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Abstract Leguminous crops such as peas, beans, pigeon pea, lentils, and chickpea
are also called as pulses. Pulses constitute one of the paramount sources of dietary
proteins for major parts of the world’s population, especially in those regions
wherein consumption of animal protein is limited due to higher cost,
nonaccessibility, and religious or cultural beliefs. In general, quality protein is
mostly derived from animal source. The essential amino acids can also be obtained
from plant proteins especially legume proteins by pairing them with cereal grains/
proteins. Since, pulses have twofold high-protein content, compared with cereal
grains, pulses can make an excellent complementary food source of protein for
infants, children, and adults. In order to cater to the consumer’s demand for plant
proteins, various processing techniques have been employed to enhance the protein
quality including protein digestibility. Thermal processing (cooking, autoclaving,
heating, and microwave), germination, irradiation, fermentation, extrusion, and
spray- and freeze-drying methods have been adopted for improving the protein
quality, especially protein digestibility, in pulses. Biofortification and genetic engi-
neering approaches could also contribute as viable options to enhance essential
amino acids or quality protein in mature seeds. Adoption of economically feasible
options like processing methods discussed in this chapter and genetic enhancement
of essential amino acids as well as protein quality in pulses and legumes can greatly
help in alleviating malnutrition.
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6.1 Introduction

Leguminous crops such as beans, peas, lentils, pigeon pea, and chickpea are also
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called as pulses. Pulses constitute one of the principal sources of dietary proteins for
major parts of the world, especially in those regions wherein utilization of animal
protein is limited due to higher cost, non-accessibility, and religious or cultural
beliefs. In general, pulses contain crude protein in the range of 21–40% by weight
and are excellent source of protein than cereals like wheat, rice, barley, and quinoa
(Nosworthy and House 2017). The amino acid composition of various pulses is
presented in Table 6.1. Proteins are indispensable component of human nutrition and
play an essential role in biological and cellular processes. These processes regulate
the structural and functional role in living systems right from building tissues,
muscles, immunity, synthesis of hormones, enzymes, and energy. Proteins are
made of amino acids—among them, nine amino acids (histidine, isoleucine, leucine,
lysine, methionine, phenylalanine, threonine, tryptophan, and valine) are considered
as essential and are indispensable. Humans including other vertebrates cannot
synthesize these amino acids in their body using metabolic intermediates and
hence are required from daily dietary sources. Fundamentally, these essential
amino acids can be obtained from single complete protein or quality protein which
is generally derived from animal source. Protein quality is determined by taking into
account of composition of essential amino acids, and its digestibility and bioavail-
ability, and those proteins which satisfy the metabolic demands of these three
components are called as quality food proteins. The essential amino acids can be
obtained from incomplete proteins, especially plant-based proteins, wherein they are
limited by one or two essential amino acids; for example, methionine and tryptophan
are limited in pulses and lysine in cereals. In general, plant protein have digestibility
rate of 75–80% compared to animal proteins (90–95%) (Sa et al. 2019). If pulses are
paired with cereal grains/proteins, plant proteins can fulfill the daily requirement of
essential amino acids at affordable price. Globally, plant-based proteins are in high
demand not only because of its affordability, but most plant-based proteins contain a
negligible amount of saturated fat, are cholesterol-free, and have heme iron and
higher fiber; above all, they are an excellent source of antioxidants and other
phytochemicals, which help in reducing risk of heart, and obesity related diseases.
Several other studies have shown the advantages of daily intake of plant-based
protein compared with animal proteins for minimizing the blood pressure (Elliott
et al. 2006; Altorf-van der Kuil et al. 2012) and the risk of type 2 diabetes (Pounis
et al. 2010; Sluijs et al. 2010). Pulses hold double the quantity of protein, compared
with cereals, and hence, pulses can make an excellent complementary food source of
protein for infants, children, and adults to meet their daily protein requirement in the
diet.

In order to cater the consumer’s demand for plant-based proteins, several
processing techniques have been employed to enhance the protein quality, especially
the trait protein digestibility. Thermal processing (cooking, autoclaving, heating, and
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6.2 Protein Quality Assessment

The protein quality depends on the types of amino acids particularly the dietary

110 T. Vinutha et al.

microwave) is adopted for improving the protein quality though other processing
techniques like germination, irradiation, fermentation, extrusion, spray-drying and
freeze-drying methods are in vogue. The major challenge in utilizing plant proteins
is to develop novel food processing techniques that could successfully blend two or
more plant proteins to yield a complete protein and simultaneously enhances the
protein quality and functional properties. Furthermore, the developed plant protein
products must satisfy consumer’s acceptance in terms of taste, texture, flavor,
nutrition, and affordability. Protein quality enhancement is also been addressed by
genetic manipulation of seed storage proteins and engineering of synthetic proteins
which are tailored to meet the market specifications and consumer’s demand (Young
and Pellet 1994; Jiang et al. 2016). This chapter majorly focuses on strategies like
supplementation, processing techniques, and genetic tools that help in improving the
quality of plant proteins.

indispensable amino acids, the physiological utilization of specific amino acids after
digestion (or protein digestibility), as well as their bioavailability (Friedman 1996;
Butts et al. 2012). The digestibility of protein starts with hydration and solubilization
in the mouth. Once the food reaches the stomach, HCl denatures the proteins and
enables proteolytic digestive enzymes to act upon the peptide bond. The pepsinogen
produced in the stomach is converted into the pepsin (a type of protease enzyme) by
HCl, which helps in cleavage of food-derived proteins into peptides. The proteolytic
enzymes such as trypsin, chymotrypsin, carboxypeptidases, collagenase, and elas-
tase secreted by pancreas enter into the duodenum and further catalyze cleavage of
peptides into smaller peptides. The aminopeptidases and tripeptidases present in the
small intestine further cleave shorter peptides into amino acids or dipeptides and
tripeptides, which facilitates its absorption by the mucosal cells of intestine.
Unabsorbed or undigested peptide/nitrogenous residues are transported to the large
intestine (colon), wherein possibility of exposure of these substances into microbial
modifications within the large intestine can occur, prior to fecal excretion.

The nutritional quality of the dietary proteins can be assessed using a variety of
different markers and approaches such as amino acid score (AAS), nitrogen balance
(NB), protein efficiency ratio (PER), net protein ratio (or retention) (NPR), net
protein utilization (NPU), protein digestibility, biological value (BV), and protein
digestibility corrected amino acid score (PDCAAS) (Boye et al. 2012). These bio-
assays (PER, NPR, NPU), mostly performed on animal models such as laboratory
mice, are questionable as the amino acid requirements of these animals are quite
different from humans and also entail time and are expensive (Schaafsma 2012). The
in vitro protein digestibility (IVPD) methodology can be adopted to quickly evaluate



6.3 Processing Techniques to Improve the Protein
Digestibility

Germination is also called as a bioprocess involving a series of biochemical reactions

protein digestibility as compared to in vivo methods. The in vitro assays are simple,
inexpensive, reliable, and rapid. In vitro methods also provide information on
protein stability and quality and can be used for quick profiling of large number of
samples (Coda et al. 2017). The PDCAAS method, which was approved and
recommended by Food and Agriculture Organization (FAO) in 1991 to determine
protein quality, is most widely used method which considers two factors into
account such as availability of essential (indispensable) amino acids and protein
digestibility (Butts et al. 2012; Tavano et al. 2016). In PDCAAS, amino acid profile
of a food protein is compared to a reference value, and an amino acid score is
determined by the ratio of the limiting amino acid content in the test protein to that of
the reference protein. The amino acid score is then corrected by multiplying with
digestibility (true digestibility, fecal digestibility or in vitro digestibility) of the
protein to generate a PDCAAS value (Schaafsma 2012; Hughes et al. 2011).
There are different recommended patterns given by FAO or World Health Organi-
zation (WHO). For infants under 1 year of age, the recommended reference protein is
human milk protein and the reference pattern used for other age groups is the amino
acid scoring pattern recommended by FAO/WHO (1991) for children in the age
group of 2–5 years, since at this age the requirement of the essential amino acids by
human body is the maximum, and further, it decreases slightly with advancing age
(Schaafsma 2012).
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6.3.1 Germination

that facilitates changes in protein content by activating the transcriptional machinery
of seeds (Ohanenye et al. 2020; Weitbrecht et al. 2011). Seed protein quality is
determined by seed structure, primary structure of proteins, and antinutritional
compounds (phytic acids, polyphenols, trypsin–chymotrypsin inhibitors, and tan-
nins). Therefore, germination helps in improving protein digestibility in legume
seeds by disintegrating cell wall, stored proteins in the seed, and antinutrients.
Germination of lentil and faba bean favored protein digestibility causing reduced
content of antinutrients (phytic acid and tannins) (Expósito et al. 2021). Enhanced
true protein digestibility (TPD) in cooked black bean products was reported by
Kannan et al. (2011), and they observed no correlation between TDS and PDCAAS
due to limiting amino acid score. However, highest TPD and PDCAAS values were
observed for cooked germinated beans in combination with rice. Little effect of
germination on amino acid profile of cowpea was documented; however, increased
in vitro starch and protein digestibility with higher PDCAAS score were documented



6.3.2 Infrared Heating and Wet/Heat Moisture Treatment

Depending on the degree of processing and its types, protein digestibility and

in germinated cowpea flour-based weaning food (Jirapa et al. 2001). Germinated
mung bean, chickpea, and cowpea not only showed increased IVPD in the order of
15–25, 6–17, and 6–17%, but also influenced the higher protein content in the order
of 9–11, 11–16, and 8–11% (Uppal and Bains 2012). A sixth day after germination
caused increased protein content in chickpea (Cicer aretinium L.), lentil (Lens
culinaris Merr.), and yellow pea (Pisum sativum L.) (Xu et al. 2019). Indian bean
(Dolichos lablab var. lignosus) was found to have increased IVPD and PER after
32 h of germination and was comparable with that of reference protein casein
(Ramakrishna et al. 2008). In addition to protein, germination of green gram
(Vigna radiata (L.) R. Wilczek), cowpea (Vigna unguiculata (L.) Walp.), lentil
(Lens culinaris Medik.), and chickpea (Cicer arietinum L.) caused a significant
increase in in vitro iron, calcium bioavailability, thiamine content, and in vitro
protein digestibility (Ghavide and Prakash 2007). Increased methionine content
was reported in germinated soybean and lupin seeds (Escobedo et al. 2014; Chilomer
et al. 2010; Martínez-Villaluenga et al. 2010). Enhanced digestibility of protein was
due to germination and is majorly attributed to increased enzymatic hydrolysis of
protein that causes compositional changes in the constituents like phytic acid, poly-
phenols, and protease inhibitors (Chitra et al. 1996; Mbithi-Mwikya et al. 2000; Bau
et al. 1997).
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compositions of amino acid can be modified to improve the protein quality or
nutritional value of the food grains/flours. Significant increase in the PDCAAS
value from 0.65 to 0.71 was only found in desi chickpea when the sample was
subjected to tempering (20% moisture) and heating at 135 �C (Bai et al. 2018).
Enrichment of protein quality and digestibility of starch in navy bean and chickpea
seeds was reported utilizing infrared heating with tempering (Guldiken et al. 2022).
Total essential amino acid content increased in cowpea, pea, and kidney beans
following soaking, boiling, microwave cooking, and autoclaving treatments
(Khattab et al. 2009). The sulfur-containing amino acids were also increased, and
the autoclaving was found to be highly efficient in improving the protein quality in
terms of PER and amino acid scores. IVPD and PER improved by all cooking
treatments from 84 to 90% and 2.3 to approximately 2.5, respectively. The
improved IVPD was due to decreased antinutritional compounds (phytic acid,
tannins, trypsin inhibitor, hemagglutinin activity, and saponins) in chickpea
(Saleh and El-Adawy 2006). Soaking followed by cooking was found to be highly
effective in reducing trypsin inhibitor activity in Dolichos lablab beans, and
improved IVPD was observed in mung bean, chickpea, and cowpea sprouts upon
pressure cooking and microwaving (Osman 2007; Uppal and Bains 2012). These
processing treatments cause partial denaturation of protein, thereby providing easy



6.3.3 Extrusion

Extrusion is thermomechanical process which involves subjecting the food ingredi-

6.3.4 Irradiation

Food irradiation is a kind of processing technique, wherein food is exposed to

accessibility to the action of protease digestive enzymes. It also destroys protease
inhibitors at different levels of seed moisture and surface temperatures which in turn
affects the protein quality, functional, physicochemical, and nutritional properties
of the flours.
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ent to high-temperature and high-shearing processes and is predominantly used in
food texturization, commercially being used for the production of various snacks. It
is effective in reducing the activity of antinutritive compounds (Cotacallapa-
Sucapuca et al. 2021). The high temperature and shear pressure in the process induce
chemical and structural changes and cause denaturation of protein which in turn
affects protein digestibility. The impact of extrusion process on the protein or amino
acid content of various pulses was documented (Batista et al. 2010; Kelkar et al.
2012; Simons et al. 2015). Although the process of extrusion does not facilitate
alteration in protein content in beans (Batista et al. 2010; Simons et al. 2015),
reduced sulfur-containing amino acid like cysteine and methionine was observed
due to high temperatures and disruptive forces of the extruding process (Arija et al.
2006). Increased IVPD was reported in faba bean, pea, chickpea, and kidney beans at
extrusion conditions of 140–180 �C (El-Hady and Habiba 2003; Nosworthy et al.
2018; Batista et al. 2010). Slight increase in protein recovery with decreased trypsin
inhibitory activity was observed in extruded pea seeds. Significant decrease in
valine, phenylalanine, and lysine content was reported at 129 �C, and decreased
trypsin content was observed at 142 �C (Frias et al. 2011). Enhanced protein
digestibility by 56% was observed in cooked cowpea flour subjected to extrusion
at 120 �C (Batista et al. 2010). It was reported that extrusion did not impact the
protein digestibility of soybean; however, it helped to reduce trypsin inhibitors
(Bertipaglia et al. 2008).

ionizing radiation (alpha, beta, gamma, X-ray, or energetic electrons), to destroy
pathogens of microbial origin and insects which influences food quality as well as
safety. Depending upon the purpose, different doses of irradiation are being used; for
instance, <1 kGy is used to achieve insect disinfection, delayed sprouting, and
ripening; 1–10 kGy is being employed to kill microorganisms and to change the



6.3.5 Fermentation

Fermentation is a type of processing technique, wherein desirable biochemical

functional properties of food, whereas 10–50 kGy is utilized for commercial steril-
ization like virus elimination (Ehlermann 2016; Lima et al. 2019). Food irradiation is
not allowed to employ for nutritional profile modification; nevertheless, its impact
on protein quality has been evaluated. The dry common beans showed improved
protein digestibility when irradiated with 1, 5, and 10 kGy doses of γ-radiation using
60Co as source (Lima et al. 2019). Electron beam-irradiated lotus seeds showed
higher content of essential amino acid like threonine, valine, leucine, tyrosine,
tryptophan, and lysine; however, decreased PDCAAS from 43 to 24% was reported
when the samples were subjected to 30 kGy irradiation (Bhat and Sridhar 2008).
Irradiation at 0.5–1 kGy improved protein digestibility (79.9%) and decreased phytic
acid in Sudanese faba bean (Osman et al. 2014).
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changes in food matrix are brought by microorganisms (bacteria, molds, and yeasts)
particularly through enzymatic action (Kahajdova and Karovicova 2007). It is being
adopted to improve the nutrient bioaccessibility as well as bioavailability from
various food sources (Hotz and Gibson 2007) and improves shelf life and organo-
leptic properties of food (Chaves‐Lopez et al. 2014). Fermentation aids in hydrolysis
process which could contribute to decreased antinutritional compounds and thus
helps in nutritional quality enhancement in the food. Fermented chickpea seeds
(soaked chickpeas subjected to cooking at 90 �C for 30 min and inoculated with
Rhizopus oligosporus and allowed for fermentation at 34.9 �C for 51.3 h followed by
drying at 52 �C for 12 h followed by milling) showed improved IVPD of 83%
compared to unfermented seeds (72%). Further, improved PER, NPR, and PDCAAS
from 1.6 to 2.3, 2.7 to 3, and 73 to 92%, respectively, were reported (Angulo-
Bejarano et al. 2008). A fermented product of common beans (tempeh-type) pre-
pared using R. oligosporus showed decreased trypsin inhibitor, phytic acid content,
and improved protein quality (Paredes-López and Harry 1989). Increased protein
digestibility was attributed to increased proteolytic enzymes, wherein fermentation
process not only degrades antinutritional compounds but also helps in breaking
down complex proteins into simpler and smaller peptides, thereby facilitating release
of peptides and amino acids (Nkhata et al. 2018). However, Kannan et al. (2011)
found no significant increase in PDCAAS scores in fermented black bean products.
The effects of physical processing methods on protein quality of pulses are summa-
rized in a Fig. 6.1.
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Fig. 6.1 Graphical representation showing the effect of physical processing methods on protein
quality of pulses

6.4 Genetic Approaches to Enhance Protein Quality
of Pulses

Biofortification of crops with quality protein or essential amino acids through
genetic engineering approach has both economic and nutritional significance. Appli-
cation of genetic approaches to improve protein quality of crop is predominantly
restricted to model plants with enhanced essential amino acid (like Lys, Trp, and
Met) synthesis. Due to lack of annotated crop genome sequences, this approach
has witnessed limited success in crop species. Nevertheless, enhanced methionine
content (11.11 mg/g protein) in soybean was reported by overexpressing de novo
synthetic protein—MB16 (Zhang et al. 2014). Overexpression of endogenous
Met-rich protein is one of the strategies to address the deficiency of sulfur-containing
amino acids (SAA) in plants. This approach was used to enhance total methionine
content in seeds by 6.8% in transgenic soybean (Yamada et al. 2008). Enrichment of
free SAA as well as increased SAA-rich seed proteins was successful in narbon bean
(Vicia narbonensis)—a close relative of faba bean (Demidov et al. 2003).
Overexpression of 2S albumin storage protein and bacterial aspartate kinase gene
resulted in enhanced seed methionine content up to 2.4-fold compared to that of wild
type. The impact of starch biosynthesis on seed protein content especially albumin
fraction (rich in SAA) was reported, wherein mutation in genetic loci of pea plants
showed lower levels of starch content and enhanced protein content with relatively
high content of the albumin fraction of seed protein (Casey et al. 1998; Hughes et al.
2001). Glycine max 2S-1 (post-translationally processed 2S-albumin) was reported
as a candidate gene for overexpression approach to enhance protein quality in
legumes including soybean (Galvez et al. 2008). Modification of nucleotide



sequence in an endogenous gene has also found to be promising approach to enhance
SAA; for instance, a part of gene (45 bp sequence) that encodes Met-rich region was
isolated from maize and incorporated into a β-phaseolin gene from Phaseolus
vulgaris for overexpression (Hoffman et al. 1988). Several Met-rich proteins were
detected in soybean which helps in utilizing these proteins in enhancing protein
quality (George and De Lumen 1991). Transgenic soybean and canola plants were
developed by overexpressing bacterial DHPS (dihydrodipicolinate synthase) gene
and observed elevated levels of free lysine in mature seeds (Falco et al. 1995).
Protein quality of rice was enhanced by overexpression of synthetically designed
fusion proteins and observed higher lysine and threonine content (Jiang et al. 2016).
Gibbon and Larkins (2005) developed “quality protein maize” and showed two fold
increase in lysine content in maize seeds, and it was achieved by using high lysine
maize mutant opaque2 (Mertz et al. 1964) as a parent line. Higher lysine content
(14%) in rice plants was achieved through regeneration from calli (Schaeffer and
Sharpe 1987). Through modification of biosynthetic and catabolic fluxes, increased
essential amino acid content, especially free lysine and methionine, was reported in
tobacco (Shaul and Galili 1992), canola (Falco et al. 1995), and Arabidopsis
(Ben-Tzvi Tzchori et al. 1996). Slight increase in free lysine was observed in rice
and barley through overexpression of bacterial DHPS (Lee et al. 2001; Brinch-
Pedersen et al. 1996). Improved amino acid contents like Lys and Thr in rice were
reported through silencing of LKR/SDH by RNA interference (RNAi) (Frizzi et al.
2008; Houmard et al. 2007). Increased free lysine (~60-fold) in rice seeds was
reported by overexpression of AK and DHPS as well as silencing LKR/SDH genes
by RNAi (Long et al. 2013). Transgenic maize and rice seeds with 10–65% and
20.6% lysine, respectively, were achieved through overexpression of 3 lysine-rich
genes in maize (Yue et al. 2014) and RLRH1 and RLRH2 in rice (Wong et al. 2015).
The salient achievements in the field of protein quality improvement in pulses and
other crops are summarized in Table 6.2.

116 T. Vinutha et al.

6.5 Concluding Remarks

As the world population, especially developing countries, is suffering from protein
malnutrition (hidden hunger), attaining nutritional security has become a major
challenge for the countries. The protein digestibility is determined by an amount
of protein absorbed by an organism relative to the total protein consumed; it depends
on the structure of proteins, processing methods, and the prevalence of
antinutritional compounds in the food that limit the digestion. Thus, the application
of suitable processing method to inactivate antinutritional factors and to modulate
the protein structure in favor of its digestibility can bring practical application of
plant protein as a animal protein substitution.
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Table 6.2 The list of genes and proteins exploited for enhancing protein quality in pulses and other
crop plants using genetic engineering approach

Genetic
tools

Transgenic Soybean Enhanced
methionine
content

Synthetic protein (MB16) Zhang et al.
(2014)

Transgenic Soybean Methionine
enhanced by
6.8%

Gene encoding methionine-rich
protein

Yamada et al.
(2008)

Transgenic Narbon
bean

Enhanced SAA 2S Albumin storage protein and
bacterial aspartate kinase gene

Demidov et al.
(2003)

Transgenic Pea Enhanced
protein

Gene encoding albumin frac-
tion of seed protein

Casey et al.
(1998) and
Hughes et al.
(2001)

Transgenic Soybean Enhanced
methionine-
rich protein

Gm2S-1 (posttranslationally
processed 2S-albumin)

Galvez et al.
(2008)

Transgenic Common
bean

Enhanced SAA Fused protein of 45 bp
sequence encoding Met-rich
region from maize and gene
encoding β-phaseolin

Hoffman et al.
(1988)

Transgenic Soybean Elevated levels
of lysine

Bacterial DHPS Falco et al.
(1995)

Transgenic Rice Higher lysine
and methionine

Synthetic fusion proteins Jiang et al.
(2016)

Plant
breeding

Maize Higher lysine – Gibbon and
Larkins (2005)

Transgenic Tobacco High lysine
and methionine

Bacterial DHPS Shaul and
Galili (1992)

Transgenic Canola High lysine
and methionine

Bacterial DHPS Falco et al.
(1995)

Transgenic Arabidopsis High lysine
and methionine

Bacterial DHPS Ben-Tzvi
Tzchori et al.
(1996)

Transgenic Rice Slight increase
in lysine

Bacterial DHPS Lee et al.
(2001)

Transgenic Barley Slight increase
in lysine

Bacterial DHPS Brinch-
Pedersen et al.
(1996)

Transgenic Rice High lysine
and threonine

Silencing of LKR/SDH Frizzi et al.
(2008) and
Houmard et al.
(2007)

Transgenic Rice Higher lysine
(60-fold)

AK and DHPS Long et al.
(2013)
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