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Chapter 5
Thermochemical Conversion of Biomass
into Value-Added Materials for Effluent
Treatment Applications

Nethaji Sundarabal, Vairavel Parimelazhagan,
Suganya Josephine Gali Anthoni, Praveen Kumar Ghodke,
and Sivasamy Arumugam

Abstract Lignocellulosic biomass has been explored for the synthesis of various
value-added materials due to its wide availability and environment-friendly nature.
Apart from being studied as a potential feedstock for the synthesis of fine chemicals
and generation of biofuels, these biomasses have also shown a wide range of
applications in effluent treatment processes. Many agricultural waste biomasses
had shown potential in effluent treatment, even in their raw form. Activated carbon
prepared by the pyrolysis of biomass has yielded promising results as adsorbents and
catalysts support the removal of both conventional and priority pollutants from
effluents. Moreover, composite materials including metal oxide composites, mag-
netic materials, catalyst supports, polymer composites, and graphene composites
prepared by the thermochemical conversion of biomass are being explored in tertiary
treatment processes for the removal of targeted pollutants from the aqueous phase.
Hence, this chapter is aimed to discuss the application of biomass-based value-added
materials for effluent treatment applications.
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Abbreviations

AC Activated carbon
BiOBr Bismuth oxybromide
BOD Biochemical oxygen demand
COD Chemical oxygen demand
EIA Energy Information Administration
TDS Total suspended solids

5.1 Introduction

Humanity dates back to not a decade or a century but a millennium. Since existence
began, the production of wastes in many forms originated particularly from natural
sources. The most popular form of waste would be wood or of plant origin. In
general, the term “Biomass is defined as matter originating from living plants,
including tree stems, branches, leaves as well as residues from agricultural
harvesting and processing of seeds or fruits” (Pang 2016). Biomass is considered
to carry energy in the form of chemical bonds among hydrogen, carbon, and oxygen
moieties (Pang 2019). The sources of biomass are plant products, the residue of crop
farming and processing industries, fruit and vegetable waste, agro-industrial waste,
household waste, urban waste, and animal waste (Wormeyer et al. 2011). Figure 5.1
shows the classification of biomass resources. They include materials consisting of
cellulose, hemicellulose, and lignin (Mohan et al. 2006). As for the elementary
composition, 90% of the typical biomass contains 51% carbon, 42% oxygen, and
trace amounts of hydrogen, nitrogen, and chlorine (Mandapati and Ghodke 2021b).
The biomass resources were calculated to be 146 billion tonnes/annum. Tropical
countries like India contribute to the production of about 500 million metric tonnes/
year of biomass. This natural carbonaceous resource is mostly used or exploited as a
source of fuel.

5.2 Biomass as a Source of Fuel

The rapid consumption of fossil fuel has led to its depletion (Mandapati and Ghodke
2021a; Agrawal and Verma 2022; Kumar and Verma 2021a). Various renewable
resources which include biomass-based reserves, wind, solar, and geothermal
resources have been explored as alternative fuels. Among these renewables,



bioenergy is renewable energy sourced from biomass that is abundant and has a high
utilization potential to produce energy (Pang 2019; Kumar et al. 2020; Kumar and
Verma 2021b). If 10% of the biomass is exploited for energy production with 50%
efficiency, it may have the potential to churn out 3.1 trillion tonnes of oil equivalent
energy. This would account for the availability of 200 times the energy consumed
worldwide currently (Energy Information Administration, EIA, 2017). On the other
hand, the utilization of 10% of biomass for organic chemical synthesis at a 10%
conversion rate will lead to the production of 1.6 billion tonnes of chemical feed
materials (Pang 2019). Generally, in developing countries, 38% of the energy
consumed is primarily from bioenergy produced from biomasses (Sarkar and
Praveen 2017).
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Fig. 5.1 Classification of biomass resources

Biomass is a clean energy source is produced by plants by consuming CO2 from
the atmosphere through photosynthesis (Tekin et al. 2014). Moreover, these bio-
masses are produced in short duration ranging from months to years when compared
to unsustainable fossil fuels which usually require millions of years (Collard et al.
2012). Hence, renewable energy from biomasses proves to be a sustainable source of
energy supply that can also address environmental concerns.

5.3 Value-Added Pathway from Biomass for Different
Applications

Biomass conversion pathways through various processes are shown in Fig. 5.2. The
widely used thermochemical conversion technologies for the conversion of bio-
masses include but are not limited to gasification, pyrolysis, hydrothermal
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liquefaction, and torrefaction (Goswami et al. 2020, 2021a). Torrefaction is a
thermal pre-treatment process used in the combustion, pyrolysis, gasification, and
liquefaction of biomass (Ghodke and Mandapati 2019). Pyrolysis is heating
the biomass at elevated temperatures (573–973 �K) to obtain biochar and bio-oil.
The hydrothermal liquefaction process is operated between 523 and 647 �K within
the pressure range of 4–22 MPa for the production of bio-oil. Gasification involves
the conversion of biomass into syngas at temperatures higher than 973 K.
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5.4 An Alternate Strategy for the Utilization of Waste
Biomass

Biomass has a great potential to be used as a source of biofuel (Bhardwaj et al. 2021).
The total biomass power generation potential of India is estimated to be 17,500 MW.
However, at present, only 2665 MW of power is being generated (Kumar et al.
2015). Hence, due to the availability of abundant waste biomass materials, the
management or disposal of these substances is itself a major task for environmen-
talists. In the global arena, “Waste to Wealth” is a term coined to utilize waste
material for useful resources. Since the resource is inexpensive, green, and renew-
able, environmentalists focus on such processes to reduce pollution. There are
several studies, where the waste biomass and its derivatives were used as a precursor
material for effluent treatment processes. The biomass could be converted into a base
material for catalyst preparation in the form of support or as an adsorbent material.
They can be utilized for the treatment of effluents by the process of adsorption or by
using an advanced oxidation process (AOP). Wherein the preparation of heteroge-
neous catalyst by supporting the active material on carbon support derived from
biomass reduces the cost of the effluent treatment process. Hence, this chapter is
aimed to discuss the thermochemical conversion of biomass into value-added
materials for effluent treatment applications.

5.5 Biomass for Effluent Treatment Processes

It has been reported that every day two million tons of waste from various sources
are discharged into water bodies worldwide. This created an impact that one in eight
people worldwide are deprived of safe and clean drinking water as reported in World
Water Assessment Programme, World Water Development Report1: “Water for
People, Water for Life,” Paris (2003). Water pollution is found to be the major
reason for diseases and subsequently deaths worldwide (Vairavel and Murty 2020;
Goswami et al. 2021b). In India alone, it has been estimated that approximately
580 people die due to water pollution-related illnesses every day (Clark et al. 1996).
Major contaminants found in wastewater include but are not limited to dyes and



pigments, heavy metals, phenolic compounds, pharmaceuticals, agrochemicals, and
endocrine disruptors (Akhil et al. 2021; Kumar et al. 2019; Kumar et al. 2021).
Effluent treatment plants comprise physical, chemical, and biological treatment
systems. Generally, all these treatment methods are grouped under primary, second-
ary, tertiary, and advanced treatment processes. Primary treatment processes aim to
remove contaminants by the physicochemical processes like primary clarification
(gravity settling) and coagulation/flotation. The secondary treatment processes work
on the removal of the residual organics. The secondary treatment processes employ
various microorganisms for reducing the COD and BOD of the effluent. Activated
sludge treatment methods such as aerobic and anaerobic digestion are some of the
secondary wastewater treatment methods. Tertiary treatment methods include mem-
brane separation processes, electrodialysis, advanced oxidation processes, adsorp-
tion, biosorption, bioaccumulation, and ion exchange (Sonune and Ghate 2004).
Most of these treatment processes like adsorption, biosorption, and advanced oxi-
dation processes utilize functional materials for their operation. These functional
materials like adsorbents and catalysts in case of adsorption and oxidation processes
respectively are of chemical origin, which leads to secondary pollution. However,
the waste biomasses and their derivatives proved to be environmentally friendly
precursor materials for the synthesis of adsorbents and catalysts support materials. A
simple thermochemical modification of the lignocellulosic waste materials could
yield highly functional materials for wastewater treatment processes (Liu et al.
2015).
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5.6 Application of Raw Biomass in the Effluent Treatment
Process

Adsorption is the most widely used effluent treatment technique This is because, the
used adsorbent materials have the potential for regeneration, recovery, and recycling
which proved to be an added advantage at the industrial scale of operations. It is not
only used for the removal of contaminants but also could be used for the recovery of
precious and costly entities from the effluents (Crini et al. 2019). The physicochem-
ical properties of the adsorbent have a major influence on the efficacy of the
adsorption process. The chosen or prepared adsorbent should be easily available,
economical, non-toxic, and should have good surface characteristics. They must also
have high mechanical and thermal stability (Reddy et al. 2017). The lignocellulosic
waste biomasses, in their raw or modified form, proved to be potential candidates for
the preparation of economical and sustainable adsorbents for effluent treatment
(Bhatnagar et al. 2015). Plant and agricultural waste products have earned increased
interest for dye and heavy metals removal by adsorption from the aqueous solution
because of their natural availability and higher removal efficiency (Garg et al. 2019;
Agrawal and Verma 2021). The inexpensive waste products, after basic cleaning or
some minor treatment, were explored as adsorbents. Agricultural by-products



especially those containing cellulose exhibit good adsorption potential for removing
various toxic pollutants from effluents. There are numerous studies reporting the
application of raw lignocellulosic materials like rice husk, oil cakes, banana peel,
sugarcane bagasse, powdered leaves, etc. for the removal of different types of dyes,
heavy metals, and other priority pollutants. This method of exploiting raw biomass
as functional adsorbent materials proved to solve disposal problems associated with
the abundant availability of these waste biomasses (Moorthy Rajendran et al. 2020).
Few of the studies which deal with the application of these raw biomass materials for
effluent treatment is tabulated in Table 5.1.
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5.7 Biomass-Derived Activated Carbon for the Effluent
Treatment Process

Many studies reported raw agricultural biomass as an adsorbent for the removal of
organics and inorganics from simulated effluents. However, most of these raw
biomasses were found to lack desired adsorption efficiency and were mechanically
unstable. The efficiency of these biomasses could be enhanced by carbonization and
activation using thermal and chemical treatment methods. The physical treatment
includes carbonizing the material at a temperature of around 500 �C under an inert
atmosphere using nitrogen or argon supply. The carbonized material is then acti-
vated at higher temperatures using suitable activating agents like steam or CO2. The
chemical treatment method involves the impregnation of the cellulosic biomass with
various strong acids and bases like NaOH, KOH, HCl, H2SO4, ZnCl2, etc. The
impregnated material is then carbonized at higher temperatures at around 500 �C to
obtain activated carbon (AC) (Rodríguez-Reinoso and Molina-Sabio 1992). The
schematic for the preparation of AC through physical and chemical methods is
presented in Fig. 5.3. AC is proved to have superior adsorptive and mechanical
properties when compared to raw biomasses owing to increased surface area and
porosity (Zhang et al. 2019). AC derived from different biomass has varying
properties. The properties of AC depend on the precursor material, type of carbon-
ization and activation, and activation temperature and duration. AC is the widely
studied adsorbent material for treating effluents which contain all types of pollutants
including the emerging contaminants from effluents (Yahya et al. 2015). Moreover,
AC also finds its application as catalyst support in many reported studies in advanced
oxidation processes which are discussed in Sect. 5.8.4. The application of biomass-
derived AC is not limited to effluent treatment methods, and thus they are used in
various fields such as gas purification (Ma et al. 2008), supercapacitors (Yang et al.
2014), and medicinal applications (Lakshmi et al. 2018). Few of the studies on the
application of biomass-derived activated carbon for water and wastewater treatment
is summarized in Table 5.2.
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Fig. 5.3 Chemical and physical activation methods for the preparation of biomass-derived acti-
vated carbon

5.8 Biomass-Based Composite Materials for Effluent
Treatment

Biomass-based materials either in their raw form or with thermal and chemical
modification demonstrated to be an efficient low-cost material for the adsorption
of various organics and inorganics from simulated effluents. Furthermore, recent
studies suggest that these biomasses can also be fused with other functional materials
and could be actively applied in various treatment processes. These biomass-based
composites include but are not limited to metal oxide composites, magnetic mate-
rials, polymeric materials, and graphene-based composites. The schematic represen-
tation of the same is presented in Fig. 5.4.

5.8.1 Biomass-Based Magnetic Materials for Effluent
Treatment

Generally, nanoparticles have promising potential to be used in various effluent
treatment technologies. However, the application of these nanoparticles in water and
wastewater purification is limited. This is due to the fact that, the spent nanomaterials
after application tends to escape into the aquatic environment causing secondary
pollution. The removal and recovery of the spent materials in their nanoform is not
economical. Recently, materials coated with magnetite nanoparticles are considered
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very promising in the environmental remediation process. Since the magnetic
particles are superparamagnetic (they are magnetized only with the external mag-
netic field), they can be recovered easily by the external magnetic field and reused
without any loss of the functional materials (Nethaji et al. 2013). Hence, magnetic
materials like iron oxide nanoparticles are extensively studied as functional materials
for their application in water treatment owing to their magnetic properties. However,
these iron oxide nanoparticles tend to agglomerate in the solution, thereby decreas-
ing their efficiency. Hence, biomass-based materials supported by iron oxide
nanocomposites were studied and successfully applied to overcome these drawbacks
(Mehta et al. 2015). Biomass-based magnetic composites are mainly used in the
adsorption process, and there are few studies which deals on the application of these
materials in photocatalytic oxidation (Pang et al. 2016). Though several methods like
hydrothermal reactions, sol-gel methods were reported, the co-precipitation method
is most commonly employed for the preparation of magnetic composites. In the
co-precipitation method, the biomass, or biomass-derived materials like activated
carbon (AC) are dispersed along with the iron precursors like ferric chloride or
ferrous sulfate. The iron salt in the precursors is then reduced using various reducing
agents under continuous stirring, thus depositing the iron oxide nanoparticles onto
the matrix of the raw biomass or AC derived from the biomass (Nethaji et al. 2013).
The efficiency of these magnetic composites expended for the adsorptive/oxidative
treatment of various pollutants from the aqueous phase along with the experimental
conditions are shown in Table 5.3. The application of magnetized adsorbents derived
from raw biomass and AC is presented in Fig. 5.5. Most of the studies reported an
enhanced removal efficiency of the magnetic nanocomposites in comparison with
the unmagnetized materials. Few adsorption studies reported a slight decrease in the
efficiency, owing to the reduction in the available surface area due to the impregna-
tion of iron oxide particles into the matrix of the biomass. Nevertheless, the ease of
separation of the functional material improved considerably, thereby aiding in the
regeneration and reusability of the nanocomposite materials.
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Fig. 5.4 Biomass-based composites for effluent treatment
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Fig. 5.5 Biomass-derived magnetic composites for effluent treatment

5.8.2 Biomass-Based Polymer and Clay Composites
for Effluent Treatment

The efficiency of a functional material in the effluent treatment mainly depends upon
its available surface area and surface functionality for adsorptive removal, and
oxidative potential in case of advanced oxidation processes. Hence, polymeric
materials are potential candidates to be used in the adsorption process, owing to
their tunable surface properties (Pan et al. 2009). Naturally occurring biopolymers
such as starch, cellulose, chitosan, and alginate were widely explored for their
adsorption potential due to their high surface area and variable surface functionality.
Among all the above-mentioned biopolymers, chitosan is widely explored for the
removal of contaminants from simulated wastewater. It is more preferred since it
contains -NH2 and -OH functional groups on its surface which can act as chelating
sites for concentrating organic and inorganic moieties (Wang and Zuang 2018).
However, most of these naturally occurring biopolymers exhibit weak thermal and
mechanical properties. Moreover, these biopolymers exhibit swelling phenomena
when exposed to the aqueous environment. Hence, most of the studies deal with
crosslinking these biopolymers with mechanically strong materials like biochar,
biomass-derived AC, or clay composites. Natural clay materials like bentonite,
montmorillonite, kaolinite, zeolite, etc. are mostly aluminosilicates with the presence
of sodium, potassium, magnesium, and calcium. The layered morphology of these
clay materials with the charged surface is ideal for the adsorption of ionic contam-
inants from the effluent. However, these clay minerals have poor potential for the
removal of non-ionic contaminants. Nevertheless, they possess strong mechanical
and thermal stability. Hence, the biopolymers are generally cross-linked with clay
minerals to overcome the shortcomings of both clay and biopolymers (Unuabonah
and Taubert 2014). Hence, biopolymers supported with biochar, AC, and clay
minerals exhibited superior adsorption efficiency with better thermal and mechanical
stability as shown in Table 5.4.
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5.8.3 Biomass-Based Graphene Composites for Effluent
Treatment

Graphene is composed of single layers of carbon atoms densely packed which
attracted tremendous attraction in late 2004. It is a “single layer of carbon atom
densely packed in a honeycomb crystal lattice” (Li et al. 2019). Because of its good
chemical stability and graphitized basal plane structure, graphene-based materials
are widely used in different applications including supercapacitors, fuel cells, batte-
ries, and as adsorbents in effluent treatment systems (Novoselov et al. 2012).
Graphene or reduced graphene oxide is mostly synthesized by using Hummers or
modified Hummers method. Various functional groups present on the edges of the
graphitic planes aid in the interaction of the graphene sheets with the charged
contaminants present in the wastewater. However, the graphene sheets generally
suffer from stacking and agglomeration problems due to π–π interactions and van der
Waals forces in the aqueous phase. Hence, to overcome these limitations and to
exploit the desirable properties of the graphene-based materials, various biomass-
based graphene composite materials were reported for the removal of organic and
inorganic compounds from simulated effluents (Nethaji and Sivasamy 2017).
Biomass-derived materials like biochar, AC, and other cellulosic waste biomass
were used as composite materials by crosslinking with the honeycomb structure of
graphene oxides. There are also studies which had reported on the utilization of iron
oxide nanomaterials for acquiring the magnetic properties reducing the stacking
problem of graphene layers. The application of these biomass-based graphene
composite materials for the removal of organic and inorganic moieties is presented
in Table 5.5.

5.8.4 Biomass-Based Metal Oxides Composites such
as Catalyst and Catalyst Supports

Heterogeneous catalysis involving metal oxides is a good example of an advanced
oxidation process. Literature shows a number of methods for the enhancement of
catalyst activity alongside cost reduction and efficiency maximization. Though
many paths are sorted for catalyst modification, synthesis of a catalyst supported
on materials with a higher surface area without diminishing the activity is a greater
concern. Hence, the choice of the support material comes into the picture, wherein it
must be cheap, green, and environmentally friendly with enhanced activity. Hence,
carbon as catalyst support derived from biomass is a better option. Wherein, the
disposal problem of the biomass itself is minimized and the resulting carbon could be
used efficiently. However, activated carbon in itself has been used as a catalyst.
Juhola et al. (2021) had prepared biomass–metakaolin as granular composite mate-
rials for application as a catalyst for the treatment of effluents.
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Since the development of nano metal oxides as a photocatalyst under visible light
irradiation for environmental remediation (Fujishima and Honda 1972). Various
research has been focused on the modification of metal oxides for maximum
efficiency. The preparation of metal oxide on catalyst support is highly researched.
While a choice for support material activated carbon prepared from biomass is
widely preferred. Devagi and Soon (2018) have reported a TiO2/modified sago
bark (biomass) for treating the sago wastewater effluent. The author chose the
effluent as it had a higher chemical oxygen demand (COD), biochemical oxygen
demand (BOD), total suspended solids (TDS), and was acidic. The sago bark was
chosen as a precursor as it is a major waste during the debarking step of the starch
extraction. The modified biomass TiO2 mixture was used as a photocatalyst for
64.92% removal with 0.2 g/L TiO2/1% MSB (120min of irradiation). Poudel et al.
(2020) has removed As(III) from water by using agro-waste-based biomass impreg-
nated with TiO2.

ZnO incorporation on biomass-derived activated carbon has been widely
researched by various research groups. Cruz et al. (2018) had prepared a
ZnO/activated carbon (biomass derives) nanocomposite for the treatment of meth-
ylene blue dye. The ZnO nanoparticles were evenly distributed on the surface of the
activated carbon. Ramya et al. (2018) has worked on the preparation of activated
carbon from tannery sludge biomass. The acquired biomass was used as support
material for ZnO-based nanocomposite preparation. The material was used for Cr
(VI) removal from the aqueous phase. Supported biomass-based activated carbon for
dye degradation has been prepared by hydrothermal technique. Waste biomass was
used by Vinayagam et al. (2018) for activated carbon preparation as carbon support.
Akpomie et al. (2020) recently prepared a ZnO nanoparticle along with biomass for
the treatment of celestine blue dye.

Hybrid bifunctional materials have also been synthesized by various research
groups comprising AC and nanomaterials which would serve both as an adsorbent
and photocatalytic material. Our group has also worked in this area (Nethaji et al.
2018) and we have reported a bismuth oxybromide (BiOBr)/activated carbon hybrid
material as a bifunctional nanomaterial for effluent treatment. It was a good adsor-
bent material and it even degraded malachite green dye under visible light irradia-
tion. The source of AC was waste polyurethane foam trash from used car seats. The
composition of the foam was a polyol with a toluene diisocyanate blend. A simple
hydrothermal process was used for the preparation of the bifunctional material.

5.9 Conclusions

Biomass materials are mostly explored for their potential to be used as biofuel.
However, the consumption of this biomass for the production of biofuel accounts for
less than 10% of the available lignocellulosic materials. Owing to its abundant
availability, most of the agricultural waste biomass is considered waste and requires
a separate disposal method or a process for the same. But the utilization of these
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types of wastes and naturally available renewable material as a source for the
production of materials for the effluent treatment itself is a boon to the environment.
Most of the studies suggest that these biomasses either in their raw form or modified
form proved to be an effective replacement for the synthetic materials conventionally
used in effluent treatment operations. Moreover, the hybrid materials which include
biomass-based composites could effectively overcome the shortcomings of their
synthetic counterparts. The biomass-derived activated carbon was effectively used
in various adsorptive and catalytic applications as adsorbent and catalyst support,
respectively. The compatible and environmentally friendly nature of the biomasses
could be explored for applications in various other unit operations in effluent
treatment plants. Hence, these materials derived from the biomasses can be coined
as “waste to wealth” and thus prove to be environment-friendly substitutes to treat
and overcome effluent treatment problems.
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