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Abstract

Activated sludge is the most popular biological method for treatment of waste-
water. This process has successfully eliminated detrimental environmental
impacts, such as toxicity, persistent organic materials, depletion of oxygen, and
formation of algal blooms. However, it is often considered as economically and
environmentally unsustainable wastewater treatment technology. The advent of
latest technologies and improvements in metagenomics and metaproteomics
study has provided a detailed insight into the microbiome of activated
sludge treatment system. The present chapter mainly deals with the microbial
community present in activated sludges and its composition. The seasonal modu-
lation of the microbial communities in activated sludge is also discussed in detail
along with the abundance of different microbial groups and their role and
physiological activities in activated sewage sludge are reviewed. Antibiotic
resistance genes present in activated sludge have also been discussed in detail.
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8.1 Introduction

A huge amount of wastewater is produced continuously by urban, agricultural, and
industrial sectors. This wastewater is characterized by elevated levels of nitrogen,
carbon, and other organic elements which leads to the eutrophication of aquatic
bodies. The inputs of the wastewater vary greatly leading to a constant change in the
composition of wastewater (Kumar and Thakur 2020; Kumar et al. 2021a, c,
2022a, b). Chemically, the wastewater composed of organic and inorganic
components is very complex in nature and in any wastewater system only 16% of
the water is reused and only 35.8%, 35.8%, and 35.7% of organics, ammonical
nitrogen (NH4

+-N), and total phosphate (TP) can be recovered. Thus, detoxification
of both domestic and industrial wastewater is considered as a crucial step for
protection of environment. The activated sludge technique is currently the widely
accepted process for biological treatment of wastewater which is effective for
removal of organic pollutants and petroleum product, benzopyrene, and toluene.
The activated sludge process is a favored process for the treatment of wastewater as
it is considered to be very cost effective and the microbes in the sludge helps in
pollutants removal and detoxification. Activated sludge is characterized by the
presence of a wide range of bacteria, archaea, viruses, and protists which have
very closely interconnected trophic interactions. Since its proposal by Arden and
Lockett in 1913, this process has undergone several changes and has been exten-
sively remodeled. The process is broadly divided into two phases including the
aeration phase and sludge settlement phase. Settlement is not allowed during the first
phase and the wastewater is passed from primary settlement tank into the aerobic
tank which is characterized by wide range of microbial population. The aerobic tank
is mainly aerated by surface agitation or addition of oxygen via diffuser which is
essential for the growth of aerobic microorganisms in the reactor. This oxygen is
vital for the maintenance of the microbial flocs and maximizes the contact time
between the surface of floc and wastewater. Moreover, oxygen facilitates mass
transfer and efficiently dissipate the metabolic products trapped in the flocs. The
main function of this activated biomass is the production of a wide range of enzymes
which helps in the degradation of the organic pollutant and also perform ammonifi-
cation, nitrite and nitrate oxidation, and denitrification process which help in a
considerable reduction in the nitrogen content. In the second stage, flocculated
biomass settles to form sludge which clears the effluent from solids and is discharged
as the final effluent. In an activated sludge process, for every kilogram of biological
oxygen demand (BOD) removed around 0.5 kg and 0.8 kg dry weight (DW) of
sludge is produced. Most of the activated sludge is then returned to maintain a
sufficient microbial population to oxidize the upcoming wastewater. The
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maintenance of microbial flocs is very crucial in any activated sludge process. They
not only help in the adsorption of organic matter but also help in the rapid and
effective separation of effluent in sedimentation tank itself. The detailed flow
diagram of the activated sludge process is presented in Fig. 8.1 which explains the
main two stages. The main component of activated sludge consists of flocculant
suspension bacteria, other microfauna, and microflora along with adsorbed particu-
late matter. It is noted that any changes in the operation parameters may alter the
nature of microbial floc which may generate turbid effluents due to scanty settlement
leading to a subsequent loss in biomass. Activated sludge works efficiently in food
limited conditions and each microbe uses its own cellular content and reduces the
biomass produced. The two principles for removal mechanism in an activated sludge
process are assimilation and mineralization. Assimilation process is carried out by
utilizing the waste materials to create biomass associated with the rapid removal of
BOD. Mineralization occurs by conversion of waste material to inert end products
that are left in solution in the effluent and requires longer aeration times.

The present chapter mainly deals with the functions and composition of the
microbial community present in activated sludge. The seasonal variation of the
communities of microbes in activated sludge has been discussed in detail along
with the abundance of different microbial groups, their role, and physiological
activities in activated sewage sludge were reviewed. Antibiotic resistance genes
present in activated sludge have also been discussed in detail.

8.2 Characteristics of Activated Sludge

Carbohydrates, lipids, and proteins are the chief organic components present in
municipal wastewater, which provide nutrients to the bacterial community and
help in floc formation. The inputs of the wastewater vary greatly leading to a

Fig. 8.1 Flow diagram for the activated sludge process
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constant change in the composition of wastewater. Chemically the wastewater is
composed of organic and inorganic components which is very complex in nature and
it is difficult to completely define it. In several research works, it was found that
carbohydrate was associated with particles of size greater than 63 μm (Sophonsiri
andMorgenroth 2004). Huang et al. (2010) also reported that size fraction lesser than
0.1 μm contribute to nearly 62% of the total organic carbon (TOC) which is mainly
complexed with proteins or carbohydrates. Nitrogen can be present in both inorganic
forms that is in form of ammonium or nitrate or else present in organic forms.
Generally, nitrate is presence in activated sludge are in a soluble form which is the
most concern for groundwater pollution. On the other hand, inorganic nitrogen in the
form of ammonium is volatile and is lost. Organic nitrogen found in activated sludge
can be considered as inert and needs to be degraded by microorganisms, or
mineralized to inorganic ammonia (NH4

+ and NO3
-). Some other sludge

constituents, including calcium (Ca), magnesium (Mg), phosphorus (P), and iron
(Fe), are known to form insoluble compounds with sludge solids, and are present at
high concentrations. Other sewage sludge constituents, such as potassium and
sodium, being water-soluble, are normally discharged with the treated wastewater.
Suspended solids present in activated sludge mostly comprise 70% organic solids
and 30% inorganic solids which includes food particles, fecal matter, garbage
associated with sand, grit, and clay, which can only be removed from the wastewater
using physical or mechanical processes, such as sedimentation or filtration. Other
compounds, such as surfactants, humic acids, tannic acids, volatile fatty acids
(VFAs), amino acids, RNA, and DNA, has been recorded in activated sludge.

8.3 Microbial Diversity in Activated Sludge

Activated sludge is constituted of a plethora of anaerobic and aerobic bacteria, fungi,
archaea, and protists which are able to degrade organic pollutants and also reduce
toxic metals to its related nontoxic forms. Activated sludge is considered as a
complex medium having interconnected trophic relationships between
microorganisms. Activated sludge harbors great biodiversity having a functionally
important population. In complex ecosystems, bacteria accounts for nearly 95% of
the total microbes, which play a crucial role in wastewater treatment. The microbial
community of activated sludge was previously studied by culture-dependent
methods (Zhang et al. 2018a, b; Yang et al. 2020); however, it does not give a
thorough idea due to the incapability to grow most of the microbes in any specific
culture conditions. With the advent of different molecular biology methods, the
domain of microbial diversity has been revolutionized. Different techniques such as
PCR-based techniques provide detailed information on the expression and diversity
of ribosomal as well as protein coding genes in the activated sludge environment.

The advent of the “-omics era” has been considered as a breakthrough in the study
of microbial diversity, both phylogenetically and functionally. High-throughput
sequencing (HTS) using 454-pyrosequencing and Illumina has generated millions
of sequence reads in a cost-effective way for superior understanding of the microbial
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diversity and their genomic-potential in environmental samples (Kumar et al. 2020,
2021b). Also, methods like DNA-fingerprinting, clone-library, quantitative poly-
merase chain reaction (qPCR), and fluorescence in situ hybridization (FISH) studies
based on functional genes or 16S rRNA gene segments have helped in develop-
ing idea on the microbial community of the activated-sludge (Johnston et al. 2019).

Normally sludge is characterized by the presence of floc made up of highly
complex microbial communities comprising of archaea, bacteria, and viruses. The
bacterial population plays a crucial role in the degradation of nutrients and organic
pollutants containing both phosphorus and nitrogen. Moreover, they have the ability
to tolerate adverse environmental impact, toxicity, and oxygen depletion. Metaboli-
cally they are diverse and perform a crucial role in biological nitrification and
oxidizes ammonia to nitrate and nitrite then to nitrogen via denitrification and was
found to be dominated by both ammonia-oxidizing bacteria (AOB) (Park et al. 2006;
Gao et al. 2014; Pang et al. 2016) and nitrite-oxidizing bacteria (NOB) (Lucker et al.
2010). Research has been conducted on ammonia-oxidizing microorganisms, nitrite-
oxidizing bacteria, denitrifiers (Zielinska et al. 2016; Pang et al. 2016), and
phosphorus-accumulating organisms (PAOs) (Mielczarek et al. 2013). They have
several biomarker genes such as ammonia monooxygenase (amo) (Ye et al. 2011)
and nitrite reductase subunits (nirK and nirS) (Geets et al. 2007).

The activated microbial-community comprises Proteobacteria, Actinobacteria,
Bacteroidetes, and Firmicutes along with the presence of Actinobacteria,
Chloroflexi, Planctomycetes, Acidobacteria, and Verrucomicrobia (Gao et al.
2016). Yu and Zhang (2012) in their study suggested that bacteria were dominant
accounting for nearly 92% and 69% of DNA- and cDNA sequences, respectively,
whereas eukaryotes account for approximately 43 and 30.97% of the total sequences
in DNA and cDNA, respectively. They also reported that the bacterial community
was dominated mostly by Proteobacteria, followed by Actinobacteria, Bacteroidetes,
and Firmicutes, representing nearly 22%, 15%, 6%, and 3% of small subunit
ribosomal DNA (SSU rDNA) reads, respectively. Both Verrucomicrobia and
Nitrospirae exhibited high occurrence in protein-coding DNA reads. Among
Archaea, Euryarchaeota also represented a very high amount of SSU rDNA
(19.38%). Actinobacteria, Firmicutes, Planctomycetes, and Euryarchaeota showed
a % SSU rRNA–% SSU rDNA ratio of less than one. Bacterial SSU rDNA and
rRNA sequence reports show a high abundance of Proteobacteria which was
followed by phyla, such as Bacteroidetes, Verrucomicrobia, and Actinobacteria.
The main genera occurring in activated sludge are Nitrosomonas, Nitrosospira,
Methylocystis, and Methylosinus having high ammonia monooxygenase activity.
Similarly, Nitrosomonas, Nitrosospira, Methylocystis, and Anaeromyxobacter
account for the activity of nitrification enzyme. Genera like Acidovorax,
Cupriavidus, Leptothrix, Alicycliphilus, Paracoccus, and Escherichia were also
reported which have high hydroxylamine reductase activity. On the other hand,
Riemerella, Dyadobacter, Dechloromonas, Candidatus accumulibacter, and
Acidovorax reported high nitrous oxide reductase activity. The wastewater treatment
plants contain Curvibacter, Azoarcus, Thauera, Zoogloea, and Accumulibacter,
which are mainly denitrifiers, Tetrasphaera and Accumulibacter, which are reported
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to be phosphorus-accumulating organisms. Filamentous bacteria such as Microthrix
parvicella and Gordonia was also abundant.

Zielinska et al. (2016) identified the presence of 38 orders from microbial
consortia of wastewater treatment plants (WWTPs) which include Anaerolineales,
Burkholderiales, Rhodocyclales, Planctomycetales, Rhizobiales, and so on and six
core genera, such as Prosthecobacter, Ferruginibacter, and Zooglea. The presence
of denitrifying populations, such as Azoarcus, Thauera, Curvibacter, and
Dechloromonas, was also evident (Thomsen et al. 2004, 2007). Candidatus
accumulibacter belonging to the family Rhodocyclaceae were designated as
phosphorus-accumulating organisms were also identified along with Pseudomonas
having denitrifying properties. Halomonas was also present in large numbers com-
prising 5% of the microbes (Nguyen et al. 2012). Kristiansen et al. (2013) reported
Tetrasphaera of family Intrasporangiaceace which contained functional genes for
denitrification. Similarly, Nielsen et al. (2009) reported the abundant presence of
Dechloromonas spp. which was also a denitrifier and a putative PAO. Moreover,
Acinetobacter (Moraxellaceae) was also an abundant bacterial genus which is
strictly aerobic and chemoorganotrophic in nature with oxidative metabolism
(Vandewalle et al. 2012).

Later in a study, Zielinska et al. (2016) reported the presence of
Alphaproteobacteria, and Betaproteobacteria. Among Alphaproteobacteria,
Rhizobiales, and among Betaproteobacteria, Burkholderiales were present. Their
findings also show lesser presence of gamma (6.5%) and deltaproteobacterial
sequences (9.9%) compared to the previous studies conducted by previous
researchers. Apart from them, bacterial reads belonging to the order
Rhodobacteriales, Rickettsiales, and Rhodocyclales were also reported in this
study. The microbes were reported to contain genes coding for periplasmic nitrate-
reductase (napA) and a gene coding for membrane-bound nitrate reductase (narG)
(Heylen et al. 2006). However, Actinobacteria accounts for nearly 11% narG.

In a much later study, Zhang et al. (2019) reported the presence of bacterial
operational taxonomic unit (OTU) assigned to 14 different phyla including
Acidobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, Chlorobi,
Planctomycetes, Verrucomicrobia, Saccharibacteria, and Proteobacteria.
Proteobacteria consisted of a total of 47% of the OTUs, followed by Bacteroidetes
(30%), Firmicutes (7%), Acidobacteria (2.2%), and Chlorobi (1.2%). Among
Proteobacteria, classes Gammaproteobacteria (25%) and Betaproteobacteria (24%)
were the most prominent. In addition, Flavobacteriia (18%) and Cytophagia (13%)
were also significantly abundant. Gammaproteobacteria, being more sensitive to
antibiotics, was present in much less quantity (Novo et al. 2013).

Core-microbial OTUs existing in activated sludges were studied and identified by
the Global Water Microbiome Consortium (GWMC) (http://gwmc.ou.edu/) which
reports the presence of 28 core taxa; however, nearly half of them are annotated only
at genus or family level. Song et al. (2020) reported OTU_16 of Betaproteobacteria
could not be annotated to any taxa. While working they isolated 830 isolates of
which Strain SJ-1 was characterized and reported as a novel species, Casimicrobium
huifangae, of the novel family Casimicrobiaceae.
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Johnston and Behrens (2020) reported the core microbial community largely
comprises Saprospiraceae, Trichococcus, Microthrix, Tetrasphaera, and
Fibrobacteraceae. However, only constant activity was visible in Bacteroides,
Hypnocyclicus, and Tolumonas. Kouleothrix, Chloroflexi, and Gordonia showed
extensive growth in activated sludge, which is associated with sludge bulking and
degrading various xenobiotic compounds. Apart from them Leptotrichia,
Arcobacter, and Acinetobacter were also reported which are enteropathogenic
bacteria related to human infections.

The details of the microbial community available in activated sludges obtained
from different studies are presented in Table 8.1.

8.4 Enzyme Activity and Associated Physiological Function
of Microbiome in Activated Sludge

A wide range of enzymatic activity was seen by the microbial community in the
wastewater. In earlier research done by Nybroe et al. (1992), it was reported that
esterase and dehydrogenase activities were correlated with the presence of hetero-
trophic bacteria. In activated sludge, they did an extensive study in which four
different enzymes including α-glucosidase, alanine-aminopeptidase, esterase, and
dehydrogenase were obtained from different types of wastewater. The enzyme
profile showed the existence of a diverse group of bacteria with a wide range of
activities. Konneke et al. (2005) and Park et al. (2006) reported the presence of
diverse bacterial communities which perform a vital role in different types of
nitrogen metabolisms. Most of the microbes perform a crucial role in ammonifica-
tion, nitrite and nitrate oxidation, and denitrification, which help in a considerable
reduction in the nitrogen content of the wastewater.

With the advent of modern technologies and metaproteomic study, it has helped
in providing a more detailed insight of the microbial community and helped in
detection of different types of enzyme variants, which indicated the degree of genetic
diversity in sludges. Metaproteomic study of the extracellular polymeric substances
present in activated sludge also revealed the presence of several cytoplasmic
proteins, which may play various roles in the treatment of activated sludge biomass.

The process of nitrification is carried out by two diverse domains of microbes:
ammonia-oxidizing microorganisms (Konneke et al. 2005; Park et al. 2006), which
oxidize ammonia into nitrate, and nitrite-oxidizing bacteria, which oxidize nitrite
into nitrate (Lucker et al. 2010). Ammonia-oxidizing microorganisms lead to the
complete oxidation of ammonia (comammox), which oxidizes ammonia via nitrite to
nitrate (Jiang et al. 2020). Under anaerobic conditions, denitrifying bacteria reduce
nitrite to gaseous-forms like nitrous-oxide and dinitrogen gas which in turn may
reduce the wastewater nitrogen concentration. These group of bacteria is represented
by bacteria Curvibacter within Comamonadaceae, apart from which genera like
Azoarcus, Thauera, Dechloromonas, and Accumulibacter (Zielinska et al. 2016).

Both DNA and cDNA show the presence of a wide range of ammonia assimila-
tion, nitrite/nitrate ammonification, denitrification, and nitrogen fixation–related
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genes. DNA sequences related to a wide range of enzymes such as hydroxylamine
reductase, ammonia monooxygenase, nitrate reductase, hydroxylamine oxidase,
nitrilase, formamidase, carbamate kinase, nitrous oxide reductase, nitrite reductase,
nitric oxide reductase, and nitrogenase were obtained. Ammonification genes such
as amoCAB which encodes enzyme ammonia monooxygenase increase with the rise
in temperature from 20 �C to 35 �C, which was associated with a concomitant
reduction in enzymes related with denitrification. At much lower temperature (20 to
5 �C) the genes connected to nitrogen metabolism were increased. Moreover, at
lower temperature genes related to carbamate kinase, glutamate dehydrogenase, and
glutamine synthetase were increased. Enzyme nitrite reductase (nrfA), associated
with reduction of nitrite to ammonia, along with hydroxylamine reductase (hcp),
associated with reduction of hydroxylamine to ammonia, was increased.

Yu and Zhang (2012) also reported the abundance of hydroxylamine reductase
(har), ammonia monooxygenase (amo), nitrate reductase (nar), hydroxylamine
oxidase (hao), nitrite reductase (nir), nitrous oxide reductase (nos), nitric oxide
reductase (nor), and nitrogenase (nif) genes. In a 2.4 Gbp DNA nir gene was
found in abundance, followed by nor and nos coding gene sequences. The preva-
lence of nitrification enzyme coding gene sequences along with amo and hao was
found to be the lowest. Nitrifying virus was expressed in a higher amount than that of
denitrification enzymes. In the case of hydroxylamine oxidase, the cDNA–DNA
ratio was around 0.09. Nitrification enzyme genes, such as amo, showed much
higher expression activities in activated sludges, which was mainly due to the higher
concentration of ammonia in sewage.

Xia et al. (2016) reported a total of 528 genes which showed phosphorus utiliza-
tion activity including polyphosphate kinase (ppk; 37.3%), exopolyphosphatase (ppx
57.6%), and phytase (5.1%). Exopolyphosphatase (ppx) was found to be highly
capable of catalyzing the anaerobic hydrolysis of terminal residues of long-chain
polyphosphate to inorganic phosphate (Pi). Apart from this, the genes related to a
wide number of functions like carbon, phosphorus, and sulfur cycling, and also of
organic pollutant remediation were reported. The genes related to processes such as
denitrification, ammonification, nitrogen fixation, assimilatory, and dissimilatory
nitrogen reduction were also found.

According to studies made by Song et al. (2020), they reported a novel species,
Casimicrobium huifangae, which belonged to the core microbial community of
activated sludge. The isolate was found to reduce nitrate into nitrite but neither
into ammonia or into N2, NO, and N2O. Genes encoding nitrogen regulation sensor
(ntrB), nitrate transport (nasD and nrtA), nitrite reductase (nirBDS), nitrate reductase
(narGHV), and other proteins (narJKL) were annotated which was associated with
nitrogen metabolism. This strain also has a wide range of phosphate transporters and
conversion genes, such as pstABCS and phnEC for removal of phosphorus. Apart
from them, one ppx, two ppk, and one poly(3-hydroxyalkanoate) polymerase gene
(phaC) are also present which may help in phosphorus accumulation. Moreover, this
isolate was also able to tolerate a wide range of heavy metals and have genes for
p-type ATPase for efflux of metals and multidrugs (mrcA, acrAB, and oprM).
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The GWMC recorded the universal occurrence of Nitrospira in a global survey of
wastewater treatment plants. Nitrotoga and Nitrobacter were the most abundant
nitrite oxidizers. Similarly, Nitrosomonas was also present which is the most
prevalent ammonia-oxidizer. Nitrosomonas, Nitrotoga, and Nitrobacter were the
nitrification bacteria.

8.5 Antibiotic Resistance Genes of Activated Sludge

Antibiotic resistance has been considered as a global problem and in developing
nations like India, poor waste management and inadequate sanitary practices leads to
the further spread of antibiotic resistance genes (ARGs) in environment. They are
mostly persistence nature, have slow decaying rate, and are reckoned as chemicals of
upcoming concerns or as potent pollutants. Wastewater treatment plants contain
microbes from both human and environmental sources and can be a rich source of
ARGs, which are developed by natural selection or by adaptation in bacteria due to
constant exposure to antibiotics. Moreover, wastewater treatment plants receive
water from households, and pharmaceutical industries which contains antibiotic
residues and antibiotic-resistant bacteria at higher concentrations. All these exert a
selective pressure on antibiotic-resistant bacteria and expression of ARGs (Nnadozie
et al. 2017; Karkman et al. 2017), thus acting as a hotspot for the spread of antibiotic
resistance in different groups of bacteria. Activated sludge, being rich in nutrient
concentration, is ideal for bacterial growth and facilitates horizontal (lateral) gene
transfer. Mainly resistance against antibiotic classes, such as β-lactams,
fluoroquinolones, tetracyclines, and macrolides is most prevalent (Almakki et al.
2019).

Mobile genetic elements, such as a plasmids, transposons, and integrons, contrib-
ute largely to the dissemination of ARGs. However, till now very few studies have
been conducted on the host cells which harbor such ARGs. As much as thirty ARGs
encoding resistance to quinolones, sulfonamides, tetracycline, or macrolides were
identified in activated sludge of two wastewater treatment plants of China by Mao
et al. (2015). Mao et al. (2015) reported a significant enrichment of 10 ARG
including sulI, sulII, qnrB, tetG, tetB, tetS, tetH, tetX, tetT, and ermC.

In a recent study by Liu et al. (2019), they have identified around 22 bacterial
phyla which can act as a putative host for these genes. Genera, such as Mycobacte-
rium and Burkholderiaceae family harbors around 14–50 ARGs. Metatranscriptome
analysis showed nearly 65.8% of the identified ARGs were being expressed showing
that they are transcriptionally active in the bacterial population of which most were
plasmid associated rather than being within bacterial chromosomes. Several
researchers like Bengtsson-Palme et al. (2016), Karkman et al. (2016), and Yang
et al. (2014) showed the presence of antibiotic resistance genes associated with beta-
lactam, sulfonamide, vancomycin, and tetracycline. Metagenomics analysis was
found to be the most efficient method for the analysis of antibiotic resistance
genes by researchers like Pal et al. (2016) and Van Goethem et al. (2018). Liu
et al. (2019) in an extensive study on ARGs in activated sludge reported 24 different
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classes of antibiotics in activated sludge and genes associated with antibiotics like
acriflavines, aminoglycosides, betalactams, bacitracin, multidrug resistance (MDR),
daunorubicin, macrolide–lincosamide–streptogramin (MLS), polymyxin, and sul-
fonamide. Inactivated sludge multidrug resistance genes were most abundant
followed by betalactams, macrolide–lincosamide–streptogramin, and bacitracin. A
similar research carried out by Zhao et al. (2018). Yang et al. (2013) reported
aminoglycosides and tetracycline resistance to be most prominent in activated
sludge. Twenty different antibiotic resistance genes, such as bacitracin (bacA,
bceA), acriflavine (acrB, acrF), bleomycin (ble), beta-lactam (pbp2), fosmidomycin
(rosA), kasugamycin (ksgA), daunorubicin (drrA), MDR (mdtC, mdtB, mexK
mexW), polymyxin (arnA, arnC), sulfonamide (sul1, sul2), MLS (macA, macB),
and trimethoprim (dfrA3), accounted for nearly 70% of the total types of ARGs, of
which Gene macB (macrolide resistance gene) was very predominant in nature.
Several genera of antibiotic resistance bacteria have also been reported in activated
sludge, such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant
Enterococcus spp., Enterobacteria, Pseudomonas, and Acinetobacter, among others
(Bouki et al. 2013; Figueira et al. 2011). Typically, members of Enterobacteriaceae
reported resistance to 13 different antibiotics (Amador et al. 2015). Apart from them,
opportunistic pathogenic bacteria such as Enterococcus faecalis, Pseudomonas
aeruginosa, Enterobacteriaceae, Staphylococcus aureus with ARGs were also
reported (Alexander et al. 2015).

Korzeniewska and Harnisz (2018) reported resistance to cefotaxime which is a
relatively new antibiotic and its resistance was easily transmitted in Gram-negative
E. coli.

Song et al. (2020) reported a novel species, Casimicrobium huifangae, carrying
resistance to a wide range of antibiotics which included bacitracin (uppP), tetracy-
cline (typA and lepA), streptogramin (vat), macrolides (macB), polymyxin (yfbG),
kasugamycin (rsmA), aminoglycosides (aacA), and β-lactams.

Qi et al. (2021) reported different functional microbiomes, one associated with
complete catabolism of sulfamethoxazole, and the second one was associated with
complete catabolism of phenyl part of sulfamethoxazole (SMX). They also reported
Paenarthrobacter and Nocardiodes as primary degraders of sulfonamide functional
group (–C–S–N– bond) and (3-amino-5-methylisoxazole) (3A5MI). Yan et al.
(2022) reported SMX and ARGs from both autotrophic and heterotrophic
microorganisms. It was found that heterotrophic bacteria contributed crucially to
SMX degradation; however, ammonia-oxidizing bacteria displayed a superior meta-
bolic rate and contributed much to SMX removal by cometabolism.

8.6 Future Challenges and Opportunities

The activated sludge microbiome consists of a plethora of bacteria, archaea, viruses,
and protists which play a crucial role in the degradation of toxic organic pollutants.
Most of these microbial communities are interconnected at trophic levels and also
related in their degradation and metabolic pathways. Earlier, it was always difficult
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to assess them using culture dependent methods. With the advent of omics technol-
ogy and the availability of the metagenomics and metatranscriptomic datasets, it has
become possible to assess the whole community composition of activate sludge in
detail. Moreover, the identification and assessment of ARGs present and actively
transcribed have increased our understanding the fate of highly expressed ARGs and
multidrug-resistant hosts from wastewater treatment plants. Also, both
metagenomics and metatranscriptomic datasets have provided us with ample infor-
mation on the influence of environmental factors in the activated sludge process. It
has provided us with a detailed idea on the shift of alpha and beta community
diversity due to variations in temperature, which is considered crucial for the
effectiveness of the activated sludge process. We could also assess the key functional
groups present in activated sludge, which largely include ammonia-oxidizing bacte-
ria, denitrifiers, and nitrogen-fixing bacteria and their potential role in activated
sludge. Further research on the microbial community of activated sludge will
broaden our knowledge and help in better application and further modification of
the process.

8.7 Conclusion

The activated sludge process is a process of biological treatment of wastewater
which is popular all over the world. This entire process can be divided into the
aeration phase and sludge settlement phase. The wastewater from the primary
settlement tank is passed into the aerobic tank having a wide range of microorganism
populations. The aeration phase helps in the maintenance of microbial flocs and
maximizes the oxidation of the contaminant which is followed by sludge formation
and separation. The advent of omics technology has helped us to gain a wide
knowledge of the microbial community present in activated sludge. This bacterial
community is a repository of many antibiotic resistance genes. Moreover, this
microbial community has several physiological functions, performs several types
of biogeochemical cycles, and sequestration of nutrient from the sludge. A detailed
understanding of the microbial community assembly will help us to develop deeper
understanding on the microbial-ecological theories.
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