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Chapter 4
The Pioneering Role of Enzymes
in the Valorization ofWaste: An Insight into
the Mechanism of Action

Anupama Binoy , Revathy Sahadevan , Suchi Chaturvedi,
and Sushabhan Sadhukhan

Abstract Finite petro-based reserves and a surge in environmental pollution
demands the valorization of waste into revenue streams like biofuels and other
industrial commodities. Enzymatic technology provides an eco-friendly platform
for the same with higher product yields. Enzymes act as a catalyst in the reaction, and
the matter of value addition in this technology is its requirement in low quantity and
reusability. They have been included in the valorization of lignocellulosic (woody,
agro, and food) waste, treatment of wastewater, and degradation of
non-biodegradable hazardous waste. Microbial flora has enormously experimented
as well as explored in the conversion of this waste into valuable products. In addition
to that, protein engineering and metabolic engineering have been seen as new
biotechnological trends in the same field. In this chapter, we will focus on different
classes of hydrolytic enzymes based on the structural composition of different types
of biomass with special attention to their catalytic activity. The mechanistic action of
these enzymes will also be discussed in lieu of their use at various stages in the
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transformation of waste to value-added substances. We will also shed light on the
future advancement through the biotechnological revolution in the field of enzyme
technology.
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Abbreviations

AAO Aryl alcohol oxidase
BOD Biological oxygen demand
CAZy Carbohydrate-active enzyme
CLEAs Cross-linked enzyme aggregates
COD Chemical oxygen demand
DNA Deoxyribonucleic acid
DyP Dye-degrading peroxidases
EG Ethylene glycol
FAD Flavin Adenine Dinucleotide
GH Glycoside hydrolases
GHG Greenhouse gas emission
GLOX Glyoxal oxidase
GOS Galacto-oligosaccharides
LiP Lignin peroxidase
MnP Manganese peroxidase
MSW Municipality solid waste
P2O Pyranose 2-oxidase
PAH Polycyclic aromatic hydrocarbons
PCR Polymerase chain reaction
PE Pectin esterase
PE Polyethylene
PET Poly ethylene terephthalate
PG Polygalacturonase
PGL Polygalacturonate
PL Pectin lyase
PMG Polymethygalacturonase
PMSF Phenyl methane sulfonyl fluoride
POPs Persistent environment pollutants
PP Polypropylene
PS Polystyrene
PUs Polyurethane
PVC Polyvinyl chloride
RNA Ribonucleic acid
TPA Terephthalate
VP Versatile peroxidases;
XYNII Endo-1,4-ß-xylanase II
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4.1 Introduction

The global surge in population and simultaneous automation have resulted not only
in depletion of petro fuels reserve but have also piled up different forms of waste
globally. In the global waste management outlook, GWMO 2015 stated that the
global waste piling accounts for nearly 7–10 billion tonnes which include house-
holds, commercial, industrial, and construction-based waste (Wilson and Velis
2015; Agrawal and Verma 2022). Moreover, the major issues in front of humankind
have been climate change, greenhouse gas emissions (GHG), depleting resources,
and increasing pollution for a long. Waste management has existed in our society for
a long in the form of landfills, incineration, composting, etc. but they are least
suitable for organic waste due to problems associated with them like the generation
of toxic gases such as methane and toxic leachates to the underground water bodies,
etc. This calls upon the urgency to frame an economy based on renewable resources
fulfilling the shooting energy demands (Kuo 2019; Goswami et al. 2022; Agrawal
and Verma 2021) and also builds up sustainable methods to convert our waste into
valuable revenue streams. Adapting to a sustainable way can be envisioned by
valorizing waste into biofuels (different forms of bioenergy to replace fossil fuels),
biomaterials, and other value-added bio-ingredients. This process is commonly
associated with the concept of biorefineries where the waste biomass is upgraded
and transformed into a spectrum of invaluable and marketable commodities. Waste
can be of different forms. The most common and important problem faced during the
valorization of waste is the complexity of the composition of waste. Organic or
biomass waste is solid or liquid waste that can be found in many forms like agro and
food waste, forestry residues, waste generated from food processing industries, etc.
The basic units of the biomass waste are rich in protein, sugar, and fat, which indeed
make them an ideal feedstock for enzymatic valorization. Enzymes are introduced at
various steps in the process of valorization. For instance, the lignocellulosic mass
from the agro-waste is subjected to pretreatment by exposing them to delignifying
enzymes which removes the protective lignin component. Thus, enabling the hydro-
lyzing enzymes to easily solubilize the polymers like cellulose, and hemicellulose
into their monosaccharides and oligosaccharides. These monomer units are either
subjected to fermentation using microbes for the production of biofuels or enzymatic
modification like oxidation/phosphorylation for valorizing into valued products
(Andler and Goddard 2018; Bhardwaj and Verma 2021). Enzymes are molecular
catalysts triggering biochemical reactions. They catalyze the reaction with high
substrate and product selectivity at optimum temperature and pressure. Reusing
enzymes for several reactions further makes the procedure cost-effective. All this
opens up an opportunity for introducing greener processing strategies that are more
sustainable for the ecosystem (Kennedy et al. 2006). Enzymes are ubiquitous in all
forms of life performing different purposes and therefore can be extracted from them
through purification and characterization (Yada 2015; Bhardwaj et al. 2021a; Kumar
and Verma 2020a). Systems biology has encompassed a role in understanding the
molecular basis of different enzymes. Through various bioinformatics tools and



algorithms, system biology enables us to form a link between different biological
components in an organism thereby allowing us to modify and decipher newer
enzyme candidates involved in waste valorization as well (Bhatt et al. 2019). Here
in this chapter, we will be focusing on different enzymes which participate in
hydrolysis of biomass component. As enzymes are very specific to the composition
of its substrate, we will also shed light on the composition of different types of
biomasses. To better understand the action of hydrolyzing enzymes and their
application, it is necessary to take a glimpse at the different characteristics of
enzymes and the different factors which affect the activity of enzymes. This chapter
will also highlight the advanced enzyme technology and trending opinion on
increasing the efficacy of enzymes for valorization of waste.
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4.2 Enzymes and Their Characteristics

Enzymes are biological catalysts known to increase the rate of biochemical pro-
cesses happening inside a living organism (Blanco and Blanco 2017). They were
first introduced by Frederick W. Kuhne as molecules of higher molecular weight that
help in the fermentation of sugar to alcohol. Enzymes are mostly composed of
proteins except for some RNA which exhibit enzymatic characteristics in certain
biological processes. Enzymes are associated with cofactors (inorganic metal ions
like Cu2+, Zn2+, Mn2+) and/or coenzymes (organic or organometallic complexes) for
their activation and function (Renneberg et al. 2017). An enzyme without the
cofactor or coenzyme is known as an apoenzyme and the complete active form is
referred to as the holoenzyme (Litwack 2018). The accurate structural conformation
of enzymes plays a crucial role in determining their activity and any parameters,
physical or chemical, that alter the native confirmation will affect the efficiency of
their catalytic activity. Based on the type of catalytic reactions, enzymes are cate-
gorized into six groups. Oxidoreductases catalyze oxidations or reduction reactions.
Transferases help in the transferring of functional groups between two molecules.
Hydrolases catalyze hydrolysis (lysis in the presence of water). Lyases are involved
in the removal or addition of groups to form or reduce double bonds. Isomerases
catalyze the internal arrangement of atoms in a molecule to form isomers and finally,
lipases catalyze condensation reactions to form bonds between carbon–sulfur,
carbon–carbon, or carbon–nitrogen (Blanco and Blanco 2017; Kumar and Verma
2020b).

4.2.1 Enzyme–Substrate Interaction

An enzyme facilitates a suitable environment for the substrates to form products at
an enhanced rate. The substrate undergoes non-covalent interaction with the enzyme
in a specific site called the active or substrate-binding site of the enzyme to form a



substrate–enzyme complex. This enzyme–substrate complex later transforms into a
product and releases the enzyme back. The catalytic action of enzymes is favored at
optimal pH, temperature and ionic strength, etc. and any alterations will affect the
catalytic activity of the enzymes. For example, a temperature rise will cause an
alteration in the enzyme’s native conformation (denaturation) which will reduce their
catalytic activity. Small molecules can also affect the activity of enzymes and are
known as inhibitors. The important difference between competitive and
noncompetitive inhibitors is their preference for the binding site on enzymes.
Competitive inhibitors compete for the active site on the enzyme whereas
noncompetitive inhibitors engage with sites other than that of the active site. Both
the inhibitors eventually bring conformational changes in the structure of the enzyme
and facilitate inhibition of its activity. The active site of an enzyme has a unique and
specific sequence of amino acids which in turns increases substrate specificity and
selectivity. Enzyme specificity is first explained by the “Lock and Key model”
introduced by Emil Fischer in 1894. The assumption of the rigid structure of
enzymes was falsified later in 1958 through the “Induced Fit Model” proposed by
Daniel Koshland where the concept of the transition state of the enzyme–substrate
complex was introduced. According to this model, the conformation of the enzyme’s
active site as well as in some cases conformation of the substrate itself will undergo
small changes during the formation of the enzyme–substrate complex (Blanco and
Blanco 2017).
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4.2.2 Enzyme Thermodynamics and Kinetics

An enzyme, just like any catalyst increases the reaction rate by lowering the
activation energy of the reaction (Fig. 4.1).

The kinetics of the enzyme–substrate is explained by Leonor Michaelis and Maud
Menten in 1913. Michaelis-Menten theory is based on the following reaction
between enzyme (E) and substrate (S) to yield the product (P) through the formation
of the enzyme–substrate complex (ES).

Fig. 4.1 Energy profile
diagram of an enzyme-
catalyzed and uncatalyzed
reaction. Where S represents
a substrate, ES is the
enzyme–substrate complex,
EP is the complex
of enzyme and product just
before their degradation to
product, P, and # represents
the transition state
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Fig. 4.2 The graphical representation of (a) Michaelis-Menten equation; (b) Lineweaver-Burk plot
in the absence of inhibitor and the presence of competitive and non-competitive inhibitors

Eþ S Ðk1
k�1

ES½ � !k2 Pþ E ð4:1Þ

Michaelis and Menten derived an equation for the rate of the catalytic action of
enzymes based on the assumption that the formation of ES and the reverse reaction
to E and S is faster than its conversion to P and E and then applied the steady-state
approximation for ES complex. The Michaelis-Menten equation is given as,

V0 ¼ Vm S½ �
S½ � þ Km

ð4:2Þ

where V0 is the rate at which ES converts into a product, Vm is the maximum reaction
rate at the saturated concentration of the substrate, [S] is the concentration of
substrate, and Km is Michaelis constant, it is the concentration of the substrate
needed to acquire Vm/2. The graphical representation of this equation, Vo vs [S]
plot is given in Fig 4.2a. This equation is applicable to single enzyme–substrate
interaction at constant enzyme concentration. At a low concentration of substrate,
the enzymatic reaction follows first-order kinetics where the rate of reaction is
proportional to substrate concentration. At a high concentration of substrate, the
reaction follows zero-order kinetics, which means the rate of reaction is independent
of substrate concentration.

Enzyme activity in the presence of inhibitors is well understood from the
Lineweaver-Burk plot which is a graphical representation of the reciprocal of the
Michaelis-Menten equation, as shown in Fig 4.2b.

1
V0

¼ 1
Vmax

þ Km

Vmax

� �
1
S½ � ð4:3Þ
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4.3 Chemical and Structural Factors Guiding Enzyme
Hydrolysis

Biomass waste is biodegradable organic matter produced directly or indirectly by the
energy utilized from the sun through the process of photosynthesis. The source of
waste is very diverse and varied in terms of its composition. They are mainly
composed of constituents like lignocellulosic biomass, starch, chitin, triglycerides,
proteins, etc. (Tuck et al. 2012; Kumar and Verma 2020b). Due to the high fixed
carbon content in them, these feedstocks have been in past and are even now used to
generate energy and heat by burning them which could pose threat to the environ-
ment by the release of toxic air pollutants such as PAH (polycyclic aromatic
hydrocarbons), particulate matters, POPs (persistent organic pollutant) (Sivertsen
2006). Policymakers have directed the industries to focus on the sustainable valori-
zation of worldwide generated biomass so that such a resourceful matter is not just
dumped as waste or burned into ashes. Currently, they are utilized as major feedstock
in biorefineries for biofuels production, biogas, and biofertilizers.

4.3.1 Composition of Lignocellulosic Biomass

Lignocellulosic biomass is categorized based on the source of its generation. It could
be organic matter from woody terrestrial forest residues, herbaceous residues from
agriculture (corn cobs, sugarcane bagasse, rice and wheat husk, fruits and vegetable
residues generated from fields and market), green waste from Municipality Solid
Waste (MSW), animal and human sources, aquatic organic mass, and organic mass
generated by anthropogenic ways as well. The sustainable utilization of biomass
offers a huge advantage as they are widely available worldwide, reduces the overall
cost of fuels by introducing them as an alternative source, and finally, contributes to
the reduction of greenhouse gas emissions. Moreover, the overall production and
process cycle of sustainable alternatives exhibit a zero-carbon dioxide balance.
Lignocellulosic biomass is structurally composed of cellulose, hemicellulose, pro-
tein, lipids, etc. They also contain some active ingredients like antioxidants, poly-
phenols, lignin, pigments/carotenoids, etc. These constituents are arranged in layers
to form the complete lignocellulosic biomass structure with lignin being the outer-
most layer, hemicellulose occupying the middle space, and cellulose placed at the
core of the mass (Fig. 4.3).

Interestingly, cellulose is the major substrate in the biorefineries for biofuels and
chemical commodities production. The percentage of these components varies based
on the type and source of lignocellulosic biomass. Almost 15% of the total ligno-
cellulosic mass comprises protein also. The lignin component renders a high resis-
tance to cellulose access by the hydrolytic enzymes. Various pretreatment methods
have been adopted to remove the lignin part to give more access to hydrolytic
enzymes to degrade the high polysaccharide component of cellulose and



hemicellulose. Depending upon the chemistry of the components present in the
lignocellulosic biomass, enzymes are selected to degrade it.
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Fig. 4.3 Structural representation of lignocellulosic biomass: The plant cell wall is composed of a
lignocellulosic structure where lignin forms the outermost covering, followed by hemicellulose and
the most internal part is made up of cellulose components

4.3.1.1 Cellulose

Cellulose is an important cell wall component of the plant. It is a high molecular
weight polysaccharide composed of D-glucose units linked with each other through
β-1,4-glycosidic bonds forming the basic repeating unit called cellobiose, 4-O-β-D-
glucopyranosyl-D-glucopyranose (structural basis of cellulose) (Fig. 4.4a). A cellu-
lose primary chain is composed of almost 500–1400 monomer units. These primary
chains are further arranged in a parallel array to form the higher structural unit called
microfibril. Several microfibril units form cellulose fibril, the higher structural unit
(Robak and Balcerek 2018; Bhardwaj et al. 2021b). The extensive intramolecular
(O6–O2 and O3–O5) and intermolecular (O3–O6) hydrogen bonds and Van der Waals
forces in cellulose structures give its crystalline nature, high tensile strength, and
recalcitrance to hydrolysis. The amorphous cellulose corresponds to regions where
the above-mentioned molecular bonds are disrupted giving twists and torsions to the
structure resulting in interspersed disordered regions in cellulose. The structural or
crystalline region of cellulose is highly packed not allowing even a single water
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molecule to enter, but the distorted amorphous region is very easily accessible to
enzyme hydrolysis (Betts 1991).
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4.3.1.2 Hemicellulose

Hemicellulose stands second to cellulose in terms of its abundance on the planet. In
comparison to cellulose, hemicellulose is highly branched with almost 500–3000
sugar units as monomers. Hemicellulose is a heteropolymer comprising of side
chains with xylans as pentoses, mannans, and glucomannans as hexoses or
arabinogalactans and galactans as galactose units. Apart from monosaccharides,
they also accompany typical uronic acids like D-glucuronic, 4-O-methylglucuronic,
and D-galacturonic acids (Fig. 4.4b).

Xylan: Xylans are water-soluble polysaccharides made up of repeating units of β-
D-xylopyranose linked by β-(1,4)-glycosidic bonds. This primary chain also com-
prises other carbohydrates such as xylose, mannose, arabinose, rhamnose, or 4-O-
methylglucuronic acid.

Mannan: Mannans are the most important constituent of hemicellulose which
helps the hemicellulose to bind to the cellulose counterpart. They are widely found
as a component in the angiosperm cell wall. β-D-mannopyranosyl units are formed
by β-1,4 linkage along with a small ratio of galactans in the linear chains. There are
four different types of mannans present: galactomannans, galacto-glucomannans,
glucomannans, and linear-mannans.

Galactans:Galactans are made of galactose as repeating units linked through α-1,
3, and β-1,6 linkages to form 4-α-D-galactopyranosyl and 3-β-D-galactopyranosyl
attached in alternate fashion. They are long polymeric chains not commonly found in
all forms of plants. They are majorly found in some algae, seeds, buds, or flowers
(Li et al. 2013).

4.3.1.3 Lignin

Unlike cellulose, lignin has an irregular three-dimensional structure with no specific
repeating units. Lignin acts as the protective and cementing cover in plants which
helps arrange the fibers together to enhance the compactness of the wood thereby
making it more resistive. It helps in gluing hemicellulose with cellulose, and it resists
the access of enzymes to cellulose by acting as a physical barrier. It is an amorphous
organic compound comprising phenylpropanoid units with three different types of p-
hydroxycinnamyl alcohol: coniferyl alcohol, sinapyl alcohol, p-coumaryl alcohol
(Fig 4.4c, d). Overall lignification is species specific and is obtained by several cross-
linking reactions between the radicals formed by oxidation and resonance delocal-
ization in phenylpropanoid monomeric units. Lignin is synthesized in the plants via
shikimic acid pathway. The structural integration of different cellulosic components
makes it very recalcitrant to hydrolysis by enzymes. The cellulose and hemicellulose
are attached through hydrogen bonds, meanwhile, lignin forms five different types of



lignin carbohydrate bonds to bind to hemicellulose: γ-esters esters, benzyl ethers,
phenyl glycosides, ferulate/coumarate esters, and hemiacetal/acetal linkages
(Giummarella et al. 2019; Agrawal and Verma 2020a, b). The biorefineries arena
focus on the effective valorization of lignocellulosic materials into valuable products
by introducing controlled cleavage of carbon–carbon and carbon–oxygen bonds
present in the recalcitrant lignin on the outermost coat. The focus is also maintained
on getting rid of various impurities (organic and inorganic).
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4.3.2 Starch

Food is stored in plants in the form of starch in seeds, roots, and a little amount in the
residual biomass. It is composed of two types of polysaccharides, namely amylose
and amylopectin. Amylose is formed by polymerizing D-glucose via α-1,4 linkages
linearly, on the other hand in amylopectin, which has branched formation is formed
by α-1,4 glycosidic bonds linearly, and α-1,6 glycosidic linkages for branched
chains (Whistler and Daniel 1984).

4.4 Enzymes and their Application in Waste

Despite the sustainable availability of biomass for conversion into bioenergy, the
process is expensive and time-consuming as it requires lengthy downstream
processing for the collection of final products. Before subjecting the different
components of waste to hydrolysis, pretreatment of the complex material is required
which is the most expensive process in the transformation. It is done to remove the
recalcitrant lignin component which remains the major hindrance in exposing the
buried cellulose to the saccharification process. The pretreatment involves subjecting
the lignocellulosic mass to either high pressure, temperature, or chemical treatment
or enzymatic hydrolysis. The chemical pretreatment includes the use of chemicals
like organic solvents, concentrated acids/bases, or neoteric solvents which are very
harsh and corrosive. Additionally, the process becomes more tedious as many steps
are required to separate the final products from the chemicals used in pretreatment.
The highly concentrated and corrosive acids and alkali are damaging to the equip-
ment too. There are a lot of unwanted products formed during the process of
pretreatment with chemicals that can act as inhibitors to the microbial enzymes
used for fermentation. Therefore, the use of hydrolytic enzymes proves to be useful
as it poses less cost and also reduces the difficulties faced in the downstream process
(Manisha and Yadav 2017). As discussed earlier, the most resourceful feedstock for
the production of green fuel is biomass waste, and it has been in regular consider-
ation and experimentation under the biorefinery concept (Azapagic 2014). To switch
to industrial symbiosis, i.e., waste from one sector is used as feedstock in another



industry; therefore, it is very necessary to identify, characterize, and quantify the
residues present in the waste stream (Fig. 4.5).
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Fig. 4.5 Amodel of biorefinery concept: Biomass feedstocks from various sources are taken as raw
material in biorefinery and converted into various forms of bioenergy and other value-added
products

Microorganisms and their enzymes have long been core tools in the biofuel
refineries, being present in all stages, starting from pretreatment, hydrolysis, and
fermentation. They can be introduced as biocatalysts with the substrates where they
are produced in situ by microorganisms or they are added ex situ in purified form or
as enzyme cocktails. In this section, we will be considering the important enzymes,
especially the hydrolytic type in saccharification of polymers into monomers and
will also discuss the mechanism of their actions.

4.4.1 Hydrolytic Enzymes Involved in the Valorization
of Lignocellulosic Waste

The main source of lignocellulosic biomass is the organic residues obtained from
human activities such as agricultural waste and food processing industries. More-
over, solid municipal waste which mostly comprises paper and organics can be
included as an important lignocellulosic waste stream for valorization into valuable
products. The biopolymers included in lignocellulosic biomass constitute cellulose,
hemicellulose, and lignin. The major enzymes required to saccharify these polymers



are cellulases, hemicellulases, and lignin-degrading enzymes. These enzymes are
classified under the single-family of glycoside hydrolases (glycosidases or carbohy-
drases), E.C 3.2.1, and are involved in the catalysis of O-glycosidic bond hydrolysis
(van Wyk et al. 2017; Bhardwaj et al. 2020). The gene corresponding to this class of
enzyme is present in all living organisms except in some Archaeans and some
unicellular parasites. Glycoside hydrolases cleave the glycosidic bonds via two
different mechanisms based on the status of the anomeric configuration during the
reaction. The net inversion of an anomeric configuration is achieved as a result of a
one-step double displacement reaction between the acidic and basic amino acid
groups whereas the retention of the anomeric configuration happens via a two-step
double displacement reaction involving acid/base and nucleophilic assistance pro-
vided by amino acid residues (Naumoff 2011). All the information concerning
genomic, structural, and functional aspects of glycoside hydrolases and their family
members is available in a highly curated, knowledge-based database known as the
carbohydrate-active enzyme (CAZy) database. This database states that glycoside
hydrolases (GHs) are categorized into 135 different families and 14 clans. This
classification was based on their overall structural confirmation, amino acid
sequence, and function (Lombard et al. 2014).
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4.4.1.1 Cellulases

Cellulase is a class of enzymes that hydrolyzes the β-1,4-glycosidic bonds in poly-
saccharides like cellulose to glucose units and is grouped among glycoside hydro-
lases (GH). Cellulose from fungus has two domains, namely a catalytic domain,
which performs the catalytic activity, and a cellulose-binding domain, which anchors
the enzyme to the cellulose substrate. Both the domains are linked together through a
linker domain. The hydrolytic action depends upon the synergistic action of three
major enzymes, cellobiohydrolase/exoglucanase (E.C 3.2.1.176)/(E.C 3.2.1.91),
endocellulase/endoglucanase (E.C 3.2.1.4), and β-glucosidase (E.C 3.2.1.21)
(Horn et al. 2012; Kostylev and Wilson 2014). Endocellulases hydrolyze the amor-
phous area of cellulose to release long-chain oligomers with non-reducing ends
which are then acted upon by exocellulase or cellobiohydrolases on the β-1,4-
glycosidic bonds liberating β-cellobiose. Cellobiohydrolases act on the oligomers
from the reducing ends whereas exocellulase act on the non-reducing ends. β-
glucosidase hydrolyzes the smaller glucans or disaccharide cellobiose into the
monomeric glucose (Juturu and Wu 2014) (Fig. 4.6a).

Several microorganisms have been found to produce cellulose enzymes. Among
bacteria the most important are Clostridium species, Pseudomonas species, and
Trichoderma reesei whereas the major cellulose-producing fungi belong to Asper-
gillus species, Fusarium species, Penicillium species, Schizophyllum commune, and
Melanocarpus species. In anaerobic bacteria, cellulose occurs as cellulosomes, an
extracellular aggregated enzyme structure. Endocellulase or endoglucanase belong-
ing to the family glycoside hydrolases (GH) 5 comprises a single catalytic subunit
made up of 335 amino acids folding into the active enzyme. The structural



architecture of endoglucanase has eight (β/α)8 barrel-shaped loops along with a short
double-stranded anti-parallel β sheet and three single turns helices. The catalytic
substrate-binding site has two glutamate amino acid residues at positions 133 (acid-
base) and 240 (nucleophile) which are highly conserved and decisive in the first step
of the reaction (Lo Leggio and Larsen 2002) (Fig. 4.7a). Cellobiohydrolases the
exoglucanases belong to the family GH 7. The three-dimensional structure of
cellobiohydrolases is made up of 431 amino acid residues and exhibits a β-jelly
roll structure with two anti-parallel β-sheets to each β-jelly roll. Each β-sheet curves
to form concave and convex shapes which are connected through four α-helices.
Amino acid glutamine at positions 207 and 212 at the active site of the enzyme
participates in the acid-base reaction mechanism (Fig. 4.7b) (Muñoz et al. 2001). β-
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Fig. 4.6 Mechanism of action of cellulases and hemicellulases: (a) Endocellulase, exoglucanase,
and β-glucosidase act in synergy for the degradation of cellulose. (b) The mechanism of action of
endoxylanase and β-glucosidase on the degradation of xylan to xylose; and (c) synergistic action of
β-mannanases, β-mannosidase, and α-galactosidases on the degradation of various units in mannan
component of hemicellulose



glucosidase from the strain Bacillus polymyxa (BglA) exists in a tetramer of dimers
arranged in an octameric confirmation. The enzymes form aggregates due to their
intracellular localization. The substrate-binding site of the enzyme accommodates
Glutamine at 166 and 352 which acts as acid/base and nucleophile in hydrolysis
reaction, respectively. The substrate binding is also influenced by Histidine residue
at 121 as well as tyrosine residue at 296 positions (Sanz-Aparicio et al. 1998)
(Fig. 4.7c). Cellulases have been utilized widely in various industries like brewery
distilleries, textile processing, paper pulp industries, detergent production, cattle feed
processing, and recently been introduced in the production of biofuels.
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Fig. 4.7 Crystalographic structure of (a) endoglucanase enzyme obtained from Thermoascus
aurantiacus (PDB I.D: 1GZJ) (Lo Leggio and Larsen 2002); (b) exoglucanase enzyme obtained
from Phanerochaete Chrysosporium (PDB ID: 1GPI) (Muñoz et al. 2001); (c) β-glucosidase
enzyme obtained from Bacillus polymyxa (PDB ID: 1BGA) (Sanz-Aparicio et al. 1998); (d)
endo-1-4-β-D-xylanases enzyme obtained from Trichoderma reesei (PDB I.D: 1ENX (Törrönen
et al. 1994)

4.4.1.2 Hemicellulases

This class of enzyme is also known as hemicellulose degrading enzymes. They are
involved in the depolymerization of components present in the hemicellulose portion
of lignocellulosic biomass such as galactans, xylans, mannans, and arabans.
Mannanases, α-glucuronidases, and α-arabinofuranosidases are widely discussed
as well as utilized enzymes.

Xylanases: Xylanase enzymes constitute two major enzymes which include endo-
1-4-β-D-xylanases (EC 3.2.1.8) and β-D-xylosidases (E.C. 3.2.1.37). The
endoxylanases hydrolyze xylan into xylooligosaccharides which are further acted
upon by xylosidases to yield monomeric xylose (Fig. 4.6b). The structural analysis
of endo-β-1,4-xylanase II (XYNII) from Trichoderma reesei reveals that the enzyme
exists as a single domain with 190 amino acid residues folded into two anti-parallel
β-sheets arranged parallel to each other (Fig. 4.7d). The active site cleft is formed by
twisting the β-sheets, and it accommodates two glutamic acid residues at positions
86 and 177 (Törrönen et al. 1994). Some of the accessory enzymes like acetyl xylan
esterase (E.C 3.1.1.72), p-coumaric esterase (3.1.1.B10), α-glucuronidases (E.C
3.2.1.139), α-l-arabinofuranosidases (E.C. 3.2.1.55), and ferulic acid esterase (E.C



3.1.1.73) are necessary to hydrolyze the remaining component or side chains of the
hemicellulose structure such as glucuronic acid, galacturonic acid, arabinose, galac-
tose, ferulic and coumaric acids (Bhardwaj et al. 2019; Gírio et al. 2010; Beg et al.
2001). The action of α-glucuronidase, α-l-arabinofuranosidases, and acetyl xylan
esterase is to remove acetyl and phenolic side branches whereas p-coumaric esterase
and ferulic acid esterase cleave the ester bonds in xylose. The synergistic enzyme
activity of all the xylanases proves significant in opening up the xylan component of
the lignocellulosic biomass (Moreira and Filho 2016). The presence of xylanases has
been found in many organisms ranging from microorganisms like fungi, bacteria,
and yeast to crustaceans, insects, and seeds (Beg et al. 2001). Microbial xylanases
are preferred over animal sources. The most notified, experimented, and applied
xylanases are from the organisms from the genus Bacillus, Chaetomium,
Nonomuraea, Arthrobacter, Clostridium, Thermomonospora, Dictyoglomus, Fusar-
ium, Streptomyces, Aspergillus, etc. (Bhardwaj et al. 2019; Sunna and Antranikian
1997).
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Mannanases: These enzymes are involved in the depolymerization of mannans
which are an integral part of the hemicellulose portion of the cell wall. 1,4-β-D-
mannohydrolases or β-mannanases (E.C 3.2.1.78) are endo-acting mannanases that
cleave the internal glycosidic bonds on the linear chains liberating short oligosac-
charides like β-1,4-manno-oligosaccharides. On the other hand, β-1,4-D
mannopyranoside hydrolases or β-mannosidases (E.C 3.2.1.25) are exo hydrolases
that choose to act on the non-reducing ends of mannobiose to degrade it into
individual mannose units. Lastly, β-1,4-D-glucoside glucohydrolases or β-glucosi-
dases (E.C 3.2.1.21) act on the products liberated from the cleavage of glucomannan
and galactoglucomannan specifically cleaving the β-1,4-glucopyranose units from
the non-reducing terminal (Dhawan and Kaur 2007; Moreira and Filho 2008). α-
galactosidases (E.C 3.2.1.22) and acetyl mannan esterases (E.C 3.1.1.6) are some of
the accessory proteins which are required to excise the additional side chains or
groups present occasionally on the mannans (Malgas et al. 2015) (Fig. 4.6c).

Mannanase is classified under different GH families (like GH 1–3, GH 5, 26,
27, 113, etc.). Their primary structure is different while they share common spatial
arrangements. They all have a canonical (β/α)8-barrel protein fold in their active site
and based on that they have been included in clan GH-A. The central active site cleft
contains two glutamate residues at the C-terminal side (Dawood and Ma 2020).
Mannanase is the second most important industrial enzyme after xylanases and has
been explored in various industries like textile and paper industries, pharmaceuticals,
food, feedstock industries, etc. The bacterial degraders for mannanases among
Gram-positive bacteria are from Bacillus species, and Clostridia species, whereas
from Gram-negative bacteria are from Vibrio, Pseudomonas, Klebsiella, and
Bacteroides. Among fungal counterparts Aspergillus, Agaricus, Trichoderma, and
Sclerotium, Penicillium species are mostly reported. Actinomycetes from Strepto-
myces species have also been shown to be mannan degraders (Dhawan and Kaur
2007; Chauhan et al. 2012).
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Fig. 4.8 Lignin hydrolysis by lignin-degrading enzymes: Diagram depicting the mechanism of
action of different lignin-degrading enzymes for hydrolyzing lignin component

4.4.1.3 Lignin-Degrading Enzymes

They catalyze the conversion of lignin present in lignocellulosic biomass into small
aromatic molecules. Lignin is a phenolic polymer containing phenylpropanoid aryl-
C3 units links. These can be degraded by the synergistic action of two groups of
enzymes, namely lignin-modifying and lignin-degrading auxiliary enzymes. The
former includes laccase or phenol oxidases (E.C 1.10.3.2), lignin-modifying perox-
idases such as lignin peroxidase (LiP) (E.C 1.11.1.14), versatile peroxidases (E.C
1.11.1.16), dye-degrading peroxidases (E.C 1.11.1.19), and manganese peroxidase
(MnP) (E.C 1.11.1.13). All the peroxidases have a unique prosthetic group in the
form of protoporphyrin IX (Pollegioni et al. 2015). Auxiliary enzymes in lignin
degradation on the other hand include glucose oxidase (E.C 1.1.3.4), cellobiose
dehydrogenase (E.C 1.1.99.18), glucose oxidase (E.C 1.1.3.4), aryl alcohol oxidase
(E.C 1.1.3.7), pyranose 2-oxidase (E.C 1.1.3.10), and glyoxal oxidase (E.C 1.2.3.5)
along with some other enzymes like alkyl aryl etherase, and aryl alcohol dehydro-
genase (Bilal et al. 2019; Zhang et al. 2020a, b; Levasseur et al. 2008; Agrawal and
Verma 2020a, b) (Fig. 4.8).

Basidiomycetes white-rot fungus is extensively investigated for the production of
these auxiliary enzymes (Garcia-Ruiz et al. 2014). Hofrichter and Ullrich stated an
action of a new enzyme heme-thiolate haloperoxidases, catalytically identical to
other heme-containing oxidoreductases (cytochrome P450 monooxygenases and



catalases), as lignin degrading in cultures of Ceriporiopsis subvermispora
(Hofrichter and Ullrich 2006).
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Although the crystal structure and catalytic cycle of all the ligninolytic enzymes
are well-reviewed (Chen et al. 2012; Pollegioni et al. 2015; Wong 2009; Janusz et al.
2017), we have attempted to briefly touch on some of the important aspects in
understanding the mechanism of these enzymes.

Laccases: Laccases fall in the group of oxidoreductases that uses oxygen as an
oxidizing agent. The four copper ions at the active center of laccases help the enzyme
in oxidizing most of the phenolic and aromatic compounds present in the lignin (Mai
et al. 2000; Pollegioni et al. 2015). Some metal ions and organometallic compounds
are also been reported as the substrate of laccases (Garcia-Ruiz et al. 2014;
Zimmerman et al. 2008). All these four copper ions at the T2/T3 site (the T1 Cu
and the tri-nuclear Cu cluster (T2 Cu, T3α Cu, and T3β Cu)) have a different electro-
paramagnetic resonance which is key to their unique reaction with the random
polymeric nature of lignin. The fungal laccases are known to comprise ~520–550
amino acids residues with glycosylation as primary modifications. The
three-dimensional structure of fungal laccases demonstrates three tightly arranged
cupredoxin-like domains having β-barrel symmetry. The third domain holds the T1
Cu near the surface of the protein, and the T2 Cu, T3 (α and β) Cu are located at the
junction of the first and the third domain (Mehra et al. 2018; Sitarz et al. 2016).
Laccases are extracellularly, intracellularly as well as periplasmically produced
depending on the type of microorganisms producing them. It is found mostly in
fungal and bacterial cells.

Lignin Peroxides (LiP): LiPs are generally known to oxidize phenolic and
non-phenolic organic compounds instead the enzyme specificity is relatively poor.
The structural analysis of LiP isolated from Phanerochaete chrysosporium revealed
its globular nature. The active site pocket is formed of two domains organized of
eight α-helices (major and minor) with restricted β components enclosing a heme-
chelating ferric ion (Choinowski et al. 1999). The three-dimensional structure of LiP
is further stabilized by four disulfide linkages, two calcium ions, and two
glycosylation-specific post-translational sites. Although their enzymatic mechanism
is similar to other peroxidases in the same class, they stand effective catalytically due
to their very high redox potential when it comes to oxidizing the recalcitrant lignin
component (Sigoillot et al. 2012).

Manganese Peroxidases (MnP): MnP was isolated and studied initially from the
fungi Phanerochaete chrysosporium. Supplementation of Mn ions and other organic
compounds like 2-hydroxybutyrate, malonate, glycolate, or glucuronate in the
growth medium stimulated the production of MnP in white-rot fungus (Mester and
Field 2006). These molecules in particular stabilized the structure of the enzyme. A
molecule of heme (iron protoporphyrin IX) is sandwiched between the two domains
formed by α-helices very similar to that of the structure of LiP. Very close to the
heme porphyrin lies the binding site of Mn2+ ion which constitutes one aspartate and
two glutamate γ-carboxylic groups. Slightly different from the structure of LiP, MnP
consists of five disulfide bridges and two Ca2+ ions. The active cycle of MnP varies



from that of LiP, in the oxidation of lignin compounds involving the conversion of
Mn2+to Mn3+ions (Niladevi 2009).
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Versatile Peroxidases (VPs): This enzyme represents a cocktail of LiPs and
MnPs. It also constitutes a heme porphyrin group close to the catalytic site. The
active center is made of 11–12 α-helixes with four disulfide bridges, two Mn
(II) binding sites and two Ca(II) binding sites. This enzyme is capable of oxidizing
methoxybenzenes and various non-phenolic lignin compounds with high affinity.
The multi-step reaction mechanism of VPs is similar to other peroxidases.

Dye-decolorizing peroxidase (DyP): These enzymes are different from the clas-
sical lipid-modifying peroxidases like LiP, MnP, and VPs. They can decolorize a
range of molecules including dyes, β-carotene, and aromatic sulfides (Zámocký et al.
2015). They were first investigated and isolated from the cultures of the fungus
B. adusta (Fernandez-Fueyo et al. 2015). DyPs can oxidize non-specifically all
peroxidase substrates and also possess hydrolase and oxidase activity. The structural
analysis of DyPs demonstrates the presence of two domains. The catalytic site lies in
the cavity of the two domains accommodating the heme cofactor (Colpa et al. 2014).

Glyoxal Oxidases (GLOX): Lignin components like methylglyoxal and glyoxal
can be oxidized by the GLOX. These enzymes proceed with the oxidation of their
substrate with the formation of extracellular hydrogen peroxide (Yamada et al.
2014). They are moreover required to regulate the peroxidase activity of the
lignin-modifying peroxidases. The active center of GLOX is occupied by a copper
ion which helps in the aldehyde oxidation of its substrate (Yin et al. 2015).

Aryl Alcohol Oxidase (AAO): This enzyme is a member glucose-methanol-cho-
line oxidase/dehydrogenase family. Structurally, this enzyme is a monomer with two
domains non-covalently bound with the FAD cofactor (Fernandez et al. 2009). AAO
substrates include various aryl-alcohols (phenolic and non-phenolic), aliphatic
(polyunsaturated) primary alcohols, or aromatic secondary alcohols present in the
lignocellulose biomass. It also oxidizes the radical intermediates produced by
laccase enzymes like guaiacol, sinapic acid, etc. (Mathieu et al. 2016). The oxidative
dehydrogenation reaction of AAO is an NADP-dependent reaction and produces
H2O2 (Ferreira et al. 2010).

Pyranose 2-Oxidase (P2O): These oxidoreductases are involved in the oxidation
of aldopyranose compounds. It is produced periplasmically and transported in
membrane-associated vesicles (De Koker et al. 2004; Prongjit et al. 2009). They
are homotetrameric and have three major conserved regions, namely the binding site
for FAD, the substrate-binding region, and the flavin attachment loop. The threonine
hydroxyl of Thr169 present at the active site is very important for the oxidation of
sugars and flavin molecules. The P2O catalyzes the oxidation of its substrate at the
C2 position via a Ping-Pong type reaction mechanism at pH 7 (two half-reactions).
The end products are the 2-keto-sugars and hydrogen peroxide. First, a hydride
equivalent from the sugar substrate is donated to the protein-bound flavin with the
generation of a reduced FAD (FADH) and the 2-keto-sugar, and secondly, a reduced
flavin is oxidized by donating two electrons to O2 thereby forming H2O2 (Pitsawong
et al. 2010).
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4.4.2 Hydrolytic Enzymes Involved in the Valorization
of Food Waste

Food waste origin is marked starting from the agriculture sector, packaging, and
retail, finally till household consumption. These waste streams generated are rich in
biodegradable organic matter, which due to their peculiar chemical characteristics
like high biological and chemical oxygen demand, content-rich in carbon and
nitrogen, are deleterious to the environment when discarded in landfills and aquatic
streams. They may cause aquatic pollution, harmful toxic leaching into ground and
surface water, altered soil composition, etc. The food processing industries and so
their waste is categorized based on the food material they process. Baiano et al.
(2014) assessed and estimated the approximate percentage of waste generated by
different food processing units or industries (Baiano 2014). According to them, the
beverages manufacturing industry generates 26% of food waste, dairy industries
make up 21%, fruit/vegetable, cereal edible oils manufacturing and processing as
well as meat and fish product processing and preservation industries constitute
(12.9%), (3.9%), (8.4%) of food waste, respectively. However, valorization of
these compounds to revenue streams like biofuels, other food, and non-food com-
modities is possible by introducing enzymes catalysis at various steps of their
conversions (Andler and Goddard 2018). For instance, esterification of different
waste components like oil, sugar, starch, and even flavonoids help in enhancing their
values through converting or valorizing them into value-added products like biodie-
sel, surfactants, biodegradable plastics, and this indirectly prevents their direct
disposal to wastewater treatment facilities.

Pectinases: The industries processing vegetables and fruits are rich in crude
dietary fibers, carbohydrates, polyphenols, flavonoids, triglycerides, or plant-based
fatty acids, etc. The by-product of these industries can be widely valorized through
enzymatic and also through other physico-chemical extraction into value-added
revenue streams like novel pharmaceuticals, animal feeds, etc. (Mourtzinos and
Goula 2019; Fierascu et al. 2020). For instance, soluble and insoluble dietary fibers
from citrus fruit pulp have been investigated by a group of researchers to replace fat
content in ice cream because of their high phenolic and carotenoid content and more
importantly because of their high water and fat retention capacity (de Crizel et al.
2014). Fierascu et al. (2020) have also extensively reviewed the current opinions on
utilizing the waste generated from fruits processing industries into useful commod-
ities (Fierascu et al. 2020). Pectinases are important fibrinolytic enzymes, and they
are widely utilized in beverages industries for clarification as well as enhancement of
color purposes. These enzymes help dissolve pectin structures (Micheli 2001) and
are categorized based on their mechanism of bond cleavage: (1) pectin esterases and
(2) depolymerase enzymes. Depending upon the substrate on which the pectinases
act, pectin esterases are of two types, i.e., pectin acetylesterases (E.C 3.1.1.6) and
pectin methylesterase (E.C 3.1.1.11). Pectin depolymerase, on the other hand, are
hydrolases, for example, polygalacturonase, PG (E.C 3.2.1.15), and lyases or
transeliminase comprising pectin lyase, PNL (E.C 4.2.2.10), and pectate lyase, PL



(E.C 4.2.2.2) (Sharma et al. 2013). Pectin methylesterases (E.C 3.1.1.11) convert the
methyl groups into pectic acid and the depolymerase enzyme further disintegrates
pectic acid into simpler carbohydrates (Fig. 4.9).
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Fig. 4.9 Action of pectinases: Mechanisms of action of polymethylgalacturonase,
polygalacturanase, pectin esterases, polygalacturanase, and pectin lyase on their specific pectin
substrate

Pectinases in common consist of only one domain termed parallel β-helix making
a right-handed cylinder. The structure contains three parallel β-sheets. These β-
sheets arrange themselves to form a prism-like structure with two β-sheets forming
an anti-parallel sandwich while the third one remains perpendicular to the axis. The
active site of the enzyme is formed on the exterior side of the parallel β-helix. This
structural model is most similar and closest to the structures demonstrated in the
referred articles through crystallographic studies in pectinases from various strains
(Jenkins et al. 2001; Pickersgill et al. 1994, 1998; Petersen et al. 1997).

Inulinase: Inulinase acts upon the β-2,1-linkage between the fructose units
present in the inulin molecule. The polyfructose chain is terminated with a glucose
unit attached with α-1, β-2-glycosidic linkage. Inulin is a stored carbohydrate found
commonly in roots and tubers of plants like onion, garlic, and also there are reports
of bacterial inulin which are comparatively highly branched in nature. Inulinase
enzyme is classified into two classes: an endo-inulinase called 2,1-β-D-
fructanfructohydrolase (E.C 3.2.1.7) and an exo-inulinase called β-D-
fructanfructohydrolase (E.C 3.2.1.80) (Neeraj et al. 2018). The structural analysis
of inulinase from Aspergillus awamori reveals the presence of two catalytically
important residues (Asp41 and Glu241) at the substrate-binding site of the enzymes.
These residues play a vital role in the double displacement reaction at the initial
hydrolysis step (Nagema et al. 2004). Modern nutrition prospects recommend
artificial sweeteners in the place of sucrose in diet to people looking for maintenance
of weight/weight loss and lowering blood sugar levels in diabetes. Fructose products



have also made their place as sweeteners in prebiotics popularly known as Greek
yogurt. Here’s where Inulinase yields its importance in industries generating fructose
or fructose oligosaccharides as artificial sweeteners. Inulinase has also been
established in the production of a plethora of commercially important products
like citric acid, tetrahydrofuran, mannitol, sorbitol and 2,3-butanediol, etc. (Chi
et al. 2009).
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Lipolytic Enzymes: Wastewater generated from the slaughterhouse, poultry, and
fish farms are rich in biodegradable organic matter like oil and grease waste which
can result in high BOD and COD. As a consequence, there is an increase in the
growth of filamentous microorganisms (bulking), floating and clogging of sludge in
the treatment plant, and unpleasant odor. This demands the hydrolysis of the organic
matter before its release into the treatment plants for further processing. Even though
there are various methods like dissolved air flotation systems, tilted plate separators,
grease-trap, and physical-chemical treatment (aerobic and anaerobic pretreatments)
employed for the removal of these biodegradable organic matters from the waste-
water, their proper implementation counters several setbacks. Therefore, effluents
from several origins can be subjected to enzymatic hydrolysis by lipase. Treatment
of domestic wastewater rich in oil and grease with lipase obtained from Candida
rugosa (Jaeger and Reetz 1998) and Pseudomonas aeruginosa (Dharmsthiti and
Kuhasuntisuk 1998) has been vastly investigated. Lipases are chemically known as
triacylglycerol hydrolases (E.C. 3.1.1.3) which catalyze the hydrolysis of
triacylglycerol. The active site of lipases is decorated with amino acids like serine,
aspartate or glutamate, and histidine (Mateos et al. 2021). They exist as monomeric
proteins folded to form β-sheets in the center enclosed by α-helix. The lipase activity
is considered maximum at the oil-water interface which is dependent upon its change
in conformation from closed to open form upon coming in contact with a hydro-
phobic surface. Apart from hydrolysis, lipases can catalyze other reactions like
esterification, transesterification, acidolysis, and aminolysis.

Lactases: Dairy industries are also major contributors of proteins, fatty acids, and
lactose in liquid waste. The major portion of which is considered to be deproteinized
cheese whey obtained from cheese producing industries all over the world, which
despite no toxic content is a major concern to environmental preservation and safety
(Lappa et al. 2019). The lactose component in cheese whey has been elaborately
investigated for the production of several commodities like bioethanol, artificial
sweeteners, green plastics/polyhydroxyalkanoate polyesters, etc. (Koller et al.
2012), and there are reports of its valorization into disinfectants, electron donors
for electricity generation through single chamber microbial fuels cells as well
(Banaszewska et al. 2014; Pescuma et al. 2015; Yadav et al. 2015). Lactases are
known as β-D-galactohydrolase/β-galactosidases (E.C 3.2.1.23), and they catalyze
the cleavage of lactose into glucose and galactose. The most demanding prebiotics,
lactulose, and galacto-oligosaccharides (GOS) are produced by lactose through the
action of β-galactosidases. Lactose is transgalactosylated by β-galactosidases to
produce a mixture of non-digestible forms of mono-, and oligosaccharides that
form the GOS. In the reaction, lactose acts both as the donor and acceptor of



transglycosylated galactose. Whereas in lactulose synthesis, lactose only acts as a
donor of galactosyl glucose, and the fructose acts as an acceptor.
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Protease: Proteases are classified into different groups based on the activity of
proteases under various parameters like acidic, alkaline, or neutral conditions as well
as the composition of their substrate-binding site (Panda et al. 2013). Alkaline serine
protease (E.C.3.4.21–24.99) is most active at pH ranging from neutral to alkaline
(Singhal et al. 2012; Varela et al. 1997). Other proteases are the neutral and acidic
proteases (Razzaq et al. 2019). Proteases are proven to be a significant tool in
bioremediation as well as valorization of waste to value-based products (Page and
Cera 2008). The most exploited and studied microorganism for the production of
alkaline protease and neutral proteases are Bacillus species and acidic proteases are
known to be produced by the fungus. These proteases can be efficiently inactivated
by PMSF (phenyl methane sulfonyl fluoride). Protein-rich waste is responsible for
increasing the biological oxygen demand of aquatic waste. As discussed in earlier
sections, the waste aquatic stream is drowned with effluents from food processing
industries which constitutes waste from dairy products, waste from poultry, and fish
industries as well as textile and leather industries. Leather industries involve alkaline
protease with keratinolytic activity to hydrolyze keratin content present in the hair
residues for increasing the surface area of the skin. They are also used in bating and
clearing undesirable pigments during the preparation of clean skin and hides
(Bhaskar et al. 2007; Shankar et al. 2011). Alkaline protease preparations of Bacillus
species are enormously used in poultry industries to get rid of the feather waste
generated in the slaughterhouse. The keratinolytic capability of these proteases has
been best utilized in cleaning drainage pipes clogged with hair residues. A cocktail
of protease preparation from Streptomyces species, Bacillus subtilis, and Bacillus
amyloliquefaciens along with thioglycolate mixture is available commercially in the
market. Alkaline proteases find a crucial place in the degradation of plastics as well
as X-ray photographic sheets, particularly for the silver recovery. The active site of
the alkaline protease comprises catalytic triad formed by Aspartate and Histidine
residues along with Serine residue. Proteases based on their structural and sequence
similarity can be obtained and assessed from the database called MEROPS
(Rawlings et al. 2006) database. Table 4.1 comprehensively covers the application
of different enzymes in the valorization of waste.

4.4.3 Hydrolytic Enzymes in Biodegradation and Valorization
of Non-biodegradable Plastics Waste

The monomers utilized for the preparation of most plastics, ethylene, and propylene
are derived from petroleum. The most commonly used are polyethylene, polysty-
rene, polyurethane, polypropylene, polyvinyl chloride, poly (ethylene terephthalate),
etc. Out of the total production worldwide, only a small fraction around 20% is
getting recycled, thus plastic remains a long-lasting, and major threat to the
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environment, especially to the aquatic streams (Kaushal et al. 2021). Plastics are
categorized into two ways: (1) Thermoplastics whose chemical composition remains
unchanged at high temperature and have mostly linear carbon chain backbone and
(2) Thermosets which are made of other elements along with carbon possess highly
cross-linked anatomy and their chemical conversion at high temperatures is irrevers-
ible. One of the most common thermoplastics used worldwide is polyethylene (PE).
It is composed of ethylene as a monomer unit and is highly crystalline in structure
which makes it recalcitrant to biodegradation. Based on the pattern of the linear
chain and different densities, PE can be low-density PE (LDPE), high-density PE
(HDPE), and also low molecular weight PE (LMWPE) Polypropylene (PP), yet
another thermoplastic made by polymerizing propylene gas. PP differs from PE in
having a methyl group instead of one hydrogen atom at an alternate carbon atom in
the linear carbon backbone. This chemical structure gives it more rigidity in com-
parison to PE. Both these plastics are included in the category of polyolefin due to
their inert and resistant nature to most heating, biological and chemical treatments. It
is abundantly utilized as packaging plastics in various industrial sectors (Zheng et al.
2005). Polyvinyl chloride is yet another synthetic plastic that is used in rigid or
plasticized forms. They are formed by polymerizing vinyl chloride or chloroethene
in linear form. The pollution caused by PVC plastics is noticeable as burning these
plastics emits hydrogen chloride fumes which pose serious health hazards. They are
more prone to microbial degradation in comparison to other plastics due to the high
percentage of plasticizers added to them (Webb et al. 2000). Polystyrene is synthe-
sized by polymerizing styrene as repeating units. They could be thermoplastics or
thermosets. They are also widely used in packaging industries due to their foam-like
appearance (Tokiwa et al. 2009). Polyurethane and PET (polyethylene terephthalate)
both have improved thermostability as they are hetero-atomically branched. PET is
the most abundantly produced and used plastic in the modern era. Researchers have
claimed that global warming caused by enormous CO2 emissions and promiscuous
usage of PET plastics are two of the most alarming situation in the biosphere (Wang
et al. 2020). It is a high molecular weight thermoplastic composed of terephthalate
(TPA) and ethylene glycol (EG) via an ester bond. This polymer has great tensile
strength, and durability and its production cost are also low. Their structure contains
large aromatic rings which make them rigid and resistant to biodegradation (Webb
et al. 2013). Polyurethane has heteroatoms with carbamate linkage which could be
either ester or ether bonds. They form the major constituents of microplastics making
them the most concerning issues in the aquatic system (Shah et al. 2013). Mitigation
of these plastics from the environment is carried over by certain physical and
chemical methods like incineration, recycling, and dumping them into landfills.
All of these methods are not environmentally friendly and they are not even cost-
effective. The introduction of plastic hydrolyzing enzymes has opened up hopes for
eco-friendly treatments to get rid of this dire environmental pollutant (Verma et al.
2016) (Table 4.2). Varieties of microorganisms like fungi, bacteria, actinomycetes,
and algae have been investigated as well as reported to exhibit plastic polymer
degrading capacity. Plastic degrading enzymes are mostly obtained from microbial
organisms, and therefore they are studied under two categories: intracellular and
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Enzyme Microorganism References

(continued)
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Table 4.2 Plastic degrading enzymes and their microbial sources

Sl.
No

Plastic
substrate

1 Laccase Rhodococcus ruber C208
(Mesophilic bacteria)
Bacillus cereus (Bacteria)

Polyethylene
(PE)

Santo et al.
(2013), Vimala
and Mathew
(2016)

2 Manganese peroxidase Phanerochaete
chrysosporium ME446
(White-rot fungus)
IZU-154 (Fungi)
Bacillus cereus (Bacteria)
Penicillium
simplicissimum (Fungi)

Iiyoshi et al.
(1998), Sowmya
et al. (2015)

3 Lignin peroxidase Streptomyces (Bacteria)
Phanerochaete
chrysosporium MTCC-
787 (Fungi)

Jeon and Kim
(2015),
Mukherjee and
Kundu (2014)

4 Alkane hydroxylase Recombinant AH from
Pseudomonas species E4
expressed in Escherichia
coli BL21 (Bacteria)

Yoon et al. (2012)

5 PETase Chlamydomonas
reinhardtii (Green algae)

Polyethylene
terephthalate
(PET)

Kim et al. (2020)

6 Cutinase-like enzyme/
IsPETase

Ideonella sakaiensis
201-F6 (Bacteria)

Han et al. (2017)

7 Lipase Pseudomonas
chlororaphis (Bacteria)

Polyurethanes Stern and Howard
(2000)

8 Polyurethanase Serratia marcescens
(Bacteria)

Mankoci et al.
(2019)

9 Protease and esterase Pseudomonas fluorescens
(Bacteria)
Pseudomonas
chlororaphis (Bacteria)

Hung et al.
(2016), Shah et al.
(2008), Nakajima-
Kambe et al.
(1995)

10 Polyurethanase
(PUase)

Curvularia senegalensis
(Fungi)

Crabbe et al.
(1994)

11 Polyhydroxyalkanoate
depolymerase

Alcaligenes faecalis
(Gram-negative,
rod-shaped bacteria)

Gamerith et al.
(2016)

12 Polyester Polyurethane
(PUR) esterase

Comamonas acidovorans
TB-35 (Bacteria)

Polyester
polyurethane

Akutsu et al.
(1998)

13 Phenylacetaldehyde
Dehydrogenase

Pseudomonas fluorescens
ST (Bacteria)
Pseudomonas putida S12
(Bacteria)
Xanthobacter species
124X (Mesophilic
bacteria)

Polystyrene Oelschlägel et al.
(2018)



extracellular enzymes. Extracellular enzymes are involved in the depolymerization
of long-chain polymers into smaller fractions, viz. oligomers, dimers, etc. Whereas
the intracellular enzymes participate in the final conversion of intermediates into the
forms which can be assimilated by the microbes as a sole source of carbon. As a
result of this process, a valuable emission gas, i.e., methane is released as metabolic
products which can be used as fuels and can further be utilized as precursors for the
production of organic acids (Amobonye et al. 2021). Furthermore, the wax moth
Galleria mellonella is known to depolymerize plastics with the help of their gut
microbiota containing the fungus Aspergillus flavus (Zhang et al. 2020a, b). All these
enzymes involved in degrading plastics are hydrolases that catalyze the cleavage
reaction in the presence of water (Müller et al. 2005). Esterases, cutinases, laccases,
lipases, and PETases are the most extensively studied hydrolytic enzymes
concerning the degradation of plastics. Microbial valorization of plastics into
value-added chemicals is elaborately reviewed in Ru et al. (2020). The reviewer
explained elaborately the microbial metabolic pathway involved in the depolymer-
ization of ester/urethane-containing plastics, aromatic plastics, and linear aliphatic
plastics into its monomer constituents and their further assimilation by microbes for
the production of value-added chemicals. The chemical structure such as linkages in
petro plastics, linearity or branching in carbon chain, type of linkage (ester, ether, or
carbamate linkage between the monomers), presence of hydrophobic functional
groups, and physical properties like rigidity (crystalline/amorphous) and density
plays a significant role in engineering enzymes suitable for biodegradation
(Mohanan et al. 2020). Ongoing and present studies for identification of plastic
degrading microorganisms and modification of these microbial enzymes through
genetic engineering provides a wide opportunity to efficiently recycle or remove
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Table 4.2 (continued)

Sl.
No

Plastic
substrate

14 Cytochrome P450
CPY152A1

Bacillus subtilis (Gram-
positive, catalase-positive
bacteria)

Shoji et al. (2007)

15 Cytochrome P450
CPY152B1

Sphingomonas
paucimobilis (Gram-nega-
tive bacteria)

Fujishiro et al.
(2012)

16 AlkB (alpha-
ketoglutarate-depen-
dent hydroxylase

Pseudomonas putida
GPo1 (Bacteria)

Hou and
Majumder (2021)

17 Alkane
monooxygenase

Geobacillus
thermodenitrificans
NG80–2 (Thermophilic
bacteria)

Li et al. (2008)

18 Hydroquinone
peroxidase

Azotobacter beijerinckii
HM121 (Lignin decolor-
izing bacteria)

Nakamiya et al.
(1997)



plastic from the environment. Yet advantageous is when these plastics can be
converted into more valuable and marketable products.
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4.5 Recent Biotechnological Trends in Increasing
the Efficacy of Enzymes in the Waste Valorization

Enzymes have been central in various industries like food processing, beverages
distilleries, leather, textile, and paper industries for a long time (Sheldon and
Woodley 2017). Their involvement in the production of biofuel and value-added
products is tremendously surging in recent times (Chapman et al. 2018). Conse-
quently, for obtaining optimal bioprocesses involving enzymes, further enhance-
ment of enzyme stability and functionality is indispensable. Biotechnological
breakthrough offers a great deal for enhancing the power of existing enzymes as
well as identifying newer enzyme candidates.

4.5.1 Techniques to Decipher Newer Biocatalyst Candidates

Conventionally, enzyme discovery was done by cultivating microorganisms, frac-
tionating cell-free extract, followed by the screening of the enzyme activity, and then
recovered enzymes through purification are subjected to mass spectrometric analysis
after trypsin digestion. The identified short peptides are then utilized to decipher the
corresponding gene from the genomic DNA. Although these methods are dependent
on the use of cultivable microorganisms, a significantly important set of enzymes
were discovered using this process. State-of-the-art tools are now assessable to
scrutiny and tap the vast microbial biodiversity present in nature (Rinke et al.
2013). The introduction of omics such as metagenomics and metatranscriptomics
presents a big potential to analyze the diversity of complex microorganisms. These
tools help in the development of genomic libraries from environmental DNA for
function or sequence-based similarity screening of the enzymes (Gilbert and Dupont
2011; Uchiyama and Miyazaki 2009). For example, a collection of hydrolytic
enzymes such as amylase, lipase, oxidoreductase, and epoxide hydrolase have
been deciphered using this technique (Knietsch et al. 2003; Rondon et al. 2000).
Several bioinformatics strategies such as in silico data mining, the Catalophore™
approach, and de novo enzyme design tools are also helpful in this process
(Handelsman 2004). Progressive success in developing methods for genome
sequencing like next-generation sequencing has opened up newer approaches to
hunt for putative enzymes. Here, genome hunting is based on either searching for the
open reading frame or homology alignment of sequences.
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4.5.2 Isolation of Enzymes from Extremophiles

Enzymes that can withstand extreme parameters like higher temperature and pH as
well as harsh chemicals like a high concentration of salts, metal ions, organic
solvent, etc. have great value at industrial levels. There is a large diversity of
organisms in the extremophilic regions and as most of these organisms have not
been yet cultivated in pure cultures, the characterization of their enzymes from them
is comparatively difficult (Pikuta et al. 2007; Cavicchioli et al. 2011). The bacterial
isolates obtained from the extremophiles have displayed properties of different
hydrolytic enzymes such as amylase, protease, lipase, and xylanase. Extreme ther-
mophiles are widely present in bacterial species like Thermus, Thermotoga, Clos-
tridium, and Bacillus. Pyrococcus, Thermococcus, or Methanopyrus belongs to
hyperthermophilic Archaea. Hydrolytic enzymes such as Amylase, Xylanase,
Lipase, and Protease enzymes are isolated from some halophilic bacterial species
like Halobacterium, Halobacillus, and Halothermothrix (Moreno et al. 2012).

4.5.3 Genetic Engineering or Recombinant DNA Technology
for the Production of Recombinant Protein
in a Microbial Host

To obtain desired efficacy in the expression of enzymes, gene-based technology like
recombinant DNA technology can be used. In this technology, the desired gene or
gene of interest is inserted into the organism via an appropriate vector. The gene of
interest can be manipulated through the addition of the desired sequence in the
endogenous gene or deletion or knockout of undesirable sequence through
recombining genes and elements. Rational redesigning and direct evolution are the
two different methods that are adapted for modifying enzymes to their desired
characteristics. Rational redesigning utilizes site-directed mutagenesis to target
amino acid substitution effectively at the active site of the protein for evolving the
enzyme into a more efficient one. Whereas the direct evolution method includes
repeated oligonucleotide-directed mutagenesis, random mutagenesis through error-
prone polymerase chain reaction (PCR), or modification through chemical agents
(Manisha and Yadav 2017; Wiltschi et al. 2020) (Table 4.3).

4.5.4 Immobilization of Enzymes

The major confrontation in enzyme technology and its application in industries is
bulk production and the question of reusability. These problems can be easily dealt
with the immobilization technique. Enzymes can be immobilized by tethering or
encapsulating them in an appropriate material that has desired physical, chemical,



electrical, or mechanical properties. These materials increase the stability as well as
efficacy in terms of better catalytic activity of the immobilized enzymes. Moreover,
immobilization can reduce the steps required to separate them from the reaction
mixture as well allows substantial reusability without affecting the activity allowing
them to be compatible in a continuous process. To examine the enzyme activity of
immobilized enzymes two kinetic parameters, namely the Michaelis constant, Km,
and maximal reaction velocity, Vmax is often examined and compared with the
non-immobilized counterpart. The three widely used immobilization techniques
are encapsulation or entrapment, carrier-bound attachment, and the formation of
cross-linked enzyme aggregates (CLEAs). Encapsulation or entrapment technique,
as the name suggests is the immobilization of enzymes using material of varying
degrees of porosity and permeability (Bezerra et al. 2015; Jesionowski et al. 2014).
Various materials such as a variety of carriers, for example, sol–gels, hydrogels,
polymers as well as nanomaterials have been experimented with immobilization of
enzymes via encapsulation technique. Carrier-bound immobilization of enzymes is
done by physisorption or chemisorption of enzymes on prefabricated organic or
inorganic materials. Materials like metal oxides, nanomaterials, ceramic, or silica
gels are used for this purpose. Chemisorption technique is preferred over
physisorption as covalent attachment reduces the chances of enzyme leaching
from the matrix. CLEAs technique is a very recently utilized technique where the
soluble enzyme is aggregated using precipitating agents like alcohol, acetone,

Enzymes Improved properties Organism References
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Table 4.3 Genetically engineered microbes for increasing the efficacy of expressed hydrolytic
enzymes in the valorization of waste

Sl.
No.

1 Cellulase Increased the inherent ability
of Lactiplantibacillus
plantarum’s lignocellulose
degradation

Thermobifida fusca None and
Yadav
(2017)

2 β-glucosidase Improve enzyme activity and
thermostability

Trichoderma reesei Lee et al.
(2012)

3 Xylanase Tm improved by 25 �C Thermotoga thermarum Yang et al.
(2017)

4 Laccase 3-fold improved kcat and
thermostability

Bacillus HR03 Mollania
et al. (2011)

5 Lipase 2-fold increase in amidase
activity

Pseudomonas aeruginosa Fujii et al.
(2005)

6 Lipase B 20-fold increase in half-life
at 70 �C

Candida antarctica Siddiqui
and
Cavicchioli
(2005)

7 Pyranose
2-oxidase

Increased thermostability
and the catalytic properties

Trametes multicolor Spadiut
et al. (2009)

8 Endoglucanase Increase hydrolytic activity
on cellulosic substrate

Thermoascus aurantiacus Srikrishnan
et al. (2012)



ammonium sulfate, etc., and then subsequently cross-linked or co-polymerized with
cross-linking agents like glutaraldehyde (Sheldon 2010). Hence, immobilizing
enzymes can be well exploited for obtaining desired characteristics to bring
increased efficacy in the use of enzyme technology in the industrial arena as well
as biorefineries.
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4.5.5 Cell Surface Engineering

Genetic technological advances have let us modify microorganisms to express our
genes of interest (Table 4.3). Cell surface engineering is another biotechnology tool
where the particular microorganism is tailored to express the desired number of
enzymes on its surface. This is technique is advantageous in biorefineries where
there is a need for multiple enzymes for the conversion of biomass to biofuels. The
most utilized and engineered organism includes Saccharomyces cerevisiae. Natu-
rally, yeast can ferment sugars to produce alcohols, but it does not possess the
enzyme required for saccharification of complex sugars present in the cell wall of the
biomass. Cell surface engineering enables the arming of yeast and other organisms
with a cocktail of enzymes that help the production of biofuels and other value-
added products (Kuroda and Ueda 2013; Ueda 2016; Ueda and Tanaka 2000).

4.6 Conclusions

Developing sustainable approaches toward building a circular economy and
safeguarding mother nature has become the need of the hour. Toward achieving
this, biomass waste from various sectors like agro-forest, solid municipal waste, food
manufacturing, and processing industries can be utilized and profitably and compe-
tently converted to bioenergy and value-added products. To reduce the losses
incurred by the use of traditional chemical processes in the treatment of waste
biomass, enzymes are introduced for the economic and easier hydrolysis of the
different waste components. The major portion of waste generated is composed of
biodegradable biomass as well as non-biodegradable plastics. Different microbial
sources of hydrolytic enzymes are exploited for the valorization of these wastes into
value-added products and bioenergy. Cellulases, hemicellulases, lignin peroxidases,
pectinases, amylases, proteases, etc. enzymes are widely utilized in this concern. The
biorefinery concept is structured to use the by-product from one industry as feed-
stock for another industry to produce more value-added goods in addition to
conversion of waste to bioenergy. Various technological advances like genetic
engineering, cell surface engineering, and immobilization of enzymes are exploited
to increase the efficacy of the hydrolytic enzymes obtained from microbial sources.
Identification of new sources of these enzymes through metagenomic analysis is
relevant and very necessary to keep the reservoir filled. In addition to that further
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improvement of these enzymes could be done through techniques like metabolic
engineering and chemical modification of the enzyme.
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