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Remote sensing has been used for forestry applications for many decades. For
example, aerial photographs were used as working tools in preparing forest inven-
tory, size, type and condition maps of forest stands. Today, remote sensing is heavily
utilised in forest management, which is acquired from airborne and spaceborne
platforms using satellite data. In comparison with traditional aerial photography,
satellite imagery has many advantages such as the frequency of data collection,
global availability of satellite data, data suitability for digital analysis and classifica-
tion, and data gathering at relatively low cost.

The new generations of satellite sensors are introduced not only to provide
important information on forest ecosystems but also to improve the techniques and
accuracies obtained by the traditional approaches. In recent years, there have been
rapid advances in the new types of sensors. They have the potential to improve the
accuracy in classification of forest types and species discrimination. In addition, the
systems were reported to contribute to improving the estimations of forest variables
such as forest biomass, stand volume, stand age and carbon stocks by linking the
spectral reflectance and ground information via predictive models.

Researchers have become increasingly aware of the potential of remote sensing to
address important forestry issues and challenges. The number of forestry
publications using remote sensing has grown very rapidly, and this is noticeable
with many recent technologies and applications. Therefore, this book chapter
highlights the concepts and applications in remote sensing for forestry with a
particular emphasis on the techniques, data, sensors and their applications. Novel
applications of recent techniques in remote sensing are discussed. In addition,
several constraints and future opportunities in the use of remote sensing for forestry
applications are addressed.

Shah Alam, Malaysia Mohd Nazip Suratman
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Abstract

There are multiple purposes of conducting forest inventories and forest resource
assessment. One of them is to serve as information on the development of forest
planning and management strategy which requires gathering of data about forest
resources at the national level for the development of strategic policy. In order to
characterise accurately both quantity and quality of the forest resources, enhanced
information is required. Remote sensing technology offers potential gains in
inventory efficiency based on its ability to quantitatively characterise stand
canopies through spectral reflectance. Also, the frequency with which remote
sensing data are acquired, and the availability of data for extensive areas,
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increases the attractiveness of these data for inventory purposes. For example,
visible, near-, and mid-infrared radiance measurements, which are routinely
available from the optical remotely sensed imagery, could be related to forest
parameters and stand attributes such as biomass, basal area, diameter, stand age,
and wood volume. The need for effective inventories for forest resources is the
impetus for this chapter into reviewing traditional methods of ground-based
surveys with information from satellite remote sensing. In addition, this chapter
discusses the development of remote sensing sensors, which include their
characteristics, applications, current practices, and future development of the
remote sensor.

Keywords

Remote sensing - Forest inventory - Sampling design

1 Introduction

Forest inventory refers to the estimation by sampling of an area of a forest in its
entirety or split up into forest types (Hildebrant 1989). In the planning phase of a
forest inventory, it is necessary to define assessment units. For example, for a
national forest inventory, the state or region could be the unit of assessment, while
for a local inventory, the unit of assessment could be the stand or forest estate. A map
or any form of remotely sensed imagery (e.g. aerial photographs, satellite, or radar
imageries) can be utilised to delineate these units and obtain preliminary informa-
tion. By means of these tools, the area can be stratified into several forest types and
the variables of interest can be estimated precisely.

In many countries throughout the world, the issue of information requirements for
forest resource management, conservation, and development at national and state
levels has received much attention. Over the last decade, demand for more and better
forestry information has continued to grow. There are many shortcomings regarding
the method and efficiency of data collections required for planning the development
of strategies within the forest sector at national and state levels. Remote sensing
technology offers potential gains in inventory efficiency based on its ability to
quantitatively characterise stand canopies through spectral reflectance (Ahern et al.
1991; Lillesand and Kiefer 2000). In addition, the frequency with which remote
sensing data are acquired, and the availability of data for extensive areas, increases
the attractiveness of these data for inventory purposes. Therefore, the need for
effective inventories for forest resources was the impetus for this introductory
chapter into reviewing the applications of remote sensing as a tool in providing
information by linking ground information with satellite data.
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2 Inventory and Sampling Design

Sampling design is of great importance for forest inventory and monitoring to ensure
efficient data collection as measured by cost and reliability (IUFRO 1994). In
applying any sampling method, it is essential to clearly define the population of
interest. Freese (1962) and Cochran (1977) considered the population as the aggre-
gate of units from which the sample is chosen. For example, if the sample is taken
with plots, the population should be defined in terms of the plots.

There are several sampling methods that can be applied to forest inventories.
However, before considering the design, major information needs should be
clarified. According to IUFRO (1994), the selection of the most appropriate sam-
pling methods depends on (1) the objectives of the inventory, (2) the cost involved,
(3) the extent of the area, (4) the forest types (whether only one or several), and
(5) the availability of remotely sensed imagery.

In each sampling method, the sampling unit may be randomly or systematically
selected. For example, in simple random sampling (SRS), the selection of sampling
units from the population is such that every combination of n units has an equal
chance of being selected (Freese 1962; Cochran 1977). In systematic sampling,
sampling units are selected according to regular system. SRS yields unbiased
estimates of the parameter of interest and allows estimation of the sampling error,
which is a measure of precision of the estimate. The selection of the sampling units
can be done with or without replacement (LeMay and Marshall 1990). In the former
sampling process, a unit may appear in the sample more than once and in the latter a
unit may appear in the sample only once. Sampling without replacement is used most
frequently, since it is more precise than sampling with replacement (LeMay and
Marshall 1990).

If sampling involves a subdivision of a forest area into smaller areas with more
homogeneous characteristics, the method involves some form of stratified sampling.
If the sampling units are selected randomly within each stratum, the method is called
stratified random sampling (STRS). According to LeMay and Marshall (1990),
STRS can be used effectively if (1) the separated strata are more homogeneous
than the population, (2) the sizes of strata are known prior to sampling, (3) a
sampling frame is available, and (4) one is interested in estimating parameters for
the various strata. The greater the difference among stratum means, the greater the
advantage to using STRS rather than SRS (Bickford 1961).

In some cases, it may be costly or impractical to select sample size using these
methods. For example, if the distance between sample units is large, and time and
cost are limiting factors, the sampling units can be aggregated into a number of
mutually exclusive groups or clusters. This method of sampling is called cluster
sampling (Frayer 1981) and is used if there is interest in getting proper interval
estimates for the average element value within a cluster. However, if the units of
assessment are large, clusters may be subdivided into units of hierarchical order,
which constitutes multilevel sampling designs. As the name implies, this design uses
more than one source of information in the estimation of population parameters
(Frayer 1981). These sources generally, but not necessarily, involve one or more
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Fig. 1 Sampling unit in
multistage sampling; PSUs
represents primary sampling
units, SSUs is the secondary
sampling units, and TSUs is
the tertiary sampling units
(Hamilton et al. 2010)
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types of remotely sensed imagery and ground measurements (Kohl and Kushwaha
1994).

Multilevel sampling may be classified into multistage sampling and multiphase
sampling (Kohl and Kushwaha 1994). Multistage sampling designs are based on
dividing the population into subunits (Fig. 1). The first subset can be called primary
sampling units (PSUs). Next, a subset of PSUs is selected and subdivided into
secondary sampling units (SSUs) (Hamilton et al. 2010). Similarly, according to
IUFRO (1994), in multistage sampling, the first stage can be divided into a second-
ary one, and the secondary stage can be divided into a tertiary one, and so forth. At
each stage, different selection methods can be applied. On the other hand, multiphase
sampling analyses information from every level. The variables of interest are derived
from data from the lowest level. In multistage sampling the units are partitioned into
smaller units at each succeeding stage. For multiphase sampling, the unit size
remains the same, independent of the number of phases of information used. A
first phase unit is the same as a second phase unit, and so on. According to Kohl and



Remote Sensing for Forest Inventory and Resource Assessment 7

Kushwaha (1994) the design must be such that the auxiliary variables are less
expensive to derive than the variables of interest, and remote sensing is the ideal
method for such purposes.

There are two types of multiphase sampling designs. They are known as multi-
phase sampling with regression estimators and multiphase sampling for stratifica-
tion. In the first type, the relationship between the auxiliary variables and the variable
of interest is described by means of regression. According to Kohl and Sutter (1991)
this approach has repeatedly proved its worth in temperate latitudes. Bowden et al.
(1979) and LaBau and Schreuder (1983) gave an overview of this method for large-
scale inventories employing satellite data. In the second type, the auxiliary variable
is not determined through the measurements; instead, it is an indicator variable
showing the stratum to which the variable of interest is to be allocated (Kohl and
Kushwaha 1994). In this method, volumes determined through a field survey in the
last phase are weighted according to estimated strata sizes.

Double sampling is a commonly applied form of multiphase sampling, limited to
two phases. Several authors reported this sampling method to be very efficient in
terms of cost and precision of the estimate when applied in either temperate or
tropical forests (Bickford et al. 1963; Hutchinson 1978; Temu 1981; Temu and
Phillip 1981). More complex designs such as three and four stage methods have also
been applied (Kohl and Kushwaha 1994).

There are two broad categories of sample plots, namely, permanent and tempo-
rary sample plots. The selection of type of sample plots to be adopted in forest
inventory depending on the objectives of the inventory and the type of vegetation.
Permanent sample plots are used when it involves measuring changes over a number
of years, for example, measurement of changes in tree diameter growth, biomass,
and carbon stocks in natural forests, in forest plantations, and in agroforestry
settings. In temporary sample plots, measurements are made and the field data
required for a given year. Suratman et al. (2004) and Asari et al. (2017) used
temporary sample plots by establishing circular fixed plots based on the systematic
sampling system with a random start (Fig. 2) to study the stand volume of rubber
plantations and carbon stocks of o0il palm plantations in Selangor, Malaysia, respec-
tively. The values of radius of the circular plot and the distances between plots
depend on the area and densities of the vegetation. Circular plots were established in
each stand and the mean for stand variables was computed and used to represent the
entire stand.

As seen from the review presented in this section, many sampling techniques
have been applied in the inventory of natural resources. It is also possible to combine
those techniques, creating more complex sampling designs. However, if a simpler
technique will achieve the inventory objectives, it should be used in place of a more
complex design. Multilevel sampling techniques have many applications and may
become more efficient with the introduction of higher-resolution satellite and air-
borne imagery.
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Fig. 2 Circular fixed plots in systematic sampling design; r represents the radius of the circular
plot, d is the distance between circular plots and a and b are the random starting points (Asari 2017)

3 Tree Crop Inventory and Assessments

Considering its essential role in good forest management, tree crop assessment rarely
receives the priority it deserves. For example, in the forest resource assessment
(FRA) programme of the FAQO, data on tree crops are not systematically recorded
despite the fact that they have been identified as an essential element of sustainable
forest management (FAO 1995). Reviews of inventory work in Kenya and India
described below provide some insights on the assessment of specific tree crops in
tropical areas.

In an agroforestry woody biomass survey in Kenya, Holmgren et al. (1994) used a
two-phase sampling method. The first phase consisted of aerial photographs and the
second was field measurements in a subsample of the photos. The survey, which
covered 10 million ha where 80% of the country’s population lives, revealed a rapid
increase in planted woody biomass between 1986 and 1992. The average standing
volume on farms was estimated to be 16.4 m3/ha, of which 25% was planted and the
remainder was natural woodland, including riverside areas. When calculated by
district, the average standing volume of woody material outside of forests was
estimated to be 4.7-36.2 m>/ha. This study challenged some of the pessimistic
opinions on land-use development and a fuel wood gap. Holmgren et al. also
found that land degradation was not directly related to rapid population growth
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and that Kenyan farmers seem to be applying wise and sustainable management
practices on their holdings.

In India, two-stage stratified sampling was adopted for the inventory of trees
outside of forests in 1992. The sampling unit in the first stage was a district, and the
second stage was the village. The study was conducted by the Forest Survey of India
with the purpose of assessing the extent of different tree crop components
established by different agencies. Planted trees were classified into eight categories:
farm forestry, village woodlot, block plantation, road, pond, rail, and canal side
plantations and others. Standing trees in selected villages were enumerated and
compilation and data processing was done at the district level. The inventory was
completed for the State of Haryana in 1997. The total non-forest area and standing
volume was estimated to be 4.4 million ha and 10.3 million m>, respectively. The
study revealed that farm forestry contributes about 41% of the estimated total
standing volume of wood in non-forest areas, followed by village woodlot (23%),
roadside plantations (13%), and block plantations (11%) (FSI 1997).

4 Developments in Remote Sensing Technologies

Remote sensing has been used for many decades. An early practical application was
aerial reconnaissance during the First World War. For example, aerial photography
allowed the positions of the opposing armies to be monitored over wide areas more
safely than a ground-based survey (USGS 2000). Aerial photographs also allowed
for rapid and relatively accurate updates of military maps and strategic positions.
Today, remote sensing is heavily utilised in environmental management. In compar-
ison with traditional aerial photography, medium-resolution satellite imagery has the
following advantages: (1) the frequency of data collection, (2) global availability of
remote sensing data, (3) data being suitable for digital analysis and classification, and
(4) data being gathered at relatively low cost (Wilkie and Finn 1996).

Remote sensing also has many advantages over ground-based surveys in that
large land areas can be surveyed at one time, and areas of land or sea can be included
that are otherwise inaccessible (Keiner and Yah 1998; Guidon and Edmonds 2002).
The advent of satellite technology and multispectral sensors has further enhanced
this capability, with the ability to capture images of very large areas of land in one
pass, and by collecting environmental data that normally would not be visible to the
human eye (Kushwaha 1987). Remote sensing can reduce cost and improve effi-
ciency of forest inventories if remotely sensed data are well correlated with impor-
tant field measurements, are available when needed in the sampling design
(Czaplewski 1999), and cover large areas (Lindgren 1985).

On the other hand, remote sensing has limitations that prevent it from totally
replacing ground-based survey methods. These are partly related to spatial, spectral,
and temporal resolutions of the various sensors. Also, there are problems with the
all-weather capabilities (see Table 1), data analysis, and data interpretations. Also,
not all important information is related to the electromagnetic spectrum. In this
respect, remotely sensed data should be considered as a complementary source of
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Table 1 Characteristics of selected remote sensing sensor systems

Spatial Temporal Status as of Potential
Sensor resolution Image swath resolution August 2014 uses
Landsat TM |30 m 185 x 185 km 16 days End of Mapping
operation Stratification
Landsat 30 m 185 x 185 km 16 days Operational Mapping
ETM+* Stratification
SPOT 1-5°  |2.5-20m 60 x 60 km 3-5 days 1, 3—end of Mapping
operation Stratification
2,4,5—
operational
MODIS® 250-1000 m | 2330 x 10 km 1-2 days Operational Mapping
Stratification
AVHRR? 1000 m 2400 x 6400 1 day Operational Mapping
km Stratification
IKONOS® 14 m 11 x 11 km 3-5 days Operational Sampling
Mapping
Stratification
QuickBird 0.6-2.4 m 16.5 x 16.5km |1-3.5 days | Operational Sampling
Mapping
Stratification
ASTER! 15-90 m 60 x 60 km 16 days Operational Mapping
Stratification
Hyperion 30 m 7.5 x 100 km 16 days Operational Mapping
Stratification
ALOS 10 m 70 km 2 days 1—end of Mapping
PALSAR operation Stratification
1,28 2—
operational
Notes

“Landsat Enhanced Thematic Mapper Plus
PSatellite Pour I’Observation de la Terre or Earth-Observing Satellites

“Moderate-Resolution Imaging Spectroradiometer

9Advanced Very High Resolution Radiometer

“Tkon Observing Satellite

fAdvanced Spaceborne Thermal Emission and Reflection Radiometer
€Advanced Land Observing Satellite-Phased Array L-band Synthetic Aperture Radar
Source: Lillesand and Kiefer (2000)

information, rather than a substitute for ground-based data gathering. However, the
insight that it provides into the environmental status and processes is valuable.

Aerial photographs have been used routinely in forestry since the 1950s and have
played a key role in forest mapping and inventory systems up to the present (Aldrich
1979; Leckie and Gillis 1995). Today, other remote sensing technologies have
improved capability and resolution and are conducted using satellites or aircraft
platforms and a variety of sensors.

The pixel sizes of selected operational sensor systems are compared in Fig. 3. The
first earth resource technology satellite (ERTS-1 or Landsat 1), with an MSS, was
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Fig. 3 TIllustration of various sensor systems with respect to their spatial resolution (redrawn and
from Kitsch and Vogt 1999 (revised))

launched in 1972 and had a resolution of 79 x 79 m with four spectral bands. Ten
years later, it was improved with the addition of Landsat TM imagery. Landsat TM
on Landsat 4 improved the resolution to 30 m and covered a wide range of the
electromagnetic spectrum with seven bands, including thermal band and two
mid-infrared bands. Together, Landsat series permit a retrospective image interpre-
tation possible back to 1972 (IUFRO 1994).

The SPOT satellite was launched in 1986 and has a 20 m spatial resolution for
multispectral and 10 m for panchromatic modes. SPOT with panchromatic, visible,
and near-infrared bands is useful for vegetation studies including health assessments.
By 1995, images with 5.8 m resolution were available from the IRS satellite
(Lillesand and Kiefer 2000).

Canada’s RADARSAT, which was launched in 1995, represents an operational
spaceborne active sensor technology (Table 2). In this system, the target area on the
ground is scanned by microwave radiation. The reflected and back-scattered radia-
tion then provides information about the surface, sub-surface, physical, and dielec-
tric properties (Leckie 1998). Microwave sensors have the highly advantageous
properties of operating independently of sun illumination and are usually insensitive
to weather conditions or cloud cover. These characteristics are particularly suitable
to monitoring phenomena in the tropic regions (Thompson et al. 1993; Toan 1995;
Salas et al. 2002), although the full capability of radar has yet to be exploited (Leckie
1998).

The first commercial imaging satellite (IKONOS) was launched in September
1999 from the Vandenberg Air Force Base, California. This satellite provides 1-m
resolution panchromatic images and 4-m multispectral images (Lidov 1999). Test
images from IKONOS prove the superior quality of the new system (Baltsavias et al.
2001). Many of the newly launched sensor systems feature high spatial geometric
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Table 2 A selection of various previous and currently operational sensor platforms

Year of Type of Spatial Stereo
Sensor Country launch sensor resolution (m) capability
RADARSAT | Canada 1995 SAR? 28 x 25
10x9
SUNSAT® South Africa | 1999 MSS 15 Yes
QuickBird USA 2001 PAN¢/ 0.6/2.44
MSS

IKONOS 2 USA 1999 PAN/MSS 1.0/4.0 Yes
SPOT 4 France 1998 PAN/MSS 10/20 Yes
SPOT 5 France 2002 PAN/MSS | 2.5/5/10 Yes
Landsat TM USA 1999 PAN/MSS 15/30-60

7
Notes

“Synthetic aperture radar

"The sensor has not been active since 2001 due to technical problems
“Panchromatic

Source: Kitsch and Vogt (1999) (revised)

resolutions in combination with stereo capabilities such as SUNSAT, IKONOS,
SPOT 4, and SPOT 5 (Table 2). These characteristics will make images suitable for
the application of traditional photogrammetric techniques to extract altimetric infor-
mation, such as a digital elevation model (DEM). Evaluations using IKONOS
images are still on-going for studying different topographic terrain and applications;
however, recent results in mountainous areas are promising for small area mapping
(Toutin and Cheng 2000).

Besides providing with necessary data and information on forest, the latest series
of satellite platform also improvise to enhance the accuracies and techniques
obtained as compared to the traditional approach. Recently, the new generation of
platform shows more advanced sensors. The advancement includes enhancing the
prediction of forest biomass, canopy height, and leaf area (Faridah-Hanum et al.
2014). Hyperion, Geoscience Laser Altimeter System (GLAS), GeoEye, and Pan-
chromatic Remote Sensing Instrument for Stereo Mapping (PRISM) are examples of
the recent very high-resolution (VHR) remote sensing.

Characterising ground parameters under the cloud cover obstacles is the applica-
tion advantage of radar-imagery option. The synthetic aperture radar (SAR) systems
include Phased Array type L-band Synthetic Aperture Radar (PALSAR), Advanced
Synthetic Aperture Radar (ASAR), RADARSAT-1, RADARSAT-2, Japanese Earth
Resources Satellite (JERS-1), European Remote Sensing Satellite (ERS-1), and
Spaceborne Imaging Radar (SIR-C) (Marco and Kuenzer 2020). The ability of
satellite imagery by remotely sensed data to appoint significant issues in forestry
has generated strong interests from researchers for a long time. Previous studies also
address unique aspects in the advancement of remote sensing of forestry function
and traits, which can be grouped into two themes: (1) remote sensing-based estima-
tion and monitoring of plant traits and (2) linking of forest to function and integration
into models.



Remote Sensing for Forest Inventory and Resource Assessment 13

QuickBird is now the highest-resolution commercial remote sensing satellite
offering imagery with 60 cm resolution. QuickBird was launched in October 2001
and collects multispectral and panchromatic imagery simultaneously with 16.5 X
16.5 km swath width at nadir (Euroimage 2002). SPOT 5 was launched from the
Guiana Space Centre in Kourou, French Guiana, in May 2002. It offers enhanced
capabilities compared to SPOT 4 in terms of improved resolution (up to 2.5 m) and
will also be used to create coverage of five continents with digital terrain models.
SPOT 6 and 7 were launched on 6 September 12 and 30 June 2014, respectively.
Both sensors provide continuity of high-resolution, wide-swath data up to 2024 and
carry New Astrosat Optical Modular Instrument (NAOMI) (European Space Agency
2022).

WorldView-1 was the first high-resolution commercial satellite from the World-
View series launched in 2007 with 50 cm resolution. Next in 2009 and 2014,
WorldView-2 and WorldView-3 were launched respectively, equipped with
8-band multispectral bands. Most recently, WorldView-4 was launched in 2016
that consists of 31 cm which provided 31 cm panchromatic imagery and 1.23 m
multispectral imagery. In Sabah, Malaysia, Mohsin et al. (2021) have used
WorldView-2 data to develop predictive model for estimating stand volume of
Eucalyptus plantation species and recorded a multiple coefficient of determination
(R?) value of 0.86.

5 Forestry Applications of Remote Sensing in Developing
Countries

In developing countries, the use of satellite imagery data as a component in resource
inventories and information systems has been reported by many authors
(e.g. Lachowski and Dietrich 1978; Wacharakitti and Morain 1978; Aldrich 1979;
Lal et al. 1990; Bong 1991; Rao et al. 1991). General conclusions were that remote
sensor imagery has proven to be a more authoritative source of data than was
formerly possible. For example, the Philippines government believed that its ever-
green rainforest cover still accounted for 57% of the land base during the early
1970s, but a remote sensing survey carried out by Lachowski and Dietrich (1978) in
1976 revealed that the actual amount was only 38%. In this survey, the authors used
Landsat imagery with support from ground data and considered that the methodol-
ogy was sufficiently comprehensive for the results to be characterised as accurate
within 95% accuracy. A similar example occurred in the early 1970s in Thailand,
where the government believed that 48% of the country was under forest cover,
largely monsoon deciduous forest. A 1978 Landsat survey revealed that the actual
cover amounted to only 25% (Wacharakitti and Morain 1978). In India, the Depart-
ment of Forestry estimated 23% of land area as forested, but a Landsat survey
estimated the amount as less than 10% (Lal et al. 1990).

Inspired by the revealing results reported for the Philippines and Thailand, and
motivated by growing evidence of forest depletion in their countries, a good number
of other tropical countries have undertaken remote sensing surveys of their tropical
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forest cover. In many different countries remote sensing revealed that forest cover
was in fact less—often a good deal less—than was previously thought (Malingreau
1986).

Today, many developing countries are involved in the systematic monitoring of
renewable resources. Given constraints of time, money, and skilled manpower,
countries must evaluate effective methods to obtain reliable and timely resource
data. Traditional ground methods are time-consuming and expensive for regional or
national resource inventory programmes. Remote sensing from aircraft and satellites
has gained worldwide recognition as an efficient method to provide resource infor-
mation that is often technically and economically feasible compared to ground
methods (FAO 1996).

In Malaysia, aerial photography has been used effectively for several decades.
The first complete coverage was obtained in 1967 at a 1:25,000 scale with black-and-
white panchromatic film (Kamaruzaman and Mohd Rasol 1995). Landsat MSS and
TM data have been used for land-use surveys and the results have shown that it is
possible to map various natural land-cover types and man-made features, including
terrain change, forest areas, soil types, dams, and urban areas (Salleh 1976;
Mahmood et al. 1983). However, the resolution of the MSS was found to be
unsuitable for mapping Malaysian agricultural land utilisation due to small farm
sizes and irregular cropping patterns (Darus 1989). Another study conducted by the
ASEAN Institute of Forest Management (AIFM) in 1989 showed that Landsat TM
imagery could be used to detect and classify forest disturbances and provide data to
update forest resource maps through the integration of remote sensing and a geo-
graphic information system (GIS) (Zahriah et al. 1989). Landsat TM has been used
to detect deforestation and to identify suitable areas for tourism-related development
in Langkawi Island, Malaysia (Kamaruzaman and Mohd Rasol 1995; Kamaruzaman
and Hasssan 1996). Another study was conducted by Kamaruzaman and D’Souza
(1996) to determine the applicability of SPOT-HRV in the State of Pahang,
Malaysia, for detecting logging activities. It was shown that physical features and
forest disturbances could be detected by this image.

In Malaysia, the Forestry Department Peninsular Malaysia (FDPM) has begun the
application of remote sensing and GIS for forest monitoring since 1986, however
mostly focusing on the case studies at specific area. According to Hwai (2006),
satellite imagery was used to help stratify the forest in the third National Forest
Inventory (NFI) (1990-1992) with close help from the Malaysian Centre of Remote
Sensing (MACRES). In the fourth NFI (2000-2002), satellite imagery was further
used to map the forested areas. In 1998 onwards, the application of remote sensing
imagery was continuously used to determine forest change, forest encroachment and
illegal loggings, but at a less real time. With the more advanced technologies
developed, the more real time imagery was used from 2006 onwards at which the
forest boundaries were corrected using hyperspatial resolution. Meanwhile, the
hyperspectral imageries were used at experimental stage to identify tree species
and estimate time volume (Hwai 2006).

In 2004, Suratman et al. conducted a study to investigate the relationships
between Landsat TM and rubber stand parameters and to develop and evaluate
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models for estimating stand volume of rubber plantations. They found statistically
significant models for estimating volume of rubber stands with the R* values being
all higher than 0.70 and standard error of the estimate (SEE) values being lower than
54 m>/ha. In oil palm above-ground biomass (AGB) modelling study conducted by
Asari et al. (2017) in Malaysia, they found a non-linear negative trend between AGB
and all individual TM bands. Moderate relationships were recorded for AGB and
bands 1, 4 and 5 with r values ranging from —0.33 to —0.42. Meanwhile in Kedah,
Malaysia, Tengku Hashim et al. (2020) used Landsat 8 (OLI) data to estimate the
carbon stocks in mangroves. They found a positive correlation between field-
measured carbon stocks with Landsat 8 individual bands (bands 2—7). The total
carbon stocks were estimated to range from 16.88 Mg/ha to 138.20 Mg/ha with an
overall mean of 67.29 Mg/ha.

In India, the use of remote sensing goes back over 30 years. The first aerial
photographs for forestry purposes were acquired in 1963. Applications of satellite
imagery in forestry date back to 1975. The first attempt to assess forest cover in India
by satellite imagery interpretation was made in 1984—1985 by the National Remote
Sensing Agency (NRSA 1983). This exercise was done visually and resulted in an
estimate of the forest cover for the country of 0.64 million kmz, or 19.5% of the
geographical area, in contrast to the previously recorded figure of 22.8% (Rao et al.
1991). The years between 1980 and 1990 were dominated by satellite remote sensing
for forest resource assessment, monitoring, wildlife habitat evaluation, and fire
damage assessment (Kushwaha 1987). Subsequently, vegetation cover and forest
type mapping were done by the Forest Survey of India that involved preparing forest
cover maps of 1:250,000 for the entire country, to be repeated every 2 years for
monitoring (Kohl and Kushwaha 1994). This project revealed that non-forest areas
could generally be mapped with an accuracy of 80-95% in flat undulating areas if the
trees were in full foliage. Currently, approximately 70% of India has been covered
on a thematic map (FAO 1998).

A FAO/UNDP project helped Myanmar assess forest resources with the use of
satellite data from a 1970 Landsat image. This project, which was conducted from
1981 to 1991, provided reliable information on forest resources for about 90% of the
area. Since 1991, the country has been conducting field forest inventories every year,
covering 2 million ha using remote sensing and GIS technologies (FAO 1998).

In Sri Lanka, forest cover assessment maps using Landsat imagery were produced
in 1991-1992. Indicative inventories of non-forest land and detailed periodic
inventories of plantations were carried out for assessing resources. A forest resource
assessment was done using 1:20,000 aerial photographs for natural forests and 1:
10,000 and 1:20,000 for plantations (FAO 1998).

From 1995 to 1997, the Forest Department of Bangladesh completed an
inventory programme in hill and coastal forest areas, with the assistance from an
international development agency. This was a unique inventory in the sense that a
socio-economic survey was also conducted along with the forest inventory to
understand the behavioural pattern of the users. Forest statistics were generated
with continuous resource change assessments. SPOT-HRV data were used to gener-
ate signatures of different types of forest vegetation (FAO 1998).
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In some parts of the world, the conversion of mangrove forest into other types of
land use (e.g. residential areas, airports, agricultural lands, fishponds, etc.) takes
place continuously (Hartono 1994). Satellite imagery data have been used for
various mangrove forest analyses and monitoring in many parts of the tropical
world. For example, in Bangladesh, computer-processed Landsat data, with addi-
tional data from 1:30,000 aerial photographs, permitted two mangrove species to be
distinguished with 71% classification accuracy (Heller and Ulliman 1983). SPOT-
HRV satellite data have been used for more than 10 years in a mangrove forest
analysis. For mapping purposes, SPOT-HRV images have been used in Vietnam
(Bong 1991) and in Guinea (Moreau and Vercesi 1989). Monitoring of mangroves
has been performed with SPOT-HRYV and aerial photographs in East Java (Hartono
and Muljosukojo 1990). More recently, SPOT-HRYV satellite data were used for
mangrove inventory in Cimanuk Delta, West Java, by Hartono (1994). Based on a
combination of image analyses, five classes of mangrove vegetation were identified:
(1) Lumnitzera spp. (2) Avicennia spp. (3) Rhizophora spp. (4) mixed floristries, and
(5) degraded mangrove. In this study, a confusion matrix analysis was performed
and an overall 94% classification accuracy was achieved. In other parts of the image,
rice fields, villages, home state gardens, rivers, creeks, and irrigation channels were
identified.

In Thailand, Landsat MSS images were used in the form of 1:1,000,000
diazochrome additive-colour composites and 1:500,000 black-and-white images of
bands 4, 5, and 7 and of bands 5 and 7. Together with additional information from
the field and from aerial photographs, maps made from the Landsat images were
used to determine the total forest cover. Comparing this information with forest
cover data either from aerial photographs or Landsat imageries with earlier dates
permitted a rough calculation of the reduction of the forest cover over large areas, at
a relatively low cost (Morain and Klankamsoon 1978). Miller et al. (1978) utilised
Landsat imagery covering the years 1972 through 1977 for determining the expan-
sion of shifting cultivation in northeastern Thailand. Additional information from 1:
20,000 to 1:60,000 aerial photographs on shifting cultivation, irrigated rice, hill
evergreen forest, and other forest types grouped together was also incorporated.
Mapping of the different values of MSS band 7, displayed by assigning grey levels to
various levels of difference in tone (scene brightness), permitted detection of shifting
cultivation at 1-year intervals. The difference in maps of MSS band 5 was in
showing where permanent agriculture was encroaching on the forest.

In Tanzania, remote sensing technology has been applied in the production of
forest cover maps and inventories of plantations and natural forests. For example,
Sylvander et al. (1988) successfully utilised satellite imagery for delineation of
vegetation types in Eastern Tanzania using Landsat MSS false composites at a
scale of 1:250,000. Double sampling with aerial photographs for estimating the
volume of Miombo woodlands was done by Temu (1981). He found that the method
was effective, especially for the areas where access was poor.

This review shows that forest inventories and monitoring work in developing
countries makes extensive use of remote sensing data. Area information on forest
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types from satellite data mapping has generally been successful, but identification of
species has been difficult.

6 Relationship Between Forest Parameters and Remote
Sensing Data

Information about forest conditions is essential for forest management planning.
Forest management activities require reliable forecasts of the development of all
constituent stands in the area being managed. Strategic decisions concerning forest
policies to achieve management objectives require accurate information, including
stand growth forecasts. In the last decade, many studies have shown that spectral
radiance recorded by satellite remote sensing can be related to several forest
parameters. Forest inventory studies have found that many tree and stand variables,
such as wood volume, biomass, basal area, diameter, and stand age, show strong
inverse relationships with red, near-, and mid-infrared bands from Landsat TM and
red and near-infrared bands from SPOT (e.g. Horler and Ahern 1986; Danson 1987,
Poso et al. 1987; Ripple et al. 1991; Ardd 1992; Brockhaus and Khorram 1992;
Nilsson 1997; Suratman et al. 2002, 2004; Asari et al. 2017; Tengku Hashim et al.
2020; Mohsin et al. 2021). Ripple et al. (1991) argued that this was because the
understory has a highly reflective shrub and herb layer. Young stands with lower
wood volumes have higher radiance in all TM and HRV bands than older stands
which have more shadows, thus causing the strong inverse relationships. Table 3
summarises the correlation coefficients (r) between some forest variables and
Landsat TM and SPOT-HRYV spectral data from various sources.

Studies using the near-infrared band of SPOT and the near- and mid-infrared
bands of Landsat TM in Douglas-fir (Pseudotsuga menziesii) forests in Oregon have
found reflectance and wood volume-related parameters to be well-correlated when
using data averaged at the forest-stand scale with correlation values as high as —0.89
(Ripple et al. 1991). Studies that have not involved spatial averaging of data beyond
the pixel scale produce relationships between reflectance and wood volume that have
much lower r values, especially at higher wood volumes (Franklin 1986; Danson
1987). For example, Franklin (1986) presented a study, which included basal areas
exceeding 100 mzlha, that showed a relationship between Landsat reflectance and
wood volume with correlation values between —0.38 and —0.54.

Image classification commonly uses statistical techniques to group pixels into
various predefined classes, such as land-cover types, land-use classes, and vegetation
types (e.g. Bolstad and Lillesand 1992; Brockhaus and Khorram 1992;
Kamaruzaman and Mohd Rasol 1995; Suratman and Ahmad 2012). According to
Leckie (1990), a discriminant analysis based on Bayesian maximum likelihood is the
most common algorithm used for classification analysis. In addition, he stated that
ancillary data describing soil type, slope, and previous management operations, for
example, are important for improving the classification accuracy.

The ability of remotely sensed data to provide information on forest variables
such as wood volume, tree height, tree diameter, and tree species composition has
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Table 3 Correlation coefficients between forest variables and Landsat TM and SPOT-HRV
spectral data

Spectral Spectral Volume Basal area Age Height
bands Band range (um) (m*/ha)® (m%*/ha)® (years) (m)
TM band Blue 0.45-0.52 —0.61 —0.27 —0.35° —0.44°¢
1

TM band Green 0.52-0.60 —0.72 —0.42 —0.54° —0.56°
2

TM band Red 0.63-0.69 —0.69 —0.47 —0.53° —0.48°¢
3

TM band Near- 0.76-0.90 —0.76 —0.47 —0.45° —0.54¢
4 infrared

TM band | Mid- 1.55-1.75 —0.63 —0.43 —0.62° | —0.62°
5 infrared

TM band Mid- 2.08-2.35 —0.55 —0.48 —0.59° —0.53¢
7 infrared

HRV Green 0.50-0.59 —0.77 —0.18 —0.67¢ | —0.18¢
band 1

HRV Red 0.61-0.68 —0.63 —0.35 —0.40% | —0.35¢
band 2

HRV Near- 0.79-0.89 —0.82 —0.41 —0.42¢ | —041¢
band 3 infrared
Sources

“Ripple et al. (1991)

Brockhaus and Khorram (1992)
“Nilsson (1997)

9Danson (1987)

been reported by numerous researchers (e.g. Horler and Ahern 1986; Danson 1987,
Poso et al. 1987; Ripple et al. 1991; Ard6é 1992; Brockhaus and Khorram 1992;
Asari et al. 2017; Mohsin et al. 2021). Regression functions are often used to relate
these variables to the satellite data (e.g. Franklin 1986; Ahern et al. 1991; Ripple
etal. 1991; Ardo 1992; Brockhaus and Khorram 1992; Trotter et al. 1997; Suratman
et al. 2004). This requires that the correlation between the variables and the satellite
data be sufficiently strong. The regression models used in many studies relate
different stand variables to functions of spectral band, band products, band ratios,
and band transformations (Jakubauskas and Price 1997; Scheer et al. 1997; Asari
et al. 2017; Tengku Hashim et al. 2020; Mohsin et al. 2021).

A study conducted in the boreal forest by Ardo (1992) showed that field plots
established for forest planning in Sweden could be used to construct regression
models that predict wood volume. The correlation value between the observed and
the estimated volume was 0.83 and the standard error of estimate was 46.5 m>/ha.
Ardd concluded that there was a stronger relationship between spectral radiance and
volume for compartments with small volumes than for compartments with large
volumes. This agrees with Franklin (1986), who suggested that when the vegetation
cover approaches 100%, the basal area continues to increase as the stand grows
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older. However, the remotely sensed signal is not affected by the increase because it
is most sensitive to the degree of crown closure.

An alternative to regression technique is the k nearest neighbour (kNN) estima-
tion method, in which forest variables are calculated as weighted means of spectrally
nearby samples (Muinonen and Tokola 1990; Tomppo 1990). The method has been
used operationally in the Finnish National Forest Inventory (NFI) since 1990.
According to Tomppo (1990), among the advantages of this estimation method is
that a vector consisting of all variables that are measured or registered in the NFI can
be estimated. However, lack of or a low number of sample plots in certain forest
types might lead to unreliable estimates (Moeur 1987). kNN estimates are unreliable
at a pixel level, but reliable when aggregated to a community level (Tomppo 1990).
For example, a study by Tokola et al. (1996) in the south of Finland with primary
species of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch
(Betula spp.) found that the standard error of estimates for wood volume on a pixel
level was approximately 68—77 m*/ha.

7 Summary

It is essential to gain information about forest condition via forest inventory to
achieve an effective planning and management of forest resources. A reliable
forecast is required in managing forest activities from all the managed stands. This
accurate information is vital to strategise decision related to forest policies in order to
achieve the management objectives. This review summarises sampling techniques
and the development of remote sensing and gave examples of remote sensing
forestry applications in the tropics. It shows that remote sensing has evolved through
black-and-white aerial photography into a complex process, using satellites, thermal
scanning, and radar. In terms of applications, it has evolved from the realm of pure
research to that of worldwide day-to-day application. Many previous studies have
reported that several forest parameters can be related to satellite imageries from
spectral radiance recorded by remotely sensed data. As the need for more and better
information arises, new sensor systems are being developed from time to time and
put into orbit.
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Abstract

Malaysia with a landmass of about 32.9 million ha has about 18.2 million ha of
forest cover. This covers three major types of forest ecosystems, which are
tropical inland, peat swamp, and mangrove forests with the extents of about
16.94, 0.67, and 0.63 million ha, respectively. Malaysia pledged to the world
that it will maintain is forest cover by 50%. These forests house thousands of flora
and fauna species and Malaysia is known as the top 12 megadiversity country in
the world. Sustainable forest management (SFM) is being the pillar for the
management of forest resources that balance between protection, conservation,
production, and consumption of resources and forest products in Malaysia.
Various technologies are used as tools in the management as well as research
and development (R&D) in forestry sector to ensure that these resources are
sustained. Remote sensing is one of the famous technologies that is utilised to
understand and characterise the biophysical and biochemical properties of forests
in Malaysia at varying scales and spatial, radiometric, and temporal resolutions.
This technology is also adopted in tailoring management prescriptions as well as a
tool for monitoring and enforcement. This chapter highlights recent
advancements in remote sensing methodology and applications in the perspective
of multiple platform types including spaceborne, airborne, and unmanned aerial
vehicle (UAV) and sensor types, i.e. optical (multispectral and hyperspectral),
synthetic aperture radar (SAR), and light detection and ranging (LiDAR). This
chapter also identifies advances and limitations of the applied methodology and

H. Omar (D)

Geoinformation Programme, Division of Forestry and Environment, Forest Research Institute
Malaysia (FRIM), Kepong, Selangor, Malaysia

e-mail: hamdanomar @frim.gov.my

© The Author(s), under exclusive license to Springer Nature Singapore Pte 27
Ltd. 2022

M. N. Suratman (ed.), Concepts and Applications of Remote Sensing in Forestry,
https://doi.org/10.1007/978-981-19-4200-6_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4200-6_2&domain=pdf
mailto:hamdanomar@frim.gov.my
https://doi.org/10.1007/978-981-19-4200-6_2#DOI

28 H. Omar

opportunities for future improvements in remote sensing technology applications
in the forestry sector in Malaysia.
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1 Introduction

Malaysia has roughly 18.2 million ha of forest cover, with a landmass of about 32.9
million ha. This includes three primary forest ecosystems: tropical inland diptero-
carp, peat swamp, and mangrove forests, which span approximately 16.94, 0.67, and
0.63 million ha, respectively. Malaysia has promised the world that it will maintain a
50% forest cover. The Malaysian tropical rainforest is one of the world’s most
complicated ecosystems. It has one-of-a-kind natural heritage, which includes a
diverse range of plant and animal species that have evolved over millions of years.
Malaysia’s flora is estimated to contain at least 8000 kinds of flowering plants, with
roughly 2500 of these being tree species. As a result, depending on edaphic
conditions, drainage, and height, there are many diverse rainforest formations.

Lowland dipterocarp forest, hill dipterocarp forest, upper hill dipterocarp forest,
oak-laurel forest, montane ericaceous forest, peat swamp forest, and mangrove forest
are the major forest types in Malaysia. Smaller sections of freshwater swamp forest,
melaleuca forest, heath forest, limestone forest, and quartz ridge forest are also
present. Considering the composition of these forests in Malaysia, the types can be
generalised into three types, which are inland, peat swamp, and mangroves.

In Malaysia, sustainable forest management (SFM) is the pillar for forest resource
management that strikes a balance between resource protection, conservation, pro-
duction, and consumption. To guarantee that these resources are sustained, many
technologies are utilised as management and research and development (R&D)
instruments in the forestry sector. Remote sensing is a well-known technique for
determining and characterising the biophysical and biochemical aspects of
Malaysian forests at various sizes and geographical, radiometric, and temporal
resolutions. This technology is also used to customise management prescriptions
and as a monitoring and enforcement tool.

Remote sensing has made it possible to monitor forest characteristics consistently
and repeatedly in qualitative and quantitative ways. Such data collection and
reporting are a significant factor that assists in research and development processes.
It also makes it easier to integrate forestry with other agencies. Nowadays, remote
sensing is applied in different areas of forest management.

It is also desirable to use remote sensing data to monitor forests consistently and
repeatedly over large areas, and automated image analysis techniques. Several types
of remote sensing data, including optical multispectral scanner, synthetic aperture
radar (SAR), light detection and ranging (LiDAR), aerial photography, and
unmanned aerial vehicle (UAV) data, have been used by forest research and
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operational agencies to detect, identify, classify, evaluate, and measure various
forest cover types and their changes. Over the past decades tremendous progress
has been made in demonstrating the potentials and limitations of the applications of
remote sensing in forestry.

In both qualitative and quantitative methods, remote sensing can detect, identify,
classify, evaluate, and measure many forest properties. Forest cover types can be
classified qualitatively as coniferous and deciduous forest, mangrove forest, marsh
forest, forest plantations, and so on using remote sensing. Quantitative analysis can
quantify or estimate forest metrics such as density, height, basal area, number of
trees per unit area, timber volume, and woody biomass, as well as floristic composi-
tion, life forms, and structure. Users of forest data are looking for new sensors and
platforms for a variety of remote sensing applications in forestry in certain locations
of the world, such as tropical areas. An inventory of all remote sensing applications
in the forestry sector in Malaysia is required to determine what kind of information
we can extract from current remote sensing sensors and platforms, as well as how
accurate that information is.

This chapter highlights recent advancements in remote sensing methodology and
applications in the perspective of multiple platform types including spaceborne,
airborne, and UAV, and sensor types, i.e. optical (multispectral and hyperspectral),
SAR, and LiDAR. This chapter also identifies limitations of applied methodology
and opportunities for future improvements in remote sensing technology
applications in the forestry sector in Malaysia.

2 Remote Sensing as Tool for Forest Mapping and Inventory

Forestry was one of the first disciplines in Malaysia to identify the importance of
remote sensing in acquiring timely and accurate data, which is critical for long-term
forest management and tracking trends in forest land use (Kamaruzaman and Souza
1997). Among the first attempts that were made to use remote sensing data in
forestry are Thang (1983), Thang et al. (1987), and Wan Yusoff (1988). But that
time, the applications were concentrated only on classification methods for forest
cover mapping. In the case of forest inventories and practices, the role of remote
sensing technology has grown significantly because it can provide enhanced infor-
mation directly or indirectly, as well as collect forest resource information with high
spatial accuracy, allowing tactical, strategic, and operational forest planning and
management. Since the early 1990s optical remote sensing has been widely used also
for forest inventory parameter assessment (Wulder 1998). Government agencies in
Malaysia, such as the Forestry Department of Peninsular Malaysia (FDPM), have
been using remote sensing technology for nearly two decades to plan, manage, and
monitor their forest areas (Wan Abd Rahman 2016).

Factors to consider when selecting remote sensing products include spatial
resolution, spectral resolution, radiometric resolution, and temporal resolution. Spa-
tial resolution refers to the size of the smallest object that can be detected on an
image. There are also some common considerations that need to be taken into
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Fig. 1 Common
considerations in forest
assessment using remote
sensing

Fig. 2 The trade-offs
between cost and accuracy of
using remotely sensed data in
assessing forests
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account when using remote sensing in various applications in forestry. The most
common are cost of data acquisition, scale of the studied areas, attainable accuracies,
time to process the data, and the rapidity and replicability of the end products
(Fig. 1).

Depending on the objectives of the studies, remote sensing offers some trade-offs
between cost and accuracy. It is often that the higher the resolution of the data, the
higher the cost. And this can be directly related to the scale or size of the study area.
Figure 2 illustrates how cost and accuracy are related to each other and how these
factors can influence the selection of remotely sensed data in specific study area with
justified objectives.

There are several studies that used remote sensing data for forest mapping and
inventory in Malaysia. Mohd Najib and Kanniah (2019) employed the Carnegie
Landsat Analysis System-Lite (CLASlIite) algorithm to determine forest cover using
Landsat satellite data in Peninsular Malaysia. The goal of this project was to create a
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map of forest cover in Peninsular Malaysia. The study’s findings reveal that the
CLASIite algorithm incorrectly identified some oil palm, rubber, and urban areas as
forest vegetation. By integrating Landsat and Advance Land Observation Satellite,
Phased-Array type L-Band Synthetic Aperture Radar (ALOS PALSAR) images to
detect oil palm, rubber, and urban areas and then eliminating them, a valid forest
cover map was created. The ALOS PALSAR (threshold technique) data on
horizontal-horizontal (HH) and horizontal-vertical (HV) polarisations could detect
oil palm plantations with an overall accuracy of 85%. With an overall classification
accuracy of 94.5%, these techniques generated a forest cover reading of
5,914,421 ha.

Landsat missions have been producing a consistent dataset over Malaysia regions

since year 1978 (Fig. 3). It is the only satellite that can provide historical data on
forest cover and other land uses. Hamdan et al. (2021) utilised Landsat-5 Thematic
Mapper ™ and Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8-
Operational Land Imaging (OLI) to map the forest cover and changes from 2005
to 2020. The study found that forest cover in Malaysia has declined from about
19.3 million ha (in 2005) to 18.2 million ha in year 2020 (Table 1). The study found
that the deforestation from 2005 to 2020 amounted to the loss of 1,087,030 ha
(5.6%) of its year 2005 forest cover, with the annual rate of deforestation at 0.37%
yearfl.
Hamdan et al. (2020a) also conducted a study to map mangroves at national level
using Landsat-8 OLI data. To create a mosaic that covers the entirety of Malaysia, at
least 29 scenes of Landsat images are required. However, due to its location in the
tropics, Malaysia is constantly shrouded in clouds that are very impossible to remove
completely. To produce a cloudless image, many images taken at different times
over the same spot are required. For further processing, the study has set a restriction
of five top photographs of the same scenes taken within 3 years of the targeted year.
These photos must have a cloud cover of less than 30% and be taken between the
specified time frames. Even with Landsat’s 16-day repetition cycle, which produces
around 22 scenes over the same coverage in a year, finding the best image is still
challenging. This is owing to the dense cloud cover in Malaysia’s atmosphere,
particularly in hilly areas and during the monsoon season (October to February).
Cloud covers in most settings range from 10 to 90%; thus, the chances of getting a
cloud cover of 30% are slim. To obtain cloud-free images over Malaysia for a
one-time observation, at least 145 scenes of Landsat-8 datasets are required. This
problem was remedied, though, by having many high-quality sequences. The Fmask
method was used to detect and mask the clouds in these images (Fig. 4). About
629,038 ha of mangroves cover in the whole country for the year 2017 was mapped
from this study. The accuracy was verified by using ground truthing points, which
attained at least 85% (Fig. 5).

About similar study was conducted by Kanniah et al. (2015) in Iskandar Malaysia
(IM), the fastest growing national special economic region located in southern Johor,
Malaysia. The Maximum likelihood classification (MLC) was adopted, and the
technique provided significantly higher accuracies compared to the support vector
machine (SVM) technique. The classified satellite images using the MLC technique
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Fig. 3 The Landsat datasets (top) and the produced forest cover map (bottom)

showed that IM lost 6740 ha of mangrove areas from 1989 to 2014. Nevertheless, a
gain of 710 ha of mangroves was observed in this region, resulting in a net loss of
6030 ha. Earlier, a study was conducted within the same study area at the Sungai
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Fig. 4 Cloud masking process and the final product of a scene of Landsat

Pulai RAMSAR site and its surrounding areas. This study was carried out to identify
and map land cover types using SPOT-4 imagery. Through unsupervised classifica-
tion technique a total of seven classes of land cover type were mapped, where the
accuracy was attained at about 90%. Later, vegetation densities were classified into
five levels, namely, very high, high, medium, low, and very low, based on crown
density scale using vegetation indices such as normalized difference vegetation
index (NDVI), advance vegetation index (AVI), and optimized soil adjusted vegeta-
tion index (OSAVI) (Ismail et al. 2011).

Moving to the lesser-known wetland ecosystem type, Melaleuca forest, known as
Gelam forest, a study was conducted to identify its coverage and locality. Hamdan
et al. (2020b) used optical images from Landsat-8 OLI as primary input for this
study. Spectral characteristic from visible and infrared channels was derived from
the images to produce a specific vegetation index, i.e. NDVI, land surface water
index (LSWI) (also known as normalized difference infrared index (NDII)), soil-
adjusted vegetation index (SAVI), and enhanced vegetation index (EVI), which
were used for recognising Melaleuca forest on the images. The study demonstrated
that the Melaleuca forest covered about 23,000 ha in Peninsular Malaysia (Fig. 6). It
also demonstrated that the use of Landsat-8 OLI satellite images was good at
delineating Melaleuca forest. The integration of multispectral bands and VIs has
improved the classification accuracy from 72.3 to 93.7%. Green and near-infrared
(NIR) bands together with soil-adjusted vegetation index (SAVI) were the most
important input for the classification.

3 Remote Sensing for Biomass Carbon Assessment

Remotely sensed data is currently being extensively used for estimating forest
biomass. Satellite-based estimates of carbon stock are likely to become more
accessible over the next few years (Vashum and Jayakumar 2012). Remote sensing
data does not directly determine the quantity of biomass present in the forest. It only
analyses biomass-related factors such as tree height, crown size, forest density, forest
type, forest volume, leaf area index, and so on. The above-ground biomass (AGB) is
estimated using remote sensing data combined with field-based forest
measurements. Field measurements are frequently used to create predictive models
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Fig. 5 The Landsat datasets (top) and the produced mangroves cover map (bottom)

or allometric equations for biomass and to verify remotely sensed data results. Once
validated, remotely sensed data can be used to estimate forest biomass for a larger
area where field measurement data is few or not existent.

Generally the source of remote sensing data, sensor type, algorithm employed,
processing technique, bioclimatic conditions, and forest types all influence the
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Fig. 6 The Landsat datasets (left) and the produced Melaleuca forest cover map (right)

reliability estimation of AGB using a remote sensing technique. Developing
modelling regression to obtain the best AGB prediction would be a new approach,
especially in terms of comprehending the integration of allometric equations and
remote sensing modelling (Mohd Zaki and Abd Latif 2017). Malaysia with variety
of forests, various stand conditions, and management practices would offer different
challenges in AGB estimations using remote sensing. The users need to be very
selective in the applied methodologies, field survey protocols, allometric equations,
and the sensor type used to quantify AGB in the forests of Malaysia.

Optical and SAR (and the combination of both) systems are utilised widely for
biomass assessment in Malaysia since the last two decades at different scales and
forest types. To some extent where more accurate results are required, high-resolu-
tion images and LiDAR are engaged by adopting various processing techniques. Seo
et al. (2014) estimated the AGB and distribution of tropical forest in a production
forest reserve in Tangkulap Forest Reserve (FR), Sabah, using k-NN method in
combination with field survey data, Landsat TM-5 image spectral bands, and GIS
data. The k-NN method was used to determine the number of reference plots.
Common NDVI with 3 x 3 texture measure was found to be the best indicator for
estimating AGB as compared to the original digital number without filtering.

Another study to estimate AGB was conducted by Langnera et al. (2012) at
Tangkulap and Deramakot FR, Sabah. They identified that the mid-infrared band of
Landsat-8 OLI, which is sensitive to soil components and vegetation moisture
content, was the best at representing the crown cover condition and forest status.
High reflectance values indicate openings in the crown cover. Younger vegetation
and regrowth and characteristic successional land cover types with intermediate
reflectance values can be separated from pristine forests, which show lower
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reflectance values. Crown cover and forest status (CCFS) index is derived as
the reciprocal of the illumination and atmosphere-corrected reflectance values
(MidIR(b7)corr). A haze correction was done by using the reflectance values of the
blue band. The resulting modified bands (Blue(bl),,,q) were finally used to correct
the CCFS index:

1

CCFSconr = —0.3 xBlue(bl)

MidIR (b7 )corr mod

Two models to estimate AGB in the study area were proposed, which are:

Model 1: AGB} gnasat = CCFS%or + CCFScon
Model 2: AGBy angsar = CCFS?eorr

Aster and SPOT satellites were also considered in developing alternative methods
for biomass estimation. A similar study was conducted by Abd Latif et al. (2015) at
Besul FR, Terengganu, to detect the impact of logging operations to the forest loss
using SPOT-5 satellite imagery. The data was used to detect forest canopy loss and
to extract parameters for estimating biomass loss between years 2012 and 2014.
Forest AGB was estimated at 259.1 Mg ha ™' by using original digital number from
individual bands without filtering and 263.4 Mg ha™" estimated from NDVL. Slightly
lower estimates were produced when 3 x 3 filtering was applied, with the estimated
AGB being 248.1 and 257.3 Mg ha' from the individual bands and NDVI,
respectively.

Focusing more on the image-processing method, Tangki and Chappell (2008)
used a total of 50 sampling plots of 0.1 ha to quantify mean tree biomass in different
conditions of forest, i.e. virgin and logged forests at Ulu Segama RF, Sabah. These
data were then correlated with the spectral radiance of individual Landsat-5 TM
bands over the 15 km X 15 km study area. At this scale, a two-parameter linear model
of Landsat TM radiance in the NIR band explained 76% of the variation in biomass.
The differences in mean radiance may be related to a change in the proportion of
emergent tree canopy compared to a cover of either pioneer trees or ginger/shrubs,
according to the local-scale measurements; the canopies of emergent trees have the
lowest NIR radiance of the vegetation characteristic of selectively logged forest.

On the other hand, Minerva et al. (2014) developed a novel Fourier transform
textural ordination (FOTO) method, which involves the combination of 2D fast
Fourier transform (FFT) and ordination through principal component analysis (PCA)
for characterising the structural and textural properties of vegetation. In the context
of tropical forest in Sabah, this research shows the potential of Fourier transform
approaches in estimating different forest types, their stand structure, and biomass
dynamics. The approach was used to record the research area’s very-high-resolution
(VHR) Satellite Pour 1’Observation de la Terre (SPOT) imagery. The method was
effective in discriminating between forest types and constructing distinct biomass
estimation models for different forest types. The FOTO approach correctly resolves
high AGB values of diverse forest types, according to the results.
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Table 2 Summary of the correlations between AGB and backscatter of HV polarization

RMSE
Prediction Number of (Mg ha™

Year Sensor equation R? samples (1) D)

2010 PALSAR y =2182.9¢*1442* 102735 | 254 115.89

2016 PALSAR-2 y = 8665¢°2>* 105581 | 80 117.45

2010 and | PALSAR + y = 31667174 103541 | 334 116.91

2016 PALSAR-2

Backscatter is in gamma nought (y°, dB) and AGB in (Mg ha™"). All correlations are significant at
p <0.05

An alternative to the optical satellite systems, spaceborne SAR data have become
one of the primary sources for AGB estimation. Radar is well known for its
capability to penetrate cloud cover and it has been recognised as the most significant
advantage compared to optical sensor systems. The possibility of obtaining cloud-
free, wall-to-wall images is higher for a tropical region, especially Malaysia. More-
over, long wavelength SAR such as L-band is more reliable for AGB estimation in
various forest ecosystems. However, studies demonstrated signal saturation at cer-
tain biomass level. This has become another constraint for estimating AGB in
Malaysia’s forests. Hamdan et al. (2015) confirmed that the L-band SAR backscatter
started to saturate at AGB of 200 Mg ha™"'. A direct approach may not be appropriate
to address this limitation and some indirect approaches are needed to produce
accurate estimate of very high levels of biomass. Hamdan et al. (2014a) also
indicated that the saturation occurred in mangrove forest when the biomass level
reached at 100 Mg ha™'. The errors associated with the prediction model were also
observed to increase largely as the AGB exceeded 150 Mg ha~'. However, the use of
L-band SAR can provide an alternative that allows rapid assessment of AGB in large
areas where access is limited.

Understanding and identifying major uncertainties caused by different stages of
the AGB estimation procedure and devoted efforts to reduce these uncertainties are
critical. Hamdan et al. (2014b) did a review on the use of L-band SAR data primarily
from ALOS PALSAR for AGB assessments in tropical regions including Malaysia.
Issues related to approaches, methodologies, advancements, limitations, and options
for AGB estimation by using L-band SAR data are also elaborated. Example uses of
L-band PALSAR and PALSAR-2 data for AGB estimation in Malaysia were
presented by Hamdan and Muhamad Afizzul (2018). Predictive models were derived
from these systems as summarised in Table 2. Since the sample plots covered only
lowland, hill, and hill dipterocarp forests, the equation produced is only valid for
these forests and not accurate for other types of vegetation. This equation is also
valid only for PALSAR and PALSAR-2 datasets.

When the use of a single system portrays some issues, synergetic use or attempts
to combine multiple sensors then came into the picture to address these issues. The
synergy of the prediction has been obtained when the variables were integrated into
an empirical prediction equation derived from multiple line regression. This method
was applied to the single PALSAR-2, to Sentinel-1A polarisation, and also to the



Multiple Sensors and Platforms for Biophysical and. . . 39

Table 3 The best correlations derived from multiple regression from a single sensor and combi-
nation of sensors

Sensor Prediction equation R?

PALSAR-2 146.90HH + 169.78HV — 7.03(HH x HV) + 416.96(HH x HV)" 0.342
% 4 227.07

Sentinel-1A —17.040VH — 2.344(VV x VH) + 24.327(HH x HV)"? + 181.918 0.138

Combination | —10.877VH — 13.292(HH x HV)'? + 139.702HH + 162.287HV — 0.356

6.526(HH x HV) + 394.502(HH x HV)'? + 238.524

All polarizations are in sigma nought (¢°, dB). All correlations are significant at p < 0.05

variables from the combination of both PALSAR-2 and Sentinel-1A. The best three
models have been produced as summarised in Table 3. Evidently the combination of
PALSAR-2 L-band and Sentinel-1A is able to strengthen the relationship between
AGB and the polarisation, thus improving the accuracy of estimates (Hamdan et al.
2017). Both data have complemented each other that eliminated the effects of
backscattering diffusion.

This effort was also demonstrated by Cutler et al. (2012), where multispectral
Landsat TM and Japan Earth Resources Satellite (JERS-1) SAR data were used
together to estimate tropical forest biomass at three separate geographical locations:
Brazil, Malaysia, and Thailand. Texture measures were derived from JERS-1 SAR
data using wavelet analysis and grey level co-occurrence matrix methods, then
combined with multispectral data to provide inputs to artificial neural networks
that were trained under four different raining scenarios and validated using biomass
data from 144 field plots. The addition of SAR texture to multispectral data revealed
good relationships with above-ground biomass when trained and tested with data
taken from the same site (r = 0.79, 0.79, and 0.84 for Thailand, Malaysia, and Brazil,
respectively). Furthermore, the level of correlation (r = 0.55) was stronger when
networks were trained and evaluated with data from all three locations than previ-
ously reported results from the same sites using only multispectral data.

Laser instruments, namely, LiDAR and terrestrial laser scanner (TLS), are
another popular sensor type that is currently used for AGB estimation in tropical
forest with high density and complex stand structures. An intensive investigation of
the relationship between LiDAR properties with the AGB was carried out by
Hamdan et al. (2020c) in 50 ha Pasoh Dynamic Plot (PDP) by using airborne
LiDAR and a comprehensive census data. PDP is situated on a 50 ha dynamic plot
in the Pasoh Forest Reserve in Negeri Sembilan, which is a lowland dipterocarp
forest, a type of evergreen tropical forest. The LiDAR metrics have generated a lot of
variables. These factors were compared to AGB calculated from census data. The
CHM and a few matrices were determined to be the best predictors of AGB and were
thus utilised to estimate AGB across the study area. The estimated AGB ranged from
52 to 718 Mg ha~', with a root mean square error (RMSE) of about 59 Mg ha™',
with an accuracy of 83.36%. The study also demonstrated that estimating AGB in
tropical forest by using waveform LiDAR can be improved by reducing RMSE up to
40 Mg ha~ ' as compared with other estimates from satellite imagery data.
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Meanwhile, Solomon et al. (2020) explored the viability of terrestrial laser
scanning (TLS) in the tropical forest of Malaysia for forest inventory and AGB
estimate. Manual and automatic detection methods were used to identify individual
trees. The manual and automatic detection methods produced an average tree
detection rate of 99.6% and 93.8%, respectively. Using field diameter at breast
height (DBH) as reference, the accuracy measured from TLS was confirmed. For
manually and automatically measured TLS DBH, the root mean square error
(RMSE) was 1.37 cm (6.6%) and 2.36 cm (11.5%), respectively. TLS-based tree
height was also evaluated using the height of an airborne laser scanner (ALS) as
reference, yielding RMSE of 1.74 m (9.30%) and 3.17 m (17.40%) for the manual
and automatic methods, respectively. Finally, the variables extracted from the TLS
data were used to calculate AGB. The R? value was 0.98, and the RMSE was 0.08
Mg. The findings of this study showed that TLS, as a nondestructive method, can
accurately estimate forest characteristics and AGB under dense tropical forest
circumstances. This suggestion was supported earlier by Abd Rahman et al.
(2017). These instruments were not used alone or separately. An attempt to combine
both ALS and TLS that was made by Muluken et al. (2018) found the integrative use
of ALS and TLS can enhance the capability of estimating more accurately AGB or
carbon stock of the tropical forests.

The selection of sensor systems, method, and techniques varied between geo-
graphical regions and the forest types being studied. High-resolution images were
not missed in this application. Ahmad et al. (2021) conduct a thorough assessment of
the literature on AGB estimation and mapping using high-resolution optical satellite
images (with a spatial resolution of 5 m) from around the world. In 15 years
(2004-2019), 44 peer-reviewed journal articles were published, according to the
literature review. Asia had 21 studies, North America and Africa had 8, South
America had 5, and Europe had 4. The published approaches for AGB prediction
modelling and validation are examined in this review study. According to the
literature review, QuickBird, WorldView-2, and IKONOS satellite photos were the
most extensively employed for AGB estimations, with higher estimated accuracies,
along with the integration of other sensors.

4 Remote Sensing for Tree Species Recognition

Forest trees species recognition and identification are among remote sensing
applications that are being used and explored in the forestry sector in Malaysia.
Various platforms including spaceborne and airborne, and multiple sensor systems
are used to venture this application. The high diversity in species composition and
distribution will definitely add to the complexity of the classification. Despite the
fact that numerous methods have been used to identify tree species in forests, the
challenges remain unanswered, and this application has yet to mature.

Ruhasmizan et al. (2013) used an airborne hyperspectral data to identify several
timber species in Balah Forest Reserve, Kelantan. Spectral Angle Mapper (SAM)
technique was applied and found that the highest spectral signature in NIR range was
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Kembang semangkok (Scaphium macropodum), followed by Meranti sarang punai
(Shorea parvifolia) and Chengal (Neobalanocarpus heimii). Meanwhile, the lowest
spectral response was Kasai (Pometia pinnata), Kelat (Eugenia spp.), and Merawan
(Hopea beccariana), respectively. The overall accuracy obtained was 79%. Another
attempt was made by Misman et al. (2021) to use UAV-based OCI™-F
hyperspectral imager sensor in identifying six tree species on the campus of Forest
Research Institute Malaysia (FRIM). To find the best strategy to identify tree species,
this study investigated different data formats and classification approaches. A log of
spectral reflectance (LogR) and derivative of the log of spectral reflectance (DLogR)
were evaluated using random forest (RF) and support vector machine (SVM)
classifiers in addition to reflectance (R) and derivative (D) spectra. The Boruta
approach was also utilised to minimise the data input’s dimensionality. The results
showed that the performance varied depending on the data input and classifier used.
Reflectance spectra identified with the SVM classifier had the best accuracy of
72.6%, while the combination of derivative spectra and RF classifier had the lowest
accuracy of 52.9%. Based on this study, the UAV-based OCI"™™-F hyperspectral
imager sensor has the potential to be used to identify forest tree species in a tropical
forest with acceptable accuracy.

This kind of study was also conducted in mangrove forest. Zulfa et al. (2020)
measured in situ spectral signatures of 19 mangrove species to investigate whether
mangrove species could be discriminated through spectral reflectance data. The
research was carried out at the Matang Mangrove Forest Reserve, and the spectral
signatures were captured with a handheld spectroradiometer. The study successfully
distinguished 7 visible wave bands (400-700 nm), 9 NIR wave bands (701-1000
nm), 16 SWIR-1 wave bands (1001-1830 nm), and 19 SWIR-2 wave bands
(1831-2500 nm) in the visible area. The study found that mangrove species’ leaf
spectral reflectance is low in the visible region (400-700 nm) due to excessive
chlorophyll concentration. The most essential component in this variance seems to
be leaf surface reflectance. Further, Zulfa et al. (2021) spectral information diver-
gence (SID) algorithm was compared with that derived from the Landsat 8 using the
SAM algorithm for the species. They found that the two methods offered different
but complementary information with different rates of accuracy. The observed levels
of classification accuracy for SID and SAM algorithm were at 84.95% and 85.21%,
respectively.

Similar to the AGB studies, species recognition can also be conducted by using
combination of sensors. Using aerial hyperspectral data, Nik Effendi et al. (2021)
used a comparison classification strategy to investigate multiple classifiers. In
addition, hyperspectral data was used to extract the crown of individual tree species
for classification and estimate using the object-based image analysis (OBIA)
approach. To decrease the data dimensionality and diverse training samples from
the numerous species employed in this study, the minimum noise fraction transform
(MNF) was used. When compared to other classifiers in the tropical forest, SVM and
RF achieved the highest overall accuracy above 50%.
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5 Remote Sensing for Forest Structure

Forest structure is the three-dimensional arrangement of trees and other plants, in
combination with nonliving spatial elements such as soils, slopes, and hydrology. In
short, structure is the physical geography of the forest, considered at a range of
spatial scales. Remote sensing has been used for such assessments of forest structure
in various ways. Satyanarayana et al. (2011) assessed the mangrove vegetation at
Delta Kelantan based on ground-truth and remote sensing measurements. The
mangroves are composed of several species including Nypa fruticans, Sonneratia
caseolaris, Avicennia alba, Rhizophora apiculata, R. mucronata, and Bruguiera
gymnorhiza, in order of dominance. The stem density and basal area were estimated
using the point-centred quarter method (PCQM) at various ground locations. Land-
use/cover classification and normalized differential vegetation index (NDVI)
mapping for the delta were created using recent high-resolution multispectral satel-
lite data (QuickBird 2006, 2.4 m spatial resolution of the multispectral images). The
study found that there was a relationship between the (mean) NDVI and stem
density.

Phua et al. (2014) used IKONOS image to delineate tree crown with dark object
subtraction and topographic effect correction prior to watershed segmentation. The
overall segmentation accuracy was 64% when compared to the field observation.
The detection of crowns revealed a strong relationship with tree density. Further-
more, the satellite-based crown area exhibited the best association with the DBH
observed in the field. They created a DBH allometric model that explained 74% of
the variance in the data. The IKONOS-2 image was segmented to provide two crown
variables: crown perimeter and crown area. By assuming a circular shape, the crown
diameter was derived from the crown area. The DBH and thus AGB of the individual
trees measured on the ground were then linked with these variables.

Focusing on the Matang Mangrove Forest Reserve (MMFR) in Perak Province,
Malaysia, Otero et al. (2018) investigated the use of UAV imagery for retrieving
structural information (i.e. height and AGB) on mangroves. The study suggested that
UAV data are viable for retrieving canopy height and biomass from forests that were
relatively homogeneous and with a single dominant layer. More advance
assessments on tree crowns were made by Wan-Mohd-Jaafar et al. (2017, 2018)
and Nordin et al. (2018) by using LIDAR and UAYV hyperspectral data, respectively.
The method, namely, individual tree crown (ITC) segmentation, was developed from
the studies. The studies isolated successfully individual trees from the background
vegetation and precisely delineate the crown boundaries by using separate
processing methods for LiDAR and hyperspectral.

Coarser image resolution from Moderate Resolution Imaging Spectroradiometer
(MODIS) was also used in vegetation structure assessment. A study conducted by
Kanniah et al. (2021) used the leaf area index (LAI) and gross primary productivity
(GPP) produced by MODIS to inspect the impact of fragmentation on the mangrove
ecosystem process in Iskandar Malaysia, Johor. The impact on LAI and GPP due to
fragmentation was found to rely on the patch characteristics, i.e. size, edge, and
shape complexity.
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Another attempt was made by Charissa et al. (2020) to use SRTM data to estimate
growth progress of mangrove in Sabah. A tree-level approach was developed to deal
with the substantial temporal discrepancy between the SRTM data and the
mangrove’s field measurements. A canopy height model (CHM) was derived by
correcting the SRTM data with ground elevation and the annual growth of diameter
at breast height was predicted from the CHM, while in Berkelah FR, Pahang, a study
was carried out by Rozali et al. (2020) to extract feature changes in tropical rainforest
cover using Landsat image and airborne LiDAR (ALS). Disturbance index
(DI) derived from Landsat-8 OLI images was used together with an ALS height
by using object-based segmentation process. The accuracy increased with the inte-
gration of ALS in Landsat image.

Looking at a larger scale with attention to the management practices in Matang
Mangrove Forest Reserve (MMFR), Otero et al. (2019) used a time series
(1988-2015) of Landsat data to (1) detect clear-felling events that take place in the
reserve as part of the local management and (2) trace back and quantify the early
regeneration of mangrove forest patches after clear-felling. From this series, they
found that the average period mangroves recover after the clear-felling event was 5.9
+ 2.7 years. Continually Lucas et al. (2020a) used Japanese Earth Resources
Satellite (JERS-1) SAR, ALOS PALSAR, PALSAR-2, and WorldView-2 to pro-
duce thematic and continuous environmental descriptors, including lifeform, forest
age, canopy cover, AGB, and relative amounts of woody debris. The work was
carried out under the framework of the Earth Observation Data for Ecosystem
Monitoring (EODESM). In addition to the earth imaging satellites, topographic
data from NASA Shuttle RADAR Topography Mission (SRTM) and TanDEM-X
data were also obtained for the MMFR and the surrounding landscapes. The study
was then supported by Lucas et al. (2020b) with additional UAV images as the high-
resolution images’ input to the structural characterization of mangrove stands
in MMFR.

6 Limitation and Advancement in Remote Sensing

Tropical forests in Malaysia, with dense trees and canopies, various types and
geomorphology of forest, various levels of horizontal and vertical strata, complex
canopy structure, different management perspectives at various growth conditions,
undulating topography, and cloudy atmosphere, always offer greater challenges as
compared to the other forest types in the world. These to some extent hinder the
assessments of certain biophysical properties of forests. However, with the recent
advancements in sensor development, some of the challenges can be addressed.
Additional spectral bands on board satellites with optical sensors, longer wavelength
on SAR sensors (e.g. L-band and P-band), and more high-resolution satellites
launched to the space will open wider windows for forestry applications, especially
in Malaysia. Latest upgrades on UAV sensor system such as hyperspectral, multi-
spectral, thermal, LiDAR waveform, and even close-range TLS with a mobile
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capability will ensure that the measurement of biophysical and biochemical of trees
can be conducted with zero contact to the trees.

The combination of multiple sensors such as optical with SAR and LiDAR with
hyperspectral and UAV photogrammetry seems, in many cases, although cannot
fully address some issues, to complement each other. Optical or synthetic aperture
radar (SAR) system has its own potential in retrieving forest attributes, but several
issues remain unaddressed. While optical remote sensing is often hindered by cloud,
SAR systems are always limited by signal saturation and demanding in data
processing. Besides, development of new and improvement on algorithms in
image processing such as SVM, random forest, and artificial neural network
(ANN) can provide alternatives to the analysis. The emerging new remote sensing
data processing software, especially open source, also offers solutions for specific
applications.

7 Opportunity

This review of remote sensing image analysis techniques, with reference to forest
structural parameters, illustrates the dependence of spatial resolution to the level of
detail of the parameters which may be extracted from remotely sensed imagery. As a
result, the scope of a particular investigation will influence the type of imagery
required and the limits to the detail of the parameters that may be estimated (Indu
et al. 2019). The complexity of parameters that may be extracted can be increased
through combinations of image-processing techniques. For example, multitemporal
analysis of image radiance values or multispectral image classification maps may be
analysed to undertake the assessment of such forest characteristics as area of forest
disturbances, forest succession and development, or sustainability of forest manage-
ment practices. Further, the combination of spectral and spatial information extrac-
tion techniques shows promise for increasing the accuracy of estimates of forest
inventory and biophysical parameters.

It was clear from the review that the limitations of the traditional techniques lead
to the development of most advanced technologies including remote sensing. The
integration of the advanced technologies along with conventional field
measurements can also be used for the accurate and effective measurement of the
forest parameters. For example, the limitations of optical remote sensing in the
estimation of forest structural parameters lead to the advancement of active remote
sensing, e.g. LIDAR and SAR for forest mensuration. Dealing with large forest
landscapes, upscaling concept might provide opportunities in forestry research
(Rasib et al. 2018). It involves the combination of data sources at different spatial
and temporal scales to produce accurate information at large coverage (Fig. 7).
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Fig. 7 The concept of upscaling in remote sensing

8 Conclusion

Although remote sensing technology has long been introduced in Malaysia, its
application in forestry is still limited to mapping and monitoring functions. Even
though there are studies on the assessment on various forest attributes, the scales are
relatively confined to a small area and not ready for operational level. In addition,
lack of exposure, expertise, and high cost are among the main challenges that need to
be addressed to achieve the objectives of sustainable forest management and
planning. Remote sensing can not only be used for obtaining information on forested
land but also can be expanded for planning, logging operation, biodiversity assess-
ment, and even wildlife beneath the forest canopies. The forestry sector in Malaysia
is expected to last forever since the importance of forest ecosystem for the people is
borderless. Remote sensing technology is also expected to become more advance in
the near future along with the developments of the country. These advances in sensor
technology are occurring concurrently with changes in forest management practices,
requiring detailed measurements intended to enable ecosystem-level management in
a sustainable manner. The use of this technology benefits the management of the area
and encourages savings to the cost of labour, as well as benefits the storage of more
efficient information for a long period of time. The accuracy of the data containing
the information of forest areas is very important to determine the sustainability of
both forestry and remote sensing sectors.

References

Abd Latif Z, Zagwan HM, Saufi M, Adnan NA, Omar H (2015) Deforestation and carbon loss
estimation at tropical forest using multispectral remote sensing: case study of besul tambahan



46 H. Omar

permanent forest reserve. In: Proceeding of IEEE International Conference on Space Science
and Communication (IconSpace), 10-12 Aug 2015, Langkawi

Abd Rahman AR, Abu Bakar MA, Razak KA, Rasib AW, Kanniah KD, Wan Kadir WH, Omar H,
Faidi MA, Kassim AR, Abd Latif Z (2017) Non-destructive, laser-based individual tree
aboveground biomass estimation in a tropical rainforest. Forests 8(86):1-22

Ahmad A, Gilani H, Ahmad SR (2021) Forest aboveground biomass estimation and mapping
through high-resolution optical satellite imagery—a literature review. Forests 12:914

Charissa JW, James D, Besar NA, Kamlun KU, Tangah J, Tsuyuki S, Phua MH (2020) Estimating
mangrove above-ground biomass loss due to deforestation in Malaysian Northern Borneo
between 2000 and 2015 using SRTM and landsat images. Forests 11:1018

Cutler MEJ, Boyd DS, Foody GM, Vetrivel A (2012) Estimating tropical forest biomass with a
combination of SAR image texture and Landsat TM data: an assessment of predictions between
regions. ISPRS J Photogramm Remote Sens 70:66—77

Hamdan O, Muhamad Afizzul M (2018) Time series maps of aboveground biomass in dipterocarps
forests of Malaysia from PALSAR and PALSAR-2 polarimetric data. Carbon Balance Manag
13:19

Hamdan O, Mohd Hasmadi I, Khali Aziz H, Helmi Zulhaidi MS, Norizah K (2014a) Forest biomass
assessment with special reference to L-band alos palsar data. Malays For 77(1):1-18

Hamdan O, Mohd Hasmadi I, Khali Aziz H, Norizah K, Helmi Zulhaidi MS (2014b) Factors
affecting L-band Alos Palsar backscatter on tropical forest biomass. Global J Sci Front Res
14(3):51-63

Hamdan O, Mohd Hasmadi I, Khali Aziz H, Norizah K, Helmi Zulhaidi MS (2015) Determining
L-band saturation level for aboveground biomass assessment of dipterocarp forests in Peninsu-
lar Malaysia. J Trop For Sci 27(3):388-399

Hamdan O, Muhamad Afizzul M, Kassim AR (2017) Synergetic of PALSAR-2 and sentinel-1A
SAR polarimetry for retrieving aboveground biomass in dipterocarp forest of Malaysia. Appl
Sci 7:675

Hamdan O, Muhamad Afizzul M, Ismail P (2020a) Extents and distribution of mangroves in
Malaysia. In: Hamdan O, Tariq Mubarak H, Ismail P (eds) Status of mangroves in Malaysia.
FRIM special publication no. 50. Forest Research Institute Malaysia, pp 1-42

Hamdan O, Muhamad Afizzul M, Siti Yasmin Y (2020b) Vegetation indices for identifying
melaleuca forest from multispectral satellite sensors. IOP Conf Ser Earth Environ Sci 540:
012009

Hamdan O, Muhamad Afizzul M, Leong YZ (2020c) Quantifying aboveground biomass over
50-Ha tropical forest dynamic plot in Pasoh, Malaysia using LiIDAR and census data. Borneo
Sci 41(2):3040

Hamdan O, Thirupathi RN, Norsheilla MJC, Nur Atikah AB, Muhamad Afizzul M (2021) Utiliza-
tion of remote sensing technology for carbon offset identification in Malaysian forests.
IntechOpen, London

Indu I, Nair HMV, Nair JR, Nidamanuri RR (2019) Optical remote sensing for biophysical
characterisation in forests: a review. Int J Appl Eng Res 14(2):344-354

Ismail MH, Pakhriazad HZ, Norlida K (2011) Remote sensing for mapping RAMSAR heritage site
at sungai pulai mangrove forest reserve, Johor, Malaysia. Sains Malays 40(2):83-88

Kamaruzaman J, Souza GD (1997) Use of satellite remote sensing in Malaysian forestry and its
potential. Int J Remote Sens 18(1):57-70

Kanniah KD, Sheikhi A, Cracknell AP, Goh HC, Tan KP, Ho CS, Rasli FN (2015) Satellite images
for monitoring mangrove cover changes in a fast-growing economic region in Southern
Peninsular Malaysia. Remote Sens 7(11):14360-14385

Kanniah KD, Kang CS, Sharma S, Amir AA (2021) Remote sensing to study mangrove fragmen-
tation and its impacts on leaf area index and gross primary productivity in the South of
Peninsular Malaysia. Remote Sens 13:1427



Multiple Sensors and Platforms for Biophysical and. . . 47

Langnera A, Samejima H, Ong RC, Titin J, Kitayama K (2012) Integration of carbon conservation
into sustainable forest management using high resolution satellite imagery: a case study in
Sabah, Malaysian Borneo. Int J Appl Earth Obs Geoinf 18:305-312

Lucas R, Otero V, Kerchove RV et al (2020a) Monitoring matang’s mangroves in Peninsular
Malaysia through earth observations: a globally relevant approach. Land Degrad Dev 32:1-20

Lucas R, Kerchove RVD, Otero V, Lagomasino D, Fatoyinbo L, Omar H, Satyanarayana B, Guebas
FD (2020b) Structural characterisation of mangrove forests achieved through combining multi-
ple sources of remote sensing data. Remote Sens Environ 237:111543

Minerva S, Malhi Y, Bhagwat S (2014) Biomass estimation of mixed forest landscape using a
Fourier transform texture-based approach on very-high resolution optical satellite imagery. Int J
Remote Sens 35(9):3331-3349

Misman MA, Omar H, Yaakub SY, Ayop N, Musadad AAA, Shari NHZ (2021) UAV-based
hyperspectral imaging system for tree species identification in tropical forest of Malaysia. J Adv
Geospat Sci Technol 1(1):145-162

Mohd Najib NE, Kanniah KD (2019) Optical and radar remote sensing data for forest cover
mapping in Peninsular Malaysia. Singap J Trop Geogr 40(2):272-290

Mohd Zaki NA, Abd Latif Z (2017) Carbon sinks and tropical forest biomass estimation: a review
on role of remote sensing in aboveground-biomass modelling. Geocarto International 32(7):
701-716

Muluken NB, Hussin YA, Kloosterman EH (2018) Integrating airborne LiDAR and terrestrial laser
scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam
tropical forest, Malaysia. Int J Appl Earth Obs Geoinf 73:638-652

Nik Effendi NAF, Mohd Zaki NA, Abd Latif Z, Suratman MN, Bohari SN, Zainal MZ, Omar H
(2021) Unlocking the potential of hyperspectral and LiDAR for above-ground biomass (AGB)
and tree species classification in tropical forests, Geocarto International 1990419

Nordin SA, Abd Latif Z, Omar H (2018) Individual tree crown segmentation in tropical peat swamp
forest using airborne hyperspectral data. Geocarto International 1475511

Otero V, Kerchove RVD, Satyanarayana B, Columba ME, Fisol MA, Ibrahim MR, Sulong I,
Mohd-Lokmanc H, Lucas R, Guebasa FD (2018) Managing mangrove forests from the sky:
forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang
Mangrove Forest Reserve, peninsular Malaysia. For Ecol Manag 411(2018):35-45

Otero V, Kerchove RVD, Satyanarayana B, Mohd-Lokman H, Lucas R, Guebas FD (2019) An
analysis of the early regeneration of mangrove forests using landsat time series in the matang
mangrove forest reserve, Peninsular Malaysia. Remote Sens 11:774

Phua MH, Ling ZY, Wong W, Korom A, Ahmad B, Besar NA, Tsuyuki S, Ioki K, Hoshimoto K,
Hirata Y, Saito H, Takao G (2014) Estimation of above-ground biomass of a tropical forest In
Northern Borneo using high-resolution satellite image. J For Environ Sci 30(2):233-242

Rasib AW, Mohd Ali H, Alvin LMS, Kanniah KD, Idris NH, Omar H, Faidi MA, Dollah R, Ahmad
MA (2018) Upscaling aboveground biomass estimation at low-land royal belum forest reserve
using unmanned aerial vehicle image. Int J Integr Eng 10(4):140-150

Rozali S, Abd Latif Z, Adnan NA, Hussin Y, Blackburn A, Pradhan B (2020) Estimating feature
extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using
and object-based technique. Geocarto Int 37:3247-3326

Ruhasmizan MZ, Ismail MH, Pakhriazad HZ (2013) Classifying forest species using hyperspectral
data in Balah Forest Reserve, Kelantan, Peninsular Malaysia. J For Sci 29(2):131-137

Satyanarayana B, Mohamad KA, Idris F, Mohd-Lokman H, Guebas FD (2011) Assessment of
mangrove vegetation based on remote sensing and ground-truth measurements at Tumpat,
Kelantan Delta, East Coast of Peninsular Malaysia. Int ] Remote Sens 32(6):1635-1650

Seo HS, Phua MH, Ong RC, Choi B, Lee JS (2014) Determining aboveground biomass of a forest
reserve in Malaysian borneo using K-nearest neighbour method. J Trop For Sci 26(1):58—68

Solomon MB, Hussin YA, Kloosterman HE, Ismail MH (2020) Forest inventory and aboveground
biomass estimation with terrestrial LIDAR in the tropical forest of Malaysia. Can J Remote Sens
46(2):130-145



48 H. Omar

Tangki H, Chappell NA (2008) Biomass variation across selectively logged forest within a
225-km?2 region of Borneo and its prediction by Landsat TM. For Ecol Manag 256:1960-1970

Thang HC (1983) Application of remote sensing in agriculture and forestry in Malaysia. Paper
presented at the Second Asian Agriculture Symposium, Manila, Philippines, 28 Feb-3
Mar 1983

Thang HC, Tay YC, Cheong EC (1987) Remote sensing in forestry in Malaysia. Paper presented at
the meeting of the Technical Working Group on Remote Sensing and Information System,
Bangkok, Thailand, 13+ 16 Aug 1987

Vashum KT, Jayakumar S (2012) Methods to estimate above-ground biomass and carbon stock in
natural forests—a review. J Ecosyst Ecogr 2:116

Wan Abd Rahman WAHS (2016) Comparison results of forest cover mapping of Peninsular
Malaysia using geospatial technology. IOP Conf Ser Earth Environ Sci 37:012027

Wan Yusoff WA (1988) Application of landsat/SPOT digital and visual analysis as a tool for forest
classification and mapping in lesong forest reserve, Peninsular Malaysia. ASEAN Institute of
Forest Management Fellowship Report, 15 Mar—31 Dec 1988

Wan-Mohd-Jaafar WS, Woodhouse IH, Silva CA, Omar H, Hudak AT (2017) Modelling individual
tree aboveground biomass using discrete return lidar in lowland dipterocarp forest of Malaysia. J
Trop For Sci 29(4):465-484

Wan-Mohd-Jaafar WS, Woodhouse IH, Silva CA, Omar H, Abdul MK, Hudak AT, Mohan M,
Klauberg C (2018) Improving individual tree crown delineation and attributes estimation of
tropical forest using airborne LiDAR data. Forests 9:759

Wulder M (1998) Optical remote-sensing techniques for the assessment of forest inventory and
biophysical parameters. Prog Phys Geogr 22(4):449—476

Zulfa AW, Norizah K, Hamdan O, Zulkifly S, Faridah-Hanum I, Rhyma PP (2020) Discriminating
trees species from the relationship between spectral reflectance and chlorophyll contents of
mangrove forest in Malaysia. Ecol Indic 111:106024

Zulfa AW, Norizah K, Hamdan O, Faridah-Hanum I, Rhyma PP, Fitrianto A (2021) Spectral
signature analysis to determine mangrove species delineation structured by anthropogenic
effects. Ecol Indic 130:108148



®

Check for
updates

Siti Munirah Mazlan, Wan Shafrina Wan Mohd Jaafar,

Aisyah Marliza Muhmad Kamarulzaman, Siti Nor Maizah Saad,
Norzalyta Mohd Ghazali, Esmaeel Adrah,

Khairul Nizam Abdul Maulud, Hamdan Omar, Yit Arn Teh,
Dzaeman Dzulkifli, and Mohd Rizaludin Mahmud

Abstract

Forest landscape restoration (FLR) is the process where vegetation is recovering
in terms of its forest traits, ecosystem functionality, climate change mitigation,
building up human livelihoods, and well-being in deforested and degraded forest
landscapes by promoting accelerated forest regrowth. Several countries within
the Global Partnership of FLR have made ambitious pledges to promote FLR

S. M. Mazlan - W. S. Wan Mohd Jaafar (<) - A. M. Muhmad Kamarulzaman - E. Adrah

Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi,
Selangor, Malaysia

e-mail: pl 13604 @siswa.ukm.edu.my; wanshafrina@ukm.edu.my; p103420 @siswa.ukm.edu.my;
p113998 @siswa.ukm.edu.my

S. N. M. Saad
Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi,
Selangor, Malaysia

Universiti Teknologi MARA, Cawangan Perlis, Arau, Perlis, Malaysia
e-mail: p95200@siswa.ukm.edu.my

N. Mohd Ghazali
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
e-mail: p106873 @siswa.ukm.edu.my

K. N. Abdul Maulud
Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi,
Selangor, Malaysia

Faculty of Engineering and Built Environment, Department of Civil Engineering, Universiti
Kebangsaan Malaysia, Bangi, Selangor, Malaysia
e-mail: knam@ukm.edu.my

H. Omar
Forest Research Institute Malaysia, Kepong, Selangor Darul Ehsan, Malaysia
e-mail: hamdanomar @frim.gov.my

© The Author(s), under exclusive license to Springer Nature Singapore Pte 49
Ltd. 2022

M. N. Suratman (ed.), Concepts and Applications of Remote Sensing in Forestry,
https://doi.org/10.1007/978-981-19-4200-6_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4200-6_3&domain=pdf
mailto:p113604@siswa.ukm.edu.my
mailto:wanshafrina@ukm.edu.my
mailto:p103420@siswa.ukm.edu.my
mailto:p113998@siswa.ukm.edu.my
mailto:p95200@siswa.ukm.edu.my
mailto:p106873@siswa.ukm.edu.my
mailto:knam@ukm.edu.my
mailto:hamdanomar@frim.gov.my
https://doi.org/10.1007/978-981-19-4200-6_3#DOI

50 S. M. Mazlan et al.

globally and to restore at least 350 million ha of degraded and deforested lands by
2030 worldwide. FLR accountability has been limited to the schematic quantifi-
cation of how much the land area in the forest has been restored and how many
trees have been replanted for conservation purposes. Natural regeneration,
old-growth forests, and mixed-species plantations of different types of species
are some of the FLR strategies. Monitoring the outcome of complex forest
restoration efforts requires appropriate methods and sophisticated tools. The
logical procedures are by distinguishing the different forest cover types across
different forest landscapes and second by identifying their respective values to
ecosystem services and biodiversity conservation. Canopy structural attributes
are one of the most important parameters that can act both, distinguishing the
forest cover types and indicator to the forest respective values. Traditional
assessments rely heavily on field-based inventory, which is cost-prohibitive and
difficult to track a million hectares scale progress. Light detection and ranging
(LiDAR) remote sensing has emerged as a great alternative to monitoring forest
structure, function, and composition. With the ability to penetrate the forest
canopy it allows an accurate measurement of structural canopy parameters
along with the vertical profile. This paper will review the trends of FLR and the
use of LIDAR remote sensing technology to monitor forest restoration outcomes
towards achieving sustainable forest management practices.

Keywords

Forest landscape restoration - LiDAR - Forest type - Forest structure - Structural
attributes

1 Introduction

The area of tropical forests has been drastically changing over the last several
decades, with forest cover declining by 2101 square kilometres every year (Hansen
2013). Massive climate change consequences have resulted in increasingly one of
the biggest carbon dioxide emissions across Southeast Asian nations, as a result of
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excessive deforestation. Malaysia’s progress and economic development activities
also contribute to increased carbon emissions through land clearance and conversion
of forested areas to other residential and commercial usage sectors such as farming,
habitation, quarrying, and fishery (Begum et al. 2020).

Issues and local efforts have generated democratic influence for the restoration of
150 million ha of forest landscapes by 2020 and 350 million ha by 2030. The Bonn
Challenge is based on the forest landscape restoration (FLR) concept, which varies
from more efficient ecological restoration in that human livelihoods and biodiversity
protection are given equal importance (Stanturf et al. 2017). Ecological restoration
approaches vary, from singular or mixture plantings for storing carbon (Nave et al.
2019), to focused species selection to meet animal habitat needs (Hale et al. 2020).
Therefore, assessing the efficiency of ecological restoration in restoring the desired
ecological resources and activities is a significant difficulty.

Both biodiversity protection and human livelihoods are top priorities for FLR. It
involves planting new trees, protecting wildlife reserves, regenerating forests, creat-
ing ecological corridors, agroforestry, riverbank plantings to preserve streams,
managed plantations, and agriculture. Within and across whole landscapes, this
pattern of communicating land cover begins — a level whereby ecological, social,
as well as economic goals maybe harmonised (Matrushka 2020). FLR is a method
for regaining, improving, and maintaining vital ecological and social services in a
degrading or deforested landscape over time, as well as increasing the resilience
against ecological and societal transformations.

Monitoring is a key aspect of determining the efficacy of restoration efforts. It is
critical to approach assessment in order to advise future efforts and prevent restora-
tion failures (Zhang et al. 2019). Key response qualities must be defined in order to
quantify the short- and long-term efficacy of restoration operations (Maginel et al.
2016). In many situations, indicator species are employed to assess the progress of
the ecological restoration in comparison to a reference system. In a broader sense,
the structural complexity of an ecosystem, such as a forest, is regarded as a reliable
and repeatable indicator of biodiversity and can reflect an ecosystem’s health and
function (Hao et al. 2021) and also has provided a reference condition against which
to guide (and assess) the efficiency of restoring a decreased environment (Perring
et al. 2015). Field data normally monitor forest restoration results by assessing the
forest structure parameters, such as canopy gap, the diameter of the trees and the
height (estimates of biomass and carbon stocks are possible), as well as diversity
factor. Furthermore, restoring spatial structure has advantages that are connected to a
variety of ecosystem services. The abundance of deadwood and coarser deadwood,
for example, has a direct impact on ecosystem functions and animal habitats
(Camarretta et al. 2020). In reality, canopy layers have a positive impact on bird
populations and the mix of tree species (Viani et al. 2017). Aboveground biomass
(AGB) is a significant variable to monitor in restoration efforts since it is among the
most essential restoration results in tropical forest areas (Aragén et al. 2021). This is
a good proxy for a variety of other variables related to tropical forest succession
(Chazdon 2014). Another important ecological indicator in restoration plantations is



52 S. M. Mazlan et al.

canopy openness, which is linked to the reduction of grasslands and natural forest
regrowth (Viani et al. 2017).

Remote sensing is being effectively utilised to obtain forest structural information
that might aid decision-making. Nevertheless, the direct carbon storage estimate in
moderate to high biomass forests continues to be significantly difficult for remote
sensing. While it has been very effective in quantifying the biophysical properties of
vegetation in places with low plant canopy cover, quantifying vegetation structure in
areas with a leaf area index (LAI) more than three seems to be less successful.

LiDAR (light detection and ranging) is a relatively new sensor technology
gaining considerable interest in the forestry sector as a speedy and effective method
for forest inventories. In contrast to passive remote sensing techniques such as
photogrammetric mapping, active remote sensing techniques such as airborne
LiDAR may immediately capture precise three-dimensional point cloud data to
describe the earth’s geomorphologic profile (Hui et al. 2019). Typically, airborne
LiDAR scanners can classify first/last or numerous returns. Furthermore, because
they may both be georeferenced using the same direct exterior orientation (direct
EO) methods, LiIDAR scanners can be coupled by a different camera system to assist
in interpreting LiDAR returns. There are also full-waveform aerial LIDAR systems
available, albeit the usage in forestry can be limited to the research community (van
Leeuwen and Nieuwenhuis 2010). Models constructed utilising ALS data were the
most exact, while incorporating information from various sources resulted in a
negligible improvement in structure prediction (Dash et al. 2016).

2 Forest Landscape Restoration
2.1 Definition

Modern commercialisation by humans and modification of the world’s ecosystems
have resulted in extensive habitat extinction and reductions in ecosystem conditions,
resulting in decreased ecosystem production (Bullock et al. 2011; Muhmad
Kamarulzaman et al. 2022). Although recent data reveal that deforestation is now
starting to decrease, the overall amount of deforestation remains high (OECD-FAO
2021). In Southeast Asia, for example, Fox and Vogler (2005) stated that up to 49%
of these additional agricultural areas have been subsequently developed, abandoned,
and become shrub, bush, or other types of secondary forest. Unplanned deforestation
has resulted in several social, economic, and environmental issues (Chomitz 2007,
Wan Mohd Jaafar et al. 2020a, b). In the tropics, this is particularly true. Despite the
riches created by cutting tropical forests, many local people live mainly around these
settings, and biodiversity and soil have suffered significant losses (Saad et al. 2020).
However, several developments are currently taking place that will impact the
amount towards which existing forest areas are preserved and the chance of
deforested areas being restored.

Restoration ecology has made great progress in recent years, both as a scholarly
field and as useful management of environmental management. Significantly,
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restoration ecology has improved the environmental management system since it can
enhance human livelihoods and biodiversity. Chazdon (2008) gives a present over-
view of forest ecological restoration, emphasising the work done in many nations to
reverse current forest degradation and loss. However, as noted by Newton and
Tejedor (2011) the effects of bigger-scale forest restoration along with future
landscape’s composition and function, as well as the species that populate them,
are still unknown. There is also limited research on the consequences of various
restoration procedures of the restoration of ecosystem services and their connections
to biodiversity. Traditional techniques have been site-based, focusing on a few forest
products, relying primarily on non-native tree planting, and failing to deal with the
core causes of forest loss and degradation. Forest landscape restoration is one of the
restoration approaches examined in this research (FLR). In response to the wide-
spread inadequacy of more traditional techniques for forest restoration, the World
Wildlife Fund (WWF), as well as the International Union for the Conservation of
Nature (IUCN), devised the FLR idea during a workshop in 2000 (Mansourian et al.
2005a). Therefore, the outcome resulted in several principles of forest landscape
restoration.

2.2 Principles of Forest Landscape Restoration

An effective FLR, according to Mansourian et al. (2005a, b) and Newton and
Tejedor (2011), is forward-looking and dynamic, focusing on building landscape
resilience and developing future choices to modify and further optimise ecosystem
products and services when societal requirements change or new obstacles emerge. It
integrates a number of guiding of six principles of forest landscape restoration

(Fig. ).
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Fig. 1 Principles of forest landscape restoration (Source: [IUCN)
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2.2.1 Focus on Landscape

The landscape is a human construct that can have a variety of interpretations
according to whoever is saying. A conservation effort will generally operate within
a predetermined ‘conservation landscape’, which is frequently based on
considerations such as the amount of land required to preserve functioning
ecosystems and species. It’s also essential to identify any ‘culture landscapes’ nested
inside or overlapped with the restoration landscape, in addition to picking the
conservation landscape. A cultural landscape is described as an area of particular
importance to people who live in or visit the landscape often, such as a community, a
strip of land utilised by nomadic people, or a forestry concession (Maginnis and
Jackson 2002).

FLR occurs throughout and across landscapes, rather than specific locations, and
represents mosaics of overlapping land cover and management methods under
multiple ownership and governance regimes. Ecological, social, and economic
interests can be synchronised at this scale. The WWF has several Ecoregion Action
Programs, many of which are in forest ecoregions (Bowling 2004). The WWF’s six
worldwide Target Driven Programs (on forests, marine and freshwater species,
climate change, and toxics) aim to complement efforts in key conservation
ecoregions while also having global scope. In the case of forests, the link may be
described as in Fig. 2.

The forest program is trying to improve the integration of its goals and ecoregion
programs. It has focused on priority landscapes in key ecoregions identified through
the ecoregion conservation process. Each priority region, or priority conservation
landscape, will comprise several sites that form a landscape mosaic. Conservation
landscapes range in size from a few tens of thousands of hectares to a million
hectares or more, and techniques must adapt to account for these differences. In
theory, a program like this could be implemented across an entire ecoregion.

When considering landscape-scale advantages, it is necessary to pay greater
attention to the aggregate worth of numerous sites rather than individual sites. One
possibility is a woodland patchwork similar to the ones in Fig. 3 comprises a
scattering of protected areas of multiple [UCN categories (and thus various manage-
ment regimes) for forests with the most significant conservation efforts; some
handled native woodland to provide a mix of biodiversity and human benefits;
some replanned wood products and fibre plantations; forests controlled for environ-
mental consequences such as watershed protection; and careful restoration is

Forests for Life Ecoregion Action
programme Programmes
implementing implementing
targets broadscale
on protect- conservation in
manage- priority
restore ecoregions

Fig. 2 The link between Forest for Life and Ecoregion Action (Source: Bowling 2004)
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Fig. 3 Scattering of protected areas of multiple IUCN categories (Source: Bowling 2004)

planned at the landscape scale to achieve maximum efficiency. Tropical forests
would also need to coexist towards other land uses such as farming and population.

The specific combination would vary depending on location, forest type, and
biome and would most likely appear considerably different in a region that still
included vast tracts of natural woods. However, the notion of pursuing a balanced
combination of preservation, management, and restoration that provides biological,
ecological, economic, and social advantages while opposing harmful change
remains unchanged.

2.2.2 Preservation and Enhancing Natural Ecosystems Within
Landscapes

Tropical forests and other ecosystems are not converted or destroyed as a result of
FLR. This principle relates to preserving and restoring the dynamic behaviour and
interconnectivity of all forms of tropical forest, meadows, scrublands, and swamps
within a landscape to increase economy, ecosystem functions, and biomass produc-
tion. It helps to improve forest and other ecosystem conservation, recovery, and
long-term management (Chazdon et al. 2019). Several tropical forests are
decreased—but not damaged—due to human activity and conservation areas,
including trees and timber harvesting, hunting, crop production, and mining. It is
critical to consider this degradation as a type of bad forest ecosystem that may be
corrected and restored in order to properly address it. The intention or duty to
maintain ecological and related cultural traditions of such landscape areas (Higgs
and Hobbs 2010) related towards the structural and functional of ecosystems will
promote ecological restoration inside such conservation zones.
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2.2.3 Work Collaboratively with the Stakeholders and Participate
in Government

To have the impact that’s required, FLR requires very well-organised and scheduled
participation of stakeholders. This principle emphasises the engagement of all
relevant stakeholders—including women, young people, and vulnerable groups—
in planning and decision-making processes, including setting goals and strategies,
deciding on implementation and benefit-sharing methods, and carrying out monitor-
ing, assessment, and review. FLR success is built on long-term engagement and
participation between members and stakeholders (Egan et al. 2011), especially when
protected areas include permanent or native indigenous populations. Some nations
have a legal responsibility to consult traditional and indigenous peoples and
informed permission should always be acquired for projects on their land. Engaging
stakeholders in preparation, implementation, and mutual learning may promote
communication of ownership and loyalty, as well as a population of supports (Hill
et al. 2010) for forest restoration. Awareness of forest landscape restoration can
provide useful experience and knowledge (Berkes et al. 2000). Paying attention and
being willing to act on what is heard may assist in optimising community benefits,
uncovering possible concerns, effectively engaging in restoration, observations, and
reuniting communities with nature. Hence, FLR can help prevent degradation and
assist in attaining larger reserved territory and biodiversity environmental conserva-
tion by encouraging people, especially visitors, to protect areas.

2.2.4 Adapt to the Local Environment Through a Variety of Methods
Every community, landscape, and ecosystem are different, and FLR interventions
need to take this into account to succeed. The best way to ensure that FLR is well
adapted to local conditions is for local stakeholders to be fully involved in its
development, implementation, monitoring, and assessment. They were generating
local benefits, including opportunities to increase incomes and develop sustainable
supply chains. Residents and stakeholders, travellers, and staff of the protected area
who interact with the public are the major targets of communication initiatives.
When different methods and techniques are used to target different audiences,
communication and learning become more successful. Local gatherings, guided
tours, talks, exhibitions, and the utilisation of a variety of media were established
as communication and learning choices. They were given to a varied audience in a
variety of locations (Keenleyside et al. 2012).

2.2.,5 Restore Multiple Functions for Multiple Benefits

Successful FLR uses locally based expertise to restore a wide variety of economic,
social, and ecological processes within such a landscape and provide environmental
products and solutions that appropriately benefit stakeholders. According to the
handbook by (Keenleyside et al. 2012), many environmental functionalities also at
landscape scale are strongly related to the existence of forest resources that can be
managed or regenerated to satisfy many complementary purposes. Although the
multifunctional organisation is not a dominant approach in the forest sector, in
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reality, examples are developing via FLR spanning from the local level, such as
community forestry systems, to the large scale, including such jurisdictional
programmes to implement REDD+ techniques.

2.2.6 Manage Adaptively for Long-Term Resilience

The ability of a system to absorb disturbance and reorganise while experiencing a
change in order to keep the same function, structure, identity, and feedback is
referred to as resilience (Walker et al. 2004a, b). An ecosystem’s resistance to
change is a key component of its resilience. FLR actions such as implementing an
adaptive management system and re-establishing natural stream flow, removing
invasive species, and providing migration/dispersal corridors between protected
areas contribute to resilience by maintaining diversity, continuously measuring the
biophysical dimensions of the landscape, and periodically assessing vulnerability to
climate change and evolving gene pools over time (Elmqvist et al. 2003; Walker
et al. 2004a, b). Factors such as ecologically effective population sizes, genetic and
functional diversity, densities of highly interactive species, ecological community
tolerance to extreme events, and microtopographic diversity are also important
considerations in restoration strategies aimed at maintaining or restoring resilience
and encouraging open access to and sharing of information and knowledge (Gilman
et al. 2010).

3 Understanding Forest Types

The three main forest biome categories found throughout the world are boreal,
temperate, and tropical forests. Forest biomes are classified into broad categories
based on their distribution by latitude, starting with the most northern (boreal) and
progressing through the temperate and tropical zones (Landsberg and Waring 2014).
Figure 4 shows the distribution of the main forest biome around the world.

Boreal forest, also known as taiga, is characterised by evergreen coniferous trees
with needle-like leaves. Boreal forests cover a large area of Eurasia and North
America, with two-thirds of them in Siberia and the remainder in Scandinavia,
Alaska, and Canada. Temperate forest is made up of broad-leaved plants that are
leafless during winter. This forest type is found only in Europe, eastern Asia, and
eastern North America in the northern hemisphere. Closer to the equator, tropical
forest is a lush forest found in wet tropical in both uplands and lowlands. It is one of
the world’s biggest biomes characterised by a dense upper canopy of broad-leaved
trees (layer of foliage) and supports an abundance of vegetation and other life
(Armstrong 2018).

Forests are shelters to the million flora and fauna species in this world, supplying
ecosystem services essential to agriculture, communities, and humans. Forests are
identified as ground spanning more than 0.5 ha with trees above 5 m and with a cover
for the canopy higher than 10%, or trees able of reaching these threshold limits in
their natural environment. There are some exceptions, such as land that is mainly
used for agricultural or municipal purposes. Forests cover 31% or 4.06 billion ha of
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Fig. 4 The distribution of the main forest biome around the world (Source: plantlet.org)

the global land area. About half of the forest area is relatively undisturbed, and more
than a third is primary forest (FAO 2020).

While forest cover on a global scale decreased, forest cover is rising in several
regions as a result of the expansion of ‘new forests’ (i.e., secondary forests,
plantations, and other woody vegetation). In this context, forest land has been
categorised as primary forest, secondary forest, and restored forest (Fig. 5).

3.1 Primary Forest

Primary forests are recognised as having an aesthetic, cultural, and natural conser-
vation value due to their content. It has become a diverse host to a variety of
magnificent flora and fauna and is critical for maintaining biodiversity as well as
ecological processes. The concepts of primary forest which are also known as
old-growth forest or virgin forest was described as a forest land with naturally
regenerated forest growth of a native species and not facing any obvious or visible
human activities and any significant disturbance to the forest ecology process (FAO
2015). The ecosystem of primary forests is dominated by large, aged forest trees of
mixed-species forest community and uneven-aged population distribution.
According to the World Resources Institute (2021), it is estimated that only 21%
of forest distribution around the world is categorised as remaining primary forest;
35% of these intact landscapes are found in South America, specifically in Brazil’s
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Fig. 5 (a) Primary Forest (source: rainforestjournal.com), (b) Secondary Forest (Source: oneearth.
org) and (c) Restored Forest (source: europeanscientist.com)

Amazon rainforest; 28% in North America, particularly Canada and Alaska; and
19% in North Asia (world’s largest boreal forest) and South Africa accounting for
around 8% of the total. South Asia Pacific has only 7% of intact virgin forest left all
over the world and merely about 3% of the world’s remaining primary forests exist
in Europe, and more than 150 km? is removed each year (Worldatlas 2021).

The nature of the primary forest is determined by its characteristic and natural
coverage. This forest stands with a complex structure such as multiple horizontal
layers, gaps of foliage within the canopies, massive standing dead plants, and logs
laying on the forest ground. The topography of the primary forest can be described as
pit and mound, and in a tropical region, it lies on peak and valley ground structure.
The nature of forest trees in primary forest landscapes is massive, tall, and aged and
they may have similar species with secondary forests (Kormos et al. 2016). The
Food and Agriculture Organization of the United Nations FAO (2015) had
underlined the main characteristics of primary forest or old-growth as the forested
landscape which displays a natural forest-growing process, such as natural species
formation, the existence of deadwood, age structure, and natural growth of forest
regeneration. The landscape of primary forest is sufficiently wide to preserve its
natural composition, without any sign of substantial human interference, or if any, it
occurred a long time ago which allowed the forest structure and its composition to be
re-constructed and regenerated.
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The primary forest ecosystem is an ecological unique landscape that offers
significant value that is needed to be maintained and managed for a variety of
purposes due to its importance towards the overall forest ecosystem. This complex
structure supports a variety of wildlife, plants, and endangered species (Gilhen-
Baker et al. 2022), and decaying woods and forest residue play a significant
influence on the composition of its habitats and nutrient cycle (Hilbert and
Wiensczyk 2007). Due to its aged and undisturbed condition, primary forests retain
more carbon than other forest types which help in stabilising the earth’s climate and
are usually irreplaceable in a biodiversity context. Even if forest regrowth occurs, the
recovered secondary forest will not be able to equal the carbon and biodiversity
values of a primary forest for several decades or longer (Hilbert and Wiensczyk
2007). The destruction of these forests causes carbon to be emitted into the atmo-
sphere and causes greenhouse gas (GHG) emission, leading to the risk of global
climate change (Wan Mohd Jaafar et al. 2020a, b). In addition, primary forest helps
protect communities and the environment from natural disasters including forest
fires, landslides, and floods and simultaneously acts as a natural water reservoir for
the needs of life (Kormos et al. 2016). For indigenous people and local people who
live in or near them, primary forest is equally essential because of their enormous
biological productivity. The forest provides shelter as well as essential resources
such as food, medicine, and freshwater (Kormos et al. 2016).

Primary forest had faced great challenges and threats including human
disturbances, natural disasters including forest fire, landslides, species, and plant
disease, and forest conversion to agriculture. Consequently, vast species of plants
and wildlife were threatened (Betts et al. 2017), and the forest landscape was
exposed to massive damage and altered the forest biodiversity and global climate.
Logging and forest clearing also become major factors of the challenge to sustain the
primary forest. As a result, the primary forest was declining all over the world due to
the difficulties in maintaining and replacing the forest cover.

3.2 Secondary Forest

More than 50% of the global tropical forests are not primary forests but naturally
regenerating forests, also known as secondary forests. In the next few decades,
secondary forests will account for a significant portion of the global total forest
area (FAO 2010). A secondary forest is a forest that regenerates largely naturally or
unnaturally following disturbances caused by humans or nature. The main contribu-
tor to forest transition from primary to secondary forest is agriculture. Agriculture
remains the primary driver of global deforestation, and agricultural, forestry, and
land policies frequently conflict (FAO 2016).

Secondary forests mainly regenerated naturally after significant disruption of the
primary forests exhibits significant forest structure and/or species composition
differences compared to pristine primary forests (FAO 2003). Secondary forest
vegetation is grown through either natural or artificial regeneration. Regeneration
occurs naturally when seeds are dispersed without human intervention. The process
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regenerates forests through self-sowing seeds, root suckers, or coppicing, while
artificial regeneration involves direct seeding and planting (Huss 2004).

Secondary forests differ significantly from the nearby primary forest in terms of
forest structure and/or canopy species composition, goods, and services. However,
compared to plantation forests, naturally regenerating forests make a greater contri-
bution to biodiversity conservation and offer a wide range of advantages and certain
ecosystem services (Brockerhoff et al. 2017). Secondary forests are also viewed as
having greater potential than primary forests in some ways. For instance, it has been
demonstrated secondary forests sequester tenfold the amount of atmospheric carbon
as CO2 as primary forests (Poorter et al. 2016).

3.3 Restored Forest

The restored forest is where the forest area has been restored from degradation and
deforestation. In the context of forest restoration, this refers to restoring the ecologi-
cal functions through the assisted or unassisted process of natural regeneration of the
area to benefit humans (contribute to rural economies and livelihoods), wildlife, and
the environment (Chazdon et al. 2020).

Restoration goals may be classified broadly into diverse strategies such as
rehabilitation reconstruction, reclamation, and replacement. The term rehabilita-
tion refers to the process of re-establishing a damaged ecosystem’s desired species
composition, structure, or processes. Reconstruction is the process of re-establishing
native plant communities on land previously used for another purpose, such as crop
production or pasture. Reclamation describes seriously degraded land that is gener-
ally empty of vegetation and is frequently the result of extraction of underground
resources, such as mining or oil and gas drilling work platforms, and replacement
will involve replacing species that are being moved in changes of the climate
resulting in the emergence of previously unknown species or genotypes of familiar
species for an extended period.

Given the active human activities and natural disasters, many forest areas are
extremely disturbed resulting in their ecological function being in doubt. Hence,
forest restoration is urgently needed as a sustainable plan to recover the forest
function and improve the quality of community well-being in this degraded forest
(Mansourian et al. (2005a, b); César et al. 2021). Restored forests offer many
benefits to the forest landscape ecology and human society. According to César
et al. (2021), restored forest benefits can be categorised into several aspects: (1) ecol-
ogy benefit, (2) economic benefit, (3) socio-economic benefit, and (4) human aspect.
For the ecology aspect, forest restoration may generate carbon sequestration towards
climate change mitigation and biodiversity conservation and serves to protect water
and soil (Baez et al. 2011; de Souza et al. 2016). In economic aspect, restoration of
the forest is believed to help enhance the productivity of the forest land, help in food
security issues since forests become the sources of food to certain communities, able
to generate new jobs and income for the community, and increase the forest-related
product for trading purposes (Adams et al. 2016). Forest restoration is offering a
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great benefit to the improvement of human well-being as well as socio-economic
outcome through its non-material benefits. The well-restored forest landscapes can
enhance the quality of the environment and create a potential recreational site for
eco-tourism (Chadourne et al. 2012; Adams et al. 2016) as well promote the
improvement of physical health (César et al. 2021).

Monocultures may be an option in a forest restoration context, where fast-
growing tree species with worldwide demand potential for timber are readily avail-
able (Cummings et al. 2012), where it is advantageous to generate rapid revenue for
the local community. However, the planting of multiple species, on the other hand, is
also necessary since different species frequently affect distinct ecosystem functions;
focusing exclusively on a single function will grossly underrate the biodiversity
necessary to sustain an ecosystem with various purposes at numerous times and
locations in an altering environment (Isbell et al. 2011).

4 Light Detection and Ranging (LiDAR)
4.1 An Overview of LiDAR

There has been a growing interest in using light detection and ranging (LiDAR) in
forestry applications for measuring forest characteristics in the last two decades.
LiDAR is an accurate distance measurement technology based on measuring the
travelling time of laser pulses between the instrument and the target. This measure-
ment is enabled by sending narrow beams of near-infrared light and recording the
return time. LiDAR instruments are primarily mounted on airborne platforms where
a LiDAR system registers the instrument position and orientation for the returned
pulses using a GPS interior measurement unit (IMU) in order to determine the target
coordinates. In a forest environment, LiDAR penetrates the forest canopy and
records different reflections from different parts of the plants describing the vertical
structure of the forest canopy. These multiple returns per pulse energy are stored
either as discrete points or as a full waveform.

In a discrete LiDAR, a system predefined threshold is used to distinguish a true
return from noise and the true discrete returns are recorded as coordinates and
intensity when the return energy exceeds the predefined threshold. Common current
systems record multiple returns including the first (top of canopy), last (ground
surface), and three other intermediate returns. In the case of the full-waveform
LiDAR, the entire energy pulse responses are stored as a function of time. This
waveform characterises the multiple targets’ vertical structure from the upper canopy
to the ground surface within individual pulses.

LiDAR systems in forestry are also classified as small- or large-footprint LiDAR.
Small-footprint LiDAR is usually operated on low-flying altitude air platforms with
a scanning instrument that goes back and forth with a beam diameter at intersecting
surfaces of less than 1 m (5-30 cm). It records the returned signal as discrete points at
high sampling densities, while the flying speed and altitude determine the number of
shots per square meter according to the intended application. The large-footprint
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LiDAR is commonly seen as a full waveform. In these instruments, a larger beam
diameter (between 5 and 25 m) at intersecting surfaces is used in a cross-track
scanning system where the signal is averaged across the footprint and used to sample
the vegetation cover (Dubayah and Drake 2000; Drake et al. 2002).

Through enabling the direct measurements of the top of canopy elevation, ground
topography, and vertical distribution, a wide range of forest characteristics can be
derived (Dubayah and Drake 2000). Forest canopy height can be typically calculated
directly by subtracting a digital elevation model (DEM) fitted to the return classified
as ground points from other returns. Other characteristics can be modelled or inferred
based on these directly measured attributes either in a plot scale or individual tree
scale analysis (e.g. aboveground biomass could be derived based on individual tree
dimensions and existing metrics or using multiple regression analysis between
LiDAR-derived attributes and field data to derive biomass at plot scale).

5 LiDAR in Monitoring the Effectiveness of Forest
Restoration

Forest structural attribute is a crucial factor in the estimation of aboveground
biomass. Therefore, many studies have been conducted to find the best finding and
give the best improvement and new technologies. In a nutshell, precise and consis-
tent assessments of planted forest structural characteristics are critical for forest
managers to make long-term sustainable forest management choices (Ozdemir and
Karnieli 2011). On the other hand, remote sensing imaging is more useful when
assessing forest restoration due to its capacity to identify variations in locations that
are difficult to analyse from the ground (Liu 2019). Light detection and ranging
(LiDAR) is one of the current active remote sensing technologies that can penetrate
the vegetation canopy (Asner and Mascaro 2014) and describe the three dimensions
of forest structure (Almeida et al. 2016) allowing for AGB assessment and canopy
openness over enormous regions (Almeida et al. 2019).

6 LiDAR in Quantifying Structural Attributes
6.1 Tree Dimensions

Tree species are classified based on the shape and geometry of their branches
(Koenig and Hofle 2016). As well as height information, multiplex geometric
metrics extracted from LiDAR which captures tree spatial neighbourhood data in
3D or 2D (two-dimensional)—such as grid, raster, voxel, or height layers—are
beneficial. Utilising LiDAR-derived data, we quantified the 3D texture, leaf cluster-
ing degree, foliage clustering scale, and gap distribution of a single tree in horizontal
and vertical directions. The approach attained an overall accuracy of 77.5% (k = 0.7)
for the categorisation of four species. According to Li et al. (2013) tree extraction
should be improved to further improve the classification accuracy. A method for
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categorising conifer species according to their inside and outside crown structure
was proposed by Harikumar et al. (2017). Using 3D region growth and key element
analysis, this model accurately describes the branch structure. 94.7% accuracy was
achieved for species categorisation using the proposed method, and its usefulness
was proven for recognising the species of conifers. It is important to test the
recommended modelling method more extensively to study the influences of
crown overlap and understory vegetation, as well as the impact of damaged trees
with missing branches and trees with asymmetrical crowns. Feature representations
of the internal structure of the crown are useful in tree species classification (Li et al.
2013; Lin and Hyyppd 2016). LiDAR data with an extremely dense resolution is
needed for identifying such features.

6.2 Aboveground Biomass

Aboveground biomass (AGB) from forests is critical for monitoring the global
carbon cycle and reducing climate change’s consequences (Ghosh and Behera
2018). Although aboveground biomass comprises both alive and dead plant mate-
rial, current research on biomass measurement has concentrated somewhat on the
‘active’ component (live trees) due to its significance. To better understand the
consequences of deforestation and environmental degradation on climate change,
accurate biomass calculations are necessary. Aboveground biomass measurement
provides the foundation for carbon inventories and the bulk of global discussions on
carbon trading regimes. Carbon markets need continuing data on carbon stocks,
especially the aboveground ‘living’ biomass, which is the most dynamic, change-
able, and manipulable of all biomass pools. This is the component of biomass that is
‘merchantable’ (Kumar and Mutanga 2017). Since the early 1970s, remote sensing
technology has been used (Ghosh and Behera 2018) to estimate biomass, and several
approaches have been developed, either in terms of model complexity (Becknell
et al. 2018) or through the use of an unmanned aerial vehicle (UAV), which provided
a novel solution (Zheng et al. 2019) for biomass estimation. The AGB value can be
determined using existing biomass allometric equations (O’Brien et al. 2019). This
was accomplished using cross-validation against an AGB subset of a vast worldwide
dataset of on-the-ground measured stem diameters, heights, and crown widths
(Camarretta et al. 2020).

6.3 Deadwood

Coarse woody debris (CWD) and deadwood are seen by forest managers as unnec-
essary consequences. Sustainability in forest management must not be ignored.
Additionally, deadwood contributes to the ecosystem by replenishing soil nutrients
and establishing microsites where plants and trees may grow. Nowadays, there is
some study that helps on detecting the CWD by remote sensing technologies such as
a high-resolution terrestrial laser scanner (TLS), an unoccupied aerial vehicle (UAV)
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laser scanner (ULS), and a combination of data from both sensors (Shokirov et al.
2021). However, a random forest (RF) classification algorithm was used and accu-
racy was very varied, depending on the data and ground vegetation cover, and
ranged between 20% and 86%, and 12% and 96%, respectively, when compared
to field data. The accuracy of CWD identification varied according to plant type, the
quantity of ground vegetation cover, and LiDAR data. The density of ground cover
had a significant detrimental effect on accuracy, notably for TLS and FLS data.

Other studies are using optical imagery and multispectral aerial LIDAR (Queiroz
et al. 2020) and airborne laser scanning (ALS) (Joyce et al. 2019; Jarron et al. 2021).
The use of optical imagery and multispectral aerial LIDAR with the chosen models
achieved high predictive accuracy (0.623 R* and 0.224 root mean square error in
cross-validation; 0.721 R? and 0.198 root mean square error in the verification area)
but required a sophisticated set of inputs, including high-resolution aerial images,
dense LiDAR point clouds, and machine learning point clouds.

As for the ALS, The accuracy of CWD detection is then evaluated at the
individual log level, and CWD volume is predicted at the plot level. The volume
totals of CWD predicted by ALS were compared to field-measured CWD and found
to be highly correlated (R = 0.81 by Jarron et al. (2021) and R = 0.96 by Joyce et al.
(2019)), allowing to expand the methodology and map CWD over a larger region.
LiDAR-based CWD identification and mapping will be beneficial for applications
that concentrate on bigger and longer pieces of CWD or applications focused on total
CWD volume.

6.4 Canopy Structure and Layering

A rainforest’s overstory, canopy, understory, shrub layer, and ground level are only a
few of its features. The canopy refers to the dense canopy of leaves and tree branches
formed by densely packed forest trees. The upper canopy rises 100—130 ft above the
forest floor, with the overstory made primarily of irregular emergent trees 130 ft or
higher. In contrast, the understory comprises leaf and branch layers under the canopy
ceiling. The shrub layer is the understory’s lowest layer, rising 5-20 ft (1.5-6 m)
above the ground, and consists of shrubby plants and tree seedlings. Field-based
observations of vertical forest structures over huge regions are time intensive and
complex, limiting the data’s use when applied to larger areas (Whitehurst et al.
2013).

Consequently, LIDAR remote sensing is an excellent technology for detecting
layers inside the vertical canopy structure. However, it is capable of providing
exceedingly detailed vertical and horizontal information (Camarretta et al. 2020).
Compared to LiDAR, structure from motion can have poor ground-level penetration
because canopy openings are too small to allow for equivalent illumination of the
ground and canopy, resulting in underexposure in imagery, and to be viewed at the
oblique angles required triangulation of position (Zarco-Tejada et al. 2014; Dandois
et al. 2017). It might, however, be enhanced by including terrestrial laser scanning
(TLS) (Fig. 6) and structure from motion (SfM) (Fig. 7). Both of these developing
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(b) (d) (e)

Fig. 6 Various platforms and examples of a single tree point cloud: (a) represents the terrestrial
laser scanning (TLS) platform, (b) represents the unmanned aerial vehicle (UAV) LiDAR platform,
and (c) represents the unmanned aerial vehicle (UAV) platform equipped with a digital camera.
(d, e) represent the TLS and UAV LiDAR point clouds of a single tree, respectively (Source: Zhang
et al. 2021)

(a) LiDAR

— LiDAR DTM — SFMDTM 40
---- LiDAR TCH - SFM TCH

Fig. 7 Cross-sections of the same forest area at Hutan Harapan obtained using (a) LiDAR
(airborne laser scanning) and (b) Structure from Motion (SfM) point clouds: The points are shaded
based on their unnormalized height above mean sea level (AMSL). The solid black and red lines
represent the digital terrain models created using LiDAR and SfM measurements, respectively
(DTM). Despite the fact that SfM generates much greater point densities, its inability to identify
ground points results in an overestimation of the ground location and, thus, an underestimate of the
top-of-canopy height (TCH; dashed lines) as compared to LIDAR. The vertical bars represent tree
heights, which are skewed downward when assessed with SfM (Source: Swinfield et al. 2019)
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technologies can collect the information below the canopy (Zhang et al. 2021) and
enhance ground position (Swinfield et al. 2019). These technologies can signifi-
cantly increase the value of UAV surveys for monitoring forest health changes and
direct restoration despite requiring wall-to-wall LiDAR coverage.

6.5 Vegetation Cover

The traditional way to identify vegetation cover is by remote sensing systems
utilising active and passive optical image sensors used in conjunction with one
another (Moorthy et al. 2011). As opposed to passive optical imaging sensors,
which can only provide comprehensive measurements of horizontal distributions
in vegetation canopies, LIDAR systems are capable of producing more accurate data
in both the horizontal and vertical dimensions (Lim et al. 2003; Vazirabad and
Karslioglu 2011), allowing for the creation of high-resolution (Asner and Mascaro
2014) digital elevation models (DEMs). Fisheye photography is a typical strategy
that may provide precise results, but it is inefficient when used in a small area since it
requires several sample locations and takes too much time. In contrast, high-
resolution aerial images, satellites, and their integration with LiDAR data are the
only options available for large areas.

6.6 Tree Species Composition

Accurate estimation of the tree species composition in forest contexts would benefit
forest ecologists, land managers, and commercial harvesters. Additionally, it may be
used to monitor biodiversity trends (Shen and Cao 2017), predict wood stocks, and
enhance forest fire risk assessments (Fricker et al. 2019). In remote sensing technol-
ogy for tree species composition, the first application was manually interpreting the
aerial photograph. However, the consequences of this technique are slow, costly in
money, and very dependent on the knowledge of researchers towards tree species
(Wang et al. 2018). Therefore, initiatives have adopted various remote sensing data
sources and classification methods to overcome these concerns. Tree species can be
distinguished by high-resolution multispectral satellite remote sensing (Immitzer et al.
2012), hyperspectral airborne imaging (Martin et al. 1998; Clark et al. 2005), and even
non-spectral airborne light detection and ranging (Holmgren and Persson 2004). In
addition, there are numerous approaches for classifying using a data fusion strategy,
integrating LiDAR with multispectral (Dalponte et al. 2012), airborne hyperspectral,
or hyperspectral images (Asner et al. 2012; Marrs and Ni-Meister 2019).
However, there are a few methods to evaluate the various techniques. For example,
Chauhan et al. evaluated classification performance by using random forest (RF),
while Shen and Cao (2017) used LiDAR metrics which were extracted and selected
by the indices of principal component analysis (PCA) and the mean decrease in Gini
index (MDG) from random forest (RF). Other studies have used different ways to
classify the tree by (Fricker et al. 2019) using a convolutional neural network classifier
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(CNN). Since many research reveal the capability of RS applications to classify
vegetation types and species, significant challenges remain in increasing the overall
diversity of species spotted and in enhancing the excellent magnification details
needed for morphological characteristics over vast areas without sacrificing the
required level of resolution (Camarretta et al. 2020).

6.7 Structural Complexity

A researcher from the University of Connecticut, Virginia Commonwealth Univer-
sity, and Purdue University prove for the first time that the structural complexity of a
forest is a more prominent predictor of carbon sequestration potential than tree
species variation (Elaina Hancock 2019). The classification of forest tree species
utilising RS systems has been studied using ALS data and remotely sensed pictures.
Therefore, many studies have been conducted to detect the structural complexity of
forests.

A study by Jayathunga et al. (2018) investigated airborne LiDAR data and aerial
photography to derive structural complexity forest by integrating multiple forest
structural attributes. First, the capacity of each plot to represent vertical and horizon-
tal differences in forest structure was determined, and second, plot-level metrics
were generated by field measurement and remote sensing data. A multivariate
collection of forest structural variables was utilised to categorise forest structure
into structural complexity classes. The canopy height, canopy density, and surface
area ratio will be measured using LiDAR and the percentage of broadleaf cover by
one image metric. The findings indicate a strong connection where the
measurements have a similar structural pattern between the different measurements.

Another research by LaRue et al. (2018) employs terrestrial LiDAR
measurements of structural complexity to characterise the organisation of plants in
the canopy and might be connected with Landsat-derived metrics via their effect on
energy and light. Connecting Landsat to terrestrial LIDAR may allow for a more
nuanced interpretation of Landsat-derived metrics and a broader spatial scale for
evaluating structural complexity. The results indicated a correlation between canopy
reflectance, greenness, and brightness and numerous indices of canopy structure.
Greenness was more correlated in stands with a higher canopy, a higher leaf area
density and diversity, and a less open and porous canopy. The result shows NDVI
had the strongest correlation with (adj. R* = 0.52-0.62) of all greenness indicators
for the six metrics.
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Abstract

The global climatic crisis along with the threat to the forests has increased the
need to research for more accurate and accessible methods and techniques to
quantify biomass and carbon in forest while supporting the REED+ and other
world objectives. With the aim of reaching zero net deforestation, all participant
countries of the United Nation Framework Convention on Climate Change
(UNFCCC) have to present an up-to-date report of their carbon balance periodi-
cally, as well as compensation actions of REDD+ programme. In the 2020s,
REDD+ compensation payments should start to be implemented along with the
compensation actions in which money from emission countries should be paid to
carbon stock countries. Therefore, accuracy, transparency and accessibility of the
carbon quantification processes are essential to achieve REDD+ objectives and
ultimately the conservation and enhancement of forest carbon stocks. Measure-
ment, Recording and Verification (MRV) is the mechanism to make sure that the
claim of countries that they have more carbon stock than emitted is correct.

For ages, assessment of forest aboveground biomass (AGB) and aboveground
carbon (AGC) or carbon stock has relied on the classical forest inventory
approach. Usually, DBH and tree height are measured in the field to assess forest
AGB using an allometric equation. Although forest inventory data provide the
needful information, it is time-consuming and less accessible, and datasets are
often limited to a small area. Therefore, having a robust method using remote
sensing technology to assess AGB and AGC is essential in monitoring forest
biomass and carbon stock. This technology is reasonably accurate, economical
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and operational along with the complement of field measurement. This chapter
will review several latest remote sensing sensor systems (e.g. VHRS, Airborne
RGB, SAR, Airborne LiDAR, terrestrial laser scanner and UAV RGB and MSS
images) and analysis techniques and their applications in the assessment of AGB
and carbon stock and sequestration.

Keywords

Forest AGB - Carbon stock - Carbon sequestration - Remote sensing - LiDAR -
SAR - TLS - UAV

1 Introduction

The current climate change crisis is caused by the effects of global warming, which
is produced by the increment in the concentration of greenhouse gases (GHG) in the
atmosphere (IPCC 2018). Carbon dioxide is one of the main GHGs which resulted
from land use changes, e.g. deforestation and forest degradation. The Intergovern-
mental Panel on Climate Change (IPCC) reported that the amount of carbon dioxide
in the atmosphere is increasing by 1.4 ppm per year and this will contribute to the
increase in temperature by 1.8—4 °C by the end of the century (IPCC 2007).
Dramatic increase of CO, concentration is highly related to human activities. Over
the past 20 years, about 75% of the anthropogenic emissions of CO, to the atmo-
sphere are due to fossil fuel burning (IPCC 2007). The rest is mostly due to land use
change, especially deforestation. Reducing carbon emissions from deforestation and
forest degradation in developing countries is important to combat global warming. A
tonne of carbon in trees is the result of the removal of 3.67 tonnes of carbon dioxide
from the atmosphere; thus, the world’s forest ‘sink’ holds more carbon than the
atmosphere. Maintenance of existing forests as well as increasing forest area can
contribute highly to the mitigation of global climate change.

Aboveground biomass (AGB) estimation is a key for quantifying carbon stocks in
forests. The carbon stored in the aboveground living biomass of trees is the largest
pool and the most directly impacted by deforestation and forest degradation (Gibbs
et al. 2007). Thus, estimation of the AGB with sufficient accuracy to analyse carbon
stored in the forest is important for recently emerging policies like REDD+. How-
ever, the most accurate method for the estimation of biomass is through cutting of
trees and weighing of their parts, which is time consuming and expensive for large
areas. This destructive method is often used to validate other less invasive and
cheaper methods, such as the estimation of carbon stock using non-destructive
in-situ measurements and remote sensing. The aim of this chapter is to assess the
accuracy of various remote sensing sensor system data to estimate and model forest
AGB and AGC.
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2 Remote Sensing and AGB/Carbon Stock Assessment

Remote sensing technology is widely used in forestry to retrieve forest parameters,
e.g. DBH, trees and stand height, trees and stand BA, trees and stand volume,
aboveground biomass (AGB) and carbon stock. Remote sensing has the advantage
of acquiring spatial data over a larger area that is not accessible to traditional field
survey. Remote sensing techniques, through different sensors and methods, offer
means for estimating AGB. The advantage of using remote sensing data is that
spatial distribution of forest biomass can be obtained at reasonable cost and with
acceptable accuracy. Moreover, attempts have been made to estimate forest biomass
and carbon stock using different platforms (airborne and space-borne) and sensors
(optical, radar and LiDAR). However, some of these remotely sensed images and
data tend to be inaccurate or very costly for AGB estimation in tropical forest (Gibbs
et al. 2007). Furthermore, several methods have been proposed for estimating forest
biomass using remote sensing techniques that make use of a combination of regres-
sion models, vegetation indices and canopy reflectance models.

Very high-resolution satellite (VHRS) images in the early 2000s together with
object-based image analysis (OBIA) techniques have started providing opportunities
to improve AGB estimation analysis through assessing tree crown projection area
(CPA) using OBIA and image segmentation techniques. The relationship between
stem diameter at breast height (DBH) and CPA of a tree opens a possibility to
calculate AGB using high-resolution optical imagery where every tree is identifiable.

Crown area or crown projection area is defined as the proportion of the forest
floor that is covered by the vertical projection of the tree crowns (Jennings et al.
1999) as shown in Fig. 1. CPA is calculated from the maximum crown diameter
assuming a circular crown projection.

During the 2010s, LiDAR (light detection and ranging) or ALS (airborne laser
scanner) becomes more accurate in assessing tree height. ALS uses its laser beams
which are sent from aircraft to the forest canopy, and through the technique the
canopy height model (CHM) or tree height can be calculated by subtracting DTM
(digital terrain model) from DSM (digital surface model) as seen in Fig. 2. The

vertical projection of e crowen perimicter

Crown projection area

Fig. 1 Crown projection area, after (Gschwantner et al. 2009)
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Fig. 2 Canopy height model
CHM = DSM — DTM

Fig. 3 TLS measurements and output in a forest circular sample

presentation of the ALS data is 3D point clouds, which is considered as the most
accurate remotely sensed data in terms of geometry and coordinates.

The density of point clouds would make the shape of the object (tree). The higher
the number of point clouds per square meter, the better the representation of the
object. Hence, high density, e.g. 30-40 point clouds per square meter, can show
much higher details of the object, while low point cloud density would poorly
represent the object. Combining CPA measured from VHRS images and tree height
measured using ALS has improved the AGB estimation using regression models.

Terrestrial laser scanning (TLS) is also known as ground-based LiDAR. It uses a
laser and a scanning system to automatically measure the surrounding environment
during a very short timeframe. The TLS is typically mounted on a tripod over a
ground position specified by a certain application (Fig. 3). The objects around the
static scanning position are captured by 3-D points reflected by the nearest object
surfaces in the direction of the laser beams. The scanner measures the surrounding
environment in horizontal and vertical directions stepwise, with a fast vertical mirror
rotation and a slower horizontal instrument rotation. The output of multiple scanning
of a circular plot in forest is a group of hundreds of thousands of point clouds and a
very accurate 3D presentation of trees.

From TLS data DBH, height, stem and canopy volume can be measured.

SAR or synthetic aperture radar is a type of radar sensor that has been widely used
to monitor land surfaces due to its characteristics of using its own illumination
energy, penetration of earth superficial materials and night imaging and
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Fig. 4 Scattering contribution from the forest [Images adapted from Carver (1988)]

all-weather imaging capability. SAR as an active sensor is a side looking system: It
transmits electromagnetic pulses as it moves along its path and sequentially records
the backscattered signal. The received backscatter results in the detection of object
and determination of its position. In forestry, the penetration properties of the radar
image are of significance to model forest AGB. The pulse penetration has a signifi-
cant influence on the choice of a wavelength and polarisation channel for forest
biomass estimation. The wavelength bands from X, C, S, L, P and polarisation
channels of the radar system determine the penetration ability of the electromagnetic
pulses and scattering mechanisms of signals received by the radar sensor. Wave-
length bands L. and P together with cross-polarisation VH and HV are known for
their penetration characteristics within the forest layer which in turn results in three
types of radar pulse scattering mechanisms. The mechanisms are surface scattering
or single bounce, double bounce or ground and tree trunk and volume scattering. The
volume scattering from forest canopy is of importance for forest AGB estimation.
Figure 4 shows an example of the volume scattering of L-band cross-polarisation as
adapted from Carver (1988).

Data acquisition using unmanned aerial vehicle (UAV)-based platform has high
operational flexibility in terms of cost, time, platforms, place and repeatability
compared to the satellite-based platform and traditional manned photogrammetric
operations. UAV has the capability of providing high spatial and temporal resolution
data which is useful in assessing AGB and carbon stock (Fritz et al. 2013). UAV
platform can capture high-resolution images that can be used effectively and effi-
ciently to generate the digital terrain model (DTM), digital surface model (DSM) and
orthomosaic image (Stocker et al. 2017). Moreover, conventional remote sensing
techniques can provide horizontal forest structure accurately rather than vertical
forest structure. On the contrary, UAV is capable of providing horizontal and vertical
forest structure. Therefore, more accurate estimation of forest stand parameters,
e.g. CPA, height and AGB, can be assessed from 3D orthomosaic UAV images
(Fig. 5).

The captured images from the UAV platform are used to generate DSM, DTM
and orthomosaic based on structure from motion (SfM) technique. Structure from
motion (SfM) represents the process to obtain a three-dimensional structure of a
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Flight area A

Fig. 5 UAV orthomosaic image (left) and CHM or trees height image (right)

scene of an object from a series of digital images (Micheletti et al. 2015). SfM
photogrammetry is cost- and time-effective to estimate forest AGB and carbon stock.
StM uses a sequence of overlapping images to produce a sparse 3D model of the
scene. SfM photogrammetry approach is capable of generating a digital surface
model, reflecting the top of the canopy in the case of a forest and a digital terrain
model. Canopy height model (CHM) can be generated from DSM and DTM. From
CHM, the tree height can be extracted that would be the input for allometric
equations to assess biomass and carbon.

Among all biophysical parameters of the tree, diameter at breast height (DBH) is
one of the essential variables to assess the biomass and carbon because it explains
more than 95% variation in biomass (Gibbs et al. 2007). Studies have proved that
there is a significant relationship between CPA and DBH (Anderson et al. 2000;
Hussin et al. 2014). The correlation was demonstrated between CPA and all parts of
trees such as foliage mass, branch mass and stem mass for biomass. Tree height can
be estimated using CHM. Thus, aboveground biomass and carbon stock can be
assessed based on the relationship between CPA and DBH and CHM using regres-
sion model and allometric equations.

3 Key Literatures of Remote Sensing Applications in Forest
AGB and Carbon Stock Estimation

The following are samples of key development in research work using different
remote sensing sensor systems to assess forest AGB and carbon stock in this decade.
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3.1 Very High-Resolution Satellite (VHRS) Image Applications

Hussin et al. (2014) have reported that the methods of forest carbon estimation using
remote sensing data and techniques are evolving within a short timeframe as
compared to traditional forest inventory methods. Object-based image analysis
(OBIA) provided new opportunities to improve biomass and carbon stock estimation
and mapping by delineating and classifying crown projection area (CPA) of individ-
ual trees. In this paper, image segmentation techniques of OBIA (region growing and
valley following) are being applied on GeoEye-1 satellite data and compared in
terms of accuracy in Ludhikhola watershed in the Gorkha District of Nepal. Accu-
racy assessment of tree crown delineation of both segmentation approaches was
analysed using accuracy measures of D and one-to-one (1:1) correspondence. The
combination of over-segmentation and under-segmentation, D is interpreted as the
‘closeness’ measure to an ideal segmentation, results in relation to a predefined
reference set. Region growing and valley following segmentation with 68% and 58%
accuracy, respectively, were achieved and linear regression model was developed for
carbon stock for Shorea robusta which resulted into a coefficient of determination
value of 0.67 at 95% confidence level and the coefficient of determination resulted
into a value of 0.70 for other species. The research concluded that region growing
approach showed better delineation as compared to valley follow approach, since it
used both features of local maxima and local minima.

A study by Karna et al. (2015) in which they aimed to develop species-specific
regression model using canopy projection area (CPA) and LiDAR (ALS) derived
tree height as predictor variables for accurate estimation and mapping of carbon
stock in tropical forests of Chitwan, Nepal. In this study WorldView-2 image was
co-registered to airborne LiDAR data. LiDAR data was further processed to obtain
the canopy height model (CHM) by subtracting digital terrain model (DTM) from
digital surface model (DSM). Both the pan-sharpened image and CHM layers were
used for tree crown delineation to extract CPA and height of the individual trees.
Aboveground carbon stock was calculated from field-measured DBH and height
using species-specific allometric equation and a conversion factor. Species-wise
multiple regression models were developed using CPA, LiDAR height and field-
measured carbon stock for carbon mapping of the study area. Shannon diversity
index of each community forest (CF) was calculated to find out the relationship
between tree species diversity and carbon stock of CF.

LiDAR or ALS-derived height showed overestimation of field height with RMSE
of 3.84 m and was able to explain 76% of variability in height measurement. Multi-
resolution segmentation resulted with overall accuracy of 75% in 1:1 correspon-
dence and 67% segmentation accuracy (33% error) was observed from goodness of
fit (D value). Transformed divergence indicated a good separation among different
tree species with best average separability of 1970.99. NIR1, NIR2 and Red-Edge of
WorldView-2 image were found to be the best bands for spectral separability. Tree
species classification resulted in overall accuracy of 58.06% and Kappa statistics
0.47 for classifying six tree species. On average correlation coefficients of CPA and
carbon, height and carbon and CPA and height were found to be 0.73, 0.76 and 0.63,
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respectively, and indicated significant relationship for five dominant tree species.
Species-wise multiple regression models were able to explain 94%, 78%, 76%, 84%
and 78% of variation in carbon estimation using CPA and LiDAR height for Shorea
robusta, Lagerstroemia parviflora, Terminalia tomentosa, Schima wallichii and
others, respectively. A total of 188,485 Mg C carbon stock was estimated with an
average of 216 MgCha ™ '. The relationship between tree diversity and carbon stock
at CF level was not significant and indicated weak correlation. They concluded that
WorldView-2 satellite imagery and airborne LiDAR data are very promising remote
sensing sources for estimating and mapping species-wise aboveground carbon stock
of tropical forests.

3.2 Airborne Laser Scanner (ALS) Applications

A study by Bazezew et al. (2018) presents an approach for accurate assessment of
AGB of tropical rainforest of Ayer Hitam, Malaysia, by integrating airborne laser
scanner (ALS) and terrestrial laser scanner (TLS). Integrative use of ALS and TLS of
modern remote sensing technologies has enabled to detect a comparable number of
manually recorded trees. ALS and TLS were used to detect and extract upper and
lower canopies tree parameters, respectively. About 62% of trees were detected by
ALS, while the remaining 38% were detected by TLS. The height of upper and lower
canopy trees was then measured from the corresponding ALS and TLS point cloud
data. Diameter at breast height (DBH) of all trees was measured by TLS, and ALS
detected trees were matched and linked with the corresponding tree stems detected
by TLS for DBH use. DBH derived from TLS was validated using manually
measured field DBH. On the other hand, two ways of tree height validation were
implemented: upper canopy and lower canopies tree height. Upper canopy tree
height measured from ALS was used as a ground-truth reference to validate
corresponding field-based tree heights.

For lower canopy trees height measurement validation, controlled field experi-
ment was performed to assess the accuracy and height measurement variation of the
TLS and handheld laser instruments (Leica DISTO 510, TruPulse and Forestry Laser
Rangefinder). Height measurements were done in the known height of the
windowsills and selected solitary and complex cluster of trees. The result showed
TLS provides highly accurate height approaching to the actual heights of the
windowsills with root mean square (RMSE) of 5 cm, while Leica DISTO
510, TruPulse and Forestry Laser Rangefinder provided RMSE of 60, 73 and
85 cm, respectively. Height measurement with handheld laser instruments showed
deviations from regression line with increasing distance and height of the object. On
the other hand, handheld laser instrument height measurement of selected trees
showed significant differences among observers and distances to the tree.

Coefficient of determination (R?) and RMSE between field and TLS-based DBH
were 0.989 and 1.30 cm (6.52%), respectively. The R* and RMSE between upper
canopy tree field-based height and the corresponding heights identified by ALS were
0.61 and 3.24 m (20.18%), respectively. On the other hand, R? of 0.69 and RMSE of
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1.45 m (14.77%) were found for lower canopy tree heights when field-based height
was validated with TLS-measured tree heights. The AGB calculated from the
combination of ALS- and TLS-derived parameters was compared with the tradi-
tional field-based AGB at the plot level, and R* of 0.966 and RMSE of 0.62 Mg
(7.64%) were achieved.

Wassihun et al. (2019) have investigated the effect of forest stand density on the
estimation of AGB/carbon stock using ALS- and TLS-derived tree parameters in
Berkelah tropical rainforest, Malaysia. Purposive sampling approach was adopted
for the selection of the unit of analysis. Results are based on data collected from
32 sample plots measured and scanned in the field. ALS was used to derive upper
canopy tree height, while TLS was used to derive the height of lower canopy trees
and DBH of all scanned trees in all sampled plots. DBH measured in the field was
used to validate the DBH manually derived from TLS (terrestrial laser scanner) point
cloud data and it was also used to compute the stand basal area of field-measured
trees and extracted from TLS point cloud data. The DBH manually derived from
TLS point cloud was used to estimate AGB of the sampled plots for both upper and
lower canopy trees. Descriptive statistics, linear regression and correlation analysis
were used to answer the research questions of this study.

The coefficient of determination (R?) and RMSE of the DBH manually derived
from TLS point cloud data validated by field-measured DBH were 0.99 and 1.37 cm,
respectively. This result revealed the existence of almost one-to-one relationship,
and based on the statistical test undertaken, there is no statistically significant
difference between the two DBH measurements. Out of 1033 trees measured and
scanned in the field, 855 trees (82.7%) were extracted from TLS point cloud data and
178 trees (17.3%) were missed. The Pearson’s correlation coefficient (r) between
total number of trees measured and scanned in the field and total number of trees
extracted from TLS point cloud was 0.95. R* of 0.89 and 0.15 was found to explain
the relationship between the number of missed trees per plot against number of trees
measured in the field and number of missed trees against forest stand density,
respectively, per plot regardless of the size of missed trees. On the other hand, R*
of 0.912 and 0.179 was found for forest stand density against aboveground biomass
and number of trees per plot against aboveground biomass, respectively. Further-
more, for AGB sensitivity analysis, when TLS tree height was validated by
corresponding trees height from ALS, 0.72 and 2.42 m were found for R* and
RMSE, respectively, and AGB was not sensitive to TLS tree height measurement
variation. Finally, based on the findings, forest stand density significantly affects the
estimation of aboveground biomass at alpha equal to 0.01 significance level.

Ojoatre et al. (2019) in a study aimed at assessing the uncertainty of tree height
and aboveground biomass from terrestrial laser scanner (TLS) and hypsometer using
airborne laser scanner (ALS) data in tropical rainforests of Ayer Hitam, Malaysia.
Then they assess the effects of tree height accuracy on the forest biomass and carbon
stock through sensitivity analysis of the error in height measurement and how it
affects the accuracy of tree biomass/carbon stock. Field height measurement using
Leica DISTO 510 showed underestimation of tree height with RMSE of 4.07 m,
while TLS showed underestimation of height with RMSE 1.33 m when airborne
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LiDAR was used as a standard to validate the field and TLS measurements. There
was significant difference in the amount of AGB and carbon stock from the three
(3) different measurements notably 146.33 Mg of AGB and 68.77 Mg of carbon
from field measurements, 170.86 Mg of AGB and 80.31 Mg of carbon from TLS and
179.85 Mg of AGB and 84.53 Mg of carbon from the airborne LiDAR. Considering
the airborne LiDAR measurement as the most accurate, the AGB and carbon stock
from field represent 85.55% of respective total AGB and carbon stick estimation
from airborne LiDAR. Meanwhile TLS measurements reflect 95.02% of respective
AGB and carbon stock estimated using airborne LiDAR as a standard measurement.
The results have shown that the amount of AGB and carbon stocks is sensitive to
height measurement errors resulting from the various methods used to undertake the
measurements and the forest conditions; airborne LIDAR measures tree height more
accurately compared to field measurements using Leica DISTO 510 and TLS as they
are terrestrially based and cannot accurately capture the top of trees as airborne
LiDAR.

Kumar et al. (2012) have reported that light detection and ranging (LiDAR), a
relatively recent active remote sensing technology, can provide accurate appraisal of
vertical forest canopy structure. Individual tree and stand-level physical attributes
such as height, vertical structure, canopy closure and density can be retrieved from
LiDAR data. In their research they present a novel method to precisely detect
individual trees from high-density airborne LiDAR point cloud data. Tree canopies
are delineated using object-based image analysis and a new approach of Thiessen
polygons. Further an array of important tree parameters such as tree height, canopy
projection area (CPA), canopy base height, canopy volume, canopy density, canopy
gaps, local tree density and canopy inclination have been extracted from the LiDAR
point cloud data to prepare geospatial forest inventory. The research also deals with
tree species classification based on query method on structural tree parameters in
inventory database. Lastly, the sequestered forest carbon in the study area has been
assessed by developing regression equation from the extracted parameters. Tree
peaks were detected with high accuracy of 96%, while best crown segmentation
accuracy for region growing segmentation approach was 84% with 93.5% one-to-
one (1:1) correspondence. Thiessen polygon segmentation approach proved to be a
good estimator of CPA with 94.2% 1:1 correspondence and it could explain refer-
ence CPA with R* = 0.90, RMSE = 3.2 m® Tree height was extracted with
R*> = 0.86, RMSE = 0.86 m, while canopy base height was extracted with an
accuracy of R* = 0.73, RMSE = 0.86 m. Species classification was achieved with
an overall accuracy of 97%. The best carbon model using extracted parameters had
accuracy of R* = 0.78, RMSE = 0.23 kg. In this research, LIDAR has emerged as a
potential technology to fulfil the needs of precision forestry.

33 Terrestrial Laser Scanner (TLS) Applications

In a study by Kalwar et al. (2021), they assessed forest inventory parameters
(species, position, diameter at breast height (DBH), tree height, etc.) in tropical
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rainforest of Royal Belum State Park of Malaysia using TLS. Data on these
parameters were collected from field observations to be used as ground truth. TLS
data of the sample plot were acquired through multiple scanning using a Riegl
VZ-400 scanner. Pre-processing and registration of multiple scans were done in
RSCAN PRO software. After that all sampled trees within the inventory plots of
500 m* were extracted manually in RiISCAN PRO. Then DBH and tree height were
measured manually in RiSCAN PRO and CloudCompare software. Automatic
derivation of DBH and tree height was also computed using Computree algorithms.
The inventory parameters derived from different methods were compared to analyse
the relationships between them. Aboveground biomass (AGB) stocks of the sample
plots were estimated based on both the field-measured and TLS-derived DBH and
tree height using an allometric equation. A conversion factor (0.47) was used to
convert AGB stocks to aboveground carbon (AGC) stocks.

Plot-wise average manual and automatic detection rate of tree was 80 and 90 %
achieved with respect to field observations. The average of plot values of R* and
RMSE was 0.95, 2.7 cm and 0.93, 2.29 cm, respectively, for manual and automatic
computation of DBH. Similarly, the average of plot values of R* and RMSE for
manual measurement and automatic derivation of tree height was 0.77, 2.96 m and
0.04 and 5.35 m, respectively.

The average stocks of AGB and AGC estimated from field-measured DBH and
tree height were 286 Mg ha™' and 134 Mg ha™ ', respectively, while the average
stocks of AGB and AGC estimated from manually measured DBH and tree height
from TLS data were 278 Mg ha~" and 130 Mg ha™', respectively. Similarly, the R
values for the estimated AGB and AGC from manually measured DBH and tree
height from T-LiDAR data were 0.93 and the corresponding RMSE values were
42.4Mgha "and 19.9 Mg ha~'. The RMSE% value for AGB and AGC was 14.8%,
i.e. AGB and AGC can be estimated with 14.8 accuracy with respect to field-
measured DBH and tree height.

Thus, this study suggests that TLS technology has potential to derive forest plot
inventory parameters (stem detection, BDH and tree height) for AGB and AGC
estimation in tropical forest. Compared with field measurement, these parameters
were manually measured with reasonable accuracy from TLS data. Automatic
derivation of these parameters was not very successful. There is a need to develop
robust algorithms for automatic derivation of forest inventory parameters.

Another study on TLS applications by Beyene et al. (2020) aimed at the assess-
ment of the effect of scanning positions of TLS on derivation of tropical forest
inventory parameters and aboveground biomass estimation in the tropical rainforest
of Ayer Hitam, Malaysia.

Therefore, for this study, four and five scanning positions were used to derive
forest inventory parameters and aboveground biomass or carbon stock estimation. A
total of ten sample plots were established to collect validation data from field.
Concurrently with the field data collection, the sample plot was scanned with TLS
using four and five scanning positions. The point cloud data was then processed
using manual and automatic extraction method in RiSCAN PRO and Computree
software. Thus, the individual trees were extracted manually and automatically from
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the point cloud. Respectively, the overall manual extraction percentage of trees was
97.99 and 99.55% for the four and five scanning positions. Similarly, the automatic
extraction of individual trees was analysed with respect to the collected field data
and the result showed that 91% and 93.75% of the trees were extracted from the four
and five scanning positions, respectively. Moreover, the accuracy of the automatic
and manually measured TLS DBH was validated using the field-measured DBH as
independent variable.

The root mean square error (RMSE) for the manually derived DBH from the four
and five scanning positions was 1.66 cm (8.06%) and 1.37 cm (6.60), respectively.
Similarly, the RMSE for the automatically derived DBH from the four and five
scanning positions was 3.12 cm (14.57%) and 2.36 cm (11.47%), respectively. The
RMSE for the automatically measured height from the five and four scanning
positions was 3.17 m (17.40%) and 3.68 m (19.97%). The result also showed R?
value of 0.98 and RMSE of 0.077 Mg for above aground biomass calculated from
five scanning positions. There was no significant difference of AGB 84.65 Mg and
39.78 Mg of carbon from manually measured parameters and AGB of 77.24 Mg and
36.31 Mg of carbon measured from automatically measured parameters with four
scanning positions. Similarly, the result of the aboveground biomass and carbon was
calculated manually and automatically from the five scanning positions and they did
not show a significant difference with a value of 101.2 Mg AGB and 47.48 Mg of
carbon and 83.75 Mg of AGB and 39.36 Mg of carbon, respectively. The result has
shown that increasing the number of scanning position from four to five did not have
any effect both in the derivation of parameters and aboveground biomass or carbon
stock estimation. However, it has an effect on the extraction of individual trees from
the point cloud data since increasing the number of scanning positions has the
potential to capture all the trees within the sample area.

In other study by Muumbe et al. (2021) they explored the feasibility of using
terrestrial laser scanner and quantitative structure modelling (QSM) to assess AGB
in a tropical rainforest of Ayer Hitam Forest Reserve, Malaysia. In this study point
clouds were acquired from 26 circular plots of 500 m” using a RIEGL VZ 400 ter-
restrial laser scanner. Registration, extraction of individual trees and measurement of
DBH and height were conducted in RISCAN PRO v 2.1. One hundred (100) trees
were selected for the QSM reconstruction based on extraction quality and DBH
distribution. TLS-derived DBH and height with wood density were used to calculate
AGB from allometric equations. AGB was calculated from the QSM-derived vol-
ume and wood density. The DBH and height derived from the TLS were compared
to the DBH and height measured from the field. The AGB biomass derived from
allometric equations was compared with the AGB derived from QSM and the
distribution of AGB along the different parts of the trees was assessed. Sensitivity
analysis was carried out on parameters that affect the volume reconstruction. These
parameters are the number of runs, cover set diameters and nmin values. Above-
ground carbon (AGC) per tree was calculated by using a conversion factor of 0.47 to
convert the AGB/tree into AGCl/tree.

Field-measured DBH with TLS-derived DBH showed a high correlation with an
R? 0f 0.993 and an RMSE of 1.1 cm, while field height and TLS height showed a low
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correlation with an R> of 0.589 and an RMSE of 3.4 m. Of the 100 trees,
29 observations had trunk biomass greater than canopy and 71 observations had
canopy biomass greater than trunk biomass. Of the 29 observations, there was a
strong relationship between AGB from allometric equations and from QSM. An R?
of 0.968 with an RMSE of 120 kg/tree was observed when using the FAO default
wood density value for Asia (0.57 g/cm®) and an R* of 0.934 and an RMSE of
131.61 kg/tree were obtained using species-specific wood density. The
71 observations showed a slightly lower relationship with an R* of 0.817 and an
RMSE of 163 kg/tree using 0.57 g/cm® wood density and an R* of 0.797 with an
RMSE of 198 kg/tree using species-specific wood density. Compared to the allome-
try reference AGB was overestimated by 47% for 100 trees. No statistically signifi-
cant difference was observed in using either the FAO default wood density value or
species-specific wood density in calculating AGB. The average AGC per tree was
294 kg/tree using species-specific wood density values and 281 kg/tree using the
FAO default wood density value.

This study shows the potential of TLS and QSM in estimating AGB but further
work is needed for accurate reconstruction of trees in a heterogeneous forest.
Reconstruction of the trees was not very successful as many factors play a role in
producing a robust reconstruction. There is a need to develop algorithms that
properly extract individual trees from point clouds, accurately separate the branches
and leafs before reconstruction and also automate the process of finding optimum
modelling parameters to suit the variety of species.

34 Synthetic Aperture Radar (SAR) Applications

The first study on SAR application in assessing AGB is by Masolele et al. (2019),
which examined the application of L-band ALOS-2 PALSAR-2 SAR data to model
the AGB/carbon stock and carbon sequestration of the tropical rainforest. The SAR
parameters were evaluated on the basis of the single SAR backscatter image and time
series analysis of SAR backscatter, together with an analysis of the influence of
combined HV and HH backscatter on AGB estimation. Also, the saturation effect of
radar backscatter for AGB estimation was established by determining the saturation
level at which AGB prediction tends to level off. The seasonal (moist, dry) depen-
dence of SAR backscatter for AGB estimation was also analysed. The satellite SAR
data used for this study were represented by a time series of SAR images acquired in
three-time periods: September 2006, January 2017 and September 2017 by the
ALOS-2 PALSAR-2 sensor. The study area is in the tropical rainforest Berkelah,
Malaysia, and represented a typically managed complex tropical rainforest land. The
relationship of different L-band SAR parameters and their temporal stability was
studied along with reference field AGB data calculated from forest DBH and tree
height measurements. Further, two polarimetric parameters, cross-polarisation and
co-polarisation backscatter, were chosen for further investigation and AGB retrieval.

A relationship between forest AGB and L-band SAR parameters was established
using the linear, logarithmic and multiple regression approaches. Ways of obtaining
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the optimal combination of L-band SAR images were evaluated as well. For a single
scene, the best results were observed with HV-polarised backscatter (R* ~ 0.82,
RMSE =~ 79 tons ha™') and (R* = 0.87, RMSE ~ 68 tons ha™') using logarithmic
regression for scenes acquired in September 2016 and September 2017 conditions,
respectively. SAR backscatter saturation was estimated at 270 tons ha™ ', the point at
which SAR backscatter response to AGB started to decrease by 0.02dB. At the same
time, AGB validation result with an (R* ~ 0.8, RMSE ~ 84 tons ha™') and (R* ~
0.78, RMSE =~ 88 tons ha™') was achieved for logarithmic and linear regression
analysis of HV backscatter, respectively. Hence, logarithmic regression was a better
predictor of AGB than using linear regression. Multiple aggregations of HV and HH
did not significantly improve the AGB estimates for both studied SAR parameters
with p-value > 0.05. The stronger achievement was observed in the estimation of the
amount of carbon sequestration between September 2016 and September 2017. An
estimated total of 3.62 tons ha~' of carbon was sequestered in Berkelah forest in
1 year. This study proved that combining temporal series of SAR scenes could be a
better estimator of carbon sequestration.

In general L-band, SAR backscatter has proved to have a significant potential for
AGB/carbon stock estimation and carbon sequestration. It provides an opportunity
for climate change programmes (REDD+) to engage more in using SAR data for
forest carbon monitoring. However, challenges of SAR backscatter saturation,
moisture effect on SAR backscatter and accurate forest height estimation for AGB
estimation using SAR data still need to be addressed.

However, when using SAR data to assess AGB in mangrove forest, the accuracy
estimation is relatively low according to the literatures. In this context, Nesha et al.
(2020) study was carried out to estimate AGB/carbon stock using backscatter
coefficients of ALOS-2 PALSAR-2 in the part of the mangrove forest at Mahakam
Delta, East Kalimantan, Indonesia. The forest parameters (DBH and tree height)
were collected from a total of 71 sampling plots in October 2018. The forest
parameters were used to calculate the field-based AGB using an allometric equation
for the mangrove forests. PALSAR-2 data with level 1.1 fine beam dual (FBD)
polarisation was obtained from JAXA. A linear regression model was applied to
estimate AGB in the study area (105 ha) using HV and HH polarisation backscatter
of PALSAR-2. The accuracy of the AGB estimation was assessed in terms of Rz,
RMSE and p-value. The results of the linear regression models revealed that HV
backscatter coefficients estimate AGB with high accuracy at R* of 0.89, RMSE of
23.16 tons ha™' and p-value < 0.01. The accuracy of the model validation was also
high at R* of 0.89, RMSE of 22.69 tons ha~' and p-value < 0.01. This implied that
HV backscatter coefficients of PALSAR-2 predicted AGB in the mangrove forest
with 89% accuracy in our study. Therefore, the equation derived from the simple
linear regression model was used to map the AGB and carbon stock in the study area.
The estimated AGB in the study area of the mangrove forest ranged from 1 to
350 tons ha~' with an average of 181 tons ha " and the total AGB accounted for
13,719 tons.

The findings of our study showed a promising accuracy in estimating AGB using
HV-polarised ALOS-2 PALSAR-2 backscatter coefficients in the mangrove forest.
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Therefore, our study concluded that L-band ALOS-2 PALSAR-2 data has a great
potential to estimate AGB with high accuracy in the mangrove forest as in the inland
forest in the tropics. Thus, the findings of our study can contribute to the MRV
mechanism of UN-REDD+ programme for monitoring the carbon emission reduc-
tion in the mangrove forests in the tropics.

Sumareke (2016) in her study model and map AGB and carbon stock of Ayer
Hitam Rainforest Reserve in Malaysia using ALOS PalSAR images, data from
27 plots were assessed. Out of these data, 17 plots were used for developing the
model and other 10 plots were retained for model validation. AGB was obtained
based on plot level using the improved allometric equation developed by Chave et al.
(2015). Meanwhile, backscatter coefficient from HH and HV polarisation was
retrieved and converted to sigma nought. Besides, total stand BA, average DBH
and height were also obtained.

Correlation and simple linear regression analyses were done separately between
observed AGB and backscatter coefficient of ALOS-2 PALSAR, HH and HV
polarisation. Results of the analysis showed a positive and strong relationship
(R* = 0.817) between AGB and HV-polarised backscatter. About 82% of the
variability in AGB was explained by the HV backscatter coefficient. The ten
independent data were used to validate the model. The predicted AGB was plotted
against the observed AGB. A strong correlation was identified with R* of 0.796. The
correlation was significant at 99 and 95% confidence level. The AGB of the study
area was estimated using the simple linear regression developed with HV backscatter
and AGB. The AGB and carbon stock map of the Ayer Hitam Forest Reserve were
produced. Carbon stock values were calculated using 0.5 conversion factor.

The observed amount of AGB of AHFR obtained from the measured data using
the allometric equation ranges from 60.17 to 367.07, while the estimated AGB using
the simple linear model with HV SAR data ranges from 20 to 576.42 tons ha~'. The
average AGB for observed and estimated was 208.79 tons ha™' and 257.98 tons ha~
!, respectively. The total estimated AGB of the whole study area of AHFR derived
from HV backscatter is. 321,966.28 tons, while the total AGB observed is about
260,574.27 tons. Average estimated carbon stock of AHFR is 128.99 tons ha ! and
the total estimated carbon stock is 160,983.14 tons.

The present study found that the average value of AGB per ha™ " obtained in
AHFR agrees with several similar studies which were carried out in tropical
countries as well in Malaysia using ALOS PALSAR. This indicates that ALOS-
2 PALSAR-2 is able to estimate AGB accurately in tropical countries. Further study
is needed to be undertaken in saturation sensitivity analysis of ALOS-2 PALS-2 in
tropical forest with high density of biomass.

—1

3.5 Unmanned Aerial Vehicle (UAV) Applications

Reuben et al. (2017) have investigated the accuracy of tree height derived from point
clouds of UAV compared to airborne laser scanner and its effect on estimating
biomass and carbon stock in a part of tropical rainforest of Ayer Hitam, Malaysia.
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The accuracy of photogrammetry (structure from motion (SfM)) image matching
DTM of UAV and that of LIDAR was assessed by using height (z value) recorded by
differential global positioning system (DGPS), and it was revealed that RMSE of
UAV DTM was 3.84 m or 7.96% and R* = 0.96, while the same measures for
LiDAR RMSE, RMSE% and R? were 1.25 m, 2.75% and 0.99. Then the accuracy of
the DTM of UAV was assessed by comparison to the DTM of ALS in all six flights
of UAYV, and the results revealed that RMSE, RMSE% and R? were 0.31-1.49 m,
1.57-8.34% and 0.53 to 0.82, respectively. The accuracy assessment went further
and assessed DTM generated from photogrammetry image matching of UAV in
the area which shows small difference between UAV and LiDAR DTM. In this case
the RMSE was 0.19 m, RMSE% = 0.5%, and R*> was 0.99, while at the same area,
the estimated tree height of UAV images compared to tree height from airborne
LiDAR showed RMSE of 1.56 m and RMSE% of 8.7 with R* of 0.80.

Tree height measurements were conducted by using three main methods: field
measurement using Leica DISTO, UAV and ALS. The accuracy of estimating tree
height of the field and UAV was validated by using the tree height derived from
ALS. The validation of field-measured tree height revealed that the RMSE was 2.55
m RMSE% of 15.25 and R* of 0.62. When the estimated tree height of UAV was
regressed with derived tree height from ALS, R? was 0.78, while RMSE was 1.7 m
and RMSE% was 9.63. Furthermore, the AGB and carbon stock were computed
using an allometric equation which utilised diameter at breast height (DBH), tree
height and wood density. The AGB and carbon stock did not show statistically
significant difference, and the total biomass computed was 189.48 Mg, 177.13 Mg
and 172.97 Mg for ALS, UAV and field, respectively. The accuracy assessment
revealed that 97% of field biomass was accurately modelled by ALS computed
biomass, with RMSE of 0.11 Mg (24%), while 99% of calculated UAV biomass was
accurately predicted by ALS computed biomass, with RMSE of 0.06 Mg and RMSE
% of 13.The measured tree heights were later adjusted to reveal its influence on the
calculated AGB and carbon stock. The field tree height was adjusted based on
RMSE of 3 m, while tree height derived from photogrammetry image matching of
UAYV was adjusted by RMSE = 4 m.

Kustiyanto et al. (2019) have assessed aboveground biomass (AGB)/carbon stock
using UAV images of 2017 and 2018 as well as calculate carbon sequestration over a
1-year period in a part of mangrove forest in Mahakam Delta, East Kalimantan,
Indonesia. Fieldwork was done to collect biometric mangrove tree parameters such
as diameter at breast height (DBH) and tree height to calculate aboveground
biomass/carbon stock and carbon sequestration using UAV images of October
2017 and December 2018. These results were compared with biometric data col-
lected in the field to assess its accuracy.

The results show that there was a significant relationship between crown diameter
derived from crown projection area of UAV images and the ground-truth DBH of
both 2017 and 2018. The results reveal that there was a strong relationship between
tree height derived from canopy height model (CHM) of UAV images and tree
height derived from terrestrial laser scanner (TLS) data in 2017 and 2018. The AGB
modelled from UAV images was 102 Mg/ha and 112 Mg/ha in 2017 and 2018, while
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the AGB from biometric (i.e. ground truth) data in 2017 was 104 Mg/ha and in 2018
was 114 Mg/ha. According to the results from UAV images in the period from
October 2017 to December 2018, sequestered carbon was 6 Mg/ha/year compared to
5 Mg/ha/years of carbon sequestration assessed using biometric ground-truth data.

Hashem et al. (2019) have investigated the assessment of forest aboveground
biomass/carbon stock and carbon sequestration using high-resolution UAV images
in tropical forest of Kebun Raya Samarinda, East Kalimantan, Indonesia. The DSM,
DTM and orthomosaic were generated based on structure from motion (SfM) and 3D
point cloud filtering techniques. The canopy height model (CHM) was generated
from the DSM and DTM. The height extracted from the CHM and the predicted
DBH calculated from the CPA based on the quadratic model were used as input in
the generic allometric equation to estimate AGB and carbon stock.

The F-test and #-test revealed that the tree height extracted from CHM and the
field-measured tree height had no significant difference. The relationship between
field DBH and manually delineated CPA was made and showed the highest coeffi-
cient of determination and lowest RMSE for the quadratic model. The model
validation also performed and showed a strong correlation between observed DBH
and predicted DBH. The results of the F-test and #-test revealed that there was no
statistically significant difference between field-based AGB and UAV-based AGB.
The total amount of sequestered carbon for 1 year was assessed at 6.32 Mg ha™'. The
difference of UAV-based AGB with and without inflated/deflated height was found
to be 21.66 Mg ha™' which is equivalent to 8.73% of original estimated UAV-based
AGB without inflation and deflation of height. The single factor/one-way ANOVA
test revealed that there was a statistically significant difference between estimated
UAV-based AGB with 8.94% inflation and deflation of height and UAV-based AGB
without inflation/deflation of height. The average variation of biomass due to 1%
inflation and deflation of CPA was 2.47 Mg ha™" and showed statistically insignifi-
cant influence on biomass estimation. For 5% inflation and deflation of CPA, the
average variation of biomass was estimated to be 12.37 Mg ha™'. Despite its large
variation, it had no statistically significant difference from original biomass, but the
amount of AGB was observed very much close to the estimated amount of
sequestered biomass for 1 year. On the other hand, the average variation of biomass
24.70 Mg ha™' was estimated to be 10% inflated and deflated CPA that showed a
statistically significant difference and it affected 9.96% variation of AGB from the
original biomass. The estimated amount of carbon due to CPA error was double
compared to the amount of sequestered carbon for 1 year. To summarise, this study
showed a novelty by assessing carbon sequestration using UAV images for 2 con-
secutive years.

Gaden et al. (2022) have assessed the potential of UAV multispectral imagery
over the UAV RGB images for estimation of AGB and carbon stock in coniferous
forest of Haagse Bos, Netherlands.

Tree parameters derived from UAV multispectral and RGB imagery to estimate
aboveground biomass or carbon (AGB/AGC) were evaluated in a temperate conifer
forest of the Netherlands. A total of 650 trees measured in 35 plots were employed as
a reference parameter to assess the accuracy of UAV-estimated parameters through
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linear regression using statistical indicators such as correlation (r), determination of
coefficient (R?), the slope of the regression (8) line, RMSE and bias (%). The results
demonstrate the potentiality of UAV multispectral images with SfM algorithm to
retrieve tree parameters to estimate AGB/AGC.

Tree crown diameter (CD) was derived from canopy projection area (CPA)
manually digitised from multispectral (MS) and RGB orthomosaic. The comparison
of crown diameter from MS CPA showed higher (r = 0.98) agreement with RGB
CPA. However, a paired r-test showed a significant difference in mean tree crown
diameter (t = —7.94, df = 629, p < 0.05).

The tree height (TH) in this study was extracted from the canopy height model
(CHM) produced from a digital surface model (DSM) and digital terrain model
(DTM). The study found that MS-derived tree height (R* = 0.72, RMSE = 2.6 m)
was less accurate than RGB-derived tree height (R> = 0.75, RMSE = 2.2 m).
One-way ANOVA F-test showed a significant difference between the group
means of tree height (F (2, 1887) = 36.95, p < 0.05). The follow-up Tukey post
hoc test showed a significant difference between all group means of tree height (p <
0.05).

A set of regression models were compared to determine how accurately the tree
diameter at breast height (DBH) can be estimated using UAV-derived parameters.
Among the models, tree height and crown diameter (TH x CD) were better in
predicting DBH compared to TH, CPA and CD as an independent predictor. The
model validation using independent dataset showed MS model (R* = 0.82; RMSE =
4.39 cm) performing better than RGB model (R*> = 0.79; RMSE = 4.65 cm) in
estimating DBH. However, the one-way ANOVA F-test showed no significant
difference in a group means of DBH (F (2, 747) = 0.01, p > 0.05).

The species-specific allometric equation was used in this study to estimate the
AGB. At the plot level, the mean AGB estimated from field-measured parameters
was 9.02 Mg plot ', while the mean AGB estimated from MS and RGB imagery
was 8.50 and 9.10 Mg plot ', respectively. Since half of the AGB was considered as
a carbon conversion factor, the mean AGB estimated from the field, MS and RGB
parameters were 4.50, 4.24 and 4.54 Mg plot ', respectively. One-way ANOVA F-
test showed no significant difference between the group means of AGB estimates
(F (2, 1887) = 0.76, p > 0.05).

The accuracy of AGB estimates was assessed both at a tree and hectare level by
extrapolating the plot-wise AGB estimates. At tree level, the accuracy of MS AGB
estimates (R* = 0.89; RMSE = 166.96 kg) was higher than RGB AGB estimates
(R2 = 0.86; RMSE = 193.29 kg). Similarly, at hectare level, the accuracy of MS
AGB estimates (R*> = 0.93, RMSE = 25.40 Mg) was higher than RGB AGB
estimates (R* = 0.89, RMSE = 31.83 Mg). Simple r-test showed that the slope of
regression line between field and UAV-based AGB estimates was significantly
different from one (f # 1, p < 0.05).
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4 Conclusions

The following conclusive remarks can be made:

* VHRS images can be used to assess AGB and carbon stock with reasonable
accuracy based on the identification of canopy projection area (CPA).

» Airborne laser scanner (ALS) or airborne LiDAR can be used to assess tree height
with high accuracy. It also can detect and delineate CPA accurately. However,
when ALS height is used together with CPA from VHRS, a good accuracy can be
achieved for AGB and carbon stock.

« High-density point clouds (35/m” or more) from ALS can assess AGB and carbon
stock very accurately.

* L-band cross-polarised radar backscatter can model AGB, carbon stock and
carbon sequestration with good accuracy.

» Terrestrial laser scanner data can be used to assess AGB and carbon stock with
good accuracy only on plot basis.

* Very high-resolution unmanned airborne vehicle (UAV) RGB or MSS images
can be used to assess AGB, carbon stock and carbon sequestration with good
accuracy.
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Abstract

Forest fires are inevitable events that cause negative impacts on forests and
threaten the sustainability of forest resources. For effective combating against
forest fires, the ground teams should arrive at the fire scene in critical response
time in which the possibility of extinguishing the fire is very high. Road
networks, including public and forest roads, are the main structures that ensure
ground access to the forest resources for management and protection purposes. A
network analysis method is effectively used to solve complex transportation
problems. Most recent advances in computer technology and geographical infor-
mation system (GIS) tools with network analysis-based modules have made it
possible to develop GIS-based decision support system (DSS) for solving such
transportation problems. Network analysis features of proprietary and open
source software provide managers with effective methods to define the fastest
fire-access route and accessible forested areas by ground teams considering the
critical response time. The new route and closest facility methods under Network
Analyst tool of ArcGIS software assist fire managers to search for the optimum
route that minimizes the travel time of the ground team to the fire. A new service
area, which is a well-known method under Network Analyst, is used to evaluate
accessibility of the forest areas by the ground teams. This chapter provides a
comprehensive review of the previous studies, conducted on the spatial modeling
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of transport and accessibility for the forest resources based on the specific GIS
modules.

Keywords

Forest fires - Fire-access route - GIS-based DSS - GIS tools - Closest facilities -
New service area

1 Introduction

The public pressure and demands on forest products have increased the pressure on
forest resources. The most obvious reflections of the pressure on forest resources are
manifested as opening up of forests, illegal cutting, and forest fires. Forest fires are as
one of the top severe factors damaging forest resources in many regions in the world
due to the existence of fire-sensitive plant species and the arid climatic conditions in
summer (Haska et al. 2021). Forest fires lead to reduction in the economic values of
the trees, which become more susceptible to insects and fungus after fire damages.

The efficiency of the firefighting activities is of great importance in reducing
possible volume and value losses of forest resources due to forest fires. To effec-
tively respond to forest fires, especially in fire-sensitive forests, the transportation
time of the ground team to the fire scenes should not exceed the critical response
time. For this reason, the optimum route that will enable the ground team to arrive at
the fire areas in the shortest time possible after the fire announcement is received
should be determined. The network analysis method is widely preferred in solving
transportation problems involving the determination of the optimum route that
minimizes the travel time of a vehicle between two know points. The advances in
computer programming and GIS technology make it possible to use network
analysis-based GIS techniques to solve transportation problems. Particularly, the
new route, new closest facility, and new service area methods under Network
Analyst tool of ArcGIS software provide fire managers with effective tools to search
for the optimum route to the fire areas and to determine the forest areas that can be
reached within the critical response time (Akay et al. 2012).

The GIS-based DSS using the new route and new closest facilities methods has
been examined to determine the most appropriate route that allows firefighting teams
to reach the fire areas in the shortest time (Dimitrakopoulos et al. 2011; Akay et al.
2012; Podolskaia et al. 2019a, 2020a, b). In such studies, the effects of variables such
as road type, road condition, and population density on the solution phase were
evaluated. The decision support systems using new service area have been also used
to determine where fire trucks should be placed to maximize firefighting efficiency
(Akay et al. 2018; Akay and Tag 2020). In this chapter, a broad overview on spatial
modeling of transport and resources accessibility for protecting forest ecosystems
against forest fires was presented by reviewing previously conducted studies. Firstly,
the studies on the optimum ground access route to forest fires, accessible forest lands
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by firefighting teams, and their optimal locations are provided, and then the studies
on the forest roads as effective infrastructures for fire protection are reviewed.

2 The Optimum Ground Access Route to Forest Fires

For effective firefighting activities, it is crucial that the ground team should arrive at
the fire scene within the critical response time. In a study conducted by Bilici (2009),
the effects of forest roads along with fires firebreaks and fireline on early access of
ground teams to the fire areas were investigated by using the GIS-based network
analysis method. Gallipoli National Park in the city of Canakkale in Turkey was
selected as the study area. The network analysis method was used in order to
compare the road network without fires firebreaks and fireline and the road network
with fires firebreaks and fireline in terms of the fastest access to fire. With this
method, it was found that in 27 of 30 inquiries made for 10 potential fire points, the
route in the road network with fires firebreaks and fireline was shorter than the route
on the road network where fires firebreaks and fireline were not considered. In
addition, it has been revealed in the study that the walking distance from the end
of the road to the fire point on the route formed as a result of an inquiry was shorter in
the road network with fires firebreaks and fireline. When the results of the inquiry
were examined, it was determined that fires firebreaks and fireline contributed
positively to forest fires at the point of early intervention, and it was revealed that
forest roads should be planned together with fires firebreaks and fireline.

Akay et al. (2012) developed a GIS-based DSS to find the optimum route which
minimized the transportation time of the ground team from stations to the potential
forest fire locations. The application area of the project consists of six forest
enterprise directorates located in Regional Forestry Directorate of Kahramanmarag
in Turkey. These Enterprises were classified as sensitive to forest fire and there were
20 fire stations available in the region. In the study, firstly, the digital layers for the
road networks (forest roads, rural roads, highways), the fire stations, and previous
fire areas (15 fires) were produced by using ArcGIS. Then, network database was
generated based on the road layer where travel time of fire truck was assigned to each
road section. The travel time was a function of the section length and average truck
speed, which varied based on road type and condition. Finally, the optimum route
from each ground team to the potential fire areas was found by the new closest
facility method (Fig. 1). Besides, inaccessible roads, closed due to fire or some other
reasons, were eliminated in the network database, so that the optimum route also
provided the safest path. The results indicated that ground teams could not reach
7 out of 15 potential fire areas on time. When the barriers were placed in the
database, inaccessible fires increased to eight fires. To increase the efficiency of
the ground teams in the study area, it was suggested to locate new fire station,
increase the road density, and improve the road standards.

In a study conducted by Podolskaia et al. (2019a), the traveling time of special
vehicles (fire trucks, tank trucks, etc.) and the distance from the nearest fire station to
a forest fire were estimated using the regional transport model, generated by the
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Fig. 1 Optimum routes to potential fire areas (Akay et al. 2012)

Network Analyst tool in ArcGIS (Fig. 2). Based on the dataset of 16 years
(2002-2017), the study was conducted in Irkutsk region of Russian Federation
where forests are highly sensitive to fires (Goldammer et al. 2003). The GIS dataset
was developed to have digital data of necessary layers such as road network, forest
glades, fire stations, and forest fire locations. Then, the travel time of the vehicle was
computed based on average speed and distance data and then it was assigned to each
road section in road network layer. The vehicle speed was computed for each road
section based on the road types, elevation data, and terrain slope. The forest fire data
detected by MODIS (Moderate Resolution Imaging Spectroradiometer) satellite
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Fig. 2 Optimum routes to forest fires according to travelling time classes (Podolskaia et al. 2019a)

system (2006-2012) was used for model validation. The digital layers for fire
protection zones were generated to evaluate the accessibility of ground teams for
three time periods (i.e., 1, 2, and 3 h) recommended by the guidelines to ensure the
prompt response to forest fires based on the fire danger classes of the forests
(Classes 1, II, and III). It was found that forest fires are mostly located within the
zones of 1 (68.2%) and 2 h (24.3%) availability, while almost all of the fires (98.5%)
were accessible in 3 h. The results revealed that the ground protection zone was
designed by considering the arrival time of the ground team to the forest fire within
3 h. It was emphasized that the success of the transport value depends on up-to-date
spatial data on the road networks and forest glades.

Podolskaia et al. (2020a) developed a GIS technology to determine the optimum
ground access routes for special fire vehicles departing from fire-chemical stations
and arriving at the detected fire areas. The study was implemented in the central part
of the Siberian Federal District in Russian Federation. In the study, the digital data
layers for public roads, forest glades, locations of the fire-chemical stations, and
forest fires detected by MODIS satellite system (2002-2019) were generated in
ArcGIS. Then, a GIS technology consisted of a Python-based set of programs was
developed to generate a thematic map of road accessibility to forest fires based on
key elements including access time (in hours), road length (in kilometers), and
average vehicle speed (in kilometers per hour). The results indicated that most of
forest fires recorded in 2002-2019 were accessible by the ground team. However,
forest fires located away from the center of the Siberian District were not well
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accessed by the ground teams. It was also pointed out that forest fires become less
accessible when the forest areas get larger.

Some current experience in solving the transport modeling tasks for ground
access, mainly in the Russian forestry, is described in a study conducted by
Podolskaia (2021a). The geodata sources, data services, and Open Source
developments, as well as using various remote sensing data and spatial resolution
for the transport modeling, were noted. The projects were done by the scientific and
educational institutions in Russia on forest transport accessibility which is a complex
issue accenting on the environment and economy. It was suggested that the work
should be continued to determine the optimum location for the fire stations, cutting
areas, and forest warehouses considering different regions and forest infrastructures.
Other potential future studies provided in the study were developing new methods to
balance the infrastructural load and natural stability of forest ecosystems.

3 Accessible Forest Lands by Firefighting Teams and Their
Optimal Locations

The term “transport accessibility” is widely used in different applications. In the
modern forest management worldwide transport logistics of technical means and
human resources along the roads to timely reach a place of forest fire or a forest area
are among the most challenging ones for forest ecosystem protection and use.
Relevant geospatial data for public roads of seasonal and off-seasonal use as well
as forest roads and their volume and quality remain essential for the forestry projects
(Podolskaia 2021b). From the data management point of view, spatial modeling of
transport and resources accessibility depends on the continuous increase of geodata
archives and complexity of their practical use.

Implementation of GIS for the ground and aviation transport accessibility and
links between fire stations and destinations in the forests at the regional and country
levels have been among the research topics already for certain years, especially in the
countries covered by forests and having strong and constant forest fire periods.
Russia and Turkey are two country examples with such forest fire activity in their
warm respective seasons of the year, mainly from spring to autumn.

Ground transport accessibility relates with a question of placing a fire station
(a fire-chemical station in Russian forestry terminology) or a logistical center in a
particular region. According to the Russian forestry regulations, fire stations and
their firefighting brigades are putted in place in the regions to prevent, detect, and
limit the spread of forest fires in a timely manner. They are located mainly in the
settlements, make a forest fire regional protection network, and include forest
enterprises, national parks, and state nature reserves. They have special firefighting
equipment, heavy vehicles, and staff.

A research undertaken by Akay et al. (2018) showed that about 1/3 of forest land
(Mustafakemalpasa, Bursa, Turkey) was reachable from presently located fire
stations in a time frame regulated by the forestry in Turkey. Forest accessibility
increased up to 72% when the authors applied a scenario with new fire station
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location. This scenario includes implementation of GIS-based decision support
system (Akay et al. 2012). Fire risk degrees for the fire-sensitive areas have been
considered and presented in the cartographic form, including accessibility maps for
forest areas with a system of access time frames in the paper (Akay and Tag 2020) for
the Yenikoy Forest Enterprise Chief which is closed to the Karacabey Forest
Enterprise Directorate (Bursa, Turkey). An important study’s output states that
about 24% of forest areas were accessible for fire extinguishing works within
30 min.

In Russian Federation forestry transport modeling is a research area for educa-
tional and scientific institutions. At the Center for Forest Ecology and Productivity of
the Russian Academy of Sciences (CEPF RAS), there is a “Transportation Task”
research group which is a part of the Laboratory of Forest Ecosystems Monitoring.
Its ongoing activities and projects include the implementation of Open Data and
Open Source GIS tools, globally known datasets of OSM and QGIS (Podolskaia
2020, 2021c). In the paper of Podolskaia et al. (2020a), they did a quality control of
existing transport systems’ datasets by road type (public, forest road, forest glades)
and made a comparison with the archived road data.

One of the recent studies was a work done by Podolskaia et al. (2019b) for the
large territories of Siberia, the Russian Federation. In order to estimate the spatial
location of fire stations the authors suggest three data groups, namely: presence of
road network (length, density, and configuration), forest fires detected by satellites,
and fire station service areas. GIS analysis with its buffering, allocation, density, as
well as geographic and directional distribution, was used as method. The researchers
noted that there are other factors and data, and they can certainly influence the fire
station’s location (access regime of protected areas, use of road depending on the
season, zones of protection against forest fires, placement of stations in the most
populated areas, etc.). It was advisable to make a fire station placement analysis
before and after the fire hazardous season; its results would be of help for retrospec-
tive evaluation and forecasting of forest firefighting events.

Accessibility of forest resources presented in the work of Podolskaia et al.
(2020c) uses a scenario approach for the territory of regional scale in Russia. A
general scheme of methodology including brief data description and operations with
data is presented in Fig. 3; it consists of the steps of scenario’s preparation, then
mapping and analysis.

Novosibirsk region, located in the southwest of the Siberian Federal district of
Russian Federation, has been chosen as a key research area because of its developed
infrastructure in combination with constant annual forest fire activity; according to
the MODIS data it is classified by mixed broadleaf-coniferous forests and non-forest
vegetation (Fig. 4). In the study (Podolskaia et al. 2020c) the authors have moved
from the previous estimations of forest fires’ accessibility (Podolskaia et al. 2019b,
2020b) to the accessibility of forest areas and their resources (Podolskaia et al.
2020c). Spatial transport modeling included creation and use of transport model
for two forest management scenarios, namely: without any barriers and with
forestries (unit of forestry management in Russia) as barriers; this second one is
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Fig. 3 General scheme of methodology (Podolskaia et al. 2020c)

Fig. 4 Key area (Podolskaia et al. 2020c)

spatially presented in Fig. 5. As we can see on the map, the majority of forestries
have at least one fire station within their borders.

In that study, the location of existing fire stations has been evaluated under the 3 h
condition which is an actual critical response time to access forest fires by ground
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Fig. 5 Fire stations and forests as barriers within Novosibirsk region (Podolskaia et al. 2020c)

technical means in Russian forestry. Fire stations were used as starting points of
move along the roads. By implementing this relatively strict time limit for the
“no-barriers” scenario, the authors noted that there were about 17% of inaccessible
forest areas (namely, forest pixels of MODIS satellite coverage); about 14% of areas
were reachable within more than 3 h and 20%—within an hour (Fig. 6). Quantitative
results confirmed that forest management scenario of “no barriers” is more
promising than a scenario with barriers. The authors detailed that up to 83% of
forests (MODIS pixels) of Novosibirsk region were reachable by moving along the
roads of different types in ‘“no-barriers” scenario.

Along with the proprietary GIS software like ArcGIS from ESRI, Open Source
tools nowadays are of great importance in the geoinformation research. A review of
Open Source QGIS forestry plugins done in the study conducted by Podolskaia
(2021c¢) described plugins for the tasks of forest fire and forest resources monitoring
and management. Plugin analysis done in this work was aimed to help future
researchers by providing them with a list of QGIS plugins compatible to QGIS
version 3.18 (as an example of version available for the users in 2021) for a forestry
GIS project. An option for future research subjects may be a development of plugins
with available data in the form of cartographic services for territories of different
spatial coverage, taking into account that archived data and their accessibility is a
key asset in the forestry. Subject-related forest scope in the present-day repository of
QGIS plugins tends to be relatively limited. Such review of plugin functionality has
to be performed repeatedly, following the QGIS developments and trends. Overall,



108 A. E. Akay et al.

bk i v i
T

| Legend

Mo barriers - Access time (Hours)

T T
wreTE o

Fig. 6 Transport accessibility of forest resources in Novosibirsk Region. No-Barriers scenario
classified by time, in hours (Podolskaia et al. 2020c)

the role of Open Geodata and Open Source GIS instruments will be stably very
important in the forestry industrial and scientific projects.

4 Forest Roads as Effective Infrastructures for Fire Protection

Forest fire is recognized as one of the most detrimental natural disasters damaging
forest resources. Aricak et al. (2014) facilitated high-resolution GeoEye satellite
images and GIS data to investigate the potential fire risk zones in the forest area
based on stand characteristics (age, crown closure, tree species). The flowchart of the
implemented methodology is given in Fig. 7. In the study, the road networks in the
forest area located in the Central District of the Kastamonu Regional Forest Direc-
torate in Turkey were also included in the database. The fire trucks used during
extinguishing of forest fires were able to spray water and chemicals with the pressure
of 40 bars. Thus, in spite of ground slope steepness, a fire truck can intervene in an
area with a minimum diameter of 400 m. Then, a buffer zone with the width of 400 m
was generated for both sides of the roads using proximity tool in ArcGIS. Finally, the
areas that can and cannot be intervened in the potential fire risk areas from the
existing roads have been effectively determined by using GIS techniques. In a
similar study conducted by Drosos et al. (2014), a model was developed to optimize
opening ups in forest lands by primarily considering the fire prevention and
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Fig. 7 Work flow of the study (Aricak et al. 2014)

suppression. The fire-suppression buffer zones were generated based on topography
to define the lands being reached by the hoses of fire trucks. In the study, the buffer
widths were considered as 150—300 m for uphill and 250-500 m for downhill from a
location where the fire trucks are located.

Akay et al. (2017) searched for the fire-access zones by fire trucks in forested
areas located in Kahramanmarag where forests are sensitive to forest fires because of
high temperatures and low humidity in summer season. In the study, GIS techniques
were used to determine fire-access zones in forested areas by using the reach distance
of the water sprayed by the fire hoses of fire trucks. The accessible buffer zones were
defined from both sides of the roads, while taking into account ground slope, terrain
structures (uphill, downhill, and flat), and the capabilities of the fire trucks. In the
first stage, GIS database was generated to produce necessary data layers including
road network map, forest land map, and fire sensitivity map. The ground slope map
was produced using the Digital Elevation Model (DEM) derived from an ASTER
satellite image. Then, the terrain structure of the study area was produced by
considering the road network as the reference surface. For the locations over the
reference surface, the terrain structure was determined as uphill, while it was
downhill when they are under the reference surface. The locations that were at the
same elevation with the reference surface were defined as flat areas. In the study,



110 A. E. Akay et al.

Fig. 8 The accessible and
inaccessible forest areas

Legend
w E B Frotected Forest
S _ Unprotected forest
Non-forested Area
] reos
L — Metre
0 15,000 30,000 60,000 90,000 120,000

specific formulas were developed to determine the fire-access zone widths for
downhill, uphill, and flat areas, considering the maximum water pressure at the
pump, the minimum water pressure at the nozzle, the water pressure loss for each
10 m distance from the fire truck due to friction, and the ground slope. The areas with
very high slope (more than 60%) were excluded from the fire-access zones since it
could be unsafe and not applicable to conduct firefighting on steep slopes. Finally,
the fire-access zone map was generated, indicating protected and unprotected forest
areas (Fig. 8). The results indicated that the accessible forests, sensitive to fire with
the first, second, and third degrees, were 69.59%, 69.96%, and 67.16%, respectively.
The results revealed that determining the areas outside of reach distance of the hoses
can provide an important information to evaluate the capabilities of the road network
in firefighting activities.

Forest road networks are the most important infrastructures that provide access to
forest areas for the protection and operation of forest resources. Increasing vehicle
speed by improving road standards, especially in forests with high fire risk, will
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make a significant contribution to the expansion of accessible forest areas within the
critical response time. Therefore, the improvement of road standards and the effec-
tiveness of firefighting activities should be evaluated together. Akay et al. (2021)
used GIS techniques to search for the potential contribution of improving road
standards on expanding the forest areas that can be reached by the ground team
within the critical response time. The study was implemented in the first-degree fire-
sensitive forests located in Mediterranean city of Kahramanmarag in Turkey. In the
study, primarily the forest areas that can be reached by the firefighting team (six
available teams in the region) within the critical response time were determined by
considering the existing road network in the study area. Then, the possible increase
in the accessible forest areas with high fire risk was investigated considering the
improved road standards with higher vehicle speed on forest roads. In the solution
process, the new service area method of Network Analyst tool in ArcGIS was used to
determine the forest areas that firefighting team can reach within the critical response
time. The results indicated that the accessible forested areas in critical response time
increased by 19% by considering improved road standards (Fig. 9). They
emphasized that increasing the design speed of the forest roads minimizes the arrival
time of ground teams to the fire, which increases the accessible forest areas in critical
response time.

In a study conducted in Tirana Albania, Haska et al. (2021) generated digital data
layers for the locations of fire stations and road networks using ArcGIS 10.4
software. They determined the forest areas that firefighters could reach within the
critical response time to the fire using Network Analyst. According to result of the
study, it was found that 27% of the forest areas in the study area at Tiran was
accessed by the ground team within the critical response time. In the application, an
optimal location was suggested for the additional station which potentially increased
the accessible forest areas up to 65%. In a similar study, Laschi et al. (2019)
emphasized the essential rules for planning efficient forest road network in fire-
sensitive forest lands. They suggested that the functions of forest roads should be
analyzed in fire prevention and suppression and the importance of forest roads for
protecting forests against fires should be considered in planning and building stages.
Besides, the construction and maintenance characteristics should be considered for
building and maintaining an efficient forest road network against fires. As a con-
cluding remark, it was emphasized that road maintenance activities should be
performed appropriately to have efficient transportation accessibility to potential
forest fire areas.

5 Conclusion

This chapter described three topical directions of international research in the
forestry spatial modeling indicating the optimality of access routes to forest fires
and accessibility of forest resources and forest fires and highlighting the forest roads
as a key element of forestry infrastructure. Ground transport features are regularly
changing geometrically and attributively and becoming just more complex from



112 A. E. Akay et al.

W
@'E @ Firefighting Teams

Accessible Forest (Existing Roads)

- Additional Accessible Forests (Improved Roads)

0 125 25 50 75 100
Km

Fig. 9 The accessible forest areas for existing roads and improved roads

their technical maintenance, data management, and data analysis points of view.
Forestry as industry uses a mixed network consisting of public off-seasonal and
seasonal roads as well as of special forest roads used for logging purposes mainly.

Experience of two countries with different geographical location, state forestry
situation, rules in the forest management, as well as spatial extents of key areas gave
an opportunity to find the commonalities and differences in the undertaken studies.
For example, research done by Turkish scientists confirmed by calculations that
improved road standards and timely and appropriate maintenance of forest roads
would improve the accessibility to the forest resources and forest fires.

The presented examples also show that current and future research directions are
undoubtedly based on the combination of network analysis, decision support
systems, and forest management scenarios with the help of modern GIS, namely,
extensions and plug-ins of proprietary and Open Source software. Supporting
cartographic materials with research key areas included in the chapter served as
spatial modeling results’ visualization.
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Abstract

Tropical forests play the main role in the earth’s carbon cycle sources. Nowadays,
the study for conservation and management of forest restoration is increasingly
needed to preserve the biodiversity of forests and retain the valuable species of
tropical forest for the next generation. The accurate tropical tree species recogni-
tion is one of the important issues in forest management that have relation to the
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increasing need to better understand the role of the forest ecosystem. It is essential
and valuable information towards an understanding of the ecosystem biodiversity
and its function over large spatial scales. Information such as the tree species and
location of the trees is crucial for species regeneration and ecological purposes.
Currently, machine learning (ML) has been shown a remarkable efficient evolu-
tion utilized in artificial intelligence along with the inclination of deep learning
(DL) usage in many research, and this includes tropical forest carbon stocks.
Therefore, this study aimed to classify the forest aboveground biomass by
estimating crown projection area using object-based image analysis (OBIA) and
to determine the accuracy assessment for estimating forest aboveground biomass
using an artificial neural network (ANN) and random forest (RF). This study
involved the use of the object-based technique by fusing SuperView-1 imagery
and airborne LiDAR to estimate the aboveground biomass using RF and ANN
algorithm. Statistical tools from open-source R will help bridge the gap between
analysis and implementation. This study hopes to solve the fundamental issues of
forest inventories and carbon stock modeling and will help several organizations
for estimating carbon stocks and forest fluxes.

Keywords

Machine learning - Tropical forest - Aboveground biomass - Carbon stocks

1 Introduction

The ecosystem of the forest is the biggest and the terrestrial environment’s most
significant natural ecosystem, which has a significant impact on global ecological
balancing, global biological evolution, and society’s succession (Li et al. 2020). One
of the most well-known ecosystem services that are supplied by trees is atmospheric
carbon (CO,) absorption and storage (Chazdon et al. 2016). Carbon (C) was kept in
both the aboveground and underground parts of the tree. Aboveground biomass
consists of stems, stumps, branches, bark, seeds, and leaves, while underground
biomass consists entirely of living biomass in the form of live roots. Aboveground
biomass in the forest is a major factor in tracking the carbon cycle on a global scale
and reducing climate change’s effects (Ghosh and Behera 2018).

In the study conducted by Urbazaev et al. (2018), the entire amount of above-
ground live organic matter in plants is referred to as aboveground biomass. It is
measured per unit area of oven-dry tons. Aboveground biomass in forests is an
essential variable for determining the ecological system of the forest structure and
function (Gao et al. 2018). Forest biomass estimation is important for accounting for
carbon budgets, monitoring carbon fluxes, and studying the forest ecosystem’s
reaction to climatic changes (Nandy et al. 2019). Therefore, estimating plant bio-
mass/carbon reserves helps with REDD (reducing emissions from deforestation and
forest degradation) and long-term forest conservation (Hussin et al. 2014).
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According to Vafaei et al. (2018), the main weakness of the AGB estimate in
terms of optical data is due to forest features such as a tight canopy, high variety, and
other complicated structures. As a result, optical data may become saturated and less
sensitive in high-biomass locations, making it difficult to estimate the AGB accu-
rately. However, AGB estimation is inaccurate due to data constraints (e.g., data
saturation for optical and radar data and spectral and spatial resolution limits) and
complicated connections between AGB and spectral variables (Gao et al. 2018).

According to most previous studies, the best method for estimating forest AGB is
to combine field measurements and remotely sensed datasets. However, current
AGB estimations are still subject to significant uncertainty due to inaccuracies in
the allometric equations that were utilized to estimate aboveground biomass, as well
as uncertainties in remote sensing datasets and algorithms used to estimate AGB.

Previous researchers used pixel-based methods to link AGB to environmental and
remote sensing data at the plot level. However, if compared to the object-based
image analysis classification, the majority estimation by pixel-based techniques has
some weaknesses (Silveira et al. 2019). For example, a field plot is more likely to be
found in an object than in a single pixel. Employing object-based image analysis
could decrease the unpredictability of positioning mismatch between field and image
data and using a “pure” object can successfully minimize local noise and heteroge-
neity (Zhang et al. 2018; Addink et al. 2007).

Machine learning approaches have been utilized since they successfully estimate
forest AGB in several previous studies (Vafaei et al. 2018). Although the benefits of
applying nonparametric and machine learning approaches to estimate AGB were
acknowledged, the accuracy of their estimate is highly dependent on the parameter
optimization employed in appropriate algorithms and the data’s representativeness
(Gao et al. 2018). Algorithms either learn from data or are “fit” to a collection of
data. Random forest and artificial neural network are the algorithms which have
proven the best performance in previous research. Algorithms such as artificial
neural network (ANN), random forest (RF), and support vector machine (SVM)
are widely being utilized to predict biomass by combining remote sensing and field
data in recent years (Dhanda et al. 2017; Pandit et al. 2018; Wu et al. 2016).

Previous studies have shown the importance of remote sensing technology in
accurately estimating forest aboveground biomass, even at the regional scale. In
Hunan Province’s subtropical forests, Li et al. (2020) utilized remote sensing
datasets which were combined with machine learning approaches like extreme
gradient boosting (XGBoost), linear regression, and random forest. XGBoost is a
tree-boosting algorithm that is a scalable framework common among data scientists
that produces cutting-edge results for a variety of issues. Data compression, data
fragmentation, and the usage of certain cache access patterns are all used to analyze
billions of samples in a whole dataset with just a small number of computational
resources. Previous research has also shown that decision tree-based methods, such
as gradient boosting (GB) and random forest (RF), perform very well in biomass
estimation models.



118 N. A. Mohd Zaki et al.

The types of remote sensing data, combined with appropriate selection
algorithms, play an important role in accurately estimating biomass. The previous
studies showed the datasets that have been used by Li et al. (2020) were the Landsat
8 Operational Land Imager and Sentinel-1A satellites, as well as data from China’s
National Forest Continuous Inventory, which were combined with three algorithms.
Landsat, SPOT, WorldView-2, and Sentinel-2 optical remotely sensed data, as well
as their outputs, such as vegetation indices and texture pictures, have also been found
to be strongly connected to biomass (Li et al. 2020), while Vafaei et al. (2018) used
ALOS-2 PALSAR-2 and Sentinel-2A images to increase the accuracy of forest
aboveground biomass estimation. ALOS-2 PALSAR-2 data that has been combined
with Sentinel-2 MSI data has been the choice of use because the Sentinel-2A sensor
contains multispectral bands that depict different types of canopy cover reflections,
whereas the long wavelengths of the ALOS-2 PALSAR-2 sensor allow it to pene-
trate dense forest canopy. Meanwhile, Gao et al. (2018) used various datasets and
modeling methods (e.g., ALOS PALSAR L-band data, Landsat Thematic Mapper
(TM), and their mergers).

Several machine learning approaches were chosen and evaluated, such as support
vector regression (SVR), Gaussian processes (GP), random forest (RF), and multi-
layer perceptron neural networks (MPL neural nets) (Vafaei et al. 2018). These
algorithms were chosen because they’ve been shown to be successful in estimating
forest aboveground biomass for many types of studies. Meanwhile, Gao et al. (2018)
used several algorithms, such as random forest (RF), linear regression (LR),
k-nearest neighbor (kNN), support vector regression (SVR), and artificial neural
network (ANN) to estimate stratification and non-stratification of forest categories in
a subtropical area. Machine learning techniques and nonparametric such as RF,
SVR, kNN, and ANN can manage nonlinear connections in this situation. As a
result, throughout the last decade, these algorithms have gotten a lot of attention.

Therefore, this study intends to analyze the capability of the OBIA technique and
the machine learning approach using SuperView-1 imagery to improve the accuracy
of estimation of forest aboveground biomass.

2 Study Area

The Forest Research Institute Malaysia (FRIM) was selected as the study area due to
its closed forest canopies, diverse tree species composition, and structural variety.
This area’s coordinates are 3° 14’ 13’” N, 101° 38’ 16’' E, and it is located at
Kepong, Selangor Darul Ehsan, Malaysia. FRIM is one of the world’s foremost
research institutes on tropical forests and is classified as a lowland dipterocarp forest.
According to Nik Effendi et al. (2021), this location was chosen since it
encompasses around 545 ha and has approximately 2500 tree species. Figure 1
displays the study area map for this research.
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Fig. 1 Study area at Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia

3 Research Methodology

There are several data processes carried out in order to accomplish the aims and
objectives of the research work. The methodology of this project was divided into
four main phases, such as: (1) data collection, (2) preprocessing, (3) post-processing,
and (4) machine learning processing. The first phase project was data collection. The
datasets used in this study were tree inventory data, the SuperView-1 satellite, and
LiDAR data. The second phase project was preprocessing. The methods used in this
phase were georeferencing, orthorectification, and LAS tool processes. Then, the
third phase project was post-processing, which uses SuperView-1 satellite image and
LiDAR data to produce the accuracy assessment. The fourth phase project was
machine learning (ML) processing, which used an ANN and RF algorithm.

4 Forest Inventory, SuperView-1 Satellite Image,
and LiDAR Data

Forest inventory is referred to as the systematic acquisition of data on forest
resources within a certain region. Tree data in this study were tree ID, coordinates
for horizontal point (x) and vertical point (y), DBH (cm), CBH (cm), CD (m), Ht
(m), family, species, common name, and status or remarks. SuperView-1 is a
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high-resolution satellite which has 0.5 m panchromatic band and four multispectral
bands. The multispectral bands for SuperView-1 are blue, green, red, and near-
infrared (NIR). Airborne LiDAR data has been used in this study to estimate the
canopy height model (CHM) of the FRIM forest. Airborne Airborne LiDAR data
was acquired in 2013, and projected to the Malayan Rectified Skew Orthomorphic
(MRSO) system.

5 Georeferencing and Orthorectification

Georeferencing involves the ability of digital maps or aerial photos’ internal coordi-
nate system to be matched to a ground system of geographic coordinates. The
georeferencing process was performed in this study using ArcGIS software. A
total of ten GCPs were chosen based on permanent benchmarks such as road corners,
automobile parking, and buildings on the ground, which was modified from GPS
data and then detected in the LiDAR point cloud on the ground (Nik Effendi et al.
2021). The projection coordinate system employed in this study was the Malayan
Rectified Skew Orthomorphic (MRSO). The orthorectification was accomplished,
and the total root mean square error (RMSE) that has been achieved was 0.249 m.

6 Segmentation and Classification Process of Tropical Forest

In order to decide the size of the objects, the algorithm must specify a scale
parameter, as well as color, shape, and smoothness/compactness weights, with a
small value creating more objects and a high value generating fewer objects (Zhang
et al. 2018). In this study, multi-resolution segmentation was performed using
27 scale parameters with 0.9 for shape and 0.8 for compactness based on trial and
error. This study used normalized difference vegetation index (NDVI) as the statis-
tical classification algorithms.

The range for tree classification is less than or equal to 0.41-0.86. This study used
mean value of brightness to find a suitable min and max range for masking the
shadow in SuperView-1 image. The range for shadow classification is less than or
equal to 310-380. While the value of max different has been used to classify the
building and road, the range that has been selected for building classification is less
than or equal to 0.2—1. Morphological methods are important for determining the
prevailing crown sizes through the geometric and structural information of tree
crowns (Jaafar et al. 2018). This study used close image objects for operator and
mask size for width value was 17. The width value that has been selected was size
13, and the circle mask.
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7 Tree Classification

This study used NDVI as the statistical classification algorithm. This algorithm has
been chosen because it can measure plants by calculating the differences between
near-infrared light that represents the vegetation strongly reflects and red light that
indicates the vegetation absorbs calculated as follows:

NDVI= (NIR — Red)/(NIR + Red) (1)

The NDVI values always vary from —1 to +1. For example, if the NDVI value is
negative, that means the feature is water. If an NDVI value is close to +1, there could
be dense green leaves, and when NDVT is close to zero, there are not green leaves, or
it could be an urbanized region. When compared to other wavelengths, vegetation
chlorophyll reacts or reflects more near-infrared (NIR) and green light. However, it
absorbs more red and blue light. That’s why human eyes can detect vegetation in
green and near-infrared colors. This study used NDVI resolution to classify the tree
crown of tropical forest at the Forest Research Institute Malaysia (FRIM). The range
for tree classification is less than or equal to 0.41-0.86 with a small value creating
more objects and a high value generating fewer objects (Zhang et al. 2018).

8 Shadow Masking and Building Classification

The shadow was masked out of the image to outline the tree canopy using numerous
rulesets. This study used mean value of brightness to find a suitable min and max
range for masking the shadow in SuperView-1 image. The range for shadow
classification is less than or equal to 310-380. While the value of max different
has been used to classify the building and road, the range that has been selected for
building classification is less than or equal to 0.2—1.

9 Morphology

Morphological methods are important for determining the prevailing crown sizes
through the geometric and structural information of tree crowns (Jaafar et al. 2018).
Morphological operators have two types of operators, which are closing and open-
ing, that have been used to improve the shape of the segmented results’ margins.
Furthermore, the morphology parameters were adjusted to modify the mask value
depending on the appropriateness of the tree crown. The width value that has been
selected was size 13, and the circle mask. Each of the sizes should be trial and error,
based on the type of satellite image. This study used close image objects for operator
and mask size for width value was 17.
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10 Accuracy Assessment of Segmentation Output

The concepts of under-segmentation and over-segmentation have been created in
order to evaluate the multi-resolution segmentation outcome. Under-segmentation
occurs when the training sample is smaller than the segmentation output, while over-
segmentation occurs when the training sample is larger than the segmentation result.

Under-segmentation = 1 — area ((xi N yj))/(area (yj)) (2)
Over-segmentation = 1 — area ((xi N yj))/(area (xi)) (3)

According to Egs. 2 and 3, xi is defined as a training sample, while yj is defined as
a segmentation polygon. The over- and under-segmentation, which requires the area
of the training sample (xi), the segmentation output (yj), and the intersect area, were
used to calculate the distance index (D).

D= (\/ (Over Segmentation”2 + Under Segmentation”2) /2) (4)

The distance index has been used to show the ideal segmentation or closeness of
the space. The accuracy of segmentation is evaluated using a distance index (D),
which varies from O to 1, with O indicating an ideal match between xi and yj and
1 indicating the smallest discrepancy (Mohd Zaki et al. 2015).

11 Allometric Equation for AGB and Carbon Stock Estimation

This study has chosen Kenzo et al. (2009) and Mohd Zaki et al. (2018) allometric
equations for estimating forest aboveground biomass and carbon stock using a
fieldwork approach.

AGB. =0.0829 x DBH 2.43 (5)
In Sc= —4.092 4+ 0.898 In AL +2.073 In DBH —0.058 In CPA (6)

where AGB.y, is the aboveground estimation and DBH is the diameter at breast
height (cm), Sc is for carbon stock (kg), A is the height of the tree from the LiDAR,
and CPA is in (m).

12 Artificial Neural Network (ANN) and Random Forest (RF)

The data used in this study consists of two types which were dependent variables and
independent variables. Dependent variable data was carbon stock (CS), while
independent variables are diameter breast height (DBH), crown projection area
(CPA), total height of tree measured in the field (kg), and height extracted from
LiDAR (hy).
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The independent variables (i.e., DBH, &, and CPA) were used to estimate carbon
stock (dependent variable) using machine learning algorithms. Multiple linear
regression was used to estimate dependent variables. Before implementing at the
landscape level, it is vital to develop a regression model for AGB estimate at the stem
level in order to identify the most essential LIDAR metrics that correlate with field
AGB.

The Excel data in CSV (comma delimited) format was imported into RStudio
through the import dataset. The data entered were shown in the RStudio Interface’s
R-Environment. Specific scripts were utilized in conjunction with the artificial neural
network and random forest model for processing, and the packages used were
defined in the code editor to ensure that the scripts ran smoothly. The packages,
such as the “neuralnet” and “randomForest” packages used in this study, have been
installed in the graphical output of the RStudio Interface to ensure that the scripts can
be launched. The R-Console displayed the scripts that have been run. If an error
occurs when running the scripts, the errors were presented on the R-Console so that
the parts of the scripts that exhibit the issue may be rectified. The methods involved
in carbon stock prediction were data normalization, training and test sets, model
fitting, and model validation, which comprised prediction and correct computation.

To reduce the impact of a very significant predictor, two significant training
parameters were defined in RF modeling: Ntree, which is recognized as the number
of trees to be developed in the forest, and Mtry, which appears to be the number of
randomly selected variables for each node of the tree—or Ntree (number of trees
grown) or Mtry (number of predictors sampled for splitting at each node) (Lépez-
Serrano et al. 2020).

An artificial neural network has two types of hidden layer, which are one hidden
layer and two hidden layers. In random forest, Ntree is the number of trees to be
developed in the forest, and Mtry appears to be the number of randomly selected
variables for each node of the tree, or Ntree (number of trees grown) or Mtry
(number of predictors sampled for splitting at each node) (L6pez-Serrano et al.
2020). The data had been split into training set (70%) and testing set (30%). Data
normalization was done after done the splitting dataset using minimum and maxi-
mum normalization. Next, the model was fit using neural network or random forest
algorithm. Prediction of the independent variable and model validation was done
after the process was done.

13 Regression Model Evaluation

The following equation represents the difference between the original and predicted
values extracted by averaging the absolute difference over the dataset.

MAE = ]lvz,il(y—y) (7)
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The below equation represents the difference between the original and predicted
values extracted by squaring the average difference over the dataset.

MsE= 3" (-3 (8)

This equation represents the error rate by the square root of MSE.

RMSE = v/MAE = \/]TVZN_ (r=3)° )

The R? refers to the multiple coefficient of determination which measures how
well the values fit compared to the original values. The values range from O to 1 and
are interpreted as percentages. The higher the value, the better the model.

~\2
2 > 0-Y)
A e 1o
where
y = mean value of y
3}\ = predicted value of y

An artificial neural network consists of two types of hidden layer, which are one
hidden layer and two hidden layers.

14 Results and Analysis

14.1 Description of Statistical Values of Dependent
and Independent Variables

This study applied a variety of datasets from different years, such as field data,
SuperView-1, and LiDAR dataset. Table 1 represents the statistical values of
variables that have been collected using field and remote sensing approaches.

The main objective of this study was to assess the tropical forest aboveground
biomass from SuperView-1 satellite image using machine learning (ML) approaches
of an ANN and RF. Field observation data has been used to calculate diameter breast

Table 1 Statistical values of variables (number of trees = 279)

Carbon stock (kg/tree) DBH (cm) hy, (m) CPA (mz)
Min 4.891 6.015 —0.283 —0.135
Max 8407.818 10.169 3.541 0.345
Mean 1442.423 7.902 3.246 0.236

Standard dev. 1411.788 0.880 0.335 0.063
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height (DBH), while LiDAR data has been used to estimate height from LiDAR (/)
by producing a canopy height model (CHM), and SuperView-1 image has been used
to calculate crown projection area (CPA). These values were vital in order to
estimate the carbon stock of tropical forests at the Forest Research Institute Malaysia
(FRIM).

Table 1 represents statistical values for variables from field and remote sensing
data. The statistical values for the carbon stock (kg/tree) were 4.891 min, 196.250
max, 101.142 mean, and 46.340 standard deviation. There were 6.015 min for DBH
(cm), 10.169 max, 7.902 mean, and 0.880 standard deviation. The statistical values
for Ay, (m) were —0.283 min, 3.541 max, 3.246 mean, and 0.335 standard deviation.
For CPA (mz) the values were —0.135 min, 0.345 max, 0.236 mean, and 0.063
standard deviation.

14.2  Analysis of Statistical Value and Accuracy Assessment of OBIA
Output

The data for crown delineation that has been segmented in eCognition software
should be overlaid with manual digitizing in ArcMap software to get the best
accuracy. Figure 2 shows four categories of tree crown segmentation that have
been processed in this study, which are: (a) perfect match, (b) mismatch segmenta-
tion, (c) over-segmentation, and (d) under-segmentation. The red line in Fig. 2
represents automatic segmentation, while the yellow line represents manual
digitization.

Table 2 represents statistical values for crown delineation reference polygons.
The statistical values for the manual digitizing output were 3034.250 m” total area,
36 m min, 196.250 m max, 101.142 m mean, and 46.340 m standard deviation.

S 5 ANN (C kgiree)

T
2000 4000 6000 8000

adnd Cabon ks 6 1 kg Predictied Carbon Stocks ANN (C kgree)

Fig. 2 Tree crown segmentation. (a) Perfectly match (b) Not match (¢) Over-segmentation (d)
Under-segmentation
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Table 2 Statistical values for crown delineation reference polygons

Reference Manual digitizing Segmentation Intersection area between
polygon (30) output (xi) output (yj) xi and yj

Total area (m?) 3034.250 2791.051 2791.051

Min 36.000 35.695 35.695

Max 196.250 171.729 171.729

Mean 101.142 93.035 93.035

Standard 46.340 38.614 38.614

deviation

Table 3 Accuracy assessment of OBIA output

Accuracy segmentation

Total reference Total 1:1 Over- Under-
Table polygon match segmentation segmentation D
1:1 30 29
Goodness 0.000 0.080 0.040
of fit
Total 96.6% 96%
accuracy

There were 2791.051 m? total area for segmentation output, 35.695 m min,
171.729 m max, 93.035 m mean, and 38.614 m standard deviation. The statistical
values for the intersection area between xi and yj were the same as the segmentation
output, which had 2791.051 m? total area, 35.695 m min, 171.729 m max, 93.035 m
mean, and 38.614 m standard deviation.

Table 3 represents accuracy assessment of OBIA output. This study chose thirty
(30) total reference polygons to get the accuracy assessment output of OBIA. Based
on the results of Eqs. 2—4, the goodness of fit (D value) was calculated to be 96%
segmentation accuracy with 4% error. In a 1:1 match, the overall accuracy of multi-
resolution segmentation was 96.6%. The total accuracy of segmentation in this study
was more accurate than in previous studies by Nik Effendi et al. (2021) which were
86% and 0.14 for the distance index (D). As a result, the accuracy of the segmenta-
tion output in this study is acceptable and can be applied for further investigation.

14.3 The Accuracy Assessment for Estimating Forest Aboveground
Biomass Using an Artificial Neural Network (ANN)
and Random Forest (RF)

Tables 4 and 5 show the accurate assessment of the model using the artificial neural
network algorithm with different layers. The accuracy of the prediction model was
evaluated using conventional validation indices such as MAE, MSE, RMSE, and
R*adj (Lépez-Serrano et al. 2020). Two types of hidden layers have been tested to
obtain the accuracy value in order to estimate the carbon stocks by using one hidden
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Table 5 Accuracy assessment of two hidden layers

Two
Model hidden R- Data
No. |candidates |layer MAE MSE RMS E squared | sources
1 DBH + c(1,3) 709.906 654,261 808.864 | 0.745 Field,
h; — CPA LiDAR,
SV1
2 DBH + c(2,2) 1041.939 | 1,346,346 1160.321 |0.476 Field,
hy — CPA LiDAR,
SV1
3 DBH + c (3.1 617.628 493,600.5 702.567 | 0.808 Field,
hy — CPA LiDAR,
SV1

DBH diameter at breast height, i, height extracted from LiDAR, CPA crown projection area, SV/
SuperView-1

layer and two hidden layers. Based on the table, Model 3 shows the lowest accuracy
(RMSE = 702.567 Mg ha~' and R* = 0.808) obtained by using two hidden layers c
(3, 1) followed by model 1 with (RMSE = 808.864 Mg ha ' and R* = 0.745). The
less accurate result based on the table was Model 2 with (RMSE = 1160.321 Mgha™
Uand R? = 0.476). From the table, all the accuracy assessments of the model that
used one hidden layer had shown higher in error compared with two hidden layers.
From this, it can be concluded that using two hidden layers for prediction was better
than using one hidden layer (Thomas et al. 2017).

Table 6 shows the three variable results that been processed using a random forest
algorithm in RStudio software. In order to increase the accuracy, the model differs
based on the Mtry value obtained using the tested methods of m = P/3, (m = \P) and
m = P, where P is the number of independent variables (L6pez-Serrano et al. 2020).
According to the table, Model 2 has the greatest accuracy assessment
(RMSE = 55067 Mg ha' and R° = 0.998), followed by Model
3 RMSE = 67390 Mg ha' and R* = 0.998), and finally Model
1 (RMSE = 141.326 Mg ha~' and R* = 0.992).

14.4 Plot the Graph and Evaluation Model of ANN and RF
Algorithms

In this study, two algorithms of machine learning approaches (ANN and RF) were
used to estimate the carbon stocks of tropical forest at FRIM by integrating field data
combined with remote sensing data such as LiDAR data and SuperView-1 image.
Figure 3 represents an accuracy graph for Model 3 of the artificial neural network
(ANN), and for Model 2 of the random forest (RF). The data for crown delineation
that has been segmented in eCognition software should be overlaid with manual
digitizing in ArcMap software to get the best accuracy.

Table 7 represents the comparison and evaluation model using ANN and RF
algorithms that have been used with the same three variable data sources. Based on
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Fig. 3 Accuracy graph: (a)
Model 3 of the artificial neural
network (ANN) (b) Model

2 of the random forest (RF)

Table 7 Comparison and evaluation model using ANN and RF algorithms

No. | Algorithms | MAE MSE RMS E | R-squared | Data sources
3 ANN 617.628 | 493,600.5 702.567 | 0.808 Field, LiDAR, SV1
2 RF 34.051 3032.437 55.067 | 0.998 Field, LiDAR, SV1

the validation result obtained, Model 2 that used RF algorithm represented the most
accurate accuracy assessment with an R? value (0.998) and lower RMSE (55.067 Mg
ha™") compared to Model 3 that used ANN algorithm which obtains the result of R
value (0.808) with the highest RMSE value (702.567 Mg ha™"). Higher R? and lower
RMSE values show that the model’s estimating accuracy is better (L6pez-Serrano
et al. 2020; Li et al. 2020). Based on the previous study by Nik Effendi et al. (2021),
the multiple coefficient of determination (R2) between AGB predicted and observed
using AL, CPA, and DBH was 0.949. It was possible to conclude that a combination
of LiDAR, hyperspectral data, and field observations can be applied to estimate
AGB in a tropical forest. Overall, random forest (RF) was more suitable to estimate
carbon stock compared to an artificial neural network (ANN), and the coefficient of
determination (R*) that using random forest (RF) for Model 2 represented the
independent variables (hL, DBH, and CPA) was suitable to estimate the dependent
variable (Sc).
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15 Conclusion

Natural forests represent areas of different species of flora and fauna. Trees are vital
elements for ecosystem balance that supply the storage of oxygen to humans and
store carbon dioxide. Many effects can happen if the value of carbon dioxide is
higher, such as green house, climate change, thinning of the ozone layer, global
warming, and others. This study has been conducted to estimate the carbon stock in
the tropical forest in order to maintain the terrestrial ecosystem balance for the
Malaysian community, especially at FRIM Forest, Kepong, Selangor.

The first objective of this study was to classify the forest aboveground biomass by
estimating crown projection area (CPA) using object-based image analysis (OBIA).
This study used three combinations of data which were field observation, LiDAR
data, and SuperView-1 image in order to estimate the carbon stock in tropical forests.
LAS tool has been used in order to obtain canopy height model value. An OBIA
approach has been applied in this to classify the tree crown using automatic
segmentation and manual digitize. The OBIA approach had more advantages com-
pared to pixel-based classification, which can classify the object through its shape
and can save time without classifying the object by pixel.

The second objective was to determine the accuracy assessment for estimating
forest aboveground biomass using an artificial neural network (ANN) and random
forest (RF). This study used artificial neural network (ANN) and random forest
(RF) algorithms for machine learning approach in order to calculate the accuracy of
assessment of dependent and independent variables. Three independence variables
(DBH, h;, and CPA) have been applied in this study in order to calculate the
dependent variable (carbon stock). The random forest algorithm was more suitable
to calculate the accuracy assessment of dependent variables (Sc) and independent
variables (hL, DBH, and CPA) since it can obtain higher R? and lower RMSE values.
The number of observation values and the number of independent variables are
crucial in obtaining an accurate and low-error validation value and ensuring that the
findings produced are neither over- nor underfitting. This study was successfully
proven by Mohd Zaki et al. (2018) since the independent variable can be used to
estimate carbon stock. In conclusion, the objectives of this study have been success-
fully achieved.
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Abstract

This chapter aims to spatially predict the potential distribution of four native
tree species (Abies pindrow, Olea ferruginea, Pinus roxburghii, and Pinus
wallichiana) using 21 bioclimatic, 2 biophysical, and 3 topographical remotely
sensed variables through MaxEnt modelling in the region of Azad Jammu and
Kashmir (AJK), Pakistan. In the MaxEnt model, a total of 739 tree occurrence
from 45 circular plots of selected species were used with selected variables,
filtered through multicollinearity tests. The jackknife test showed different essen-
tial variables influencing the prediction of species distribution, including eleva-
tion, vegetation indices, temperature, and precipitation. For all the tree species
distributions, satisfactory results were achieved with area under ROC (receiver
operating characteristic) curve (AUC) testing and training values greater than
0.74 and 0.88, respectively. Based on the 10-percentile training presence
threshold-dependent values, the True Skill Statistic (TSS) test attained at least
76% overall accuracy for tree species distribution. Abies pindrow covered
429.58 km?, Pinus wallichiana 346.28 km?, Pinus roxburghii 341.93 km?, and
Olea ferruginea 27.53 km? area within the very highly suitable category of
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predicted potential distribution. The results also showed that the Himalayan
subtropical pine forest ecoregion has the highest tree species diversity. The
resulted resource partitioning of the selected tree species can be considered as
recommended hotspots for management and conservation activities by the local
stakeholders and government agencies to make informed decisions.

Keywords

Tree distribution - Bioclimatic - Topographical - MaxEnt - True Skill Statistic
(TSS) - Ecoregion - Resource partitioning

1 Introduction

A habitat is an integral part of the environment and home to several diverse animal
and plant species. Different species are products of the same or different habitats for
fulfilling their needs like food requirements, shelters, space occupation, and other
survival needs (Qamar et al. 2011). These species are the building blocks of a
geographic region (Chetan et al. 2014). For ecologists and conservationists, it is
vital to understand a specific species relationship with its surrounding climate and
biophysical environment (Kaky et al. 2020). To conserve and manage various plant
and animal species, reliable and accurate information on their respective habitats is
of key importance (Qamar et al. 2011).

Ecological niche models (ENMs) or species distribution models (SDMs) are
algorithmic tools that attempt to relate a geographic area’s environmental, climatic,
and other biophysical characteristics with the distribution and occurrence of a
particular species (Jaryan et al. 2013). ENMs or SDMs are extremely important to
predict the potential geographic zones of species when limited occurrence data is
available (Zhang et al. 2019). The distribution and diversity maps generated through
the ENMs or SDMs are used to design scientific surveys for scheming management
and conversation activities by related departments and authorities (Kumar et al.
2014). There are many SDMs that are being used by researchers, including
generalized linear model (GLM) (Guisan et al. 2016), multivariate adaptive regres-
sion splines (MARS) (Quir6s et al. 2009), boosted regression trees (BRTs) (Becker
et al. 2020), domain environmental envelope (DOMAIN) (Carpenter et al. 1993),
ecological niche factor analysis (ENFA) (Basille et al. 2008), generic algorithm for
rule-set production (GARP) (Yang et al. 2020), and maximum entropy modelling
(MaxEnt) (Jaryan et al. 2013). Among all these SDMs, MaxEnt is particularly
endorsed and used widely by the scientific community as it produces more accurate
predictions (Gilani et al. 2020; Kaky et al. 2020). SDMs primarily rely on the
presence-only occurrence data of species for their potential spatial distribution
modelling (Bobrowski et al. 2017; Gilani et al. 2020). However, presence-absence
occurrence records of species from the field produce more certain distributions than
occurrence-only data if available (Gilani et al. 2020).
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In Pakistan, different studies reported biodiversity analysis, some of which have
used SDMs, to assess the potential distribution of animal and plant species (Qamar
et al. 2011; Khanum et al. 2013; Ali et al. 2014; Kazim et al. 2015; Ashraf et al.
2016; Zaidi et al. 2016; Fatima et al. 2016; Kabir et al. 2017; Gilani et al. 2020;
Hameed et al. 2020; Khalil et al. 2021). For instance, Qamar et al. (2011) focused on
distribution modelling of different mammal species (snow leopard, common leop-
ard, musk deer, wolf, long-tailed marmot, etc.) in Pakistan’s three national parks in
the Western Himalayas. They used mammal occurrence data along with digital
elevation model (DEM), land use and land cover (LULC) maps, and other topo-
graphical information in GIS to generate habitat maps of these animal species. The
following study by Khanum et al. (2013) used MaxEnt to assess the spatial distribu-
tion of medicinal Asclepiad species (Pentatropis spiralis, Tylophora hirsuta, and
Vincetoxicum arnottianum) in Pakistan. They used field-based occurrence informa-
tion of these species for 2010 and 2011 to run the model. The study by Ali et al.
(2014) also used MaxEnt for predicting the present and future distribution of Abies
pindrow (tree species) in Swat district in Khyber Pakhtunkhwa (KP) province of
Pakistan. Kazim et al. (2015) reported 29 species (from 17 families under 25 genera)
of spider fauna in the Gilgit-Baltistan (GB) administrative area of Pakistan. They
reported spiders’ biodiversity using literature and extensive field surveys. The study
by Zaidi et al. (2016) used MaxEnt modelling to predict the distribution of screw-
worm larvae (a fly species) in the northwest region of Pakistan. Among the four
eco-zones of the study area, the species preferred zones with more moisture content
in the climate. The subsequent study by Ashraf et al. (2016) predicted the potential
distribution of Olea ferruginea (tree species) in Pakistan. They used MaxEnt to
predict the distribution of Olea ferruginea for future climatic scenarios. Fatima et al.
(2016) used MaxEnt for modelling the spatial distribution of mosquitoes (Aedes
aegypti) in the Lahore district of Punjab, Pakistan. They related this distribution with
the spatial spread of dengue fever in the study area. The study by Kabir et al. (2017)
focused on assessing habitat suitability and movement corridors of grey wolf (Canis
lupus) in northern Pakistan. They also utilized MaxEnt for this purpose.

Similarly, Hameed et al. (2020) identified priority landscapes for snow leopard
conservation in Pakistan using MaxEnt modelling. They used 98 presence points and
11 environmental variables to achieve their objectives. The study by Gilani et al.
(2020) predicted six native tree species (Abies pindrow, Betula utilis, Cedrus
deodara, Picea smithiana, Pinus wallichiana, and Quercus ilex) in GB, Pakistan,
under a climate change scenario. They used 21 bioclimatic and three topographic
variables to perform this spatial prediction using MaxEnt. The latest study in this
regard by Khalil et al. (2021) used MaxEnt to map the potential distribution of potato
(Solanum tuberosum) crop cultivation in Pakistan. This study utilized 19 bioclimatic
variables, covariates (soil type, elevation, and irrigation), and 58 occurrence points
for modelling the distributions under climate change scenarios.

Keeping in view the discussed literature, the objectives of this study are i)
predicting the potential spatial distribution of four native tree species (Abies
pindrow, Olea ferruginea, Pinus roxburghii, and Pinus wallichiana) of Azad
Jammu and Kashmir (AJK), ii) assessing the tree species diversity in AJK, and iii)
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identifying the most diversified ecoregion based on these four native tree
species distributions.

2 Study Area

The region of AJK lies in the northeast of Punjab province, east of Islamabad Capital
Territory (ICT), east of Khyber Pakhtunkhwa (KP) province, and south of Gilgit-
Baltistan (GB) territory in Pakistan. The geographical extent of AJK lies between
32.767283° north to 35.154967° north latitude and 73.395781° east to 75.465172°
east longitude (Fig. 1). The study area is comprised of ten districts. The elevation
variation of the region ranges between 225 meters (m) to 6000 m. As a part of the
Western Himalayas, the region received rainfall in winters and summers with annual
precipitation exceeding 1300 millimetres (mm). The region is classified as subtropi-
cal, temperate, and alpine forests with dominant native conifer species of Pinus
roxburghii, Pinus wallichiana, Abies pindrow, and Cedrus deodara (Khan et al.
2020). Among important native broadleaved species, one is Olea ferruginea. The
leave extracts of Olea ferruginea are used for treating skin disease in the study area,
Pinus roxburghii is used for firewood and furniture (Azeem et al. 2020), and Pinus
wallichiana and Abies pindrow are used for medicinal purposes as well as for
construction, fuel, and exporting (Ishtiaq et al. 2012). Some of these tree species
are endangered and can become extinct if no conservation measures are taken soon
(Azeem et al. 2020).

3 Materials and Methods

The methodology is broadly split into (i) data preparation and processing
(i) MaxEnt model calibration and evaluation (iii) tree species diversity maps. Fig-
ure 2 presents a systematic flow chart of the detailed methodology adopted to
achieve the research objectives.

3.1 Data Preparation and Processing

For this study, 739 trees species records were used for the potential spatial distribu-
tion and mapping over the entire region of AJK (Fig. 3). Geographically well-
distributed 45 circular plots (~1 ha or 0.01 km? area) were measured.

The circular plots with specific dominant species were selected for modelling
(Table 1). For the tree species distribution, four important tree species were selected
based on their respective importance. Three (Abies pindrow, Pinus roxburghii, and
Pinus wallichiana) out of four species belong to the conifer tree species group, while
one (Olea ferruginea) belongs to the broadleaved tree species group.

Landsat-8 OLI (Operational Land Imager) 30 m cloud-free satellite data was used
to extract two biophysical variables using Google Earth Engine (GEE) cloud-
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Fig. 1 The topography and districts of Azad Jammu and Kashmir (AJK), Pakistan

computing platform. We used normalized difference normalized vegetation index
(NDVI) and enhanced vegetation index (EVI) as biophysical variables in MaxEnt
modelling. These remote sensing-based vegetation indices strongly correlate with
the changes in the chlorophyll content of tree species (Gu et al. 2007).
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Fig. 3 Spatial occurrence of four tree species used in distribution modelling
Table 1 Selected four native trees species for distribution modelling in AJK
The scientific name of the tree | Vernacular/local name of the tree | Number of Tree
species species plots counts
Abies pindrow Fir 9 120
Olea ferruginea Kahu 7 221
Pinus roxburghii Chir pine 11 102
Pinus wallichiana Blue pine 18 296
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Through GEE 30 m Shuttle Radar Topography Mission (SRTM), DEM was
extracted over the study area. The DEM generated the aspect and TRI over the
AJK region. These independent topographic variables were selected as they greatly
influence the species distribution (Wang et al. 2009).

This study included 21 readily available bioclimatic variables with ~1 kilometre
(km) spatial resolution at the equator from the Chelsa-climate web portal (https://
chelsa-climate.org/bioclim/). These bioclimatic products consist of temperature and
precipitation datasets averaged annually, quarterly, and seasonally (Table S1). The
annual aridity index (AI) and potential evapotranspiration (PET) global products
were accessed and downloaded from the CGIAR-CSI web portal (https://cgiarcsi.
community/data/global-aridity-and-pet-database/).

The global ecoregion datasets produced by Dinerstein et al. (2017) were used for
tree species diversity assessment over ecoregions lying within the study area. The
dataset was downloaded from the RESOLVE web portal (https://ecoregions.
appspot.com/).

All datasets, including bioclimatic, biophysical, and topographical variables,
were clipped over the study area i.e. AJK administrative boundary. The biophysical
and topographical 30 m variables were rescaled to ~1 km to match the resolution of
the bioclimatic variables. All variables were projected to the geographic coordinate
system (WGS84) and, after analysis, reprojected to the UTM 43N zone for area
calculation. Final rasters were converted into ASCII format as this is the format that
MaxEnt desktop software takes as input.

Multicollinearity is one of the communal problems when a high association
among variables exists, leading to unfavourable and unreliable regression
evaluations (Gilani et al. 2020). A multicollinearity test was performed among all
26 variable values, extracted against each occurrence point of each tree species.
Pearson’s correlation, one of the most widely used correlation coefficients, was used
to perform this test (Table S2). Highly correlated variables (r > +0.9) against each
tree species were disregarded for processing in MaxEnt model (Graham 2003).

3.2 MaxEnt Model Calibration and Evaluation

Out of all the tree species occurrence data, 75% points were used to train the model,
while the remaining 25% were used for 10-percentile training presence threshold-
dependent cross-validation. Only for Olea ferruginea, 35% occurrence points were
used for model validation as 25% were insufficient given the low number of
occurrence points compared to other tree species. The resultant output raster of the
MaxEnt model ranges between 0 and 1, with O referring to the lowest possible
occurrence space for selected species and 1 referring to the highest potential space of
selected species occurrence (Phillips and Dudik 2008). To generate absence or
background points, 10,000 randomly distributed points were generated in
MaxEnt model, which helped to calculate the reliability and accuracy of the species
prediction modelling.
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The area under the ROC curve AUC is primarily used to evaluate the performance
of the MaxEnt model (Phillips et al. 2004; Gilani et al. 2020). The AUC score of
0.7-0.9 range shows that the model achieved adequate accuracy, while a score of
>0.9 represents the very high accuracy of the model (Gilani et al. 2020). However,
the AUC alone is inadequate to show the accuracy of a model because it does not use
a threshold approach for explaining predictive accuracy (Allouche et al. 2006).
Therefore, a threshold-dependent error matrix was generated to measure the values
of sensitivity, specificity, overall accuracy, kappa statistic, maximum kappa, and
True Skill Statistic (TSS). This error matrix correlated observed and predicted values
and evaluates the performance of the species prediction modelling. A 10-percentile
training presence threshold was used in this study to calculate these values, with
kappa values ranging from —1 (poor performance) to +1 (best performance)
(Allouche et al. 2006).

The resultant output raster of MaxEnt of each tree species was regrouped into five
classes, as Gilani et al. (2020) proposed. The prediction values were classified as
(1) least potential (0-0.2), inadmissible natural surroundings; (2) less potential
(0.2-0.4), scarcely reasonable living space; (3) moderate potential (0.4-0.6), appro-
priate territory; (4) high potential (0.6-0.7), an exceptionally appropriate environ-
ment; and (5) very high potential (0.7-1), profoundly reasonable living space. The
area in km? and the percentage of each regrouped class against each species were
calculated and reported.

33 Tree Species Diversity Maps

A tree species diversity map was generated using equally weighted overlay analysis
of output rasters of all four potential species distributions (Ranjitkar et al. 2016). The
tree species diversity map was categorized into five classes: (1) very low, (2) low,
(3) moderate, (4) high, and (5) very high. Class 1 refers to a low to no species
diversity, and class 5 to pixels with the richest tree species diversity.

Six ecoregions: (1) Himalayan subtropical pine forests, (2) western Himalayan
broadleaf forests, (3) western Himalayan subalpine conifer, (4) Aravalli west thorn
scrub forests, (5) Karakoram-West Tibetan plateau, and (6) northwestern Himalayan
alpine shrub and meadows were laid over tree species diversity raster to identify the
ecoregion with the least to highest diversity.

4 Results

The Results sections are divided into five sections: (1) selected independent
variables for MaxEnt modelling, (2) model calibration and evaluation, (3) tree
species distribution maps, and (4) tree species diversity maps.
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4.1 Selected Independent Variables for MaxEnt Modelling

Using multicollinearity test, 10 independent variables for Abies pindrow, 11 for Olea
ferruginea and Pinus roxburghii each, and 9 for Pinus wallichiana were selected
(Table 2). Among all these independent variables, Al, Aspect, DEM, EVI, NDVI,
TRI, Bio02, Bio0O7, and Biol5 were commonly used for all four tree species
prediction in the MaxEnt model. Bio04 independent variable was only used for
predicting Apies pindrow, while Biol2 and Biol4 were used for predicting Olea
ferruginea and Pinus roxburghii, in addition to common independent variables. All
other independent variables showed a strong Pearson correlation (r > +0.9) and were
eliminated accordingly.

4.2 Model Calibration and Evaluation

The AUC values attained using MaxEnt (Table 3) show that the highest training
accuracy (0.9963) was achieved for Olea ferruginea and the lowest (0.8776) for
Abies pindrow. On the other hand, the test accuracy showed the highest value
(0.9873) for Pinus wallichiana and the lowest value (0.7389) for Olea ferruginea.
All these values were satisfactory if it ranged from adequate to very high accuracy.

The jackknife test (Fig. 4) showed different important variables influencing the
prediction of species distribution, including elevation, vegetation indices, tempera-
ture, and precipitation. AI and DEM showed prediction importance for Abies
pindrow, Olea ferruginea, and Pinus roxburghii; NDVI for Olea ferruginea, Pinus
roxburghii, and Pinus wallichiana; and Biol12 and Biol5 (temperature products) for
all selected tree species. All remaining independent variables showed the importance
for relative tree species.

Based on 10-percentile training presence threshold-dependent, more than 80%
accuracy was achieved except Pinus roxburghii (Table 3). TSS values of >0.8 were
achieved for Abies pindrow and Pinus wallichiana. A very low TSS (0.33) was
achieved for Olea ferruginea, while a moderate TSS (0.60) was achieved for Pinus
roxburghii.

4.3 Tree Species Distribution Maps

The tree species distribution maps show that the northeastern and southwestern part
of the study area lies within inadmissible natural surroundings for any of the selected

Table 2 Area under the ROC (receiver operating characteristic) curve (AUC) values attained using
MaxEnt for each tree species by partitioning tree species data into training (75%) and test (25%)
Abies pindrow Olea ferruginea Pinus roxburghii Pinus wallichiana
Training 0.8776 0.9963 0.9387 0.9215
Test 0.8389 0.7389 0.7826 0.9873



Potential Tree Species Distribution Modelling Using MaxEnt Model for. .. 145

tree species (Fig. 5). Abies pindrow and Pinus wallichiana are distributed on the
higher elevations of the study area, while Olea ferruginea and Pinus roxburghii were
predicted on lower elevations.

The area graph (Fig. 6 and Table S3) shows that Abies pindrow occupies the
highest area (3.23%) within the profoundly reasonable living space category,
followed by Pinus wallichiana (2.60%), Pinus roxburghii (2.57%), and Olea
ferruginea (0.21%).

4.4 Tree Species Diversity Maps

Figure 7 shows the spatial distribution of the tree species diversity in the study area
based on the four selected tree species (Abies pindrow, Olea ferruginea, Pinus
roxburghii, and Pinus wallichiana). Most of the northern and southern latitudes of
the study area possess the least diverse region that also corresponds to high
elevation—snow areas above tree line and low elevation areas—agricultural and
settlements areas, respectively. In the middle latitudes of the study area, tree species
diversity hotspots or corridors can be observed clearly.

Out of the six ecoregions laid over the study area, ecoregions 3 (western Himala-
yan subalpine conifer), 4 (Aravalli west thorn scrub forests), and 5 (Karakoram-West
Tibetan plateau) possess the least diverse tree species covering more than 90% area
under the very low to low diversity category (Fig. 8). This is followed by ecoregion
6 (northwestern Himalayan alpine and meadows), covering only 3.1% area under
high diversity. Ecoregion 1 (Himalayan subtropical pine forests) is the highest
diverse ecoregion in terms of very high diversity class, covering an area of 2.8%,
followed by ecoregion 2 (western Himalayan broadleaf forests) covering an area of
1.6% in the same class. Overall, ecoregion 2 possesses 36.5% area within high to
very high diversity class, the highest among all other ecoregions in the study area.

Table 3 Result evaluation of MaxEnt model through 10-percentile training presence-threshold-
dependent True Skill Statistic (TSS), specificity, sensitivity, kappa statistics, and overall accuracy
values

Abies Olea Pinus Pinus
pindrow ferruginea | roxburghii wallichiana
10-percentile training presence- 0.54 0.651 0.323 0.476
threshold-dependent
Sensitivity 1.00 0.33 0.83 1.00
Specificity 0.86 1.00 0.76 0.82
TSS 0.86 0.33 0.60 0.82
Kappa 0.01 0.048 0.00 0.01
Kappa maximum 0.44 0.15 0.32 0.44

Overall accuracy 0.86 1.00 0.76 0.82
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5 Discussion

Using MaxEnt model, the potential distribution of four tree native species in the
region of AJK was spatially predicted. The independent variables (bioclimatic,
biophysical, and topographical) were processed at ~1 km spatial resolution. A
very few studies in Pakistan have used SDMs for assessing the potential distribution
of plants and animals, and out of these studies, only five studies focused on plant
species distribution. Different factors contribute towards the low tendency of litera-
ture available in Pakistan, including the unavailability of tree species occurrence
data, financial constraints to design extensive field surveys, and difficult terrain
(especially in the northern Himalayan region of Pakistan).

The studies in Pakistan on tree species diversity mainly used only bioclimatic
variables as independent variables for modelling in MaxEnt. The studies by Ashraf
et al. (2016) and Gilani et al. (2020) incorporated topographical variables in
modelling tree species distribution along with bioclimatic variables. This study
incorporated biophysical (NDVI and EVI) variables with bioclimatic and topograph-
ical variables. The jackknife test shows that these biophysical variables influence the
distribution of Abies pindrow, Olea ferruginea, Pinus roxburghii, and Pinus
wallichiana tree species in AJK. Chhetri et al. (2018) also reported a greater
influence of biophysical variables than other variables used in the prediction
modelling in the Himalayan region.

The study by Qamer et al. (2016) reported deforestation and forest degradation in
the western Himalayan region of Pakistan. They reported that AJK has the highest
percentage of forest cover compared to other administrative areas of Pakistan, with
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Fig. 7 Spatial distribution of
tree species diversity in AJK

Kilometers

0 25 50 75 100
L ] | ] ]

Abies pindrow and Pinus wallichiana among the dominating tree species. Our study
authorizes this information as the same two species reported falling under a pro-
foundly reasonable living space class.

The tree species diversity is an indicator of the overall biodiversity of a region. To
manage, protect, or regenerate biodiversity, the idea of ecoregion-based identifica-
tion of tree species diversity hotspots is more focused and narrowed down. This is
because biodiversity is not merely a varied life form but should be discussed under
the arena of ecological complexes (Wang et al. 2010).

This study used a very limited number of tree species occurrence points for the
prediction modelling in MaxEnt. This resulted in a very low TSS score for Olea
ferruginea because this tree species also had the lowest number of circular plots
compared to other tree species predicted in this study. The field surveys designed for
collecting such field data also have some limitations, including collecting samples
from steep slopes, narrow valleys, unfavourable weather, positional accuracy issue
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Fig. 8 Ecoregion-based spatial distribution of tree species diversity and statistics

of locational devices, etc. All independent variables were rescaled to ~1 X 1 km
spatial resolution because the bioclimatic variables are available in this spatial
resolution. This is a coarse resolution for extracting values of topographical and
biophysical variables.
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6 Conclusion

This study attempted to predict the spatial distribution of four native tree species
(Abies pindrow, Olea ferruginea, Pinus roxburghii, and Pinus wallichiana) in AJK,
Pakistan, using MaxEnt model. Through a multicollinearity test, the prediction
modelling involved selected bioclimatic and remote sensing-based (biophysical
and topographical) independent variables. The role of remotely sensed datasets
and their products is of fundamental importance for such prediction modelling.
Introducing more related independent variables in modelling tree species in such
environments can produce more reliable results. Integration of long-term satellite-
based and ground-based bioclimatic information can also help to produce better
results. Along with MaxEnt, other SDMs can also produce potential distribution
scenarios for the same tree species. The results from these ENMs can be spatially
overlaid and produce interesting results.

The introduction of ecoregion-based tree species diversity opens up a new
horizon of linking tree species diversity intensity with specific ecoregions. The
ecoregion zones and their link with overall tree species diversity or potential
distribution of a specific tree species enhance our understanding of diversity and
distribution behaviour. On a regional scale, the results of this study can be used to
design conservation corridors for these tree species in AJK and help stakeholders
and other agencies to plan plantation activities in suitable areas.
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Abstract

Forests are an indispensable foundation of life for humans. They fulfil multiple
functions in a single area: they are a source of income to many; they provide
wood, an environmentally compatible, renewable resource, as well as foodstuffs
and many other basic commodities; they protect the soils from erosion and
stabilize the water table; they stabilize the climate on a regional and global
level and they offer humans numerous opportunities for recreation and relaxation.
These functions have different levels of significance in the various regions of the
earth. For the past 20 years, increases in the produce and income generated
resulted from the increase of the agricultural area rather than that of products
per unit area due to the high rate of population growth correlated with a limited
area of land available for cropping and housing. Situations such as poverty and a
scarcity of food have forced villagers to migrate into the forest reserves, where
they subsequently destroy the forests through shifting cultivation, especially in
the watershed areas.

Remote sensing using satellites can make a significant contribution to regional
and global forest cover assessment. Satellite images permit the observation of
large geographical areas and can be repeated at short time intervals and the costs
are reasonable. The basic forest cover information that can be obtained from
satellite images at different spatial resolutions relates to the area and spatial
distribution of broad forest cover types, to the degree of canopy fragmentation
and to the forest cover changes occurring. Recent research papers show that
remotely sensed data are well correlated with forest stand parameters. Vegetation
index is a spectral transformation of at least two optical bands to obtain the
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vegetation properties. Normalized difference vegetation index (NDVI), green
normalized difference vegetation index (GNDVI) and soil-adjusted vegetation
index (SAVI) were cited in numerous research papers and they have been widely
used in the forest researches to investigate the relationship between forest
parameters such as diameter at breast height (DBH), per cent crown cover, tree
age class, tree height, basal area, tree volume and aboveground living biomass.
Nowadays it has been possible for researcher worldwide to access the satellite
data with free download, for example, Landsat 8, Landsat 9 or Sentinel-2. The use
of vegetation index is necessary for understanding the forest area in a global level
and the greater efficiency of sustainable forest management.

Keywords

Vegetation index - Forest parameter - Satellite image

1 Introduction

After the 26th UN Climate Change Conference in November 2021 the member states
are expected to fulfil responsibilities to mitigate climate change, cooperating in
preparing for adaptation measures to deal with the impact of climate change, as
well preparing public awareness material to promote education and training material
related to combatting climate change. Some countries set the goal to accelerate the
phase-out of coal, curtail deforestation, speed up the switch to electric vehicles and
encourage investment in renewables. Climate change is already affecting every
region on earth. Due to climate change issues nowadays it turns the public interest
in the state of the world’s forest resources because the forest areas are an important
part of the global carbon cycle. They contain the largest store of terrestrial carbon
and continuously transfer carbon between the terrestrial biosphere and the
atmosphere.

The Food and Agriculture Organization (FAO) of the United Nations has been
monitoring the world’s forests at 5- to 10-year intervals since 1946 and the latest
information about the status of global forest resources was reported in Global Forest
Resources Assessment 2020 (FAO 2020). The world has a total forest area of
4.06 billion ha, which is 31% of the total land area. This area is equivalent to
0.52 ha per person. The tropical domain has the largest proportion of the world’s
forests (1834.14 million ha or 45%), followed by the boreal, temperate and subtrop-
ical domains. More than half (2188.63 million ha or 54%) of the world’s forests is in
only five countries such as the Russian Federation, Brazil, Canada, the United States
of America and the Republic of China (FAO 2020).

Most of the spatial data explaining the status of global forest resources in FRA
report were normally derived not only from field observation or forest inventory but
also from satellite remote sensing technology. Field measurement has been
laboured-intensive and expensive and the time required for field data measurements
was long. Remote sensing using satellites can make a significant contribution to
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regional and global forest cover assessment. Satellite images permit the observation
of large geographical areas and can be repeated at short time intervals and the costs
are reasonable. Remote sensing models can be divided into two categories: passive
or optical remote sensing and active or microwave remote sensing. Passive remote
sensing measures the electromagnetic radiation reflected by or emitted from the
earth, while active remote sensing satellites use their own energy sources to illumi-
nate the earth and detect and measure the reflected radiation. Although both types of
remote sensing can produce high-quality information over the large area at a low
cost, for the forestry research passive remote sensing had been widely chosen to
investigate the stand parameters because of the high number of spectral bands
including visible light, near-infrared and short-wave infrared. The basic forest
cover information that can be obtained from satellite images at different spatial
resolutions relates to the area and spatial distribution of broad forest cover types, to
the degree of canopy fragmentation and to the forest cover changes occurring.
Recent papers show that remotely sensed data are well correlated with forest stand
parameters such as diameter at breast height (DBH), per cent crown cover, tree age
class, tree height, basal area and volume.

The most frequently used remote sensing products continue to be from optical
sensors with a moderate spatial resolution (10-30 m). Examples include Thematic
Mapper (TM) of Landsat 5, Enhanced Thematic Mapper Plus (ETM+) of Landsat
7 and Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) of
Landsat 8 and Multispectral Scanner of Thaichote (Thailand First Observation
Satellite), which are all multispectral sensors with 3—11 broad spectral bands.
Presently, the satellite image is widely used in scientific research due to the free
access data of Sentinel-2 satellite by the Copernicus programme of the European
Space Agency (ESA) with 10 m spatial resolution in visible and near-infrared band
of MSI sensor and the newest generation of Landsat programme “Landsat 9”
satellite, which is designed and operated to repeatedly observe the global land
surface at a moderate scale and to reduce the build time and a risk of a gap in
earth observations. Landsat 9 data bring the research interest back to analyse the free
of charge dataset. However, Sentinel-2 Landsat 8 and Landsat 9 are suggested,
because they were developed to support vegetation, land cover and environmental
monitoring.

2 Spectral Reflectance of Vegetation

To understand the forest status, a graph of the spectral reflectance is used to explain
the object area or phenomena on the earth surface. A graph of the spectral reflectance
of an object as a function of wavelength is termed a spectral reflectance curve. The
configuration of spectral reflectance curves gives us insight into the spectral
characteristics of an object and has a strong influence on the choice of wavelength
regions in which remote sensing data are acquired for a particular application. The
vegetation reflectance is used to synthesize the index from satellite image data.
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Fig. 1 Spectral reflectance curves of some typical objects (Peterson et al. 1988)

Figure 1 shows that the reflectance of healthy vegetation increases dramatically in
the region from the visible to the near-infrared portion of the spectrum at about
0.7 pm. In the range from 0.7 to 1.3 pm, a plant leaf typically reflects 40-50% of the
energy incident upon it. Most of the remaining energy is transmitted, since absorp-
tion in this spectral region is minimal (less than 5%). Plant reflectance in the range
0.7-1.3 pm results primarily from the internal structure of plant leaves. This struc-
ture varies greatly between plant species. Because the position of the red edge and
the magnitude of the near-IR reflectance beyond the red edge are highly variable
among plant species, reflectance measurements in these ranges often permit us to
discriminate between species, even if they look the same in visible wavelengths
(Lillesand and Kiefer 2015). In general, in the visible region, leaf pigments govern
the leaf spectrum. The normal chlorophyll-pigmented leaf has a minor but charac-
teristic green reflection peak. In the anthocyanin-pigmented leaf, the green reflection
is absent and there is greater reflection in the red wavelength, giving a red.
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3 Vegetation Index

Forest is a type of vegetation cover over the land, and it can automatically classify
from satellite image by using pixel-based techniques. Basically, the value stored in
each pixel is digital number (DN) which is normally in the form of integer in the
range of satellite sensor bit depths. For example, OLI-2 sensor on board Landsat
9 was designed to store the range of energies examined in 16 bits (0-65,535). During
the 1980s and 1990s, most classification techniques employed the image pixel as the
basic unit of analysis, in which each pixel is labelled as a single land-use land cover
class. With the pixel as the basic analysis unit, a series of classification techniques,
such as unsupervised, supervised (i.e. maximum likelihood, artificial neural net-
work, decision tree, support vector machine, random forests) and hybrid classifica-
tion (i.e. semi-supervised and fusion of supervised and unsupervised learning), is
still an active classification technique in the areas of multispectral and hyperspectral
remote sensing image analysis (Li et al. 2014). With the improvement of spatial
resolution of remote sensing images, remote sensing image classification gradually
formed three parallel classification branches at different levels: pixel-level, object-
level and scene-level classification (Cheng et al. 2020). However, the latter
considerations demonstrate that the quantitative interpretation of remote sensing
information from vegetation is a complex task. Many studies have limited this
interpretation by extracting vegetation information using individual light spectra
bands or a group of single bands for data analysis (Xue and Su 2017). Remote
sensing of vegetation is mainly performed by obtaining the electromagnetic wave
reflectance information from canopies using passive sensors. It is well known that
the reflectance of light spectra from plants changes with plant type, water content
within tissues and other intrinsic factors (Chang et al. 2016). Vegetation indices are
frequently used to characterize spatial and temporal trends in vegetation richness or
productivity. Vegetation indices are based on mathematical calculations of canopy
reflectance at specific visible and near-infrared wavelengths. Two or more spectral
bands need to be combined in mathematical formulas. Many vegetation indices have
been used in agricultural and ecological research; however, four widely cited indices
are chosen to show an example.

3.1 Ratio Vegetation Index

A very useful image processing technique used to describe the vegetation richness of
a specific area is band rationing. A ratio of different spectral bands from the same
image is useful in reducing the effect of topography, as a vegetation index, and for
enhancing subtle differences in the spectral characteristics for rocks and soils.
Although the ratio image is a concept of image enhancement, it can well explain
the vegetation status over the land also. Four spectral bands such as blue, green, red
and near-infrared bands that are sensitive to plant biomass and vigour are mostly
selected to analyse the ratio image and also other following vegetation indices.
Within these four bands the reflectance of the vegetation showed significant



158 W. Khunrattanasiri

difference with soil and clear water bodies especially in near-infrared band. An
example of ratio vegetation index is near-infrared band divided by red band.

3.2 Normalized Difference Vegetation Index

The normalized difference vegetation index (NDVI) was developed in the 1970s
(Rouse et al. 1973) when a research team at Texas A & M University studied data
beamed back from earth observation satellites. The NDVI, one of the earliest remote
sensing analytical products used to simplify the complexities of multispectral imag-
ery, is now the most popular index used for vegetation assessment (Huang et al.
2021). The ratio of the difference of the red and infrared radiances over their sum
uses to adjust or “normalize” the effects of the solar zenith angle. Originally, they
called this ratio the vegetation index. The NDVI is one of the oldest vegetation
indices and the most widely used because of the simplicity of its calculation, and this
is the reason why all sensors have bands on red and NIR. The explanation of results
is easy, and most publications have used it in a supportive way in the research
(Giovos et al. 2021).

NIR — RED

NDVI= QIR T RED

The development of NDVI (which more strongly relates to reflectance as
measured in the image to forest conditions) was instrumental in showing that useful
information can be extracted from remote sensing imagery, and once the forest
information content of the NDVI was determined, it became more obvious which
applications would be worthwhile. The NDVI is based on the use of a near-infrared
(IR) band and a red (R) band.

The NDVI is a dimensionless index, so its values range from —1 to +1. In a
practical sense, the negative values corresponded to water bodies and the values
close to 0 are bare soil, while higher values are indicators of high photosynthetic
activity linked to scrub land, agricultural area, temperate forest and evergreen forest.
Areas of barren rock, sand or snow usually show very low NDVI values (e.g. 0.1 or
less). Sparse vegetation such as shrubs and grasslands or senescing crops may result
in moderate NDVI values (approximately 0.2—0.5). High NDVI values (approxi-
mately 0.6-0.9) correspond to dense vegetation such as that found in temperate and
tropical forests or crops at their peak growth stage (Brown 2018). Although the
extraction of NDVI from imagery is straightforward, the interpretation of NDVI
values for different forest types has sometimes been problematic (Franklin 2001).
Normally, one would expect a high NDVI to be found where there’s a high leaf area.
Foliage reflects little energy in the red portion of the spectrum because most of the
near infrared is reflected by foliage (Gausman 1977).
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33 Green Normalized Difference Vegetation Index

The green normalized difference vegetation index (GNDVI) was introduced by
Gitelson et al. (1996). It has a similar formation to NDVI except that it measures
the green spectrum band from 540 to 570 nm instead of the red spectrum band. This
index is more sensitive to chlorophyll concentration than NDVI. The GNDVI is used
for estimating the photosynthetic activity of the vegetation cover, and it is most often
used in assessing the moisture content and nitrogen concentration in plant leaves
according to multispectral data which do not have an extreme red channel. The
formation of GNDVI is similar to NDVI except that instead of the red spectrum
band, it measures the green spectrum band in the range from 0.54 to 0.57 pm.

NIR — GREEN

GNDVI = QIR T GREEN

Compared to the NDVI index, GNDVI is more sensitive to chlorophyll concen-
tration. It is used in assessing depressed and aged vegetation, assessing the moisture
content and nitrogen concentration in plant leaves according to multispectral data
which do not have an extreme red channel.

34 Soil-Adjusted Vegetation Index

In areas where vegetative cover is low and the soil surface is exposed, the reflectance
of light in the red and near-infrared spectra can influence vegetation index values.
Huete (1988) proposed the soil-adjusted vegetation index (SAVI) to correct NDVI
from the influence of soil brightness in satellite images where sparse vegetative
cover occurs. The NDVI is successfully used to investigate the vegetation richness
above ground; however, the use of NDVI in some satellite images which appear just
few percent of vegetation cover is not recommended. In the SAVI the red and NIR
spectral wavelengths are used. The SAVI can nearly eliminate the soil influences in
vegetation indices. It was developed as a modification of the NDVI with the addition
of soil brightness correction factor (L).

NIR — RED
SAVI= NIR + RED x1+L

The L value varies by the amount or cover of green vegetation: in very high
vegetation areas, L value is set to O (SAVI value same as NDVI), and in areas with no
green vegetation, L value is set to 1. Generally, 0.5 of L value works fit for the area
with intermediate level of vegetation cover and this value is used most widely in
ecological and agricultural research. The soil factor of 0.2, 0.5 and 0.9 was compa-
rable to NDVI result when 0.5 is best suited with vegetation and 0.9 is the best suited
soil factor for the land where the soil influence is more. The SAVI is the best suited
vegetation index in semi-arid areas (Vani and Mandla 2017).
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4 Use of Vegetation Indices for Forest Cover Assessments

Forests are changing in response to climate, with potentially important feedbacks to
regional and global climate through altered carbon cycle. In the assessment of forest
cover by means of remote sensing, numerous vegetation indices are usually
extracted from the scene classification of remote sensing images. The most applied
technique for forest assessment is vegetation index because the output index values
can well use to explain the forest status worldwide. The relationship between
vegetation index values and measured property is nonlinear which makes the use
of vegetation index somewhat difficult. Weeraphart Khunrattanasiri (2007)
investigated the potential of Landsat 5 TM image to estimate forest parameters to
supplement the forest inventory data in a dry evergreen forest of Khao Ang Runai
Wildlife Sanctuary. Different forest parameters derived from forest inventory sample
plots were investigated and compared with the reflectance values of Landsat 5 TM.
The results of the study showed that middle infrared band (band 5) minus red band
(band 3) of the Landsat 5 TM provided a useful technique to establish the connection
between the pixel values and the per cent crown cover—percentage of the plot area
covered by the vertical projection of all of the visible crowns of trees and shrubs on
the plot—derived from forest inventory plots, better than for the other forest
parameters. The internal structure of leaves absorbs the spectral bands and reflects
them back to the detectors. It is impossible in this case for the spectral bands to
penetrate the top layer. In some places where the crown cover is less dense, the
reflectance can penetrate the crown to the level of other parameters and the correla-
tion in such cases relates with other attributes such as basal area and tree volume.
Loranty et al. (2018) found also that the NDVI is related to forest cover.

Carmen Lourdes Meneses Tovar (2009) attempted to establish relations between
forest usage and the NDVI estimated from satellite imagery. The study showed a
disturbance in a vegetation community was reflected in a corresponding fall in the
value of NDVI. The greater the NDVI contrast between vegetated and water areas,
the higher the spatial variability of Landsat 8 OLI NDVI, indicating that the new
sensor has better capability in land surface process monitoring, such as land cover
mapping, spatiotemporal dynamics of vegetation growth and drought assessment
(Ke et al. 2015).

The Royal Forest Department (RFD), Ministry of Natural Resources and Envi-
ronment of Thailand, has the main responsibility of analysing the forest status from
satellite image since 1973. At the beginning satellite imageries from Landsat 5 The-
matic Mapper (TM) were used for forest status classification with visual interpreta-
tion techniques until 2008. The forest assessment using visual interpretation of large-
scale image (1:50,000) and using GIS to calculate forest land-use areas is more
reliable and accurate than small-scale image (1:250,000) (Ongsomwang 2003).
Following the launching of Thailand’s Thaichote satellite (former name THEOS),
in 2012 RFD together with the Faculty of Forestry, Kasetsart University (KUFF),
used Thaichote satellite images to replace the Landsat 5 TM data because of the
better spatial resolution from 30 m of Landsat 5 TM down to 15 m of Thaichote MS
sensor. Because of change in spatial resolution, the concept of segmentation based
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NDVI segments on Thaichote satellite image Polygon of forest area

Fig. 2 Use of NDVI and Thaichote satellite image segmentation technique for forest cover
assessment

on NDVI dataset was suggested to be used for forest area analysis (Fig. 2). The per
cent of total accuracy was 98.56% calculated from 862 ground verification points.

The potential of NDVI and SAVI-based classification for detection of forest cover
changes in comparison to supervised classification showed that the NDVI performed
better in forest cover change detection than the SAVI (Islam et al. 2021). A joint
research in 2018 between the KUFF and Double A (1991) Public Company Limited
aimed to investigate the efficiency of various vegetation indices such as the NDVI,
GNDVI, infrared percentage vegetation index (IPVI), SAVI and transformed vege-
tation index (TVI) calculated from Landsat 8 OLI sensor with 30 m spatial resolution
for the detection of eucalyptus plantation in Prachin Buri Province, Thailand. The
results showed that the SAVI with L factor equal to 0.5 was the best vegetation index
for eucalyptus detection and volume estimation. The linear regression is used to
explain the relationship with coefficient of determination equal to 0.80 and the error
of estimation equal to 0.93 (Weeraphart Khunrattanasiri 2018).

5 Use of Vegetation Indices for Forest Type Classification

Vegetation index is highly related to leaf area index, absorbed photosynthetically
active radiation and vegetation cover. Vegetation index reflects photosynthesis
intensity of plants and manifests different forest types (Jinguo and Wei 2013). In
Thailand, the first GIS dataset of national forest types was firstly created in 2000 by
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the Royal Forest Department. A visual interpretation based on Landsat 5 TM satellite
imageries at 1:50,000 map scale was used as the main technique together with
ground verification for the entire country (Royal Forest Department 2021). The
second dataset of GIS national forest types is ready for use since 2018. The NDVI
dataset derived from Sentinel-2 MSI sensor with 10 m resolution of blue, green, red
and near-infrared spectrum band was used together with the Global Digital Elevation
Model (GDEM) to improve the first national forest type dataset. The specific range
of elevation calculated from GDEM was used as a parameter to group forest types,
because most of the forest types appear in specific elevation. A total of 741 ground
verification points were used for an accuracy assessment task, and they were located
in the entire country. An overall accuracy was 80.43%.

Klaydach and Khunrattanasiri (2012) studied the reflection of light derived from
multispectral instrument on board Thaichote satellite. The NDVI, ratio vegetation
index (RVI), difference vegetation index (DVI), infrared percentage vegetation
index (IPVI), transformed normalized difference vegetation index (TNDVI) and
SAVI were utilized to investigate the relationship between forest types and vegeta-
tion index in Doi Luang national park, Thailand. Mixed deciduous forest, dry
evergreen forest and deciduous forest can be well classified by using NDVI with
65.25% accuracy.

The NDVI, TVI and GNDVI and the various vegetation indices based on the
simple mathematical operations of four-band (blue, green, red and near-infrared
bands) data from Thaichote satellite were used for forest type classification. The
results showed the vegetation index of R — NIR/B + G has the highest overall
accuracy with 60.51%. The ratio of R — NIR/B + R, GNDVI, NIR/G, NDVI, NIR/B
and TVI appeared to have the overall accuracy of 55.90%, 54.87%, 52.82%,
52.31%, 52.31% and 37.97%, respectively. It can be concluded that the vegetation
index calculated by dividing the difference in the red bands and near infrared by the
sum of the blue and green bands is the best appropriate index for Thailand forest type
classification. Nguyen Trong et al. (2020) found the possibility of using random
forest algorithm with Sentinel-2 in forest type classification in line with vegetation
index application.

6 Recommendation Before Using Vegetation Index
for Forest Assessment

Firstly, a misregistration of the ground data in the satellite imagery is always a
serious problem when satellite images are applied in ecological research. A position
accuracy assessment process was necessary to relate the ground truth and remote
sensing data, to be sure that both datasets could be overlaid onto the same geograph-
ical position. Under the tree cover in natural forest, the detection of a desired weak
GPS signal is often problematic because the strong signal is not adequately
attenuated by the receiver processing. Forest canopy affects the GPS signals due
to obstruction, attenuation and reflection (Pirt1 2008). The misregistration causes an
important error when terrain variables are correlated with remotely sensed data. It
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one plot-one pixel technique 3 by 3 pixel technique 5 by 5 pixel technique

Fig. 3 Three techniques for matching sample plot to image

can occur during the analysis process, when the ground truth data is being laid onto
the satellite image and through the distortion of the satellite image during geometric
correction. The misregistration of ground truth data occurring in satellite imagery
was calculated by position accuracy assessment. Therefore, three ground plot-to-
pixel matching approaches have been developed to compensate for positional errors,
namely, the one plot-one pixel technique, the 3 by 3 pixel technique and the 5 by
5 pixel technique. Basically, one plot-one pixel was the first technique used, with a
single sample plot laid directly over a single pixel with the same geographic location
after the geometric correction process of satellite image. The second technique
employed a 3 by 3 pixel window overlay over a plot centre to guarantee that if
misregistration appears, the plots will as a result be shifted inside the specific
window area. The pixel windows were created around the plot location (Fig. 3) to
solve the misregistration aspect. The new pixel value was calculated by the mean of
all pixels in a window size covering the location. The correlation coefficient was
used to determine the precision of forest parameters derived from ground sample
plots and vegetation values. It is, therefore, essential to make a measurement on
homogeneous areas of at least 3 by 3 pixels. Finally, a 5 by 5 pixel window was built
around a plot centre.

Secondly, the absence of radiometric correction process in satellite data can create
a course of unexpected results. The radiometric correction involves subtracting the
background signal and dividing the gain of the satellite sensor, which converts the
raw sensor output (in digital number, DN) to a radiance. Satellite image with
radiometric corrected is suggested to calculate various vegetation indices because
the conversion of DN into apparent reflectance is the most important step for
vegetation index correction (Guyot and Gu 1994). Gu et al. (2011) reported that
the use of vegetation indices from multiple radiometric correction images can better
exploit the capabilities of remote sensing information, thus improving the accuracy
of LAI estimating. Different radiometric correction levels of remote sensing image
could help mine valuable information from remote sensing image and thus improve
the accuracy of vegetation fractional coverage estimation (Gu et al. 2008). The
proper use of atmospheric correction methods is crucial and has a significant impact
on NDVI estimation (Moravec et al. 2021). Dewa and Danoedoro (2017) tried to
investigate the influence of various radiometric correction levels of Landsat 8§ OLI
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Dry season Wet season

Fig. 4 Sentinel-2 satellite images of mixed deciduous forest in wet and dry seasons

and the number of vegetation strata on the accuracy of vegetation density estimates.
It found that different radiometric correction methods resulted in canopy density
estimates with different accuracies. The number of canopy strata also played an
important role. Every vegetation index transformation performed its best accuracy
by using different radiometric correction method and different number of canopy
layers.

Finally, the researcher needs to understand the forest stand characteristics. Forest
types are often classified according to topographical characteristics and species
compositions of the forests. For example, forests in Thailand can be classified into
two main types: namely, evergreen forest and deciduous forest. In the areas of
evergreen forest, vegetation index can be used effectively without any consideration,
because the evergreen tree retains its leaves through the year and into the following
growing season. In contrast, for deciduous forests, the trees shed all their leaves
during the dry season and they regrow new foliage during the next suitable growing
season. In this case the selection of satellite image data should be highly considered.
The periods when the deciduous trees remain to have complete leaf are the first
criteria for satellite dataset query. Figure 4 illustrates the Sentinel-2 satellite images
of mixed deciduous forest comparing the dry season on 25 March 2021 and wet
season on 3 June 2021. The area of mixed deciduous trees that appeared in satellite
images is red colour. Another interesting point when using vegetation index for time-
series analysis is that a set of satellite images for the same months are needed as a
preliminary data for yearly analysis to prevent the seasonal errors of tree cover.

7 Conclusion

With the high rate of deforestation in tropical forests in most countries over the last
decade, the rapid collection of information on the status of forests is vital in order to
assist governments and landowners in monitoring the forest area. Detection of
vegetation dense can be used as a tool for monitoring the dynamics of ecosystem.
Forest assessments using remote sensing techniques have become an important
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component of ecological research, due to the lack of detailed spatial information on
forest resources. Spatial resolution improvement through several decades of devel-
opment and rapidly temporal resolution of the new earth observation satellites will
play important roles for researchers to produce more effective vegetation index
datasets. Numerous advantages of vegetation indices in remote sensing also help
improve the useful data in ecological research together with the Al-based classifica-
tion. Consequently, positive vegetation index trends may be associated with declines
in terrestrial carbon storage. Moreover, vegetation indices calculated from satellite
image can used to monitor the long-term ecological changes such as large changes in
forest density or variable forest parameters.

Techniques to assess the carbon sequestration of the trees or the forest areas from
vegetation index will lead the research direction because they provide quick answers
related to global climate change. Machine learning, which is a part of artificial
intelligence, will become a useful algorithm to forecast several environmental
indicators, including vegetation indices. Development of machine learning will be
a useful indicator for monitoring and mitigating forest changes on the earth’s surface
in the future.
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Abstract

Remote sensing application has advanced over the decades from primarily aerial
photography to detection and measurement of energy patterns from different
portions of the electromagnetic spectrum to obtain information of an area or
phenomenon on the earth surface or near environmental surface to study the
physical and chemical characteristics from a distance. This is common and ideal
in the forest sector study particularly in monitoring and assessment of forest cover
changes. These interrelated disciplines have succeeded to observe the changing
patterns of the rainforest in Brunei Darussalam from the year 1990-2015 based
on primary and secondary sources relative to Brunei Darussalam. The annual
deforestation rate used to estimate the net loss of forest cover is the contributory
factor. The monitoring and assessment of Bruneian forest using remote sensing
technique has been suggested for this investigation. The monitoring and assess-
ment of rainforest cover with more than 90% accuracy using multitemporal
Landsat images deduced the trend of forest cover change in Brunei Darussalam
with 46% non-forest expansion, 27% forest conversion, and 12% forest regener-
ation in 25 years. Relatively, health, safety, and environmental (HSE) procedure;
statistical data for non-wood forest products; recognition of the shared indigenous
culture in Brunei in relation to Borneo; and sustainable development are
suggested to supplement rainforest sustainability through the application of
remote sensing for comprehensive rainforest resources monitoring and assess-
ment in Brunei Darussalam.
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1 Introduction

The tropical rainforest’s significance in the global environmental and economic role
beyond boundaries (Maini 1992). This should increase demand for forest and
agricultural products as well as settlement development and construction for urban
development and economic growth and uneven distribution of forest resources
(Schaller 2005). This highly bio-diverse tropical rainforest with 80% biodiversity
has been deforested up to 40 million ha approximately since 2000 (FAO 2010)
distinctively in the Amazon, Congo Basin, far East Russia, Borneo and Sumatra.

The science of remote sensing developed 150 years ago has advances to sense and
quantifies energy representations of the electromagnetic spectrum (Lira and Taborda
2014) for environmental properties and processes (Zheng et al. 2004). The applica-
tion through multitemporal change detection analysis technique using Landsat
images is common in forestry studies to assess forest depletion in a large spatial
and temporal scale and capable of deducing different types of forest cover (Becek
2008). Rapid data acquisition (Soon 2011) and high re-visitation frequencies over
large areas of interest (Zheng et al. 2004) are among the advantages of remote
sensing application using Landsat images. Nevertheless, noises in the Landsat
images could hinder Landsat signal from the earth surface (Surayah 2018).

In the tropical region about 27 million ha of forest has been removed from 2000 to
2005 mainly for timber or plantation, while another 398 million ha allotted for the
timber industry (Bryan et al. 2013) notably in SEA and South America (Becek and
Odihi 2008). Particularly, Borneo states of Sabah and Sarawak are renowned
deforestation hotspots with unsustainable harvesting practices of oil palm and
logging industries (Bryan et al. 2013; Gaveau et al. 2013). The main cause is
believed to be due to the leading species of Dipterocarpaceae tree family for its
marketable timber and non-timber forest products (Chandra 2011) and the introduc-
tion of mechanized harvesting such as chainsaw and caterpillar in the 1950s which
speeded land clearance after the Second World War (Haase and Camphausen 2007)
whereas infrastructural development, poor forest management, encroachment,
shifting cultivation, and illegal logging are the major interlinked factors [8]. Air
pollution, groundwater level change, drought, and global warming are the large-
scale slow degrading factor (Becek and Odihi 2008).In addition to the small temper-
ature range of the natural thermal regime of tropical vegetation of 10% (24-34 °C)
compared to the temperate region, which is 70% (—30 °C) to 40 °C (Becek and
Odihi 2008).

Brunei has the highest proportion of intact forest cover area (56.9%) compared to
other states in Borneo, Kalimantan (39.6%), Sabah (19.1%), and Sarawak (14%)
(Gaveau et al. 2013). The slow rate of annual forest depletion of about (0.8%) on
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average (Becek and Odihi 2008) ranked as the lowest proportion of degraded forest
area, with an estimated decrease of growing stock of 2598 ha (0.9%) per year, but
increase by 1297 ha per year (0.82%) in the secondary forest in the 14 years from
1990 (Hunting Technical Services Ltd 1969). The change is derived from national
development, mineral exploitation, urbanization, forest exploitation, forest develop-
ment, agriculture activities (Hunting Technical Services Ltd 1969), and settlement
(Pescott and Durst 2010).

Tropical forests were converted into percentages by giving a value of 0.58 each.
50 out of 57 indicators were satisfied with the total value of 29, aligned with index
4 from the index-weighing matrix, reflecting a well-managed forest contributing to
sustainable conditions (Surayah 2018). This is owing to centralized forest manage-
ment, dominance of the oil and gas industry, change in people’s lifestyle within
interior regions to urban areas along the coastlines, preference of involvement with
formal sectors, and awareness of the importance of education in Brunei (Surayah
2018).

While the other component is image processing by Multispec 2.12.15 for
multitemporal change detection analysis of forest and non-forest cover by the
supervised reclassification of Landsat 4-5 TM (1990), 7 TM+ (2001), and 8 OLI
(2015) derived from USGS. In addition to Google Earth for desk-ground throthing
and image layering apart for using GIMP 2.8.1.4 application for the processed image
masking. The image analysis portrayed patches of non-forest in the interior parts of
Brunei in 1990 and spreads into the surrounding forest cover through 2015,
segregating large forest cover block. This situation is deduced from the increasing
non-forest expansion from 33% to 40% and forest conversion from 14% to 27% with
extension of tracks linking most of the identified areas together with a decrease in
both shift deforestation from 3% to 0% and forest regeneration from 19% to 12%
between 2001 and 2015 resulting in forest cover changes within the 25 years period
(Surayah 2018).

This study aimed to measure tropical forest sustainability in Brunei, with refer-
ence to the existing forest initiatives and forest cover progression from the past until
the present years through three objectives: (1) defining a logical framework of
Brunei’s forestry by outlining forestry initiatives in Brunei and delineating it to the
International Tropical Timber Organization Criteria and Indicator of Sustainable
Forest Management (ITTO C & I of SFM) for Tropical Forests (ITTO 2005);
(2) determining past and present Brunei’s tropical forest cover through remote
sensing application using Landsat images for a real visualization of Brunei forest
cover extent; and (3) recommending forest sustainability initiatives through the
identified loose factor based on this research findings.

2 Physical Characteristic of Case Study Area

Brunei is covered with tropical forests that comprise the dominant Mixed Diptero-
carp forests (MDF) and the less dominant Peat Swamp, Mangrove, Mixture, Fresh-
water Swamp, Montane, and Heath forests (Anderson and Marsden 1984). MDF
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Fig. 1 Map of Brunei Darussalam (Map Source: Kafli 2017, Retrieved on 23 July 2017)

comprises >200 species of Dipterocarpaceae family (Engbers 1998) including the
marketable wood species for timber such as Meranti (Shorea spp.), Urat mata
(Parashorea spp.), Resak (Vatica spp.), and Kapur (Dryobanalops spp.) (Engbers
1998). The total land area of the country is 5,765.32 km? occupies 1% of Borneo
Island in the north west coast facing the South China Sea within the Southeast Asian
region, surrounded by the Malaysian states of Sarawak and Sabah and the Indone-
sian state of Kalimantan (Forestry Department 2011). Brunei’s geographical location
of 443 km ahead of the Equator on the longitude between 114° 23" and 115° 23’ east
and latitudes of 4° 00" and 5° 05’ north (Becek 2008; Forestry Department 2011)
influenced experiencing tropical climates (Fig. 1).

The maximum and minimum mean temperatures are between 32 and 28 °C with
mean annual rainfall approximately 2300 mm to over 4000 mm (Becek 2008) and
high humidity of about 82% (FAO 2012). The seasonal variations are influenced by
monsoon winds of Northeast Monsoon from December to March and Southwest
Monsoon from May to October (Engbers 1998). Mainly, low relief topography is
observable in both coastal areas and in Belait and Tutong river basins. Also in Brunei
bay, flat alluvial swamp deposits are common (Surayah 2018) which was formed
after the last significant sea level subsidence 500-600 years ago (Surayah 2018). Flat
alluvial swamp deposits are common in Brunei bay (Engbers 1998; Becek 2008).
The islands are drained by four major rivers, namely the Belait River, Tutong River,
Temburong River, and Brunei River which collectively account for about 15 Km?
(Becek 2008). This influences the vegetation cover where rainforests persist in the



Rainforest Assessment in Brunei Darussalam Through Application of Remote Sensing 171

interior part, peat swamps on the alluvial plains (Engbers 1998), mangrove on the
brackish wetlands near riverbanks, and heaths on the sandy deposits (Engbers 2010,
1998; Forestry Department 2011)

3 Data and Methodology

This study adopts a mixed method that synchronously runs both qualitative and
quantitative methods through exploratory and experimental design. This ought to be
the nature of both qualitative and quantitative methods, which comes hand in hand in
order to gain a better understanding of the phenomena. The main materials used for
this research are the revised International Tropical Timber Organization Criteria and
Indicators of Sustainable Forest Management (ITTO C & I of SFM) for Tropical
Forests which was published by the ITTO (2005) and the Landsat 4-5 TM, 7 ETM+
and 8 OLI images derived from the USGS online in 2015. The ITTO C & I of SFM
[16] are delineated to Brunei forestry and evaluated into simplified numerical output
using an arithmetical approach, which are then keyed into “Criteria and Indicators
Analytical Framework™ (CIAF). The CIAF consists of a total of 7 criteria and
57 indicators that are converted into percentage form giving the value of 0.57 to
each indicator. From the working of the CIAF, 50 out of 57 indicators were satisfied
leaving 7 indicators unsatisfied identified as loose factors prevalence from its
inapplicability to the country and unavailability of data and information. The sum
of the satisfied indicators is multiplied with 0.57 and rounded off giving the final
value of 29 whereas the criteria and indicators are listed in the summary of the
CIAF’s Table 1 as follows.

N=>(Cl+C2+C3+ C4+C5+ C6+CT)x0.57 (1)

On the remote sensing component of multitemporal change detection analysis,
supervised classification based on >90% accuracy for each raw Landsat 4-5 TM and
8 OLI images was performed using Multispec 2.12.15 software from the year 1990
to 2015 acquired from USGS (2015).

Table 1 Summary of criteria and indicators analytical framework (CIAF)

No. Criteria Indicator Satisfied Unsatisfied
Cl1 Enabling condition 11 10 1
Cc2 Extent of forest condition 6 5 1
C3 Forest ecosystem health 2 1 1
C4 Forest production 12 11 1
C5 Biological diversity 7 7 0
C6 Soil and water productivity 5 5 0
Cc7 Economy, social and cultural aspects 14 11 3
Total 57 50 7
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The classification is based on the principle of spectral signature produced by
unique spectral reflectance properties of each land use and land cover types through
recorded spectral reflectance on radiometric band into seven classes and further
summarized into two main thematic classes of forest and non-forest areas. Amid
the classifications process, Google Earth was applied as a desk ground-truth map for
image-to-image referencing for higher image accuracy and image layering for
national border identification between Brunei and the neighboring states. Succes-
sively GIMP 2.8.14 application was used to mask the classified image.

The extent of harvested compartments according to the harvesting plans is not
confirmed with the prevalence of information that starting about 40,000 ha of forest
was logged but remains without silvicultural treatment (Yussof 2000). However,
compartment system was observed as the forest reserves are divided into
compartments or known as logging management unit, ranging from 200 to 400 ha
for each component. The components are further divided into smaller manageable
logging blocks ranging between 50 and 70 ha each where a compartment applies to
only one logging license or permit (Yussof 2000). Another is the acknowledgement
of the ratification of 7 permit types as a key to enter and allow actives within the
restricted forest reserves as stated under the Forest Act (1934) Chapter 46, revised in
2002 Amended in 2007 (Attorney General Chambers 2009).

4 Results and Discussion

The role of tropical rainforest in the global environment (Surayah 2018) is seen
through ecosystem services that are experienced beyond boundaries despite their
static location (Maini 1992). The ecosystem services are the condition and process
where the ecosystem could naturally withstand and satisfy human needs (Daily
1997; Kremen and Ostfield 2005 in Gonzales Inca 2009). It resulted from physical,
chemical, and biological processes of ecosystem functioning for self-maintenance
(King and Mazzotta 2000). Soil erosion prevention, air purity, filtered water, climate
change mitigation, and essential timber, food, and medicine resources supports the
indigenous community and adverse diversity. The ecosystem services are identified
as provisioning services, regulating services, cultural and amenity services, and
supporting services (Gonzales Inca 2009). Figure 2 provides a general overview
and rainforest characters in Brunei Darussalam in 2020. The figure shows that the
scenario of rainforest areas in 2016 and 2020 is degrading.

Figure 2 shows a major category of forest which is mixed dipterocarp which
covers 38% of the land base (Islam et al. 2019). The lowest category of forest is
montane forest that covers 1.2% of total forest area in Brunei Darussalam. The
deforestation rate in Brunei is 34.5% in the recent tenant and it is gradually
increasing. In 1990 104,277 ha (18%) of forest areas are cleared whereas
200,893 ha (34.5%) were cleared in 2016. This has occurred within 40 years in
Brunei Darussalam. A detailed classification of forest status is shown in Table 2.
Seven major forest classifications have been recognized in Brunei Darussalam
(Islam et al. 2018).
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Fig. 2 General overview of land cover and rainforest areas in Brunei Darussalam in 2020
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Table 2 Extent of forest in Brunei Darussalam in 1980 (Source: Anderson and Marsden 1984)

Area (ha in % of Forest Area (ha in Total (5) of forest

Forest types 1980) areas 2000) areas
Mangrove 18,487 3.2 12,633 22
Freshwater Swamp 13,656 23 12,001 2.1
Peat Swamp 105,994 18.2 78,269 13.4
Kerangas 9506 1.6 7453 1.3
Mixed dipterocarps | 226,159 45.7 221,414 38.0
Montane 7100 1.2 7160 1.2
Secondary 56,958 9.8 42,374 7.3
Total 477,920 82.0 381,304 65.5
Cleared and 104,277 18.0 200,893 343
cultivation

Grand Total 582,197 100.0 382,197 100.0

However, continuous illegal logging activities, poor management practices, and
increasing demands of forest and agricultural products enabled accessibility, settle-
ment, and land conservation in the forest, thus allowing forest exploitation. There are

grounded on a combination of factors of demographic increase (Surayah 2018).

They are grounded in a combination of factors: demographic increase (Surayah
2018). Deforestation is severe in the highly bio-diverse ecosystem with 80% of the
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world biodiversity in the tropical region. Approximately 40 million ha has been
deforested since 2000 (FAO 2010) notably in the Amazon, Congo Basin, Far East
Russia, Borneo and Sumatra (Surayah 2018). For instance, the Borneo Island holds
more than 600 bird species, 15,000 plant types, and hundreds of indigenous forest-
dependent communities for food and shelter, while in its fragmented form, 25 acres
of tropical forest hold over 700 species of trees, equivalent to the North American
tree diversity (Surayah 2018).

4.1 The Status of the Tropical Rainforest in Brunei Darussalam

Brunei’s economic developments are manly generated by the natural resources of the
oil and gas industry since 1929, which allowed the preservation of the country
tropical rainforest. A study by Gaveau et al. (2013) found that Brunei has the highest
proportion of intact forest cover area of 56.9% compared to other states in Borneo
with 39.6 in Kalimantan, 19.1% and 14% in Sabah and Sarawak, respec-
tively (Engbers 2010; Islam et al. 2019). This is related to the FRA estimation of
growing stock in 2014 where the primary forest decreases from 70,403 to 59,045 m®
while secondary forest increases from 11,176 to 213,215 m> from 1990 to 2010.
Despite the increase in the forest cover and growing stock within the secondary
forest, the reduced primary forest values are however irreplaceable (Surayah 2018).

4.2 The Management of Rainforest

From the working of the CIAF, it resulted that criteria 1 weighted 6.0, criteria
2 weighted 3.0, criteria 3 weighted 1.0, criteria 4 weighted 6.0, criteria 5 weighted
4.0, criteria 6 weighted 3.0, and criteria 7 weighted 6.0. These weights are summed
up producing a total value of 29 with most of the indicators accomplished albeit
several unaccomplished indicators.

Through the CIAF working, it is found that 10 indicators out of 11 are satisfied
under criteria 1, 5 out of 6 indicators are satisfied under criteria 2; 1 out of 2 indicators
are satisfied under criteria 3; 11 out of 12 indicators are satisfied under criteria 4;
11 out of 14 indicators are satisfied under criteria 7, whereas 7 and 5 indicators under
the respective criteria of 5 and 6 were all satisfied. Altogether, 50 indicators out of
57 indicators were satisfied leaving 7 indicators, a summary of which is presented in
Table 3.

Subsequently, prior to the acquired result from the CIAF operationalization, an
index-weighting matrix is applied, where forest management is categorized into
poorly managed, moderately managed, and well managed which reflect the forest
sustainability conditions of unsustainable, marginally sustainable, or sustainable as
presented in Table 4. The resulted CIAF value of 29 is grouped into a built index
matrix for forestry sustainability status that stood between 25 and 32 aligned with
index 4 under well-managed category that indicates sustainable condition, which
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Table 3 Summary of criteria and indicators analytical framework (CIAF)

Criteria Indicators Satisfied Unsatisfied
Condition of SFM 11 10 1
Extent of forest condition 6 5 1
Forest ecosystem health 2 1 1
Forest production 12 11 1
Biological diversity 7 7 0
Soil and water productivity 5 5 0
Economy, social, and cultural aspects 14 11 3
Total 57 50 7

Table 4 Index-weighting matrix

Weighting Index Categories Condition

1-8 1 Poorly managed Unsustainable

9-16 2 Moderately managed Marginally sustainable
1724 3

25-32 4 Well managed Sustainable

reflects sustainable condition of Brunei forest under well management practice as
presented in Table 4.

4.3 Monitoring and Changing Pattern of Rainforest

Land use and land cover transition relative to forest cover changes from 1990 to
2015 were observed. In 1990, the intact forest cover areas especially in the interior
Tutong and Belait district were partly converted into built, plantation and sparse
vegetation as non-forest, distinctive along the coastline (Engbers 2010) (Fig. 3). The
spreading inwards leads to the detachment of forest areas in the interior region. The
horizontal and vertical stretch of non-forest cover from east to west and southwards
is presented in Fig. 4.

Over time, the forest is divided into north and south due to sparse vegetation
extension over the areas observed in 2015 (Fig. 5) whereas Temburong district
showed undistinguishable changes over the 25 years period. From the multi-
temporal change detection technique of the Landsat images, the trend of forest
cover change in Brunei was deduced to be driven by (1) non-forest expansion
from its focal point (Surayah 2018); (2) forest conversion into non-forest for built
areas, plantation that overtime partially generate into sparse vegetation; (3) shift
deforestation of forest regeneration and forest conversion on side to side; (4) incom-
parable forest regeneration, (5) tracks development; and (6) water body as develop-
ment of reservoir. The extent and trend of the forest and non-forest cover changes
over the years is presented in Figs. 5 and 6.

Figure 5 shows existing forest area (43%), existing non-forest area (53%), and
missing data area (5%) in 1990. By 2015 (Fig. 6), the existing forest area had
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Fig. 4 Supervised image re-classification of forest and non-forest cover in 2015

undergone changes which detects increasing non-forest expansion (46%), forest
conversion (27%), decreased forest regeneration (12%), tracks development (6%),
and newly covered water body (6%) leaving shift deforestation and existing forest
area 0% whereas the missing data areas have newly gained coverage identified as
existing non-forest areas (3%). Therefore, the adoption of both ITTO C & I and
remote sensing application in this research has perceived tropical forest
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Fig. 6 Forest and non-forest cover trend of changes in 2015

sustainability and visualized the progress of forest cover change in the frame of
development, urbanization, and economic demand.

These forest changes leave only 6% of the existing forest areas (A), none or 0% of
the existing non-forest areas (B), and 3% of uncovered areas (n/a). Through 14 years,
which is by 2015, non-forest expansion increased to 46% (1), forest conversion
increased to 27% (2), There was no new or shifting deforestation (3), and forest
regeneration accounted for 12% of the total. Tracks also dropped to 6%, indicating
that much of it has expanded and become non-forest areas. Water body is just
discovered which accounts for 6% (6) of the identified areas. These again leave
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Table 5 Summary of the forest trends of changes in 1990, 2001, and 2015

Year/trend of changes | A B n/a |i il iii iv \ vi
1990 43% | 54% | 5%

2001 6% 0% 3 33 14% |3 19 22 0
2015 0% 3% 0% |46% |27% |0% |12% |6% |6%

none or 0% of both the identified existing forest (A) and uncovered areas (n/a),
where 3% of the missing areas has newly gained coverage identified as existing
non-forest areas (B). These outcomes are assembled in Table 5.

Through this it is analyzed that the existing forest areas are reducing, in contrast
to the increasing existing non-forest over the years. Through this research, it is
inferred that the sustainability of the global tropical rainforest is mainly challenged
by the continuous demographic increase in economic growth and uneven distribu-
tion of forest resources, combined with increasing demand for forest and agricultural
products. This results in forest exploitation through logging, encroachment, and land
conservation for development, plantation, and also settlement leading to accessibil-
ity. Especially to Brunei, the erosion proneness of Brunei’s sedimentation and
alluvial in Brunei Muara, Tutong and Temburong districts, and the largely peat
swamp cover in Belait district support regional diverse and complex tropical
rainforest bio-ecology. However, continuous challenges from the industrial devel-
opment, urbanization, mineral exploitation, forest exploitation and forest develop-
ment, agricultural activities, and settlement affect the country’s forest cover as
recorded from 81% in 1979 (Ryni 2014) to 65.5% in 2000 (Becek 2008; Becek
and Odihi 2008), which is a concern for the present sustainability of the country’s
forest cover.

5 Conclusions

Through this research, it is inferred that the sustainability of the global tropical
rainforests is mainly challenged by the continuous demographic increase and eco-
nomic growth as well as uneven distribution of forest resources, combined with an
increasing demand for forest and agricultural products. This results in forest exploi-
tation through logging encroachment and land conversion for development, planta-
tion, and also settlement leading to accessibility. Specifically, to Brunei, the erosion
proneness of Brunei’s sedimentation and alluvial in Brunei Muara, Tutong and
Temburong districts, and the largely peat swamp cover in Belait district support
regional diverse and complex tropical rainforest bio-ecology.

Through the provisions of this research methodology, we have therefore
recognized the adaption of the mixed method within research, involving few
research designs and approaches under the qualitative and quantitative methods.
This allowed for the identification of several research materials, including ITTO C
and I of SFM for tropical forest and Remote Sensing application of multi-temporal
change detection analysis, which have measured and comprehended Brunei
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tropical forest sustainability. The centralized forest management practices that are
accompanied by active forest cover change in Brunei are contributed to by the
centralized forest management practices (Abee 2000), the oil and gas industry
(Pescott and Durst 2010), traditional lifestyle evolution in modern form (Faisal
2009), the preference for involvement in the formal sector and an understanding of
the value of formal education (Gira 2003).

Nevertheless, in association with the loose factors, relative initiatives to supple-
ment forest sustainability in Brunei are suggested for instance: (1) a set of detailed
HSE procedures to guide forest workers, forest environment, forest industry, and
environmental forestry including educational or recreational forestry; (2) consider-
ation of the non-wood forest products statistical data and harvests in the informal
market as its myriad products are used or consumed in everyday life, hence would be
beneficial and significant resources; (3) recognition of the regionally shared unique
indigenous culture of Brunei with the neighboring states would be an added value to
both forestry and eco-tourism industry hence to the national economy; and (4) rele-
vant sustainable development initiative (CATIE 2012) to support sustainable forest
cover of the country in the long run such as co-finance investment between govern-
ment and investors for certain land use or promotion of production practices in
afforestation, sustainable forest management, and sustainable land management, as
well as subsidies provision for sustainable land management practice; green tech-
nology (water treatment plants, soil conservation equipment, energy-efficient light
bulbs); or non-monetary provision of technical assistance, seeds and plants.

Therefore, it is deduced that the adoption of C & I for SFM in this study would be
able to strengthen efficacy of forest management as it could identify looseness or
development relevant to further enhance the country’s forest sustainability system-
atically. Furthermore, the application of the remote sensing approach would be an
advantage for forest monitoring and assessment timelessly; this is seen to be an
effective mechanism to achieve full equilibrium of SFM for forest sustainability, as it
is capable of distinguishing the Brunei’s forest cover extent in 25 years period in a
short time. In addition to extraction of the forest cover within the frame of develop-
ment, urbanization and economic demand coincides with the increasing population
within the limited land supply. It is also vital to be aware of the extent of forest cover
in the country considering forest contribution to the country’s environmental, eco-
nomic, and social functions and services.
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Part IV

Remote Sensing of Agricultural Tree Crops



®

Check for
updates

Mohd Hasmadi Ismail, Igbal Putut Ash Shidiq,
Mohammad Firuz Ramli, Norizah Kamarudin,
Pakhriazad Hassan Zaki, and Rokhmatuloh

Abstract

In Southeast Asia, rubber plantation is considered the second largest main crop
after oil palm. Hence, it also becomes more critical when seeing rubber as part of
the forest ecosystem that possesses an essential biomass and carbon sequestration
source. In general, the changes in carbon stocks of the terrestrial ecosystem may
have direct implications on the socioeconomics of local communities and biodi-
versity. However, the process of measuring carbon stock over time is essential to
complement climate change mitigation needs. Therefore, there are several num-
bers or errors in estimating the given carbon pools. It varied from sampling error
in the number of plots within the tree’s population, error in measuring soil carbon
and stem diameter, and error when applying regression using inventory data or
biomass conversion. Unfortunately, the estimation of biomass and carbon fluxes
from rubber plantations has been rarely studied. This chapter mainly elaborates
the related studies and discussions towards biomass, specifically above-ground
biomass (AGB), the accretion of biomass utilization since it was first discovered,
the benefit for renewable energy intervention, and the significant role in
sequestrating the atmospheric carbon. More importantly, several studies refer to
remote sensing applications for biomass quantifications that engage different
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remote sensing systems. This paper’s main perspective is to give insight into the
ability and potential of remote sensing for delivering an efficient spatial approach
as the primary tool for rubber plantation biomass estimates.
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1 Introduction

Global warming caused by greenhouse gasses (GHCs), primarily carbon dioxide
(CO,), is one of the most urgent global contributors. The uncontrolled emission of
CHGs can potentially cause irreversible and disastrous damage to the whole bio-
sphere if it is not managed appropriately. Among anthropogenic CHGs, CO, is the
most abundant and is responsible for more than half the radiation associated with the
greenhouse effect (Solomon and Srinivasan 1996). In order to utilize the mitigation
program towards global warming, recent studies have shown the significant impact
of using biomass for both alternative renewable fuel and the source of carbon
sequestration that are critically important in maintaining the global climate (Gao
and Zhang 2021). According to FAO (2005), global forest ecosystems store more
than 638 Gt carbon (Egbe et al. 2012), which is essential to control atmospheric
carbon. The ability of vegetation and soil organic matter to sequester atmospheric
CO; has recently received much attention. Two management options for enhancing
carbon sequestration include tropical forest conservation and plantations (Yang et al.
2004). Both of these options have a similar intention to optimize the carbon
concentration within the biomass.

Rubber tree, or Hevea brasiliensis, is a major world crop cultivated for natural
rubber production. It is mainly grown in tropical areas and has an economic lifespan
of 30-35 years. It occupies more than 11 million ha of agricultural land globally.
Approximately 9.2 million ha (78%) of total rubber is planted in Southeast Asia,
with about 3.67 million ha (31%) in Indonesia and 3.23 million ha (27%) in Thailand
(FAO 2020). Rubber trees are typically grown for approximately 25-35 years before
being felled for timber production. Therefore, the total carbon stock of rubber in
plantations has been estimated to be higher than many tropical forestry and agrofor-
estry systems (Brahma et al. 2016). The time-averaged carbon stock of lowland and
highland rubber plantations is estimated to be 58 and 28 MgC/ha, respectively (Yang
et al. 2016). In addition, the role of rubber in mitigating climate change has been
recognized globally (Verchot et al. 2007; Fox et al. 2014; Min et al. 2020).
Therefore, the accurate estimation of biomass and carbon stock in rubber plantations
has become more critical than previously.

Remote sensing is considered the best approach in biomass estimates at a regional
level, where field data are scarce or difficult to collect. Almost two decades have
passed since pioneers such as Tucker et al. (1985) and Sader et al. (1989) studied the
relationship between biomass and the reflectance value recorded at the sensor. Since
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then, many studies in different regions have found strong correlations between
biomass and reflectance at different wavelengths. Several review papers have been
conducted on biomass estimation in the past few years. However, most of them have
described remote sensing-based estimates for forest biomass (Lu 2006; Goetz et al.
2009; Song 2013; Lu et al. 2016). This current review incorporates remote sensing-
based biomass estimation for three major vegetation ecosystems: forest, grassland
and rangelands, and tropical savanna, which covers around 80% of earth’s
vegetations (FAO 2005, 2012). These vegetative surfaces on earth are more “natu-
ral” ecosystems without much human disturbance, unlike agricultural lands, which
are heavily dependent on cropping management, and thus provide an opportunity to
the reader to assess the challenges and differences in remote sensing-based biomass
estimations for these ecosystems (Kumar et al. 2015).

This paper mainly elaborates the related studies and discussions towards biomass,
specifically above-ground biomass (AGB), the accretion of biomass utilization since
it was first discovered, and the significant role in sequestrating atmospheric carbon.
More importantly, several studies refer to remote sensing applications for biomass
quantifications that engage different remote sensing systems. This paper’s main
perspective is to give insight into the ability and potential of remote sensing for
delivering an efficient spatial approach as the primary tool for rubber plantation
biomass estimates.

2 Biomass at a Glance

In the mid-1800, biomass had dominated the primary world’s energy supplies.
However, it decreases with the invention of fossil fuel, which is later intensely
implemented in industrialized countries. When the world hit the First Oil Shock in
mid-1970, biomass was realized again by many countries to support the viability of
energy supplies. It was also believed to help reduce oil consumption that caused
some severe national deficit by dependency on imported oil (Klass 1998).

Biomass is considered the most developed renewable energy source, which
provides 35% of the primary energy needs in developing and industrialized
countries. It has more flexibility as an energy resource than other sources such as
wind and sunlight (Li et al. 2020). The technology development in harvesting
biomass for energy supplies is not as progressive as other energy sources. Biomass
can be used for direct heating in industrial or domestic applications, steam produc-
tion for electricity generation, or gaseous or liquid fuels. Among the policymakers,
biomass is gaining considerable interest in electricity production, which utilized
direct heating as the most widespread application (Boyle 1996; Wereko-Brobby and
Hagan 1996).

Besides its advantage as the energy source, biomass has taken a significant role in
the terrestrial carbon cycle. Almost half of the biomass content is counted for carbon.
Although biomass carbon is considered a tiny fraction, it is significant. It helps
maintain the delicate balance among the atmosphere, hydrosphere, and biosphere to
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Fig. 1 Features in biomass energy. (Source: Klass 1998)

support all life forms essential to species diversity that inhabit the earth and sustain
their gene pools (Klass 1998).

Originally, biomass resources could be grouped into several formations. Wood
residues are generated from wood product industries; agricultural residues generated
from crops, agro-industries and animal farms, energy crops, trees dedicated to
energy production such as rubber plantation, municipal solid waste, and also,
tropical forest as the vast virgin biomass that is available naturally (Easterly and
Burnham 1996). Meanwhile, the largest reservoir of biomass carbon resides in life
forest biomass. This is because it fixes atmospheric CO, during most of its life cycle.

Forest biomass dominates the carbon stocks and has more carbon than the total
carbon stock in the atmosphere. Among the different biomass, only the tropical
forest holds as much carbon in its vegetation carpet. Despite only covering 28% of
the land surface, tropical forests contain 80% of the terrestrial carbon and net
primary production (Wright 2010) and are stored as biomass and soil organic carbon
(Voivontas et al. 2001; FAO 2005).

In a conventional method, biomass is harvested for feed, food, fiber, and con-
struction materials or left in the growth areas where natural decomposition occurs.
The waste products from harvesting and processing biomass disposed of inland can
theoretically be recovered after a long time as fossil fuels (Fig. 1). Alternatively,
biomass and any wastes from the process could be converted directly into synthetic
organic fuels if suitable conversion processes were available. The energy content of
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biomass could be diverted to direct heating applications or electricity production by
combustion. Moreover, biomass can also be harvested by growing certain species of
vegetation that store significant biomass sources, such as the rubber tree. In this case,
biomass serves the dual role of carbon fixing apparatus and a continuous source of
hydrocarbons without being consumed in the process (Klass 1998).

Forest biomass is considered a key variable in annual and long-term changes in
the terrestrial carbon cycle. It is substantial to have a standardized carbon estimation
modeling to describe the uptake and redistribution process of the carbon cycle within
the ecosystem (Houghton 2005). However, the estimations of global terrestrial
biomass remain uncertain and are still being studied in line with understanding the
global carbon cycle (Gibbs et al. 2007). The dynamic anthropological activities and
the increasing population continuously disturb the sustainability of the world’s
biomass growth areas. It has been estimated that tropical forest is disappearing at a
rate of tens of thousands of square miles per year and contributes about a fifth of total
anthropogenic carbon dioxide (CO,) emissions to the atmosphere (Gibbs et al.
2007). Deforestation counts for 40% of the total CHG emissions (IPCC 2007).
Most of those contributors come from tropical countries (Houghton 1991). Due to
this high carbon content of vegetation biomass, it is essential to acquire accurate
quantification and monitoring of forest biomass to reduce carbon emissions from
changes in the forest area.

Consequently, the forest plays the most significant role among different terrestrial
ecosystems in mitigating climate change impacts and controlling the global carbon
balance (Houghton 2005 in Hamdan et al. 2014). Therefore, quantifying carbon in a
forest is crucial for monitoring and reporting the changes in the global environmental
condition. Since this issue has reached a wide range of interest in many countries and
regional levels, the quantification method should be arranged within comprehensive
guidance and proper legal binding. These include assigning forest carbon to suit
previous land use analysis, such as determining whether the carbon was caused by
afforestation or deforestation, and a consistent scaling procedure through a large area
where it could produce a reliable estimation (Zheng et al. 2008).

3 Carbon Sequestration

Carbon dioxide (CO,) is the major greenhouse gasses from the land-use sector,
particularly forests and grasslands. Besides being caused by the burned fossil fuel
from industrial activities and transportation, it is also caused by the conversion of
forests (tropical deforestation), loss of soil, forest degradation due to non-sustainable
logging and fuelwood collection, and forest fire. The process of producing, emitting
carbon through the surrounding environment, and then sequestered by natural
livings is described as the carbon cycle. It explains the movement of carbon within
the biosphere, atmosphere, geosphere, and oceans. Carbon, notably carbon dioxide
(COy,), is cycled between different system components. For example, green plants
absorb CO, from the atmosphere during photosynthesis (also called primary pro-
duction) and release CO, back into the atmosphere during respiration. Two critical
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anthropogenic processes that contribute to CO, emission into the atmosphere are
burning fossil fuels and changes in land use. Fossil fuels are burned in industries,
power plants, and automobiles. Land-use change is a broad term that encompasses a
host of essentially human-induced activities, including the conversion of natural
ecosystems such as forests and grasslands into managed systems such as cropland,
grazing land, and settlements (Ravindranath and Ostwald 2008).

In addition, trees act as a sink for the carbon stored by fixing carbon during
photosynthesis and storing excess carbon as biomass. The net long-term carbon
source or sink dynamics of forests change through time as trees grow, die, and decay.
Human influences on forests can further affect the carbon dynamics through fossil
fuel emissions and harvesting or utilization of biomass (Crane and Novak 2001). The
efforts to sequester more carbon through trees and forests are widely emphasized as a
necessary climate change mitigation.

Above-ground biomass is the most significant form of carbon sequestration
compared to other parts like soil carbon. According to Houghton (1995), carbon
sequestration estimation is half of the amount of AGB. However, it is more chal-
lenging to evaluate the amount of carbon sequestered over time than the overall
potential sequestered due to the high uncertainty of parameters. Many factors
influence the process of accumulation which affects the nonlinear increase of carbon
sequestration. Although there is prominent literature debate regarding the functional
form of carbon sequestration in biomass, the linear increase is wisely chosen to
simplify the calculation (Yang et al. 2003).

In the end, the management for carbon sequestration in the tropical area means
increasing the amount of carbon stored in vegetation such as living above- and
below-ground biomass, dead organic matter, and soil that includes litter, deadwood,
and mineral soil. In order to increase the capacity of the carbon pool, silvicultural
treatments can be attempted in the existing forest by protecting the secondary forest
and other degraded forests where carbon and biomass were accumulated less than
their maximum capacity. In addition, the forest can be encouraged to sequester more
carbon by natural or artificial regeneration or increase the tree cover on the agricul-
tural forest for environmental protection and local need (Yang et al. 2003).

4 Application of Remote Sensing for Rubber

The remote sensing technique provides spatial information and temporal data of a
specific place in the world. The complementary functions between GIS and remote
sensing techniques have been increasingly used for planning, decision-making, and
environmental management. GIS and remote sensing are also often combined with
environmental or ecosystem modeling in many applications such as forest-
degradation analysis, biomass analysis, and terrestrial carbon cycle (Skidmore
2002; Turner et al. 2004). In particular, remote sensing was explicitly designed to
capture spatiotemporal information on landscape and vegetation reflectance
properties, while models focus on the underlying biogeochemical process (Turner
et al. 2004).
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Monitoring by using remote sensing plays an essential role in agricultural man-
agement and production. Through practical and intensive monitoring, producers can
identify corrective and preventive steps to optimize input while maximizing produc-
tion. Traditionally, rubber tree monitoring is time-consuming and labor-intensive.
The collection of ground data relies heavily on conventional monitoring methods. It
has played a vital role in mapping rubber trees at local and regional scales and has
facilitated understanding of changes in spatial patterns of rubber plantations over
time. For rubber tree biomass and carbon and leaf area index estimation, most studies
develop models to establish relationships between remote sensing data and biophys-
ical parameters. Examples of model inputs include spectral bands, vegetation
indices, and tree growth data.

There are several ways remote sensing imagery can estimate carbon density and
changes in carbon density. It can be estimated directly based on quantifiable
relationships between biomass and spectral responses. Also, it can be estimated
based on classification techniques, indices, and regression equations or models
developed through research pairing measurements with remote sensing reflectance
measurements. This study mainly discusses the utilization of various remote sensing
data and techniques to obtain feasible biomass estimation and carbon stock in rubber
plantations. The apparent reason is to tackle the time- and labor-consuming problem
due to the significant spatial locus and the need for continuous temporal data.

5 Vegetation Indices for Biomass Calculation

Vegetation indices feature the extraction operations designed to yield the estimation
of vegetative cover from an image. These indices are based on the fact that vegeta-
tion absorbs well in the visible and reflects very efficiently in the near-infrared
spectrum of electromagnetic waves. Numerous spectral vegetation indices (VIs)
have been developed to characterize vegetation canopies for retrieving vegetation
structure from optical remote sensing. These indices are well correlated with vege-
tation parameters, including green leaf area, biomass, percent green cover, produc-
tivity, and photosynthetic activity (Asrar et al. 1984; Hatfield et al. 1984; Sellers
1985).

Another reason for applying remote sensing is to utilize the excellence of remote
sensors that are sensitive to capture the earth’s surface features, especially vegetation
characteristics. Various types of vegetation indices such as NDVI (normalized
difference vegetation index), LAI (leaf area index), EVI (enhanced vegetation
index) from LANDSAT, and MODIS have been used by many researchers to
analyze vegetation features like phenology, biomass, and forest carbon cycle (Turner
et al. 2004; Anaya et al. 2009; Gasparri et al. 2010; Morel et al. 2011; Tian et al.
2012; Shidig and Ismail 2016). Retrospectively, remote sensing sensors could
capture the radiative process in plant canopies, which was further used as input
information for biomass modeling (Zheng et al. 2007). For instance, LAI which is
generated from several vegetation indices is often used to calculate biomass. It is
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usually combined with other parameters such as stand age and forest type to produce
high accuracy of biomass calculation.

6 Rubber Tree Biomass as a Carbon Sink

Since the invention of latex for the manufacturing sector, the demand for rubber
production has increased vastly, pushing countries with suitable climate conditions
like China, Malaysia, Thailand, and Indonesia to expand the rubber plantation area
extensively. Besides being planted in 20 countries for many latex productions,
rubber is primarily planted in Southeast Asian countries which became a world
leader for natural rubber production. More than 70% of rubber world is cultivated in
Indonesia, Thailand, and Malaysia (Shigematsu et al. 2011).

In addition to its benefit as the primary crop tree production, rubberwood also
holds promising gains in biomass production, thus becoming a renewable energy
source. Alternative renewable energy is turning into such an important issue in the
global discussion. Many parties have realized that the over-dependency only on
fossil fuel is entirely unsustainable and risky against global dynamics. Biomass
offers one alternative solution which relates to the natural environment provided
within the country. It has been studied that a standing tree can produce biomass from
different sources, including the trunk, branches, twigs, and leaves (Ratnasingam and
Scholz 2009).

Moreover, Lim et al. (2000) mentioned that the energy content of rubberwood
reaches up to 68.61 GJ per year or 40.04 GJ per hectare per year. The amount of this
estimation is quite considerable to be applied for alternative energy compliance. The
conversion technologies including combustion, pyrolysis (Shaaban et al. 2013), and
gasification (Kaewluan and Pipatmanomai 2011; Adisurjosatyo and Nugroho 2012)
have been used to generate energy from rubberwood biomass.

Apart from storing biomass for alternative energy, a forest plantation, including
rubber plantation, can be a significant carbon sink, which is important to control
global climate change. Studies show that the average carbon concentration for trees
components was 48.7% (Wauters et al. 2008), and some are nearly 50% (IPCC
2004). Therefore, preserving forest plantations, mainly rubber plantations, becomes
an essential climate change mitigation and sustainable development strategy. In
tropical countries, forest plantation serves as a tool of carbon credits utilized by
countries worldwide. The carbon sink in countries like Malaysia and Indonesia are
that much important for countries in Europe and America, where emissions from
industrial activities are the main contributors to climate change (Houghton 2005;
Vieira et al. 2005; Shin et al. 2007; Egbe and Tabot 2011). Since the carbon sink
from the forest plantation ecosystem is quite significant for maintaining the environ-
ment, the addition of a carbon sink could be very favorable by utilizing the
deforested land. It creates new carbon sinks which complement prior sinks from
other natural forests (Garrity et al. 2006; Serigne et al. 2006).
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7 Remote Sensing for Biomass Estimation

The distribution of global biomass has a unique pattern determined by the geograph-
ical characteristics of a particular area. The suitability and also the site-specific
characteristic highly relate to the spatial aspect upon its availability. This makes
biomass estimation challenging, especially in areas with complex forest stand
structures and environmental conditions requiring accurate and consistent measure-
ment methods (Thenkabail et al. 2004a; Lu 2006). Hence, remote sensing is consid-
ered the best approach to estimate biomass at a regional level where field data are
difficult to collect (Kumar et al. 2015). It becomes the most prominent and feasible
approach for generating information for biomass estimation at a reasonable cost and
acceptable accuracy. It is also considered the most feasible effort because of the
benefit of repeated data collection, multispectral and multi-temporal images, synop-
tic view, fast digital processing of large quantities of data, and compatibility with
GIS (Lu et al. 2004).

Studies on biomass estimation have been published in the past few years, and
most of them have described remote sensing-based estimation for forest biomass
(Foody et al. 2003; Zheng et al. 2007; Goh et al. 2014; Koju et al. 2019; Kashongwe
et al. 2020). In addition, the studies vary among different types of remotely sensed
data and various forest locations. The distinct types of forest, such as a mature forest
with the high complexity of vegetation texture up to degraded forest that changes
into secondary forest planted with crop plantation, also determine these studies’
results. Several types of research have explored the estimation of above-ground
estimation in tropical regions based on Landsat Thematic Mapper (TM) (Sader et al.
1989; Lucas et al. 1998; Boyd 1999; Nelson et al. 2000; Steininger 2000; Foody
et al. 2001, 2003) or synthetic aperture radar data (SAR) (Rignot et al. 1995;
Luckman et al. 1997, 1998; Santos et al. 2002, 2003). Those have shown the
difficulty of AGB estimation based only on spectral responses from optical sensor
data or backscatter data. Lucas et al. (2004) comprehensively reviewed SAR data for
AGB estimation in tropical forests and indicated the difficulty and data saturation
problem in AGB estimation. Along with the progress of biomass estimation perfor-
mance, other studies also examined the roles of textures in improving the relation-
ship between remotely sensed data and biomass estimation (Smith et al. 2002; Zhang
et al. 2003; Lu et al. 2004). They have shown that textures are also valuable for
improving land cover and vegetation classification (Franklin et al. 2001; Podest and
Saatchi 2002; Zhang et al. 2003). However, it is still challenging to properly select
suitable textures that effectively improve the biomass estimation performance due to
various attributes and site-specific characteristics.

Since it is impossible to directly measure tree crown in the middle and lower layer
of multilayer forest stands, estimating biomass starts with measuring tree crown
diameters on aerial photographs or high-resolution satellite images. Then, using
those values to estimate tree biomass because the biomass of each tree increases as
its crown size (diameter and area) increases. However, the main requirement to
successfully apply this method is that the individual crown must be visible. The most
suitable forest is the open forest with large crown trees where remote sensing sensors
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can capture the tree’s information individually. The secondary or bamboo forest is
less suitable for utilizing this method because of the probability of misdetection
through similar tree crowns (Hirata et al. 2012).

Although the biomass of an individual tree increases predictably with the tree
crown size, which consists of diameter and area of tree cover (Kiyono et al. 2011),
the measurable diameter of a tree crown depends on the ground resolution of the
remote sensing imagery being used. The crown diameter of an upper layer tree can
be measured on an aerial photograph or a satellite image with high ground resolu-
tion. In addition, the measurement of tree crown diameters is influenced by the
availability of color information, the data acquisition time, and whether a stereo pair
of images makes it easier to discriminate tree stratum and adjacent tree crowns using
height information (Hirata et al. 2012). In their paper, Kumar et al. (2015) have
comprehensively described the application of three different types and methods of
remote sensing in forest biomass estimation.

8 Optical Remote Sensing for Biomass Estimation

Optical remote sensing data have been widely used for biomass estimation using
different types of spatial and temporal resolution as well as a variety of image
processing technologies (Zheng et al. 2004; Lu 2005; Muukkonen and Heiskanen
2005; Rahman et al. 2005; Li et al. 2008; Song 2013; Koju et al. 2019). The most
commonly used approaches are multiple regression analysis, k-nearest neighbor, and
neural network (Steininger 2000; Foody et al. 2003; Zheng et al. 2004; Halme et al.
2019). Optical data can be used to perform vegetation classification from the
particular area where biomass is predictably generated. On the other hand, for
indirect biomass estimation, optical remote sensing data are relatively used to
determine vegetation parameters such as tree canopy or crown diameter using
multiple regression analysis or canopy reflectance models (Phua and Saito 2003;
Popescu et al. 2003). Different types of vegetation indices and band ratios derived
from optical data can also be obtained to extract biomass estimation by correlating
vegetation index values or band ratio values with field biomass quantification (Dong
et al. 2003).

According to previous studies, at least three different spatial resolutions of optical
remote sensing data can be attempted as particular tools in forest biomass estimation.
First, the high-resolution data from range sensors can be applied to generate tree
parameters of forest canopy structures (Kumar et al. 2015). High-resolution data
from IKONOS and QuickBird have been used for generating tree crown size (Song
et al. 2010) and estimate biomass as well as carbon calculation conducted in
secondary forest oil palm plantation (Thenkabail et al. 2004b). These applications
of high-resolution data reveal large-scale photographs and photo mensuration
methods that can be used to obtain forest characteristics such as tree height, crown
diameter, crown closure, and stand area (Bertolette et al. 1999; Clark et al. 2005).
However, there are some limitations from this type of resolution related to the aspect
of shadows and spectral separability. A study from Hirschmugl et al. (2007) suggests
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that spectral variance between tree crowns creates some distress in developing
expected biomass estimation models.

Furthermore, the substantial need for more extensive storage also becomes a
primary issue when using high spatial resolution data, especially if the estimation
model required massive broad areas with various land covers surrounding the forest.
Moreover, the vegetation classifications become more complex when using the
traditional pixel-based spectral classifiers (Kumar et al. 2015). However, some
studies have found that integrating textual information and object-based method
has successfully addressed this problem (Blaschke and Strobl 2001; Blaschke 2010).
It is supported by extracting such variables of statistic spectral band, geometric
features, and texture features. It has been strengthened by a study from Lu and
Batistella (2005) that used variables of GLCM texture (mean, median, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation) with Landsat TM
bands 2-5 and 7, which found a strong relationship between textural images and
biomass for a mature forest with complex vegetation structure. However, the result
showed a weak relationship for a secondary forest with a simple stand structure.

Second, the medium spatial resolution also has been frequently used in biomass
estimation. Linear or nonlinear regression models, k-nearest neighbors, neural
networks, and vegetation canopy models are several methods that are mainly applied
when using this type of resolution. Landsat TM was used to estimate tree volume and
biomass using the k-nearest neighbor estimation method (Franco-Lopez et al. 2001;
Halme and Tomppo 2001; Tomppo et al. 2002), whereas SPOT 5 was used to
estimate above-ground forest biomass from canopy reflectance model inversion
(Ghasemi et al. 2011). Some limitations related to the application of medium spatial
resolution are visible when estimating the tropical area. Previous studies revealed
that spectral reflectance and vegetation indices were not reliable to act as biomass
predictors and the low sensitivity through the biomass changes (Steininger 2000;
Foody et al., 2003). However, advanced studies have successfully added significant
factors to improve sensitivity performance. The use of texture information in the
change analysis process by Lu (2005) and Nichol and Sarker (2011) has favorably
improved biomass estimation results in the tropical forest. In other cases,
incorporating spectral variables with age into Landsat TM of the forest also posi-
tively influenced estimating forest biomass. Additionally, vegetation indices have
been advantageous in minimizing spectral variability when measuring biophysical
properties for biomass estimation, especially in complex vegetation stand structures.
The utilization of vegetation indices strengthened the combination of image texture
and spectral reflectance for improving biomass estimation performance.

Lastly, coarse-spatial resolution AVHRR NDVI data have been used to estimate
biomass in temperate woody biomass in Canada, Finland, Norway, Russia, Sweden,
and the USA (Dong et al. 2003). Numerous spectral types from MODIS data have
successfully improved biomass estimation accuracy at the continental or global
scale. For example, a recent study in the Amazon basin conducted by Saatchi et al.
(2007) and in the USA by Blackard et al. (2008) used MODIS data to compose tree-
based models and metrics combined with radar data, climate, topography, and
vegetation maps. MODIS data also shows positive performance for biomass
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estimation when integrated with precipitation, temperature, and elevation in the
national forest of California, USA. On the other hand, compared to the other two
kinds of spatial resolution, this type of optical sensor has more complex limitations
due to the occurrence of the mixed pixel, a saturation of spectral data at high biomass
density, and the mismatch between the size of plots and pixel (Kumar et al. 2015). As
aresult, some studies utilized course and medium resolution combined with different
modeling approaches to attain preferable biomass estimation results for more expan-
sive areas (Hame et al. 1997; Tomppo et al. 2002).

In general, optical sensor data in 2D types are considered more appropriate for
extracting vegetation structure such as vegetation types and canopy cover but less
effective for estimating vertical aspects such as canopy height, which become
essential predictors for biomass estimation (Kumar et al. 2015). Studies found
these optical sensor data have prospected opportunity to improve the viewing
capability, hence establishing more accurate canopy height estimation (St-Onge
et al. 2008; Ni et al. 2014). More accuracy has been shown from 3D data generated
from SPOT 5, which adequately mapped the tree height, stem diameter, and forest
tree volume (Reinartz et al. 2005; Wallerman et al. 2010). Therefore, it can be
concluded that high-resolution data can be used extensively as an alternative to
deriving height vegetation information compared to other types of data.

9 Radar Remote Sensing for Biomass Estimation

Recently, the use of synthetic aperture radar (SAR) data for biomass estimation has
been rapidly increasing, especially in the area where frequent cloud cover is clearly
discovered. It results in the difficulty of the optical sensor to obtain high-quality
images. SAR sensors can catch various data within all weather and light conditions,
penetrating through vegetation in different degrees and generating information of
structure distribution in 3D format (Zhou et al. 2009). Several studies have shown
that the utilization of SAR data mainly focuses on developing algorithms for
classification and biomass estimation in the closed-canopy forest (Lucas et al.
2006, 2010) and complex subtropical forest (Sarker et al. 2012). The available
SAR sensors widely used for remote sensing studies are TerraSAR-X, and the
Advanced Land Observing Satellite and Phased Array L-band SAR (ALOS-
PALSAR). Those SAR data can be retrieved to examine the relationship between
ground-based biomass estimation and single-channel data (Zhou et al. 2009).

SAR is an active sensor that transmits microwave pulses to the earth’s surface and
then detects the reflected pulses back from the earth’s surface. The backscattering
coefficient is derived from the reflected signals (Shimada 2010). The correlation
between the backscattering coefficient and biomass is high for long-wavelength
(L band, about 23 cm, but saturation occurs at a biomass of about 100 t/ha 3). For
comparison, the above-ground biomass of mature tropical forests can be as high as
400-500 t/ha and usually exceeds 200 t/ha. For this reason, it is not easy to estimate
the biomass of a mature forest. However, the method is suitable for mapping biomass
changes over a large forest area, recovering from some large-scale disturbance (e.g.,
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slash-and-burn or plantation agriculture). In hilly terrain, topographic distortion
should be corrected (Hirata et al. 2012).

Since the SAR sensor can detect both horizontal (H) and vertical (V) components
from backscatter radiation, four possible polarization configurations are applied
within this sensor system. First, HH consists of horizontal transmit and horizontally
received, which are available on ERS satellite. Vertical transmit and vertically
received is called VV that belongs to the RADARSAT satellite. The other is a
combination of previous polarization: HV from the horizontal transmission and
vertical reception, and VH from the vertical transmission and horizontal reception.
The pattern of those polarization components depends on the states from detected
radar signals (Kumar et al. 2015). The backscatter radar of P and L bands has
particularly shown a positive correlation with various primary forest parameters
such as tree age, tree height, DBH, basal area, and above-ground dry biomass
(Imhoff et al. 2000; Castel et al. 2002; Santos et al. 2002; Sun et al. 2002).

Studies have discovered that L-band is the most useful for forest biomass
estimation (Le Toan et al. 1992). However, those SAR bands still showed the
correlation between biomass and forest parameters. For instance, a study conducted
by Harrell et al. (1997) used SAR C and L band multi-polarization for biomass
estimation in the southern USA and found L band HH data is essentially significant
to obtain accurate estimation. Furthermore, they also found that the addition of C
band HH and HV significantly improves the estimation performance. For the area of
after-logged forest, JERS-1/JERS is found useful to conduct forest biomass estima-
tion (Kuplich et al. 2000) and in the mountainous area (Santos et al. 2002). While in
the tropical forest, RADARSAT has been tested for biomass estimation and yielded
satisfactory results, although there are some problems in data saturation, especially
when reaching complex forest stand structures (Sarker et al. 2012). Lastly, PALSAR
data indicate a promising ability to map forest with encouraging results in a more
complex forest area like Amazon and Siberia (Lucas and Armston 2007).

According to Zhou et al. (2009), there are several advantages of using radar
compared to optical sensors for biomass estimation. Radar sensor performs freely
from solar radiation variations caused by high penetration through cloud and haze. It
is essential when applied in tropical areas. Furthermore, it can actively manage the
sensors and power outlet, thus ensuring consistent transmit and return rates. How-
ever, radar data are less applicable in regional studies due to the small swath width,
high costs of airborne acquisitions, and limited coverage (Lucas et al. 2010).

10 LiDAR Remote Sensing for Biomass Estimation

LiDAR is a relatively advanced new technology developed to resolve spatial analy-
sis limitations using previous 2D remote sensing. It can transform two-dimensional
into third-dimensional data, which simplifies the analytical process of remote sens-
ing. LiDAR instruments can detect the vertical distribution and canopy surface
(Dubayah and Drake 2000; Harding et al. 2001), which has become the most
efficient technology for structural assessment since it can capture landscape
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structural data for more accurate biomass estimation (Zhao et al. 2009). Previous
studies have shown a robust relationship between LiDAR metrics and above-ground
biomass that enhance the ability to estimate forest biomass (Lefsky et al. 1999;
Means et al. 1999). Moreover, LiDAR also gained more sophisticated technology in
waveform digitizing sensors, increasing the image quality captured in a more
complex forest structure (Lefsky et al. 1999, 2002; McGlinchy et al. 2014). How-
ever, some restrictions have also been adhered to when using LiDAR for field
application: (1) fewer simple data analysis that requires advanced image processing
knowledge and skill and (2) more expensive data acquisition process which covers
smaller detection areas. Due to these restrictions, few and very specific studies can
be conducted using this type of sensor, and hence it is not widely applied for biomass
estimation in a larger area (Kumar et al. 2015).

As mentioned in study results from passive sensors, the problem of attaining
optimum detection emerges severely in mature and complex structure forests. Most
of the sensors failed to correlate the forest structure and biomass variables (Lu 2006).
However, LiDAR data can estimate structure variables such as height, crown size,
and stem volume through vertical appearance. There are two types of LiDAR for
conducting sensor operations. Todd et al. (2003) mention that the first type is
discrete return LiDAR (small footprint), and the second is full-waveform LiDAR
(large footprint). Both are calibrated to operate in the 900-1064-nm wavelengths
where vegetation reflectance is the highest. The discrete return LiDAR has two
approaches: (1) area-based and (2) individual tree-based methods (Chen 2013).
Area-based methods develop statistical models to relate biomass with metrics
derived from a LiDAR point cloud at the plot or stand level. This model is
subsequently applied to accurately estimate the entire study area (Thomas et al.
2006; Gleason and Im 2012). Height metrics are the most frequently utilized
parameter implemented in area-based LiDAR, which can be computed from differ-
ent variables such as the first and all returns or by a grid of the canopy heights (Lim
et al. 2003; Asner et al. 2009).

On the other hand, the individual tree-based method applies the approach by
identifying the individual tree crown then generating the information from the
LiDAR point cloud. The biomass estimation can be attained by processing the tree
height or crown size information related to the amount of biomass within the forest.
Both the area-based and individual-based approaches need calibration and field
validation, but the individual approach requires less validation because the data
needed are only for a few numbers of the tree for data sampling.

Like other sensors, the biomass estimation generated from LiDAR is also derived
from some structure variables. The most widely used is tree height which several
studies have utilized to obtain biomass estimation. Garcia et al. (2010) conducted a
biomass model based on LiDAR height or intensity, both used separately or com-
bined. They found that the normalized intensity-related variables are more helpful in
explaining the biomass estimation than the other variables. Other studies from
Lefsky et al. (2005) and Popescu et al. (2011) revealed the broad application of
space-borne LiDAR for accurate biomass estimation. A summary of the remote
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sensing methods, data types, and some examples for forest biomass estimation is
shown in Table 1.

11 The Allometric Equation for Biomass Estimations

Scaling equations that relate to the sizes of different parts of a tree are called
allometric equations. Recently, the allometric equation has been considered a pow-
erful tool for assessing tree weight from independent forest variables. The equations
are developed through destructive methods and field sampling that applied trunk
diameter, age, type of species, wood density, and total height assessment. Several
cut-down trees were taken and dried up to a certain temperature to attain dry weight.
This dry weight is considered as an actual biomass amount. The following step uses
the data sampling from the forest site to be statistically analyzed, thus obtaining the
needed equation (Sone et al. 2014). The results will be varied across the site-specific
or species-specific up to different climate, forest types, and methods to execute the
field sampling.

However, there is some limitation when applying allometric equations, especially
when encountering various variables with different site condition. The results often
show several types of relationships among the variables, hence generating less
general interpretation to be applied in other common studies. It is important to
choose an allometric equation suitable for the region’s environmental conditions
and the forest type, such as evergreen or deciduous (Cairns et al. 1997; Mokany et al.
2006). Furthermore, it is also too complicated and costly to utilize a series of
allometric equations for each tree species and forest site. Therefore, it is essential
to develop a general allometric equation that can be applied in various forest site
conditions and geographical locations. Eventually, the general equation can be
obtained using common predictors of tree structure based on biological or physical
theories (Komiyama et al. 2005).

One of the most referred biomass estimations for tropical trees is the allometric
equation developed by Chave et al. (2005), updated in Chave et al. (2014). They
mainly analyzed the global database of directly harvested trees at 58 sites, spanning a
wide range of climatic conditions and vegetation types, with the indictable effect of
the region or environment factors. According to Chave (2005), the most critical
AGB predictors are trunk diameter (D), wood specific gravity or wood density, total
height (H), and forest type (dry, moist, or wet). Since, in particular conditions, total
height data is challenging to obtain, or the availability is less accurate to reveal the
actual conditions of tree’s height, Chave’s equations focused on two conditions of
height data availability, with or without height data. In a particular situation, tree
height may improve the model’s quality but ignore the total height and might be
helpful when predicted to cause some bias. In addition, when utilizing the equations
into a much broader range of vegetation, wood density is a significant predictor for
AGB estimation (Chave et al. 2014). Chave’s model restricts the model only for the
tropical forest with broadleaf tree species, excluding plantations or other manageable
forests.
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Table 1 Summary of the remote sensing methods, data types, and some examples for forest
biomass estimation

No.

1

Methods

Methods based on
the spatial resolution
data (<5 m)
(parametric
classifiers, MLC,
MDM, etc.;
nonparametric
classifiers,
ISODATA, k-means)

Methods based on
medium-spatial
resolution data
(10-100 m) (linear,
exponential, and
multiple regression
analysis, neural
network, k-nearest
neighbor method,
productivity model)

Methods based on
coarse-spatial
resolution data
(>100 m) (regression
models and artificial
neural network
(ANN), k-nearest
neighbor, statistical
model)

Methods based on
radar data (regression
model, canopy height
model, multiplicative
models)

Methods based on
image fusion
techniques (intensity
hue and saturation
(HIS), Brovey, PCA)
Vegetation index-
based method
(NDVI, ratio)

Data used Characteristics
Aerial photographs, Per-pixel level
IKONOS,

QuickBird, GeoEye,

WorldView

Landsat 4 5 7 TM/
enhanced TM+,
Systeme Probatoire
D’Observation de la
Terre (SPOT)

Per-pixel level

IRS-1C WiFS,
AVHRR, MODIS,
SPOT, vegetation

Per-pixel level

SIR-C, SAR-L
JERS-1 SAR-L,
AeS-1 SAR-P,
InSAR, airborne
laser, large and small
footprint LIDAR

Per-pixel level

Multispectral and
panchromatic

Object-level

Examples

Asner et al. (2002),
de Jong et al. (2003),
Thenkabail et al.
(2004b), Song et al.
(2010)

Franco-Lopez et al.
(2001), Foody et al.
(2001), Halme and
Tomppo (2001),
Tomppo et al.
(2002), Soenen et al.
(2010)

Hame et al. (1997),
Barbosa et al. (1999),
Tomppo et al.
(2002), Dong et al.
(2003), Baccini et al.
(2004), Saatchi et al.
(2007), Baccini et al.
(2008)

Le Toan et al. (1992),
Santos et al. (2003),
Lefsky et al. (2005),
Asner et al. (2009),
Popescu et al. (2011),
Gleason and Im
(2012), Chen (2013)
Chen and Stow
(2003), Amarsaikhan
and Douglas (2004),
Choi et al. (2005)

Elvidge and Chen
(1995), Blackburn
and Steele (1999), Lu
et al. (2004),
Mutanga and
Skidmore (2004)

(continued)
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Table 1 (continued)

No. | Methods Data used Characteristics | Examples

7 Object-based Object-level Blaschke and Strobl
(segmentation and (2001), Lu and
classification, ANNs, Batistella (2005),
k-nearest neighbor, Goodchild et al.
statistical models, (2007), Blaschke
random forest) (2010)

8 Advanced classifiers | Multispectral Per-pixel level | Dennison and

spectral mixture
analysis (SVM),
random forest,
support vector
machine (SVM)

Roberts (2003), Lu
et al. (2004), Calvao
and Palmeirim
(2004), Lu and
Batistella (2005)

Adapted from Kumar et al. (2015)

Unlike the tropical forest, which contains hundreds of tree species, and diverse
trees’ physical appearance, plantation or manageable forest has a similar condition
for tree age, type of species, and forest management practice. Thus, the appropriate
model will be slightly or much different from biomass equations for tropical forests
(Brown 1997; Chave et al. 2005, 2014; Houghton 2005). Previous studies upon
biomass estimation with and carbon sequestration have been conducted in
mangroves (Sherman et al. 2003; Komiyama et al. 2005), oil palm (Asari et al.
2013), and rubber plantations (Yang et al. 2005; Wauters et al. 2008; Sone et al.
2014). Specific allometric equations also have been developed from those types of
plantations. Biomass estimation in rubber plantations strongly engages the tree age
as an important variable since it determines the trunk diameter and total height
(Wauters et al. 2008; Sone et al. 2014). Results from Sone et al. (2014) show that the
biomass estimation relationship with tree age increased consistently from 5% at the
age of 3 years to 40% at the age of 20 years in rubber tree.

A biomass expansion factor converts the trunk volume into the volume of the
whole tree, including branches, leaves, and roots. This factor depends on the tree
species and the forest stand age. That value is converted to carbon stocks by
multiplying it by 0.5. Since species, forest age, and forest management practices
are constant in the case of a plantation, it can be assumed that tree size and growth
conditions are also constant. In this case, the biomass expansion factor can be used as
follows:

C=[VxWD xBEF]" (1 + R) xCF

Here, C is carbon stock per unit area (t-C/ha), V is stand volume (m3/ha), WD is
wood density (t/m’), BEF is the biomass expansion factor, and CF is the carbon
content ratio (t-C/m?>).

Table 2 lists the most commonly used biomass allometric equations based on a
destructive method. Some of them were conducted by taking the area of tropical
forest in Southeast Asian countries and focusing on primary and secondary forest.
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Table 2 List of most common used biomass allometric equations cased on destructive method

No. | Source

1 Kato et al.
(1978)

2 Ketterings
et al.
(2001)

3 Chave
et al.
(2005)

4 Basuki
et al.
(2009)

5 Kenzo
et al.
(2009)

6 Sone et al.

(2014)

7 Wauters
et al.
(2008)

8 Asari et al.

(2013)

9 Tang et al.

(2003)

10 Brown
(1997)

11

Allometric equations
1/H = 1/(2.0 * D) + 1/61
From the values of D and H the dry

mass of stem, branches, and leaves of
the tree is estimated

Ms = 0.0313 * (D°H)**"

Mb = 0.136 * Ms'07°

/M1 = 1/(0.124Ms% 7% + 1/125
In(Wt) = 2.59 x In(D) — 2.75

Wt = p * exp(—1499 + 2.148 * In
(D) + 0.207 * (In(D))*> — 0.0281 * (In
(D)%)

In(Wt) = 2.196 x In(D) — 1.201
In(Ms) = —1.472 + 2.180 * In(D)
In(Wt) = — 0.097 + 1.361 * In(D)
In(Wt) = —1.392 + 1.250 * In(D)

Wt = 0.0829 x D>+

Wt = 0.144 x D*40
Wt = 279 x (D? x H)%86¢7

exp (—6.748+2.723 x In (Cy70))
0.487

71.797Hpalm — 7.0872
nrHpalmp
Wt = 0.1190219 x (D*H)?-6052483

Wt = exp(—2.134 + 2.530 x In(D))
C stocks: W x Fc

Fc is a standard conversion factor of
0.5kg Ckg™'

Site
Primary forest, Peninsular
Malaysia

Secondary forest, Sumatera,
Indonesia

Pasoh 50 ha plots and other
Center for Tropical Forest
Science (CTFS) plots

Secondary forest, Kalimantan,
Indonesia

Secondary forest, Sarawak,
Malaysia

Rubber plantation forest, north
Sumatera, Indonesia

Rubber tree plantation in
Western Ghana and Brazil

Oil palm plantations in south
Sumatera, Indonesia

Secondary tropical forest,
Xishuangbanna

Tropical forest

Note: H is the total tree height; D is the stem diameter at breast height (dbh); Ms, Mb, and M; denote
the dry mass of stem, branches, and leaves, respectively; Wt is the above-ground biomass of
standing trees, and p is the wood density. (Adapted from Hamdan et al. 2014)

However, the recently updated models have been elaborated on the plantation forest,
which possesses different tropical primary and secondary forest characteristics.
Finally, there are some critical reviews for forest biomass estimation models,
common mistakes, and corrective. A large degree of uncertainty exists in estimated
forest biomass, carbon stocks, and fluxes (Somogyi et al. 2007; van Breugel et al.
2011; Clark and Kellner 2012; Ahmed et al. 2013; Molto et al. 2013). Lack of
consensus on definitions, methodological inconsistencies, and assumptions also lead
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to widely differing results even among similar studies (Somogyi et al. 2007; Clark
and Kellner 2012). In addition, Sileshi (2014) explained that the common mistake in
developing biomass allometric equations was the arbitrary choice of analytical
methods, inadequate model diagnosis, ignoring collinearity, uncritical use of
model selection criteria, and uninformative reporting of results. In other cases, errors
in parameter estimates were not checked, and model uncertainty was ignored when
interpreting and explaining the results. It is crucial to choose a reasonably simple
functional expression that involves less non-interpretable parameters, to minimize
the risks of mistakes when applying or developing allometric equations. It can be
simpler equations with fewer parameters and “independent” predictors and without
polynomial terms. As expected, by alerting those common mistakes, the far-reaching
consequences of biomass allometric equations will be more accountable.

12 Remote Sensing for Rubber Trees Above-Ground Biomass
(AGB)

There is a limited number of studies focusing on remote sensing for rubber tree AGB
estimation. Most of the studies elaborate primary tropical forest, consisting of mixed
vegetation, broader leaves, and different tree ages. On the other hand, the rubber tree
biomass estimation is discussed through allometric equations generated from
destructive sampling in several forest types (Brown 1997; Wauters et al. 2008;
Basuki et al. 2009; Sone et al. 2014). Yasen and Koedsin (2015) had precisely
elaborated this topic in Thailand. They used the multispectral bands of high spatial
resolution satellite imagery for estimating rubber tree biomass at Phuket, Thailand.
The multispectral bands of WorldView-2 are used as the input variables for multiple
linear regression and artificial neural network to construct the model of rubber tree
AGB.

The application of remote sensing for capturing forest structure extensively
depends on spectral bands combinations that formed vegetation indices. It is also
applied when performing specifically for rubber tree plantations. A previous study
(Yakham et al. 2012) reported that normalized difference vegetation index (NDVI)
derived from SMMS satellite images could classify the rubber stand age with
reasonable accuracy. Likewise, Sopharat (2009) found that soil-adjusted vegetation
index (SAVI) derived from SPOT-5 was strongly related to the leaf area index (LAI)
of the rubber tree. Several studies of other vegetation types found that vegetation
index such as NDVI correlates with biomass and LAI (Wang et al. 2005; Heiskanen
2006; Devagiri et al. 2013).

Besides, Lu (2005) has clearly explained the AGB model and vegetation indices
based on his study. The TM spectral responses are more suitable for AGB estimation
in sites with relatively simple forest stand structures than sites with complicated
forest stand structures. On the other hand, textures appear more critical than spectral
responses, and textures improve AGB estimation performance. Biophysical
conditions are largely affecting AGB estimation performance. Therefore, many
remote sensing variables, including spectral signatures, vegetation indices,
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transformed images, and textures, may become potential variables for AGB estima-
tion. However, not all variables are required because some are weakly related to
AGB or highly correlated. Hence, selecting the most relevant variables is critical for
developing the AGB estimation model. In general, vegetation indices can partially
reduce the impacts on reflectance caused by environmental conditions and shadows,
thus improving the correlation between AGB and vegetation indices, especially in
those sites with complex vegetation stand structures (Lu et al. 2004). Since rubber
tree plantation has a less complex structure, it is expected to be more straightforward
in identifying suitable textures that are strongly related to AGB but weakly related to
each other.

Not only important to generate a comprehensive rubber plantation map, an
evident and reliable vegetation structure that is strongly related to AGB estimation
might also be discovered from a remote sensing approach. The difficulty of mapping
rubber plantations from optical images mainly focuses on the effect of frequent cloud
cover on tree delineation and the similarity of spectral characteristics between rubber
trees and another forest type. Compared to an optical sensor, SAR can successfully
penetrate clouds above the tropical forest through tree canopies, especially for longer
wavelengths (L-band SAR) (Baghdadi et al. 2009). When the SAR sensor transmits
the radar pulse, the transmitted energy is called forward scattering, and the returned
signal after interacting with the forest is called backscatter. It is much influenced by
the electric and structural properties of the forest structure, consisting of canopy,
leaves, branches, and trunk of the tree. In addition, the forest medium can be
considered a homogenous medium containing a large number of scatters of a single
category. The backscatter value depends mainly on the backscatter and forward
scatter function’s orientation, size, and dielectric constant (Chen et al. 2009). In
addition, Dong et al. (2012) found that the use of cloud-free PALSAR data supported
robust mapping, and the integration of PALSAR 50-m forest maps and 250-m
MODIS NDVI phenology can map fractional cover of rubber plantation extent
accurately.

Two groups of studies have used optical remote sensing data to delineate rubber
plantations. The first group focuses on using spectral signatures with cluster analysis
and traditional classifiers to identify and map rubber plantations, such as
Mahalanobis classifier (Li and Fox 2011, 2012). The challenge from this group is
that rubber trees have similar spectral characteristics with the natural tropical forests,
mainly secondary forests, as observed by single-date multispectral data during peak
growing season (Li and Fox 2011). The second group of studies relies on the
temporal signals of optical images to delineate rubber trees. Recently Chen et al.
(2010) and Tan et al. (2010) utilized the intra-annual temporal profile of rubber
plantations to delineate them in Hainan, China. This approach relied on phenological
features of rubber plantations. However, the spatial resolution from low-res
imageries sometimes limits its suitability for rubber plantation mapping in
fragmented landscapes. In addition, the frequent cloud cover in tropical regions
makes it challenging to construct consistent year-long time series with reliable data
quality.
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On the other hand, the allometric equation faces some challenges in estimating
the rubber tree biomass appropriately. As Wauters et al. (2008) explained, site-
specific allometric equations were used to estimate the carbon content of the tree’s
components correctly. The inclusion of the clone type and total height only slightly
improved the model. The comprehensive understanding of tree components yet
vegetation structure becomes the substantial basis for constructing the fit model. It
is also reported by Sone et al. (2014) in their study toward rubber tree AGB in
Sumatera, Indonesia, that emphasizes the critical role of stand parameter and tree age
as significant input variables that are strongly related to AGB biomass. Estimation
AGB is based on the volume and structure of the trees, which considered the
diameter at the breast height (DBH) and height of the tree (H) as the significant
parameters. The absence of the tree species-specific biomass equation will be
addressed by applying the wood density parameter, which considers the species-
specific volume equation with the forest type developed by Chave et al. (2005) for
moist forest stands. As supported by Komiyama (2005), the measurement of trunk
diameter or girth is more practical than other parameters, especially for those
working in closed and tall canopies where tree height is difficult to measure
accurately.

13 Conclusion

Comprehensive studies on the uses of remote sensing and allometric equation have
been conducted to highlight the existence of crop plantations for biomass contribu-
tion to the carbon cycle. However, the absence of similar previous research realizes
the current study is the prior work in developing such an inventory for both rubber
tree biomass models combined with remote sensing techniques. As elaborated
among the literature and research questions, the missing elements are expected to
be found in further study. It is also attributed to the other focuses and methodologies,
which eventually fill the gaps in this present work.

In fact, the combination of variables developed by previous allometric models
and remote sensing approaches is aimed to generate updated studies that reveal the
biomass estimation using remote sensing technique, specifically for rubber tree
plantations in tropical areas. Several inevitable challenges, such as site-specific or
species-specific characteristics, remote sensing imagery availability, limited field
sampling data, and un-fitted allometric equation, may have hindered the AGB
estimation performance. However, comprehensive elaboration through some studies
and previous research highlights the stand parameters like trunk diameter and height,
age tree from vegetation structure combined with spectral bands, backscattered
signal, and vegetation indices, to be appropriately applied as biomass predictors
and input variables. Remote sensing data will support land management decisions
and land-use policies. The information retrieved from remotely sensed data not just
become an essential indicator for monitoring plantation areas and observing bio-
mass, assessing carbon stocks, and predicting yield gain or loss. Remote sensing is
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expected to grow and continue to play an important role in managing global rubber
plantations in the future.
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