
Z R(t)
t

] = 1.

(ii) For each k ∈ N, the next equality holds locally uniformly in x ∈ R
d .

lim
t→∞Px (Z

R(t)
t = k | Lt > R(t)) =

{
1 (k = 1),

0 (k ≥ 2).

The statement of this theorem is similar to those of [26, Theorem2.5 andCorollary
2.6]; however, the tail distribution of the maximal displacement for the branching
symmetric stable process is completely different from that for the branching Brow-
nian motion (see [26, (2.16), (2,17)]). In fact, combining Theorem 18 with Lemmas
12 and 15, and (20), we have as t → ∞,

Px (Lt > R(t)) ∼ Ex

[
Z R(t)
t

]
∼ c∗h(x)

a(t)
. (32)

Weomit the proof of Theorem18 because it is identicalwith those of [26, Theorem
2.5 and Corollary 2.6], respectively.

3.3 Examples

In this subsection, we present three examples to which the results in the previous
subsection are applicable.

Example 19 Let d = 1 and α ∈ (1, 2). Then δ0, the Dirac measure at the origin,
belongs to the Kato class. Let M be a branching symmetric α-stable process on R

with branching rateμ = cδ0 (c > 0) and branching mechanism p = {pn(x)}∞n=0. We
assume that p0(0) + p2(0) = 1 for simplicity. Then Px (e0 = ∞) > 0 if and only if
p2(0) > 1/2 ([28, Example 4.4]). In particular, if m = 2p2(0) > 1, then

λ := λ((Q − 1)μ) = −
{
c(m − 1)21/α

α sin(π/α)

}α/(α−1)
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and

c∗ = C1,αω1

α(−λ)2
× c(m − 1)

∫

R

h(y) δ0(dy) = 2c(m − 1)C1,α

α(−λ)2
h(0).

With these λ and c∗, (31) and (32) hold.

Example 20 Let 1 < α < 2 and d > α. For r > 0, let δr be the surface measure on
∂B(r) = {y ∈ R

d | |y| = r}. Let M be a branching symmetric α-stable process on
R

d with branching rate μ = cδr (c > 0) and branching mechanism p = {pn(x)}∞n=0.
We assume that p0 ≡ p0(x), p2 ≡ p2(x) and p0 + p2 = 1. Then Px (e0 = ∞) > 0
holds irrelevantly of the value of p2 because M is transient. If we let m = 2p2 and
λ := λ((Q − 1)μ), then λ < 0 if and only if p2 > 1/2 and

r >

{ √
πΓ ((d + α − 2)/2)Γ (α/2)

c(m − 1)Γ ((d − α)/2)Γ ((α − 1)/2)

}1/(α−1)

(see [28, Example 4.7] and references therein). Under this condition, (30) and (32)
hold.

Assume that 1 < α < 2 and d > α. Let r > 0 and μr (dx) = 1B(r)(x) dx . To
present the last example, we estimate

λ̌β = inf

⎧⎪⎨
⎪⎩E(u, u) | u ∈ F , β

∫

B(r)

u2 dx = 1

⎫⎪⎬
⎪⎭ (β > 0),

which is the bottom of the spectrum for the time changed Dirichlet form of (E,F)

with respect to the measure βμr (see, e.g., [31, Section3] for details).
Let λ̌ = λ̌1, and let v(x) = ∫B(r) G(x, y) dy be the 0-potential of the measure μr .

Then

λ̌ ≤ 1

‖v‖2L2(B(r))

E(v, v) = 1

‖v‖2L2(B(r))

∫

B(r)

v dx ≤ 1

inf y∈B(r) v(y)
. (33)

Let

Id,α = α

1∫

0

ud−1(1 + u)α−d du, κd,α = αΓ (d/2)Γ (α/2)

22−αΓ ((d − α)/2)
.

Recall that ωd = 2πd/2Γ (d/2)−1 is the surface area of the unit ball in Rd . Then for
any y ∈ B(r), |y − z| ≤ |y| + |z| ≤ r + |z| and thus

∫

B(r)

dz

|y − z|d−α
≥
∫

B(r)

dz

(r + |z|)d−α
= ωd

r∫

0

sd−1

(r + s)d−α
ds = ωd Id,α

α
rα.
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Since this inequality and (6) yield

inf
y∈B(r)

v(y) ≥ Id,αrα

κd,α

,

we get by (33),

λ̌ ≤ κd,α

Id,αrα
.

We also know by [31, Example 3.10] that

λ̌ ≥ κd,α

rα
.

Noting that λ̌β = λ̌/β, we further obtain

κd,α

βrα
≤ λ̌β ≤ κd,α

β Id,αrα
. (34)

We here note that the lower bound of λ̌ in [31, Example 3.10] is incorrect because
of the computation error.

Let λβ = λ(βμr ). Then by [36, Lemma 2.2], λβ < 0 if and only if λ̌β < 1. Hence
by (34), we obtain

r >

(
κd,α

β Id,α

)1/α

⇒ λβ < 0, r ≤
(

κd,α

β

)1/α

⇒ λβ ≥ 0. (35)

We do not know if λβ is negative or not for (κd,α/β)1/α < r ≤ {κd,α/(β Id,α)
}1/α

.

Example 21 Let 1 < α < 2 and d > α. For r > 0, letμr (dx) = 1B(r)(x) dx . LetM
be a branching symmetric α-stable process onRd with branching rate μ = cμr (c >

0) and branching mechanism p = {pn(x)}∞n=0. We assume that p0 ≡ p0(x), p2 ≡
p2(x) and p0 + p2 = 1. Then Px (e0 = ∞) > 0 holds irrelevantly of the value of p2.

Let m = 2p2 and λ := λ((Q − 1)μ). Assume that p2 > 1/2. Then by (35), we
have the following: if r >

{
κd,α/(c(m − 1)Id,α)

}1/α
, then λ < 0 so that (30) and

(32) hold. On the other hand, if r ≤ {κd,α/(c(m − 1))}1/α , then we have λ = 0 so
that Assumption 16 fails.

4 Proof of Theorem 17

Once we obtain the asymptotic behaviors of the Feynman-Kac functionals as in Sect.
2.3, we can establish Theorem 17 along the way as for the proof of [26, Theorem
2.4].
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Let M = ({Xt }t≥0, {Px}x∈X) be a branching symmetric α-stable process on R
d

with branching rateμ and branching mechanism p so that Assumption 16 is fulfilled.
Let ν = (Q − 1)μ and λ = λ((Q − 1)μ), and let c∗ be the corresponding value in
(21). Recall that for κ > 0, Rκ(t) = (e−λtκ)1/α .

Lemma 22 Let K be a compact set in Rd . Then

lim
κ→∞ lim sup

t→∞
sup
x∈K

∣∣∣∣ κ

h(x)
Px (Lt > Rκ(t)) − c∗

∣∣∣∣ = 0

and for any c > 0,

lim
γ→+0

lim sup
t→∞

sup
x∈K

∣∣∣∣ 1

γ h(x)
Ex
[
1 − e−γ cMt

]− c

∣∣∣∣ = 0.

We omit the proof of Lemma 22; by using Lemma 14, we can show Lemma 22
in the same way as for [26, Lemma 4.1].

Let L be the totality of compact sets in Rd .

Lemma 23 The following equalities hold:

lim
κ→∞ sup

L∈L
lim sup
t→∞

sup
x∈L

∣∣∣∣ κ

h(x)
Px (Lt > Rκ(t)) − c∗

∣∣∣∣ = 0 (36)

and for any c > 0,

lim
γ→+0

sup
L∈L

lim sup
t→∞

sup
x∈L

∣∣∣∣ 1

γ h(x)
Ex
[
1 − e−γ cMt

]− c

∣∣∣∣ = 0.

Proof We can prove the assertion in the same way as for [26, Proposition 4.2]. We
here prove (36) only. By the Chebyshev inequality and Lemma 15,

Px (Lt > Rκ(t)) = Px

(
Z Rκ (t)
t ≥ 1

)

≤ Ex

[
Z Rκ (t)
t

]
= Ex

[
eA

(Q−1)μ
t ; |Xt | > Rκ(t)

]
.

Hence by Lemma 14,

lim sup
κ→∞

sup
L∈L

lim sup
t→∞

sup
x∈L

κ

h(x)
Px (Lt > Rκ(t)) ≤ c∗.

Then for the proof of (36), it suffices to show that

lim inf
κ→∞ inf

L∈L
lim inf
t→∞ inf

x∈L
κ

h(x)
Px (Lt > Rκ(t)) ≥ c∗. (37)
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In what follows, we give a proof of (37). Lemma 22 says that for any ε > 0
and K ∈ L, there exists κ0 = κ0(ε, K ) > 0 such that for any κ ≥ κ0, there exists
T0 = T0(ε, K , κ) > 0 such that for any t ≥ T0 and x ∈ K ,

|κPx (Lt > Rκ(t)) − c∗h(x)| < εh(x).

Let t > 0 and 0 ≤ s < t . Then

Rκ(t) = (e−λ(t−s))1/α(κe−λs)1/α = Rκe−λs
(t − s)

and κe−λs ≥ κ ≥ κ0. Hence for any T > 0, t ≥ T + T0 and s ∈ [0, T ],

|κPx(Lt−s > Rκ(t)) − c∗h(x)| < εh(x), x ∈ K . (38)

Fix K ∈ Lwhich includes the support of μ. Let σ be the first hitting time to K of
some particle. Then σ is relevant to the initial particle only because particles can not
branch outside K . We use the same notation σ to denote the first hitting time to K of
a symmetric α-stable processM = ({Xt }t≥0, {Px }x∈Rd ). Since Xσ ∈ K , there exists
κ1 = κ1(ε) > 0 for any ε > 0 such that for any κ ≥ κ1, there exists T1 = T1(ε, κ) > 0
such that for any T > 0 and t ≥ T + T1, we have by the strongMarkov property and
(38),

κPx (Lt > Rκ(t)) ≥ Ex
[
κPXσ

(Lt−s > Rκ(t))|s=σ ; σ ≤ T
]

≥ (c∗ − ε)Ex [h(Xσ ); σ ≤ T ] , x ∈ R
d .

(39)

Since eλt+A(Q−1)μ
t h(Xt ) is a Px -martingale and Px (A

(Q−1)μ
t∧σ = 0) = 1 for any t ≥ 0,

the optional stopping theorem yields

Ex
[
eλ(T∧σ)h(XT∧σ )

] = Ex

[
eλ(T∧σ)+A(Q−1)μ

T∧σ h(XT∧σ )
]

= h(x)

and thus

Ex [h(Xσ ); σ ≤ T ] ≥ Ex
[
eλσh(Xσ ); σ ≤ T

]
= Ex

[
eλ(T∧σ)h(XT∧σ )

]− Ex
[
eλT h(XT ); T < σ

]
≥ h(x) − eλT ‖h‖∞.

Then by (39), we have for any t ≥ T + T1,

κPx (Lt > Rκ(t)) ≥ (c∗ − ε)(h(x) − eλT ‖h‖∞), x ∈ R
d .

In particular, for any L ∈ L and t ≥ T + T1,

inf
x∈L

κ

h(x)
Px (Lt > Rκ(t)) ≥ (c∗ − ε)

(
1 − eλT ‖h‖∞

inf x∈L h(x)

)
.
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Letting t → ∞ and then T → ∞, we have

lim inf
t→∞ inf

x∈L
κ

h(x)
Px (Lt > Rκ(t)) ≥ c∗ − ε.

Furthermore, since the right hand side above is independent of the choice of L ∈ L,
we obtain (37) by letting κ → ∞ and then ε → 0. �
Proof of Theorem 17.We follow the argument of [26, Proof of Theorem 2.4]. In what
follows, wewrite R(t) = Rκ(t) for simplicity. SincePx (Lt < ∞) = 1 for any t ≥ 0,
there exists r1 = r1(ε, T1) for any ε > 0 and T1 > 0 such that Px (LT1 > r1) ≤ ε.
Hence for any t ≥ T1,

Px (Lt ≤ R(t)) ≤ Px (Lt ≤ R(t), LT1 ≤ r1) + ε,

which yields

Px (Lt > R(t)) − Ex
[
1 − exp

(−κ−1c∗Mt
)]

≥ Ex
[
exp
(−κ−1c∗Mt

)− 1{Lt≤R(t)}; LT1 ≤ r1
]− ε.

(40)

Recall that e0 = inf{t > 0 | Zt = 0} is the extinction time of M. Then for any
t ≥ e0, Mt = 0 and Lt = 0 by definition. Therefore, by the Markov property,

Ex
[
exp
(−κ−1c∗Mt

)− 1{Lt≤R(t)}; LT1 ≤ r1
]

= Ex

[{
EXT1

[
exp
(−κ−1c∗eλT1Mt−T1

)]− PXT1
(Lt−T1 ≤ R(t))

} ;
T1 < e0, LT1 ≤ r1

]
= (VI).

By Lemma 23, there exists κ0 = κ0(δ) > 0 for any δ ∈ (0, c∗) such that if T > 0
satisfies κe−λT ≥ κ0, then

sup
L∈L

lim sup
t→∞

sup
x∈L

∣∣∣∣κe
−λT

h(x)
Px (Lt−T > R(t)) − c∗

∣∣∣∣ < δ.

Let T1 = T1(κ0) satisfy κe−λT1 ≥ κ0. Then there exists T2 = T2(ε, δ, T1) > 0 such
that for any y ∈ B(r1) and t ≥ T1 + T2,

κ−1(c∗ − δ)eλT1h(y) ≤ Py(Lt−T1 > R(t)) ≤ κ−1(c∗ + δ)eλT1h(y). (41)

Note that 1 − x ≤ e−x for any x ∈ R and there exists r0(δ) > 0 for any δ > 0
such that 1 − x ≥ e−(1+δ)x for any x ∈ [0, r0(δ)]. Hence if we take T1 so large that
κ−1(c∗ + δ)eλT1‖h‖∞ ≤ r0(δ), then by (41),

exp
(−(1 + δ)κ−1(c∗ + δ)eλT1h(y)

) ≤ Py(Lt−T1 ≤ R(t))
≤ exp

(−κ−1(c∗ − δ)eλT1h(y)
)
.
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By Lemma 23, we also obtain

exp
(−(1 + δ)κ−1(c∗ + δ)eλT1h(y)

) ≤ Ey
[
exp
(−κ−1c∗eλT1Mt−T1

)]
≤ exp

(−κ−1(c∗ − δ)eλT1h(y)
)

so that for any t ≥ T1 + T2,

(VI) ≥ Ex
[
exp
(−(1 + δ)κ−1(c∗ + δ)MT1

)]− Ex
[
exp
(−κ−1(c∗ − δ)MT1

)]
.

Since the right hand side goes to 0 as t → ∞, T1 → ∞ and δ → +0, we have by
(40),

lim inf
t→∞

(
Px (Lt > R(t)) − Ex

[
1 − exp

(−κ−1c∗Mt
)]) ≥ 0.

In the same way, we also have

lim sup
t→∞

(
Px (Lt > R(t)) − Ex

[
1 − exp

(−κ−1c∗Mt
)]) ≤ 0

so that the proof is complete. �
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Random Riemannian Geometry
in 4 Dimensions

Karl-Theodor Sturm

Abstract We construct and analyze conformally invariant random fields on 4-
dimensional Riemannian manifolds (M, g). These centered Gaussian fields h, called
co-biharmonic Gaussian fields, are characterized by their covariance kernels k
defined as the integral kernel for the inverse of the Paneitz operator

p = 1

8π2

[
Δ2 + div

(
2Ric − 2

3
scal

)
∇

]
.

The kernel k is invariant (modulo additive corrections) under conformal transforma-
tions, and it exhibits a precise logarithmic divergence

∣∣∣k(x, y) − log
1

d(x, y)

∣∣∣ ≤ C.

In terms of the co-biharmonic Gaussian field h, we define the quantum Liouville
measure, a random measure on M , heuristically given as

dμ(x) := eγ h(x)− γ 2

2 k(x,x) dvolg(x) ,

and rigorously obtained a.s. for |γ | <
√
8 as weak limit of the RHS with h replaced

by suitable regular approximations (h�)�∈N. For the flat torus M = T
4, we provide

discrete approximations of the Gaussian field and of the Liouville measures in terms
of semi-discrete random objects, based on Gaussian random variables on the discrete
torus and piecewise constant functions in the isotropic Haar system.
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1 Random Riemannian Geometries and Conformal
Invariance

The basic ingredients of any Random Riemannian Geometry are a family M of
Riemannian manifolds (M, g) and a probability measure PM onM. Typically,M =
{(M, g′) : g′ = e2hg, h ∈ C∞(M)} for some given (M, g), and PM is the push
forward of a probability measure Pg on C∞(M) under the map h �→ (M, e2hg).

Of major interest are Random Riemannian Geometries which are conformally
invariant. In the previous setting this means that

• Pg′ = Pg if g′ = e2ϕg for some ϕ ∈ C∞(M)

• h
(d)= h′ ◦ Φ if Φ : (M, g) → (M ′, g′) is an isometry and h and h′ are distributed

according to Pg and Pg′ , resp.

In this respect, of course, the 2-dimensional case plays a particular role thanks to the
powerful Riemannian Mapping Theorem—but the concept of conformally invariant
random geometries is by no means restricted to this case.

Mostly, such probability measures Pg are Gaussian fields, informally given as

dPg(h) = 1

Zg
exp

(
− eg(h, h)

)
dh (1)

with some (non-existing) uniform distribution dh on C∞(M), a normalizing constant
Zg , and some bilinear form eg . The rigorous definition of such probability measures
Pg often requires to pass to spaces of distributions (rather than smooth functions). It
is based on the Bochner–Minlos Theorem and the unique characterization of Pg as

∫
ei〈u,h〉 dPg(h) = exp

(
− 1

2
kg(u, u)

)
∀u ∈ C∞(M) (2)

where kg(u, u)1/2 := suph
〈u,h〉

eg(h,h)1/2
denotes the norm dual to eg .

The conformal invariance requirement for the random geometry then amounts to
the requirement

eg(u, u) = ee2ϕg(u, u) ∀ϕ, ∀u. (3)

In the two-dimensional case, this is a well-known property of the Dirichlet energy,
cf. [6],

Eg(u, u) :=
∫
M

∣∣∇gu
∣∣2 dvolg.

The conformally invariant random field defined and constructed in this way is the
celebrated Gaussian Free Field [23]. It is a particular (and the most prominent) case
of a log-correlated randomfield [5] and of a fractional Gaussian field [14]. It naturally
arises as the scaling limit of various discrete models of random surfaces, for instance
discrete Gaussian Free Fields or harmonic crystals [23]. It is also deeply related to
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another planar conformally invariant random object of fundamental importance, the
Schramm–Loewner evolution [10, 11, 19]. For instance, level curves of the Discrete
Gaussian Free Field converge to SLE4 [20], and zero contour lines of the Gaussian
Free Field are well-defined random curves distributed according to SLE4 [21]. The
work [15], and subsequent works in its series, thoroughly study the relation between
the Schramm-Loewner evolution and Gaussian free field on the plane. The Liouville
Quantum Gravity is a random measure, informally obtained as the Riemannian vol-
ume measure when the metric tensor is conformally transformed with the Gaussian
Free Field as conformal weight. Since the Gaussian Free Field is only a distribution,
the rigorous construction of the random measure requires a renormalization proce-
dure due to Kahane [9]. This renormalization depends on a roughness parameter γ

and works only for |γ | < 2. In [16] and subsequent work in its series, Miller and
Sheffield prove that for the value γ = √

8/3 the Liouville Quantum Gravity coin-
cides with the Brownian map, that is a random metric measure space arising as a
universal scaling limit of random trees and random planar graphs (see [12, 13] and
the references therein). More recently, [4, 8] establish the existence of the Liouville
Quantum Gravity metric for γ ∈ (0, 2).

All these approaches to conformally invariant random objects so far, with excep-
tion of the recent contribution [1], are limited to the two-dimensional case. The
main reason is not the lack of a Riemannian Mapping Theorem but the fact that the
Dirichlet energy is no longer conformally invariant in dimension n �= 2. One rather
obtains

Ee2ϕg(u, u) =
∫
M

∣∣∇gu
∣∣2 e(n−2)ϕdvolg.

In the four-dimensional case, a more promising candidate appears to be the bi-
Laplacian energy

ẽg(u, u) :=
∫
M

(
Δgu

)2
dvolg.

This energy functional is still not conformally invariant but it is close to:

ẽe2ϕg(u, u) =
∫
M

(
Δgu + 2∇gϕ ∇gu

)2
dvolg = ẽg(u, u) + low order terms.

Our search for a conformally invariant energy functional in dimensions n = 4 finally
will lead us to considering

eg(u, u) = c
∫
M

(
Δgu

)2
dvolg + low order terms.

Paneitz [18] found the precise formula for the conformally invariant energy func-
tional in dimension 4. Subsequently, Graham et al. [7] showed the existence of a
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conformally invariant energy functional of the form

eg(u, u) = c
∫
M

( − Δgu
)n/2

dvolg + low order terms

on Riemannian manifolds of even dimension n.
Based on these results, jointly with Dello Schiavo et al. [2], we constructed and

analyzed conformally invariant random fields on Riemannian manifolds (M, g) of
arbitrary even dimensions. In the subsequent Sects. 2 and 3, we will summarize these
results in the particular case n = 4. In Sect. 4, we will present a detailed study of
approximations of the random field and the random measure on the 4-dimensional
flat torus in terms of corresponding random objects on the discrete tori T4

�, � ∈ N.

2 Paneitz Energy on 4-Dimensional Manifolds

From now, we will be more specific. (M, g) will always be a 4-dimensional smooth,
compact, connected Riemannian manifold without boundary. Integrable functions
(or distributions) u on M will be called grounded if

∫
M u dvolg = 0 (or 〈u, 1〉 = 0,

resp.). Let (ϕ j ) j∈N0 denote the complete ON-basis of L2(M, volg) consisting of
eigenfunctions of−Δg with corresponding eigenvalues (λ j ) j∈N0 . Then the grounded
Sobolev spaces H̊ s(M, g) = (−Δg)

−s/2 L̊2(M, volg) for s ∈ R are given by

H̊ s(M, g) =
{
u =

∑
j∈N

α jϕ j :
∑
j∈N

λs
j |α j |2 < ∞

}
,

whereas the usual Sobolev spaces are Hs(M, g) = (1 − Δg)
−s/2L2(M, volg) =

H̊ s(M, g) ⊕ R · 1. Extending the scalar product in L2(M, volg), the pairing between
u = ∑

j∈N0
α jϕ j ∈ Hs and v = ∑

j∈N0
β jϕ j ∈ H−s is given by

〈u, v〉 := 〈u, v〉Hs ,H−s :=
∑
j∈N0

α j β j .

The Laplacian acts on these grounded spaces by −Δg : H̊ s→H̊ s−2,
∑

j∈N α jϕ j

�→ ∑
j∈N λ jα jϕ j . The operator inverse to it is the grounded Green operator

G̊g : H̊ s → H̊ s+2,
∑
j∈N

α jϕ j �→
∑
j∈N

α j

λ j
ϕ j .

On H̊ 0 = L̊2, it is given as an integral operator G̊gu(x) = ∫
M G̊g(x, y) u(y) dvolg(y)

in terms of the grounded Green kernel G̊g(x, y) on M . The latter is symmetric in x
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and y, it is grounded (i.e.
∫
M G̊g(x, y) dvolg(y) = 0 for all x) and

∣∣∣G̊g(x, y) − 1

4π2 · dg(x, y)2
∣∣∣ ≤ C.

Definition 1 The Paneitz energy is defined as the bilinear form on L2(M, volg)with
domain H 2(M) by

eg(u, u) = 1

8π2

∫
M

[
(Δgu)2 − 2Ricg(∇gu,∇gu) + 2

3
scalg · |∇gu|2

]
dvolg. (4)

In particular, for every 4-dimensional Einstein manifold with Ricg = k g for k ∈ R

(which implies scalg = 4k),

eg(u, u) = 1

8π2

∫
M

[
(Δgu)2 + 2

3
k |∇gu|2

]
dvolg. (5)

Example 1 (a) For the 4-sphere M = S
4,

eg(u, u) = 1

8π2

∫
M

[
(Δgu)2 + 2|∇gu|2

]
dvolg. (6)

(b) For the 4-torus M = T
4,

eg(u, u) = 1

8π2

∫
M

(Δgu)2 dvolg. (7)

Theorem 1 ([18]) The Paneitz energy is conformally invariant:

eg(u, u) = ee2ϕg(u, u) ∀ϕ ∈ C∞(M), ∀u ∈ H 2(M).

Definition 2 The 4-manifold (M, g) is called admissible if eg > 0 on H̊ 2(M).

As an immediate consequence of Theorem1, we observe that admissibility is a con-
formal invariance. Large classes of 4-manifolds are admissible.

Proposition 1 ([2, Prop. 2.4, 2.5]) (a) All compact Einstein 4-manifolds with non-
negative Ricci curvature are admissible.
(b) All compact hyperbolic 4-manifolds with spectral gap λ1 > 2 are admissible.

However, not every compact four-dimensional Riemannian manifold is admissible.

Example 2 ([2, Prop. 2.7]) Let M1, M2 be compact hyperbolic Riemannian sur-
faces such that λ1(M1) ≤ 2

3 . Then the Einstein 4-manifold M = M1 × M2 is not
admissible.
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If (M, g) is admissible, then the Paneitz operator (or co-bilaplacian)

pg = 1

8π2

[
Δ2

g + div
(
2Ricg − 2

3
scalg

)
∇

]
(8)

is a self-adjoint positive operator on L2(M, volg) with domain H 4(M). Here the
curvature term 2Ricg − 2

3scalg should be viewed as an endomorphism of the tangent
bundle, acting on the gradient of a function. In coordinates:

pgu = 1

8π2

∑
i, j

∇i

[
∇ i∇ j + 2Rici jg − 2

3
scalg · gi j

]
∇ j u, ∀u ∈ C∞(M).

Let (ψ j ) j∈N0 denote a complete orthonormal basis of L2(M, volg) consisting
of eigenfunctions for pg , and let (ν j ) j∈N0 denote the corresponding sequence of
eigenvalues. Then the operator kg , inverse to pg on L̊2, is given on H−4(M) by

kg : u �→ kgu :=
∑
j∈N

1

ν j
〈u, ψ j 〉ψ j ,

and the associated bilinear form with domain H−2(M) is given by

kg(u, v) := 〈u, kgv〉L2 =
∑
j∈N

1

ν j
〈u, ψ j 〉 〈v,ψ j 〉.

The crucial properties of the kernel for the co-biharmonic Green operator kg are its
logarithmic divergence and its conformal invariance.

Theorem 2 ([2, Thm. 2.18]) If (M, g) is admissible, then kg is an integral operator
with an integral kernel kg which satisfies

∣∣∣kg(x, y) + log dg(x, y)
∣∣∣ ≤ C. (9)

Furthermore, the kernel kg(x, y) is symmetric in x, y and grounded.

Theorem 3 ([2, Prop. 2.19]) Assume that (M, g) is admissible and that g′ := e2ϕg
for some ϕ ∈ C∞(M). Then the co-biharmonic Green kernel kg′ for the metric g′ is
given by

kg′(x, y) = kg(x, y) − 1

2
φ̄(x) − 1

2
φ̄(y) (10)

with φ̄ ∈ C∞(M) defined by
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φ̄ := 2

volg′(M)

∫
kg(., z) dvolg′(z) − 1

volg′(M)2

∫∫
kg(z, w) dvolg′(z) dvolg′(w) .

Example 3 Assume that (M, g) is Ricci flat. Then

kg(x, y) = 8π2 G̊(2)
g (x, y) := 8π2

∫
M

G̊g(x, z) G̊g(z, y) dvolg(z)

where G̊g denotes the grounded Green kernel on (M, g).

3 Co-biharmonic Gaussian Field and Quantum Liouville
Measure

Throughout the sequel, assume that (M, g) is an admissible 4-manifold (compact,
smooth, without boundary—as always).

3.1 Conformally Invariant Gaussian Field

Definition 3 A co-biharmonic Gaussian field h on (M, g) is a linear family

(〈h, u〉)u∈H−2

of centered Gaussian random variables (defined on some probability space) with

E
[〈h, u〉2] = kg(u, u) ∀u ∈ H−2(M).

Theorem 4 ([2, Prop. 3.9, Rem. 3.3]) Let a probability space (Ω,F,P) be given and
an i.i.d. sequence (ξ j ) j∈N of N (0, 1) random variables. Furthermore, let (ψ j ) j∈N0

and (ν j ) j∈N0 denote the sequences of eigenfunctions and eigenvalues for pg (counted
with multiplicities). Then a co-biharmonic field is given by

h :=
∑
j∈N

ν
−1/2
j ξ j ψ j . (11)

More precisely,

(a) For each � ∈ N, a centered Gaussian random variable h� with values in C∞(M)

is given by

h� :=
�∑

j=1

ν
−1/2
j ξ j ψ j . (12)
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(b) The convergence h� → h holds in L2(P) × H−ε(M) for every ε > 0. In partic-
ular, for a.e. ω and every ε > 0,

hω ∈ H−ε(M),

(c) For every u ∈ H−2(M), the family (〈u, h�〉)�∈N is a centered L2(P)-bounded
martingale and

〈u, h�〉 → 〈u, h〉 in L2(P) as � → ∞.

Remark 1 (a) A co-biharmonic Gaussian field on (M, g) can be regarded as a ran-
dom variable with values in H̊−ε(M) for any ε > 0.

(b) Given any ‘grounded’ white noise Ξ on (M, g), then h := √
kgΞ is a co-

biharmonic Gaussian field on (M, g).

Theorem 5 ([2, Thm. 3.11]) Let h : Ω → H−ε(M) denote a co-biharmonic Gaus-
sian field for (M, g) and let g′ = e2ϕg with ϕ ∈ C∞(M). Then

h′ := h − 1

volg′(M)

〈
h, 1

〉
H−ε (M,g′),H ε (M,g′)

is a co-biharmonic Gaussian field for (M, g′).

Besides the previous eigenfunction approximation, there are numerous otherways
to approximate a given co-biharmonic Gaussian field h by ‘smooth’ Gaussian fields
h�, � ∈ N.

Proposition 2 Let ρ� for � ∈ N be a family of bounded functions on M × M such
that ρ�(x, .)volg for each x ∈ M is a family of probability measures on M which for
� → ∞ weakly converges to δx . Define centered Gaussian fields h� for � ∈ N by

h�(y) := 〈h | ρ�(., y)〉 . (13)

Then, for every u ∈ C(M), as � → ∞

〈h� | u〉 �−→ 〈h | u〉 P-a.s. and in L2(P) .

The associated covariance kernels are given by

k�(x, y) :=
∫∫

k(x ′, y′)ρ�(x
′, x)ρ�(y

′, y) dvolg(x ′) dvolg(y′)

for all � ∈ N, and k� → k as � → ∞on locally uniformly on M × M off the diagonal.

Proof Obviously, 〈h� | u〉 = 〈h | ρ� ∗ u〉 with (ρ� ∗ u)(x) = ∫
ρ�(x, y)u(y) dvolg

(y), and ρ� ∗ u → u in L2 as � → ∞. Moreover,
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E
[∣∣〈h|u〉 − 〈h�u〉∣∣2] = E

[∣∣〈h|u − ρ� ∗ u〉∣∣2]

=
∞∑
j=1

1

ν j

∣∣〈ψ j |u − ρ� ∗ u〉∣∣2 ≤ C
∥∥u − ρ� ∗ u

∥∥2
H−2 .

A particular case of such approximations through convolution kernels will be
considered now.

Proposition 3 Let (Q�)�∈N be a family of partitions of M with ∀�,∀Q ∈ Q� : ∃m ∈
N, ∃Q1, . . . , Qm ∈ Q�+1 : Q = ⋃m

i=1 Qi andwith sup{diam(Q) : Q ∈ Q�} → 0 as
� → ∞. For � ∈ N put

ρ�(x, y) :=
∑
Q∈Q�

1

volg(Q)
1Q(x)1Q(y). (14)

In otherwords, for given x ∈ M wehaveρ�(x, .) = 1
volg(Q)

1Q with the unique Q ∈ Q�

which contains x. Defining h� as before then yields

h�(x) = 1

volg(Q)

〈
h

∣∣ 1Q 〉 ∀x ∈ Q,∀Q ∈ Q�. (15)

For � ∈ N, let F� denote the σ -field in (Ω,F,Q) generated by the random functions
on M that are piecewise constant on each of the sets Q ∈ Q�. Then (h�)�∈N is a
(Ω,F, (F�)�∈N,P)-martingale and

h� = E
[
h
∣∣F�

] ∀� ∈ N. (16)

3.2 Quantum Liouville Measure

Let an admissible 4-manifold (M, g) be given as well as a co-biharmonic Gaus-
sian field h on it. Furthermore, let smooth approximations (h�)�∈N of it be given—
informally defined as h� := ρ� ∗ h and formally by (13)—in terms of a sequence
(ρ�)�∈N0 of bounded convolution densities on M . Fix γ ∈ R.

For � ∈ N define a random measure μ� = ρ� volg on M with density

ρ�(x) := exp
(
γ h�(x) − γ 2

2
k�(x, x)

)

with k�(x, y) := ∫∫
k(x ′, y′)ρ�(x ′, x)ρ�(y′, y) dvolg(x ′) dvolg(y′) as before.

Theorem 6 ([2, Thm. 4.1]) If |γ | <
√
8, then there exists a random measure μ on

M with μ� → μ. More precisely, for every u ∈ C(M),
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∫
M

u dμ� −→
∫
M

u dμ in L1(P) andP-a.s. as � → ∞.

The random measure μ is independent of the choice of the convolution densities
(ρ�)∈N.

If the (ρ�)∈N are chosen according to (14) then for each u ∈ C(M) the family
Y� := ∫

M u dvolg, � ∈ N, is a uniformly integrable martingale. If in addition |γ | < 2,
then this martingale is even L2-bounded.

The latter claim, indeed, can be seen directly:

sup
�

E
[
Y�

2
]

= sup
�

E
∫∫

eγ (h�(x)+h�(y)− γ 2

2 (E[h2�(x)+h2�(y)] u(x)u(y) dvolg(x)dvolg(y)

= sup
�

∫∫
eγ

2k�(x,y) u(x)u(y) dvolg(x) dvolg(y)

≤ ‖u‖2∞ · sup
�

∫∫ [ ∫∫
ρ�(x

′, x)ρ�(y
′, y)eγ 2k(x ′,y′) dvolg(x ′) dvolg(y′)

]

dvolg(x) dvolg(y)

= ‖u‖2∞ ·
∫∫

eγ
2k(x ′,y′) dvolg(x ′) dvolg(y′)

≤ ‖u‖2∞ ·
∫∫

1

d(x, y)γ 2 dvolg(x) dvolg(y) + C ′

by means of Jensen’s inequality and the kernel estimate (9). Obviously, the final integral is
finite if and only if γ 2 < 4.

Definition 4 The random measure μ := lim�→∞ μ� is called quantum Liouville measure.

Remark 2 ([2, Cor 4.10, Prop. 4.14]) Assume |γ | <
√
8 and let ω �→ μω denote the random

measure constructed above. Then for P-a.e. ω, the measure μω on M

• does not charge sets of vanishing H2-capacity;
• does not charge sets of vanishing H1-capacity provided |γ | < 2;
• is singular w.r.t. the volume measure on M whenever γ �= 0.

Moreover, the randommeasureμ has finite moments of any negative order, i.e. for any p > 0,

E
[
μ(M)−p] < ∞.

A key property of the quantum Liouville measure is its quasi-invariance under conformal
transformations.

Theorem 7 ([2, Thm. 4.4]) Let μ be the quantum Liouville measure for (M, g), and μ′ be
the quantum Liouville measure for (M, g′) where g′ = e2ϕg for some ϕ ∈ C∞(M). Then

μ′ (d)= e−γ ξ+ γ 2

2 ϕ̄+4ϕ μ (17)

where ξ := 1
v′ 〈h, e4ϕ〉 and ϕ̄ := 2

v′ kg(e4ϕ) − 1
v′2 kg(e

4ϕ, e4ϕ) with v′ := volg′ (M).
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4 Approximation by Random Fields and Liouville
Measures on the Discrete 4-Torus

For the remaining part, we now focus on the 4-dimensional torus T4 := R
4/Z4, equipped

with the flat metric. With this choice of (M, g), we will drop the g from the notations: k =
kg,G = Gg etc.

For the 4-torus, we will study approximations of the co-biharmonic field—now briefly
called biharmonic field (since the underlying Paneitz operator or co-bilaplacian is now simply
the bilaplacian)—and of the quantum Liouville measure by (semi-) discrete versions of such
fields and measures, defined on the discrete tori T4

�
as � → ∞.

4.1 The Isotropic Haar System

To begin with, for � ∈ N0 define the parameter sets

A� := {
0, 1, . . . , 2� − 1

}4
, B� := {0, 1}4 \ {(0, 0, 0, 0)}, I� := A� × B�

and the discrete 4-torus
T
4
� := 2−� · A� = (2−�

Z
4)/Z4.

Moreover, let Q� := {
Q�,α : α ∈ A�

}
denote the set of all dyadic cubes

Q�,α := 2−� ·
(
[α1, α1 + 1) × [α2, α2 + 1) × [α3, α3 + 1) × [α4, α4 + 1)

)
⊂ T

4

of edge length 2−�, and let S� denote the set of all grounded functions u : T4 → R which are
constant on each of the cubes Q ∈ Q�. With each Q�,α ∈ T

4
�
we associate a set {η�,α,β : β ∈

B�} ⊂ S�+1 of 15 multivariate Haar functions with support Q�,α given by all possible tensor
products

η�,α,β(x) := η̃�,α1,β1 (x1) · η̃�,α2,β2 (x2) · η̃�,α3,β3 (x3) · η̃�,α4,β4 (x4)

where

η̃�,αk ,βk (xk) :=
⎧⎨
⎩
2�/2 · 1[αk ,αk+1)(2

�xk), if βk = 0

2�/2 ·
(
1[αk ,αk+ 1

2 )
− 1[αk+ 1

2 ,αk+1)

)
(2�xk), if βk = 1

for k = 1, 2, 3, 4.
For � ∈ N0, the block

H� := {η�,α,β : α ∈ A�, β ∈ B�}

consists of 15 · 24� Haar functions which we call Haar functions of level �. The union of all
of them,



504 K.-T. Sturm

H =
∞⋃

�=0

H�,

is a complete orthonormal system in L̊2(T4), called isotropic 4-dimensional Haar system, cf.
[17]. Moreover,

S� = span

( �−1⋃
κ=0

Hκ

)
. (18)

For x ∈ T
4 and � ∈ N, the unique cube Q ∈ Q� with x ∈ Q will be denoted by Q�(x).

Given a function u ∈ L̊1(T4), we define the function u� ∈ S� by

u�(x) := 24�
∫

Q�(x)

u dL4. (19)

Restricted to L̊2(T4), the map πQ�
: u �→ u� is the L2-projection onto the linear subspace

S�. Moreover,

u� =
�−1∑
κ=0

∑
ι∈Iκ

〈u, ηκ,ι〉 ηκ,ι. (20)

4.2 The Semi-discrete Gaussian Field

Let an i.i.d. family of N (0, 1) random variables (ξ�,ι)�∈N0,ι∈I� be given with I� = A� × B�

as before. For � ∈ N put

ĥω
� (x) := √

8π

�−1∑
κ=0

∑
ι∈Iκ

ξω
κ,ι · G̊ ηκ,ι(x).

Here G̊ denotes the grounded Green operator on the 4-torus, given as an integral opera-
tor G̊u(x) = ∫

T4 G̊(x, y) u(y) dL4(y) in terms of the grounded Green kernel G̊(x, y) on
T
4. (For related results with the Green kernel of the torus replaced by the Green kernel

of the discrete torus, see Sect. 4.3.) Moreover, define the non-symmetric kernel G̊�(x, z) :=(
πQ�

G̊(x, .)
)
(z) = 24�

∫
Q�(z)

G̊(x, v) dL4(v) and put

k̂�(x, y) := 8π2
∫

T4

G̊�(x, z)G̊�(y, z) dL4(z).

As � → ∞, this converges pointwise to k(x, y) := 8π2 ∫
T4 G̊(x, z) G̊(z, y) dL4(z), which—

up to the pre-factor—is the Green kernel for the bi-Laplacian Δ2.

Proposition 4 For every � ∈ N,

(a) for every ω, the function ĥω
�
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• is in C1(T4) and grounded (i.e.
∫
T4 ĥω

�
dL4 = 0);

• is smooth off the boundaries of dyadic cubes Q ∈ Q�;
• has constant Laplacian on the interior of each dyadic cube Q ∈ Q�;
• is the sum

∑�−1
κ=0

∑
ι∈Iκ ĥω

κ,ι of functions ĥ
ω
κ,ι = √

8π ξω
κ,ι · G̊ ηκ,ι each of which is

harmonic on T4 \ Q̄κ,ι for the dyadic cube Qκ,ι ∈ Q�;

(b) for every x ∈ T
4, the random variable ĥ�(x) is centered and Gaussian with variance

k̂�(x, x), the latter being independent of x;
(c) ĥ� is a centered Gaussian field with covariance function k̂�(x, y).

Proof We show (c), the rest is straightforward. By the very definition of ĥ�, the i.i.d. property
of the ξκ,ι and the projection properties (19) and (20),

E
[
ĥ�(x) · ĥ�(y)

]
= 8π2 ·

�−1∑
κ=0

∑
ι∈Iκ

〈
G̊(x, .), ηκ,ι

〉 · 〈G̊(y, .), ηκ,ι

〉

= 8π2 ·
〈
πQ�

G̊(x, .), πQ�
G̊(y, .)

〉

= 8π2 · 28�
∫

T4

( ∫
Q�(z)

G̊(x, v) dL4(v) ·
∫

Q�(z)

G̊(y, w) dL4(w)

)
dL4(z)

= k̂�(x, y).

Theorem 8 (a) The centered Gaussian random field h with covariance function k (as intro-
duced and studied in Sect.3.1) is given in the case of the 4-torus by

h := √
8π

∞∑
κ=0

∑
ι∈Iκ

ξκ,ι · G̊ηκ,ι

and called biharmonic Gaussian field.
(b) The convergence ĥ� → h holds in L2(P) × H−ε(T4) for every ε > 0. In particular, for

a.e. ω and every ε > 0,
hω ∈ H−ε(T4).

(c) For every u ∈ H−2(T4), the family (〈u, ĥ�〉)�∈N is a centered L2(P)-boundedmartingale
and

〈u, ĥ�〉 → 〈u, h〉 in L2(P) as � → ∞.

Proof (a) For convergence (and well-definedness) of the infinite sum, see (b) and/or (c)
below. To identify the covariance, observe that

E
[
〈u, h〉2

]
= 8π2 ·

∞∑
κ=0

∑
ι∈Iκ

〈
G̊u, ηκ,ι

〉2 = 8π2 · ∥∥G̊u
∥∥2 = 〈

u, ku〉.

(b) For s > 0, let G̊s denote the s-th power of the operator G̊ and let G̊(s) denote its kernel
which is given by the formula
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G̊(s)(x, y) = 1

Γ (s)

∞∫
0

ts−1 p̊t (x, y)dt

in terms of the grounded heat kernel p̊t (x, y) = pt (x, y) − 1. Then for ε > 0,

1

8π2 E
[
‖h‖2H−ε

]
= 1

8π2 E
[∥∥G̊εh

∥∥2
L2

]
=

∞∑
κ=0

∑
ι∈Iκ

∥∥G̊1+εηκ,ι

∥∥2
L2

=
∫

T4

∥∥∥G̊(1+ε)(., z)
∥∥∥2 dL4(z) =

∫

T4

G̊(2+2ε)(z, z) dL4(z)

= G̊(2+2ε)(0, 0) < ∞

since G̊(s) for s > n/2 = 2 is a bounded function, see [2]. This proves that ‖h‖H−ε < ∞
for a.e. ω. The convergence ĥ� → h in H−ε(T4) follows similarly.

(c) By construction, for every x ∈ T
4, the family (ĥ�(x))�∈N is a centered martingale. The

martingale property immediately carries over to the family (〈u, ĥ�〉)�∈N for any function
or distribution u. The L2-boundedness follows from

1

8π2 · sup
�

E
[
〈u, ĥ�〉2

]
= sup

�

∥∥πQ�
G̊u

∥∥2
L2 = ∥∥G̊u

∥∥2
L2 < ∞.

Remark 3 (a) With η�,ι for ι = (α, β) in I� as above and ψ�,ι := G̊η�,ι, the family
(ψ�,ι)�∈N0,ι∈I� is a complete orthonormal system in the Hilbert space H2(T4), equipped
with the scalar product

〈u, v〉H2 := 〈Δu, Δv〉L2 .

(b) Given any complete orthonormal system (ψk)k∈N in the Hilbert space H̊2(T4) and any
i.i.d. sequence of N (0, 1) random variables (ξk)k∈N, with the same arguments as for
Theorem8 one can prove that the Gaussian random field

h� := √
8π

�∑
k=1

ξk · ψk

converges in L2(P) × H−ε(T4) for every ε > 0 as � → ∞ to the biharmonic Gaussian
field h on the 4-torus. Moreover, 〈u, h�〉 → 〈u, h〉 in L2(P) for every u ∈ H−2(T4).

4.3 The Semi-discrete Liouville Measure

Given a Gaussian field h as considered in Theorem8, then following Proposition3 a semi-
discrete approximation of it is defined by

h� := πQ�
h (∀� ∈ N).
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For each �, this is a centered Gaussian field with covariance given by

k�(x, y) := 8π2 28�
∫

Q�(x)

∫
Q�(y)

(∫

T4

G̊(z, v)G̊(z, w) dL4(z)

)
dL4(w) dL4(v)

= 8π2 28�
∫

Q�(x)

∫
Q�(y)

k(v,w) dL4(w) dL4(v).

For any γ ∈ R and � ∈ N, we define the semi-discrete quantum Liouville measure μ� =
ρ� L4 as the random measure on T4 with density w.r.t. L4 given by

ρω
� (x) := eγ h

ω
� (x)− γ 2

2 k�(x,x).

Corollary 1 For |γ | <
√
8 and a.e. ω, the measures μω

�
as � → ∞ weakly converge to the

Borel measure μω introduced and studied in Sect.3.2,

μ� → μ P-a.s.

For |γ | < 2, the convergence also holds in L2(P).

4.4 Discrete Random Objects

To end up with fully discrete random objects, we have to replace the Green function on the
continuous torus by the Green function on the discrete torus. To do so, for � ∈ N we define
the discrete Laplacian Δ� acting on functions u ∈ L2(T4

�
) by

−Δ�u = 22�+3 · (u − p�u
)
, p�u(i) := 1

8

∑
j∈J�

u(i + j)

with J� :=
{
(k, 0, 0, 0), (0, k, 0, 0), (0, 0, k, 0), (0, 0, 0, k) : k ∈ {−2−�, 2−�}

}
.

Note that the associated discrete Dirichlet form E�(u, u) := −〈u,Δ�u〉L2 on L2(T4
�
) has a

positive spectral gap λ1
�

:= inf
{E�(u,u)

‖u‖2
L2

: u ∈ L̊2(T4
�
)
}
.Furthermore, we define the grounded

transition kernel by ṗ�(i, j) := 1
81J� (i − j) − 2−4�.
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The discrete Green operator acting on grounded functions u ∈ L̊2(T4
�
) is defined by

Ġ�u(i) := 2−2�−3
∞∑
k=0

pk�u(i) = 2−2�−3
∞∑
k=0

ṗk�u(i) =
∑
j∈T4

�

Ġ�(i, j)u( j) (21)

where Ġ�(i, j) := 2−2�−3 ∑∞
k=0 ṗk

�
(i, j) denotes the grounded Green kernel. The conver-

gence of the operator sum is granted by the positivity of λ1
�
:

∥∥p�

∥∥
L̊2,L̊2 ≤ ∥∥p1/2

�

∥∥2
L̊2,L̊2 = sup

u∈L̊2

〈u, p�u〉
‖u‖2

L̊2

= 1 − inf
u∈L̊2

E�(u, u)

‖u‖2
L̊2

= 1 − λ1� < 1.

This operator is then extended to an operator acting on functions u ∈ S� by

Ḡ�u(x) := Ġ�

(
u|
T
4
�

)(
2−�α

) ∀x ∈ Q�,α, α ∈ A�.

In terms of the (extended) discrete Green operator we define the discrete Gaussian field

ḣω
� (i) := √

8π

�−1∑
κ=0

∑
ι∈Iκ

ξω
κ,ι · Ġ�

(
ηκ,ι|T4

�

)
(i)

on T4
�
and its piecewise constant extension

h̄ω
� (x) := √

8π

�−1∑
κ=0

∑
ι∈Iκ

ξω
κ,ι · Ḡ� ηκ,ι(x)

on T4. For γ ∈ R, the discrete quantum Liouville measure is given by

μ̇ω
� := 2−4� exp

(
− γ 2

2
k̇�

) ∑
i∈T4

�

exp
(
γ ḣω

� (i)
)

δi

with

k̇� := E
[
ḣ�(i)

2] = 8π2 · 2−4�
∑
j∈T4

�

Ġ�(i, j)
2 = π2 · 2−8�−3

∞∑
k=0

k ṗk� (i, i),

independent of i ∈ T
4
�
.

Alternatively—and equivalent in distribution according to (18)—we can define the discrete
Gaussian field by

ḣω
� (i) := √

8π
(
Ġ� ξ̇ω

)
(i) = 2−2�−3/2 π

∞∑
k=0

∑
j∈T4

�

ṗk� (i, j) ξ̇ω
j (22)
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onT4
�
with a sequenceofN (0, 1)-i.i.d. randomvariables (ξ j ) j∈T4

�
and ξ̇i := ξi − 2−4� ∑

j∈T4 ξ j .

In other words,
−Δ�ḣ

ω
� (i) = √

8π ξ̇ω
i .

Moreover,

E
[
〈u, ḣ�〉2L2

]
= 8π2 ∥∥Ġ�u

∥∥2
L2 ∀u ∈ L2(T4

�)

and thus the distribution of the Gaussian field ḣ� is explicitly given by the probability measure

dP�(ζ ) := 1

Z�
exp

(
− 1

16π2

∥∥∥Δ�ζ

∥∥∥2
L2(T4

�)

) ∏
j∈T4

�

L1(dζ j ), (23)

conditioned to the hyperplane
{∑

i ζi = 0
}
in RT

4
� . Here ζ = (ζi )i∈T4

�
,

∥∥∥Δ�ζ

∥∥∥2
L2(T4

�)
= 2−4�

∑
i∈T4

�

∣∣∣ζi − 1

8

∑
j∈J�

ζi+ j

∣∣∣2,

and Z� ∈ (0, ∞) denotes a suitable normalization constant.
The convergence h̄� → h and μ̇� → μ as � → ∞ will be analyzed in detail in the forth-

coming paper [3]. For related convergence questions concerning biharmonic Gaussian random
fields on the cube [0, 1]4 with Dirichlet boundary conditions, see [22].
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Infinite Particle Systems with Hard-Core
and Long-Range Interaction

Hideki Tanemura

Abstract A system of Brownian hard balls is regarded as a reflecting Brownian
motion in the configuration space and can be represented by a solution to a Skorohod-
type equation. In this article, we consider the case that there are an infinite number of
balls, and the interaction between balls is given by the long-range pair interaction.We
discuss the existence and uniqueness of strong solutions to the infinite-dimensional
Skorohod equation.

Keywords Stochastic differential equations · Infinite particle systems · Skorohod
equations

Mathematics Subject Classification 60K35 · 60J46 · 60J60

1 Introduction

In this article, we study systems of interacting Brownian motions on Rd , d ≥ 2. Let
Φ : Rd → (−∞,∞] be a self (free) potential and Ψ : Rd × R

d → (−∞,∞) be a
symmetric pair-interaction potential. In the case that these potentials are smooth, the
system is described by the stochastic differential equation (SDE)

d X j
t = d B j

t − 1

2
∇Φ(X j

t )dt − 1

2

∑

k∈Λ,k �= j

∇Ψ (X j
t , Xk

t )dt, j ∈ I,

where B j
t , j ∈ Λ are independent Brownian motions and I is a countable index set.

We consider in this article the case that Φ is smooth and Ψ is a pair potential with a
hard core of radius r > 0 (i.e., Ψ = Ψhard + Ψsm):
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Ψhard(x, y) =
{
0 if |x − y| ≥ r,

∞ if |x − y| < r,
the hard-core pair potential,

Ψsm(x, y) = Ψsm(x − y) : a translation invariant smooth potential.

The system can be regarded as that of balls with a radius r > 0.
When I is a finite subset ofN, Saisho [16] and Saisho and Tanaka [17] showed that

a system of interacting Brownian balls with potential Φ and Ψsm can be represented
by the unique solution of the Skorohod-type equation

d X j
t = d B j

t − 1

2
∇Φ(X j

t )dt − 1

2

∑

k∈I,k �= j

∇Ψsm(X j
t − Xk

t )dt

+
∑

k∈I,k �= j

(X j
t − Xk

t )d L jk
t , j ∈ I, (SKE-I)

|X j
t − Xk

t | ≥ r, j, k ∈ I,

where L jk
t j, k ∈ I are non-decreasing functions satisfying

L jk
t = Lk j

t =
t∫

0

1(|X j
s − Xk

s | = r)d L jk
s , j, k ∈ I.

For I = N, the existence and uniqueness of solutions of (SKE-N) have been solved in
the cases thatΦ = Ψsm = 0 [18] andΦ = 0 andΨsm has stretched exponential decay
[5]. In these cases, the interaction among particles has a short range. The purpose of
this article is to generalize the results for long-range interaction including the case
that Ψsm has polynomial decay.

Let X be the configuration space of unlabeled balls with diameter r > 0. The
space X is a compact Polish space with the vague topology. Using Dirichlet form
theory, we can construct an X-valued process Ξ describing an interacting system
with an infinite number of unlabeled particles [8, 11] including the case with a hard-
core interaction. See, for example, [2, 3] for the relation between Dirichlet forms and
reflecting Brownianmotions. For a systemwith a finite number of balls, the existence
of the solution to theSkorohod equation is derived throughFukushimadecomposition
from the process constructed using a Dirichlet form (see, for instance, [1]) For a
system with an infinite number of balls, we need to label the balls because the
coordinate function is not locally in the domain of theDirichlet form.To label the balls
in the system, we use a sequence of tagged particle processes {(Xm, Ξm)}M∈N with
consistency, as introduced by Osada [9]. Additionally, we can apply the argument
in [10] to the case with a hard-core interaction. We can then apply the Fukushima
decomposition to our case and show the existence of a solution X for SKE-N.

The existence and uniqueness of strong solutions have been discussed [14]. In the
cited paper, we introduced an infinite system of finite-dimensional SDEs associated
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with a solution X of (SKE-N). We showed that under the condition that each finite-
dimensional SDE has a unique strong solution, referenced as (IFC), there exists
a strong solution and a unique strong solution of (SKE-N) under some constraints.
However, we are not sure if the IFC holds in ourmodelwith a hard-core interaction. In
the present paper, we introduce two conditions, namely I-IFC and the finite cluster
property (FCP). We present a result for the existence and uniqueness of strong
solutions of (SKE-N) under (I-IFC) and (FCP) and verify these conditions in our
setting.

Section2 prepares notations and cites results on the construction of the unlabeled
process Ξ and labeled process X and the Skorohod equation. Section3 presents
results, Proposition 3.1 andTheorem3.3. Section4 presents the proof ofTheorem3.3.

2 Preliminaries

2.1 Systems of Unlabeled Hard Balls

We denote the configuration space of unlabeled balls with radius r > 0 in Rd by

X = {ξ = {x j } j∈I : |x j − xk | ≥ r j �= k, I is countable}.

We can regard an element ξ = {x j } j∈I ∈ X as a Radon measure
∑

j∈I δx j and X as
a subset of the set M of non-negative Radon measures:

M = M(Rd) =
{
ξ(·) =

∑

j∈I
δx j (·) : ξ(K ) < ∞,∀K ⊂ R

d compact
}
.

where δx is the delta measure at x . We remark that X is compact with the vague
topology. We denote by πA(ξ) the restriction of ξ on A ∈ R

d .
We cite the definition of the quasi-Gibbs measure onM [12, Definition 2.1]. For

ζ ∈ M, the Hamiltonian of Φ, Ψ on U
 = {x ∈ R
d : |x | ≤ 
} is given by

H
(ζ ) =
∑

x∈suppζ∩U


Φ(x) +
∑

x,y∈suppζ∩U
,x �=y

Ψ (x, y).

Let Λ be the Poisson random field on R
d with intensity measure dx .

Definition 2.1 (Quasi-Gibbs State) A probability measure μ is called a (Φ,Ψ )-
quasi-Gibbs state if

μm

,ξ (dζ ) = μ(πU


(ζ ) ∈ dζ |πU c


(ξ) = πU c



(ζ ), ζ(U
) = m)

satisfies that for 
, m, k ∈ N, μ-a.s. ξ ,
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c−1e−H
(ζ )Λm

 (dζ ) ≤ μm


,ξ (dζ ) ≤ ce−H
(ζ )Λm

 (dζ ),

where c = c(
, m, ξ) > 0 is a constant depending on 
, m, ξ and

Λm

 (·) = Λ(πU


∈ ·|Mm

 ) withMm


 = {ξ(U
) = m}.

A function f on X is called a polynomial function if it can be expressed as

f (ξ) = Q (〈ϕ1, ξ 〉, 〈ϕ2, ξ 〉, . . . , 〈ϕ
, ξ 〉)

with a polynomial function Q on R

 and smooth functions ϕ j , 1 ≤ j ≤ 
, on R

d

with compact support, where

〈ϕ, ξ 〉 =
∫

Rd

ϕ(x)ξ(dx).

We denote by P the set of all polynomial functions onM. A polynomial function is
a local and smooth function; i.e., there is a compact set K such that

f (ξ) = f (πK (ξ))

and symmetric smooth functions f̂n , n ∈ N such that

f (ξ) = f̂ (x1, . . . , xn), if ξ ∩ K =
n∑

j=1

δx j .

The sequence of the functions f̂n , n ∈ N is called a K-representation of f .
For f ∈ P , we introduce the square field on M defined by

D( f, g)(ξ) = 1

2

∫

Rd

ξ(dx)∇x f (ξ) · ∇xg(ξ). (2.1)

For a probability measure μ on X, we introduce the bilinear form on L2(μ) defined
by

Eμ( f, g) =
∫

M

D( f, g)(ξ)μ(dξ), f, g ∈ Dμ
◦ ,

Dμ
◦ = { f ∈ P :‖ f ‖1< ∞},

where
‖ f ‖21=‖ f ‖2L2(μ) +Eμ( f, f ).
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We make the following assumptions.

(A0) The pair potential Ψ has a hard-core interaction with radius r > 0; i.e.,
Ψ (x, y) = ∞ if |x − y| ≤ r .
(A1) μ is a (Φ,Ψ )-quasi-Gibbs state, and Φ : Rd → R ∪ {∞} and Ψ : Rd ×
R

d → R ∪ {∞} satisfy

c−1Φ0(x) ≤ Φ(x) ≤ c Φ0(x),

c−1Ψ0(x − y) ≤ Ψ (x, y) ≤ c Ψ0(x − y)

for some c > 1 and are locally bounded from below and upper semi-continuous
functions Φ0, Ψ0 with {x ∈ R

d : Ψ0(x) = ∞} being compact.

From (A0),μ satisfiesμ(X) = 1. We cite the result in [11, Lemma 2.1] with [13].

Lemma 2.2 ([11, 13]) Assume (A0) and (A1).

(i) (Eμ,Dμ◦ ) is closable on L2(X, μ), and the closure (Eμ,Dμ) is a regular Dirichlet
form.

(ii) There is a diffusion process (Ξt ,Pξ ) associated with (Eμ,Dμ) on L2(μ).
(iii) (Ξt ,Pμ) is a reversible process, where Pμ = ∫

X μ(dξ)Pξ .

2.2 Systems of Labeled Balls

We denote the unlabeled configuration space of an infinite number of balls by

X∞ = {ξ = {x j } j∈N : |x j − xk | ≥ r j �= k}.

We make the following assumption because we are studying a system of infinite
particles.

(A2) μ(X∞) = 1.

We denote the configuration space of labeled balls by

Shard = {x = (x j ) j∈N ∈ (Rd)N : |x j − xk | ≥ r, j �= k}.

We introduce the unlabel map u : Shard → X∞ defined by

u((x j ) j∈N) = {x j } j∈N (2.2)

and a label map l : X∞ → Shard such that

l(ξ) = (x j ) j∈N, if ξ = {x j } j∈N ∈ X∞. (2.3)
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From the hard-core condition of the configuration space X and the continuity of
the trajectory of the process Ξ , we can lift the unlabeled dynamics Ξ = {X j } j∈N
to labeled dynamics X = (X j ) j∈N. Here, X j is an Rd -valued continuous process on
one of the intervals of the form [0, b) and (a, b), 0 < a < b ≤ ∞. We refer to X j

as a tagged particle. If b < ∞, we say the tagged particle explodes. If a > 0, we say
that the tagged particle enters. We make the following assumption.

(NEE) Ξt is an X-valued diffusion process in which no tagged particle explodes
or enters.

For a topological space S, W (S) denotes the set of continuous paths from R+ :=
[0,∞) to S and we put Wx (S) = {w ∈ W (S) : w(0) = x} for x ∈ S. Under (NEE),
we can construct a labeled map lpath from W (X∞) to W (Shard) such that for Ξ =
{X j } j∈N ∈ W (X∞) we have

lpath(Ξ) = (X j ) j∈N ≡ X .

We remark that lpath(Ξ)t �= l(Ξt ). We also put for m ∈ N

l[m]
path(Ξ) = ((X j )m

j=1, {X j }∞j=m+1) =: (Xm, Ξm).

We quote the results in [9, Theorem 2.5]. See also [14, Lemma 1.2].

Lemma 2.3 ([9]) Assume (A0)–(A2). (Ξt ,Pμ) satisfies (NEE).

From the above lemma we can lift the unlabeled process (Ξ,Pξ ) to a labeled
process (X,Px) such that

X = lpath(Ξ), Px = Pu(x) and x = l(ξ).

lpath(Ξ)t depends on not only Ξt but also the trajectory of Ξ , and Xm =
(X1, X2, . . . , Xm), m ∈ N, is thus not a Dirichlet process for Ξ . Then, using the
argument in [9], we introduce the m-labelled processes (Xm, Ξm), m ∈ N ∪ {0}, for
which Xm is a Dirichlet process.

We shall present the Dirichlet form associated with the m-labeled process. Let
μ[m] be the reduced m-Campbell measure on (Rd)m × X for μ defined as

μ[m](dxmdη) = ρm(xm)μxm (dη)dxm,

where ρm is the m-point correlation function of μ with respect to the Lebesgue
measure dxm andμxm is the reduced Palmmeasure conditioned at xm ∈ (Rd)m . See,
for instance, [7] for these definitions. We introduce the bilinear form (Eμ[m]

,Dμ[m]
◦ )

defined by
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Eμ[m]
( f, g) =

∫

(Rd )m×X

{1
2

m∑

i=1

d f

dxi

dg

dxi
+ D( f, g)

}
μ[m](dxmdη),

Dμ[m]
◦ =

{
f ∈ C∞

0 ((Rd)m) ⊗ D◦; Eμ[m]
( f, f ) < ∞, f ∈ L2((Rd)m × X, μ[m])

}
,

where
∂

∂x j
is the nabla in Rd , and D is defined by (2.1).

We quote the following.

Lemma 2.4 ([9]) Assume (A0)–(A2). Let m ∈ N.

(i) The bilinear form (Eμ[m]
,Dμ[m]

◦ ) is closable. Its closure, denoted by (Eμ[m]
,Dμ[m]

),
is associated with the diffusion process ((Xm

t , Ξm
t ),P

[m]
(xm ,η)).

(ii) The sequence {((Xm
t , Ξm

t ),P
[m]
(xm ,η))}m∈N satisfies the consistency condition

P
[m]
(xm ,η) = Pu(xm ,η) ◦ (l[m]

path)
−1, P

[m]
(xm ,η) ◦ u−1 = Pu(xm ,η),

where u(xm, η) = {x j }m
j=1 ∪ η ∈ X, if {x j }m

j=1 ∩ η = ∅ and {x j }m
j=1 ∪ η ∈ X.

We can construct from this lemma the labeled process X = (X1, X2, . . .) satis-
fying

Xm = (X1, . . . , Xm), Ξm = {X j }∞j=m+1, m ∈ N. (2.4)

In particular, we can regard the process X j , j ≤ m as a Dirichlet process of the
diffusion (Xm, Ξm) associated with the Dirichlet form (Eμ[m]

,Dμ[m]
).

2.3 Skorohod Equation

Let D be an open domain in R
N , N ∈ N. Let Nx = Nx (D) be the set of inward

normal unit vectors at x ∈ ∂ D,

Nx =
⋃


>0

Nx,
 Nx,
 = {n ∈ R
N : |n| = 1, U
(x − 
n) ∩ D = ∅}.

For x ∈ D and w ∈ W0(R
N ), we consider what is called the Skorohod equation:

ζ(t) = x + w(t) + ϕ(t), t ≥ 0. (SK)

A solution to (SK) is a pair (ζ, ϕ) satisfying (SK) with the following two conditions.

(1) ζ ∈ W (D).
(2) ϕ is an R

N -valued continuous function with bounded variation on each finite
time interval satisfying ϕ(0) = 0 and
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ϕ(t) =
t∫

0

n(s)d‖ϕ‖s, ‖ϕ‖t =
t∫

0

1∂ D(ζ(s))d‖ϕ‖s,

where n(s) ∈ Nζ(s) if ζ(s) ∈ ∂ D and ‖ϕ‖t denotes the total variation of ϕ on
[0, t].

We introduce the following conditions for D.

(A) (Uniform exterior sphere condition) There exists a constant α0 > 0 such that

∀x ∈ ∂ D, Nx = Nx,α0 �= ∅.

(B) There exists constants δ0 > 0 and β0 ∈ [1,∞) such that for any x ∈ ∂ D there
exists a unit vector l x verifying

∀n ∈
⋃

y∈Uδ0 (x)∩∂ D

Ny, 〈l x , n〉 ≥ 1

β0
.

We quote the results in [16, 17] and [5, Lemmas 3.1 and 3.2].

Lemma 2.5 ([5, 16, 17]) (i) Suppose D satisfies conditions (A) and (B). There is
then a unique solution of (SK).
(ii) Suppose that D satisfies conditions (A) and (B). Let (ζ (i), φ(i)) be the solution
of (SK) for x (i) and w(i), i = 1, 2. Then, for each T > 0, there exists a constant
C = C(α0, β0, δ0) such that

|ζ (1)(t) − ζ (2)(t)| ≤ (‖w(1) − w(2)‖t + |x (1) − x (2)|)eC(‖ϕ(1)‖t +‖ϕ(2)‖t ) (2.5)

and

‖ϕ(i)‖t ≤ f

(
Δ0,T,·(w(i)), sup

0≤s≤t
|w(i)|

)
, 0 ≤ t ≤ T, i = 1, 2, (2.6)

where f is a function on W0(R+) × R+ which depending on α0, β0, δ0, and Δ0,T,δ(w)

which denotes the modulus of continuity of w in [0, T ].
(iii) The configuration space of n balls with diameter r > 0,

Dn = {x = (x1, x2, . . . , xn) ∈ (Rd)n : |x j − xk | > r, j �= k},

satisfies conditions (A) and (B).

As a corollary of this lemma, the existence of a unique strong solution of Skorohod
SDEs has been proved [16, Theorem 5.1]. We then see the existence of a unique
strong solution of (SKE-I) if I is a finite subset of N. An approximation Skorohod-
type equation was introduced in the proof of [16, Theorem 5.1]. In our setting, the
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equation is written as

d X j
n(t) = d B j

t − 1

2
∇Φ(X j

n(hn(t))dt − 1

2

∑

k∈I,k �= j

∇Ψsm(X j
n(hn(t)) − Xk

n(hn(t))dt

+
∑

k∈I,k �= j

(X j
n(t) − Xk

n(t))d L jk
n (t), j ∈ I, (SKE(n)-I)

with the initial condition (X j
n(0)) j∈I = (X j (0)) j∈I, where

hn(0) = 0, hn(t) = (k − 1)2−n, (k − 1)2−n < t ≤ k2−n, k ∈ N, n ∈ N.

ByLemma2.5, (SKE(n)-I) has a unique strong solution, and the limit of the sequence
{((X j

n) j∈I, (L jk
n ) j,k∈I)}n∈N as n → ∞ coincides with ((X j ) j∈I, (L jk) j,k∈I).

3 Results

3.1 Existence of a Weak Solution

We make the following assumption.

(A3) A probability measure μ on X has the log derivative dμ(x, η) ∈ L1
loc(R

d ×
X, μ[1]), i.e., for any f ∈ C∞

0 (Rd) × P ,

−
∫

Rd×X

∇x f (x, η)μ[1](dxdη) =
∫

Rd×X

dμ(x, η) f (x, η)μ[1](dxdη)

+
∫

{(x,η):η∈X,x∈Sη}
nη(x) f (x, η)Sη(dx)ρ(x)μx (dη),

where Sη is the surface measure on Sη,

Sη = {x ∈ R
d : |x − y| = r for some y ∈ η},

and nη(x) is the inward normal vector of Sη at x .

We can extend the notion of the log derivative in distribution and write

dμ(x, η) = 1Sη
(x)dμ(x, η) + 1∂Sη

(x)nη(x)δx .

If the log derivative exists, we put b(x, η) = 1
2dμ(x, η). The following result is a

modification of [10, Theorem 26].
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Proposition 3.1 Assume the conditions (A0)–(A3). There then exists H ⊂ X with
μ(H) = 1 such that (X = l(Ξ),Pξ ), ξ ∈ H satisfies the infinite-dimensional stochas-
tic differential equation of Skorohod type (ISKE)

d X j
t = d B j

t + b

(
X j

t , {Xk
t }k �= j

)
dt +

∑

k �= j

(
X j

t − Xk
t

)
d L jk

t , (ISKE)

|X j
t − Xk

t | ≥ r, j, k ∈ N, j �= k, t ≥ 0,

where L jk
t , k, j ∈ N, is a non-decreasing function satisfying

L jk
t = Lk j

t =
t∫

0

1(|X j
s − Xk

s | = r)d L jk
s .

Proof Let m ∈ N. The coordinate function x j is locally in the domain of Dμ[m]
, and

X j is thus a Dirichlet process of (Xm, Ξm). Applying Fukushima decomposition
([4, Theorem 5.5.1] to x j yields

Xm, j
t − Xm, j

0 = M [x j ]
t + N [x j ]

t , under P[m]
(xm ,η). (3.7)

Here, M [x j ] is a martingale additive functional locally of finite energy and N [x j ] is
a continuous additive functional locally of zero energy. Through a straightforward
calculation using (A2), we have for f ∈ C∞

0 (Rd) ⊗ D◦ that

− Eμ[m]
(xi , f ) =

∫

Rd×X

dμ(x j , {xk}m
k �= j ∪ η) f (x, η)μ[m](dxdη)

+
∫

{(x,η):η∈X,x∈Sη}
f (x, η)nη(x j )Sη(dx j )μxm (dη)dxm� j ,

where xm� j = (xk)m
k �= j . Hence, by [4, Theorem 5.2.4], we deduce that

N [x j ]
t =

t∫

0

b(Xm, j
s , {Xk

s }m
k �= j ∪ Ξ [m]

s )ds +
∑

1≤k≤m
k �= j

t∫

0

(Xm, j
s − Xk

s )d Lm, jk
s

+
∞∑

k=m+1

t∫

0

(Xm, j
s − Xk

s )d Lm, jk
s , (3.8)
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where Lm, jk
t , 1 ≤ j ≤ m, k ∈ N are increasing functions satisfying

Lm, jk
t =

t∫

0

1(|Xm, j
s − Xm,k

s | = r)d Lm, jk
s , j, k = 1, 2, . . . , m,

Lm, jk
t =

t∫

0

1(|Xm, j
s − Xk

s | = r)d Lm, jk
s , j = 1, 2, . . . , m, k = m + 1, . . . .

Here, we used the relation Ξm = {X j }∞j=m+1 from the consistency condition (2.4).
We put

D
m[ f, g] = 1

2

m∑

i=1

d f

dxi

dg

dxi
+ D( f, g), f, g ∈ C∞

0 ((Rd)m) ⊗ D◦.

For 1 ≤ j, 
 ≤ m

2Dm[x j f, x j ] − D
m[(x j )2, f ] = 2Dm[x j , x j ] f = f,

2Dm[(x j ± x
) f, (x j ± x
)] − D
m[(x j ± x
)2, f ]

= 2Dm[x j ± x
, x j ± x
] f =
{
0, ( j = 
),

2 f ( j �= 
).

Then, from [4, Theorem5.2.3],

〈M [x j ], M [x
]〉t =
{
0, ( j �= 
),

t ( j = 
).
(3.9)

Combining (3.7), (3.8) and (3.9) with the consistency (2.4), we obtain the proposi-
tion. �

Let H and Xsde be Borel subsets of X such that

μ(H) = μ(Xsde) = 1, H ⊂ Xsde ⊂ X∞.

Let b be a measurable function on R
d × X that has a finite value on

X[1]
sde = {x, η) ∈ R

d × X : {x} ∪ η ∈ Xsde}.

Let l be the label defined by (2.3). We put H = l(H) and Ssde = l(Xsde). Here, H is
the set of initial starting points of solutions and Ssde is the set in which the coefficient
of (ISKE) is well defined. We consider the following ISKE with (3.10) and (3.11):
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d X j
t = d B j

t + b

(
X j

t , {Xk
t }k �= j

)
dt +

∑

k �= j

(
X j

t − Xk
t

)
d L jk

t , j ∈ N, (ISKE)

X0 ∈ H, X ∈ W (Ssde), (3.10)

L jk
t =

t∫

0

1(|X j
s − Xk

s | = r)d L jk
s j, k ∈ N, (3.11)

where L jk
t , j, k ∈ N is a non-decreasing real-valued function starting from zero.

Definition 3.2 (Weak Solution) By aweak solution of (ISKE)with (3.10) and (3.11),
we mean an (Rd)N × R

N×N

+ × (Rd)N-valued stochastic process (X, L, B) defined
on a probability space (Ω,F , P) with a reference family {Ft }t≥0 such that

(i) (X, L) is an {Ft }t≥0-adapted Ssde × R
N×N

+ -valued process satisfying (3.10) and
(3.11);

(ii) B = (B j ) j∈N is an R
N-valued {Ft }t≥0-Brownian motion with B0 = 0;

(iii) {b(X j
t , {Xk

t }k �= j )} j∈N is a family of {Ft }t≥0-adapted processes with

E
[ T∫

0

|b(X j
t , {Xk

t }k �= j )|dt
]

< ∞ for all T ; and

(iv) with probability one, (X, L, B) satisfies for all t ≥ 0 that

X j
t = X j

0 + B j
t +

t∫

0

b

(
X j

u , {Xk
u}k �= j

)
du +

∑

k �= j

t∫

0

(
X j

u − Xk
u

)
d L jk

u , j ∈ N.

Remark 1 Let μ be a canonical Gibbs state with the potentials (Φ,Ψ = Ψhard +
Ψsm) such thatΦ andΨsm are smooth. From the same argument as [14, Lemma 13.5]
the log derivative of μ exists and is represented as

dμ(x, η) = −∇Φ(x) −
∑

y∈η

∇Ψsm(x − y).

It follows from applying Proposition3.1 that (X t ,Px) is a weak solution (SDE-N).
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3.2 Statement of the Results

We study the existence and uniqueness of strong solutions of (ISKE) with (3.10) and
(3.11), whose definition are given in Definitions A.1 and A.3. In [14], we developed
a general theory of the existence of a strong solution and the pathwise uniqueness of
solutions for ISDEs concerning interacting Brownian motions. We apply the argu-
ment made in the cited paper.

Let (X, B) be an (Rd)N × (Rd)N-valued continuous process defined on a standard
filtered space (Ω,F , P, {Ft }). The regular conditional probability Px = P(·|X0 =
x) then exists for P ◦ X−1

0 -a.s. x.
We cite the conditions for a weak solution of (X, B, P) given in [14, Section3.2].

(SIN) P(X ∈ W (Shard)) = 1.
(μ-AC) (μ-absolutely continuity condition)

P(u(X t ) ∈ ·) ≺ μ for all t > 0,

where for the twoRadonmeasuresm1 andm2,wewritem1 ≺ m2 ifm1 is absolutely
continuous with respect to m2.
(NBJ) (No big jump condition) ∀
,∀T ∈ N

P(mr,T (X) < ∞) = 1,

where

m
,T (X) = inf{m ∈ N ; |Xn(t)| > 
,∀n > m,∀t ∈ [0, T ]}.

For a topological space S, we denote by B(S) the topological Borel field of S. We
say a family of strong solutions X = Fx(B) starting at x for P ◦ X−1

0 -a.s. x satisfies
the measurable family condition if

(MF) P(Fx(B) ∈ A) is B((Rd)N)
X0
-measurable for any A ∈ B(W (Rd)),

where B((Rd)N)
X0

is the completion of B(W ((Rd)N)) with respect to P ◦ X−1
0 .

The tail σ -field on X is defined as

T (X) =
∞⋂

r=1

σ(πSc
r
).

We introduce the following condition on a probability measure μ.

(TT) (tail trivial) μ(A) ∈ {0, 1} for any A ∈ T (X).

We make the following assumption.
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(R) Φ ≡ 0 and Ψsm is a Ruelle’s class potential such that

sup
ξ∈X

∑

x∈ξ

|∇Ψsm(x)| < ∞, sup
ξ∈X

∑

x∈ξ

|∇2Ψsm(x)| < ∞.

For a subset I of N, we put Ic = N \ I. We introduce another condition (I-IFC)
weaker than (IFC) given in Sect. 4.4. Let T ∈ N andM = {(Ii , ti )}M

i=0 be sequences
of pairs of finite index sets and times such that

I0 ⊃ I1 ⊃ · · · ⊃ IM−1 =: I∗, ti = iT

M
, i = 0, 1, . . . , M − 1.

We introduce the sequence of SDEs

dY Ii , j
t = d B j

t + bIi , j
X (Y Ii , j

t ,YIi
t )dt +

∑

k∈Ii \{ j}
(Y Ii , j

t − Y Ii ,k
t )d LIi , jk

t

+
∞∑

k∈Ic
i

(Y Ii , j
t − Xk

t )d LIi , jk
t , j ∈ Ii , t ∈ [ti , ti+1], (SKEX(M))

Y I0, j
t0 = x j , j ∈ I0, Y Ii , j

ti = Y Ii−1
ti , j ∈ Ii , i = 1, 2, . . . , M − 1,

where i = 0, 1, . . . , M − 1, bIi , j
X (t, y) = b

(
y j , {yk}k∈Ii \{ j} + {Xk

t }k∈Ic
i

)
, and LIi , jk

t ,

j ∈ Ii , k ∈ N are increasing functions satisfying

LIi , jk
t =

ti+1∫

ti

1(|Y Ii , j
s − Y Ii ,k

s | = r)d LIi , jk
s , j, k ∈ Ii ,

LIi , jk
t =

ti+1∫

ti

1(|Y Ii , j
s − Xk

s | = r)d LIi , jk
s , j ∈ Ii , k ∈ I

c
i .

We introduce the sequence {Λ(Ii , [ti , ti+1])}M−1
i=0 of the events defined by

Λ(Ii , [ti , ti+1]) = {|Xk
u − Y Ii , j

u | > r, u ∈ [ti , ti+1], j ∈ Ii , k ∈ I
c
i }

and put ΛM = ⋂M−1
i=0 Λ(Ii , [ti , ti+1]).

We denote by CI0,I
c∗ the completion of B(W0((R

d)I0) × W ((Rd)I
c∗)) with respect

to Px ◦ (BI0 , X I
c∗)−1. Let u ∈ W ((Rd)N) and (v,w) ∈ W0((R

d)I0) × W ((Rd)I
c∗).

We put Bt (W ((Rd)N)) = σ [us : 0 ≤ s ≤ t] and denote by CI0,I
c∗

t the completion of
σ [(vs,ws) : 0 ≤ s ≤ t]with respect to Px ◦ (BI0 , X I

c∗)−1. We then make the follow-
ing assumption.
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(I-IFC) For each M = {(Ii , ti )}M
i=0, the pathwise uniqueness of solutions of

(SKEX(M)) on ΛM holds under Px for P ◦ X−1
0 -a.s x. Moreover, there exists

a CI0,I∗ -measurable function

FM

x : W0((R
d)I0) × W ((Rd)I

c∗) → W ((Rd)N)

such that FM

x is CI0,I∗
t /Bt (W ((Rd)N))-measurable for each t and satisfies

FM

x (BI0 , X I
c∗)s = (Y Ii

s , X
I

c
i

s ), s ∈ [ti , ti+1], i = 0, . . . , M − 1,

on ΛM under Px for P ◦ X−1
0 -a.s x.

We also introduce the other condition (FCP). We first introduce measurable sub-
sets of W (Shard). For ε > 0, 0 ≤ s < t < ∞ and a bounded connected open set O
of Rd , we denote by C(ε, [s, t], O) the set of all elements X = (X1, X2, . . .) of
W (Shard) such that

U(r+ε)/2(X j
u) ∈ O, u ∈ [s, t], if X j

s ∈ O,

U(r+ε)/2(X j
u) ∈ R

d \ O, u ∈ [s, t], if X j
s ∈ R

d \ O.

For ε > 0, p, T, a, M ∈ N, we denote by C(ε, p, T, a, M) the set of elements X of

W (Shard) such that X ∈
⋂M−1

i=0
C(ε, [ti , ti+1], Oi ), for ti = iT

M , i = 0, 1, . . . , M − 1,

and some decreasing sequence O = {Oi }M−1
i=0 of open subsets of Rd with

O0 ⊂ Ua+M+M p (0), Uε(Oi+1) ⊂ Oi , 0 ≤ i ≤ M − 2

and,Ua+M(0) ⊂ OM−1. (3.12)

We denote a measurable subset C of W (Shard) by

C =
⋃

ε>0

∞⋃

p=1

∞⋂

T =1

∞⋂

a=1

∞⋂

M0=1

∞⋃

M=M0

C(ε, p, T, a, M).

Note that X ∈ C implies θt X ∈ C for any t > 0, where θt X(u) = X(u + t). We
remark that we can define C by a countable collection of bounded open subsets of
R

d , because if X ∈ C(ε, [s, t], O), there exists ε′ > 0 and a polyhedron O ′ with
vertices in ε′

Z
d such that X ∈ C(ε′, [s, t], O ′). We then assume O is chosen from a

countable family A = {O(
)}
∈N.
We make the following assumption, called the finite cluster property (FCP).

(FCP) P(X ∈ C) = 1.

The main theorem of this article is the following.
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Theorem 3.3 Assume (TT).

(i) Assume (A0), (A2), (A3), and (R). Put (X, P) = (lpath(Ξ),Pμ). Then, for μ ◦
l−1-a.s. x, (X, Px) is a strong solution of (ISKE) with (3.10) and (3.11) starting
at x. Moreover, (X, P) satisfies (MF), (I-IFC), (FCP), (μ-AC), (SIN), and
(NBJ).

(ii) (ISKE) with (3.10) and (3.11) has a family of unique strong solutions {Fx}
starting at x for P ◦ X−1

0 -a.s. x under the constraints of (MF), (I-IFC), (FCP),
(μ-AC), (SIN), and (NBJ).

Remark 2 If (A1) is satisfied, we can decompose μ as

μ =
∫

X

μ(dη)μ
η

Tail,

where μ
η

Tail = μ(·|T (X))(η) is the regular conditional distribution with respect to
the tail σ -field. Note that (TT) for μ

η

Tail holds. In the case that μ satisfies (R), (MF),
(I-IFC), (FCP), (SIN), and (NBJ), μ

η

Tail also does for μ-a.s. η. Hence, assuming
(μTail-AC) for μ-a.s. η instead of (μ-AC), the counterpart of Theorem 3.3 is derived.
The constraint of (μTail-AC) means that there is no A ∈ T (M) such that for μ

η

Tail-
a.s. ξ ,

P(u(X s) ∈ A|u(X0) = ξ) �= P(u(X t ) ∈ A|u(X0) = ξ)

for some 0 ≤ s < t . It is then possible that another solution X ′ that changes the tail
exists. See [14, Section3.3].

Example 3.4 Recalling Remark1, we present two examples for Theorem3.3.

(i) Lennard-Jones 6-12 potential (d = 3, Ψsm(x) = Ψ6,12(x) = |x |−12 − |x |−6)

b(x, {yk}) = β

2

∑

k

{12(x − yk)

|x − yk |14 − 6(x − yk)

|x − yk |8
}
.

(ii) Riesz potentials (d < a ∈ N and Ψsm(x) = Ψa(x) = (β/a)|x |−a)

b(x, {yk}) = β

2

∑

k

x − yk

|x − yk |a+2
.
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4 Proof of the Main Theorem

We prepare lemmas for proving the main theorem.

4.1 Finite Cluster Property

Lemma 4.1 (Lemma 2.6 in [5]) Assume (A0), (A2), and (R). Then, (FCP) for X =
lpath(Ξ) holds.

Remark 3 (i) In the proof of Lemma 2.6 in [5], we used an estimate of the mod-
ulus of continuity of each ball derived through Lyons–Zhen decomposition [4,
Section5.7]. We again use the estimate here.

(ii) In the proof, we used a property of the continuum percolation model associated
with μ. See [5, Lemma 2.4]. It is seen that this property holds under (R) but not
under (A1), which is an obstacle to generalizing Theorem 3.3 for quasi-Gibbs
states. It is an interesting problem to study percolation theory for quasi-Gibbs
states. See, for instance, Ghosh [6].

4.2 On the Lipschitz Continuity of bIX

In this subsection, we examine the Lipschitz continuity of bI

X for a finite subset I
of N. We assume (A0) and (R). We recall that b(x, η) = − 1

2

∑
y∈η ∇Ψsm(x − y) in

Remark 1. Let I be a finite subset ofN.We introduce the domain of the configurations
of balls indexed by I given by

DI = {xI ∈ (Rd)I : |x j − xk | > r, j �= k, j, k ∈ I}.

For x = (xk)k∈I ∈ DI and η ∈ X with {x j } j∈I ∩ η = ∅, {x j } j∈I ∪ η ∈ X, we set

bI(x, η) = (b(x j , {xk}k∈I\{ j} + η)) j∈I.

Let K (η) ∈ [0,∞] be a function defined by

K (η) = sup
{bI(x, η) − bI( y, η)

|x − y| : x �= y, x, y ∈ DI

{x j } j∈I ∩ η = {y j } j∈I ∩ η = ∅, {x j } j∈I ∪ η, {y j } j∈I ∪ η ∈ X
}
.
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It follows from (R) that

K := sup
η∈X

K (η) < ∞ (4.13)

and it follows from
bI

X(t, x) = bI
(
x, u(X I

c

t )
)

that

|bI

X(t, x) − bI

X(t, y)| ≤ K |x − y|. (4.14)

Remark 4 In [14, Section11], the Lipschitz continuity of bI

X was discussed in the
case that μ is a quasi-Gibbs state. The method presented in that section is applicable
to the case with a hard core.

4.3 I-IFC

Lemma 4.2 Assume (A0), (A2), (A3), and (R). Let (X, Px) = (lpath(Ξ),Pu(x)). (I-
IFC) then holds for X .

Proof Let M = {(Ii , ti )}M−1
i=0 . Suppose that ω ∈ ΛM. Then, {Y Ii } satisfies

dY Ii , j
t = d B j

t + bIi , j
X (t,YIi

t )dt +
∑

k∈Ii \{ j}
(Y Ii , j

t − Y Ii ,k
t )d LIi , jk

t ,

j ∈ Ii , t ∈ [ti , ti+1], i = 0, 1, . . . , M − 1. (4.15)

Let Y I0 and Ỹ
I0
be solutions of (4.15) with i = 0. Put

wt = BI

t +
t∫

0

bI0, j
X (s,YI0

s )ds, t ∈ [0, t1],

w̃t = BI

t +
t∫

0

bI0, j
X (s, ỸI0

s )ds, t ∈ [0, t1].

It then follows from the Lipschitz continuity (4.14) and (4.13) that

‖w − w̃‖t ≤
t∫

0

|bI0, j
X (s,YI0

s ) − bI0, j
X (s, ỸI0

s )|ds ≤ K

t∫

0

|YI0
s − ỸI0

s |ds.
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�0,t1,δ(w) < ∞, �0,t1,δ(w̃) < ∞, sup0≤s≤t1 |w| < ∞, sup0≤s≤t1 |w̃| < ∞, and we
thus have the pathwise uniqueness in the case that i = 0 from (2.5) and (2.6). Repeat-
ing this procedure, we obtain the pathwise uniqueness for i = 1, 2, . . . , M − 1.
Using an approximation process as in (SKE(n)-I) and the above estimate, we can
show the existence of a strong solution FM

x . �

4.4 Proof of Theorem3.3

We use the following lemma, which is a modification of [14, Theorem 3.1], with the
condition (IFC) replaced by the pair of conditions (I-IFC) and (FCP).

Lemma 4.3 Assume (TT) for μ. Assume that (ISKE) with (3.10) and (3.11) has
a weak solution (X, B) under P satisfying (I-IFC), (FCP), (μ-AC), (SIN), and
(NBJ). Then, (ISKE) with (3.10) and (3.11) has a family of unique strong solutions
{Fx} starting at x for P ◦ X−1

0 -a.s. x under the constraints of (MF), (I-IFC), (FCP),
(AC) for μ, (SIN), and (NBJ).

From this lemma, Theorem3.3 is shown, if we check that the weak solution
(lpath(Ξ),Pμ) of (ISKE) satisfies (MF), (I-IFC), (FCP), (μ-AC), (SIN), and (NBJ).
(MF) is obvious. (AC) is derived from the reversibility of the processΞ with respect
to μ. (SIN) and (NBJ) follows from Ψsm being of Ruelle’s class with a hard core.
See Lemmas 10.2 and 10.3 in [14]. (I-IFC) is derived from Lemma 4.2. Hence, it
is enough to show Lemma 4.3 to prove Theorem 3.3.

In the proof [14, Theorem 3.1], (IFC) is used in [14, Lemma 4.2]. That is to say
the existence of a function F∞

x : W0((R
d)N) × W ((Rd)N) → W ((Rd)N) satisfying

(i) F∞
x (B, X) = X Px-a.s. and

(ii) F∞
x (b, ·) is Tpath((Rd)N)x,b-measurable for P∞

Br := P ◦ B−1- a.s b,

where Tpath((Rd)N)x,b is the completion of

Tpath((Rd)N) :=
⋂

I⊂N,�I<∞
σ(X I

c
)

with respect to Px ◦ (X, B)−1(·|B = b). We construct F∞
x under the conditions

(SIN), (I-IFC), and (FCP). Let O = {Oi }M−1
i=0 with (3.12). Put

I(Oi ) = { j ∈ N : X j
ti ∈ Oi }, M(O) = {(I(Oi ), ti )}M−1

i=0

and
F [O]
x = FM(O)

x :=
∑

M

FM

x 1(M(O) = M)1ΛM on
⋃

M

ΛM.
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Let a ∈ N. From (FCP) and (I-IFC), for P∞
Br -a.s. b and P(·|B = b)-a.s X , there

exists O ∈ A := {O(
)} such that Ua+M ⊂ OM−1 and

F [O]
x (b, X) ∈ ΛM(O).

We put 
(b, X) = min{
 ∈ N : FO(
)
x (b, X) ∈ ΛM(O(
))} and

F (a)
x (b, X) =

∑


∈N

1(
 = 
(b, X))F [O(
)]
x (b, X).

Let I be a finite subset of N. Then, F (a)
x (b, ·)1(I(OM−1) ⊃ I) is σ(X Ic

)-measurable,

where σ(X Ic
) is the completion of σ(X I

c
) with respect to Px ◦ (X, B)−1(·|B = b).

From (SIN), we see that lima→∞ Px(I(OM−1) ⊃ I|B = b) = 1. Putting

F∞
x = lim

a→∞ F (a)
x ,

we see that F∞
x (b, ·) satisfies (ii). The claim (i) is derived from (I-IFC). Therefore,

Lemma4.3 is proved adopting the same procedure used in [14, Theorem 3.1]. �
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Appendix

A.1 Solutions of (ISKE)

We give precise definitions of solutions of the (ISKE).
Let B and Bt be the completions of B(W ((Rd)N) and Bt (W ((Rd)N) with respect

to P∞
Br = P(B ∈ ·), respectively.

Definition A.1 (Strong Solutions Starting at x) A weak solution X of (ISKE) with
(3.10) and (3.11) and an (Rd)N-valued {Ft }t≥0-Brownian motion B on (Ω,F , P,

{F}t≥0) is called a strong solution starting at x if X0 = x a.s. and if there exists a
function Fx : W0((R

d)N) → W ((Rd)N) such that Fx isB/B(W ((Rd)N)-measurable,
and Bt/Bt (W ((Rd)N)-measurable for each t and that Fx satisfies X = Fx(B) a.s.
We also call X = Fx(B) a strong solution starting at x. Additionally, we call Fx

itself a strong solution starting at x.

Definition A.2 (Unique Strong Solution Starting at x) We say (ISKE) with (3.10)
and (3.11) has a unique strong solution starting at x if there exists a function Fx :
W0((R

d)N) → W ((Rd)N) such that, for any weak solution (X̂, L̂, B̂) of (ISKE) with

https://jp.edanz.com/ac
 7882 27728 a 7882 27728 a
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(3.10) and (3.11) X̂ = Fx(B̂) a.s. and if, for any (Rd)N-valued {Ft }t≥0-Brownian
motion B defined on (Ω,F , P, {F}t≥0) with B0 = 0, the process X = Fx(B) is
a strong solution of (ISKE) with (3.10) and (3.11) starting at x. We also call Fx a
unique strong solution starting at x.

We next present a variant of the notion of a unique strong solution.

Definition A.3 (A Unique Strong Solution Under a Constraint) For a condition
(Cond), we say (ISKE) with (3.10) and (3.11) has a unique strong solution starting
at x under the constraint of (Cond) if there exists a function Fx : W0((R

d)N) →
W ((Rd)N) such that for any weak solution (X̂, B̂) of (ISKE) with (3.10) and (3.11)
starting at x satisfying (Cond), it holds that X̂ = Fx(B̂) a.s. and if, for any (Rd)N-
valued {Ft }t≥0-Brownian motion B on (Ω,F , P, {F}t≥0) with B0 = 0, the process
X = Fx(B) is a strong solution of (ISKE) with (3.10) and (3.11) starting at x satis-
fying (Cond). We also call Fx a strong solution starting at x under the constraint of
(Cond).

For a family of strong solutions {Fx} satisfying (MF), we put

P{Fx } =
∫

P(Fx(B) ∈ ·)P ◦ X−1
0 (dx).

Let (X, L, B) be a solution of (ISKE) with (3.10) and (3.11) under P. Suppose that
(X, B) is a unique strong solution under Px for P ◦ X−1

0 -a.s. x. Let {Fx} be a family
of the unique strong solution given by (X, B) under Px . Then, (MF) is automatically
satisfied and P{Fx } = P ◦ X−1.

Definition A.4 (A Family of Unique Strong Solutions Under Constraints) For a
condition (Cond), we say (ISKE) with (3.10) and (3.11) has a family of unique
strong solutions {Fx} starting at x for P ◦ X−1

0 -a.s. x under the constraints of (MF)
and (Cond) if {Fx} satisfies (MF) and P{Fx } satisfies (Cond). Furthermore, (i) and
(ii) are satisfied.

(i) For any weak solution (X̂, B̂) under P̂ of (ISKE) with (3.10) and (3.11) with
P̂ ◦ X−1

0 ≺ P ◦ X−1
0 satisfying (Cond), it holds that, for P̂ ◦ X−1

0 -a.s. x, X̂ =
Fx(B̂) P̂x-a.s., where P̂x = P̂(·|X̂0 = x).

(ii) For an arbitrary (Rd)N-valued {Ft }-Brownian motion B on (Ω,F , P, {F}t≥0)

with B0 = 0, Fx(B) is a strong solution of (ISKE)with (3.10) and (3.11) starting
at x for P ◦ X−1

0 -a.s. x.

A.2 Definition of (IFC)

In this subsection, we introduce (IFC) for our situation. Let I be a finite subset
of N. Put Ic = N \ I. For y = (y1, y2, . . .) ∈ Shard, we put yI = (y j ) j∈I and yI

c =
(y j ) j∈Ic Let (X, B) = ((X j ) j∈N, (B j ) j∈N) be a weak solution of (ISKE) starting at
x = (x j ) j∈N defined on (Ω,F , P, {Ft }). We consider the SDE
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dY I, j
t = d B j

t + bI, j
X (t,YI

t )dt +
∑

k∈I\{ j}
(Y I, j

t − Y I,k
t )d LI, jk

t

+
∞∑

k∈Ic

(Y I, j
t − Xk

t )d LI, jk
t , j ∈ I, (SKEX(I))

Y I, j
0 = X j

0 = x j , j ∈ I,

where LI, jk
t , j ∈ I, k ∈ N are increasing functions satisfying

LI, jk
t =

t∫

0

1(|Y I, j
s − Y I,k

s | = r)d LI, jk
s , j, k ∈ I,

LI, jk
t =

t∫

0

1(|Y I, j
s − Xk

s | = r)d LI, jk
s , j ∈ I, k ∈ I

c.

We denote by CI the completion of B(W0((R
d)I) × W ((Rd)N)) with respect to

Px ◦ (BI, X I
c
)−1. Let (v,w) ∈ W0((R

d)I) × W ((Rd)N). We denote by CI

t the com-
pletion of σ [(vs,ws) : 0 ≤ s ≤ t] with respect to Px ◦ (BI, X I

c
)−1.

Definition A.5 (Strong Solution for (X, B) Starting at xI) YI is called a strong
solution of (SKEX(I)) for (X, B) under Px if (YI, BI, X I

c
) satisfies (SKEX(I)) and

there exists a CI-measurable function

F I

x : W0((R
d)I) × W ((Rd)I

c
) → W ((Rd)I)

such that F I

x is CI

t /Bt (W (Rd)I-measurable for each t , and F I

x satisfies Y
I = F I

x(B
I,

X I
c
), Px-a.s.

Definition A.6 (A Unique Strong Solution for (X, B) Starting at xm) The SDE
(SKEX(I)) is said to have a unique strong solution for (X, B) under Px if there
exists a strong solution F I

x such that for any solution (ŶI, BI, X I
c
) of (SKEX(I))

under Px , ŶI = F I

x(B
I, X I

c
) for Px-a.s..

We can then give the definition of (IFC).

(IFC) For each finite subset I ⊂ N, (SKEX(I)) has a unique strong solution under
Px := P(·|X0 = x) for P ◦ X−1

0 -a.s. x.
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On Universality in Penalisation Problems
with Multiplicative Weights

Kouji Yano

Abstract We give a general framework for the universality classes of σ -finite mea-
sures in penalisation problems with multiplicative weights. We discuss penalisation
problems for Brownian motions, Lévy processes and Langevin processes in our
framework.

Keywords Markov process · Martingale · Limit theorem · Penalisation ·
Conditioning

Mathematics Subject Classification 60F05 · 60G44 · 60J57

1 Introduction

For a measure μ and a non-negative measurable function f , we write μ[ f ] for the
integral

∫
f dμ.

For a probability space (Ω,F , P) equipped with a filtration (Fs)s≥0, and for
a non-negative process Γ = (Γt )t≥0 called a weight, we mean by a penalisation a
problem of finding a limit probability PΓ on (Ω,F) called the penalised probability
such that

P[FsΓt ]
P[Γt ] −→

t→∞ PΓ [Fs] (1.1)

is satisfied for all s ≥ 0 and all bounded Fs-measurable functional Fs . Under the
penalised probability PΓ , the process (Γt )t≥0 is prevented from taking small values;
this is why Roynette et al. [14] (see also [15]) called this problem the penalisation.
Conditioning a process to stay in a domain D may be regarded as a special case of
the penalisation, as we take the weight Γt = 1{τD>t} where τD denotes the exit time
of D.
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Although the penalised probability PΓ depends upon the weight Γ , we can often
find a σ -finite measure P on (Ω,F) independent of a particular weight such that

PΓ (A) = P[Γ∞; A]
P[Γ∞] , A ∈ F (1.2)

holds with a suitable limit Γ∞ of Γt in a certain class of weights Γ . In this case we
say that Γ belongs to the universality class ofP . The aim of this paper is to gain a
clear insight into the universality classes in penalisation problems. For this purpose,
we confine ourselves to multiplicative weights.

Let {B = (Bt )t≥0, Wx }denote the canonical representationof theone-dimensional
Brownian motion with Wx (B0 = x) = 1 and letF B

t = σ(Bs : s ≤ t) denote the nat-
ural filtration of the coordinate process B. Let τD = inf{t ≥ 0 : Bt = 0} denote the
exit time of B from the non-zero real D = R \ {0}. Let x ∈ D be fixed. It is then
well-known that

Wx [Fs |τD > t] −→
t→∞ W ±3B

x [Fs] = 1

|x | Wx

[
Fs |Bs |1{τD>s}

]
(1.3)

for all bounded F B
s -measurable functional Fs , where W ±3B

x denotes the law of ±
times 3-dimensional Bessel process starting from x . This conditioning to avoid zero
may be regarded as a special case of the penalisation with the weight being given
by Γt = 1{τD>t}. Note that W ±3B

x is locally absolutely continuous with respect to
Wx , i.e. W ±3B

x |F B
s
is absolutely continuous with respect to Wx |F B

s
for all s ≥ 0. But

W ±3B
x and Wx are mutually singular on F B∞ := σ(B), because W ±3B

x (τD = ∞) =
Wx (τD < ∞) = 1. While the original process {B, Wx } is recurrent, the penalised
process {B, W ±3B

x } is transient.
Roynette et al. [12, 13] have studied the penalisation problems for the one-

dimensional Brownian motion. They determined the penalised probabilities for
Γt = f (Xt ), a function of a supremum, Γt = f (Lt ), a function of a local time at 0,
and Γt = exp(− ∫ t

0 v(Bs)ds), a Kac killing weight. For the special case Γt = e−Lt ,
we have

W0[Fse−Lt ]
W0[e−Lt ] −→

t→∞ W Γ
0 [Fs] = 1

1 + |x | W0

[
Fs(1 + |Bs |)e−Ls

]
(1.4)

for all s ≥ 0 and all bounded F B
s -measurable functional Fs . Although W Γ

0 is locally
absolutely continuous with respect to W0, the twomeasures W Γ

0 and W0 are mutually
singular on F B∞, because W Γ

0 (L∞ < ∞) = W0(L∞ = ∞) = 1. While the original
process {B, W0} is recurrent, the penalised process {B, W Γ

0 } is transient.
Najnudel et al. [8] have introduced the σ -finite measure W0 defined by

W0 =
∞∫

0

du√
2πu

Π(u) • W s3B
0 , (1.5)
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where Π(u) stands for the law of the Brownian bridge from 0 to 0 of length u, W s3B
0

for the law of the symmetrised Bessel process, and • for the law of the concatenated
path of two independent paths. They proved that the penalised probability W Γ

0 for
any weight Γ in the previous paragraph is absolutely continuous onF B∞ with respect
to W0:

W Γ
0 [F] = W0[FΓ∞]

W0[Γ∞] (1.6)

for all bounded F B∞-measurable functional F . Moreover, if we define Wx (·) =
W0(x + B ∈ ·), we have

W ±3B
x [F] = Wx [F; τD = ∞]

Wx (τD = ∞)
(1.7)

for all x > 0 and all bounded F B∞-measurable functional F . In other words, all the
weights belong to the universality class of Wx .

Yano et al. [20, 21], Yano [22] and recently Takeda and Yano [16] studied the
penalisation problems for one-dimensional stable Lévy processes and found out that
there are two different universality classes. In this paper, we would like to give a
general framework to characterise universality classes, where we will give some
new results.

Groeneboom et al. [6] studied the conditioning to stay positive for the Langevin
process. Profeta [10] studied penalisation problems with several kinds of weights. In
this paper, we shall also discuss universality classes for those penalisation problems.

This paper is organized as follows. In Sect. 2 we develop a general study
on penalised probabilities with multiplicative weights. In Sect. 3 we define the
unweightedmeasures and discuss the subsequentMarkov property of them. In Sect. 4
we state and prove our main theorems on universality classes. In Sect. 5 we give a
general discussion on penalisation problems with multiplicative weights. In Sects. 6,
7 and 8, we look at some known results of penalisation problems for Brownian
motions, Lévy processes and Langevin processes in our framework. In last section
as an Appendix, we discuss extension of the transformed probability measures given
by local absolute continuity.

2 Penalised Probability

For a measure μ and a non-negative measurable function f , we write f · μ for the
transformed measure defined by ( f · μ)(A) = ∫

A f dμ for all measurable set A. Let
(Fs)s≥0 be a filtration. For two measures μ and ν, we say that μ is locally absolutely
continuous with respect to ν if μ|Fs is absolutely continuous with respect to ν|Fs

for all s ≥ 0. We say the two measures are locally equivalent if they are locally
absolutely continuous with respect to each other. For a parameterised family (μλ)λ
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of finite measures and a finite measure μ, we say that

limλ μλ = μ along (Fs)s≥0 (2.1)

if

limλ μλ[Fs] = μ[Fs] (2.2)

holds for all s ≥ 0 and all bounded measurable functional Fs .
Let S be a locally compact separable metric space and let D denote the space

of càdlàg paths from [0,∞) to S. Let X = (Xt )t≥0 denote the coordinate process:
Xt (ω) = ω(t) for t ≥ 0 and ω ∈ D. Let F X

t = σ(Xs : s ≤ t) denote the natural fil-
tration of X and set Ft = ⋂

ε>0 F X
t+ε so that (Ft )t≥0 is a right-continuous filtration.

We write F∞ = σ(
⋃

t≥0 Ft ) = σ(X). For t ≥ 0, let θt denote the shift operator of
D: θtω(s) = ω(t + s) for s ≥ 0.

Let {X,F∞, (Px )x∈S} denote the canonical representation of a strong Markov
process taking values in S with respect to the augmented filtration (Gt )t≥0 of (Ft )t≥0.
A process Γ = (Γt )t≥0 is called a weight if it is a non-negative càdlàg process. A
weight Γ is called multiplicative if Γ is adapted to (Ft )t≥0 and

Γt = Γs · (Γt−s ◦ θs), Px -a.s. for all 0 ≤ s ≤ t < ∞ and all x ∈ S. (2.3)

Let Γ be a multiplicative weight. Since Γ0 = Γ0 · (Γ0 ◦ θ0) = Γ 2
0 , we note that

for any x ∈ S we have either Px (Γ0 = 1) = 1 or Px (Γ0 = 0) = 1. (2.4)

We set

SΓ ={x ∈ S : Px (Γ0 = 1) = 1} . (2.5)

It is easy to see that

τΓ := inf{t ≥ 0 : Xt /∈ SΓ } = inf{t ≥ 0 : Γt = 0} Px -a.s. for all x ∈ S, (2.6)

since [Γt0 = 0 implies Γt = 0 for all t ≥ t0] because of the multiplicativity.
We introduce the following assumptions:

(A1) There is a Borel function ϕΓ on S such that ϕΓ > 0 on SΓ and

Px [Γtϕ
Γ (Xt )] = ϕΓ (x) for all x ∈ S and t ≥ 0. (2.7)

(A2) It holds that

Px [Γe(q)] → 0 as q ↓ 0 for all x ∈ SΓ , (2.8)
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where we abuse Px for the extended probability measure of Px supporting a
standard exponential variable e independent ofF∞ and we set e(q) = e/q for
q > 0.

Note that, by the dominated convergence theorem, the condition (A2) follows
from the following condition:

(A2′) It holds that

Px [Γt ] → 0 as t → ∞ for all x ∈ SΓ . (2.9)

By the multiplicativity, the condition (2.7) is equivalent to the condition that

(Γtϕ
Γ (Xt ))t≥0 is a right-continuous ((Gt )t≥0, Px )-martingale for all x ∈ S (2.10)

(for right-continuity, see, e.g., [5, Theorem 5.8]). Under (A1), for x ∈ SΓ , we may
define a probabilitymeasure PΓ

x on (D,F∞), whichwe call the penalised probability
of Px for Γ , by the following (see Appendix):

PΓ
x |Ft = Γtϕ

Γ (Xt )

ϕΓ (x)
· Px |Ft for all t ≥ 0. (2.11)

It is then immediate that the penalised process {X,F∞, (PΓ
x )x∈S} is aMarkov process

with respect to (Ft )t≥0.

We write
P−→ for convergence in probability. In addition to (A1) and (A2), we

also introduce the following assumption:

(A3) There is a non-negative finite F∞-measurable functional Γ∞ such that

PΓ
x

(
Γt −→

t→∞ Γ∞ > 0
)

= 1 for all x ∈ SΓ . (2.12)

Note that inmany examples we have (A3) and Px (lim inf t→∞ Γt = 0) = 1, which
implies that the two measures PΓ

x and Px are mutually singular on F∞.
The following is a routine argument.

Proposition 2.1 Let Γ be a multiplicative weight. Then the following hold.

(i) Under (A1), it holds that

PΓ
x (τΓ = ∞) = 1 for all x ∈ SΓ . (2.13)

(ii) Under (A1), (A2) and (A3), it holds that

PΓ
x

(
ϕΓ (Xt ) −→

t→∞ ∞
)

= 1 for all x ∈ SΓ . (2.14)
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Proof (i) We apply the optional stopping theorem to the ((Gt )t≥0, Px )-martingale
Mt := Γtϕ

Γ (Xt )/ϕ
Γ (x) [by (A1)] to see that

PΓ
x (τΓ > t) =Px

[
Mt ; τΓ > t

]
(2.15)

=Px [Mt∧τΓ ] − Px
[
Mt∧τΓ ; τΓ ≤ t

]
(2.16)

=Px [M0] − Px
[
MτΓ ; τΓ ≤ t

] = 1, (2.17)

which implies that PΓ
x (τΓ = ∞) = 1.

(ii) Let 0 ≤ s ≤ t < ∞ and As ∈ Fs . We then have

PΓ
x

[
1

ΓtϕΓ (Xt )
; As

]

= 1

ϕΓ (x)
Px (As, τΓ > t)

≤ 1

ϕΓ (x)
Px (As, τΓ > s)

= PΓ
x

[
1

ΓsϕΓ (Xs)
; As

]

. (2.18)

This shows that Nt := 1/{Γtϕ
Γ (Xt )} is a non-negative PΓ

x -supermartingalewith

respect to the completed filtration (F PΓ
x

t )t≥0 of (Ft )t≥0, and consequently it
converges PΓ

x -a.s. as t → ∞ to some random variable N∞. By (A3), we see
that

1

ϕΓ (Xt )
= Γt Nt −→

t→∞ Γ∞N∞ PΓ
x -a.s., (2.19)

which implies 1/ϕΓ (Xe(q))
PΓ

x−→
q↓0 Γ∞N∞. Using Fatou’s lemma, we obtain

PΓ
x [Γ∞N∞] ≤ lim inf

q↓0 PΓ
x

[
1

ϕΓ (Xe(q))

]

= 1

ϕΓ (x)
limq↓0 Px

[
Γe(q)

] = 0

(2.20)

by (A2). Hence we obtain (2.14). �

3 Subsequent Markov Property

Let Γ be a multiplicative weight satisfying (A1), (A2) and (A3). For x ∈ SΓ , we
may define a measure PΓ

x on (D,F∞), which we call the unweighted measure of
PΓ

x , by

PΓ
x = ϕΓ (x)Γ −1

∞ · PΓ
x on F∞. (3.1)
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Note that PΓ
x is σ -finite on F∞, because D = ⋃

n∈N{Γ∞ > 1/n}, PΓ
x -a.e. and

PΓ
x (Γ∞ > 1/n) ≤ nϕΓ (x) < ∞ for all n ∈ N. (3.2)

The family of the unweighted measures satisfies the following property.

Theorem 3.1 Let Γ be a multiplicative weight satisfying (A1)–(A3). Then, for any
x ∈ SΓ , any non-negative Ft -measurable functional Ft and any non-negative F∞-
measurable functional G, it holds that

PΓ
x [Ft (G ◦ θt )] = Px

[
FtP

Γ
Xt

[G]; τΓ > t
]
. (3.3)

Proof By definition of PΓ
x , we have

PΓ
x [(FtΓt )((GΓ∞) ◦ θt )] =PΓ

x [Ft (G ◦ θt )Γ∞] (3.4)

= ϕΓ (x)PΓ
x [Ft (G ◦ θt )] . (3.5)

By the Markov property for X under PΓ
x , by the local equivalence between PΓ

x and
Px , and by the global equivalence between PΓ

x and PΓ
x , we obtain

(3.5) = ϕΓ (x)PΓ
x

[
Ft PΓ

Xt
[G]] (3.6)

= Px
[
Ftϕ

Γ (Xt )Γt PΓ
Xt

[G]] (3.7)

= Px
[
FtΓtPXt [GΓ∞]] , (3.8)

where we used the fact obtained from Proposition2.1 that Xt ∈ SΓ , Px -a.s. on {Γt >

0}. Thus we obtain

PΓ
x [FtΓt (GΓ∞) ◦ θt ] =Px

[
FtΓtP

Γ
Xt

[GΓ∞]] . (3.9)

Replacing Ft by FtΓ
−1

t 1{τΓ >t} andG byGΓ −1∞ 1{Γ∞>0}, we obtain the desired identity,
since τΓ = ∞ and Γ∞ > 0,PΓ

x -a.e. The proof is now complete. �

Theorem3.1 asserts that, the process underPΓ
x behaves until a fixed time t as the

process under Px killed upon leaving SΓ , and it starts afresh at time t to behave as
the process underPΓ

Xt
. In this sense, we may call this property (3.3) the subsequent

Markov property.

4 Universality Class

Let E be a particular multiplicative weight satisfying (A1)–(A3). We would like to
give a sufficient condition for existence of a positive function c(x) such that
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SΓ ⊂ SE and PΓ
x = c(x)1{Γ∞>0} · PE

x for all x ∈ SΓ . (4.1)

We note that [PΓ
x = c(x)1{Γ∞>0} · PE

x ] yields [Γ belongs to the universality class
of PE

x ] in the sense we mentioned in Introduction.

Theorem 4.1 (Universality Theorem) Let E and Γ be two multiplicative weights
satisfying (A1)–(A3). Suppose there exists a positive function c(x) such that

PE
x

(
Γt −→

t→∞ Γ∞
)

= 1,
ϕΓ (Xt )

ϕE(Xt )

PE
x−→

t→∞ c(x) for all x ∈ SΓ (4.2)

and

PΓ
x

(
Et −→

t→∞ E∞ > 0
)

= 1,
ϕΓ (Xt )

ϕE(Xt )

PΓ
x−→

t→∞ c(x) for all x ∈ SΓ . (4.3)

(Notice that these assumptions do not follow from (A3).) Then (4.1) holds.

Proof Let x ∈ SΓ be fixed. Since Px = PΓ
x on F0, we have

Px (E0 = 1) = PΓ
x (E0 = 1) ≥ PΓ

x (E∞ > 0) = 1, (4.4)

which shows x ∈ SE . By the assumptions, we have

Rt
PE

x−→
t→∞ R∞ and Rt

PΓ
x−→

t→∞ R∞ with Rt = Γtϕ
Γ (Xt )

ϕE(Xt )
and R∞ = c(x)Γ∞.

(4.5)

Let s > 0 and let Fs be a non-negativeFs-measurable functional. For t > s, we have

PE
x

[

Fs · Rt

1 + Rt + Et

]

= 1

ϕE(x)
Px

[

Fs · Rt

1 + Rt + Et
· Etϕ

E(Xt )

]

(4.6)

=ϕΓ (x)

ϕE(x)
PΓ

x

[

Fs · Rt

1 + Rt + Et
· Etϕ

E(Xt )

ΓtϕΓ (Xt )

]

(4.7)

=ϕΓ (x)

ϕE(x)
PΓ

x

[

Fs · Et

1 + Rt + Et

]

. (4.8)

Letting t → ∞ and applying the dominated convergence theorem, we obtain

PE
x

[

Fs · R∞
1 + R∞ + E∞

]

= ϕΓ (x)

ϕE(x)
PΓ

x

[

Fs · E∞
1 + R∞ + E∞

]

. (4.9)

Since s > 0 and Fs are arbitrary, we obtain

c(x)ϕE(x)Γ∞ · PE
x = ϕΓ (x)E∞ · PΓ

x , (4.10)
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which yields

c(x)1{Γ∞>0} · PE
x = 1{E∞>0} · PΓ

x = PΓ
x , (4.11)

since PΓ
x (E∞ > 0) = 1. We thus obtain the desired result. �

5 Penalisation Problems

We give two systematic methods of ensuring the conditions (A1) and (A2) in penal-
isation problems.

5.1 Constant Clock

We give a general framework for penalisation problems with constant clock.

Proposition 5.1 Let Γ be a multiplicative weight. Let ρ(t) be a function such that

ρ(t) −→
t→∞ ∞ and

ρ(t)

ρ(t − s)
−→
t→∞ 1 for all s > 0, (5.1)

or in other words, ρ(log t) is divergent and slowly varying at t = ∞. Suppose there
exists a process (Ms)s≥0 such that Px (M0 > 0) = Px (Γ0 = 1) for all x ∈ S and

ρ(t)Px [Γt |Fs] −→
t→∞ Ms in L1(Px ) for all x ∈ S and all s ≥ 0. (5.2)

Then the weight Γ satisfies (A1) and (A2′) with

ϕΓ (x) = lim
t→∞ ρ(t)Px [Γt ], (5.3)

and the following penalisation limit with constant clock holds:

Γt · Px

Px [Γt ] −→
t→∞ PΓ

x along (Fs)s≥0 for all x ∈ SΓ . (5.4)

Proof The convergence (5.2) for s = 0 becomes (5.3). By the multiplicativity Γt =
Γs · (Γt−s ◦ θs) and by the Markov property, we have

ρ(t)Px [Γt |Fs] = ρ(t)

ρ(t − s)
Γs · ρ(t − s)PXs [Γt−s] −→

t→∞ Γsϕ
Γ (Xs) in Px -a.s..

(5.5)
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which yields Ms = Γsϕ
Γ (Xs). Hence we have

Px [Γtϕ
Γ (Xt )] = lim

u→∞ ρ(u)Px [Px [Γu |Ft ]] = lim
u→∞ ρ(u)Px [Γu] = ϕΓ (x), (5.6)

which shows that (A1) is satisfied. As ρ(t) → ∞, we obtain (A2′). For s > 0 and
for a bounded Fs-measurable functional Fs , we obtain

ρ(t)Px [FsΓt ] = Px [Fsρ(t)Px [Γt |Fs]] −→
t→∞ Px [Fs Ms] = ϕΓ (x)PΓ

x [Fs]. (5.7)

This shows (5.4). �

5.2 Exponential Clock

Conditioning and penalisation problems with exponential clock have been widely
studied; see [3, 4, 9, 11, 19]. We give a general framework for them.

Proposition 5.2 Let r(q) be a function defined for small q > 0 such that r(q) → ∞
as q ↓ 0. We abuse Px for the extended probability measure of Px supporting a
standard exponential variable e independent of (Ft )t≥0 and set e(q) = e/q for q > 0.
Suppose there exists a process (Ms)s≥0 such that Px (M0 > 0) = Px (Γ0 = 1) for all
x ∈ S and

lim
q↓0 r(q)Px [Γe(q)|Fs] = lim

q↓0 r(q)Px [Γe(q)1{e(q)>s}|Fs] = Ms in L1(Px )

for all x ∈ S and all s ≥ 0. (5.8)

Then the weight Γ satisfies (A1) and (A2) with

ϕΓ (x) = lim
q↓0 r(q)Px [Γe(q)], (5.9)

and the following penalisation limit with exponential clock holds:

lim
q↓0

Γe(q) · Px

Px [Γe(q)] = lim
q↓0

Γe(q)1{e(q)>s} · Px

Px [Γe(q); e(q) > s] = PΓ
x along (Fs)s≥0 for all x ∈ SΓ .

(5.10)

Proof The convergence (5.8) for s = 0 becomes (5.9). By the multiplicativity Γt =
Γs · (Γt−s ◦ θs), by the Markov property and by the memoryless property

e(q) − s given {e(q) > s} law= e(q), (5.11)
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we have

r(q)Px [Γe(q)1{e(q)>s}|Fs] =e−qsr(q)Px [Γe(q)+s |Fs] (5.12)

=e−qsΓsr(q)PXs [Γe(q)] −→
q↓0 Γsϕ

Γ (Xs) Px -a.s.,

(5.13)

which yields Ms = Γsϕ
Γ (Xs). Hence we obtain

Px [Γtϕ
Γ (Xt )] = Px [Mt ] = lim

q↓0 r(q)Px [Px [Γe(q)|Ft ]]
= lim

q↓0 r(q)Px [Γe(q)] = ϕΓ (x), (5.14)

which shows that (A1) is satisfied. As r(q) → ∞, we obtain (A2). For s > 0 and for
a bounded Fs-measurable functional Fs , we obtain

r(q)Px [FsΓe(q)] = Px [Fsr(q)Px [Γe(q)|Fs]] −→
q↓0 Px [Fs Ms] = ϕΓ (x)PΓ

x [Fs].
(5.15)

This shows (5.10). �

6 Brownian Penalisation Revisited

Let us look at some results of Roynette et al. [12, 13] and Najnudel et al. [8] in our
framework.

Let {B = (Bt )t≥0, (Wx )x∈R} denote the canonical representation of the one-
dimensional Brownian motion with Wx (B0 = x) = 1. Set Bt = sups≤t Bs and let
Lt denote the local time of B at 0. For the shift operator on the path space, we have

Bt+s = Bt ◦ θs, Bt+s = Bs ∨ (Bt ◦ θs), Lt+s = Ls + (Lt ◦ θs). (6.1)

For a technical reason, we set as the state space

S = {(x, y, l) ∈ R
3 : y ≥ x, l ≥ 0} (6.2)

and consider the coordinate process X = (Xt )t≥0 = (X B
t , X sup

t , X lt
t )t≥0 on the space

of càdlàg paths from [0,∞) to S. Writing a ∨ b = max{a, b}, we define P(x,y,l) by
the law onD of (B, y ∨ B, l + L) under Wx , and adopt the notation of Sect. 2. By the
identities (6.1), we see that the process {X,F∞, (P(x,y,l))(x,y,l)∈S} is a strongMarkov
process with respect to the augmented filtration.

(1) Supremumpenalisation. For an integrable function f : R → [0,∞) such that for
some −∞ < y0 ≤ ∞ we have f (y) > 0 for y ≤ y0 and f (y) = 0 for y > y0,
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we set

Γ
sup, f

t = f (X sup
t )

f (X sup
0 )

1{X sup
t ≤y0}, Ssup, f = {(x, y, l) ∈ S : y ≤ y0}. (6.3)

Then we see that Γ sup, f is a multiplicative weight with SΓ sup, f = Ssup, f (in what
follows we will omit similar remarks). By Roynette–Vallois–Yor [12, Theorem
3.6], we see that all the assumptions of Proposition 5.1 are satisfied with ρ(t) =√

π t/2 and

ϕsup, f (x, y, l) = y − x + 1

f (y)

y0∫

y

f (u)du, (x, y, l) ∈ Ssup, f , (6.4)

so that (A1) and (A2′) are satisfied. By the discussion of Roynette et al. [12,
Sect. 1.4], we can derive that

P sup, f
(x,y,l)(X sup

∞ > a) =
∫ y0

a f (u)du

(y − x) f (y) + ∫ y0
y f (u)du

, y ≤ a < ∞, (6.5)

and hence that [X sup
t = X sup

∞ for large t] and [Γ sup, f
t → Γ

sup, f
∞ > 0] P sup, f

(x,y,l)-a.s.,
which shows (A3). By (ii) of Proposition 2.1, we obtain the following known
results:

P sup, f
(x,y,l)

(

X B
t → −∞,

ϕsup, f (Xt )

|X B
t | → 1

)

= 1. (6.6)

(2) Local time penalisation. For an integrable function f : [0,∞) → [0,∞) such
that for some 0 ≤ l0 ≤ ∞ we have f (l) > 0 for l ≤ l0 and f (l) = 0 for l > l0,
we set

Γ
lt, f

t = f (X lt
t )

f (X lt
0 )
1{X lt

t ≤l0}, Slt, f = {(x, y, l) ∈ S : l ≤ l0}. (6.7)

By Roynette et al. [12, Theorem 3.13 and Lemma 3.15], we see that all the
assumptions of Proposition 5.1 are satisfied with ρ(t) = √

π t/2 and

ϕlt, f (x, y, l) = |x | + 1

f (l)

l0∫

l

f (u)du, (x, y, l) ∈ Slt, f , (6.8)

so that (A1) and (A2′) are satisfied. Moreover, (A3) is also satisfied and
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P lt, f
(x,y,l)

(
X B

t → ±∞) = x± f (l) + 1
2

∫ l0
l f (u)du

|x | f (l) + ∫ l0
l f (u)du

(6.9)

with x± = max{±x, 0}. It is then obvious that

P lt, f
(x,y,l)

(

|X B
t | → ∞,

ϕlt, f (Xt )

|X B
t | → 1

)

= 1. (6.10)

Note that the conditioning to avoid zero, which we have mentioned in Introduc-
tion, can be regarded as a special case of the local time penalisation with the
weight 1{X lt

t =0} = Γ
lt, f

t for f (l) = 1{l=0}.
(3) Kac killing penalisation with integrable potential. For an integrable function

v : R → [0,∞) satisfying

0 <

∫

R

(1 + |x |)v(x)dx < ∞, (6.11)

we set

Γ Kac,v
t = exp

⎛

⎝−
t∫

0

v(X B
s )ds

⎞

⎠ , SKac,v = S. (6.12)

By Roynette et al. [13, Theorem 4.1], we see that all the assumptions of Propo-
sition5.1 are satisfied with ρ(t) = √

π t/2 and ϕKac,v(x, y, l) = ϕv(x) where ϕv

is the unique solution to the Sturm–Liouville equation

1

2

d2ϕv

dx2
(x) = v(x)ϕv(x), lim

x→±∞
dϕv

dx
(x) = ±1. (6.13)

so that (A1) and (A2′) are satisfied. Moreover, (A3) is also satisfied and

PKac,v
(x,y,l)

(
X B

t → −∞) = 1

Cv

∞∫

x

dy

ϕv(y)2
, PKac,v

(x,y,l)

(
X B

t → ∞) = 1

Cv

x∫

−∞

dy

ϕv(y)2

(6.14)

with Cv = ∫
R

dy
ϕv(y)2

. By (6.13) it is obvious that

PKac,v
(x,y,l)

(

|X B
t | → ∞,

ϕKac,v(Xt )

|X B
t | → 1

)

= 1. (6.15)
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(4) Kac killing penalisation with Heaviside potential. For λ > 0, we set

Γ Hev,λ
t = exp

⎛

⎝−λ

t∫

0

1{X B
s >0}ds

⎞

⎠ , SKac,v = S. (6.16)

By Roynette et al. [13, Theorem 5.1 and Example 5.4], we see that all the
assumptions of Proposition 5.1 are satisfied with ρ(t) = √

π t/2 and

ϕHev,λ(x, y, l) =
{

1√
2λ
e−√

2λx (x ≥ 0),
1√
2λ

− x (x < 0),
(6.17)

so that (A1) and (A2′) are satisfied. Moreover, (A3) is also satisfied and

PHev,λ
(x,y,l)

(

X B
t → −∞,

ϕHev,λ(Xt )

|X B
t | → 1

)

= 1. (6.18)

(∗) The universality class of Brownian penalisation. Take Et = exp(−X lt
t ) as a

special case of (2) with f (l) = e−l . (Note that, by Najnudel et al. [8, Theorem
1.1.2], the corresponding unweighted measure PE

x coincides with Wx given
in Introduction.) By the above argument, we see that all the assumptions of
Theorem4.1 are satisfied with E and Γ = Γ sup, f , Γ lt, f , Γ Kac,v or Γ Hev,λ, so
that we obtain the following known result:

PΓ
(x,y,l) = 1{Γ∞>0} · PE

(x,y,l) for all (x, y, l) ∈ SΓ . (6.19)

We remark the following obvious facts: It holds up toPE
(x,y,l)-null sets that

D = {X B
t → ∞ or X B

t → −∞}, (6.20)

and that the event {Γ∞ > 0} becomes

{Γ sup, f
∞ > 0} ={X B

t → −∞ and X sup
∞ ≤ y0}, (6.21)

{Γ lt, f
∞ > 0} ={[X B

t → ∞ or X B
t → −∞] and X lt

∞ ≤ l0}, (6.22)

{Γ Kac,v
∞ > 0} ={X B

t → ∞ or X B
t → −∞}, (6.23)

{Γ Hev,λ
∞ > 0} ={X B

t → −∞}. (6.24)
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7 Lévy Penalisation Revisited

Let us look at some results of Yano et al. [20, 21], Yano [22] and Takeda and Yano
[16] in our framework.

Let {Z=(Zt )t≥0, (P Z
x )x∈R}denote the canonical representationof one-dimensional

strictly α-stable process of index 1 < α < 2, skewness −1 ≤ β ≤ 1 and scaling
parameter cθ > 0:

P Z
0 [eiλZt ] = exp

(
−cθ |λ|α

(
1 − iβsgn(λ) tan

πα

2

))
, λ ∈ R. (7.1)

(For the facts in this paragraph, see e.g. [2, Sect. VIII].) We assume that 1 < α < 2
so as to exclude the Brownian case and to assure that zero is regular for itself:Writing
T0 = inf{t > 0 : Zt = 0} for the hitting time of zero, we have

P Z
0 (T0 > 0) = 1. (7.2)

Set Zt = sups≤t Zs and let Lt denote the local time of Z at 0. Let

ρ := P Z
0 (Z1 > 0) = 1

2
+ 1

πα
arctan

(
β tan

πα

2

)
∈ [1 − 1/α, 1/α] (7.3)

and let k denote the positive constant such that

lim
y→∞ yα P Z

0 (Z > y) = k. (7.4)

We set as the state space

S = {(x, y, l) ∈ R
3 : y ≥ x, l ≥ 0} (7.5)

and consider the coordinate process X = (Xt )t≥0 = (X Z
t , X sup

t , X lt
t )t≥0 on the space

of càdlàg paths from [0,∞) to S. We define P(x,y,l) by the law onD of (Z , y ∨ Z , l +
L) under P Z

x , and adopt the notation of Sect. 2.

(1) Supremum penalisation. For a non-increasing function f : R → [0,∞) such
that for some −∞ < y0 ≤ ∞ we have f (y) > 0 for y ≤ y0 and f (y) = 0 for
y > y0, and

y0∫

0

xαρ−1 f (y)dy < ∞, (7.6)
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we set

Γ
sup, f

t = f (X sup
t )

f (X sup
0 )

1{X sup
t ≤y0}, Ssup, f = {(x, y, l) ∈ S : y ≤ y0}. (7.7)

By Yano et al. [21, Theorem 5.1], we see that all the assumptions of Proposi-
tion5.1 are satisfied with ρ(t) = tρ/k and

ϕsup, f (x, y, l) = (y − x)αρ + αρ

f (y)

y0∫

y

f (u)(u − x)αρ−1du, (x, y, l) ∈ Ssup, f ,

(7.8)

so that (A1) and (A2′) are satisfied. In the same way as that of deducing (6.5),
we see that [X sup

t = X sup
∞ for large t] and [Γ sup, f

t → Γ
sup, f
∞ > 0] P sup, f

(x,y,l)-a.s.,
which shows (A3). By (ii) of Proposition2.1 and by the dominated convergence
theorem, we obtain the following known results:

P sup, f
(x,y,l)

(

X Z
t → −∞,

ϕsup, f (Xt )

(−X Z
t )αρ

→ 1

)

= 1. (7.9)

Note that the special case of the supremum penalisation with the weight
1{X sup

t =0} = Γ
sup, f

t for f (l) = 1{y=0} corresponds to the conditioning to stay neg-
ative.

(2) Local time penalisation. For an integrable function f : [0,∞) → [0,∞) such
that for some 0 ≤ l0 ≤ ∞ we have f (l) > 0 for l ≤ l0 and f (l) = 0 for l > l0,
we set

Γ
lt, f

t = f (X lt
t )

f (X lt
0 )
1{X lt

t ≤l0}, Slt, f = {(x, y, l) ∈ S : l ≤ l0}. (7.10)

By Takeda and Yano [16] and by certain computation in [18, Sect. 5], we see
that all the assumptions of Proposition 5.2 are satisfied with r(q) = cr q1/α−1 for
a certain constant cr > 0 and

ϕlt, f (x, y, l) = Cα,β(1 − βsgn(x))|x |α−1 + 1

f (l)

l0∫

l

f (u)du, (x, y, l) ∈ Slt, f

(7.11)

with a certain constant Cα,β > 0, so that (A1) and (A2) are satisfied. In the
same way as that of deducing (6.5), we see that [X lt

t = X lt∞ for large t] and
[Γ lt, f

t → Γ
lt, f
∞ > 0] P lt, f

(x,y,l)-a.s., which shows (A3). By (ii) of Proposition 2.1,
we obtain
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P lt, f
(x,y,l)

(

(1 − βsgn(X Z
t ))|X Z

t |α−1 → ∞,
ϕlt, f (Xt )

Cα,β(1 − βsgn(X Z
t ))|X Z

t |α−1
→ 1

)

= 1;
(7.12)

in particular,

P lt, f
(x,y,l)

(

X Z
t → −∞,

ϕlt, f (Xt )

(−X Z
t )α−1

→ 2Cα,1

)

=1 (if β = 1), (7.13)

P lt, f
(x,y,l)

(

X Z
t → ∞,

ϕlt, f (Xt )

(X Z
t )α−1

→ 2Cα,−1

)

=1 (if β = −1). (7.14)

In the case of−1 < β < 1, we have a stronger convergence result in Takeda and
Yano [16]:

P lt, f
(x,y,l)

(
lim X Z

t = lim sup X Z
t = lim sup(−X Z

t ) = ∞) = 1 if − 1 < β < 1.
(7.15)

Note that the special case of the local time penalisation with the weight 1{X lt
t =0} =

Γ
lt, f

t for f (l) = 1{l=0} corresponds to the conditioning to avoid zero. See [17] for
comparison of two types of conditionings for Lévy processes.
(∗) The universality classes of Lévy penalisation. By (7.9), it holds that

{Γ sup, f
∞ > 0} ={X Z

t → −∞ and X sup
∞ ≤ y0} up toPsup, f

(x,y,l)-null sets (7.16)

in any case of −1 ≤ β ≤ 1.
(∗1) Consider the case of −1 < β < 1. By (7.15), it holds that

{Γ lt,g
∞ > 0} = {lim X Z

t = lim sup X Z
t = lim sup(−X Z

t ) = ∞ and X lt
∞ ≤ y0}

up toP lt,g
(x,y,l)-null sets. (7.17)

This shows that the two σ -finite measures Psup, f
(x,y,l) and P lt,g

(x,y,l) are singular to each
other. Note that (7.9) and (7.15) imply

P sup, f
(x,y,l)

(
ϕlt,g(Xt )

ϕsup, f (Xt )
→ 0

)

= 1 (7.18)

because αρ > α − 1, so that the assumption of Theorem4.1 is not satisfied.
(∗2) Consider the case of β = 1, the spectrally positive case. Take Et =
exp(X sup

0 − X sup
t ) as a special case of (1) with f (y) = e−y . Then, since αρ = α − 1,

all the assumptions of Theorem4.1 are satisfied with E and Γ = Γ sup, f or Γ lt,g , so
that we conclude as a new result that
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PΓ
(x,y,l) = 1{Γ∞>0} · PE

(x,y,l) for all (x, y, l) ∈ SΓ . (7.19)

It holds up toPE
(x,y,l)-null sets that

D = {X Z
t → −∞}, (7.20)

and that the event {Γ∞ > 0} becomes

{Γ lt,g
∞ > 0} ={X Z

t → −∞ and X lt
∞ ≤ l0}. (7.21)

(∗3) Consider the case of β = −1, the spectrally negative case. Then

{Γ lt,g
∞ > 0} = {X Z

t → ∞ and X lt
∞ ≤ l0} up toP lt,g

(x,y,l)-null sets, (7.22)

which shows that Psup, f
(x,y,l) and P lt,g

(x,y,l) are singular to each other.

8 Langevin Penalisation Revisited

Let us look at some results of Profeta [10] in our framework.
Let {(B, A), (W(b,a))(b,a)∈R2} denote the canonical representation of the two-

dimensional diffusion (B, A) = (Bt , At )t≥0 where B is a Brownian motion starting
from b and

At = a +
t∫

0

Budu. (8.1)

This two-dimensional diffusion is a special case of the Langevin process and the
process A is called the integrated Brownian motion. Set At := sups≤t As .

We set

S = {(b, a, y) ∈ R
3 : y ≥ a} (8.2)

as the state space and consider the coordinate process

X = (Xt )t≥0 = (X B
t , X A

t , X sup
t )t≥0 (8.3)

on the space of càdlàg paths from [0,∞) to S. We define P(b,a,y) by the law on D of
(B, A, y ∨ A) under W(b,a), and adopt the notation of Sect. 2.
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We recall the confluent hypergeometric function (see [1, Chap. 13]):

U (α, β, z) = 1

Γ (α)

∞∫

0

e−zuuα−1(1 + u)β−α−1du, α > 0, β ∈ R, z > 0. (8.4)

It is easy to see that

d

dz
(zαU (α, β, z)) = −α(β − α − 1)zα−1U (α + 1, β, z). (8.5)

The following asymptotics are taken from [1, Formulae 13.5.2 and 13.5.8]:

lim
z→∞ zαU (α, β, z) = 1 (β ∈ R), lim

z↓0 zβ−1U (α, β, z) = Γ (β − 1)

Γ (α)
(1 < β < 2).

(8.6)

(1) Conditioning to stay negative. We write τ A = inf{t > 0 : X A
t ≥ 0} for the exit

time from (−∞, 0) for the process X A and set

Γ A
t = 1{τ A>t}, S A = {(b, a, y) ∈ S : y < 0} = {(b, a, y) ∈ R

3 : a ≤ y < 0}.
(8.7)

Bymodifying Profeta [10, Theorem 5], we see that all the assumptions of Propo-
sition 5.1 are satisfied with ρ(t) = c1t1/4 for a certain constant c1 > 0 and

ϕA(b, a, y) = h(−a,−b), (b, a, y) ∈ S A, (8.8)

with a continuous function h : (0,∞) × R → (0,∞) given as

h(x, y) =
{

( 92 x)1/6z1/3U ( 16 ,
4
3 , z) = y1/2z1/6U ( 16 ,

4
3 , z) (y > 0),

1
6 (

9
2 x)1/6z1/3U ( 76 ,

4
3 , z)e−z = 1

6 |y|1/2z1/6U ( 76 ,
4
3 , z)e−z (y < 0),

(8.9)

for x > 0 and z = 2
9

|y|3
x , so that (A1) and (A2′) are satisfied. Moreover, (A3) is

also satisfied and

P A
(b,a,y)

(
X B

t → −∞ and X A
t → −∞) = 1. (8.10)

Let us prove this fact, as the part [X B
t → −∞] was not mentioned in [10]. By

the formulae (8.6), we see that both z1/6U ( 16 ,
4
3 , z) and z1/6U ( 76 ,

4
3 , z)e−z are

bounded in z > 0, we obtain h(x, y) ≤ c2|y|1/2 for some constant c2 > 0. It
holds P A

(b,a,y)-a.s. that, by (ii) of Proposition 2.1,
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ϕA(Xt ) = h(−X A
t ,−X B

t ) → ∞, (8.11)

which yields [|X B
t | → ∞]. But [P A

(b,a,y)(X B
t → ∞) = 0], since [X B

t → ∞]

implies [X A
t = a + ∫ t

0 X B
s ds → ∞],which contradicts the fact that X A

0 = a < 0
and τ A = ∞ by (i) of Proposition 2.1. Hence we obtain (8.10).

(2) Supremum penalisation. Let f : R → [0,∞) be a continuous function such that
for some−∞ < y0 ≤ 0, we have f (y) > 0 for y ≤ y0 and f (y) = 0 for y > y0.
Set

Γ
sup, f

t = f (X A
t )

f (X A
0 )

1{X A
t ≤y0},

Ssup, f = {(b, a, y) ∈ S : y ≤ y0}
= {(b, a, y) ∈ R

3 : a ≤ y < y0}. (8.12)

By Profeta [10, Proposition 18 and Theorem 19], we see that all the assumptions
of Proposition5.1 are satisfied with ρ(t) = c1t1/4 and

ϕsup, f (b, a, y) = h(y − a,−b) + 1

f (y)

y0∫

y

f (w)
∂

∂w
h(w − a,−b)dw,

(b, a, y) ∈ Ssup, f , (8.13)

so that (A1) and (A2′) are satisfied. By a similar argument to that deducing (6.5),
we see that [X sup

t = X sup
∞ for large t] P sup, f

(b,a,y)-a.s., and that [Γ
sup, f

t → Γ
sup, f
∞ > 0]

P sup, f
(b,a,y)-a.s., which shows (A3). By the fact that ∂h

∂w
≥ 0, we have

ϕsup, f (b, a, y) ≤
(

sup
y≤w≤y0

f (w)

)

h(y0 − a,−b). (8.14)

By a similar argument after (8.11), and by (ii) of Proposition2.1, we can deduce

P sup, f
(b,a,y)

(
X B

t → −∞ and X A
t → −∞) = 1. (8.15)

(∗) The universality class of Langevin penalisation. We would like to compare the
three unweighted measures P A

(b,a,y), P
sup, f
(b,a,y) and P B

(b,a,y). Here we write τ B =
inf{t > 0 : X B

t ≥ 0} for the exit time from (−∞, 0) for the Brownian motion X B

and set

Γ B
t = 1{τ B>t}, SB = {(b, a, y) ∈ S : b < 0}. (8.16)

The penalisation for the weight Γ B is nothing else but the conditioning to stay
negative for the Brownian motion, so that we obtain ϕB(b, a, y) = −b. The penal-
ized probability P B

(b,a,y) is the minus times 3-dimensional Bessel process and
the corresponding unweighted measure is given as P B

(b,a,y) = (−b)P B
(b,a,y). Since
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X A
t = a + ∫ t

0 X B
u du, we obtain

P B
(b,a,y)

(
X B

t → −∞ and X A
t → −∞) = 1. (8.17)

We prove the following proposition with conjectured assumptions.

Proposition 8.1 Set Zt = (−X B
t )3

(−X A
t )

. Then the following assertions hold:

(i) Suppose the following conjecture is true:

Zt

P A
(b,a,y)−→

t→∞ ∞ and Zt

Psup, f
(b,a,y)−→

t→∞ ∞ for (b, a, y) ∈ Ssup, f . (8.18)

Then P
sup, f
(b,a,y) and P A

(b,a,y) coincide for (b, a, y) ∈ Ssup, f (⊂ S A).
(ii) Suppose the following conjecture is true:

Zt

P A
(b,a,y)−→

t→∞ ∞ and Zt

P B
(b,a,y)−→

t→∞ ∞ for (b, a, y) ∈ S A ∩ SB . (8.19)

Then P A
(b,a,y) and P B

(b,a,y) are singular to each other for (b, a, y) ∈ S A ∩ SB.

Proof (i) Set Z sup
t = (−X B

t )3

(X sup
t − X A

t )
. Then Zt

P−→
t→∞ ∞ both for P = P A

(b,a,y) and for

P = P sup, f
(b,a,y). Since X B

t < 0 for large t , we have

h(X sup
t − X A

t ,−X B
t )

h(−X A
t ,−X B

t )
= (Z sup

t )1/6U ( 16 ,
4
3 , Z sup

t )

(Zt )1/6U ( 16 ,
4
3 , Zt )

P−→
t→∞ 1 (8.20)

by the assumption. Noting that (8.5) implies

∂

∂x
h(x, y) = c3x−5/6 · z7/6U ( 76 ,

4
3 , z) ≤ c4x−5/6, x, y > 0, z = 2

9

|y|3
x
(8.21)

for some constants c3, c4 > 0, we obtain

ϕsup, f (Xt )

ϕA(Xt )

P−→
t→∞ 1 (8.22)

both for P = P A
(b,a,y) and for P = P sup, f

(b,a,y). We may now apply Theorem 4.1 for
E = Γ A and Γ = Γ sup, f , and thus we obtain the desired result.

(ii) By the assumption, we have
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Rt := Γ A
t ϕA(Xt )

ϕB(Xt )
= Γ A

t · (−X B
t )1/2 · (Zt )

1/6U ( 16 ,
4
3 , Zt )

(−X B
t )

P−→
t→∞ 0 (8.23)

both for P = P A
(b,a,y) and for P = P B

(b,a,y). By the same argument of Theorem
4.1 with E = Γ B and Γ = Γ A, we obtain

P B
(b,a,y)

[

Fs · Rt

1 + Rt + Γ B
t

]

= ϕA(b, a, y)

ϕB(b, a, y)
P A

(b,a,y)

[

Fs · Γ B
t

1 + Rt + Γ B
t

]

.

(8.24)

Letting t → ∞, we obtain P A
(b,a,y)(Γ

B∞ > 0) = 0. Since P B
(b,a,y)(Γ

B∞ > 0) = 1,
we obtain the desired result. �
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Appendix: Extension of Transformed Probability Measures

We discuss in general extension of the transformed probability measures given by
local absolute continuity like (2.11). Recall that D is the space of càdlàg paths from
[0,∞) to a locally compact separable metric space S and X is the coordinate process
on D.

Theorem A.1 Let P be a probability measure on (D, σ (X)) and let (Mt )t≥0 be
a non-negative martingale such that P[Mt ] = 1 for all t ≥ 0. Then there exists a
unique probability measure Q on (D, σ (X)) such that

Q|F X
t

= Mt · P|F X
t
, t ≥ 0, (A.1)

where F X
t = σ(Xs : s ≤ t) is the natural filtration of X.

Proof Since
⋃

t≥0 F X
t is a π -system generating σ(X), uniqueness of Q follows

immediately from Dynkin’s π -λ theorem.
Let us prove existence of Q. For n ∈ N, let Dn denote the space of càdlàg paths

from [n − 1, n) to S, equipped with the σ -field Bn generated by the coordinate
process on Dn . We thus see that D is the product space of {Dn}:

D =
∞∏

n=1

Dn, σ (X) = σ

(
n∏

k=1

Bk ×
∞∏

k=n+1

Dk : B1 ∈ B1, . . . , Bn ∈ Bn; n ∈ N

)

.

(A.2)
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Let μn denote the law on D1 × · · · × Dn , the space of càdlàg paths from [0, n) to
S, of (Xt )0≤t<n under Mn · P|F X

n
. We then see that {μn} is a projective sequence:

μn+1(· × Dn+1) = μn, n ∈ N. (A.3)

We may apply Daniell’s extension theorem (cf. [7, Theorem 6.14]) to see that there
exists a sequence of randomvariables {ξn} defined on a probability space (Ω ′,F ′, P ′)
such that ξn for each n takes values in Dn and the joint distribution of (ξ1, . . . , ξn)

under P ′ for each n coincides with μn .
We now define Q by the law on D of (ξ1, ξ2, . . .) under P ′. For any A ∈ F X

n
for each n ∈ N, we can find a subset B of D1 × · · · × Dn which belongs to
σ
(∏n

k=1 Bk : B1 ∈ B1, . . . , Bn ∈ Bn
)
such that A = {(Xt )0≤t<n ∈ B}, so that we

obtain

Q(A) = P ′((ξ1, . . . , ξn) ∈ B) = μn(B) = P
[
Mn; (Xt )0≤t<n ∈ B

] = P[Mn; A] .
(A.4)

We thus conclude that Q is as desired. �

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Reprint of the 1972 edn (Dover Publications Inc., New York, 1992)

2. J. Bertoin, Lévy Processes (Cambridge University Press, Cambridge, 1996)
3. L. Chaumont, Conditionings and path decompositions for Lévy processes. Stoch. Process.

Appl. 64(1), 39–54 (1996)
4. L. Chaumont, R.A. Doney, On Lévy processes conditioned to stay positive. Electron. J. Probab.

10(28), 948–961 (2005)
5. R.K. Getoor, Markov Processes: Ray Processes and Right Processes. Lecture Notes in Math-

ematics, vol. 440 (Springer, Berlin, New York, 1975)
6. P. Groeneboom, G. Jongbloed, J.A. Wellner, Integrated Brownian motion, conditioned to be

positive. Ann. Probab. 27(3), 1283–1303 (1999)
7. O. Kallenberg, Foundations of Modern Probability. Probability and its Applications, 2nd edn.

(Springer, New York, 2002)
8. J. Najnudel, B. Roynette, M. Yor, A Global View of Brownian Penalisations. MSJ Memoirs,

vol. 19 (Mathematical Society of Japan, Tokyo, 2009)
9. H. Pantí. On Lévy processes conditioned to avoid zero. ALEA Lat. Am. J. Probab. Math. Stat.

14(2), 657–690 (2017)
10. C. Profeta, Some limiting laws associatedwith the integratedBrownianmotion. ESAIMProbab.

Stat. 19, 148–171 (2015)
11. C. Profeta, K. Yano, Y. Yano, Local time penalizations with various clocks for one-dimensional

diffusions. J. Math. Soc. Japan 71(1), 203–233 (2019)
12. B. Roynette, P. Vallois, M. Yor, Limiting laws associated with Brownian motion perturbed by

its maximum, minimum and local time. II. Stud. Sci. Math. Hungar. 43(3), 295–360 (2006)
13. B. Roynette, P. Vallois, M. Yor, Limiting laws associated with Brownian motion perturbed by

normalized exponential weights. I. Stud. Sci. Math. Hungar. 43(2), 171–246 (2006)



558 K. Yano

14. B. Roynette, P. Vallois, M. Yor, Some penalisations of the Wiener measure. Jpn. J. Math. 1(1),
263–290 (2006)

15. B. Roynette, M. Yor, Penalising Brownian Paths. Lecture Notes in Mathematics, vol. 1969
(Springer, Berlin, 2009)

16. S. Takeda, K. Yano, Local time penalizations with various clocks for Lévy processes. Preprint,
arXiv:2203.08428

17. K. Yano, Two kinds of conditionings for stable Lévy processes, in Probabilistic Approach to
Geometry. Advanced Studies in Pure Mathematics, vol. 57 (Mathematical Society of Japan,
Tokyo, 2010), pp. 493–503

18. K. Yano, On harmonic function for the killed process upon hitting zero of asymmetric Lévy
processes. J. Math. Ind. 5A, 17–24 (2013)

19. K. Yano, Y. Yano, On h-transforms of one-dimensional diffusions stopped upon hitting zero,
in In Memoriam Marc Yor—Séminaire de Probabilités XLVII. Lecture Notes in Mathematics,
vol. 2137 (Springer, Cham, 2015), pp. 127–156

20. K. Yano, Y. Yano, M. Yor, Penalising symmetric stable Lévy paths. J. Math. Soc. Japan 61(3),
757–798 (2009)

21. K. Yano, Y. Yano, M. Yor, Penalisation of a stable Lévy process involving its one-sided supre-
mum. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 1042–1054 (2010)

22. Y. Yano, A remarkable σ -finite measure unifying supremum penalisations for a stable Lévy
process. Ann. Inst. Henri Poincaré Probab. Stat. 49(4), 1014–1032 (2013)


 -318 4954
a -318 4954 a
 
http://arxiv.org/abs/2203.08428


Asymptotic Behavior of Spectral
Functions for Schrödinger Forms
with Signed Measures

Masaki Wada

Abstract Let {Xt }t≥0 be the rotationally invariant α-stable process and define the
Schrödinger forms by two methods. In one method, the perturbation is given by
−(μ0 + λν) (λ ≥ 0), where bothμ0 and ν are positive andμ0 is critical. In the other
method, the perturbation is given byλμ (λ ∈ R), whereμ is a critical signedmeasure.
In this paper we consider the asymptotic behavior of the spectral functions defined
from these Schrödinger forms. The results are consistent with the differentiability of
the spectral functions given in Nishimori (Tohoku Math J 65:467–494, 2013, [5]) or
Takeda and Tsuchida (Trans Amer Math 359:4031–4054, 2007, [7]).
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1 Introduction

Let {Xt }t≥0 be the transient, rotationally invariant α-stable process on R
d with the

generator (−�)α/2 (0 < α < 2). Denote by K0∞ a certain class of positive measure
on R

d . Let (E,F) be the Dirichlet form corresponding to {Xt }t≥0 and suppose μ is
a signed measure in K0∞ − K0∞, i.e. both positive and negative parts of μ belongs to
K0∞. Then we define the Schrödinger form by

E(u, u) − λ

∫
Rd

u2(x)μ(dx), λ ∈ R

and the spectral function C(λ) is given by
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C(λ) = − inf

{
E(u, u) − λ

∫
Rd

u2(x)μ(dx)
∣∣∣

∫
Rd

u2(x)dx = 1

}
. (1)

There are quite a few of studies about the spectral functions. In [7], it is shown that the
spectral function C(λ) is differentiable if and only if 1 < d/α ≤ 2. They especially
show the differentiability atλ = λ0 = sup{λ | C(λ) = 0}. Themeasureλ0μ is said to
be critical. In [9] we gave a precise asymptotic behavior of C(λ) at λ = λ0 under the
condition that μ = V · m for V ∈ C∞

0 (Rd) and the Lebesgue measure m. Nishimori
[5] showed the differentiability of the spectral function defined differently from (1).
More precisely, he considered the Schrödinger form whose perturbation consists of
two different measures, i.e.

E(u, u) −
∫
Rd

u2(x)μ0(dx) − λ

∫
Rd

u2(x)ν(dx), λ ∈ R,

where both μ0 and ν belong toK0∞. He showed that the spectral function defined by

D(λ) = − inf

{
E(u, u) −

∫
Rd

u2(x)μ0(dx) − λ

∫
Rd

u2(x)ν(dx)
∣∣∣
∫
Rd

u2(x)dx = 1

}

(2)

is differentiable if and only if 1 < d/α ≤ 2.
In this paper, we give the asymptotic behavior of the spectral functionsC(λ) (resp.

D(λ)) at sup{λ | C(λ) = 0} (resp. sup{λ | D(λ) = 0}). We first give the asymptotic
behavior of D(λ) and the main result is as follows:

Theorem 1 Supposeμ0, ν ∈ K0∞ andμ0 satisfies criticality. Then the spectral func-
tion D(λ) admits the following asymptotics as λ ↓ 0 :

D(λ) ∼
(

α�( d2 )| sin( dα π)|〈h0, h0〉ν
21−dπ1− d

2 〈μ0, h0〉2
λ

) α
d−α

(1 < d/α < 2),

D(λ) ∼ �(α + 1)〈h0, h0〉ν
21−dπ− d

2 〈μ0, h0〉2
· λ

log λ−1
(d/α = 2),

D(λ) ∼ 〈h0, h0〉ν〈μ0, h0〉2
〈h0, h0〉m〈h0, h0〉μ0

· λ (d/α > 2).

Here A ∼ B stands for B/A → 1.

For the proof of this theorem, the precise asymptotic behavior of the resolvent kernel
for {Xt }t≥0 plays a crucial role. Thus the asymptotic behavior of D(λ) contains
precise multiple constants. Moreover, this result is the extension of that in [9]. Next
we also consider the asymptotic behavior of C(λ) and our main result is as follows:

Theorem 2 Suppose μ is a critical signed measure inK0∞ − K0∞. Then the spectral
function C(λ) admits the following asymptotics as λ ↓ 1 :
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c1(λ − 1)
α

d−α ≤ C(λ) ≤ c2(λ − 1)
α

d−α (1 < d/α < 2),

c1
λ − 1

log(λ − 1)−1
≤ C(λ) ≤ c2

λ − 1

log(λ − 1)−1
(d/α = 2),

c1(λ − 1) ≤ C(λ) ≤ c2(λ − 1) (d/α > 2).

Here c1 and c2 are appropriate positive constants.

Unlike D(λ), we cannot determine the precise multiple constants for C(λ). This is
because the measure μ contains both positive part μ+ and negative part μ−. For

estimates of C(λ), comparing the killed Dirichlet form E(u, u) +
∫
Rd

u2(x)μ−(dx)

plays a crucial role. Differently from {Xt }t≥0, we cannot describe the transition
density function of the killed process by μ− explicitly. However, this process can
regard as an α-stable like process in the sense of Chen and Kumagai [2] through
Doob’s h-transformation. Thus, the transition density function of the killed process
is comparable to that of {Xt }t≥0 for all the time and the space, which enables us to
obtain the two sided estimates in Theorem 2.

In the next section we review some basic properties such as the asymptotic behav-
ior of the resolvent of {Xt }t≥0, the classes of measures based on the Green kernel,
and so on. In the Sect. 3, we first treat time changed processes by measures, and its
Green operators based on [8]. Since these operators are compact, we can obtain the
asymptotic behavior of the principal eigenvalue, and then prove Theorem 1. In the
Sect. 4, we first show that killed processes by positive measures are α-stable like in
the sense of [2]. Then we give the upper and lower estimates of the spectral function
and prove Theorem 2. ci ’s are unimportant positive constants which may vary from
line to line.

2 Preliminaries

Let {Xt }t≥0 be the rotationally invariant α-stable process on R
d with the generator

(−�)α/2 (0 < α < 2). The corresponding Dirichlet form is given by

E(u, u) =
∫∫

Rd×Rd
(u(y) − u(x))2

Ad,α

|x − y|d+α
dxdy, Ad,α = α · 2α−2�((d + α)/2)

πd/2�(1 − α/2)
.

Denote by p(t, x, y) the transition density function of {Xt }t≥0. By the Fourier inverse
transformation, we have an expression of p(t, x, y) as follows:

p(t, x, y) = Bd,αt
− d

α g

( |x − y|
t1/α

)
, Bd,α = �(d/α)

2d−1απd/2�(d/2)
, (3)

where g(w) is a function satisfying
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g(0) = 1, g(w) � 1 ∧ w−d−α, g(0) − g(w) ≤ c2w
2.

We assume the transience of {Xt }t≥0, namely α < d. Then we can consider the
Green kernel G(x, y) and define some classes of measures.

Definition 1 (1) A positive smooth measure μ is said to be in the Kato-class if for
any ε > 0 there exists dε > 0 such that

sup
x∈Rd

∫

|x−y|≤dε

G(x, y)μ(dy) < ε.

(2) A positive smooth measure μ is said to be Green-tight if for any ε > 0 there
exists Dε > 0 such that

sup
x∈Rd

∫

|y|≥Dε

G(x, y)μ(dy) < ε.

(3) A positive smooth measure μ is said to be of finite 0-order energy if

∫∫
Rd×Rd

G(x, y)μ(dy)μ(dx) < ∞.

In the sequel, the measure μ is said to be in the class K0∞ if μ satisfies the three
conditions in Definition 1. We denote by Fe the extended Dirichlet space, i.e.

Fe = {u | {un}∞n=1 ⊂ F s.t. lim
n→∞ un = u a.e.}.

We also define the criticality of the measure as follows:

Definition 2 (1) A positive measure μ ∈ K0∞ is said to be critical if it satisfies

inf

{
E(u, u)

∣∣∣ u ∈ Fe,

∫
Rd

u2dμ = 1

}
= 1.

(2) A signed measure μ = μ+ − μ− ∈ K0∞ − K0∞ is said to be critical if it satisfies

inf

{
E(u, u) +

∫
Rd

u2dμ−
∣∣∣ u ∈ Fe,

∫
Rd

u2dμ+ = 1

}
= 1.

The following lemma is shown in [7] as the compact embedding theorem.

Lemma 1 For μ ∈ K0∞, the extended Dirichlet space Fe is compactly embedded
into L2(μ).

For β ≥ 0, μ ∈ K∞
0 and f ∈ L2(μ), define

Gβ( f μ)(x) =
∫
Rd

Gβ(x, y) f (y)μ(dy), (4)
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where Gβ(x, y) is the β-order resolvent kernel given by

Gβ(x, y) =
∫ ∞

0
e−βt p(t, x, y)dt.

Ifβ = 0, we denoteG0(x, y) byG(x, y). ThenGβ( f μ) ∈ Fe, which implies that (4)
defines a compact operator on L2(μ). In order to calculate the principal eigenvalue of
the compact operators using the perturbation theory in [4], the asymptotic expansion
of the resolvent kernel Gβ(x, y) as β → 0 plays a crucial role. We close this section
mentioning the asymptotic expansion of the resolvent kernel. For detail, see [10,
Lemma 3.2].

Lemma 2 The resolvent kernel Gβ(x, y) admits the asymptotic expansion as fol-
lows:

Gβ(x, y) = G(x, y) − 21−dπ1−d/2

α�(d/2)| sin(dπ/α)|β
d
α
−1 + Eβ(x, y), (1 < d/α < 2),

Gβ(x, y) = G(x, y) − 21−dπ−d/2

�(α + 1)
β logβ−1 + Eβ(x, y), (d/α = 2),

Gβ(x, y) = G(x, y) − β

∫ ∞

0
tp(t, x, y)dt + Eβ(x, y), (d/α > 2),

where Eβ(x, y) has the smaller order of β than each second term for fixed x and y.
In particular, Gβ(x, y) admits the lower estimate as follows:

Gβ(x, y) ≥ G(x, y) − 21−dπ1−d/2

α�(d/2)| sin(dπ/α)|β
d
α
−1, (1 < d/α < 2),

Gβ(x, y) ≥ (1 − c1β)G(x, y) − 21−dπ−d/2

�(α + 1)
β logβ−1 − c2β, (d/α = 2),

Gβ(x, y) ≥ G(x, y) − β

∫ ∞

0
tp(t, x, y)dt, (d/α > 2).

3 The Spectral Function of a Schrödinger Form
with Positive Measures

In this section, we treat two positive measuresμ0, ν ∈ K0∞ and assume the criticality
ofμ0 based on the former of Definition 2. For λ ≥ 0, we define the Schrödinger form

E(u, u) −
∫
Rd

u2dμ0 − λ

∫
Rd

u2dν

and consider the spectral function
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D(λ) = − inf

{
E(u, u) −

∫
Rd

u2dμ0 − λ

∫
Rd

u2dν

∣∣∣ u ∈ F,

∫
Rd

u2(x)dx = 1

}
. (5)

For λ > 0, it follows that D(λ) > 0 and there exists hλ ∈ F attaining the infimum
of (5) by [6, Theorem 2.8]. Moreover, there exists h0 ∈ Fe such that

E(h0, h0) −
∫
Rd

h20dμ0 = 0.

We can characterize the function hλ by the following lemma:

Lemma 3 For λ ≥ 0, hλ is the principal eigenfunction of the compact operator on
L2(μ0 + λν)

KD(λ) f (x) =
∫
Rd

GD(λ)(x, y) f (y)(μ0 + λν)(dy), f ∈ L2(μ0 + λν).

Moreover, hλ admits the principal eigenvalue 1 for all λ ≥ 0.

Proof First, we have the equality

ED(λ)(hλ, hλ) =
∫
Rd

h2λdμ0 + λ

∫
Rd

h2λdν = ED(λ)(GD(λ)hλ(μ0 + λν), hλ).

Then there exists a function kλ ∈ L2(μ0 + λν) such that GD(λ)hλ(μ0 + λν) = hλ +
kλ m-a.e. and ED(λ)(hλ, kλ) = 0. Moreover, we see that kλ ≡ 0, which implies the
desired result. Indeed, the property of hλ and the spectral function D(λ) imply

ED(λ)(hλ + kλ, hλ + kλ) ≥
∫
Rd

(hλ + kλ)
2d(μ0 + λν).

Since ED(λ)(hλ, kλ) = 0 and ED(λ)(hλ, hλ) =
∫
Rd

h2λd(μ0 + λν), we have

ED(λ)(kλ, kλ) ≥ 2
∫
Rd

hλkλd(μ0 + λν) +
∫
Rd

k2λd(μ0 + λν)

= 2ED(λ)(GD(λ)hλ(μ0 + λν), kλ) +
∫
Rd

k2λd(μ0 + λν)

= 2ED(λ)(hλ + kλ, kλ) +
∫
Rd

k2λd(μ0 + λν)

= 2ED(λ)(kλ, kλ) +
∫
Rd

k2λd(μ0 + λν).

Hence we have ED(λ)(kλ, kλ) = 0 and consequently kλ ≡ 0. �
In the sequel we normalize hλ on L2(μ0 + λν). KD(λ) is the Green operator for

time change process of D(λ)-killed process by μ0 + λν. Moreover we can charac-
terize the corresponding Dirichlet form (Ěλ, F̌λ) by
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Ěλ(u, u) = ED(λ)(Pλ f, Pλ f ), (6)

F̌λ = {u ∈ L2(μ0 + λν) | u = f μ0 + λν-a.e. on Yλ for some f ∈ Fe}, (7)

Pλ f (x) = E
D(λ)
x [ f (XσYλ

)], (8)

where Yλ stands for the fine support of themeasureμ0 + λν and σYλ
is the first hitting

time of Yλ (cf. [3, Section6.2]). The relation between Fe and F̌λ is as follows: For
f ∈ Fe, we define the restriction map by r( f ) = f |Yλ

∈ F̌λ. For u ∈ F̌λ we define
the extension map by e(u) = Pλ f . Clearly we have

Ě(r( f ), r( f )) ≤ E( f, f ), Ěλ(u, u) = ED(λ)(e(u), e(u)).

In particular, the principal eigenfunction hλ can be extended the whole space of Rd

by harmonic method and we also denote this function by hλ.
We can also define another compact operator on L2(μ0) by

K̃D(λ) f (x) =
∫
Rd

GD(λ)(x, y) f (y)μ0(dy), f ∈ L2(μ0)

Denote by eD(λ) and h̃λ the principal eigenvalue and eigenfunction for K̃D(λ). We
also assume that the function h̃λ is normalized on L2(μ0). Since K̃D(λ) is the Green
operator for time change process of D(λ)-killed process by μ0, the same argument
in KD(λ) enables us to obtain the corresponding Dirichlet form, harmonic extension
of h̃λ, and so on.

Now we compare two equations as follows:

GD(λ)(hλμ0) + λGD(λ)(hλν) = hλ, (9)

GD(λ)(h̃λμ0) = eD(λ)h̃λ. (10)

Note that hλ, h̃λ ∈ Fe ⊂ L2(μ0) ∩ L2(ν) and consider the L2(μ0)-inner product of
them. Then we have

〈hλ, h̃λ〉μ0 = 〈GD(λ)hλ(μ0 + λν), h̃λ〉μ0 = 〈GD(λ)h̃λ(μ0 + λν), hλ〉μ0

= eD(λ)〈h̃λ, hλ〉μ0 + λ〈GD(λ)(h̃λν), hλ〉μ0

= eD(λ)〈hλ, h̃λ〉μ0 + λeD(λ)〈hλ, h̃λ〉ν .

Hence we obtain

1 − eD(λ)

λeD(λ)

= 〈hλ, h̃λ〉ν
〈hλ, h̃λ〉μ0

(11)

and the following lemma:

Lemma 4 As λ → 0 in (11), it follows that
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lim
λ→0

1 − eD(λ)

λeD(λ)

= 〈h0, h0〉ν
〈h0, h0〉μ0

. (12)

Proof Since the compact operators K̃D(0) and KD(0) are the same, it follows that
h̃0 = h0. By [8, Lemma 3.5], the eigenfunction h̃λ converges to h0 E-weakly as λ →
0. Since Fe is compactly embedded into both L2(μ0) and L2(ν), this convergence is
strongly in L2(μ0) and L2(ν).

In the same way of [8, Lemma 3.5], The eigenfunction hλ converges to h0 E-
weakly, so does L2(μ0)-strongly and L2(ν)-strongly as λ → 0. Thus we have (12).

Next we recall that the asymptotic behavior of principal eigenvalues eβ is given
via that of the resolvent kernel, i.e. Lemma 2.

Lemma 5 The principal eigenvalue eβ admits asymptotics as follows:

lim
β→0

1 − eβ

βd/α−1
= 21−dπ1− d

2 〈μ0, h0〉2
α�( d2 )| sin( dα π)|〈h0, h0〉μ0

, (1 < d/α < 2),

lim
β→0

1 − eβ

β logβ−1
= 21−dπ− d

2 〈μ0, h0〉2
�(α + 1)〈h0, h0〉μ0

, (d/α = 2),

lim
β→0

1 − eβ

β
= 〈h0, h0〉m

〈μ0, h0〉2 , (d/α > 2).

For details, see [10, Theorem 3.6].
(Proof of Theorem 1)

Combining the formula (12) and Lemma 5, we obtain the desired result. �
In particular, if ν = μ0 = V · m for V ∈ C0(R

d), we obtain [9, Theorem 1.1].

4 The Spectral Function of a Schrödinger Form
with a Signed Measure

In this section we consider the Schrödinger form with a signed measure μ = μ+ −
μ−. For λ ∈ R define the Schrödinger form and its spectral function as follows;

C(λ) = − inf

{
E(u, u) − λ

∫
Rd

u2(x)μ(dx)
∣∣∣

∫
Rd

u2(x)dx = 1

}
. (13)

By [7], there exist a negative numberλ− and a positive numberλ+ such thatC(λ) = 0
is equivalent to λ− ≤ λ ≤ λ+. Without loss of the generality, we can assume λ+ = 1,
that is, the criticality ofμmentioned in the latter of Definition 2.We here consider the
behavior of the spectral function C(λ) at the neighborhood of λ = 1 by estimating
the upper and lower bounds.

For the proof of the upper bound, we consider another spectral function
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C1(λ) = − inf

{
E(u, u) +

∫
Rd

u2(x)μ−(dx) − λ

∫
Rd

u2(x)μ+(dx)
∣∣∣

∫
Rd

u2(x)dx = 1

}
,

Noting the inequality

E(u, u) − λ

∫
Rd

u2(x)μ(dx) ≥ E(u, u) +
∫
Rd

u2(x)μ−(dx) − λ

∫
Rd

u2(x)μ+(dx)

for λ ≥ 1, we have C(λ) ≤ C1(λ). In the sequel we consider the upper estimate of
C1(λ). The spectral function C1(λ) is based on the Schrödinger form whose killing
term is fixed by μ− for λ ≥ 0. Thus, it is easier to obtain the upper estimate than
doing it for C(λ).

Denote by Aμ
t the additive functional in the Revuz correspondence with the mea-

sure μ. The following lemma is based on the Sect. 4 of [7].

Lemma 6 The Schrödinger form E(u, u) +
∫
Rd

u2(x)μ−(dx) admits the gauge

function

a(x) = Ex [exp(−Aμ−
∞ )].

Moreover, Jensen’s inequality implies

a(x) = Ex [exp(−Aμ−
∞ )] ≥ exp(−Ex [Aμ−

∞ ]) ≥ exp(− sup
x∈Rd

Ex [Aμ−
∞ ]) > 0.

In particular, there exists a positive constant c0 such that

c0 ≤ a(x) ≤ 1. (14)

The existence of the fundamental solution for the Schrödinger form E(u, u) +∫
Rd

u2(x)μ−(dx) follows from [1] and denote it by pμ−
(t, x, y). Using Doob’s h-

transformation as h(x) = a(x), we can define the bilinear form on L2(a2 · m) as
follows:

∫∫
Rd×Rd

(u(x) − u(y))2
Ad,αa(x)a(y)

|x − y|d+α
dxdy. (15)

The correspondingMarkovprocess admits the transitiondensity function
pμ−

(t, x, y)

a(x)a(y)
with respect to the measure a2 · m. Moreover, noting (14), we can regard (15) as a
Dirichlet form on L2(a2 · m) = L2(Rd). This Dirichlet form is an α-stable like pro-
cess in the sense of [2]. Thus [2, Theorem 1.1] implies the two-sided estimate

c1 p(t, x, y) ≤ pμ−
(t, x, y)a(y)

a(x)
≤ c2 p(t, x, y).
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Using (14) again, we have the following lemma:

Lemma 7 The fundamental solution pμ−
(t, x, y) admits the two-sided estimates

c3 p(t, x, y) ≤ pμ−
(t, x, y) ≤ c4 p(t, x, y).

for some positive constants c3 and c4.

Denote by Gμ−
(x, y) the corresponding Green kernel. Lemma 7 implies that

Gμ−
(x, y) is comparable to G(x, y), i.e. there exist positive constants c3 and c4 such

that

c3G(x, y) ≤ Gμ−
(x, y) ≤ c4G(x, y).

Thus, for β ≥ 0, we can define the compact operator on L2(μ+) by

Lβ f (x) =
∫
Rd

Gμ−
β (x, y) f (y)μ+(dy), (16)

where

Gμ−
β (x, y) =

∫ ∞

0
e−βt pμ−

(t, x, y)dt.

Denote by γβ the principal eigenvalue of the operator Lβ . Note that γ0 = 1 by the
criticality of μ and we obtain the asymptotic behavior of γβ as follows:

Lemma 8 The principal eigenvalue γβ satisfies the asymptotic behavior as follows:

c5 ≤ lim inf
β→0

1 − γβ

l(β)
,

where l(β) is defined by

l(β) =

⎧⎪⎨
⎪⎩

βd/α−1 (1 < d/α < 2)

β logβ−1 (d/α = 2)

β (d/α > 2)

.

Proof First, we consider the upper estimate of Gμ−
β (x, y). We obtain

Gμ−
β (x, y) = Gμ−

0 (x, y) −
∫ ∞

0
(1 − e−βt )pμ−

(t, x, y)dt

≤ Gμ−
0 (x, y) − c3

∫ ∞

0
(1 − e−βt )p(t, x, y)dt

= Gμ−
0 (x, y) − c3(G(x, y) − Gβ(x, y)). (17)
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By Lemma 2 and [10, Lemma 3.3], we see that γβ is at most 1 − c5l(β) and the
desired result follows.

Noting that γC1(λ) = 1

λ
, we obtain the following lemma similarly to Theorem 1.

Lemma 9 The spectral function C1(λ) admits the upper estimate

C1(λ) ≤

⎧⎪⎨
⎪⎩
c6(λ − 1)

α
d−α (1 < d/α < 2)

c6(λ − 1)/ log(λ − 1)−1 (d/α = 2)

c6(λ − 1) (d/α > 2)

.

Since C(λ) ≤ C1(λ), we obtain the upper bound for C(λ).
(Proof of Theorem 2)

We complete the proof of Theorem 2 by showing the lower bound of C(λ). Denote
by gλ ∈ F which attains the infimum of (13). We show that gλ corresponds to the
principal eigenfunction of the compact operator on L2(|μ|) defined by

SC(λ) f (x) =
∫
Rd

GC(λ)(x, y) f (y)μ(dy). (18)

Indeed, gλ satisfies the equality

EC(λ)(gλ, gλ) = λ

∫
Rd

g2λ(x)μ(dx) = λEC(λ)(GC(λ)(gλμ), gλ)

and GC(λ)gλμ = 1

λ
gλ by the similar argument of Lemma 3. We can also obtain

the equality
〈SC(λ)gλ, gλ〉|μ|

〈gλ, gλ〉|μ|
= 1

λ
and gλ is an eigenfunction. We show that

1

λ
is

the maximal eigenvalue of SC(λ). Let γ and g̃λ be the maximal eigenvalue and its

eigenfunction respectively. If γ >
1

λ
, the definition of the spectral function C(λ)

implies that

EC(λ)(g̃λ, g̃λ) ≥ λ

∫
Rd

g̃2λ(x)μ(dx) = λEC(λ)(GC(λ)(g̃λμ), g̃λ)

= λγ EC(λ)(g̃λ, g̃λ) > EC(λ)(g̃λ, g̃λ),

and this is a contradiction.
In the sequel, we consider the lower estimate for the principal eigenvalue of the

compact operator

Sβ f (x) =
∫
Rd

Gβ(x, y) f (y)μ(dy)
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for simplicity. Denoting by sβ the principal eigenvalue of Sβ , we have sC(λ) = 1

λ
.

Then, we obtain the inequality

sβ ≥ 〈Sβh0, h0〉|μ| =
∫
Rd

∫
Rd

Gβ(x, y)h0(y)μ(dy)h0(x)|μ|(dx), (19)

where h0(x) is the ground state (normalized in L2(|μ|)) of the critical Schrödignger
form E(u, u) −

∫
Rd

u2(x)μ(dx). Note that h0(x) is a positive function from [7,

Section4]. The right hand side of (19) admits the lower bound according to the
value of d/α. From Lemma 2, we see that for 1 < d/α < 2, the resolvent kernel
Gβ(x, y) has two-sided estimate

G(x, y) − c7β
d
α
−1 ≤ Gβ(x, y) ≤ G(x, y).

Hence we obtain
∫
Rd

∫
Rd

Gβ(x, y)h0(y)μ(dy)h0(x)|μ|(dx)

≥
∫
Rd

∫
Rd

(G(x, y) − c7β
d
α
−11E (y))h0(y)μ(dy)h0(x)|μ|(dx)

= 1 − c7β
d
α
−1〈μ+, h0〉〈|μ|, h0〉 = 1 − c8β

d
α
−1,

where E is the support of the measure μ+. This inequality implies

1 − 1

λ
≤ c8C(λ)

d
α
−1.

Combining the upper estimate of C(λ), we obtain the asymptotic behavior

C(λ) � (λ − 1)
α

d−α (λ → 1).

Similarly, for d/α = 2, the resolvent kernel Gβ(x, y) has two-sided estimate

(1 − c9β)G(x, y) − c10β logβ−1 ≤ Gβ(x, y) ≤ G(x, y)

from Lemma 2. Hence, for β < e−1, we obtain

sβ ≥ 1 − c9β − c11β logβ−1 ≥ 1 − c12β logβ−1

and

1 − 1

λ
≤ c12C(λ) logC(λ)−1.
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Combining the upper estimate of C(λ), we obtain the asymptotic behavior

C(λ) � (λ − 1)

log(λ − 1)−1
(λ → 1).

Finally, for d/α > 2, the resolvent kernel Gβ(x, y) has two-sided estimate

G(x, y) − β

∫ ∞

0
tp(t, x, y)dt ≤ Gβ(x, y) ≤ G(x, y)

from Lemma 2. Hence we obtain

sβ ≥ 1 − c13β

and

1 − 1

λ
≤ c13C(λ).

Combining the upper estimate of C(λ), we obtain the asymptotic behavior

C(λ) � λ − 1 (λ → 1). �

Now we obtained the asymptotic behavior of the spectral function as λ ↓ λ+. The
similar arguments enable us to obtain the asymptotic behavior as λ ↑ λ−, which
admits the same order of λ as Theorem 2. By these asymptotic behaviors, we know
that the differentiability of C(λ) is equivalent to the condition 1 < d/α ≤ 2. There-
fore our results are consistent with those of [7, Theorem 6.2 and Remark 6.3].
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