
Chapter 9 
Analytical Models for Axially-Restrained 
Steel–Concrete-Steel Sandwich Panel 
Under Blast 

9.1 Introduction 

Steel–Concrete-Steel (SCS) sandwich panels were demonstrated to have good blast 
resistant performances through field blast tests (Liew and Wang 2011; Lan et al. 
2005), and therefore they could be employed as protective structures against impact 
and blast loads. Previous studies showed that the SCS sandwich panel with axially-
restrained boundary had significantly higher blast resistance as compared to its coun-
terpart with simply supported boundary. Hence, the aim of this study is to develop 
the analytical models for predicting axially-restrained SCS sandwich panels under 
blast loading. 

For a simply supported SCS sandwich panel, its failure mode includes flexure and 
shear. Therefore, the mechanical shear connectors are of significance to assure the 
composite action of SCS sandwich panels. Liew and Sohel (2009) proposed J-hooks 
and studied the impact performances of SCS sandwich beams with J-hook connectors 
(Liew et al. 2009). Moreover, field blast tests were also conducted to obtain the 
blast responses of SCS sandwich panels with J-hook connectors (Liew and Wang 
2011). For the axially-restrained SCS sandwich panels, it mainly relies on the tensile 
membrane action to resist lateral pressure load, and therefore the shear connectors are 
relatively unimportant. Remennikov and Kong (2012) carried out the impact tests on 
the axially-restrained non-composite SCS sandwich panels. The tensile membrane 
resistance was found to be significantly higher than the bending resistance, and the 
ductility of the SCS sandwich panel was also improved (Remennikov and Kong 2012; 
Remennikov et al. 2013). The membrane action of Reinforced Concrete (RC) panels 
has already been considered in fire resistance design when the RC panels undergo 
large deformation after fire (Li et al. 2007; Bailey 2001). The formula used to predict 
resistance of RC panels considering membrane action was generally derived based 
on force equilibrium. The resistance–deflection function is necessary to predict the 
structural response under dynamic loading. In this study, the resistance–deflection 
function of the SCS sandwich panel contributed by concrete core is derived based
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on the energy balance principle, since the force distribution on the concrete core is 
complex and it is nearly impossible to establish the force equilibrium equations. 

The Single-Degree-Of-Freedom (SDOF) method is commonly adopted to predict 
the structural response under blast loading (UFC 2008; Biggs 1964;ASCE  2011), as it 
is a relatively simpler alternative as compared to the Finite Element (FE) method and 
the calculations are reasonable in most cases. A structural member can be equivalent 
to a SDOF system through transformation factor KLM , which is a function of its 
deflection shape (Biggs 1964). Normally, the shape function is obtained by analyzing 
the member under uniformly distributed static load. In reality, the deflection shape 
changes during motion owing to the existence of inertia force which, together with 
the uniform pressure load, changes the load distribution on the member. It is accepted 
that shape function has little effect on the structural response if the adopted deflection 
shapes are in accordance with the actual boundary condition. However, the difference 
in maximum displacement obtained using different assumed shape functions may be 
over 10% in the elastic range (Baker et al. 1983) and may be even larger when the 
member enters plastic range. A constant value of Dynamic Increase Factor (DIF) 
was generally included in the SDOF model to represent the average strain rate effect 
on material strength (UFC 2008; ASCE  2011). Since the DIF is a function of strain 
rate, it also varies during motion. Hence, adopting a constant value of DIF may not 
accurately capture the strain rate effect. To overcome this limitation, Nassr et al. 
(2012) proposed a strain rate model that defines the maximum strain rate in terms 
of scaled distance for beam column. Different DIF values can be generated under 
different blast loads, but the model is still unable to capture the varying DIF with strain 
rate during motion. The varying DIF in terms of strain rate was recently included in 
the continuous beam model (Carta and Stochino 2013; Jones et al. 2009) and SDOF 
model (Carta and Stochino 2013) to analyze the simply supported RC panels under 
blast loading. The DIF was introduced by updating the resistance at each time step 
according to the strain rate at the corresponding time step, and the predictions with 
varying DIF were more accurate than those with constant DIF by comparing with 
test results. 

In this chapter, the resistance–deflection function of the axially-restrained SCS 
sandwich panel was derived and then included into the SDOF model. The varying 
DIF in terms of strain rate was also considered in the SDOF model. Since only one 
deflection shape function can be included in the SDOF model, the Lagrange Equation 
model (Donaldson 2006; Schleyer and Hsu 2000; Langdon and Schleyer 2005) with 
combined shape functions and varying DIF was introduced to better predict the blast 
responses of axially-restrained SCS sandwich panels.
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9.2 FE Model Calibration 

9.2.1 Blast Loading Test on SCS Sandwich Panels 

The field blast tests on SCS sandwich panels conducted by Kang et al. (2013) were  
employed for the FE model validation. There were six specimens being fabricated 
for three blast tests, and two specimens were tested in each blast test. The 100 kg 
TNT military cratering ordnance was detonated at a standoff distance of 5 m (Liew 
and Wang 2011; Kang et al. 2013). The setup of field blast test is shown in Fig. 9.1. 
Although six specimens were tested, only one specimen with normal concrete and 
without shear connectors was selected for validating the established FE model in the 
following section. The configuration of the non-composite SCS sandwich panel with 
normal concrete is shown in Fig. 9.2. 

9.2.2 FE Model Establishment 

The FE model of the SCS sandwich panel is shown in Fig. 9.3. Thick-shell and solid 
elements are used to mesh the steel plates and concrete core, respectively. The front, 
back, side and end steel plates were fillet welded together to form the outer skins of 
the panel during fabrication. Since no weld failure was observed after the blast test, 
the perfect weld condition is employed in the FE model by merging the coincident 
nodes of steel plates. 

The Continuous Surface Cap (CSC) model in LS-DYNA (Hallquist 2006) was  
adopted to simulate the behavior of concrete. The CSC model was developed by US

Fig. 9.1 Blast test setup 
with 100 kg TNT charge 
(Kang et al. 2013)
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Fig. 9.2 Details of SCS sandwich panel (Kang et al. 2013) 

Federal Highway Administration for simulating the concrete-like material subjected 
to impact and blast loads (FHWA 2007a, b). This model has been proven to be a robust 
constitutive model for both implicit and explicit analysis. The detailed introduction 
of failure surface, flow rule, damage formulation and strain rate treatment for the CSC 
model can be found from FHWA (2007b). This FHWA material model is easy to use, 
since it can generate the default parameters for the normal concrete by only inputting 
the unconfined compressive strength. The main material parameters of concrete used 
in this analysis are given in Table 9.1.

Piecewise Linear Plasticity (PLP) model in LS-DYNA was adopted for the steel 
material. The input true stress–effective plastic strain curve was obtained from the 
tensile coupon test results. Cowper-Symonds equation (Cowper and Symonds 1958) 
is included in this material model to consider the strain rate effect, as shown in 
Eq. (9.1). 

DI  Fs = 1 + (
ε̇
/
c
)1/ p (9.1) 

where c and p are strain rate parameters. For mild steel, the values of c and p are 
taken as 40.4 s−1 and 5, respectively (Jones 1988). 

9.2.3 FE Model Validation 

The blast pressure–time history recorded in the test is plotted in Fig. 9.4, together 
with the integrated impulse. The equivalent triangular blast load with similar peak
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Fig. 9.3 FE model of SCS sandwich panel and support, reprinted from Wang et al. (2015), copyright 
2022, with permission from Elsevier 

Table 9.1 Material 
properties of concrete in FE 
analysis 

Density 
(kg/m3) 

Compressive 
strength (MPa) 

Shear 
modulus 
(GPa) 

Bulk modulus 
(GPa) 

2310 35 12.06 13.21

impulse and pressure is applied in the FE model, as shown in Fig. 9.4. The mid-span 
permanent displacement of the SCS sandwich panel from blast test is compared with 
the FE-prediction, as shown in Fig. 9.5. Since the potentiometers failed to capture 
the data during the field blast test, the displacement–time history was not compared. 
Figure 9.5 shows that the measured permanent displacement from the blast test agrees 
well with the FE-prediction. Moreover, the FE-predicted failure mode of the SCS 
sandwich panel is also compared with test observations in Fig. 9.6. Both FE and test 
results exhibit the flexural failure mode at mid-span, with sign of shear deformation at
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Fig. 9.4 Experimental and numerical blast loading profiles (Kang et al. 2013) 

Fig. 9.5 Comparison of 
experimental and numerical 
results, reprinted from Wang 
et al. (2015), copyright 2022, 
with permission from 
Elsevier 
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the top end. Therefore, the established FE model can produce reasonable predictions 
on the responses of SCS sandwich panels subjected to blast loading. The established 
FE model will be used to verify the analytical models in the following sections 
by removing the side plates and support as well as imposing the axially-restrained 
boundary.
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Fig. 9.6 Comparison of 
failure modes from a blast 
test and b numerical 
simulation, reprinted from 
Wang et al. (2015), copyright 
2022, with permission from 
Elsevier 

9.3 SDOF Model 

The SCS sandwich panel can be equivalent to a SDOF system, and the deflection 
shape function and resistance–deflection function of the SCS sandwich panel are 
necessary to establish the equation of motion as 

KLMm ÿ + R(y) = F(t) (9.2) 

where KLM  is the load-mass factor and can be calculated based on the given deflection 
shape function; R(y) is the resistance–deflection function. 

The deflection shape function and resistance–deflection function are generally 
derived by solving the differential equations established according to the force equi-
librium. However, it is hard to establish the force equilibrium equations for the SCS 
sandwich panel owing to the undetermined composite action between steel plates 
and concrete core as well as the complex stress–strain relationship of concrete. In 
this study, the resistance–deflection function of the SCS sandwich panel is divided 
into two parts, i.e., the resistance contributed by steel plates and concrete core. The 
resistance–deflection function of the axially-restrained steel plate considering tensile 
membrane action has been obtained by utilizing force equilibrium equation (Wang 
and Xiong 2015), which is given as 

Rs(Y ) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

21.104EtsY 3 

L4 ε ≤ εy 

8Etsεy(1 − α)Y 

L2
+ 

21.104α EtsY 3 

L4 ε >  εy 
(9.3)
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where E is the Young’s modulus, ts is the steel plate thickness, Y is the mid-span 
displacement, L is the span length, εy is the yield strain, and α is the steel hardening 
coefficient. The deflection shape function has been obtained as (Wang and Xiong 
2015) 

φ(x) = 
4 

L2 
(Lx  − x2 ) (9.4) 

The deflection shape function of the steel plate in Eq. (9.4) is also adopted as the 
deflection shape function for the SCS sandwich panel. This is because the deflection 
shape function has little effect on the structural response (Baker et al. 1983), and the 
steel plates of the SCS sandwich panel absorb the majority of blast energy. Another 
reason is that the constant curvature along the span of the SCS sandwich panel can 
be obtained according to the shape function in Eq. (9.4), which will significantly 
simplify the calculation. 

The energy balance principle is adopted to derive the resistance–deflection func-
tion of the SCS sandwich panel contributed by concrete core. The procedure is that: 
(a) obtaining the strain distribution of concrete core and establish the relationship 
between strain and mid-span displacement; (b) deriving the relationship between the 
internal energy of concrete core and mid-span displacement; (c) differentiating the 
internal energy with respect to mid-span displacement and divided by load factor KL 

to obtain the resistance–deflection function of the SCS sandwich panel contributed 
by concrete core. 

9.3.1 Resistance–Deflection Function Contributed 
by Concrete Core 

To simplify the calculation of resistance–deflection function of the SCS sandwich 
panel contributed by concrete core, the following influences are ignored, i.e., the 
tensile strength of concrete, the confinement effect on compressive strength of 
concrete, and the bonding and friction between steel plates and concrete core. Then, 
the force distribution on the concrete core and the compression strut along the span 
can be given in Fig. 9.7, together with the neutral axis along the span. According to 
the force equilibrium in horizontal direction, the compressive force from the end plate 
equals to the compressive force in concrete, i.e., Fe = Fc. Therefore, it is reasonable 
to assume that the neutral depth (the distance between the outmost compression layer 
and neutral axis) at the end and mid-span is the same. Hence, according to Fig. 9.8, 
t1 equals to t2, which leads to the following relationship. 

ΔLS 

tn − t1 
= 

ΔLC 

t2 
(9.5)
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Fig. 9.7 Force distribution and neutral axis on the concrete core, reprinted from Wang et al. (2015), 
copyright 2022, with permission from Elsevier 

Fig. 9.8 Deformation 
profile across the concrete 
depth, reprinted from Wang 
et al. (2015), copyright 2022, 
with permission from 
Elsevier 

where ΔLS is the difference between developed length and original length of the 
steel plate, and ΔLC is the difference between compressed length and original length 
of concrete at the top layer. By adopting the deflection shape function in Eq. (9.4), 
the curvature of concrete core can be obtained in Eq. (9.6). 

K = |y′| 
(1 + y′2)3/2 

≈ 8Y/L2 (9.6) 

Therefore, ΔLC and ΔLS can be obtained as 

ΔLC = K (L − 2tc
/
tan θ)t2; ΔLS = 

1 

2 

L∫

0

(
dy  

dx

)2 

dx  = 
8Y 2 

3L 
(9.7)
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From above equations, the neutral axis is determined as 

tn = 
tc 
2 

+ 
Y ξ 
6 

(9.8) 

where ξ = L
/(

L − 2tc
/
tan θ

)
. The value of  θ normally ranges from 26.6° to 45°. 

In this study, θ is taken as 26.6° in accordance with Eurocode 2 (2004). Therefore, 
the axial strain above the neutral axis is obtained as 

ε = 
8 

L2

[(
t − 

tc 
2

)
Y − 

Y 2ξ 
6

]
(9.9) 

Figure 9.9 presents the comparison of the normal strain–mid-span displacement 
curves obtained from FE analysis and Eq. (9.9). The details of the FE model are 
listed in Table 9.2. It can be seen that the analytical-predicted strain agrees well with 
the FE-prediction. Hence, the established strain formula in Eq. (9.9) is reasonable 
and can be used for calculating the internal energy of concrete core. 

Since it is complex to obtain the internal energy of concrete core based on current 
neutral axis which varies with the mid-span displacement, a constant neutral axis 
is proposed, based on which the equivalent curvature is then derived. If the internal 
energy of concrete core keeps increasing with the mid-span displacement rising from 
0 to  Yn, the neutral axis tn in Eq. (9.8) ranges from tc

/
2 to tc

/
2 +Ynξ

/
6. Therefore, 

it is rational to take the average neutral axis tc
/
2 + Ynξ

/
12 as the constant neutral 

axis. Yn is the minimum value of the maximum mid-span displacement (Ymax) and

Fig. 9.9 Comparison of 
axial strain–displacement 
curves between analytical 
and FE prediction, reprinted 
from Wang et al. (2015), 
copyright 2022, with 
permission from Elsevier 
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Table 9.2 Details of FE model for implicit analysis on SCS sandwich panel 

Front/back/end 
plate thickness 
(mm) 

Concrete core 
thickness (mm) 

Span (mm) Steel yield 
stress (MPa) 

Steel 
hardening 
coefficient 
(%) 

Concrete 
compressive 
strength (MPa) 

3 50 1180 320 0.5 35
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Ym. Ym is a value of the mid-span displacement. When the mid-span displacement 
exceeds Ym, the equivalent curvature starts to decrease with the increasing of mid-
span displacement. Ym will be given later after establishing the equivalent curvature.

The equivalent curvature (Ke) is derived based on the criteria that the internal 
energy of concrete core calculated by using original and equivalent strain expression 
is the same in the elastic range. The internal energy of concrete core per unit area is 
given as 

u = 
ηm∫

0 

1 

2 
Eε2 dη = 

1 

6 
EK  2 η3 

m (9.10) 

where η is the distance between the compressive layer and neutral axis, and ηm = 
T

/
2 − Ynξ

/
12. Then, the equivalent curvature is obtained as 

Ke = 
8Y 

L2

(
1 − Y ξ

/
3tc 

1 − Ynξ
/
6tc

)3/ 2 

(9.11) 

and the strain can be expressed as 

ε = Keη = 
8Y η 
L2

(
1 − Y ξ

/
3tc 

1 − Ynξ
/
6tc

)3/ 2 (
0 ≤ η ≤ tc 2 − Yn ξ 12

)
(9.12) 

Differentiating the equivalent curvature Ke with respect to mid-span displacement 
Y and setting it to zero leads to the solution of Ym to be 6tc

/
5ξ . It indicates that when 

the mid-span displacement exceeds Ym , the equivalent curvature Ke starts to decrease 
with increasing mid-span displacement. 

The stress–strain curve of concrete under uniaxial compression is given by 
Eurocode 2 (2004) as  

σc 

fcm 
= 

kε
/

εo −
(
ε
/

εo
)2 

1 + (k − 2)ε
/

εo 
f or  |ε| < |εc| (9.13) 

where k, f cm, εo and εc can be found in Eurocode 2 (2004). 
When all the compressive strains above the neutral axis are smaller than the crush 

strain of concrete εc, the stress–strain relationship given in Eq. (9.13) can be used 
for all the compressive concrete above the neutral axis. Hence, the internal energy 
of concrete core per unit volume can be calculated as 

uc(ε) = 
ε∫

0 

σcdε′ = 
ε∫

0 

fcm 
kε/εo − (ε/εo)2 

1 + (k − 2)ε/εo 
dε′ = ε0 fcmg1( 

ε 
εo 

) (9.14)
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where g1( ε 
εo 

) =
[

(k−1)2 ε/ εo 
(k−2)2 

− (ε/ εo)
2 

2(k−2) − (k−1)2 ln((k−2)ε/ εo+1) 
(k−2)3

]
. 

Provided that the internal energy density of concrete core along the compression 
strut is the same, the internal energy of concrete core in SCS sandwich panel can be 
calculated as 

Uu 
c = Le B 

ηm∫

0 

uc(Keη)dη (9.15) 

where B is the width of concrete core, Le is the length of compression strut and 

can be calculated as Le = L + 2tc
(
1
/
sin θ − 1

/
tan θ

)
, g2( Keηm 

εo 
) = A

(
Keηm 
εo

)2 − 

B
(

Keηm 
εo

)3 − C Keηm 
εo

{
ln

[
(k − 2) Keηm 

εo 
+ 1

]
− 1

}
− D ln

[
(k − 2) Keηm 

εo 
+ 1

]
, where 

A = (k−1)2 

2(k−2)2 
, B = 1 

6(k−2) , C = (k−1)2 

(k−2)3 
, D = (k−1)2 

(k−2)4 
. 

Thus, differentiating the internal energy of concrete core with respect to mid-span 
displacement leads to 

dUu 
c 

dY  
= 

Le Bε2 o fcm 
Ke 

K ′
e

{

−g2( 
Keηm 

εo 
) 
1 

Ke 
+ 2A

(
ηm 

εo

)2 

Ke 

− 3B
(

ηm 

εo

)3 

K 2 e − C 
ηm 

εo

[
ln

[
(k − 2) 

Keηm 

εo 
+ 1

]
− 1

]

− C 
k − 2 

(k − 2)Keηm/εo + 1 
Keη

2 
m 

ε2 o 
− D 

k − 2 
(k − 2)Keηm/εo + 1 

ηm 

εo

}}

(9.16) 

where K ′
e = dKe 

dY  . Then, the resistance–deflection function contributed by concrete 
core without crushing can be obtained as 

Rc1(Y ) = 
dUu 

c 

dY  

1 

BL  KL 
(9.17) 

where KL is the load factor and can be calculated based on the given deflection shape 
function in Eq. (9.4). 

When the maximum compressive strain in the concrete core exceeds crush strain 
of concrete εc, the internal energy of concrete core can be divided into two parts, i.e., 
the one with crushing and the rest without crushing. The internal energy of concrete 
core without crushing can be calculated as 

Uc,1 = Le B 

η0∫

0 

uc(Keη)dη = 
Le Bε2 o fcm 

Ke 
g2( 

Keη0 

εo 
) (9.18)
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where η0 = εc L2 

8Y

(
1−Yn ξ/ 6tc 
1−Y ξ/ 3tc

)
, which is calculated by setting the strain expression in 

Eq. (9.12) to crushing strain εc. The internal energy of concrete core with crushing 
can be calculated as 

Uc,2 = Le B(ηm − η0)εo fcmg1( 
εc 

εo 
) (9.19) 

Hence, the total internal energy of concrete core after crushing is given as 

Uc 
c = Uc,1 + Uc,2 (9.20) 

Similarly, differentiating the internal energy of concrete core with respect to mid-
span displacement leads to 

dUc 
c 

dY  
= − Le Bε2 o fcm 

K 2 e 
K ′

eg2( 
εc 

εo 
) − Le Bεo fcmg1( 

εc 

εo 
)η′

0 (9.21) 

where η′
0 = εc L2 

8

(
1 − Yn ξ 6tc

)3/2[− 1 
Y 2(1−Y ξ/3tc)3/2 

+ ξ 
2tcY (1−Y ξ/3tc)5/2

]
. 

In the same way, the resistance–deflection function contributed by concrete core 
after crushing can be obtained as 

Rc2(Y ) = 
dUc 

c 

dY  

1 

BL  KL 
(9.22) 

The procedure for calculating the resistance–deflection function of the SCS 
sandwich panel contributed by concrete core can be summarized as follow. 

Calculating the maximum strain of concrete core by Eq. (9.23). 

εmax = 
8Ym 
L2

(
1 − Ymξ

/
3tc 

1 − Ynξ
/
6tc

)3/ 2(
tc 
2 

− 
Ynξ 
12

)
(9.23) 

For εmax ≤ εc, there is no concrete crushing. Then, the resistance–deflection 
function is given as 

Rc =
{
Rc1 (Y ≤ Ym) 
0 (Y > Ym) 

(9.24) 

For εmax > εc, calculating Y0 by solving the Eq. (9.25). 

8Y 

L2

(
1 − Y ξ

/
3tc 

1 − Ynξ
/
6tc

)3/ 2(
tc 
2 

− 
Ynξ 
12

)
= εc (9.25)



260 9 Analytical Models for Axially-Restrained Steel–Concrete-Steel …

Fig. 9.10 Comparison of 
resistance–deflection curves 
between analytical and FE 
models, reprinted from Wang 
et al. (2015), copyright 2022, 
with permission from 
Elsevier 
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Then, the resistance–deflection function is given as 

Rc = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

Rc1 (Y ≤ Y0) 
Rc2 (Y0 < Y ≤ Ym) 
0 (Y > Ym) 

(9.26) 

The total resistance of the SCS sandwich panel is obtained by summing the resis-
tances contributed by steel plates and concrete core. Figure 9.10 presents the compar-
ison of the analytical-predicted resistance–deflection of the SCS sandwich panel with 
that obtained by FE analysis, and good agreement between them can be observed. The 
resistance of steel plates is also plotted in Fig. 9.10, and it is lower than the resistance 
of the SCS sandwich panel obtained from FE analysis, especially for small displace-
ment. This indicates that the concrete core helps in improving the initial stiffness of 
axially-restrained SCS sandwich panel, whereas the steel plates absorb the majority 
of blast energy when the SCS sandwich panel experiences large deformation. 

9.3.2 DIF for SDOF Model 

The strain rate effect is generally included in the analytical model by means of DIF 
which can be defined as a function of strain rate. In the FE method, the DIF–strain 
rate relationship can be directly specified in the constitutive model, and the varying 
value of DIF depending on strain rate can be applied in the FE calculation (Hallquist 
2006). For the SDOF method, a constant DIF value is generally adopted to scale either 
the yield strength, ultimate strength or both of them depending on the deformation 
mode (UFC 2008; ASCE  2011). It has been argued that a single DIF value might not 
accurately capture the strain rate effect for highly varying strain rate, and it could 
be too conservative for large plastic deformation cases. Therefore, varying DIF in 
terms of strain rate is introduced into the SDOF and Lagrange Equation models to
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accurately capture the strain rate effect. Since the strain rate has little effect on the 
Young’s modulus of steel, it can be kept unchanged during calculation, while both 
yield stress and yield strain vary with the strain rate. 

9.3.2.1 DIF for Steel Plate 

The varying DIF can be taken into consideration during transformation of actual 
structural member to its equivalent SDOF system through energy balance principle. 
The variation for the internal energy of steel plates and its equivalent SDOF system 
is given by Eqs. (9.27) and (9.28), respectively. 

dUa = 
L∫

0 

f (ε̇p)σ (Y )Adεdx (9.27) 

dUe = DI  Fs ∗ KR ∗ R(Y )dY = DI  Fs ∗ 
L∫

0 

σ (Y ) Adεdx (9.28) 

where KR is the resistance factor. By assuming that the internal energy along the 
span is constant and equating the above two equations leads to 

DI  Fs = 

L∫

0 
f (ε̇p)dx  

L 
(9.29) 

The configuration of infinitesimal element (dx) is shown in Fig. 9.11 at t and t + 
Δt, based on which the plastic strain rate can be obtained as 

ε̇p = 
[φ(x)]2 Y Ẏ 

1 + [φ(x)Y ]2
(9.30) 

Equation (9.30) defines the strain rate in terms of shape function, displacement and 
velocity. For steel material, Eq. (9.31) can be obtained by using the Cowper-Symonds 
model to define the DIF as a function of strain rate. 

f (ε̇p) = 1 +
(

[φ(x)]2 Ẏ Y  

c + c[φ(x)Y ]2

)1/ p 

(9.31) 

Substituting Eq. (9.31) and shape function in Eq. (9.4) into Eq. (9.29), the DIFs 

can be calculated as
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Fig. 9.11 Configuration of infinitesimal element along span, reprinted from Wang et al. (2015), 
copyright 2022, with permission from Elsevier 

DI  Fs = 1 + 

L∫

0

(
χ χ̇ 

cχ 2+c/ 16(1−2x/ L)
2

)1/ p 
dx  

L 
(9.32) 

where χ = Y
/
L is the mid-span displacement to span ratio. 

9.3.2.2 DIF for Concrete Core 

The energy balance principle is also adopted to obtain the DIF for concrete core. 
The variation for the internal energy of concrete core without considering strain rate 
effect is given as 

dUc = BLe fcm 

ηm∫

0 

kKeη
/

ε0 −
(
Keη

/
ε0

)2 

1 + (k − 2)Keη
/

ε0 
ηdηdKe (9.33) 

Then, we have 

dUc 

dY  
= BLe fcm 

ηm∫

0 

kKeη
/

ε0 −
(
Keη

/
ε0

)2 

1 + (k − 2)Keη
/

ε0 
ηdη 

dKe 

dY  
(9.34)
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In the same way, the following equation can be obtained by considering the strain 
rate effect. 

dUcD 

dY  
= BLe fcm 

ηm∫

0 

Dc(η K̇e) 
kKeη

/
ε0 −

(
Keη

/
ε0

)2 

1 + (k − 2)Keη
/

ε0 
ηdη 

dKe 

dY  
(9.35) 

Therefore, the DIF for concrete core is obtained as 

DI  Fc1 = 

ηm∫

0 
Dc(η K̇e) kKeη/ ε0−(Keη/ ε0)2 

1+(k−2)Keη/ ε0 ηdη 

ηm∫

0 

kKeη/ ε0−(Keη/ ε0)2 
1+(k−2)Keη/ ε0 ηdη 

(9.36) 

Equation (9.36) is only used to scale up the Rc1, and the DIF for scaling up Rc2 is 
given in Eq. (9.37). 

DI  Fc2 = 

η0∫

0 
Dc(η K̇e) kKeη/ ε0−(Keη/ ε0)2 

1+(k−2)Keη/ ε0 ηdη 

η0∫

0 

kKeη/ ε0−(Keη/ ε0)2 
1+(k−2)Keη/ ε0 ηdη 

(9.37) 

In above equations, Dc(ε̇) defines the relationship between DIF and strain rate of 
concrete core and is given by CEB-FIP (1993). 

Dc(ε̇) =
{ (

ε̇
/

ε̇s
)1.026δs 

(ε̇ ≤ 30s−1) 

βs
(
ε̇
/

ε̇s
)1/ 3 

(ε̇ >  30s−1) 
(9.38) 

where δs = 1
/

(5 + 9 fcm
/
10), βs = 10(6.156δs−2.0) and the static strain rate ε̇s = 

30 × 10−6. 

9.3.3 Equation of Motion for SDOF System 

The equation of motion for the SDOF system can be established as 

KLM [ρs(ts1 + ts2) + ρctc] Ÿ + Rs1 + Rs2 + Rc = P(t) (9.39) 

where ρs and ρc are densities of steel and concrete; ts1, ts2 and tc are thicknesses of 
front steel plate, back steel plate and concrete core; Rs1, Rs2 and Rc are the resistances 
of the SCS sandwich panel contributed by the front steel plate, back steel plate and 
concrete core; P(t) is pressure–time history of blast loading.
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It should be noted that the equation of motion in Eq. (9.39) is only valid before 
the separation of front steel plate. The SCS sandwich panel can be divided into two 
parts, i.e., front steel plate and concrete core + back steel plate. Since the resistance 
intensity (i.e., Ri

/
ρi ti ) of the steel plate is higher than that of concrete core for 

large deformation, the front steel plate may separate from concrete core when the 
velocity reduction rate of the front steel plate is higher than that of concrete core and 
back steel plate. Therefore, the front steel plate starts to separate from concrete core 
when [Rs1 − P(t)]

/
ρs ts1 > (Rs2 + Rc)

/
(ρs ts2 + ρctc) and the equation of motion 

changes to 

KLM  (ρs ts2 + ρctc) ̈Y + Rs2 + Rc = 0 (9.40) 

The fourth-order Runge–Kutta time stepping procedure is utilized to solve the 
equations of motion in Eqs. (9.39) and (9.40). 

9.4 Lagrange Equation Model 

9.4.1 Equation of Motion 

According to the Lagrange Equation model, the equations of motion can be 
formulated as 

d 

dt

(
∂T 

∂ Ċi

)
+ 

∂(U + V ) 
∂Ci 

= 0, i = 1, 2, ..., n. (9.41) 

where T is the kinetic energy, U is the internal energy, V is the potential energy of 
loading and Ci is the generalized displacement. 

For the front and back steel plate in the SCS sandwich panel, only the tensile 
membrane force is considered to resist blast loading, T, U and V in Eq. (9.41) can 
be formulated in Eqs. (9.42), (9.44) and (9.45), respectively. 

T = 
1 

2 

L∫

0 

ρ A ẇ2 dx (9.42) 

where L is the span, ρ is the density, A is the cross-section area, and ẇ is the velocity of 
the steel plate. The deflection of the steel plate, w, with n generalized displacements 
and deflection shape functions are given as 

w(x, t) = 
n∑

i=1 

Ci (t)φi (x) (9.43)
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The internal energy of steel plate Us is calculated as 

Us = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

2 
E A  

ΔL2 

L 
, ΔL ≤ ΔL y 

E A  

2L

[
αΔL2 + 2(1 − α)ΔL yΔL + (α − 1)ΔL2 

y

]
, ΔL > ΔL y 

(9.44) 

where ΔL is the difference between the developed length and original length of the 
steel plate. For potential energy, 

V = −  
L∫

0 

P(t)w(x, t)dx (9.45) 

It should be noted that front steel plate must be removed after it separating from 
concrete core during calculation, similar to the SDOF model. 

For the concrete core in the SCS sandwich panel, the calculation of kinetic energy 
T and potential energy V is same with the front and back steel plates. However, 
the derivation of the internal energy of concrete core Uc and its differential with 
generalized displacements in Eq. (9.41) are complex. To avoid recalculating the 
internal energy of concrete core, it is assumed that the combined deflection shape 
function in the Lagrange Equation model is same with that in the SDOF model. 
This assumption is reasonable for the axially-restrained SCS sandwich panel under 
blast loading, since the deflection shape function has little effect on the structural 
response, and the internal energy of concrete core is relatively small compared with 
steel plates, especially for the large deflection. 

The mid-span displacement of the SCS sandwich panel is expressed as 

Y = 
n∑

i=1 

Ci (t)φi (L
/
2) (9.46) 

Hence, the differential of the internal energy of concrete core Uc with respect to 
generalized displacement Ci can be obtained as 

∂Uc 

∂Ci 
= 

∂Uc 

∂Y 

∂Y 

∂Ci 
(9.47) 

9.4.2 DIF for Lagrange Equation Model 

The DIF for concrete core in the Lagrange Equation model is same with that in the 
SDOF method, since the same deflection shape function is assumed when calculating
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the internal energy of concrete core. However, the DIF for steel plates should be 
recalculated, as the different combined deflection shape function is employed for the 
Lagrange Equation model. The energy balance principle is utilized to introduce the 
varying DIF into the Lagrange Equation model. By applying the differential operator 
on the internal energy with and without consideration of strain rate effect (i.e., Us 

and UsD) for the front and back steel plates, the following equations are obtained 

dUs = Ṽ σ dε (9.48) 

dUsD  = Ṽ f
(
ε̇p

)
σ dε = f

(
ε̇p

)
dUs (9.49) 

where Ṽ is the volume of the steel plate. Equation (9.49) can be rewritten as 

n∑

i=1

(
∂UsD  

∂Ci 
− f (ε̇p) 

∂Us 

∂Ci

)
dCi = 0 (9.50) 

Setting ∂UsD  
∂Ci 

= f (ε̇p) ∂Us 
∂Ci 

(i = 1,2,…,n) satisfies Eq. (9.50) and substituting them 
into Eq. (9.41) gives the equations of motion with varying DIF being considered. 

Since the elongation of the steel plate ΔL is a function of C1, C2, …,  Cn, i.e., 
ΔL = g(C1, C2, ..., Cn), the strain rate can be derived as 

ε̇ = 
Δ ̇L 
L 

= 
1 

L 
( 

∂g 

∂C1 
Ċ1 + 

∂g 

∂C2 
Ċ2 + ... + 

∂g 

∂Cn 
Ċn) (9.51) 

By adopting the Cowper-Symonds model to establish the relationship between 
strain rate and DIF, the following equation is obtained. 

∂UsD  

∂Ci 
=

[

1 +
(

ε̇ 
c

)1/ p
]

∂U 

∂Ci 
(9.52) 

9.5 Results and Discussions 

In this section, the FE model is adopted to simulate the axially-restrained SCS 
sandwich panel subjected to blast loading, and the results are compared with the 
predictions from analytical models. Since the maximum displacement instead of 
the displacement–time history is the most concern in the blast resistant design, the 
maximum displacements of SCS sandwich panels under blast load (a triangular blast 
pressure profile with zero rise time) are obtained using FE and analytical models and 
summarized in Table 9.3. The displacement of the SCS sandwich panel is given in 
Eq. (9.53) by employing combined deflection shape functions.
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Table 9.3 Maximum displacement comparison 

ts1 ts2 tc L Pmax td Max dis (mm) Error (%) 

FE SDOF LEM1 LEM2 SDOF LEM1 LEM2 

3 3 70 1180 10 0.5 55.7 61.3 63.1 60.1 9.96 13.13 7.87 

1 5 46.8 52.8 53.9 51.6 12.92 15.33 10.39 

0.5 5000 51.8 63.6 56.8 54.7 22.69 9.60 5.52 

3 3 50 1180 10 0.5 66.8 71.2 76.9 73.5 6.56 18.09 10.07 

1 5 55.5 61.3 63.8 61.6 10.36 18.85 10.93 

0.5 5000 56.6 66.2 61.4 58.9 16.97 13.04 4.07 

1.5 3 50 1180 10 0.5 72.1 75.9 82.8 79.0 5.37 17.71 9.65 

1 5 61.0 67.9 71.5 68.9 11.25 21.01 12.81 

0.5 5000 68.1 82.9 75.3 71.5 21.79 14.91 4.95 

1.5 1.5 50 1180 5 0.5 53.8 54.2 57.3 54.1 0.68 8.77 0.39 

0.5 5 46.7 50.0 50.5 47.9 7.08 10.92 2.68 

0.25 5000 56.3 64.4 58.5 56.1 14.31 8.44 -0.36 

Note the unit of ts1, ts2, tc and L is mm; the units of Pmax and td are MPa and ms; LEM1 and LEM2 
stands for Lagrange Equation model with a = 1, b = 2 and  a = 2, b = 3, respectively 

w(x, t) = C1(t)

[
4 

L2 
(Lx  − x2 )

]a 

+ C2(t)

[
4 

L2 
(Lx  − x2 )

]b 

(9.53) 

where the term in the bracket is the deflection shape function defined in the SDOF 
model, and the parameters a and b are specified with different values to repre-
sent different deflection shape functions. It should be mentioned that any reason-
able combination of deflection shape functions is acceptable, and more number of 
deflection shape functions may provide more accurate predictions. 

Table 9.3 shows that the analytical-predicted maximum displacements of SCS 
sandwich panels match well with the FE predictions. However, the slightly larger 
values of maximum displacement are observed for the analytical-predictions, which 
may be caused by the underestimation of internal energy and neglect of energy 
dissipated through friction and damping in the analytical models. Another reason 
may be attributed to the different deflection shape functions between the FE and 
analytical models. 

For the predictions from the SDOF model, they exhibit better match with the 
FE predictions in the impulsive loading range (i.e., short loading duration), with 
the differences of maximum displacement between the two models less than 10%. 
In addition, the separation between the front steel plate and concrete core during 
calculation can also be well captured by the SDOF model, as shown in Fig. 9.12. 
However, the SDOF model provides larger values of maximum displacement than that 
of FE model in the quasi-static loading range. This may be caused by the neglect of
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Fig. 9.12 Comparison of the separation time between FE and SDOF analysis (ts = 3 mm; tc = 
70 mm, Pmax = 1 MPa;  td = 5 ms), reprinted from Wang et al. (2015), copyright 2022, with 
permission from Elsevier 

confinement effect on compressive strength of concrete when deriving the resistance– 
deflection function contributed by concrete core. This effect is more significant in 
quasi-static loading range since the separation is not observed during calculation.

For the Lagrange Equation model, it is found that the LEM2 provides closer 
predictions to the FE model as compared to LEM1. The deflection shape of the SCS 
sandwich panel obtained from FE analysis is compared with those from SDOF and 
LEM2 models, as presented in Fig. 9.13. The deflection shape from LEM2 is found 
to be closer to that from FE model. Since two combined deflection shape functions 
are employed for the Lagrange Equation model and a varying deflection shape can be 
achieved during calculation, it can provide more accurate predictions as compared 
to the SDOF model with single deflection shape function. It was observed by Baker 
et al. (1983) that the different deflection shape functions should be employed for

Fig. 9.13 Comparison of 
the deflection shape between 
FE and analytical model (ts 
= 3 mm; tc = 70 mm, Pmax 
= 1 MPa;  td = 5 ms), 
reprinted from Wang et al. 
(2015), copyright 2022, with 
permission from Elsevier 
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Fig. 9.14 Varying DIF 
effect on the maximum 
displacement, reprinted from 
Wang et al. (2015), copyright 
2022, with permission from 
Elsevier 
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the SDOF model to obtain the exact solutions of simply supported beams under 
impulsive and quasi-static loading ranges. Therefore, the SODF model with single 
deflection shape function generally cannot provide accurate predictions in all the 
loading ranges (i.e., impulsive, dynamic and quasi-static loading ranges).

Both Lagrange Equation models and SDOF model provide better predictions with 
decreasing of the steel plate thickness, which indicates that the internal energy of 
steel plate is underestimated. This underestimation may be caused by the assumed 
deflection shape functions and the assumption that the strain is uniformly distributed 
along the span. The effect of varying DIF on the maximum displacement of the SCS 
sandwich panel is presented in Fig. 9.14. The LEM2 with varying DIF, constant 
DIF and without DIF was adopted to compare with the FE analyses. The constant 
DIF values of steel and concrete are adopted as 1.10 and 1.12, respectively (ASCE 
2011). Figure 9.14 shows that the LEM2 with varying DIF provides better predic-
tions than the LEM2 with constant DIF or without DIF. It is also observed from 
the fitting curves that the LEM2 with varying DIF provides approximately constant 
differences between the LEM2 and FE model, while the differences of LEM2 with 
constant DIF or without DIF exhibits increase with increasing maximum displace-
ment. This demonstrates that the proposed varying DIF can more accurately capture 
the strain rate effect regardless of the maximum displacement, whereas the LEM2 
with constant DIF or without DIF may overestimate the responses, especially for the 
large defection. 

For the axially-restrained non-composite SCS sandwich panels, the separation of 
front steel plate and concrete core generally occurs under impulsive loading range. 
Therefore, it is more efficient to improve the blast resistance by enhancing the back 
steel plate instead of front steel plate. Moreover, increasing the thickness of concrete 
core is also an important way, since it can reduce the obtained kinetic energy under 
blast loading.
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9.6 Summary 

Two analytical models were developed to predict the responses of axially-restrained 
SCS sandwich panels subjected to blast loading. The force equilibrium equation was 
employed to derive the resistance–deflection function of the SCS sandwich panel 
contributed by steel plates. The energy balance principle was adopted to obtain 
the resistance–deflection function contributed by concrete core. The varying DIF in 
terms of strain rate was included in the two analytical models, which could accurately 
capture the strain rate effect. The FE analyses were employed to validate the proposed 
two analytical models. Through the comparison of maximum displacements obtained 
from FE and analytical models, the analytical models were found to reasonably 
predict the responses of axially-restrained SCS sandwich panels under blast loading. 
It was observed from both FE and analytical models that the front steel plate was 
prone to separate from the concrete core owing to the absence of shear connectors. 
Hence, enhancing the back steel plate was preferred to improve blast resistance of 
the axially-restrained non-composite SCS sandwich panel. 
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