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Abstract

Microbial remediation is the most promising, effective, cheapest, and environ-
mentally friendly treatment method for biodegrading a broader range of toxic
substrates and metabolites from wastewaters discharged from households, indus-
try, and pharmaceuticals. Currently, micro-organisms must be used as decontam-
ination tools, which in turn reduce the contaminants load of the sewage ecosystem
and prevent future detrimental effects on the environment and aquatic ecosystem.
Microbial consortia and sewage sludge are completely dependent on the level of
water pollution. Many factors can modulate the microbial ecology from autotro-
phic to heterotrophic bacteria, such as titres of organic and inorganic wastes,
hydrocarbons from disposal of solvents, micro-plastics, medicines, fibres, and
heavy metal contaminants dissolved in sewage wastewater. The main microbial
species found in 95% of polluted and sewage water are Bacteroidetes,
Acidobacteria, Escherichia coli, coliforms, Aeromonas hydrophila, Klebsiella
pneumonia, Vibrio sp., Mycobacterium sp., Rhodobacter, Hyphomicrobium,
Firmicutes, Nitrosomonas sp., and Pseudomonas sp.. Proteobacteria (21–65%)
is the dominant class of bacteria found in municipal sewage ecosystem. Beta-
proteobacteria, the most abundant class of proteobacteria, also help to break down
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organic wastes and promote nutrient cycling in the ecosystem. When treating
biological wastewater systems, the ecology of the microbial communities and
their dynamics are always considered. Most genera of sewage decomposer
belong to Betaproteobacteria, Acidobacteria, Bacteroidetes, and other genera
of aerobic, anaerobic, and facultative microbes such as Flavobacteriaceae,
Verrucomicrobiaceae, Pseudomonadaceae, and Comamonadaceae. These bacte-
rial communities are often used in the sewage treatment plants of bioreactors or
activated sludge. Molecular studies identified core microbial communities that
help to design efficient activated sludge plants. Currently, advanced molecular
techniques and/or approaches such as next-generation sequencing,
metagenomics, and transcriptomics studies are helping us to determine the
metabolic function of microbial consortia through gene sequencing to identify
the abundant genera and process critical micro-organisms in activated sludge
wastewater treatment systems.

Keywords

Microbial consortia · Heavy metal contaminants · Proteobacteria · Next-
generation sequencing

13.1 Introduction

Due to a boost in the human population, urban expansion, and industrialization with
rapidly advancing technology cause a serious threat to the environment and water
ecosystem. Accumulation of different toxic contaminants in the ecosystem will in
turn causes adverse effects to human health, ecology, and the environment. In
developing countries, water wastes composed of 20–30% annual solid wastes.
Wastewater is defined as suspended or dissolved organic and inorganic impurities
over the layer of water bodies in the form of liquid or solid wastes. The incidence of
water pollution is increasing throughout the past couple of decades through micro-
pollutants from household products, and industrial by-products like drugs,
pesticides, micro-plastics, and chemicals making nuisances within the water bodies
and land ecosystems (Daughton and Ternes 1999; Grandclément et al. 2017). These
wastes originated from the household and industrial by-products and accumulated in
the nearby groundwater ecosystem. Therefore, a number of techniques have been
proposed in the recent literature on wastewater treatment methods that can help in
the management and control of water pollution through wastewater decontamination
and the recycling process (Kumar et al. 2018, 2020; Agrawal et al. 2021).

Among the various wastewater treatment methods, techniques such as the physi-
cal, chemical, and microbial treatment of wastewater are continually improving over
time. Some of the techniques include physical treatment of wastewater such as
artificial aeration, sedimentation, water diversion, and mechanical algae removal
(Zhang et al. 2010; Liu et al. 2014) and chemical treatment of wastewater through
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chemical oxidation, precipitation, flocculation, adsorption, chelation, and algae
removal with chemicals were used (Wu et al. 2018).

Microbial degradation of waste products is the most popular, natural, and stan-
dard technique used in the biological remediation process for both terrestrial and
aquatic ecosystems. The use of living micro-organisms as a bioremediation tech-
nique to break down suspended solids from wastewater was first used by George
M. Robinson (Vidali et al. 2002). The microbial degradation of various organic and
inorganic wastes takes place with the help of the metabolic activities of various
microbial genera (Kumar and Chandra 2018; Kumar and Shah 2021). Water pollu-
tion can be controlled through the use of microbial degradation techniques in
combination with the degradation activities of various microbial consortia of
Betaproteobacteria, Acidobacteria, Bacteroidetes, and other related genera with the
help of various biological treatment plants for wastewater recycling. When treating
biological wastewater, the ecology of the microbial communities and their dynamics
are always taken into account in order to detect the titres of the environmental
contaminants’ load in particular groundwater and sewage ecosystems.

13.2 Composition of Contaminants in Sewage Wastewater

Municipal wastewater consists primarily of 99.9% water with 0.1% suspended
contaminants. The current environmental threat to the freshwater and aquatic eco-
system is eutrophication. Most wastewater by-products come from various industrial
sewage treatment plants and household products, which consist of organic
substances such as proteins, complex carbohydrates, long unsaturated fatty acids,
oils, nitrogen, phosphorus, heavy metals, pesticides, various pharmaceutical
products, and micro-plastics (Chowdhury et al. 2016; Eerkes-Medrano et al.
2019). A heavy load of nitrogenous compounds, heavy metals, and organic
compounds leads to the development of algal blooms above the surface of the
water, and some of these inorganic contaminants are non-biodegradable and accu-
mulate in tissues of various living beings (Grizzetti et al. 2012). Traditional water
treatment plants are not well equipped to break down the new and emerging
pollutants that result from complex wastewater production and hazardous
by-products of industry (Norvill et al. 2016). There is, therefore, an urgent need to
develop more environmentally friendly methods for water treatment. Some of the
most commonly found organic and inorganic pollutants are discussed below.

13.2.1 Inorganic Contaminants

Most of the inorganic contaminants many times show high concentrations of toxic
metals beyond the recommended limit for drinking water. These inorganic
contaminants include dissolved chloride, sulfate, nitrate, nitrite, ammonia, cadmium,
lead, mercury, arsenic, phosphate, carbonate, calcium, magnesium, potassium, and
various types of nutrients and salts, which generally exist in the form of dissolved
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cations and anions in wastewater composing total dissolved solids (TDS) (Ehrlich
et al. 1997; Nickson et al. 2000)), including large-scale discharge of traces of
antibiotics like ciprofloxacin, erythromycin, trimethoprim, sulfapyridine, and
norfloxacin in all the food, faeces, pharmaceuticals flush, and wastewater supplies
(Chen et al. 2018). Heavy metal impurities are not biodegradable and therefore
increase their chances of accumulating in the living body. These are copper, nickel,
zinc, cadmium, mercury, lead and arsenic, barium, beryllium, selenium as well as
some of the aromatic compounds and hydrocarbons from the disposal of solvents,
micro-plastics, medicines, fibres (cotton swabs, hair, hygiene articles, faeces), oil,
soap, grease, and hazardous substances (Lim et al. 2010; Kumar et al. 2012). The
accumulation of higher concentrations of these critical pollutants in domestic and
sewer bodies causes environmental pollution and a public health crisis. Most of the
water polluted with the traces elements like barium, beryllium, selenium, arsenic,
and cyanide are responsible for different health crises related to cardiovascular, liver,
lung, and bone diseases due to high metal load in drinking water (Wones et al. 1990;
Cooper and Harrison 2009). These metal contaminants are also adversely affecting
the recycling of bio-solids and chemical waste from contaminated sewage.

13.2.2 Organic Contaminants

Emerging organic contaminants that are produced by various industrial chemical
reactions such as oxidation, reduction, hydrolysis and their by-products such as
volatile organic chemicals (VOCs) include solvents and organic chemicals such as
bisphenols, plasticizers/resins, methyl tertiary butyl ether, trichlorethylene (TCE),
styrene, benzene, toluene, and vinyl chloride. Some of the organic industrial
compounds such as petroleum hydrocarbons, gasoline additives, adhesives,
degreasers, fragrances, and fuel additives are included (Pal et al. 2014). Many studies
are based on the quality of shallow groundwater, which is heavily contaminated with
perfluorooctanoic acid (PFOA), which makes up 80% of all PFAAs found in
groundwater. Some of the contaminants of pharmaceutical origin, including carba-
mazepine, N,N-diethyl-meta-toluamide, sulfamethoxazole, phthalates, and so on,
were widespread in untreated groundwater samples for irrigation (Lesser et al. 2018).

13.3 Microbial Diversity of Sewage Water

The microbial diversity in wastewater consists of different types of micro-organisms
including algae, fungi, bacteria, protozoa, etc. (Cai and Zhang 2013). Bacterial
genera make up 90–95% of total wastewater communities. Microbial genera such
as Proteobacteria (25–45%) are the dominant strains present in the sewage water as
in the order of alpha-proteobacteria, followed by beta-proteobacteria and gamma-
proteobacteria (Tanaka et al. 2012; Zhang and Shao 2013). Besides, other dominant
groups of sewage water ecosystems are Bacteroidetes (20–40%), Chloroflexi
(3–17%), and Acidobacteria (2–15%), and major human bacterial pathogens like
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enteric pathogens Klebsiella sp., Vibrio sp., Shigella sp., Salmonella sp., and
Escherichia coli cause gastrointestinal infections, while other related species of
bacteria like Mycobacterium sp. and Pseudomonas sp. are opportunistic bacteria
which cause respiratory diseases and immune-suppressive diseases and are the most
common inhabitants of wastewater (Cai and Zhang 2013; Anastasi et al. 2012; Levy
et al. 2010). Some of the commonly reported bacterial strains in wastewater are listed
in Table 13.1.

13.4 Wastewater Treatment Methods

There are many qualitative and quantitative methods of monitoring water quality
from different supply sources through different biological treatment plants
(Fig. 13.1). Test methods and parameters can be divided into three categories.

13.4.1 Physical Tests

These tests comprise the water properties judge on the basis of its colour, odour,
taste, and turbidity. Change in colour of water is due to the presence of algae,
vegetables, weeds, manganese and iron, and other mineral oils. Change in odour
and taste of water is due to the presence of decaying organic matter including weeds,
algae, and industrial wastes containing ammonia, heavy metals, phenol, long-chain
fatty acids, and other hydrocarbons and foul odour is also due to the heavy growth of
micro-organisms over the surface of the water. The presence of turbidity in sewage
water is due to the presence of suspended solids, colloidal wastes, and soil erosion.
High turbidity makes filtration expensive.

13.4.2 Chemical Tests

Chemical measurement of the water quality can be analysed through the detection of
pH, biocides, toxic chemicals, and heavy metals, and total dissolved biochemical
oxygen demand (BOD) and chemical oxygen demand (COD). Measurement of the
pH of water for calculating relative acidity and alkalinity of water drinking water
must have acidity and alkalinity range between 6.5 and 8.5. In the marine ecosystem,
pH values below 4 do not support the growth of living organisms while low pH
values help in effective chlorination. Treated wastewater through chlorination typi-
cally has higher concentrations of particles (1–10 NTU for secondary treated waste-
water). High BOD means low oxygen concentration to support life and indicates
high organic pollution.
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Table 13.1 Microbial communities of sewage water

Microbial genera Function Pathogenicity References

Proteobacteria,
Alphaproteobacteria,
Gammaproteobacteria

Dominant phylum of
sewage water

Commensal of sewage
water plants comprising
subdominant abundant
groups Firmicutes,
Bacteroidetes,
Actinobacteria, and
Chloroflexi

Huang
et al.
(2018)

Bacteroides Common inhabitant of
sewage water. Ferment
carbohydrates that result
in the production of a
pool of volatile fatty acids

The fimbriae and
agglutinins of B. fragilis
function as adhesins; the
capsular polysaccharide,
LPS, and numerous
histolytic enzymes are the
most important virulence
determinants in the bacteria

Wexler
(2007)

Enterococcus Enterococcus species
used as probiotics or in
the food industry or as
starter cultures
enterococci have become
nosocomial pathogens
causing bacteraemia

Virulence factors include
the extracellular protein
Esp and aggregation
substances (Agg), both of
which help in the
colonization of the host

Fisher and
Phillips
(2009)

Faecalibacterium An anti-inflammatory
commensal bacterium of
sewage water

Non-pathogenic, in turn,
have a potentially
important role in
promoting gut health used
as a promising probiotic

Sokol et al.
(2008)

Acetoanaerobium Anaerobic bacteria that
produce acetate from H2

and CO2

Their biodegradation
efficiency in wastewater
reported

Rainey
(2015)

Aquabacterium Aquabacterium parvum
B6, nitrate-dependent Fe
(II)-oxidizing bacteria;
helps in the improvement
of biological nitrogen
removal in an up-flow
bioreactor for wastewater
treatment

Aquabacterium commune
commonly found in
drinking water biofilms

Zhang
et al.
(2016)

Candidatus Nitrotoga Nitrite-oxidizing bacteria
(NOB); metabolize nitrite
to nitrate, which is
removed via assimilation
and denitrification
processes

Play a key role in
contaminants from
freshwater

Boddicker
and Mosier
(2018)

Streptococcus Faecal streptococcus is
used as the best indicator
organism in organic waste

Some species are
potentially pathogenic,
and in streptococcus
pseudopneumonia the ply
gene plays a role in
pathogenicity

Jepsen
et al.
(1997)

(continued)
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Table 13.1 (continued)

Microbial genera Function Pathogenicity References

Subdoligranulum Non-pathogenic sewage
commensals

Used as probiotic and
associated with improved
metabolic health

Van hul
et al.
(2020)

Chryseobacterium Phosphate solubilization,
plant growth promotion

No pathogenicity but
suppresses Phytophthora
blight

Singh et al.
(2013)

Comamonadaceae Widely used in
degradation and
remediation of
wastewater contaminants

Most genera are not
regarded as pathogenic

Gumaelius
et al.
(2001)

Comamonas Comamonas spp. are
capable of assimilatory
and dissimilatory nitrate
reduction and are
considered as denitrifying
bacteria. The resultant
nitrite can be further
converted to ammonia by
nitrite reductase (Nir)
producing microbes

The virulence factors
comprise several genes
responsible for bacterial
motility and adherence

Wu et al.
(2018)

Dechloromonas Denitrifying bacteria;
help in enhanced nitric
oxide production under
salt or alkaline stress
conditions, also able to
reduce benzene,
perchlorate, and oxidize
chlorobenzoate, toluene,
and xylene

Non-pathogenic and this
organism is used for
bioremediation

Salinero
et al.
(2009)

Geothrix Sulphur and Fe-oxidizing
autotrophic denitrifying
bacteria

Non-pathogenic but used
for remediation of nitrate
polluted effluent

Zhang
et al.
(2019)

Nitrosomonas Nitrifying bacteria; help
in providing nitrogen to
plants and limiting carbon
dioxide fixation. It
converts ammonium ions
or ammonia into nitrites

Non-pathogenic Arp et al.
(2002)

Nitrospira Nitrite-oxidizing bacteria;
help in the conversion/
oxidation of nitrite to
nitrate

Non-pathogenic Daims and
Wagner
(2018)

OM27 clade Non-culturable bacteria,
high coral coverage on
reefs due to abundances
of the OM27 clade

Non-pathogenic Apprill
et al.
(2021)

(continued)
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13.4.3 Microbial Tests

Bacteriological analysis helps to study the faecal load and microbial load in a
particular water sample using established culture methods. Although it is possible
to detect most of the pathogenic microbial contaminants by counting the total
bacteria, Coliforms, E. coli, Salmonella sp., Pseudomonas sp., etc. through different
culture tests. Conversely, the lack of faecal commensals suggests that pathogens are
also likely to be absent. Using normal intestinal bacteria such as E. coli have been
used as a bioindicator of faecal burden, it is a well-established principle for monitor-
ing and evaluating the microbial safety of water supplies. Some of the well-known
culture methods used for the testing of water quality index are listed below.

13.4.3.1 Direct Plate Count
This method involves plating the drinking or wastewater directly into the nutrient
agar or VRBA Agar plate to count different microbial colonies by diluting the
original sample so that the colonies are between 30 and 300 per plate of inoculums
volume. Typical media include MacConkey agar to count Gram-negative bacteria
such as E. coli or plate count agar for a general count at 37 �C for 24 h (Gilchrist et al.
1977).

Table 13.1 (continued)

Microbial genera Function Pathogenicity References

Proteocatella
rhodoferax

Ruminal hydrolytic
bacteria; help in the
hydrolysis of microalgal
biomass

– Carrillo-
Reyes and
Buitr
(2017)

Simplicispira Gram-negative bacteria
found in activated sludge
that help in phosphorus
removal

Non-pathogenic, novel
denitrifying bacteria
found in sludge

Lu et al.
(2007)

Sedimentation Tank Stirred Tank

Denitrification

Aerated tank

Nitrification
Chemical precipitation

Phosphorus removal

Fig. 13.1 Tertiary treatment system of wastewater
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13.4.3.2 Multiple Tube or IMViC Method
It is a group of individual tests (indole, methyl red, Voges–Proskauer, and citrate)
known as IMViC that are used to count total coliforms in wastewater or drinking
water. The identification of 87 species representing 7 genera in the
Enterobacteriaceae family was completed with a typical IMViC test within 48 h
after incubation of the culture tubes (Barry et al. 1970).

13.4.3.3 ATP Testing
This test is also known as adenosine triphosphate test, used for the detection of active
micro-organisms in water. ATP is released by living cells which can be measured
directly by its reaction with the naturally occurring enzyme fireflyluciferase using a
luminometer. The amount of light produced is directly proportional to the number of
living micro-organisms present in the water samples (Birmele et al. 2010).

13.4.3.4 Membrane Filtration
This method is similar to the conventional plate count method, where membrane
vacuum filters are used and these filters are placed on presterilized nutrient medium
or Endo Agar within sealed plates. These filters have a millimetre grid printed on
them and can be reliably used to count the number of colonies under a microscope
(International Organization for Standardization 2000).

13.5 Types of Bioreactors Used for Wastewater Treatment

The treatment, purification, and decomposition of the sewage water are carried out
with the help of various bioreactors and water treatment systems such as anaerobic
sequencing batch bioreactors, fluidized bed bioreactors, bio-augmentation, mem-
brane bioreactors, and activated sludge treatment systems. These biological sewage
treatment systems are used for the decomposition of the various household and
industrial by-products such as organic and inorganic waste, waste containing sulfur,
phosphorus, and nitrogen, heavy metals and other toxic elements, heavy metal
pollution of the sewage ecosystem. The type of sewage treatment plant used depends
on the composition of the waste products present in the wastewater bodies. The
biological removal of water waste (BOD) involves the use of anaerobic processes
reactor (Anaerobic Expanded Bed Reactor; AEBR). The second type of anaerobic
reactor system is a contact anaerobic process which includes an anaerobic fluidized
bed reactor (ANFLOW), an anaerobic up-flow sludge blanket (UASB), an anaerobic
sequencing batch reactor (ASBR), etc. However, for the removal of BOD along with
the nitrification process biolac-aerated lagoon, optional aerated lagoon, sequencing
batch reactor (SBR), cyclic activated sludge system (CASS), etc. are widely used
bioreactors. These types of bioreactors are used for selectively performed nitrifica-
tion, denitrification, ammonification, phosphorus and sulphur removal.
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13.6 Structure and Function of Microbial Communities
in Activated Sludge and Wastewater Treatment Plants

Characterization of microbial diversity and their community structure in the waste-
water treatment plants was helpful in order to set up the microbial composition and
operational activities of the different bioreactors. Microbial diversities in the treat-
ment plants have been used to set the flocculation, sludge bulking, foaming process
of activated sludge plants as bioreactor operational settings. The most commonly
reported microbial phylum in the sewage water plants is Proteobacteria,
Betaproteobacteria, Acidobacteria, and Bacteroidetes (Meerbergen et al. 2016).
These bacterial genera show very high efficiency in the removal of COD (chemical
oxygen demand) along with the decomposition of various organic contaminants.
Microbial species contain various organic acids, enzymes, antioxidants, and metallic
chelates (Freitag and Meihoefer 2000), and these secondary metabolites help in the
oxidation of the sulphur, phosphorus, ammonia, nitrogenous wastes containing
compounds (Liu et al. 2014). Staphylococcus aureus, Pseudomonas aeruginosa,
Bacillus subtilis these bacterial strains are able to form biofilms and remove various
toxic elements, oil and metal contaminants from waste water treatment plants (Rice
et al. 2007; Branda et al. 2006; Zhao et al. 2006). Similarly, cyanobacteria, photo-
synthetic bacteria found in water bodies, act as an indicator of water pollution, and
Pseudomonas sp. is able to degrade various polymeric substrates and
micropolythenes. Acinetobacter and Arcobacter were dominant genera in sewage
treatment plants (Marti et al. 2013). The structures of the algae and bacteria symbio-
sis are adapted for wastewater treatment.

Another dominant genus in the sewage treatment plants are the
Flavobacteriaceae, Verrucomicrobiaceae, Pseudomonadaceae, and
Comamonadaceae.

These types of bacteria are often used in the sewage treatment plants of
bioreactors or activated sludge. The most numerous types of bacteria that are used
to treat dissolved organic pollutants belong to genera Tetrasphaera, Trichococcus,
Candidatus,Microthrix, Rhodoferax, Rhodobacter, and Hyphomicrobium, followed
by the archaeobacteria with the Euryarcheota (McIllroy et al. 2015). The process of
adsorption followed by degradation was the main functional unit of activated sludge
carried out by the microbial species. The growth and activities of these dominant
bacterial genera increased from day 1 to day 12, reached the maximum operational
taxonomic unit (OTU) number, then decreased slightly, and finally stabilized
(Shchegolkova et al. 2016). While some of the associated bacterial genera such as
Pseudomonadaceae, Streptococcaceae, and Enterobacteriaceae show increased
growth and turbidity from day 1 to day 9, it then gradually decreases and increases
as on days 13 and 15 of the incubation time in the bioreactor and then stabilizes.
Most sewage treatment plants avoid the use of filamentous bacteria because of their
excessive growth behaviour, which leads to foaming and flocculation disorders in
the operation of sewage reactors. Hence, the estimation of the microbial community
structure in wastewater is by the next-generation sequencing will be the most
important parameter of any of the bioremediation treatment facilities.
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13.7 Molecular Techniques for Next-Generation Wastewater
Management

The most intensely explored areas of current research in the field of wastewater
treatment are the use of genetically modified micro-organisms and recombinant
DNA technology to treat three main groups of wastewater pollutants, namely
persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs),
pentachlorobiphenyls (PCBs), and pesticides. Evaluation of the microbial commu-
nity structure living in the wastewater ecosystem becomes easier with the help of
cutting-edge technologies such as 16S rRNA sequencing, fluorescence in situ
hybridization, and gene clone library which in turn assess the diversity of the
microbial population due to high levels of contamination and toxicity of environ-
mental pollutants. Therefore, different communities of the bacterial population in the
sewage treatment plants can be analysed by 16s rRNA gene sequencing (Guo and
Zhang 2012). In order to measure the microbial diversity in the serial passage
electro-bioreactor, DNA amplicons were produced after the isolation of the entire
genomic DNA from sewage treatment plants. The identification of microbial alpha
(α) and beta (β) diversity analyses were performed using statistical tools called
QIIMETM (version 1.9.1) (Kuczynski et al. 2011). Likewise, another advanced
statistical tool for identifying microbial community structure and genome sequenc-
ing called PICRUSt (phylogenetic study of communities through reconstruction of
unobserved states) was used together with KEGG (Kyoto Encyclopedia of Genes
and Genomes) to identify bacterial communities in wastewater and determine their
functionality through dominant OTU gene sequences and another microbial database
called the Ribosomal Database Project (RDP) classifier that is used to identify the
pathogenic genera that inhabit the sewage treatment plant as microbial communities.

13.8 Contribution of Nanotechnology in Wastewater
Decomposition

Nanotechnology is the rapidly developing and environmentally friendly process that
can be used instead of conventional technologies for water treatment. Manufacture
of nanoparticles as a by-product of green chemistry, which leads to less dangerous
chemical production when decontaminating water samples or wastewater. Nano-
agglomerates from mixed oxides such as iron–titanium, iron–zirconium, iron–man-
ganese, iron–cerium, and other amalgams have been synthesized and successfully
used to remove and purify water contaminants. Just like the Nao particles,
nanoceramic filters are used to remove viruses and bacteria and to chemically absorb
the dissolved heavy metals from the wastewater. These nano-ceramic filters consist
of nano-alumina fibres and micro-glass with a high positive charge (Shah and
Ahmed 2011). Nowadays use of filtration membranes with hollow tubes along
with carbon nanotubes will effectively remove heavy metals and bacteria such as
E. coli and Staphylococcus aureus from contaminated water. Another bioremedia-
tion technology called permeable barrier reactor (PBR) helps in the remediation of
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organic and inorganic contaminants from biological groundwater. Nanoscale
zero-valent iron is a mixture of Fe(II) and Fe(III) oxide with a particle size of
10–100 nm. The nanoparticles help destroy polychlorinated hydrocarbons,
arsenates, selenates, pesticides, and dyes (Yukti et al. 2020).

13.9 Challenges and Future Outlook

The bioremediation of wastewater through microbial degradation has been the most
effective, inexpensive, and environmentally friendly method to date. The biological
treatment of sewage treatment plants is a necessary prerequisite for the ecological
biological rehabilitation of wastewater bodies. An increasing concentration of toxic
metabolites in wastewater can further deteriorate the quality of the groundwater.
Various microbial consortia of Betaproteobacteria, Bacteroidetes, Acidobacteria,
Chloroflexi, Tetrasphaera, Trichococcus, etc. are used in wastewater treatment,
which can help reduce the overall load of organic, inorganic, and heavy metals.
The optimization of different microbial consortia and culture parameters leads to an
increase in the efficiency of sewage treatment plants and a greater reduction in
environmental pollutants from wastewater. Nowadays, various molecular and
next-generation sequencing technologies are used to identify the microbial compo-
sition of sewage treatment plants, which can be helpful for the future design and
modulation of the microbial composition of the different sewage treatment plants.
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