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Chapter 8
Biomass Pyrolysis and its Multiple
Applications

Shivangi Pathak, Anil Kumar Sakhiya, and Priyanka Kaushal

Abstract In the twenty-first century, the growing demands of a modernized and
growing population have led to the rapid expansion of agricultural and industrial
sectors around the world. This expansion leads to produce a massive amount of
biomass materials and various organic and inorganic pollutants. Biochar has prom-
ising potential in tackling such global concerns and can serve as a low-cost adsorbent
for accomplishing sustainable development goals (SDGs). Biochar, a carbon-rich
solid product, can be obtained by slow pyrolysis of biomass under an oxygen-limited
atmosphere. Produced biochar can be used as an adsorbent to remove organic and
in-organic pollutants from groundwater and industrial wastewater. However, biochar
has a lower surface area and limited surface functional groups, which results in lower
adsorption capacity. Hence, activation is required. Apart from adsorbent biochar is
also used as a soil additive to sequestrate carbon to mitigate climate change and
enhance its fertility and water retention capability hence lowering the frequency of
irrigation in the field. In this chapter, the fundamentals of slow pyrolysis, its process
parameters, product yield distribution, and various application of biochar will be
discussed in detail.
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dw dry weight basis
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fw Fresh weight basis
GRSB Granular Rice Straw biochar
JPB Jujube pit biochar
MB Methylene blue
MBC Magnetically modified rice husk biochar
OM Organic matter
PAHs Polycyclic aromatic hydrocarbons
PBB Powdered bamboo biochar
PRSB Powdered Rice Straw biochar
RE Removal efficiency
RO Reverse osmosis
SA Sulfonamides
SPS Spent P. ostreatus substrate
SSS Spent shiitake substrate
TC Tetracycline
TPH Total petroleum hydrocarbons
WHC Water holding capacity

8.1 Introduction

The world’s food, water, and energy demand are increasing rapidly as the global
population increases. Large amounts of biomass waste (crop residues, forest resi-
dues, organic) are generated daily due to high living standards and economic
development. Globally, the approximately 140 Gigaton biomass waste generated
and managing such a huge amount of waste is a great challenge. Most of the biomass
waste is discarded and open burning in the field, which negatively impacts the
environment (Tripathi et al. 2019; Goswami et al. 2020a; Agrawal and Verma
2022). The conversion of biomass waste to biochar through pyrolysis is a feasible
solution and creates value addition in society.

Biochar is a “carbon-rich solid product” formed by pyrolyzing biomass at high
temperatures (300–600 �C) in an inert environment (Sakhiya et al. 2020; Goswami
et al. 2020b, 2021). Biochar can be used for a variety of energy and environmental
purposes, including clean solid fuel, fuel cells, catalysts, soil amendments,
composting additives, groundwater and wastewater purification, air purification,
carbon sequestration, hydrogen storage, etc. (Dillon and Heben 2001; Sakhiya
et al. 2021a, b; Baghel et al. 2022). The pyrolysis product yield distribution is
influenced by a variety of factors, including pyrolysis temperature, heating rate,
residence time, and particle size. Presently, biochar is used as an economical
adsorbent for removing organic (PAHs, pesticides, dye, surfactants, pharmaceutical)
and inorganic (heavy metals such as As, Ni, Pb, Zn, and Cu) contaminants from
groundwater and wastewater (Cha et al. 2016). Moreover, biochar has a good water



holding capacity and nutrient retention capacity, improving agriculture sustainability
and product yield. Biochar produced from agricultural waste and used in the soil can
return the nutrients and develop a circular economy (Zhou et al. 2021).
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However, there are certain limitations to using biochar as an adsorbent and other
environmental application due to cation exchange capacity, limited surface func-
tional groups, low porosity, and surface area. The activation is a process that
improves the physicochemical properties of biochar using different activation agents
and heating in the temperature range of 500–900 �C. According to the report “Global
Activated Carbon Market Forecast & Opportunities 2017,” demand for activated
carbon is predicted to grow at a rate of higher than 10% per year for the next half-
decade, reaching a market value of 3 billion dollars by 2025 (Park et al. 2013). The
sustainable utilization of biomass to produce bioenergy and activated charcoal
would not only assist in alleviating the environmental issues due to coal mining
but also cuts down the price of producing efficient sorbents.

This chapter describes the biochar production through the pyrolysis, types of
pyrolysis process, parameters influencing the pyrolysis. Activation of biochar via
physical and chemical activation is also discussed in detail. Additionally, biochar has
a wide array of uses such as solid fuel, catalyst, the adsorbent in water purification,
additives in composting, and hydrogen storage were described in detail.

8.2 Pyrolysis

Pyrolysis is a thermochemical conversion technology in which biomass is thermally
heated at elevated temperature and produced three different products: biochar,
bio-oil, and gas. In addition to its efficacy, pyrolysis produces multi-products
compared to other thermochemical conversion processes (Tripathi et al. 2016).

8.2.1 Physics of Pyrolysis

In the pyrolysis process, organic material is thermally decomposed under an oxygen-
limited environment. It’s a particularly complicated process with a lot of various
reactions in the reacting zone. Biomass contains three major constitutes, including
hemicellulose, cellulose, and lignin (Kumar and Verma 2021a, b). The heating of
biomass, biomolecules of hemicellulose, and cellulose break down in the form of
volatile matter and produce bio-oil by condensation. The heating of biomass under
an oxygen-limited environment allows a rise in temperature greater than its limit
thermal stability and produces a more stable solid product called biochar.

The pyrolysis process mainly consists of two steps, i.e., primary and secondary
pyrolysis. During primary pyrolysis, heat causes biomass molecules to cleave and
devolatilize, forming numerous functional groups such as hydroxyl, carboxyl, and
carbonyl. The process of devolatilization takes place by dehydration of biomass,
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followed by decarboxylation and dehydrogenation. Secondary pyrolysis begins after
the completion of the primary pyrolysis process in which heavy hydrocarbon
breakdown into condensable (bio-oil) and non-condensable gases (CO, CO2, H2,
and CH4). The cracking of heavy hydrocarbon compounds can be presented by the
following reaction (Tripathi et al. 2016):
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C6H6O6ð Þn ! H2 þ COþ CH4 þ . . .þ C5H12ð
þ H2Oþ CH3OHþ CH3COOHþ . . .ð C ð8:1Þ

Where the initial part of the products in the reaction represents the
non-condensable gases, the later part represents the mixture of condensable gases,
and the last part is the char yield.

8.2.2 Types of the Pyrolysis Process

The process parameters help in classifying the pyrolysis process into four categories:
slow, fast, flash, and intermediate. Each type has its own set of benefits and
drawbacks. The basic characteristics of each type of pyrolysis and the operating
parameters are discussed in the following section. Table 8.1 represents the types of
pyrolysis processes based on operating conditions.

8.2.2.1 Slow Pyrolysis

It is a conventional method and widely used to produce charcoal in history and
characterized by a modest heating rate and a prolonged residence time. It is generally
carried out from 400–600 �C to get higher biochar yield with a small amount of

Table 8.1 Operating conditions of types of pyrolysis processes

Operation
condition

Temperature
(�C)

550–950 850–1200 900–1300 400–650

Heating rate
(oC/min)

0.1–1.0 10–200 >1000 1.0–10

Residence
time (min)

300–500 0.5–10 <1 0.5–20

Particle size
(mm)

5–50 <1 <0.5 1–5

Reference Bahng et al.
(2009), Demirbaş
and Arin (2002)

Bahng et al.
(2009), Demirbaş
and Arin (2002)

Bahng et al.
(2009), Demirbaş
and Arin (2002)

Zhang et al.
(2010),
Kebelmann et al.
(2013)



condensed bio-oil and non-condensable gases such as CO2, CO, CH4, and hydro-
carbons (C1–C2) (Al Arni 2018). The slow pyrolysis is characterized by longer
residence time (>60 min), lower heating rate (0.1–1.0 �C/min), a particle size of
5–50 mm, and performed at ambient pressure. The longer residence time provides an
appropriate atmosphere and time to complete the secondary pyrolysis reaction.
Additionally, a longer vapor residence time permits vapors formed during the
secondary reaction to be evacuated, which results in higher biochar yield. Biomass
with larger particle size, high lignin content, and lower ash content is best suited for
the production of biochar (Demirbas 2004).
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8.2.2.2 Fast Pyrolysis

Fast pyrolysis is mainly used to produce the bio-oil (yield >50%). Biochar and gas
yields are overshadowed by bio-oil production. It has a high heating rate as com-
pared to slow pyrolysis. Fast pyrolysis is mainly performed within the temperature of
850–1200 �C, with a heating rate ranging from 10–200 �C/min, the particle size of
<1 mm, and residence time less than 10 s (Greenhalf et al. 2013). Different reactor
designs are utilized for fast pyrolysis, including rotating cones, bubbling fluidized
beds, circulating beds, ablative reactors, etc. The main objective of fast pyrolysis is
to raise the temperature of the feedstock to a point where thermal cracking takes
place while decreasing the exposure time, which promotes biochar formation. The
bio-oil produced through fast pyrolysis is corrosive because of its low pH value.
Moreover, bio-oil contains a high amount of water fraction, which lowers its heating
value. As a result, before using bio-oil, it must be upgraded (Xu and Etcheverry
2008).

8.2.2.3 Flash Pyrolysis

Flash or rapid pyrolysis is a modified variant of fast pyrolysis and is characterized by
a high heating rate, shorter residence time, and extreme reaction temperature. Rapid
is carried out at a heating rate > 1000 �C/min and a short residence time of 1–10 s
(Demirbaş and Arin 2002). Such an extreme condition is arranged in flash pyrolysis
to obtain a high bio-oil yield with lower water fraction and biomass conversion
efficiency of up to 70%. In flash pyrolysis, heat and mass transfer processes,
chemical-reactions kinetics, and biomass transition phase behavior play a significant
role in product yield distribution.

The most difficult aspect of implementing this pyrolysis on a large scale is
designing a reactor in which the input biomass can be heated at an extreme heating
rate for a short residence time. A major issue is the stability and quality of the bio-oil
as it is heavily influenced by the presence of biochar in the product. The presence of
biochar in bio-oil leads to catalysis of the polymerization reaction, resulting in a
higher viscosity of bio-oil (Tripathi et al. 2016).
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8.2.2.4 Intermediate Pyrolysis

Intermediate pyrolysis is usually carried out to achieve the balance of product yield
between fast pyrolysis and slow pyrolysis. It has a decent product yield distribution,
and therefore, it can be used in the co-production of biochar, bio-oil, and gas. The
process conditions of this pyrolysis lie between fast and slow pyrolysis. The
pyrolysis is carried out in the temperature range of 400–650 �C with a heating rate
of 1–10 �C/min and residence time of 15–20 min. The advantages of the conditions
in intermediate pyrolysis are that they prevent the development of high molecular tar
compounds with excellent quality bio-oil and generate dry biochar which is appro-
priate for soil amendment and bio-energy production (Kazawadi et al. 2021). The
bio-oil produced through this pyrolysis can be used in engines and boilers directly
because it does not have a high amount of reactive tar. This is a significant benefit of
intermediate pyrolysis over fast pyrolysis (Mahmood et al. 2013).

8.3 Effects of Process Parameters

8.3.1 Process Temperature

Temperature is the most crucial element to control the reaction process, and it
directly influences the biochar physicochemical properties and yield. The increment
in pyrolysis temperature negatively impacts biochar yield because it facilitates the
thermal cracking of heavy hydrocarbon compounds leading to a rise in liquid and gas
yield (Ahmad et al. 2014). Biochar developed in the primary pyrolysis reaction takes
part in the secondary reactions and enhances the bio-oil and gas yield at the expense
of biochar. Hence, a lower pyrolysis temperature is suitable for higher biochar yield.
Moreover, biochar has a graphene-like structure when it is produced above the
300 �C temperature. Graphene holds a flat-polyaromatic and monolayer carbon
structure, high electrical conductivity, and stability index. Additionally, biochar
produced at higher temperatures enhances physicochemical properties such as pH,
surface functional groups, and BET surface area (Wu et al. 2012). Biochar produced
at higher temperatures can also have high aromaticity and recalcitrant carbon
fractions in biochar which improves the stability.

8.3.2 Heating Rate

In biomass pyrolysis, the heating rate affects the product yield and physicochemical
properties to some extent. The pyrolysis process is mainly classified based on the
heating rates. The process with a lower heating rate can minimize the secondary
pyrolysis reaction and hence, it confirms that no thermal cracking arises, resulting in



higher biochar yield. In contrast, higher heating rates promote the fragmentation of
feedstock and increased the bio-oil and gas yield by restraining the possibility of char
formation. The higher heating rate also enhances the depolymerization of lignocel-
lulosic constitutes into primary volatile compounds, which reduces the biochar yield
(Tripathi et al. 2016).
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Dilek Angin performed the pyrolysis of safflower seed press cake for biochar
production by altering the heating rates (10–50 �C/min) (Angin 2013). It was noticed
that as the heating rate increased the biochar yield decreased. Similar results were
observed in the literature (Ateş et al. 2004; Huang et al. 2017; Zhao et al. 2018).

8.3.3 Residence Time

Residence time has a crucial part in the minimalism of the product yield distribution,
product properties, reaction mechanism, and product quality. The biochar produc-
tion can be carried out at various scales of residence time ranging from a few minutes
to several days. Low temperature combined with longer solid residence time is
suitable for char production (Cha et al. 2016). The higher residence time supports
the depolymerization of lignocellulose composition by offering them adequate
reaction time. In contrast, lower residence time in the pyrolysis process minimizes
the depolymerization reaction, which results in lower biochar yield (Park et al.
2008).

Residence time influences the char yield and the characteristic and physicochem-
ical properties of biochar such as surface area, micro- and macropore development,
and surface functional groups. It was reported that longer residence time in biomass
pyrolysis enlarged the pore size (Tay et al. 2009). Pyrolysis temperature, particle
size, heating rate, and other variables frequently govern the influence of holding
time. This makes it difficult to give a clear picture of the role of residence time in the
development of biochar.

8.3.4 Particle Size

Particle size is also one of the essential factors in the biomass pyrolysis process as it
controls the reaction rate and heat transfer rate. The heat transfer rate of input
feedstock decreased from the outer surface to the core of the material by increasing
the particle size, which results in higher biochar yield (Encinar et al. 2000). Addi-
tionally, when particle size increases, the vapor released during the thermal break-
down of feedstock travels a greater distance inside the biochar layer, which triggers
secondary pyrolysis and leads to an increase in biochar yield.

Hong et al. (2020) studied the effect of temperature and particle size on biochar
yield using various agriculture waste. The biochar yield increased with increasing
the particle size (Hong et al. 2020). Demirbas also studied the influence of particle
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size on char yield through pyrolysis of agriculture waste. It was observed that char
yield improved from 19.3 to 35.7% for olive husk and 5.6–16.7% for corncob by
rising particle size from 0.5 mm to 2.2 mm (Ayhan Demirbas 2004).
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8.4 Biochar Activation

8.4.1 Physical Activation

In physical activation, biochar produced thermochemically from biomass is
processed with activities such as steam, CO2, and air/O2 at a temperature range of
700–900 �C. Biochar porosity increases in an oxidizing environment at an elevated
temperature during the activation process. Activation increases the surface area and
pore size of biochar, which improves its adsorption capacities. The oxidizing agents
penetrate the biochar layers and gasify the carbon atoms, causing inaccessible pores
to expand and open (Tripathi et al. 2016). Unlike air activation, steam and carbon
interaction is an endothermic reaction, making it simpler to curb (Demirbas 2009).
Activation temperature, degree of activation, biomass feedstock, and activation
agent strongly controls the physical activation. The generic trendline observed in
the literature shows that with the increase in process temperature and time, porosity
growth enhances. Moreover, this leads to an increase in pore size distribution. Using
the air as an activation agent shifts the reaction in the direction of combustion
because of the synergistic effect of air and biochar. An unregulated reaction can
cause excessive ash formation and reduced activated carbon yield (Dawson et al.
2003). Tables 8.2 and 8.3 show the mechanism of the activation agent and the effect
of the activation agent on biochar BET surface area, respectively.

Table 8.2 The mechanism of activation agent on biochar BET surface area

Oxidizing
agent

Chemical
reaction

Steam/
H2O

C + H2O ! C
(O) + H2

2C+ H2 2C(H)

Chemisorption Ahmed et al. (2016), Belaroui et al.
(2014), Mendoza-Carrasco et al. (2016)

CO2 C + CO2 ! C
(O) + CO
C(O) ! CO
C + CO2 2CO

Carbon gasification
by carbon dioxide

Aworn et al. (2008), Betancur et al.
(2009)

Air/O2 C + O2 CO2 Carbon gasification
by oxygen

Jung et al. (2015), Singh et al. (2008),
Xiao and Pignatello (2016)



Feedstock agent time (h) area (m2/g) Reference
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Table 8.3 Effect of activation agent on the BET surface area of biochar

Activation
Activation
temperature
(�C)

Activation BET surface

White wood
(Spruce)

Steam 750 2.46 643 Azargohar and
Dalai (2008)

Populus
nigra wood

Steam 800 1 322 Shim et al.
(2015)

Mixed
hardwood

CO2 800 – 730 Contescu et al.
(2018)

Rice husk Steam 700 0.75 236.7 Mayakaduwa
et al. (2017)

Aspen wood CO2 800 3.6 910 Veksha et al.
(2015)

Poplar Air 250 0.5 570 Suliman et al.
(2016)

Waste
rubber

Air 500 0.08 240 Heras et al.
(2009)

8.4.2 Chemical Activation

The biochar is doped with a different chemical agent to improve its physicochemical
characteristics including surface area, pore volume, and fictional groups. The func-
tional group, pore volume, and the surface area are changed according to the
impregnation ratio of the chemical agent. The chemical activation of biochar gener-
ally takes place within the temperature range of 450–900 �C (Sakhiya et al. 2020).
This activation of biochar is broadly classified into two categories: single-step and
multi-step chemical activation. The chemical activation mechanism is ambiguous in
comparison to physical activation. Mainly two types of reactions occurred on the
surface of biochar during the chemical activation, i.e., dehydration and oxidation.
The main advantages of chemical activation in comparison to physical activation are
greater carbon yield, low temperature, high surface area, high porosity structure, and
high efficiency. Chemical agents also suppress tar formation. Over a long period, the
corrosion and depletion of equipment take place due to the corrosive nature of
chemical agents, which is the major limitation of chemical activation. Even at high
temperature, the corrosion increases and more rapidly harm the equipment. After
chemical completion of activation, washing of biochar is mandatory which makes
the process costlier as compared to physical activation.

There are different types of chemical activation methods available in the literature
according to the desired application. If oxidation of surface functional group
required acidic chemical agents were used (nitric, hydrochloric, phosphoric acids,
hydrogen peroxide). Similarly, if basic modification is required NaOH and KOH
agents are used for activation. Different modifications of biochar such as sulfonation,
amination, and impregnation of various metals (FeCl3, ZnCl2, MgO, CaO, ZnO, etc.)
were also used (Sajjadi et al. 2019). Among the above listed chemical agents, the



KOH is more suitable for activation due to lower process temperature, higher surface
area (up to 3000 m2/g), high product yield, and superior microporous structure
(Li et al. 2020). The CH3COOK is a non-toxic chemical agent and can be used for
biochar activation. Sakhiya et al. (2021b) studied the comparative study of steam and
CH3COOK-activated biochar for heavy metal adsorption. Results indicated that
CH3COOK-activated biochar had a higher surface area and adsorption capacity in
comparison to the steam-activated biochar (Sakhiya et al. 2021b).
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8.5 Biochar Applications

Biochar, a low-cost carbonaceous material has a stable carbon matrix capable of
retaining materials such as water, air, organic compounds, and metals. Biochar has
specific thermal and electrical properties that are still being investigated. With so
many different characteristics, biochar is an efficient, eco-friendly, cost-effective
alternative with a wide range of applications (Schmidt and Wilson 2014). Figure 8.1
shows the various applications where biochar can be used as a substantial alternative.

8.5.1 Biochar as an Absorbent

Biochar has emerged as a cost-effective alternative to other carbonaceous materials
for removing various inorganic and organic pollutants from gaseous, aqueous, and
solid phases, including heavy metals, aromatic dyes, polycyclic aromatic hydrocar-
bons (PAHs), phenols, and antibiotics (Oliveira et al. 2017).

Fig. 8.1 Various applications of biochar
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8.5.1.1 Biochar for Wastewater Treatment

Large volumes of wastewater effluent containing hazardous chemicals are generated
by industries and are routinely deposited into adjoining environmental water
sources, either directly or indirectly. Therefore, effluents must be treated before
discharge to remove contaminants in order to safeguard the aquatic ecosystem and
human health (Singh et al. 2020a, b). The global population is rising by 80 million
citizens each year, causing a need for safe drinking water of around 64 billion cubic
meters; the world must focus on creating methods for a safe water supply (Alam et al.
2014).

Some traditional wastewater treatment techniques necessitate the use of danger-
ous chemicals, which are both expensive and harmful to the environment (Khin et al.
2012). These processes often affect the environment by producing toxic and non-
eco-friendly end products with considerable initial and ongoing capital costs (Singh
et al. 2020a, b). The most used wastewater treatment processes are adsorption,
reverse osmosis (RO), and membrane filtering. These processes have drawbacks
such as membrane deformation, high operational costs, complex instrument han-
dling, the development of undesirable sludge, and other disposal issues. As a result,
an alternative, improved, substantial, and cost-efficient wastewater treatment tech-
nique is required.

Economically and environmentally sustainable wastewater remediation setups
are based on biomass’s highly efficient and ecologically sustainable materials.
Biochar has specific characteristics such as high porosity, large surface area, and
holding water for a longer time making it a suitable substitute for wastewater
treatment (Yargicoglu et al. 2015). This section of the chapter emphasizes biochar’s
potential to remove undesired and hazardous species such as organic contaminants
and heavy metals from wastewater. Figure 8.2 demonstrates the adsorption mecha-
nism of heavy metals and organic compounds onto biochar’s surface.

Biochar for Heavy Metal Removal

Heavy metals in wastewater have the ability to cause damage to the environment.
Even at minor concentrations, long-term exposure to heavy metals can cause major
health concerns. (Ahmed et al. 2016; Sakhiya et al. 2022). According to recent
research, biochar generated from plant wastes and animal manure can effectively
absorb heavy metals from waste and drinking water (Dai et al. 2017; Higashikawa
et al. 2016; Tan et al. 2016; Zhou et al. 2017).

The functional groups such as OH and �COOH on the surface of biochar show a
strong affinity towards heavy metals. The π conjugate aromatic structure of biochar
allows it to change negative charge in π-orbital, resulting in losing electrons of a
functional group more efficiently, and adsorption becomes more significant (Wang
et al. 2018). Samsuri et al. (2014) showed that the polarity index, functional groups



containing oxygen or O/C molar ratio has an important role in the heavy metal
adsorption process (Samsuri et al. 2014).
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Fig. 8.2 Adsorption mechanism of organic pollutants and heavy metals onto biochar

Arsenic is found in both wastewater and drinking water and is highly toxic. Van
Vinh et al. (2015) impregnated Zn(NO3)2 over biochar, and the results revealed an
increase in adsorption capacity of As3+ from 5.7 to 7.0 mg/g (Van Vinh et al. 2015).
Furthermore, fresh and dehydrated banana peels biochar was used to remove Pb2+

from wastewater, removal efficiencies obtained were of 359 mg/g and 193 mg/g,
respectively (Zhou et al. 2017). Higashikawa et al. (2016) studied the effect of
pyrolysis temperature on Cd2+ adsorption using a mixture of biochar derived from
rice husk, sugarcane straw, chicken manure, and sawdust. Rising the pyrolysis
temperature from 350 to 650 �C increases the percentage of Cd2+ removed
(Higashikawa et al. 2016).

Removal of Organic Pollutants

Organic contaminants are widespread in wastewater. Dyes, phenols, PAHs, and
antibiotics have recently gained high attention due to their complex aromatic
structure, high toxicity, and biodegradable resistances in the environment.

Globally, the textile sector is estimated to be worth $1 trillion, accounting for
approximately 7% of total global exports and engaging roughly 35 million people
(Desore and Narula 2018). The water pollution caused by the textile industry has a



significant impact on the environment. According to the literature, biochar applica-
tion can be an economical and environment-friendly solution to remove dyes from
the aqueous solutions with more than 80% efficiency (Srivatsav et al. 2020). Various
operational factors (such as temperature, solution’s pH, biochar dosage, and con-
centration of dye) have a critical role in altering the adsorption of dye using biochar
(Chu et al. 2020; Mahmoud et al. 2020; Park et al. 2019). Experiments were
conducted to determine the threshold pH values, and the findings revealed that
biochar could withstand pH levels as low as 2 and as high as 11. Despite this,
removal efficiencies were higher than 80% (Srivatsav et al. 2020). Fan et al. (2017)
used BC prepared from municipal sludge to extract methylene blue (MB), accurately
represented by a pseudo-second-order model, and had a removal efficiency of up to
100% (Fan et al. 2017).
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Furthermore, after three cycles, the clearance rate of MB has remained at 60%.
The adsorption capacity increased with increasing pH throughout the adsorption
phase is attributed to electrostatic interaction. Furthermore, Si–O–Si on BC can offer
adsorption sites and interact with MB’s functional group containing nitrogen.
Moreover, MB can create a hydrogen bond with BC’s hydrogen. Kelm et al.
(2019) studied the performance of biochar derived from wood residues for adsorp-
tion of Indosol Black NF1200 dye and results indicated that at low pH values,
biochar could be an efficient adsorbent for azo dyes removal from textile industries
(Kelm et al. 2019).

Phenols are being widely used at an industrial scale, which leads to the release of
phenolic pollutants in industrial wastewater (Mohammadi et al. 2015). PAHs are
also released from various industries and are toxic, carcinogenic, mutagenic, and
persistent. Phenols and PAHs have a complex aromatic structure, making them
biodegradation resistant (Busca et al. 2008), thus emerging the need to remove
these pollutants before moving into the aquatic system. Biochar is used to remove
PAHs and phenols from aqueous solutions due to its high adsorptive ability. Various
factors such as surface area, adsorbent and adsorbate concentrations, pore-volume,
and size affect the adsorption of phenols and PAHs on biochar.

Recently, Chandola et al. (2021) conducted a study for removing phenols from
aqueous solutions using biochar produced at different temperatures from Araucaria
columnaris bark (ACB), 100% phenol removal was achieved with the biochar
produced at a temperature of 500 �C (Chandola et al. 2021). A study showed that
57% of PAHs dissolved in sewage sludge can be removed using biochar (Oleszczuk
et al. 2012). A review by Lamichhane et al. (2016) stated that more than 98%
adsorption capacity could be achieved using biochar as adsorbent for PAHs removal
(Lamichhane et al. 2016).

Antibiotic contamination and the emergence of antimicrobial-resistant microor-
ganisms are significant environmental concerns across the world. Given the rising
use of antibiotics, reducing their presence in the environment is critical (Krasucka
et al. 2021).

Peng et al. (2016) studied the use of biochar for the adsorption of seven antibiotics
in an environmental concentration of aqueous solutions. A significant amount of
antibiotics were removed, and the adsorption energy increased significantly using



the density functional theory (DFT) as the number of rings increased, showing the
relevance of π–π interactions in the adsorption process (Peng et al. 2016). Peiris et al.
(2017) studied the removal of Sulfonamides (SA) and Tetracycline (TC) using
biochar and investigated the adsorption mechanism in detail. Electron donor–accep-
tor interactions of electron-withdrawing compounds with surface aromatic rings are
the most common adsorption mechanism (Peiris et al. 2017). Fan et al. (2017)
pyrolyzed rice straw at different temperatures to examine if BC could remove
common antibiotics like TC. Due to its wide specific surface area and porosity,
BC produced at a higher temperature showed a maximum adsorption capacity of
50.72 mg/g (Fan et al. 2017). Table 8.4 shows literature on biochar applications for
removing heavy metals, PAHs, phenols, dyes, antibiotic pollutants.
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8.5.1.2 Biochar for Air Purification

When gaseous chemical pollutants are released into the atmosphere, they cause
serious human health and environmental threats; hence, we need to prevent their
emissions. Fabric filters, electrostatic precipitators, and activated carbon injections
are the few techniques used to reduce the emission of toxic gaseous contaminants in
the environment (Yang et al. 2018). The high maintenance and installation costs of
these techniques limit their application on a large scale. According to recent
research, biochar can also remediate gaseous pollutants (Bamdad et al. 2018).
Biochar derived from palm kernel, eucalyptus wood, cotton stalk, and pine effi-
ciently removed CO2 with adsorption capacity ranging from 3.22 mmol/g to
7.32 mmol/g (Chatterjee et al. 2018; Heidari et al. 2014; Nasri et al. 2014; Zhang
et al. 2014). Similarly, the H2S removal efficiency of more than 95% was achieved
using biochar derived from various feedstocks (Bhandari et al. 2014; Das et al. 2019;
Sun et al. 2017). Alkali medium is favorable for achieving high H2S adsorption. The
interaction with biochar’s surface functional groups COOH and OH is responsible
for H2S adsorption (Shang et al. 2013). Table 8.5 shows the various recent studies
which used biochar for removing toxic gaseous contaminants removal.

Biochar is also used as an adsorbent for the remediation of pollutants from soil.
Since it is a very vast application, it has been reviewed in detail in the next section.

8.5.2 Biochar as a Soil Amendment

Various studies have recommended biochar as an efficient soil additive in agricul-
tural soils. Biochar application improves soil aggregate stability and enhances its
capacity to hold water for a more extended period by improving its pore character-
istics, surface area, particle, and bulk density. The kind of soil and its texture also
plays an important role. Biochar amendment effects are more noticeable in soil
having high sand-sized particles than in soil rich in clay (Blanco-Canqui 2017;
Kavitha et al. 2018).
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Table 8.5 Literature of gaseous pollutants removed by biochar

Feedstock Preparation mechanism Pollutant Removal rate Reference

Hickory
chips

By simply ball milling
of pristine biochar with
ammonium hydroxide,
N-doped biochar was
prepared.

CO2 N-doped biochar
resulted in 31.6–55.2%
higher adsorption than
the corresponding pris-
tine biochar

Xiaoyun
Xu et al.
(2019)

Waste
wood/ bro-
minated
flame
retarded

Brominated biochar was
prepared using one-step
pyrolysis at 600 �C and
biomass to plastic ratio
1:1 (mass basis)

Elementary
mercury

40% removal efficiency
was achieved

Xu et al.
(2018)

Black
spruce and
white birch
residues

Activated biochar was
prepared using KOH,
CO2, and superheated
steam

SO2 The highest adsorption
capacity of 76.9 mg/g
was obtained using
steam-activated white
birch biochar.

Braghiroli
et al.
(2019)

Biomass Biochar was produced
by pyrolysis at 550 �C
under an inert (N2)
environment at
12–15 min
residence time.

Gaseous
ozone

The removal efficiency
obtained was 55 ppbv

Zhou et al.
(2018)

Neem Biochar was prepared
through a moderate
pyrolysis N2

environment

Toluene Adsorption capacity
obtained was 65.5 mg/g

Kumar
et al.
(2020a)

Pinecone Biochar was prepared at
500 �C with 5 �C/
min N2 flow for 90 min
Activation was done
using hydrogen perox-
ide impregnation

Formaldehyde The removal efficiency
obtained was 89%

Yi et al.
(2018)

Biochar addition to soil affects its physicochemical parameters such as surface
area, tensile strength, pH, cation exchange capacity (CEC), and water-holding
capacity, which have a direct impact on plant growth (Chan et al. 2008; Lehmann
and Rondon 2006; Zong et al. 2014). Various studies showed that biochar addition
improves plant growth by facilitating the nitrogen (N), phosphorus (P), and potas-
sium (K) biochemical cycle (Chan et al. 2008; Gul and Whalen 2016) and influenc-
ing soil microbial activities. The elements such as carbon (C), hydrogen (H), sodium
(Na), calcium (Ca), magnesium (Mg), N, P, and K present in biochar (Zhang et al.
2015) supply nutrients to plants for sustainable growth. Biochar decomposes slowly
in soil due to its long residence life of about 3000 years. Yuan and Xu showed that
factors such as biochar’s alkalinity, functional groups present on its surface, and
strong pH buffering capacity help to regulate soil acidity (Yuan and Xu 2011).
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Table 8.6 Biochar application as a soil amendment

Biochar feedstock Contaminant R.E. (%) Reference

Rice straw Cd 87.1 Tang et al. (2020)

Clover TPH 18.6 Abbaspour et al. (2020)

Rice straw PAHs 40–58.84 Zhang et al. (2020)

Poplar wood Cu, Cd, Pb, and Zn 72.8 Chen et al. (2020)

Wheat straw TPH
PAHs

45.83
30.34

Han et al. (2016)

Rice straw TPH 84.8 Qin et al. (2013)

R.E. Removal efficiency, TPH total petroleum hydrocarbons

Biochar amendment improves the nutrient cycle of a plant. A review by Tesfaye
et al. (2021) showed a significant impact of biochar soil amendment (BSA) on plant
P uptake and soil available P by 55% and 65%, respectively (Tesfaye et al. 2021).
Scheifele et al. (2017) reported an increase in nodule dry matter and biological
nitrogen fixation (BNF) by 1.8 and 1.2 folds, respectively, in soybean plants with the
amendment of maize and wood biochar (Scheifele et al. 2017).

Biochar having a large surface area and pore volume has been an excellent means
to remove heavy metals present in polluted soil (Ahmad et al. 2018). The soil
amendment using biochar improves soil pore fraction, which provides more space
for microorganisms to grow, and N, P, Ca, and K present in biochar provides
nutrients for plant growth (Sakhiya et al. 2020). On the other hand, Warnock et al.
(2007) examined the effect of BSA on microorganisms present in the soil. BSA
results in a reduction in overall microbial biomass (Warnock et al. 2007). Few recent
studies of remediations of various contaminants from soil using biochar have been
mentioned in Table 8.6.

8.5.3 Biochar as a Catalyst

Biochar having high surface area and specific surface functional groups can be
prepared by functionalization or activation. Biochar has plenty of potentials to be
utilized as a flexible catalyst or catalytic assist in various chemical processes because
of its unique chemical structure. Biochar can be utilized as a catalyst in biogas
upgrading, biodiesel production, improved syngas production, biomass conversion
to chemicals and biofuels, de-NOx processes, and microbial fuel cell electrodes (Cao
et al. 2017; Lee et al. 2017). The biochar properties are enhanced by activation or
functionalization procedure for being used as a catalyst. The biochar’s physico-
chemical characteristics, mainly its specific surface area, pore-volume, and pore size
distribution, can be enhanced to various degrees depending on the activation tech-
niques used (Cao et al. 2017). According to a study by Do Minh et al. (2020), the
electrical and chemical configuration of biochar, when correctly controlled, makes it
a great photo-, electro-, and chemo-catalyst that might even be used in modern



applications. Biochar can be used in combined catalysis with other phases due to its
unique characteristics of semiconductivity (Do Minh et al. 2020).
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Zhu et al. (2015) prepared chemically and physically activated biochar from rice
husk. The evaluation of the biochar characteristics indicated that it could be
employed as catalytic support. In methane catalysis, the activated biochar-assisted
Ru (Ru/ABC) catalyst excelled or was equivalent to the standard AC-assisted Ru
catalyst. Under the optimum reaction conditions, 98% of CH4 selectivity was
achieved and 100% CO conversion (Zhu et al. 2015).

8.5.4 Biochar as an Alternative to Fuel

Biomass has enormous potential as a fuel source and a source of both thermal and
electrical energy. Because of the limited reserves of conventional energy resources,
lignocellulosic biomass is becoming the central focus of the modern period, which
does not need any energy storage systems (Kumar et al. 2020b, c). Biochar is
typically high in carbon and can be a pollution-free solid biofuel (Kane et al. 2016).

The high moisture content, bulkiness, low energy density, hygroscopic nature,
and high transportation cost in various cases are certain drawbacks of raw biomass
when utilized as a fuel (Abdullah and Wu 2009; Tsai et al. 2007), making it
unsuitable for a variety of industrial applications. On the other hand, because of
their biodegradability, environmental friendliness, and long-term viability, these
organic materials have emerged as a leading contender for biofuels and bioenergy
production. Pyrolyzing biomass at high temperatures to various value-added and
energy-rich products is a preferable solution. Biochar, which has entirely different
characteristics than the respective feedstock, has the potential to make significant
and long-term improvements in guaranteeing a future supply of green energy and
turning bioenergy into a carbon-negative sector (Kwapinski et al. 2010). Many
studies have been carried out on producing biochar from various agro-residues for
being used in fuel applications. Biochar’s heating value (16–35 MJ/kg) is equivalent
to, or nearly twice the raw biomass and many low-grade coals heating value for any
given feedstock (Mullen et al. 2010; Sukiran et al. 2011). Around three billion
people worldwide rely on conventional stoves, for example, three stone and open
fires, to meet their cooking needs. These cookstoves emit hazardous fumes and are
responsible for four million fatalities per year (Sakhiya et al. 2020). Biochar-fired
cookstoves can minimize carbon and few other hazardous gas emissions in cook-
stoves when used for heat and cooking (Birzer et al. 2014). Compared to an open
cooking fire, biochar stoves lowered particulate matter emissions by 92% and carbon
monoxide emissions by 87% in laboratory tests (Schultz 2013).
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8.5.5 Biochar as an Additive

8.5.5.1 Biochar Used as an Additive in the Construction Sector

In recent years, the spread of industry and urbanization has heightened the need for
concrete for building purposes. The building industry, especially the cement indus-
try, has been identified as one of the significant contributors to CO2 emissions,
accounting for around 7% of all GHG emitted into the atmosphere (Andrew 2018;
Benhelal et al. 2013; Gupta et al. 2018). As a result, rising importance for developing
greener solutions to decrease the company’s carbon footprint and raw material usage
(Miller et al. 2018). Several researchers have utilized biochar as an eco-friendly filler
in cement manufacture and cement-based construction products to reduce carbon
emissions. Biochar has poor heat conductivity, excellent chemical stability, low
flammability, and conductivity, making it a suitable candidate for construction
material and a filler in cement mortar products (Gupta and Kua 2017). Suarez-
Riera et al. (2020) utilized biochar microparticles as a filler and a replacement for
cement powder in cement paste and mortar composites. The results indicated that
2 wt% biochar fragments are adequate to improve the strength and resilience of
cement and mortar mixtures. When used instead of cement, mechanical properties
equivalent to the reference samples were achieved (Suarez-Riera et al. 2020).
Another research uses biochar made from wood, food waste, and rice as a carbon-
sequestering additive in mortar, attaining comparable mechanical strength results by
adding 1–2 wt% biochar to the control mix.

Gupta and Kua (2019) also discovered that adding finer biochar particles at the
start guarantees an increment in early strength and water tightness when utilized in
cement mortar fusions. It was reported that timber waste biochar can be utilized as a
filler material in concrete structures to improve strength and moisture resistance
(Gupta and Kua 2019).

Poor thermal conductivity, directly impacted by the availability of broad arrays of
pores on biochar, depends mainly on the process temperature and biochar’s feed-
stock (Brewer et al. 2014). Extraction of oxygen functional group from the biochar’s
surface reduces the energy sites, forming the biochar to cause less hazardous
reactions when blended with concrete mixes (Cross and Sohi 2013).

8.5.5.2 Biochar as an Additive in Composting

The swift development of humans and lifestyle changes have caused high waste
creation. Furthermore, the animal farm business is expanding, posing its own set of
problems. Biochar production involves transforming biodegradable carbon (bio-
mass) into aromatic carbon (biochar), which is less degradable. Therefore, along
with waste management, biochar production has an additional quirk of being an
atmospheric carbon sequestration technique. Composting also promotes a more
orderly breakdown of organic waste materials biologically and physicochemically.



An integrated technique employing biochar in composting reduces ecological con-
cern throughout the waste treatment process by decreasing harmful chemical
leaching and emission (e.g., heavy metals, H2S, NH3) as well as pathogen levels
(Antonangelo et al. 2021).
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Biochar has several advantages as a compost addition, including boosting
composting and humification performance, promoting microbiological activities,
lowering GHG and NH4 emissions, and immobilizing heavy metals and organic
contaminants (Guo et al. 2020). Various studies showed that biochar helps reduce
nitrogen losses (Awasthi et al. 2018), as compounds like NH3 and NH4 are adsorbed
by biochar (Janczak et al. 2017). The temperature goes up quicker in the course of
the composting process in the presence of biochar, and the thermophilic phase lasts
longer. When biochar is added at the beginning of the composting process, it
enhances the water holding capacity (WHC), assuring that most composts have the
required moisture content of 50–60% w/w. The carbon to nitrogen (C/N) ratios of
various feedstock-derived biochar and composts vary, which has a direct impact on
the rate of organic matter (OM) breakdown (Godlewska et al. 2017). Biochar has a
high specific surface area (SSA) and a highly porous structure, providing nutrients
for soil microorganisms to grow. Various functional groups on the biochar surface
result in high cation exchange capacity (CEC), which acts as an electron carrier,
making it easier to transfer and transport electrons (Antonangelo et al. 2019).
Biochar application rates to compost have ranged from 5 to 10% (mass basis) to
50% or more (Jindo et al. 2012). A dose of more than 20–30% biochar (mass basis)
is not encouraged since an excessive quantity of biochar compared to the composting
material might obstruct biodegradation. Biochar has been proven to speed up
the composting process when used in sufficient amounts, primarily by enhancing
the consistency and structure of the mix and boosting microbial activity in the
composting mixture. This enhanced activity results in higher temperatures and
shorter compost development time (Camps and Tomlinson 2015). Table 8.7 shows
the impact of biochar addition to compost in various other studies.

8.5.6 Other Modern Applications

Besides the above-discussed applications, biochar can be used in energy storage
gadgets such as supercapacitors, lithium, and sodium-ion batteries etc. Biochar is
used as electrode material in supercapacitors. Biochar activation was done to
increase its specific surface area, resulting in an increased capacitive performance
of biochar (Tan et al. 2017). For supercapacitor fabrication, Jin et al. (2014) prepared
biochar from corn stover using microwave-assisted slow pyrolysis coupled with
KOH activation. At a current density of 0.1 Ag�1, the biochar had a specific
capacitance of 246 F g�1 (Jin et al. 2014). Biochar is a carbon-rich material, highly
porous and conductive, which makes it a suitable material to be used for sulfur-
carbon (S/C) cathode composite for lithium-sulfur (Li-S) batteries (Vivekanandhan
2018). The activation process enhances biochar characteristics such as surface area,
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Table 8.7 Impact of biochar on composting

Biochar
feedstock

Biochar
dosage

Impact on the composting
process

Corn biochar 1% w/w Corn waste com-
post, corn biochar
(1:1)

Shoot concentration, N, P,
and K availability
increased by 16, 38, and
15%, respectively, after
biochar + compost addi-
tion over control soil

Liu et al.
(2021a, b)

Powder and
granular rice
straw and
bamboo
biochar

Lab 10%
(fwa)

Pig manure,
wheat straw (10:
1)

• When compared to
GRSB,b PRSB,c and
PBB,d GBB had the
lowest CH4 and N2O
emissions

• GBB had the highest
cumulative NH3

emissions (957 mg/
kg)

He et al.
(2019)

PRSB
(500 �C)

Field 10%
(dwe)

Pig, dry chicken
manure, rice
straw (10:10:1
fw)

• The GWP achieved
from biochar treat-
ment was 19.8%
lower than that
obtained from the
control treatment

• Biochar reduces
energy consumption
in turning piles and
has the potential to
enhance the oxygen
supply

He et al.
(2017)

Rice hull
biochar

Lab 20% fw Chicken manure,
hardwood saw-
dust, and rice hull
biochar (7:1:2)

• BM drastically
reduces N2O and
CO2 emissions by
27% and 35%,
respectively

• Biochar amendment
in chicken manure
compost reduces soil
N2O emissions sig-
nificantly by con-
trolling soil organic
stabilizing and func-
tional group
activities

Yuan
et al.
(2017)

Bamboo
biochar

Pilot 3% w/w Pig manure,
wood chips, and
sawdust (3:2)

• The addition of
biochar lowers the
NO2-N concentra-
tion and also reduces
the NO2 emissions
from pig manure
composting

Wang
et al.
(2013)



carbon content, surface functional groups, porosity, and pore volume, which
improves metal encapsulation. Sajib et al. (2017) used KOH-activated biochar
derived from canola meal as cathode composite. At the 0.05 �C rate (83.75 mA/g),
the biochar cathode composite showed a high initial discharge capacity of
1507 mAh/g (Sajib 2017). Further, biochar is gaining a huge interest for fuel cell
applications. Biochar can be used as a fuel in the electrolyte, as the chemical energy
accumulated in biochar is a source for electricity generation, in direct carbon fuel cell

Scale Compost material

• Manure has lower
moisture content and
higher pH

• The addition of
biochar significantly
changed the number
of denitrifying
bacteria
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Table 8.7 (continued)

Biochar
feedstock

Biochar
dosage

Impact on the composting
process Reference

Broad-leaved
tree konara
oak biochar

2%
v/v

Field Poultry manure,
apple pomace,
rice husk, oak
bark (2:5:2:1)

• Biochar increased
the amount of car-
bon collected by
humic substance
extraction by 10%
and decreased the
amount of water-
soluble carbon by
30%

• Phosphate, urease,
and polyphenol oxi-
dase activities
improved by
30–40% due to
biochar blending
despite lower
biomass

Jindo
et al.
(2012)

Eucalyptus
grandis
biochar

50% Pilot Biochar, coffee
husk, and saw-
dust (1:1 fw)

Biochar amendment in
poultry manure reduces
the loss of nitrogen. This
enrichment allows process
optimization through odor
emission and nitrogen loss
reduction via nutrient
balancing

Dias et al.
(2010)

afw fresh weight basis
bGRSB Granular Rice Straw biochar
cPRSB Powdered Rice Straw biochar
dPBB Powdered bamboo biochar
edw dry weight basis



The chapter also discussed the different biochar applications such as adsorbent in
water purification, air purification, soil amendment, additives in composting and
construction sector, an alternative to fuel, catalyst in various processes such as
syngas production, biogas upgradation, and biodiesel production. Moreover, there
are certain modern applications including, electrodes and electrolytes in
supercapacitors, anode, cathode composites in lithium and sodium-ion batteries,
and hydrogen storage. The application of biochar is highly dependent on its phys-
icochemical characteristics such as porosity, specific surface area, and surface
functional groups. These properties of biochar are enhanced using various types of

Table 8.8 Biochar applications in energy storage devices

Feedstock
Energy storage
device

Biochar
role Reference

Fish scale Supercapacitor Electrolytes Senthil and Lee (2021)

Walnut shell Supercapacitor Electrodes Xiaoyang Xu et al. (2017)

Coconut shell Supercapacitor Electrodes Jain and Tripathi (2014)

Cornstalks Li-ion battery Anode Shengbin Wang et al.
(2015)

Ginkgo leaves Li-ion battery Anode Ou et al. (2016)

Pinecone Sodium-ion battery Anode Zhang et al. (2017)

Sepals of palmyra palm fruit Sodium-ion battery Anode Damodar et al. (2019)

Cherry petals Sodium-ion battery Anode Zhu et al. (2018)

Banana peel Li-S battery cathode Yang et al. (2016)

Almond shell Li-S battery cathode Benítez et al. (2018)

(DCFC) (Huggins et al. 2016). Table 8.8 shows the application of biochar in various
energy storage devices.
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Altogether, enhancing biochar’s physical and chemical properties through acti-
vation has many applications, such as energy storage devices. Utilizing biochar is a
sustainable approach; therefore, we can expect exponential growth in its usage in the
coming years.

8.6 Conclusion

The world’s population is increasing at an alarming rate (approx. 80 million people
annually), leading to the increased demand for food, energy, safe water supply, etc.
Agricultural production has been increased around 50% in the last two decades,
resulting in the generation of a massive amount of biomass waste daily. The majority
of biomass waste is thrown or burned openly in the field, which has a severe
influence on the ecology and public health. Biochar is a cost-effective and sustain-
able option to address the above-mentioned problems. This chapter reviewed differ-
ent types of pyrolysis processes for biochar production and the factors affecting the
biomass pyrolysis process.



activation processes: physical and chemical. Worldwide biochar gets attention due to
its desired physicochemical properties which can be useful in different types of
applications to generate the circular economy.
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