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Abstract. Recently, cross modality hashing has attracted significant
attention for large scale cross-modal retrieval owing to its low storage
overhead and fast retrieval speed. However, heterogeneous gap still exist
between different modalities. Supervised methods always need additional
information, such as labels, to supervise the learning of hash codes, while
it is laborious to obtain these information in daily life. In this paper,
we propose a novel self-auxiliary hashing for unsupervised cross modal
retrieval (SAH), which makes sufficient use of image and text data. SAH
uses multi-scale features of pairwise image-text data and fuses them with
the uniform feature to facilitate the preservation of intra-modal semantic,
which is generated from Alexnet and MLP. Multi-scale feature similar-
ity matrices of intra-modality preserve semantic information better. For
inter-modality, the accuracy of the generated hash codes is guaranteed
by the collaboration of multiple inter-modal similarity matrices, which
are calculated by uniform features of both modalities. Extensive exper-
iments carried out on two benchmark datasets show the competitive
performance of our SAH than the baselines.

Keywords: Cross-modal retrieval · Multi-scale fusion · Cross-modal
hashing

1 Introduction

With the development of science and technology, more and more multimedia
data, such as images and texts, appear on the Internet. Owing to the explosive
increase of these data, the requirement of cross-modal retrieval increases sharply.
Cross-modal retrieval aims to search semantically related images (texts) with
text (image) query and vice versa. Image retrieval hashing is a long-established
research task to retrieve images with similar contents [17], it is common for
us to process images with VGG [19] or some other neural networks. For text,
Word2Vec technology is widely used, which also try to exploit latent seman-
tic [23]. One of the biggest challenges of cross-modal retrieval is how to bridge
the heterogeneous gap between two different modalities. The cause of the het-
erogeneous gap is the difference distribution between the feature from different
modalities. Data from intra-modality also have heterogeneous information, which
can be tackled from multiple views [5]. To tackle the problem of the heteroge-
neous gap between modalities, many cross-modal hashing methods have been
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proposed because of the advantages of low storage cost and high query speed by
mapping data into binary codes.

The development of cross-modal retrieval can be divided into two phases:
shallow cross-modal hashing and deep learning-based cross-modal hashing. Shal-
low cross-modal hashing is based on hand-crafted features and learns the hash
codes by linear functions. The advantage of these methods is easily implemented,
while they cannot fully explore the semantic information of two modalities.
Recently, with the development of deep learning, the deep neural network(DNN)
has been deployed to cross-modal hashing. DNN-based cross-modal hashing
can be divided into two categories: supervised hashing and unsupervised hash-
ing. Supervised methods, with label information, such as tags, always perform
remarkably. While in the real-life, it is a waste of time for us to obtain labels
of the image-text pairs. Unsupervised methods that do not use label informa-
tion in the training phase have also shown remarkable performance in recent
years. Unsupervised methods focus more on the information of raw features. As
a result, the quality of the hash codes that used in retrieval task is dramatically
concerned with the feature learning stage.

However, there are still some issues that should be tackled. Firstly, at the
feature extraction phase, these methods only focus on the single source feature,
neglecting the rich semantic information gained from multiple views. Secondly,
the general similarity matrix of features can not bridge the heterogeneous gap
well, because the distribution information or similarities of different scales are
not considered. In this paper, we propose a novel self-auxiliary hashing (SAH)
method for unsupervised cross-modal retrieval. SAH provides a two-branch net-
work for each modality, including the uniform branch and the auxiliary branch.
Each branch will generate specific features and hash codes. Moreover, based on
the features and hash codes of two branches, we construct multiple similarity
matrices for inter-modality and intra-modality. These similarity matrices will
be calculated to preserve more semantic and similarity information. Extensive
experiments demonstrate the superior performance of our method.

2 Related Work

Cross modality hashing can be roughly divided into supervised cross modality
hashing and unsupervised cross modality hashing. The task of cross modality
retrieval is to retrieve images (or texts) with similar semantics to the input
text (or image). Shallow cross-modal hashing methods [12,13,15,16] and deep
cross-modal hashing methods [1,2,11,22] are two stages of cross-modal hashing
methods development. Shallow Cross-Modal Hashing uses hand-crafted features
to learn the binary vector projection which is mapped from instances. However,
most shallow cross-modal hashing retrieval methods just deal the feature with
only a single layer and map data in a linear or nonlinear way. In recent years,
the deep learning algorithm proposed in machine learning has been applied to
cross modality retrieval. Deep cross-modal retrieval [18] also can be divided into
unsupervised methods and supervised methods.
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Supervised hashing methods [7,10,18,22] explore relative information, such
as semantic information, or some other relative information by labels or tags,
to enhance the ability of cross modality retrieval. Deep cross-modal hashing
(DCMH) [7] is an end-to-end hashing method with deep neural networks, which
can jointly learn hash codes and feature. In deep cross-modal hashing methods,
generative adversarial network (GAN) is used to make adversarial learning. Self-
Supervised Adversarial Hashing Networks (SSAH) [10] and Wang et al. [22] use
image and text adversarial networks to generate hashing codes of both modali-
ties, the learned features are used to keep the semantic relevance and preserve
the semantic of different modalities.

Although some supervised methods perform well in practical applications,
supervised information, such as label, is hard for us to collect, which is not
suitable in reality.

Unsupervised hashing methods aim to learn hashing functions without super-
vised information, such as labeled data. For example, inter-media hashing
(IMH) [20] considers the inter-media consistency and intra-media consistency
with linear hash functions, and learns the hash function of image modality and
text modality jointly. CVH [9] proposes a principled method to learn a hash
function of different modality instances. Collective Matrix Factorization Hashing
(CMFH) [4] learns the hash codes of an instance from two modalities and pro-
poses the upper and lower bound. Latent Semantic Sparse Hashing (LSSH) [26]
copes the instances of image and text with different methods and performs search
by Sparse Coding and Matrix Factorization. Unsupervised Deep Cross-Modal
Hashing (UDCMH) [24] makes a combination of deep learning and matrix fac-
torization, considering the neighbour information and the weight assignment of
optimization stage. Deep joint semantics reconstructing hashing (DJSRH) [21]
considers the neighborhood information of different modalities.

Although the performance of these methods are remarkable, the features
they focus on are not comprehensive. Moreover, they neglect the deep similar-
ity information of two modalities and have bad performance at bridging the
“heterogeneity gap”.

3 Proposed Method

3.1 Problem Fomulation

Assume the training dataset of our methods is a collection of the pairwise image-
text instances, written as O = (X, Y ). X is the instance of image modality
and Y is the text modal instance. The number of instances of each modality
is n. The goal of our method is to learn the modality-specific hash function
for image modality and text modality which can generate hash codes with rich
semantic information. For each modality, two branches (uniform branch and
modality-specific auxiliary branch) are used to generate different features for
each modality. MF ∗i

are the i-th multi-scale features of image or text modal-
ity, which generate from the auxiliary branch with different dimensions. MH∗i

denotes the i-th multi-scale hash code of image or text which is generated from
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MF ∗i
. F∗ and H∗ are the feature and hash code gained from the uniform branch

which is same as other unsupervised methods. The notations used in SAH are
summarized in Table 1.

Table 1. Notations and their descriptions.

Notations Descriptions Modality

SF
x,y Similarity of uniform feature (x, y) ∈ {(I, I), (T, T ), (I, T )}

SH
x,y Similarity of uniform hash code (x, y) ∈ {(I, I), (T, T ), (I, T )}

SCH
x,y Similarity of complex hash code (x, y) ∈ {(I, T )}

SMH
x,y Similarity of multi-scale hash code (x, y) ∈ {(I, I), (T, T )}

F∗ Uniform feature of image or text ∗ ∈ {I, T}
MF ∗i The multi-scale feature of image or text ∗ ∈ {I, T}
H∗ Uniform hash code of image or text ∗ ∈ {I, T}
H∗ mix The mix hash code of image or text ∗ ∈ {img, txt}
MH∗i The i-th multi-scale hash code of image or text ∗ ∈ {I, T}
MH∗ com The comprehensive hash code of image or text ∗ ∈ {I, T}
CH∗ The complex hash code of image or text ∗ ∈ {I, T}

3.2 Network Architecture

Figure 1 is a flowchart of our SAH. Our method is composed of two networks,
image network and text network, both of them can be divided into the uniform
branch and the modality-specific auxiliary branch. For image network, the uni-
form branch is composed of AlexNet [8]. Image auxiliary branch, shown by Fig. 2,
deals the input image with a fully connected layer and gains the auxiliary data.
For text network, the uniform branch consists of MLP. Text auxiliary branch,
drawn in Fig. 3, tackles the input text data with a pooling layer first and gets
the auxiliary data which is convenient for the later procession.

Feature Extraction. For image modality, we adopt the pre-trained AlexNet
as the uniform feature extractor which is widely used in unsupervised methods.
However, features gained from AlexNet are not comprehensive enough, which
is the common disadvantage of previous works. Features obtained from a single
scale often comes from the same measurement perspective, ignoring the details
that may be obtained from other perspectives. Benefit from feature learning
at multiple scales, multi-scale features can better represent the semantics of
instances.

To gain multi-scale features, we process the input of image modality by fully
connected layer and three pooling layers respectively. Then we get three sizes of
image feature which we called the auxiliary data. And we resize them into the
same size. These three auxiliary data are single-channel, we make them expand
to three channels. To tackle with the auxiliary data of image modality, we deal
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Fig. 1. The overview of our proposed SAH.

Fig. 2. Image auxiliary branch.

them with five convolution layer and three fully connected layer networks and
obtain three multi-scale features MF I1 , MF I2 and MF I3 . For text modality, we
set four pooling layers to tackle with the input text data respectively and get
four different size auxiliary data. Due to the character of text data is sparse, we
deal these four data just with a fully connected layer and get four multi-scale
features MFT1 , MFT2 , MFT3 and MFT4 of text modality.



436 J. Xu et al.

Fig. 3. Text auxiliary branch.

The reason for the difference in the amount of auxiliary data between two
modalities is that, image always contains more comprehensive information than
text. Therefore, we should explore the semantic information of text more com-
prehensively. To this end, we can obtain rich semantic features of each modality,
which can be utilized to construct similarity matrices and guide hash codes
learning. We calculate the similarity matrix of uniform feature based on cosine
similarity. SF

IT is intra-modal similarity matrix, SF
II and SF

TT are inter-modal
similarity matrices, defined as follows:

SF
x,y = cos(Fx, Fy),

s.t.(x, y) ∈(I, I), (T, T ), (I, T ).
(1)

Hash Code Generation. We will generate two kinds of hash code, uniform
hash code and comprehensive hash code for two modalities respectively. The
uniform hash codes (HI and HT ) is obtained by the uniform feature in uniform
branch with a simple hash layer for each modalities.

For image modality, we process three auxiliary image features and get three
same size hash codes MHI1 , MHI2 , and MHI3 with auxiliary branch of image
modality. We concatenate these three hash codes together through hash layer
HILayer to obtain the comprehensive hash code HI com which contains multi-
scale semantics. The concatenation will not change the semantic of each bit
dramatically, it can be seen as a way of data enhancement.

HI com = HILayer(ConCat(MHI1 ,MHI2 ,MHI3)), (2)

where ConCat() denotes the concatenation of vectors.
For text modality, we have four auxiliary features, and we process them with

four different hash layer and get four same size auxiliary hash codes, MHT1 ,
MHT2 , MHT3 , MHT4 . We also concatenate them four and make this hash code
into a hash layer HTLayer and get the comprehensive hash code HT com.

HT com = HTLayer(ConCat(MHT1 ,MHT2 ,MHT3 ,MHT4)). (3)
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Concatenation is a compression of semantic information which can preserve
different scales of semantic information and similarity. Furthermore, we fuse
the uniform hash code and the comprehensive hash code according to a certain
proportion μ (0 < μ < 1) and get the mixed hash code. The mixed hash code
can maintain more semantic information than the uniform hash code of each
modality.

Himg mix = μMHI com + (1 − μ)HI . (4)

Htxt mix = μMHt com + (1 − μ)HT . (5)

The inter-similarity matrix of uniform hash codes can be calculated by sim-
ilarity function:

SH
x,y = cos(Hx,Hy),

s.t.(x, y) ∈(I, I), (T, T ), (I, T ).
(6)

Similarity Matrices Learning. Since dimension reduction during the pro-
cession from features to hash codes will cause some semantic lose, we aim to
keep the semantic consistency of instance pairs. To this end, we introduce a loss
function that can measure the semantic consistency between hash codes and fea-
tures of intra-modality and inter-modality. The loss function L1 can be written
as follows:

L1 =
n∑

i=1

n∑

j=1

‖ SH
x,y(i, j) − SF

x,y(i, j) ‖ . (7)

For intra-modality, the multi-scale hash codes and the uniform hash codes are
generated from features of different scale, they preserve richer semantic infor-
mation of different view. Uniform feature similarity matrix SF offers us the
degree of similarity among different instances in a single modality. Loss function
L1 makes the multi-scale hash codes retains the semantic consistency, too. To
ensure the accuracy of hash codes, the similarity matrix of hash codes should
approximate to the feature similarity matrix. Therefore, we can minimize the
distance between the similarity of the multi-scale hash codes of each modality
and its intra-modality feature similarity. The loss function L2 can be written as
follows:

L2 =
3∑

ni=1

‖ SMH
Ini

− SF
I,I ‖ +

4∑

mi=1

‖ SMH
Tmi

− SF
T,T ‖ . (8)

For inter-modality, the similarity matrix of features should also contains the
inherent pair-wise information. The feature similarity of pair-wise instance of
different modalities can be seen as converging to the maximum value in the
cosine similarity. Apart from that, complex hash code will generate from the mix
hash code to make sure the mixed hash codes still retain similarity consistency.
To this end, loss function L3 and L4 can be written as:

L3 =
n∑

i=1

| SCH
I,T − E | +

n∑

i=1

| SCH
I,T − SF

I,T | . (9)
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L4 =
n∑

i=1

| SF
I,T − E | . (10)

where E is an identity matrix.

3.3 Optimization

As mentioned above, the final loss function can be written as follows:

min αL1 + βL2 + γL3 + δL4.

The goal of our method is to generate hash codes, a kind of discrete data. The
optimization of our objective function should satisfy the discrete condition. The
sign function can map the input into −1 or 1. The gradient of this function is zero
for all non-zero inputs, and may cause gradient explosion in backpropagation:

lim
δ→∞

tanh(ηx) = sgn(x). (11)

where η is a hyper-parameter and will rise during network training.
With sign function as the activation function, the network will finally con-

verge to our hash layer by changing the problem into a sequence of smoothed
optimization problems.

4 Experiment

4.1 Datasets

MIRFlickr25k [6] contains 25, 000 image-text pairs collected from the image
website Flickr. The image-text pairs are labeled from 24 categories. All the
images are denoted as SIFT feature. We use BoW vector to form the text tags
with 1386 dimensions.

NUS-WIDE [3] consists of 269, 648 pairs of images and texts. There are 81 label
categories in the dataset, but we only used the top 10 most frequent categories,
resulting in a total of 186,577 image-text pairs that can be used. The setup for
this dataset is the same as the other methods. We use BoW vector to form the
text tags with 500 dimensions.

4.2 Baselines and Evaluaton

We compare our SAH with 6 baseline methods, including CVH [9], IMF [20],
CMFH [4], LSSH [25], UDCMH [24], and DJSRH [21].
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Evaluation Criterion. Mean Average Precision (mAP) [14] and the top-K
precision curves are used to evaluate the performance of the proposed SAH
and baselines. Two instances of different modalities are considered semantically
similar if they have the same label.

4.3 Implementation Details

The network of each modality is composed of the uniform branch and the aux-
iliary branch. For image modality, our uniform branch is composed of AlexNet
which is same with UDCMH [24] for the sake of fairness. The auxiliary branch
deal with the input image data and get three scale auxiliary data of image, 1024
× 1024, 512 × 512, 256 × 256, respectively. For text modality, MLP is uni-
form branch. In auxiliary branch, the lengths of text auxiliary data in four scale
are 1024, 512, 256 and 128, respectively. For hyper-parameter, we set α = 1,
β = 0.1, γ = 1, δ = 1, and μ = 0.1 to achieve best performance. We implement
our method by PyTorch on the NVIDIA RTX 1660Ti. We fix batch size as 32
and the learning rate for image network and text network is 0.005. During the
optimization phase, we employ mini-batch optimizer to optimize our networks
of two modalities.

4.4 Comparison with Existing Methods

Results on MIRFlickr25k. Table 2 shows the MAP@50 on MIRFlickr25K
dataset of our proposed SAH and other previous methods. As can be seen, the
proposed SAH significantly outperforms the baselines. We show the curve of 128
bits length hash code and can easily find that our SAH has the best performance.
For the I→T retrieval, we get more than 50% improvement in MAP in 128 bits
compared with CVH. Compare with the latest method DJSRH, we get 3.1%
enhancement in 128 bits. For the T→I retrieval, we also achieve the superior
performance compare with methods. The difference value of I→T and T→I has
a shrink than any other works, which means that the auxiliary data bridges the
heterogeneous gap (Fig. 4).

Results on NUS-WIDE. Table 3 also shows the MAP@50 on NUS-WIDE
dataset of six methods, which shows that our SAH performs better than other
methods. It can be seen that we get the best performance on four kinds of
code length for two datasets, which means that our method is effective for cross
modality retrieval. The results indicate that the auxiliary data of both modalities
could mine more latent information in both modalities and remain the similarity
consistency.
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Fig. 4. Precision@top-K curves on two datasets at 128 bits.

Table 2. Mean average precision (MAP@50) comparison results.

Task Method MIRFlickr25K NUS-WIDE

16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit

I→T CVH 0.606 0.599 0.596 0.598 0.372 0.362 0.406 0.390

IMH 0.612 0.601 0.592 0.579 0.470 0.473 0.476 0.459

CMFH 0.642 0.662 0.676 0.685 0.529 0.577 0.614 0.645

LSSH 0.584 0.599 0.602 0.614 0.481 0.489 0.507 0.507

UDCMH 0.689 0.698 0.714 0.717 0.511 0.519 0.524 0.558

DJRSH 0.810 0.843 0.862 0.876 0.724 0.773 0.798 0.817

OURS 0.852 0.879 0.889 0.903 0.753 0.779 0.804 0.818

Task Method MIRFlickr25K NUS-WIDE

16 bit 32 bit 64 bit 128 bit 16 bit 32 bit 64 bit 128 bit

T→I CVH 0.591 0.583 0.576 0.576 0.401 0.384 0.442 0.432

IMH 0.603 0.595 0.589 0.580 0.478 0.483 0.472 0.462

CMFH 0.642 0.662 0.676 0.685 0.529 0.577 0.614 0.645

LSSH 0.584 0.599 0.602 0.614 0.455 0.459 0.468 0.473

UDCMH 0.692 0.704 0. 718 0.733 0.637 0.653 0.695 0.716

DJRSH 0.786 0.822 0.835 0.847 0.712 0.744 0.771 0.789

OURS 0.852 0.864 0.878 0.885 0.765 0.772 0.786 0.791
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4.5 Ablation Study

We verify our method with 3 variants as diverse baselines of SAH:

(a) SAH-1 is built by removing the intra-modality multi-scale hash codes seman-
tic enhancement;

(b) SAH-2 is built by removing the similarity matrices difference between uni-
form hash codes and uniform features;

(c) SAH-3 is built by removing the consistency between complex hash codes
similarity and uniform features similarity.

Table 3 shows the results on MIRFlickr25K dataset with 64 bits and 128 bits.
From the results, we can observe that each part is important to our method.
Especially the part of similarity consistency between features and complex hash
codes, which ensures the semantic consistency.

Table 3. The mAP@50 results for ablation analysis on MIRFlickr25k.

Method 64 bits 128 bits

I→T T→I I→T T→I

SAH 0.889 0.878 0.903 0.885

SAH-1 0.881 0.869 0.885 0.883

SAH-2 0.877 0.863 0.898 0.880

SAH-3 0.855 0.849 0.863 0.834

5 Conclusion

In this paper, we propose a novel unsupervised deep hashing model named self-
auxiliary hashing. We propose a two-branch network for each modality, mixing
the uniform hash codes and the comprehensive hash codes, which can preserve
richer semantic information and bridge the gap of different modalities. Moreover,
we make a full use of inter-modality similarity matrices and the multi-scale
intra-modality similarity matrices to learn the similarity information. Extensive
experiments conducted on two datasets show that our SAH outperforms several
baseline methods for cross modality retrieval.
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