
Chapter 16
Germ-free Mice Technology: Opportunity
for Future Research

Ashish Jain and Anand Maurya

Abstract The most popular approach to measure key functions of any living entity
is to remove it and then study the consequences of its removal. Microorganisms
influence their host in several manners and their role can be studied by eliminating
them from their host and observe the host’s response, in their absence. Numerous
studies have justified the vital role of microbiota in human health and disease
development. Germ-free (GF) animal models are useful tools to improve our under-
standing of the host–microbiota relationship in vivo. Although different animal
models, lacking microbiota (partially or completely) have been extensively used in
research but germ-free (GF) mice are the most widely used rodent model in human
research due to its close proximity to humans. In modern research, GF technology is
one of the most attractive and informative tools for getting insights into host’s
microbial community. Each body part harbors unique microorganisms with unique
functions. Because of the advancement of microbial characterization techniques, the
human microbiota community is expanding day by day. GF mice model can
efficiently reveal the role of these valuable partners of humans. In spite of its high
cost and obligation of skilled experts, GF research is a hot field for investigators and
has a huge possibility for future applications. The present book chapter is a summary
of the basics of GF technology and its main applications with future prospects.
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16.1 Introduction

All multicellular organisms including humans live in close association with the
microbial communities (Mendes and Raaijmakers 2015). All the microorganisms
that live in or on the human body are collectively known as microbiota (Human
Microbiome Project Consortium 2012). The members of this microbial community

A. Jain (*) · A. Maurya
Department of Microbiology, Smt. CHM College, Thane, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. K. Tripathi, M. Kotak (eds.), Gut Microbiome in Neurological Health
and Disorders, Nutritional Neurosciences,
https://doi.org/10.1007/978-981-19-4530-4_16

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4530-4_16&domain=pdf
https://doi.org/10.1007/978-981-19-4530-4_16#DOI


have been shown to interact with each other and also with their host in different
manners. It is a huge task to define the function of each individual microorganism of
this complex community and their relation with the host. Germ-free animal research
has been done extensively on three different animal models: Germ-free
(GF) animals, gnotobiotic (GN) animals, and specific pathogen-free (SPF) animals.
Germ-free or axenic animals are completely devoid of any kind of living microor-
ganisms. Gnotobiotic animals are initially germ-free and subsequently inoculated
with either one strain (monoxenics) or two different strains (dixenics) of microor-
ganisms and so on. These animals thus have a defined and known microbiota.
Specific pathogen-free (SPF) animals are those from which a defined set of micro-
organisms, usually pathogenic organisms are excluded (Festing and Blackmore
1971). Since the use of humans in such studies is not ethically possible, use of an
animal model having several similarities with humans is the only left option. Mouse
is the most common germ-free model in human studies (Luczynski et al. 2016a).
However, rats, guinea pigs, chickens, piglets, and calves have also been used
(Luczynski et al. 2016a, b). Experimental germ-free (GF) mice models are valuable
tools for establishing the impact of microbiota on host metabolism, physiology and
to explore interactions between microbiota and with their host (Fiebiger et al. 2016;
Bhattarai et al. 2017). Recent studies performed on germ-free mice have proved the
specific role of specific microbial communities for their host (Braniste et al. 2014;
Jourová et al. 2017; Kaden-Volynets et al. 2019). Although germ-free mice tech-
nology has broadened our knowledge of microbe–microbe and host–microbe inter-
actions but, due to the huge cost and expertise associated with the GF facilities, this
field has not been explored as per the expectations and possibilities. This book
chapter covers the basics of GF mice technology, its applications and future
prospects.

Axenic: free of all detectable microorganisms
Monoxenic: a culture in which one organism is grown with only one other

organism
Dixenic: a mixed culture of one organism together with two other organisms
Germ Free (GF): historical term same as axenic but continues to remain the

more popular than axenic
Gnotobiotic (GN) animal: an animal with known and defined

microorganisms
Pathogen-free (PF) animal: an animal free of all known pathogens
Specific pathogen-free (SPF) animal: an animal from which a defined set of

microorganisms, usually pathogenic are excluded
Conventional (CV) animal: an animal maintained under accepted husbandry

practices
Altered Schaedler flora (ASF): a model community of eight cultivable

microorganisms derived from mice and used for establishing stable GI
colonization in the GF mouse
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16.2 Germ-Free Mice Technology

16.2.1 History

Louis Pasteur (1885) conceptualized the idea of a germ-free animal more than a
century ago with the remark that bacteria-free existence is impossible (Pasteur
1885). Ten years later in 1895, Nuttall and Thierfelder produced the first GF guinea
pigs, which survived for two weeks (Nuttall and Thierfelder 1895). Due to the
technology developed by James Arthur Reyniers and Philip C. Trexler, the hypoth-
esis of germ-free life came into reality in the 1950s (Reyniers 1957). By the late
1950s, researchers successfully developed GF mice, rats, guinea pigs, and chicks
inside sterile stainless steel and plastic housings (Reyniers 1959a). The first GF mice
were successfully developed by Pleasants in 1959 (Pleasants 1959).

16.2.2 GF Technology

Today’s methodology for keeping GF animals has not changed much since 1959. To
start a germ-free colony, pups must be delivered from the mother’s womb through a
careful cesarean section to protect them from exposer of microorganisms that inhabit
on the mother’s vagina and skin (Gustafsson 1959a; Reyniers 1959b).Then, the
newly born pups are introduced to the GF foster mother and raised in an aseptic
isolator and only exposed to food, water, and other equipment that has also been
sterilized. GF animals can also be produced via embryo transfer, in an isolator by the
implantation of cleaned embryos into GF female in well-controlled conditions. A
recipient female normally delivers and caress the pups assuming them her own
offsprings, hence enhancing the survival rate of pups. These mice regularly moni-
tored in order to guarantee GF status by analyzing the presence of any kind of
microorganism in their feces using cultural and sequencing techniques (Smith et al.
2007). Once GF animals are produced next lineage can be generated by crossing GF
individuals (Gustafsson 1959a; Reyniers 1959b). Then GF mice colonies can be
shipped in a sterile container for different purposes including GF research. Isolators
maintain a sterile environment for GF animals. A typical isolator has an air supply,
air inlet and outlet, transfer port, and arm-length gloves, as well as a special tank
filled with disinfectant and used for the transfer of mice in and out. Bedding, food,
water, and equipment, including cages, must first be sterilized before putting them
into the isolator through the sterile lock. Sterilization of entire steel isolators is
accomplished by autoclaving the whole isolator, as well as with portable vacuum
and steam equipment. Plastic isolators are sterilized by steam accomplished with
germicidal vapor (2% peracetic acid and chlorine dioxide). Air sterilization is
ensured upon entry and exhaust by mechanical air filtration under positive pressure.
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Autoclave jars are used for transferring of animals in and out of the isolator.
Maintenance of the GF status of rodents during the execution of the entire experi-
ment is technically challenging. The probability of their contamination is always
high. The experimentation cost of the GF facility is extremely high since multiple
mouse strains and multiple inoculation groups are housed in separate isolators.
Recently the use of positive-pressure isocages has been increased in short duration
experiments since they offer low cost and space effective (Hecht et al. 2014). Future
research is needed to optimize these isocages to apply them in long-term
experiments.

16.2.3 Customized Flora and Control Group for Experiments

In 1965, Schaedler and Dubos characterized the bacterial population of the gastro-
intestinal (GI) tract of conventional mice (Schaedler et al. 1965). One of the most
pronounced phenotypes observed in almost all GF rodents is unusually enlarged
cecum that is of normal length in conventional rodents (Wostmann and Bruckner-
Kardoss 1959). Surprisingly a reduction in cecum size was observed upon coloni-
zation of normal gut microbiota. On the basis of these findings, Schaedler colonized
GF animals with a mixed bacterial population of Bacteroides, lactobacilli, an
anaerobic Streptococcus, and a slow lactose-fermenting coliform (Schaedler et al.
1965). This flora is subsequently known as the “Schaedler flora” and has been used
globally as an essential tool for the standardization of experimental animals’
microbiota. In 2015, extremely oxygen-sensitive (EOS) bacteria were included in
Schaedler’s flora. This altered flora is now known as Altered Schaedler Flora (ASF)
(Orcutt et al. 1987). Recently a synthetic bacterial community is created for exper-
imental GF mice known as “Oligo-Mouse-Microbiota” (OMM12) which consists of
12 sequenced and easily available bacterial strains isolated from mice (Brugiroux
et al. 2016; Lagkouvardos et al. 2016). The specific pathogen-free (SPF) mice which
are free from particular pathogens are treated as a control group for GF mice research
(Smith et al. 2007). SPF mice are generally exposed to the defined colonization of
modified Schaedler flora or other customized flora (Wymore Brand et al. 2015;
Brugiroux et al. 2016). Broader categories of mice models are summarized in
Fig. 16.1.

16.3 Why Mice Model?

Although many GF animals have been used in investigations, GF mice is the most
acceptable GF model in human studies for long period (Haldane 1928). Over 95% of
animal studies have been conducted on the Mus musculus model because of almost
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99% genetic homology with the human genome, availability of good genetic/molec-
ular technologies for mice research, and replicability of many human conditions in
mice (Gregory et al. 2002; Mouse Genome Sequencing Consortium et al. 2002).
Investigators prefer mice model for various other reasons including their small size,
easy to maintain, and adaptability in altered conditions. Because of quick reproduc-
tion and a short life span of two to three years, many generations can be observed in a
short period of time. They are relatively inexpensive and can be bought in large
quantities from commercial producers. Their mild-tempered and docile nature makes
them easy for researchers to handle (Canales and Walz 2019). Due to constrain of
working space inside the GF isolator and extremely higher maintenance cost mice
offer more experimental units in a relatively smaller area in a cost-effective manner.

16.3.1 Differences Between Germ-free and Conventionally
Raised Animals

Germ-free animals exhibited several physiological and functional alterations, not
associated with conventionally raised animals. Some crucial differences are summed
up in Table 16.1. These dissimilarities have created the research-ground for gnoto-
biotics, to assess the effect of microbiota in postnatal development and metabolism
of host.

16.3.2 GF mice Technology: Applications and Future
Guideline

Germ-free animal models are essential tools of investigators to explore the com-
plexity and functions of host’s microbiota. GF mice provide researchers with a better
way to get insights of host–microbe and microbe–microbe interactions. GF mice
have been widely used in the field of nutrition, metabolism, drug response, neuro-
science, immune response, cancer biology, and infectious diseases and some of the
important fields are also highlighted in Fig. 16.2. Germ-free mice technology has
revealed the crucial role of commensal microbiota in normal aging, and normal
functioning and development of immune system, GI system, and nervous system
(Grenham et al. 2011).
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Table 16.1 Key differences between GF animals and conventionally raised animals

GF Animal (Comparison with conventional
animals)

Gastrointestinal tract physiology

Weight of the small intestine Lighter (Gordon and Bruckner-Kardoss 1961)

Mucosa of the small intestine Thinner (Gordon and Bruckner-Kardoss 1961)

Mucosal surface area, Lamina propria Reduced by approximately 30% (Gordon and
Bruckner-Kardoss 1961)

Digestion and absorption More efficient (Phillips and Smith 1959; Heneghan
1963)

Passage time through the small intestine Increased (Abrams and Bishop 1967)

Cecal Excessively enlarged (Wostmann and Bruckner-
Kardoss 1959)

Mitosis indexes of epithelial cells Lower

Renewal rates of intestinal epithelium Reduced (Abrams et al. 1963)

Cells, tissues, and organs of immune system

Expression of certain TLRs Decreased or absent (Shanahan 2002; Grenham
et al. 2011)

IgA secretion Decreased (Abrams and Bishop 1961; Wostmann
et al. 1970)

Peyer’s patches, lymphoid follicles in the
intestine

Fewer and smaller (Abrams and Bishop 1961;
Wostmann et al. 1970)

Lymphoid tissue and lymph nodes Undeveloped and smaller (Abrams and Bishop
1961)

γ-globulin-bearing plasma cells in mesen-
teric lymph nodes

Absent (Hobby et al. 1968)

Antibody-producing cells of lymph-node Reduced (one-twelfth) (Olson and Wostmann
1966)

Antibody-producing cells after Ag
challenge

Increased (Olson and Wostmann 1966)

Total white blood cell count Lower (Reyniers et al. 1960)

Β- and γ-globulins in the serum Reduced (Gustafsson and Laurell 1958)

Plasma cells synthesizing IgA Less (10%) (Crabbé et al. 1968)

Lysozyme in saliva Absent (Makulu and Wagner 1967)

Thymus Smaller in size (Wilson et al. 1965)

Nutrition, digestion, and metabolism

Nutrient requirements Consume more food (Wostmann et al. 1983)

Diet-induced obesity Not observed (Bäckhed et al. 2007)

Water intake Higher (Coates 1973)

Lipid: requirement for essential fatty acids Lower (Coates 1973)

Cholesterol absorption Absorb up to 50% more

Protein:

Fecal nitrogen More excreted (Levenson and Tenivant 1963)

Urinary nitrogen Less excretion (Reddy et al. 1969)

Starving conditions Lesser survival rate (Loesche 1969)

Minerals: urinary calcium excretion Higher (5X higher) (Gustafsson and Norman 1962)

(continued)
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Table 16.1 (continued)

GF Animal (Comparison with conventional
animals)

Vitamin B & K in diet Required (Gustafsson 1959b; Sumi et al. 1977)

Trypsin and chymotrypsin in feces Higher (Borgstrom et al. 1959)

Serum cholesterol levels Higher (Danielsson and Gustafsson 1959)

Cardiovascular system

Heart weight, total blood volume, and car-
diac output

Reduced (Gordon et al. 1963)

RBC count, Hematocrit values Higher (Gordon et al. 1963)

Age Live significantly longer (Gordon et al. 1966;
Tazume et al. 1991)

Fig. 16.2 Key applications of germ-free mice technology
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16.4 Metabolic Disorders

Our generation is facing many metabolic disorders including obesity, heart disease,
stroke, type 2 diabetes, hyperglycemia and hyperlipidemia, phenyl-ketonuria (PKU),
and a number of other hepatic disorders. Studies performed on GF mice have
established the very fact that the presence or absence of specific gut microbiota is
correlated with certain metabolic disorders (Karlsson et al. 2013). It is found that the
composition of gut microbiota is unstable and far sensitive for alteration but sur-
prisingly found relatively stable during obesity, which suggests the possible role of
gut microbiota in obesity. Jeff Gordon et al. showed that the transfer of gut
microbiota of obese humans or mice to GF mice with no change to mouse diet,
resulted in weight gain relative to GF mice that had received microbiota transplants
from lean donors (Turnbaugh et al. 2006; Ridaura et al. 2013). Transfer of
microbiota from third-trimester pregnant mothers to GF mice promoted low-grade
inflammation, increased adiposity, and insulin resistance relative to GF mice receiv-
ing microbiota from first trimester pregnancies (Koren et al. 2012). As gut
microbiota synthesizes additional essential nutrients, its absence affects the process
of absorption and digestion (Sekirov et al. 2010; Grenham et al. 2011). GF mice have
reduced production of short-chain fatty acids, which are beneficial to host metabo-
lism and are produced when dietary fiber is fermented by gut bacteria (Høverstad and
Midtvedt 1986; denBesten et al. 2013). GF rats have deficient thiamine absorption:
when these animals are fed radio-labelled thiamine, large quantities of the nutrient
are found within the feces but little is found within the tissue (Wostmann et al. 1962).
A recent study proposed that fecal microbiota transplantation is the recent technol-
ogy used for treating various neurological diseases (Tripathi et al. 2022). This
suggests that the gut microbiome plays an important role in influencing metabolism
and adiposity. Phenylketonuria (PKU) is a genetic disorder related to an inability to
metabolize phenylalanine (Phe), which may end in neurotoxicity. Recently a genet-
ically engineered Escherichia coli strain administration to PKU mouse model
showed significantly reduced blood phenylalanine concentration independent of
dietary protein intake (Isabella et al. 2018). Collectively, such studies certainly
prove that not only the commensal microbiota but genetically modified microorgan-
isms can also be used to target genetic disorders along with altered metabolism. Gut
microbiota is the most abundant microbiota and also termed as “neglected endocrine
organ” (Clarke et al. 2014). Gut microbiome contains hundred-times more genes
than the human genome (Qin et al. 2010). This microbiome comprises an enormous
possibility of future investigation because every member of this massive microbial
community may have a unique function for its host that can be assessed efficiently
with the assistance of GF technology. Once the individual role of every member of
microbiota revealed, specific microorganisms can be selectively administered or
removed from the host to treat several metabolic disorders. Initial findings with
microbiota research might be milestones for future investigations during which GF
animals are going to be considered as an indispensable tool for exploring the role of
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microorganisms to study the complexity of microbiota-gut-brain axis and metabolic
disorders.

16.5 Inflammatory Bowel Disease (IBD)

Inflammatory Bowel Disease (IBD) is a set of chronic inflammatory conditions of
the gastrointestinal tract (Belkaid and Hand 2014). IBD features a complex etiology
and is influenced by the genetic factors, host immune system, and external factors
like the microbiota (Maloy and Powrie 2011). IL-17-producing Th17 cells are
correlated with IBD while RORγt+ Treg cells adversely affect IBD by maintaining
homeostasis at the mucosal barrier. Studies performed on mice showed the elevated
number of IL-17-producing Th17 cells upon colonization of mice with anaerobic,
uncultivatable segmented filamentous bacteria while the introduction of commensals
showed an adverse effect (Nakanishi and Tamai 2015). In another study transfer of
microbiotas from IBD donors into germ-free mice increased numbers of intestinal
Th17 cells and Th2 cells and decreased numbers of RORγt+ Treg cells while
microbiota from healthy donors exhibited an adverse effect (Britton et al. 2019).
Administration of fecal microbiota transplants from patients with IBS to germ-free
mice induced alterations in GI motility, also as hypersensitivity to colonic distension
(Crouzet et al. 2013; De Palma et al. 2014). The absence of IBD in germ-free animals
is that the classical evidence that microorganisms are crucial for the development of
IBD. We can’t neglect the colonic microbiota and a heavier metagenome and its
functions in several physiological conditions including IBD. Future attempts should
be focused on manipulating the amount and composition of commensal or altered
microbiota to alleviate the severity of IBS either by oral administration of probiotic
formulations, fecal microbiota transplants from healthy donors, and/or diet modi-
fications. Germ-free models might be a milestone in the collaborative attempts to
cure IBD.

16.5.1 Host Immune Response

The role of microbiota in the development and regulation of the immune system has
been extensively studied with the assistance of GF mice. Factually the exposure to
microbes early in life is essential for the proper development and performance of
the immune system (Blümer et al. 2005; Douwes et al. 2008; Kaplan et al. 2011).
The host’s immune system and gut microbiota have a mutualistic relationship. The
microbiota helps in shaping our immune system, and the later shape the composition
of host microbiota (Nicholson et al. 2012). These hypotheses further get strength by
the fact that about 80% of the host’s immune cells are located in or around the gut
(Abbas et al. 2017). Commensal microbiota of host is crucial for proper intestinal
immune response, protection from pathogens, and suppression of detrimental
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inflammatory reactions. GF mice show many abnormal features generally absent in
conventionally raised mice, including the presence of fewer and smaller Peyer’s
patches, a reduced number of CD4+T cells, low level of IgA producing plasma cells,
under-developed gut-associated lymphoid tissues (GALT), fewer intraepithelial
lymphocytes as well as reduced production of antimicrobial peptides (Wostmann
and Bruckner-Kardoss 1959; Gordon and Bruckner-Kardoss 1961; Shanahan 2002;
Round and Mazmanian 2009). Upon administration of normal microbiota, most of
those altered structures and immunological functions of GF mice are corrected and
restored. These inducible structures normally develop in conventional animals
exposed naturally to diverse populations of microorganism, suggesting a complex
relationship between the host’s immune response and its commensal microbiota.
Microbes produce a variety of known and unidentified metabolites that can modu-
late the host’s metabolic pathways in a complex manner. Class, quantity, and roles
of metabolites are influenced by the composition of the host’s microbiota. Despite
advanced molecular characterization technology most of the commensal microor-
ganisms, their different metabolites and function of every metabolite are yet to be
defined. There is an enormous challenge and also an opportunity for the investiga-
tors to address this issue and define the functionality of each single metabolite of this
complex immune response regulated by the host and its microbiota.

16.5.2 Vaccine Response

More recently, mice treated with a cocktail of antibiotics, exhibited impaired IgG
responses upon systemic Ag ova challenge, the same could be restored after the
colonization with a mixed bacterial population (Lamousé-Smith et al. 2011). Pre-
antibiotic-treated mice showed enhanced antibody response upon oral administration
of Rota-virus (Uchiyama et al. 2014). These findings suggest that gut flora can
enhance systemic vaccine responses but can suppress oral vaccine responses. A
study on seasonal influenza vaccine showed that after vaccination, in germ-free or
antibiotic-treated mice, IgG and IgM antibody responses were significantly impaired
(Oh et al. 2014). It is also reported that microbial metabolites can modulate various
immune cell types including Mfs, DCs, T cells, and B-cells (Dorrestein et al. 2014).
However, further investigations are desirable to conclude whether these effects
occur in all situations or only observed in some special circumstances. Currently,
the knowledge of various microbial metabolites and their role in vaccine response is
in its infancy. Future research can reveal the potential mechanisms by which the gut
microbiome modulate vaccine response in various populations. The study of gut
microbiota for a successful vaccination strategy may open a new area for investi-
gators with unlimited possibilities and GF mice may serve as a valuable tool in this
cause.
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16.5.3 Host–microbe and Microbe–Microbe Interaction

Germ-free mouse facilitates to introduce microbes individually or sequentially in its
different body parts to assess the role of a single bacterium or known consortia of
bacteria on host function in vivo (Reigstad et al. 2015). Germ-free mice offer to
study microbe–microbe interaction, to better understand how the introduction of a
new microbial member affects the whole microbial community and host functions.
Germ-free models provide insights into the host processes regulated by the presence
and/or composition of the microbiota in health and disease (Reyniers 1959b; Smith
et al. 2007). Based on their interaction with the host, members of the microbiota can
be classified as beneficial species (Commensals) including probiotic bacteria, like
Bifidobacterium and benign organisms such as members of the defined “altered
Schaedler flora,” or pathogenic species, including pathobionts such as Helicobacter
pylori and opportunistic pathogens (Fanning et al. 2012; Biggs et al. 2017). The
development of gnotobiotic animal models provides an opportunity to compare them
with conventionally raised animals but also the ability to introduce one or few
bacterial species at a time to understand host–microbe interactions in a simplified
environment (Williams 2014).

16.5.4 Host–pathogen Interaction

Very soon after the invention of germ-free technology, gnotobiotic animals became
a key tool to study the host–microbiota interaction and later used to investigate the
host immune responses to pathogens. Initial studies performed on the
mono-associated animal to assess the resisting power of host towards infections
demonstrated that lack of an intestinal microbiota impairs early innate immunity.
Mono-associated animals showed higher sensitivity towards Listeria monocytogenes
infection while di-associated mice having commensal flora, remained unaffected
from the pathogen (Zachar and Savage 1979; Czuprynski and Balish 1981). A
similar conclusion concerning the significance of native flora on the host’s immunity
was made in other studies conducted with Salmonella typhimurium and Vibrio
cholera infections (Nardi et al. 1991; Butterton et al. 1996). A commensal
microbiota competes for space, nutrients and mediates the production of antimicro-
bial metabolites, which subsequently prevent growth and colonization of numerous
pathogenic bacteria (Mack et al. 1999, 2003; Srikanth and McCormick 2008). GF
mice models in combination with mono-associated and di-associated gnotobionts
will be obligatory tools in future investigations, aimed to recognize the pathogenesis
and treatment of newly emerging infections.
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16.5.5 Reproductive Health

Germ-free mice are considered reproductively inferior to their conventional coun-
terparts. Surprisingly, when germ-free female mice di-associated with B. distasonis
and C. perfringens displayed a normalized estrous cycle, and increase rates of
copulation and implantation (Shimizu et al. 1998). The lower reproductive tract of
the female mouse is anatomically almost like that of humans (Leppi 1964). During a
recent study, GF mice vaginally inoculated with Prevotella bivia displayed increased
numbers of mucosal activated CCR5+ CD4+ T cells (HIV target cells) within the
female genital tract compared to mice inoculated with Lactobacillus crispatus.
Hence colonization of altered bacteria is often associated with increased HIV risk
and other STIs (Gosmann et al. 2017). In future investigations, germ-free models can
be exploited to address different aspects of reproductive health correlation with host
microbiota.

16.5.6 Cancer Biology

Cancer development in GF rodents can partially be associated with the absence of
commensal flora (Pollard and Teah 1963; Walburg Jr 1973; Pollard et al. 1985).
Experimental cancer yields were found to be lower in GF rodents when the carcin-
ogens tested required enzymatic metabolic activation (Weisburger et al. 1975).
Generally, the oncogenic potential is that the same as in conventional rats, but
tumor-related changes are more clearly defined in GF animals (Pollard et al.
1968). GF rodents with either spontaneous or induced tumors have higher numbers
of plasma cells but haven’t any germinal zones in their lymph nodes (Pollard et al.
1968). Gnotobiotic animals are particularly suitable for testing candidate viral
carcinogens, since derivation by hysterectomy and gnotobiotic maintenance has
been found to eliminate all known viruses from GF rodents (Luckey 1963; Pleasants
1974). Cycasin from cycad bean flour is carcinogenic for conventional rats because
the microbiome present in them converts it into a carcinogen, whereas it doesn’t
induce tumors in GF rats (Laqueur et al. 1967; Luckey 1968). Spontaneous colon
adenomas are twice as prevalent in GF rats (Weisburger et al. 1975). The foremost
frequent spontaneous tumors in aged GF rats involve the mammary and pituitary
glands (Pittermann and Deerberg 1975).

16.5.7 Aging

GF mice tend to live longer than their conventionally colonized counterpart animals
(Reyniers and Sacksteder 1958; Gordon et al. 1966; Tazume et al. 1991). There is
growing evidence indicating that gut microbiota influences the aging process. As GF
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mice are raised in sterile conditions, their longer life span is likely due to the absence
of pathological infections. Premature mortality of GF mice is mainly due to infection
or by environmental factors. Delayed morbidity in 2- to 3-year-old GF rodents is a
common observation, which shows them to be virtually free of the age-related
kidney, heart, and lung changes (Pollard and Kajima 1970; Pollard 1971). In
humans, microbial diversity and stability decrease with age and are accompanied
by a cognitive decline (O’Toole and Claesson 2010; Borre et al. 2014). These
findings have prompted the thought that restoring microbial diversity within the
elderly could improve general and mental health.

16.5.8 Drug Response and Xenobiotics

It is often assumed that gastrointestinal tract microbiota is probably the first which
interacts with ingested xenobiotics. The gut microbiome can activate or deactivate
pharmaceuticals and may alter their metabolic consequences. An altered microbiota
also influences the outcome of various therapies, this proves the importance of intact
microbiota in host immune responses (Pope et al. 2017). In experimental germ-free
mice with induced tumors, immune cells poorly respond to immunotherapy that
slows cancer growth and prolongs survival. These germ-free rodents hardly
exhibited any response toward anticancer drugs like oxaliplatin and cisplatin
(Viaud et al. 2015). Clinical use of anticancer drug cyclophosphamide (CTX) on
tumor-bearing mice caused the translocation of some bacterial species into mesen-
teric lymph nodes and the spleen, where they stimulate a Th1 and Th17 immune
response. Germ-free mice failed to generate the same response and were found
immune to the CTX (Viaud et al. 2013). A study performed in National Cancer
Institute (NCI) reported that in germ-free mice having subcutaneous tumors
exhibited lower cytokine production and tumor necrosis after CpG-oligonucleotide
treatment and deficient production of reactive oxygen species and cytotoxicity upon
chemotherapy. This finding advocates the necessity of an intact microbiota for
proper response to anticancer therapy (Iida et al. 2013). Recently in two parallel
studies, the microbial population of fecal samples of melanoma patients was char-
acterized prior to treatment with the anticancer drugs which block a T cell receptor
PD-1. In both studies, certain bacterial species were reported in greater numbers in
those patients who responded properly to the drug. When the same microbes were
administered into the germ-free mice model, an anti-tumor immune response was
observed (Gopalakrishnan et al. 2018; Gong et al. 2019). While some drugs get
activated through bacterial metabolism, others can be inactivated due to microbial
action. A single bacterium Eggerthella lenta inactivates the drug Digoxin, a treat-
ment for heart failure by converting it into inactive form dihydrodigoxin
(Lindenbaum et al. 1981). The microbiome also inactivates Parkinson’s disease
drug L-DOPA, initially by Enterococcus faecalis mediated decarboxylation and
later Eggerthella lenta A2 mediated dihydroxylation. Treatment with broad-
spectrum antibiotics can reverse this activity (Rekdal et al. 2019). Recently Klatt
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et al. reported that vaginal bacteria Gardnerella vaginalis could rapidly metabolize
and breakdown the active form of “Tenofovir Microbicide” the drug for HIV
treatment and thus results in a high HIV acquisition in those women. These findings
highlight the contribution of intact microbiota and its poorly known factors in the
therapy of cancer and other diseases (Klatt et al. 2017).

16.5.9 Gastrointestinal System and Enteric Nervous System

It is reported that gastrointestinal (GI) transit time was significantly faster in con-
ventionally raised mice as compared to GF mice (Abrams and Bishop 1967).
Subsequently, several investigators have shown the introduction of mouse-derived
or human gut-derived bacteria into GF mice alters GI motility and transit time
(Husebye et al. 2001; Kashyap et al. 2013). Various studies highlight the utility of
GF mice as a model to understand host–microbe interaction and how microbes
modulate GI motility and secretions (Husebye et al. 2001; Kashyap et al. 2013;
Kaji et al. 2015; Reigstad et al. 2015; Yano et al. 2015). The microbiota was found
essential for the postnatal development of the enteric sensory and motor neurons
(Luczynski et al. 2016a, b).

The changes that have been reported in central nervous system development in
GF mice are reflected during the maturation of the enteric nervous system (ENS)
(Collins et al. 2014; Luczynski et al. 2016a). At postnatal day 3, the structure,
neurochemical composition, and function of enteric neurons in the jejunum and
ileum of GF mice were significantly altered, also in the small intestine, GF mice have
decreased overall nerve density (Collins et al. 2014). The ganglia of intrinsic sensory
neurons of the ENS are embedded in the gut wall and it has been established that the
electrophysiological properties of afterhyperpolarization (AH) neurons are altered in
the absence of colonizing bacteria (Forsythe and Kunze 2013; McVey Neufeld et al.
2013, 2015). As mentioned earlier, GF mice have altered intestinal motility and these
sensory neurons synapse on enteric motor neurons controlling gut motility, so this
may provide a possible explanation for the dysfunction. The AH sensory neurons
also synapse, both anatomically and functionally, with vagal nerve endings in the gut
and thus could represent a direct neural route whereby the intestinal bacterial status is
transmitted to the brain (Powley et al. 2008; Perez-Burgos et al. 2014). All these
studies carried out with help of GF mice provide us a crucial link between microbiota
and development of the GI system and also how it alters the functioning of ENS
when compared with conventional models.
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16.6 Future Potentials of Germ-Free Technology

16.6.1 Technological Aspects

Introduction of automation, sterile room facilities and robotics could prove to be
boon in the technology of in vivo mice models. Major challenges for this technology
are scarcity of proficient technicians, and the time and space required to accommo-
date the bulky isolators along with huge cost associated with maintaining GF
facilities is the major challenge for this technology (Mallapaty 2017). Innovative
ideas such as the use of positive-pressure isocages for short-term experiments can be
helpful to reduce the overall cost (Hecht et al. 2014). Availability of highly skilled
technical staff will be another breakthrough in GF technology. Colonies of GF mice
of specified genetic strains and novel minimal bacterial consortia should be
established for the common laboratory species for target-based studies. Long-term
rearing, development of breeding colonies of GF mice, and development of devices
for shipping GF animals require extensive operations. In future, a centralized or
region-based laboratory exclusively for GF mice technology can be established
which not only will be center for resources but also skilled manpower.

16.6.2 Future Bio-therapeutic Agents and Pharmaceuticals
Products

Due to increased incidences of antibiotic-resistance and therefore the side-effects of
those drugs on host and off-target flora, alternate strategies should be developed to
target pathogens (Meropol et al. 2008). Manipulation of the commensal microbiota
and hence enabling its over-growth and competition with pathogens thus ultimately
replace drug-resistance flora could also be a potent solution in the form of probiotics
(Imperial and Ibana 2016). Germ-free mice colonies are often used as an experi-
mental model to develop probiotics against antimicrobial-resistance pathogens.
However, consistent monitoring of microbial load in germ-free models is critical
for researchers to determine the load of contaminants or antibiotic-resistant
microbes. These gnotobiotic models can also be potentially utilized in vaccine
development program. Since it’s evident that host microbiota can modulate vaccine
response, hence it can be a decisive factor for a successful vaccination strategy
(Wang et al. 2010; Cram et al. 2018). Microbiota features a capacity to alter the
efficacy of any pharmaceutical formulation applied on its host. Different pharma-
ceutical products can be activated or inactivated by selective microorganisms (Iida
et al. 2013; Klatt et al. 2017; Rekdal et al. 2019). Hence germ-free mice associated
with such bacteria can be utilized in preclinical trials to develop stable and effective
drugs (Fig. 16.3).
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16.7 Future Models

Humanized mouse model: GF mice can be colonized with human gut microbiota by
using either a reductionist or holistic approach. In a reductionist approach, investi-
gators seek the effect of known organisms, which affect the host, affected by the host
or interact with one another. In the holistic approach, complex gut microbiota from
diseased or healthy human donors is transferred in GF mice and their role in humans
is predicted by profiling the alterations in recipient mice. The generation of “human-
ized mouse models” can support translational aspects of future research by creating
human-like conditions within the mouse gut (Basic and Bleich 2019).

Knockout-gnotobiotic mouse model: Recently knockout-gnotobiotic animal
models have been successfully developed and exploited to review the immune
response modulated by a pathogen, in absence of crucial immune-modulatory
genes (Balish et al. 1998; Yugo et al. 2018). Although the development of the
knockout-gnotobiotic animal model is not an easy task, it will immensely help to
understand the role of a specific bacterium in special circumstances.

Fig. 16.3 Current challenges vs proposed future advancements in germ-free mice technology
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1. In a genetic disease due to defective gene/gene product: to explore the role of
various bacterial species or their metabolites that can perform an identical role to
cure the disorder

2. To understand the infection dynamics of a pathogen in immune-compromised
individuals

Model recombinant microorganisms: Engineering Human Microbiome is a novel
concept (Kali 2015). Recombinant DNA technology can be employed to modify the
genome of resident microflora and genetically modified microbes can be assessed to
achieve unprecedented goals when associated with GF animals (Kayser et al. 2019).

Fecal Microbiota Transplantation (FMT): Administration of stool sample in
solution from healthy donor to intestinal tract of recipient in order to change the
gut health.

Cohousing: Cohousing recommendations for individual species are based, in
part, on behavioral characteristics such as the desire to nest near a cage mate. In a
study of male mice, animals given the choice to nest in an inhabited or empty cage
preferred the proximity of another animal.

16.7.1 Combination of OMICS and GF Technology

The bioinformatics approaches in GF mice technology can prove to be indispensable
in terms of applications in the future. When combined with approaches such as
genomics, transcriptomics, metabolomics, and proteomics, GF mice technology can
lead to the discovery of the exact functions and mechanisms of host colonization. It
can also lead to a better understanding of the interaction and communication of
specific microbiota representatives amongst each other and also with their respective
hosts.

16.8 Conclusion

Here, we have summarized the foremost important outcomes of germ-free mice
technology within the fields of health and allied sciences. These animal models offer
immense advantages over other existing approaches for studying the role of varied
microbial species and to know pathogenesis through host–microbe interaction,
microbe–microbe interaction, gene–microbe interaction, diet–microbe interactions
and senescence. GF animals are going to be the most important tool to investigate,
how certain microorganisms are ready to colonize and survive within the host, while
others can’t. Germ-free mice have been extensively used for deciphering some
mechanisms linked to metabolic diseases like Type II diabetes mellitus, behavioral
functions at the gut-brain axis and autism, cardiovascular diseases, and cancer. Like
every technology developed in the past few decades, germ-free mice technology is
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additionally into its evolving phase. The fact that technologies for detecting and
characterizing microorganisms is continuously evolving, GF mice technology also
needs to go in with pace.
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