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Abstract. Link prediction on knowledge graphs (KGs) is an effective
way to address their incompleteness. ConvE and InteractE have intro-
duced CNN to this task and achieved excellent performance, but their
model uses only a single 2D convolutional layer. Instead, we think that
the network should go deeper. In this case, we propose the ResConvE
model, which takes reference from the application of residual networks
in computer vision, and deepens the neural network, and applies a skip
connection to alleviate the gradient explosion and gradient disappear-
ance caused by the deepening of the network layers. We also introduce
the SKG-course dataset from Scholat for experiments. Through exten-
sive experiments, we find that ResConvE performs well on some datasets,
which proves that the idea of this method has better performance than
baselines. Moreover, we also design controlled experiments setting differ-
ent depths of ResConvE on FB15k and SKG-course to demonstrate that
deepening the number of network layers within a certain range does help
in performance improvement on different datasets.

Keywords: Knowledge graph embedding · Residual network ·
Knowledge graph · SCHOLAT · Link prediction

1 Introduction

Knowledge Graphs (KGs) are structured knowledge bases that are constructed by
facts. One fact in KGs includes subject s, relation r, and object o, i.e. triplet (s, r,
o), which means KGs are the collections of such triplets. Since Google announced
its Knowledge Graph in 2012, many KGs such as WordNet [13], YAGO [21], Free-
base [2], and SKG (Scholat Knowledge Graph) keep coming these years. They find
various applications in quantities of area, for example, relation extraction, search,
analytics, recommendation, and question answering [27,30].

However, the main problem faced by knowledge graphs when applied is incom-
pleteness [5]. In particular, links in the KGs are missing, for example, 71% of users
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in Freebase are missing birthday information and 75% are missing nationality
information [5]. To solve this problem, methods such as TransE [3] and TransH
[28] are based on using existing subjects and relations in KGs, performing embed-
ding operations to map them into a vector space, and making predictions, while
the model learns parameters and constantly optimizes the score function.

In fact, however, real-world knowledge graphs are so large that link prediction
[12] for such knowledge graphs requires not only the number of parameters to
be considered, but also the computational cost. For shallow models such as
TransE [3], TransH [28] and DisMult [29], the best way to make improvements
is to increase the size of the embedding matrix, which may most likely result
in an excessive number of parameters for large knowledge graphs [4]. ConvE
[4] performs very well in several tasks, but the structure of the model is too
shallow for CNNs and can not make sure that the features of the KG can be
fully learned. Therefore, inspired by the shortcut idea in ResNets [8], we propose
the ResConvE model to embed the KGs.

ResConvE adds several more convolutional layers to ConvE. However, in view
of the problem of gradient disappearance and gradient explosion [1,6,7] caused
by deeper networks, ResConvE uses a skip connection mechanisms, so that the
model can achieve good results even if it is very deep.

Our contributions are as follows:

1. Inspired by ConvE, which treats entities and relationships as “images”, we
propose ResConvE, the first application of the idea of ResNets to link predic-
tion models based on knowledge graph embedding, which deepens the neural
network without losing the original ability to extract features, providing a
new idea for link prediction model building.

2. ResConvE was evaluated on various link prediction datasets and proved to be
more effective in most of the datasets. Meanwhile, we explored how effective
deepening the neural network model was in improving performance.

3. The SKG-course dataset was introduced for link prediction tasks.

2 Related Work

Since the introduction of the TransE [3] model, a variety of link prediction models
have emerged. Early models use the translation objective as the score function
including the TransE [3] and TransH [28], and the DisMult [29] model, which
is based on a bilinear diagonal, but although their models are effective, they do
not deepen the neural network, which makes them less effective than our model.

The introduction of ConvE [4] provides a new way of thinking about link
prediction models, and ConvE proposes to use 2D convolutional layers to build
a neural network model for link prediction. InteractE [26] improves on ConvE:
when entity vectors are spliced with relational vectors, the model first rearranges
the concatenated vectors according to rules and then feeds them into a 2D con-
volutional for training.

ConvE has been very successful in introducing 2D convolutional layers. Inter-
actE, based on ConvE, has improved on this by doing vectors processing before
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feeding in 2D convolutional layers, with good results. However, both of these end
up using only one 2D convolutional layer, and there is no discussion of the effects
of deepening the model in either of these articles. However, we believe that the
structure is too simple and the network is not deep enough for CNNs, of which
the advantage is feature extraction. Meanwhile, we know that making a simple
stack of neural network layers to deepen it can lead to gradient explosion or gra-
dient disappearance, hindering the emergence of loss function convergence and
even making the accuracy degrade rapidly after reaching saturation. Inspired by
the structure of the ResNets [8] network, we introduced a Shortcut mechanism
in ResConvE to solve this problem. Shortcut refers to the back-propagation of
the model by skipping one or more layers of connections and adding the data
directly to the output of the mainstem, which is a stack of network layers, during
forward propagation.

3 Background

Knowledge Graph: A knowledge graph G is a collection of triplets (s, r, o),
consisting of relations r, subjects s and objects o. Figure 1 illustrates the struc-
ture of a triplet.

Fig. 1. A relation, a subject, and an object form a triplet.

Knowledge Graph Link Prediction: The main task of the link prediction
in KGs is to make use of the existing facts in KGs to predict the new ones,
which means we need the model to learn a score function ψ with an input triplet
(s, r, o) whose score depends on the likelihood of the fact being true, to which is
proportional.

Entities and relations will be encoded in most of the existing KGs embedding
approaches. The validity of the output triplets will then be measured by a defined
score function. Some score functions for existing models are presented in Table 1.
Once the score function is defined, the model learns based on the inputs and
outputs, thus continuously optimizing the model parameters.
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ConvE: ConvE introduces 2D convolution into the model for KG link predic-
tion. convE feeds entities and relationships into the 2D convolution layer after
embedding them. The score function ψ for ConvE is given as follow:

ψ = fa(vec(fa(cat( ¯embs, ¯embr) � ω))W )embo (1)

where ¯embs and ¯embr represent the tensors after 2D reshaping of the embedding
matrices of subject embs and relation embr, while � denotes the convolution
operation. eo represents the embedding output, normally a matrix, of the object,
and W represents the weight matrix to be learned. fa refers to the activation
function. 2D reshaping is considered to be useful for learning the representation
of entities and relations.

Table 1. Some score functions for existing models. � represents convolution.

Model Score function

TransE [3] ‖embs + embr − embo‖p
DisMult [29] 〈embs, embr, embo〉
ConvE [4] fa(vec(fa(cat( ¯embs, ¯embr) � ω))W )embo

InteractE [26] fa(vec(fa(Perm(Pk) � ω))W )embo

ResConvE fa(vec(fa(cat( ¯embs, ¯embr)) � ω +
∑

fa(cat( ¯embs, ¯embr)) � ω′)W )embo

4 ResConvE

4.1 Overview

ConvE [4] indicates that using 2D convolution does boost the expressiveness of
the model. The expressive ability of ConvE is further enhanced by reconstruction
of the entity-relationship embedding before feeding into the convolutional layer
for computation in InteractE [26]. From the experience of CNN in computer
vision, we believe that a deeper network structure is conducive to capturing richer
entity attributes and relationship features. So in order to extend the approach to
capture entity-relationship features, ResConvE proposes the following two ideas:

1. Deepening the neural network: In contrast to ConvE and InteractE,
which use only a single layer of 2D convolutional layers, ResConvE uses mul-
tiple convolutional layers to deepen the neural network, which is normally
an important trick in the field of computer vision [18–20,22]. Inspired by
ConvE’s introduction of CNNs to the knowledge graph embedding task, we
build on this approach to deepen the network, to extract features of entities
and relationships better.

2. Shortcut: Many theories and practices have shown that if a neural network is
only deepened, the gradients will eventually explode or vanish [7,8]. Inspired
by ResNets [8], ResConvE introduces a shortcut mechanism, which allows the
deepening of the neural network without compromising the model’s capabil-
ities.
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4.2 Detail

The overall architecture of ResConvE is shown in Fig. 2. ResConvE learns a
vector of dimension d to represent entities or relationships in KG. In forward
propagation, the data input to ResConvE will be divided into two paths after the
embedding operation, which are mainstem and shortcut, where the mainstem will
have multiple convolutional layers, and the shortcut, with two 2D convolutional
layers, makes sure that the model will not damage the original capability in the
process of deepening.

Before Divided into Two Paths. In forward propagation, the model will
initialize two embedding matrices for entities and relations respectively, and
they will be embedded into embedding matrices. which are the low-dimensional
representations of both. After that, the model will concatenate the embeddings
ēs and ēr and feed them into the mainstem and shortcut at the same time.

Mainstem. After ēs and ēr enter Mainstem, they pass through a 2D convo-
lutional layer with 16 1 × 1 filters, followed by several convolutional operations
with 3 × 3 filters, normalisation [9] and activation using the ReLu [14,16,17]
function. The amount of convolution filters of each layer is doubled compared
to the previous one. At the end of these operations, the data is convolved using
n × 1 × 1 filters (where n is the final number of channels) to fit the data from
the shortcut and leave Mainstem.

Shortcut. The ēs and ēr from the other branch enter the shortcut, are normal-
ized and dropout, and then fed into a 2D convolutional layer with 32×3×3 filters
for computation. The results of the computation are fed into the Mainstem for
summation after being normalized and finally activated by ReLu [14].

Score Function. Formally, the score function for ResConvE can be defined as
the following equation:

ψ = ga(vec(fa(cat( ¯embs, ¯embr))�ω+
∑

fa(cat( ¯embs, ¯embr))�ω′)W )embo (2)

where ¯embs and ¯embr represent the embedding tensors of the subjects and rela-
tions, embs and embr, after 2D reshapings, while � denotes the convolution oper-
ation. embo denotes the entity embedding matrices, W is the matrix of weights
to be learned. fa and ga represent ReLU and Logistic Sigmoid respectively.
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Fig. 2. After feeding the embedding of entities and relations into ResConvE, they
will be reshaped and concatenated. Mainstem will then perform three convolutional
calculations, while Shortcut will perform a ConvE-like convolutional operation and an
adaptive convolutional calculation. The Tensor is then multiplied with the embedding
space matrix and a logistic sigmoid is applied to generate a prediction.

5 Experiments

5.1 Knowledge Graph Datasets

FB15k: The FB15k [3] dataset consists of textual mentions of knowledge base
relationship triples and Freebase entity pairs. There are 592,213 triples. The
number of entities and relationships is 14,951 and 1,345 respectively. FB15K-
237 [24] removed the inverse relations.

WN18: The WN18 [13] dataset, with 18 relationships and 40,943 entities, tends
to obey a strict grading structure. WN18RR [4] is a new version of WN18 that
has emerged from extensive research.

YAGO3-10: YAGO [21] is a KG composed of common knowledge facts
extracted from Wikipedia to enhance WordNet. YAGO3-10 has 123,182 enti-
ties and 37 relations.

SKG-Course: The SKG-course dataset is derived from the knowledge graph of
the SCHOLAT course platform (https://www.scholat.com/home.html?type=5),
which has a total of 22,176 entities including users, courses, and classes, with
the corresponding 4 relationships. Several Baseline models were replicated and
trained and tested on this dataset.

5.2 Evaluation Protocol

We test performance through a widely used evaluation process [3,4,26]. We
remove the subject or object from the complete triplets in the test set to create
corrupted triplets of the form (subject, relation, ?) or (?, relation, object). The

https://www.scholat.com/home.html?type=5
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Hits@k and the Mean Rank (MR), and the Mean Reciprocal Rank (MRR) are
calculated for evaluation.

Hits@k represents the percentage of entities with the correct subject or object
in the top k of all predictions. The MR represents the average ranking of the
correct subject or object in the prediction. The MRR represents the mean of
the inverse of the ranking of the correct results for multiple predictions, which
can normally be calculated by the following formula:

MRR =
1

|pred|
|pred|∑

i=1

1
ranki

(3)

where |pred| represents the total amount of predictions and ranki is the ranking
of the correct object in the ith prediction.

5.3 Experimental Setup

To verify that ResConvE can extract features better when Mainstem is deep-
ened, we set up three control groups. After the data had passed the first convo-
lutional layer of Mainstem, we set up {1, 2, 3, 4} convolutional layers for training
respectively, where each convolutional layer had twice the number of filters as
the previous one. The experiments were tested on the FB15k and SKG-course
datasets respectively.

We tuned the hyperparameters by the performance of MRR. The dropout [9]
of the embedding layers, 2D CNN layers and projection layer are set as {0.1, 0.2},
{0.2, 0.3} and {0.2, 0.3} respectively. The size of the embedding matrix and batch
are set as {100 × 100, 200 × 200} and {128, 256, 512} respectively. We set the
learning rate as {0.1, 0.001, 0.002, 0.003}. The label smoothing [23] coefficient is
set as {0.1, 0.2}.

6 Result

6.1 Comparison of Performance

Comparison with Existing Methods. Besides the benchmarks dataset, we
compared the performance of ResConvE with several existing methods on the
SKG-course dataset to test generalization capabilities. We replicated several
basic models to perform link prediction on the SKG-course to obtain training
scores. Table 2, Table 3 and Table 4 summary the performance of ResConvE on
the standard dataset and the SKG-course respectively. We find that ResConvE
outperforms some metrics on FB15k, WIN18 dataset, and YAGO3-10, while all
metrics are better on SKG-course. The results of ResConvE’s link prediction
on SKG-course are higher in MR metrics compared to ConvE and InteractE by
10.12%, 4.35%. On the validation set, ResConvE even outperformed ConvE and
InteractE by 13.64% and 16.73% respectively.
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Table 2. Performance on dataset FB15k and FB15k-237

FB15k FB15k-237

MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE [3] 125 – 0.471 – – – 0.290 0.470 – 0.290

TransD [10] 91 – 0.773 – – – 0.253 0.461 – 0.148

DistMult [29] 97 0.654 0.824 0.733 0.546 254 0.241 0.419 0.263 0.155

ComplEx [25] 0.692 0.840 0.759 0.599 339 0.247 0.428 0.275 0.158

ConvE [4] 51 0.657 0.831 0.723 0.558 244 0.325 0.501 0.356 0.237

InteractE [26] – – – – – 172 0.354 0.535 – 0.263

ResConvE 60 0.708 0.851 0.803 0.762 272 0.312 0.486 0.341 0.225

Table 3. Performance on dataset WN18 and WN18RR

WIN18 WIN18RR

MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

DistMult [29] 902 0.022 0.936 0.914 0.728 – 0.43 – – 0.39

ConvE [4] 374 0.943 0.956 0.946 0.935 4187 0.43 0.52 0.44 0.4

HHolE [11] 183 0.939 0.951 0.945 0.931 – – – – –

LogicENN [15] 357 0.923 0.948 – – – – – – –

InteractE [26] – – – – – 5202 0.463 0.528 – 0.43

ResConvE 393 0.943 0.954 0.949 0.936 5006 0.424 0.491 0.435 0.393

Effect of Deepening the Mainstem. We analyzed whether deepening the
mainstem would lead to better performance of ResConvE, i.e. by increasing the
number of convolutional layers. We analyze this effect on the FB15k, SKG-course
dataset respectively, which are shown in Table 5 and Table 6.

After deepening Mainstem, the model with 4 convolutional layers improved
significantly for link prediction on dataset FB15k, with 23.08%, 30.27% and
17.54% on MR, MRR and Hits@10 respectively.

Meanwhile, We also found that deepening the convolutional layers on the
SKG-course dataset resulted in significant improvements for each of the metrics
in Table 6. The model with an increased number of convolutional layers of 3 is
higher in MR and MRR by 18.739% and 3.101% respectively than the one with

Table 4. Performance on dataset SKG-course and YAGO3-10

SKG-course YAGO3-10

MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

DisMult [29] 158 0.889 0.923 0.899 0.874 1107 0.500 0.660 0.550 0.410

ComplEx [25] 150 0.971 0.969 0.970 0.968 1127 0.490 0.660 0.540 0.400

ConvE [4] 112 0.931 0.961 0.942 0.915 1676 0.440 0.620 0.490 0.350

InteractE [26] 105 0.970 0.977 0.972 0.966 1671 0.541 0.620 – 0.462

ResConvE 100 0.973 0.978 0.974 0.970 2157 0.510 0.664 0.558 0.427
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only 1 additional layer. But there is a limit to the optimization of this effect,
and we learn that when the number is increased to 4, the increase is not as
pronounced. What is clear, however, is that we believe our model is effective for
deepening across a range of datasets, i.e. the generalization effect of our model
does exist.

Table 5. Effect of deepening the mainstem on dataset FB15k

Number of
convolution layers

MR MRR Hits@10 Hits@5 Hits@3 Hits@1

1 78 0.544 0.724 0.724 0.602 0.443

2 60 0.657 0.816 0.762 0.716 0.567

3 63 0.651 0.810 0.755 0.708 0.561

4 60 0.708 0.851 0.803 0.762 0.626

Table 6. Effect of deepening the mainstem on dataset SKG-course

Number of
convolution layers

MR MRR Hits@10 Hits@5 Hits@3 Hits@1

1 123 0.944 0.969 0.963 0.957 0.929

2 113 0.947 0.969 0.964 0.958 0.937

3 100 0.973 0.978 0.976 0.973 0.971

4 101 0.972 0.978 0.975 0.974 0.968

Analysis of Experimental Results. Deepening the convolutional neural net-
work to do the link prediction task seems effective. We have analyzed the rea-
son for this: An embedding operation for low-dimensional representation usu-
ally means information compression [22]. ResConvE uses multiple CNN layers
for modeling, which makes sure of fully learning and extracting the features
of the entities and relationships while the Shortcut mechanism introduced by
ResConvE ensures that the model is deepened without making the original per-
formance worse.

7 Conclusion and Future Work

In this paper, a new method for KGs embedding, ResConvE, is proposed, which
has a better capability of extracting the features of the KG by deepening the
neural network, improving the model depth from the same type of ConvE and
InteractE. At the same time, ResConvE borrowed the idea of skip connection
on residual networks to alleviate the possible gradient disappearance and gra-
dient explosion when the model is deepened and set up Mainstem and shortcut
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pathways on the model in learning data respectively. Through extensive experi-
ments, we find that the idea of deepening neural networks has a role in optimizing
performance. Moreover, we introduced the SKG-course dataset to demonstrate
that this effect is not useful only on specific datasets, but has some generaliza-
tion ability. We believe that ResConvE can be improved from more angles in the
future. Although in this paper we have only made improvements in the depth
of the neural network, we believe that improvements could perhaps be made in
the width as well. If the model is constructed from CNNs, we believe that there
are a large number of tricks in the field of computer vision that can be borrowed
into the field of link prediction. We will look at this aspect.

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

2. Bollacker, K., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: SIGMOD
Conference (2008)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Neural Information Processing
Systems (NIPS), pp. 1–9 (2013)

4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32 (2018)

5. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 601–610 (2014)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the 13th International Conference on Arti-
ficial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

7. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5353–5360 (2015)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456. PMLR (2015)

10. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

11. Lalisse, M., Smolensky, P.: Augmenting compositional models for knowledge base
completion using gradient representations. arXiv preprint arXiv:1811.01062 (2018)

12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed-
dings for knowledge graph completion. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 29 (2015)

http://arxiv.org/abs/1811.01062


172 Y. Long et al.

13. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: ICML (2010)

15. Nayyeri, M., Xu, C., Lehmann, J., Yazdi, H.S.: LogicENN: a neural based knowl-
edge graphs embedding model with logical rules. arXiv preprint arXiv:1908.07141
(2019)

16. Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.: Activation functions:
comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378 (2018)

17. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

19. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint
arXiv:1505.00387 (2015)

20. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. arXiv
preprint arXiv:1507.06228 (2015)

21. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, pp.
697–706 (2007)

22. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

24. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and Their Compositionality, pp. 57–66 (2015)

25. Trouillon, T., Dance, C.R., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.:
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