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Preface

Remote sensing has been used for forestry applications for many decades. For
example, aerial photographs were used as working tools in preparing forest inven-
tory, size, type and condition maps of forest stands. Today, remote sensing is heavily
utilised in forest management, which is acquired from airborne and spaceborne
platforms using satellite data. In comparison with traditional aerial photography,
satellite imagery has many advantages such as the frequency of data collection,
global availability of satellite data, data suitability for digital analysis and classifica-
tion, and data gathering at relatively low cost.

The new generations of satellite sensors are introduced not only to provide
important information on forest ecosystems but also to improve the techniques and
accuracies obtained by the traditional approaches. In recent years, there have been
rapid advances in the new types of sensors. They have the potential to improve the
accuracy in classification of forest types and species discrimination. In addition, the
systems were reported to contribute to improving the estimations of forest variables
such as forest biomass, stand volume, stand age and carbon stocks by linking the
spectral reflectance and ground information via predictive models.

Researchers have become increasingly aware of the potential of remote sensing to
address important forestry issues and challenges. The number of forestry
publications using remote sensing has grown very rapidly, and this is noticeable
with many recent technologies and applications. Therefore, this book chapter
highlights the concepts and applications in remote sensing for forestry with a
particular emphasis on the techniques, data, sensors and their applications. Novel
applications of recent techniques in remote sensing are discussed. In addition,
several constraints and future opportunities in the use of remote sensing for forestry
applications are addressed.

Shah Alam, Malaysia Mohd Nazip Suratman
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Remote Sensing for Forest Inventory
and Resource Assessment

Mohd Nazip Suratman, Zulkiflee Abd. Latiff,
Tengku Mohd Zarawie Tengku Hashim, Ahmad Farid Mohsin,
Nazlin Asari, and Nurul Ain Mohd Zaki

Abstract

There are multiple purposes of conducting forest inventories and forest resource
assessment. One of them is to serve as information on the development of forest
planning and management strategy which requires gathering of data about forest
resources at the national level for the development of strategic policy. In order to
characterise accurately both quantity and quality of the forest resources, enhanced
information is required. Remote sensing technology offers potential gains in
inventory efficiency based on its ability to quantitatively characterise stand
canopies through spectral reflectance. Also, the frequency with which remote
sensing data are acquired, and the availability of data for extensive areas,
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increases the attractiveness of these data for inventory purposes. For example,
visible, near-, and mid-infrared radiance measurements, which are routinely
available from the optical remotely sensed imagery, could be related to forest
parameters and stand attributes such as biomass, basal area, diameter, stand age,
and wood volume. The need for effective inventories for forest resources is the
impetus for this chapter into reviewing traditional methods of ground-based
surveys with information from satellite remote sensing. In addition, this chapter
discusses the development of remote sensing sensors, which include their
characteristics, applications, current practices, and future development of the
remote sensor.

Keywords

Remote sensing · Forest inventory · Sampling design

1 Introduction

Forest inventory refers to the estimation by sampling of an area of a forest in its
entirety or split up into forest types (Hildebrant 1989). In the planning phase of a
forest inventory, it is necessary to define assessment units. For example, for a
national forest inventory, the state or region could be the unit of assessment, while
for a local inventory, the unit of assessment could be the stand or forest estate. A map
or any form of remotely sensed imagery (e.g. aerial photographs, satellite, or radar
imageries) can be utilised to delineate these units and obtain preliminary informa-
tion. By means of these tools, the area can be stratified into several forest types and
the variables of interest can be estimated precisely.

In many countries throughout the world, the issue of information requirements for
forest resource management, conservation, and development at national and state
levels has received much attention. Over the last decade, demand for more and better
forestry information has continued to grow. There are many shortcomings regarding
the method and efficiency of data collections required for planning the development
of strategies within the forest sector at national and state levels. Remote sensing
technology offers potential gains in inventory efficiency based on its ability to
quantitatively characterise stand canopies through spectral reflectance (Ahern et al.
1991; Lillesand and Kiefer 2000). In addition, the frequency with which remote
sensing data are acquired, and the availability of data for extensive areas, increases
the attractiveness of these data for inventory purposes. Therefore, the need for
effective inventories for forest resources was the impetus for this introductory
chapter into reviewing the applications of remote sensing as a tool in providing
information by linking ground information with satellite data.
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2 Inventory and Sampling Design

Sampling design is of great importance for forest inventory and monitoring to ensure
efficient data collection as measured by cost and reliability (IUFRO 1994). In
applying any sampling method, it is essential to clearly define the population of
interest. Freese (1962) and Cochran (1977) considered the population as the aggre-
gate of units from which the sample is chosen. For example, if the sample is taken
with plots, the population should be defined in terms of the plots.

There are several sampling methods that can be applied to forest inventories.
However, before considering the design, major information needs should be
clarified. According to IUFRO (1994), the selection of the most appropriate sam-
pling methods depends on (1) the objectives of the inventory, (2) the cost involved,
(3) the extent of the area, (4) the forest types (whether only one or several), and
(5) the availability of remotely sensed imagery.

In each sampling method, the sampling unit may be randomly or systematically
selected. For example, in simple random sampling (SRS), the selection of sampling
units from the population is such that every combination of n units has an equal
chance of being selected (Freese 1962; Cochran 1977). In systematic sampling,
sampling units are selected according to regular system. SRS yields unbiased
estimates of the parameter of interest and allows estimation of the sampling error,
which is a measure of precision of the estimate. The selection of the sampling units
can be done with or without replacement (LeMay and Marshall 1990). In the former
sampling process, a unit may appear in the sample more than once and in the latter a
unit may appear in the sample only once. Sampling without replacement is used most
frequently, since it is more precise than sampling with replacement (LeMay and
Marshall 1990).

If sampling involves a subdivision of a forest area into smaller areas with more
homogeneous characteristics, the method involves some form of stratified sampling.
If the sampling units are selected randomly within each stratum, the method is called
stratified random sampling (STRS). According to LeMay and Marshall (1990),
STRS can be used effectively if (1) the separated strata are more homogeneous
than the population, (2) the sizes of strata are known prior to sampling, (3) a
sampling frame is available, and (4) one is interested in estimating parameters for
the various strata. The greater the difference among stratum means, the greater the
advantage to using STRS rather than SRS (Bickford 1961).

In some cases, it may be costly or impractical to select sample size using these
methods. For example, if the distance between sample units is large, and time and
cost are limiting factors, the sampling units can be aggregated into a number of
mutually exclusive groups or clusters. This method of sampling is called cluster
sampling (Frayer 1981) and is used if there is interest in getting proper interval
estimates for the average element value within a cluster. However, if the units of
assessment are large, clusters may be subdivided into units of hierarchical order,
which constitutes multilevel sampling designs. As the name implies, this design uses
more than one source of information in the estimation of population parameters
(Frayer 1981). These sources generally, but not necessarily, involve one or more
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Fig. 1 Sampling unit in
multistage sampling; PSUs
represents primary sampling
units, SSUs is the secondary
sampling units, and TSUs is
the tertiary sampling units
(Hamilton et al. 2010)

types of remotely sensed imagery and ground measurements (Kohl and Kushwaha
1994).

Multilevel sampling may be classified into multistage sampling and multiphase
sampling (Kohl and Kushwaha 1994). Multistage sampling designs are based on
dividing the population into subunits (Fig. 1). The first subset can be called primary
sampling units (PSUs). Next, a subset of PSUs is selected and subdivided into
secondary sampling units (SSUs) (Hamilton et al. 2010). Similarly, according to
IUFRO (1994), in multistage sampling, the first stage can be divided into a second-
ary one, and the secondary stage can be divided into a tertiary one, and so forth. At
each stage, different selection methods can be applied. On the other hand, multiphase
sampling analyses information from every level. The variables of interest are derived
from data from the lowest level. In multistage sampling the units are partitioned into
smaller units at each succeeding stage. For multiphase sampling, the unit size
remains the same, independent of the number of phases of information used. A
first phase unit is the same as a second phase unit, and so on. According to Kohl and
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Kushwaha (1994) the design must be such that the auxiliary variables are less
expensive to derive than the variables of interest, and remote sensing is the ideal
method for such purposes.

There are two types of multiphase sampling designs. They are known as multi-
phase sampling with regression estimators and multiphase sampling for stratifica-
tion. In the first type, the relationship between the auxiliary variables and the variable
of interest is described by means of regression. According to Kohl and Sutter (1991)
this approach has repeatedly proved its worth in temperate latitudes. Bowden et al.
(1979) and LaBau and Schreuder (1983) gave an overview of this method for large-
scale inventories employing satellite data. In the second type, the auxiliary variable
is not determined through the measurements; instead, it is an indicator variable
showing the stratum to which the variable of interest is to be allocated (Kohl and
Kushwaha 1994). In this method, volumes determined through a field survey in the
last phase are weighted according to estimated strata sizes.

Double sampling is a commonly applied form of multiphase sampling, limited to
two phases. Several authors reported this sampling method to be very efficient in
terms of cost and precision of the estimate when applied in either temperate or
tropical forests (Bickford et al. 1963; Hutchinson 1978; Temu 1981; Temu and
Phillip 1981). More complex designs such as three and four stage methods have also
been applied (Kohl and Kushwaha 1994).

There are two broad categories of sample plots, namely, permanent and tempo-
rary sample plots. The selection of type of sample plots to be adopted in forest
inventory depending on the objectives of the inventory and the type of vegetation.
Permanent sample plots are used when it involves measuring changes over a number
of years, for example, measurement of changes in tree diameter growth, biomass,
and carbon stocks in natural forests, in forest plantations, and in agroforestry
settings. In temporary sample plots, measurements are made and the field data
required for a given year. Suratman et al. (2004) and Asari et al. (2017) used
temporary sample plots by establishing circular fixed plots based on the systematic
sampling system with a random start (Fig. 2) to study the stand volume of rubber
plantations and carbon stocks of oil palm plantations in Selangor, Malaysia, respec-
tively. The values of radius of the circular plot and the distances between plots
depend on the area and densities of the vegetation. Circular plots were established in
each stand and the mean for stand variables was computed and used to represent the
entire stand.

As seen from the review presented in this section, many sampling techniques
have been applied in the inventory of natural resources. It is also possible to combine
those techniques, creating more complex sampling designs. However, if a simpler
technique will achieve the inventory objectives, it should be used in place of a more
complex design. Multilevel sampling techniques have many applications and may
become more efficient with the introduction of higher-resolution satellite and air-
borne imagery.
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Fig. 2 Circular fixed plots in systematic sampling design; r represents the radius of the circular
plot, d is the distance between circular plots and a and b are the random starting points (Asari 2017)

3 Tree Crop Inventory and Assessments

Considering its essential role in good forest management, tree crop assessment rarely
receives the priority it deserves. For example, in the forest resource assessment
(FRA) programme of the FAO, data on tree crops are not systematically recorded
despite the fact that they have been identified as an essential element of sustainable
forest management (FAO 1995). Reviews of inventory work in Kenya and India
described below provide some insights on the assessment of specific tree crops in
tropical areas.

In an agroforestry woody biomass survey in Kenya, Holmgren et al. (1994) used a
two-phase sampling method. The first phase consisted of aerial photographs and the
second was field measurements in a subsample of the photos. The survey, which
covered 10 million ha where 80% of the country’s population lives, revealed a rapid
increase in planted woody biomass between 1986 and 1992. The average standing
volume on farms was estimated to be 16.4 m3/ha, of which 25% was planted and the
remainder was natural woodland, including riverside areas. When calculated by
district, the average standing volume of woody material outside of forests was
estimated to be 4.7–36.2 m3/ha. This study challenged some of the pessimistic
opinions on land-use development and a fuel wood gap. Holmgren et al. also
found that land degradation was not directly related to rapid population growth
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and that Kenyan farmers seem to be applying wise and sustainable management
practices on their holdings.

In India, two-stage stratified sampling was adopted for the inventory of trees
outside of forests in 1992. The sampling unit in the first stage was a district, and the
second stage was the village. The study was conducted by the Forest Survey of India
with the purpose of assessing the extent of different tree crop components
established by different agencies. Planted trees were classified into eight categories:
farm forestry, village woodlot, block plantation, road, pond, rail, and canal side
plantations and others. Standing trees in selected villages were enumerated and
compilation and data processing was done at the district level. The inventory was
completed for the State of Haryana in 1997. The total non-forest area and standing
volume was estimated to be 4.4 million ha and 10.3 million m3, respectively. The
study revealed that farm forestry contributes about 41% of the estimated total
standing volume of wood in non-forest areas, followed by village woodlot (23%),
roadside plantations (13%), and block plantations (11%) (FSI 1997).

4 Developments in Remote Sensing Technologies

Remote sensing has been used for many decades. An early practical application was
aerial reconnaissance during the First World War. For example, aerial photography
allowed the positions of the opposing armies to be monitored over wide areas more
safely than a ground-based survey (USGS 2000). Aerial photographs also allowed
for rapid and relatively accurate updates of military maps and strategic positions.
Today, remote sensing is heavily utilised in environmental management. In compar-
ison with traditional aerial photography, medium-resolution satellite imagery has the
following advantages: (1) the frequency of data collection, (2) global availability of
remote sensing data, (3) data being suitable for digital analysis and classification, and
(4) data being gathered at relatively low cost (Wilkie and Finn 1996).

Remote sensing also has many advantages over ground-based surveys in that
large land areas can be surveyed at one time, and areas of land or sea can be included
that are otherwise inaccessible (Keiner and Yah 1998; Guidon and Edmonds 2002).
The advent of satellite technology and multispectral sensors has further enhanced
this capability, with the ability to capture images of very large areas of land in one
pass, and by collecting environmental data that normally would not be visible to the
human eye (Kushwaha 1987). Remote sensing can reduce cost and improve effi-
ciency of forest inventories if remotely sensed data are well correlated with impor-
tant field measurements, are available when needed in the sampling design
(Czaplewski 1999), and cover large areas (Lindgren 1985).

On the other hand, remote sensing has limitations that prevent it from totally
replacing ground-based survey methods. These are partly related to spatial, spectral,
and temporal resolutions of the various sensors. Also, there are problems with the
all-weather capabilities (see Table 1), data analysis, and data interpretations. Also,
not all important information is related to the electromagnetic spectrum. In this
respect, remotely sensed data should be considered as a complementary source of
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Table 1 Characteristics of selected remote sensing sensor systems

Spatial Temporal Status as of Potential
resolution resolution August 2014 uses

Landsat TM 30 m 185 × 185 km 16 days End of
operation

Mapping
Stratification

Landsat
ETM+a

30 m 185 × 185 km 16 days Operational Mapping
Stratification

SPOT 1–5b 2.5–20 m 60 × 60 km 3–5 days 1, 3—end of
operation
2, 4, 5—
operational

Mapping
Stratification

MODISc 250–1000 m 2330 × 10 km 1–2 days Operational Mapping
Stratification

AVHRRd 1000 m 2400 × 6400
km

1 day Operational Mapping
Stratification

IKONOSe 1–4 m 11 × 11 km 3–5 days Operational Sampling
Mapping
Stratification

QuickBird 0.6–2.4 m 16.5 × 16.5 km 1–3.5 days Operational Sampling
Mapping
Stratification

ASTERf 15–90 m 60 × 60 km 16 days Operational Mapping
Stratification

Hyperion 30 m 7.5 × 100 km 16 days Operational Mapping
Stratification

ALOS
PALSAR
1, 2g

10 m 70 km 2 days 1—end of
operation
2—
operational

Mapping
Stratification

Notes
aLandsat Enhanced Thematic Mapper Plus
bSatellite Pour l’Observation de la Terre or Earth-Observing Satellites
cModerate-Resolution Imaging Spectroradiometer
dAdvanced Very High Resolution Radiometer
eIkon Observing Satellite
fAdvanced Spaceborne Thermal Emission and Reflection Radiometer
gAdvanced Land Observing Satellite-Phased Array L-band Synthetic Aperture Radar
Source: Lillesand and Kiefer (2000)

information, rather than a substitute for ground-based data gathering. However, the
insight that it provides into the environmental status and processes is valuable.

Aerial photographs have been used routinely in forestry since the 1950s and have
played a key role in forest mapping and inventory systems up to the present (Aldrich
1979; Leckie and Gillis 1995). Today, other remote sensing technologies have
improved capability and resolution and are conducted using satellites or aircraft
platforms and a variety of sensors.

The pixel sizes of selected operational sensor systems are compared in Fig. 3. The
first earth resource technology satellite (ERTS-1 or Landsat 1), with an MSS, was
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Fig. 3 Illustration of various sensor systems with respect to their spatial resolution (redrawn and
from Kätsch and Vogt 1999 (revised))

launched in 1972 and had a resolution of 79 × 79 m with four spectral bands. Ten
years later, it was improved with the addition of Landsat TM imagery. Landsat TM
on Landsat 4 improved the resolution to 30 m and covered a wide range of the
electromagnetic spectrum with seven bands, including thermal band and two
mid-infrared bands. Together, Landsat series permit a retrospective image interpre-
tation possible back to 1972 (IUFRO 1994).

The SPOT satellite was launched in 1986 and has a 20 m spatial resolution for
multispectral and 10 m for panchromatic modes. SPOT with panchromatic, visible,
and near-infrared bands is useful for vegetation studies including health assessments.
By 1995, images with 5.8 m resolution were available from the IRS satellite
(Lillesand and Kiefer 2000).

Canada’s RADARSAT, which was launched in 1995, represents an operational
spaceborne active sensor technology (Table 2). In this system, the target area on the
ground is scanned by microwave radiation. The reflected and back-scattered radia-
tion then provides information about the surface, sub-surface, physical, and dielec-
tric properties (Leckie 1998). Microwave sensors have the highly advantageous
properties of operating independently of sun illumination and are usually insensitive
to weather conditions or cloud cover. These characteristics are particularly suitable
to monitoring phenomena in the tropic regions (Thompson et al. 1993; Toan 1995;
Salas et al. 2002), although the full capability of radar has yet to be exploited (Leckie
1998).

The first commercial imaging satellite (IKONOS) was launched in September
1999 from the Vandenberg Air Force Base, California. This satellite provides 1-m
resolution panchromatic images and 4-m multispectral images (Lidov 1999). Test
images from IKONOS prove the superior quality of the new system (Baltsavias et al.
2001). Many of the newly launched sensor systems feature high spatial geometric
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Table 2 A selection of various previous and currently operational sensor platforms

Year of Type of Spatial Stereo
launch sensor resolution (m) capability

RADARSAT Canada 1995 SARa 28 × 25
10 × 9

SUNSATb South Africa 1999 MSS 15 Yes

QuickBird USA 2001 PANc/
MSS

0.6/2.44

IKONOS 2 USA 1999 PAN/MSS 1.0/4.0 Yes

SPOT 4 France 1998 PAN/MSS 10/20 Yes

SPOT 5 France 2002 PAN/MSS 2.5/5/10 Yes

Landsat TM
7

USA 1999 PAN/MSS 15/30–60

Notes
aSynthetic aperture radar
bThe sensor has not been active since 2001 due to technical problems
cPanchromatic
Source: Kätsch and Vogt (1999) (revised)

resolutions in combination with stereo capabilities such as SUNSAT, IKONOS,
SPOT 4, and SPOT 5 (Table 2). These characteristics will make images suitable for
the application of traditional photogrammetric techniques to extract altimetric infor-
mation, such as a digital elevation model (DEM). Evaluations using IKONOS
images are still on-going for studying different topographic terrain and applications;
however, recent results in mountainous areas are promising for small area mapping
(Toutin and Cheng 2000).

Besides providing with necessary data and information on forest, the latest series
of satellite platform also improvise to enhance the accuracies and techniques
obtained as compared to the traditional approach. Recently, the new generation of
platform shows more advanced sensors. The advancement includes enhancing the
prediction of forest biomass, canopy height, and leaf area (Faridah-Hanum et al.
2014). Hyperion, Geoscience Laser Altimeter System (GLAS), GeoEye, and Pan-
chromatic Remote Sensing Instrument for Stereo Mapping (PRISM) are examples of
the recent very high-resolution (VHR) remote sensing.

Characterising ground parameters under the cloud cover obstacles is the applica-
tion advantage of radar-imagery option. The synthetic aperture radar (SAR) systems
include Phased Array type L-band Synthetic Aperture Radar (PALSAR), Advanced
Synthetic Aperture Radar (ASAR), RADARSAT-1, RADARSAT-2, Japanese Earth
Resources Satellite (JERS-1), European Remote Sensing Satellite (ERS-1), and
Spaceborne Imaging Radar (SIR-C) (Marco and Kuenzer 2020). The ability of
satellite imagery by remotely sensed data to appoint significant issues in forestry
has generated strong interests from researchers for a long time. Previous studies also
address unique aspects in the advancement of remote sensing of forestry function
and traits, which can be grouped into two themes: (1) remote sensing-based estima-
tion and monitoring of plant traits and (2) linking of forest to function and integration
into models.
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QuickBird is now the highest-resolution commercial remote sensing satellite
offering imagery with 60 cm resolution. QuickBird was launched in October 2001
and collects multispectral and panchromatic imagery simultaneously with 16.5 ×
16.5 km swath width at nadir (Euroimage 2002). SPOT 5 was launched from the
Guiana Space Centre in Kourou, French Guiana, in May 2002. It offers enhanced
capabilities compared to SPOT 4 in terms of improved resolution (up to 2.5 m) and
will also be used to create coverage of five continents with digital terrain models.
SPOT 6 and 7 were launched on 6 September 12 and 30 June 2014, respectively.
Both sensors provide continuity of high-resolution, wide-swath data up to 2024 and
carry New Astrosat Optical Modular Instrument (NAOMI) (European Space Agency
2022).

WorldView-1 was the first high-resolution commercial satellite from the World-
View series launched in 2007 with 50 cm resolution. Next in 2009 and 2014,
WorldView-2 and WorldView-3 were launched respectively, equipped with
8-band multispectral bands. Most recently, WorldView-4 was launched in 2016
that consists of 31 cm which provided 31 cm panchromatic imagery and 1.23 m
multispectral imagery. In Sabah, Malaysia, Mohsin et al. (2021) have used
WorldView-2 data to develop predictive model for estimating stand volume of
Eucalyptus plantation species and recorded a multiple coefficient of determination
(R2) value of 0.86.

5 Forestry Applications of Remote Sensing in Developing
Countries

In developing countries, the use of satellite imagery data as a component in resource
inventories and information systems has been reported by many authors
(e.g. Lachowski and Dietrich 1978; Wacharakitti and Morain 1978; Aldrich 1979;
Lal et al. 1990; Bong 1991; Rao et al. 1991). General conclusions were that remote
sensor imagery has proven to be a more authoritative source of data than was
formerly possible. For example, the Philippines government believed that its ever-
green rainforest cover still accounted for 57% of the land base during the early
1970s, but a remote sensing survey carried out by Lachowski and Dietrich (1978) in
1976 revealed that the actual amount was only 38%. In this survey, the authors used
Landsat imagery with support from ground data and considered that the methodol-
ogy was sufficiently comprehensive for the results to be characterised as accurate
within 95% accuracy. A similar example occurred in the early 1970s in Thailand,
where the government believed that 48% of the country was under forest cover,
largely monsoon deciduous forest. A 1978 Landsat survey revealed that the actual
cover amounted to only 25% (Wacharakitti and Morain 1978). In India, the Depart-
ment of Forestry estimated 23% of land area as forested, but a Landsat survey
estimated the amount as less than 10% (Lal et al. 1990).

Inspired by the revealing results reported for the Philippines and Thailand, and
motivated by growing evidence of forest depletion in their countries, a good number
of other tropical countries have undertaken remote sensing surveys of their tropical
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forest cover. In many different countries remote sensing revealed that forest cover
was in fact less—often a good deal less—than was previously thought (Malingreau
1986).

Today, many developing countries are involved in the systematic monitoring of
renewable resources. Given constraints of time, money, and skilled manpower,
countries must evaluate effective methods to obtain reliable and timely resource
data. Traditional ground methods are time-consuming and expensive for regional or
national resource inventory programmes. Remote sensing from aircraft and satellites
has gained worldwide recognition as an efficient method to provide resource infor-
mation that is often technically and economically feasible compared to ground
methods (FAO 1996).

In Malaysia, aerial photography has been used effectively for several decades.
The first complete coverage was obtained in 1967 at a 1:25,000 scale with black-and-
white panchromatic film (Kamaruzaman and Mohd Rasol 1995). Landsat MSS and
TM data have been used for land-use surveys and the results have shown that it is
possible to map various natural land-cover types and man-made features, including
terrain change, forest areas, soil types, dams, and urban areas (Salleh 1976;
Mahmood et al. 1983). However, the resolution of the MSS was found to be
unsuitable for mapping Malaysian agricultural land utilisation due to small farm
sizes and irregular cropping patterns (Darus 1989). Another study conducted by the
ASEAN Institute of Forest Management (AIFM) in 1989 showed that Landsat TM
imagery could be used to detect and classify forest disturbances and provide data to
update forest resource maps through the integration of remote sensing and a geo-
graphic information system (GIS) (Zahriah et al. 1989). Landsat TM has been used
to detect deforestation and to identify suitable areas for tourism-related development
in Langkawi Island, Malaysia (Kamaruzaman and Mohd Rasol 1995; Kamaruzaman
and Hasssan 1996). Another study was conducted by Kamaruzaman and D’Souza
(1996) to determine the applicability of SPOT-HRV in the State of Pahang,
Malaysia, for detecting logging activities. It was shown that physical features and
forest disturbances could be detected by this image.

In Malaysia, the Forestry Department Peninsular Malaysia (FDPM) has begun the
application of remote sensing and GIS for forest monitoring since 1986, however
mostly focusing on the case studies at specific area. According to Hwai (2006),
satellite imagery was used to help stratify the forest in the third National Forest
Inventory (NFI) (1990–1992) with close help from the Malaysian Centre of Remote
Sensing (MACRES). In the fourth NFI (2000–2002), satellite imagery was further
used to map the forested areas. In 1998 onwards, the application of remote sensing
imagery was continuously used to determine forest change, forest encroachment and
illegal loggings, but at a less real time. With the more advanced technologies
developed, the more real time imagery was used from 2006 onwards at which the
forest boundaries were corrected using hyperspatial resolution. Meanwhile, the
hyperspectral imageries were used at experimental stage to identify tree species
and estimate time volume (Hwai 2006).

In 2004, Suratman et al. conducted a study to investigate the relationships
between Landsat TM and rubber stand parameters and to develop and evaluate
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models for estimating stand volume of rubber plantations. They found statistically
significant models for estimating volume of rubber stands with the R2 values being
all higher than 0.70 and standard error of the estimate (SEE) values being lower than
54 m3/ha. In oil palm above-ground biomass (AGB) modelling study conducted by
Asari et al. (2017) in Malaysia, they found a non-linear negative trend between AGB
and all individual TM bands. Moderate relationships were recorded for AGB and
bands 1, 4 and 5 with r values ranging from -0.33 to -0.42. Meanwhile in Kedah,
Malaysia, Tengku Hashim et al. (2020) used Landsat 8 (OLI) data to estimate the
carbon stocks in mangroves. They found a positive correlation between field-
measured carbon stocks with Landsat 8 individual bands (bands 2–7). The total
carbon stocks were estimated to range from 16.88 Mg/ha to 138.20 Mg/ha with an
overall mean of 67.29 Mg/ha.

In India, the use of remote sensing goes back over 30 years. The first aerial
photographs for forestry purposes were acquired in 1963. Applications of satellite
imagery in forestry date back to 1975. The first attempt to assess forest cover in India
by satellite imagery interpretation was made in 1984–1985 by the National Remote
Sensing Agency (NRSA 1983). This exercise was done visually and resulted in an
estimate of the forest cover for the country of 0.64 million km2, or 19.5% of the
geographical area, in contrast to the previously recorded figure of 22.8% (Rao et al.
1991). The years between 1980 and 1990 were dominated by satellite remote sensing
for forest resource assessment, monitoring, wildlife habitat evaluation, and fire
damage assessment (Kushwaha 1987). Subsequently, vegetation cover and forest
type mapping were done by the Forest Survey of India that involved preparing forest
cover maps of 1:250,000 for the entire country, to be repeated every 2 years for
monitoring (Kohl and Kushwaha 1994). This project revealed that non-forest areas
could generally be mapped with an accuracy of 80–95% in flat undulating areas if the
trees were in full foliage. Currently, approximately 70% of India has been covered
on a thematic map (FAO 1998).

A FAO/UNDP project helped Myanmar assess forest resources with the use of
satellite data from a 1970 Landsat image. This project, which was conducted from
1981 to 1991, provided reliable information on forest resources for about 90% of the
area. Since 1991, the country has been conducting field forest inventories every year,
covering 2 million ha using remote sensing and GIS technologies (FAO 1998).

In Sri Lanka, forest cover assessment maps using Landsat imagery were produced
in 1991–1992. Indicative inventories of non-forest land and detailed periodic
inventories of plantations were carried out for assessing resources. A forest resource
assessment was done using 1:20,000 aerial photographs for natural forests and 1:
10,000 and 1:20,000 for plantations (FAO 1998).

From 1995 to 1997, the Forest Department of Bangladesh completed an
inventory programme in hill and coastal forest areas, with the assistance from an
international development agency. This was a unique inventory in the sense that a
socio-economic survey was also conducted along with the forest inventory to
understand the behavioural pattern of the users. Forest statistics were generated
with continuous resource change assessments. SPOT-HRV data were used to gener-
ate signatures of different types of forest vegetation (FAO 1998).
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In some parts of the world, the conversion of mangrove forest into other types of
land use (e.g. residential areas, airports, agricultural lands, fishponds, etc.) takes
place continuously (Hartono 1994). Satellite imagery data have been used for
various mangrove forest analyses and monitoring in many parts of the tropical
world. For example, in Bangladesh, computer-processed Landsat data, with addi-
tional data from 1:30,000 aerial photographs, permitted two mangrove species to be
distinguished with 71% classification accuracy (Heller and Ulliman 1983). SPOT-
HRV satellite data have been used for more than 10 years in a mangrove forest
analysis. For mapping purposes, SPOT-HRV images have been used in Vietnam
(Bong 1991) and in Guinea (Moreau and Vercesi 1989). Monitoring of mangroves
has been performed with SPOT-HRV and aerial photographs in East Java (Hartono
and Muljosukojo 1990). More recently, SPOT-HRV satellite data were used for
mangrove inventory in Cimanuk Delta, West Java, by Hartono (1994). Based on a
combination of image analyses, five classes of mangrove vegetation were identified:
(1) Lumnitzera spp. (2) Avicennia spp. (3) Rhizophora spp. (4) mixed floristries, and
(5) degraded mangrove. In this study, a confusion matrix analysis was performed
and an overall 94% classification accuracy was achieved. In other parts of the image,
rice fields, villages, home state gardens, rivers, creeks, and irrigation channels were
identified.

In Thailand, Landsat MSS images were used in the form of 1:1,000,000
diazochrome additive-colour composites and 1:500,000 black-and-white images of
bands 4, 5, and 7 and of bands 5 and 7. Together with additional information from
the field and from aerial photographs, maps made from the Landsat images were
used to determine the total forest cover. Comparing this information with forest
cover data either from aerial photographs or Landsat imageries with earlier dates
permitted a rough calculation of the reduction of the forest cover over large areas, at
a relatively low cost (Morain and Klankamsoon 1978). Miller et al. (1978) utilised
Landsat imagery covering the years 1972 through 1977 for determining the expan-
sion of shifting cultivation in northeastern Thailand. Additional information from 1:
20,000 to 1:60,000 aerial photographs on shifting cultivation, irrigated rice, hill
evergreen forest, and other forest types grouped together was also incorporated.
Mapping of the different values of MSS band 7, displayed by assigning grey levels to
various levels of difference in tone (scene brightness), permitted detection of shifting
cultivation at 1-year intervals. The difference in maps of MSS band 5 was in
showing where permanent agriculture was encroaching on the forest.

In Tanzania, remote sensing technology has been applied in the production of
forest cover maps and inventories of plantations and natural forests. For example,
Sylvander et al. (1988) successfully utilised satellite imagery for delineation of
vegetation types in Eastern Tanzania using Landsat MSS false composites at a
scale of 1:250,000. Double sampling with aerial photographs for estimating the
volume of Miombo woodlands was done by Temu (1981). He found that the method
was effective, especially for the areas where access was poor.

This review shows that forest inventories and monitoring work in developing
countries makes extensive use of remote sensing data. Area information on forest
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types from satellite data mapping has generally been successful, but identification of
species has been difficult.

6 Relationship Between Forest Parameters and Remote
Sensing Data

Information about forest conditions is essential for forest management planning.
Forest management activities require reliable forecasts of the development of all
constituent stands in the area being managed. Strategic decisions concerning forest
policies to achieve management objectives require accurate information, including
stand growth forecasts. In the last decade, many studies have shown that spectral
radiance recorded by satellite remote sensing can be related to several forest
parameters. Forest inventory studies have found that many tree and stand variables,
such as wood volume, biomass, basal area, diameter, and stand age, show strong
inverse relationships with red, near-, and mid-infrared bands from Landsat TM and
red and near-infrared bands from SPOT (e.g. Horler and Ahern 1986; Danson 1987;
Poso et al. 1987; Ripple et al. 1991; Ardö 1992; Brockhaus and Khorram 1992;
Nilsson 1997; Suratman et al. 2002, 2004; Asari et al. 2017; Tengku Hashim et al.
2020; Mohsin et al. 2021). Ripple et al. (1991) argued that this was because the
understory has a highly reflective shrub and herb layer. Young stands with lower
wood volumes have higher radiance in all TM and HRV bands than older stands
which have more shadows, thus causing the strong inverse relationships. Table 3
summarises the correlation coefficients (r) between some forest variables and
Landsat TM and SPOT-HRV spectral data from various sources.

Studies using the near-infrared band of SPOT and the near- and mid-infrared
bands of Landsat TM in Douglas-fir (Pseudotsuga menziesii) forests in Oregon have
found reflectance and wood volume-related parameters to be well-correlated when
using data averaged at the forest-stand scale with correlation values as high as-0.89
(Ripple et al. 1991). Studies that have not involved spatial averaging of data beyond
the pixel scale produce relationships between reflectance and wood volume that have
much lower r values, especially at higher wood volumes (Franklin 1986; Danson
1987). For example, Franklin (1986) presented a study, which included basal areas
exceeding 100 m2/ha, that showed a relationship between Landsat reflectance and
wood volume with correlation values between -0.38 and -0.54.

Image classification commonly uses statistical techniques to group pixels into
various predefined classes, such as land-cover types, land-use classes, and vegetation
types (e.g. Bolstad and Lillesand 1992; Brockhaus and Khorram 1992;
Kamaruzaman and Mohd Rasol 1995; Suratman and Ahmad 2012). According to
Leckie (1990), a discriminant analysis based on Bayesian maximum likelihood is the
most common algorithm used for classification analysis. In addition, he stated that
ancillary data describing soil type, slope, and previous management operations, for
example, are important for improving the classification accuracy.

The ability of remotely sensed data to provide information on forest variables
such as wood volume, tree height, tree diameter, and tree species composition has
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Table 3 Correlation coefficients between forest variables and Landsat TM and SPOT-HRV
spectral data

Spectral
bands Band

Spectral
range (μm)

Volume
(m3/ha)a

Basal area
(m2/ha)b

Age
(years)

Height
(m)

TM band
1

Blue 0.45–0.52 -0.61 -0.27 -0.35b -0.44c

TM band
2

Green 0.52–0.60 -0.72 -0.42 -0.54b -0.56c

TM band
3

Red 0.63–0.69 -0.69 -0.47 -0.53b -0.48c

TM band
4

Near-
infrared

0.76–0.90 -0.76 -0.47 -0.45b -0.54c

TM band
5

Mid-
infrared

1.55–1.75 -0.63 -0.43 -0.62b -0.62c

TM band
7

Mid-
infrared

2.08–2.35 -0.55 -0.48 -0.59b -0.53c

HRV
band 1

Green 0.50–0.59 -0.77 -0.18 -0.67d -0.18d

HRV
band 2

Red 0.61–0.68 -0.63 -0.35 -0.40d -0.35d

HRV
band 3

Near-
infrared

0.79–0.89 -0.82 -0.41 -0.42d -0.41d

Sources
aRipple et al. (1991)
bBrockhaus and Khorram (1992)
cNilsson (1997)
dDanson (1987)

been reported by numerous researchers (e.g. Horler and Ahern 1986; Danson 1987;
Poso et al. 1987; Ripple et al. 1991; Ardö 1992; Brockhaus and Khorram 1992;
Asari et al. 2017; Mohsin et al. 2021). Regression functions are often used to relate
these variables to the satellite data (e.g. Franklin 1986; Ahern et al. 1991; Ripple
et al. 1991; Ardö 1992; Brockhaus and Khorram 1992; Trotter et al. 1997; Suratman
et al. 2004). This requires that the correlation between the variables and the satellite
data be sufficiently strong. The regression models used in many studies relate
different stand variables to functions of spectral band, band products, band ratios,
and band transformations (Jakubauskas and Price 1997; Scheer et al. 1997; Asari
et al. 2017; Tengku Hashim et al. 2020; Mohsin et al. 2021).

A study conducted in the boreal forest by Ardö (1992) showed that field plots
established for forest planning in Sweden could be used to construct regression
models that predict wood volume. The correlation value between the observed and
the estimated volume was 0.83 and the standard error of estimate was 46.5 m3/ha.
Ardö concluded that there was a stronger relationship between spectral radiance and
volume for compartments with small volumes than for compartments with large
volumes. This agrees with Franklin (1986), who suggested that when the vegetation
cover approaches 100%, the basal area continues to increase as the stand grows
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older. However, the remotely sensed signal is not affected by the increase because it
is most sensitive to the degree of crown closure.

An alternative to regression technique is the k nearest neighbour (kNN) estima-
tion method, in which forest variables are calculated as weighted means of spectrally
nearby samples (Muinonen and Tokola 1990; Tomppo 1990). The method has been
used operationally in the Finnish National Forest Inventory (NFI) since 1990.
According to Tomppo (1990), among the advantages of this estimation method is
that a vector consisting of all variables that are measured or registered in the NFI can
be estimated. However, lack of or a low number of sample plots in certain forest
types might lead to unreliable estimates (Moeur 1987). kNN estimates are unreliable
at a pixel level, but reliable when aggregated to a community level (Tomppo 1990).
For example, a study by Tokola et al. (1996) in the south of Finland with primary
species of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch
(Betula spp.) found that the standard error of estimates for wood volume on a pixel
level was approximately 68–77 m3/ha.

7 Summary

It is essential to gain information about forest condition via forest inventory to
achieve an effective planning and management of forest resources. A reliable
forecast is required in managing forest activities from all the managed stands. This
accurate information is vital to strategise decision related to forest policies in order to
achieve the management objectives. This review summarises sampling techniques
and the development of remote sensing and gave examples of remote sensing
forestry applications in the tropics. It shows that remote sensing has evolved through
black-and-white aerial photography into a complex process, using satellites, thermal
scanning, and radar. In terms of applications, it has evolved from the realm of pure
research to that of worldwide day-to-day application. Many previous studies have
reported that several forest parameters can be related to satellite imageries from
spectral radiance recorded by remotely sensed data. As the need for more and better
information arises, new sensor systems are being developed from time to time and
put into orbit.
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Multiple Sensors and Platforms
for Biophysical and Biochemical
Characterisations of Various Ecosystem
Types of Tropical Forests in Malaysia:
Advance, Limitation, and Opportunity

Hamdan Omar

Abstract

Malaysia with a landmass of about 32.9 million ha has about 18.2 million ha of
forest cover. This covers three major types of forest ecosystems, which are
tropical inland, peat swamp, and mangrove forests with the extents of about
16.94, 0.67, and 0.63 million ha, respectively. Malaysia pledged to the world
that it will maintain is forest cover by 50%. These forests house thousands of flora
and fauna species and Malaysia is known as the top 12 megadiversity country in
the world. Sustainable forest management (SFM) is being the pillar for the
management of forest resources that balance between protection, conservation,
production, and consumption of resources and forest products in Malaysia.
Various technologies are used as tools in the management as well as research
and development (R&D) in forestry sector to ensure that these resources are
sustained. Remote sensing is one of the famous technologies that is utilised to
understand and characterise the biophysical and biochemical properties of forests
in Malaysia at varying scales and spatial, radiometric, and temporal resolutions.
This technology is also adopted in tailoring management prescriptions as well as a
tool for monitoring and enforcement. This chapter highlights recent
advancements in remote sensing methodology and applications in the perspective
of multiple platform types including spaceborne, airborne, and unmanned aerial
vehicle (UAV) and sensor types, i.e. optical (multispectral and hyperspectral),
synthetic aperture radar (SAR), and light detection and ranging (LiDAR). This
chapter also identifies advances and limitations of the applied methodology and
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opportunities for future improvements in remote sensing technology applications
in the forestry sector in Malaysia.

Keywords

Remote sensing · Forestry · Biophysical and biochemical · Malaysia

1 Introduction

Malaysia has roughly 18.2 million ha of forest cover, with a landmass of about 32.9
million ha. This includes three primary forest ecosystems: tropical inland diptero-
carp, peat swamp, and mangrove forests, which span approximately 16.94, 0.67, and
0.63 million ha, respectively. Malaysia has promised the world that it will maintain a
50% forest cover. The Malaysian tropical rainforest is one of the world’s most
complicated ecosystems. It has one-of-a-kind natural heritage, which includes a
diverse range of plant and animal species that have evolved over millions of years.
Malaysia’s flora is estimated to contain at least 8000 kinds of flowering plants, with
roughly 2500 of these being tree species. As a result, depending on edaphic
conditions, drainage, and height, there are many diverse rainforest formations.

Lowland dipterocarp forest, hill dipterocarp forest, upper hill dipterocarp forest,
oak-laurel forest, montane ericaceous forest, peat swamp forest, and mangrove forest
are the major forest types in Malaysia. Smaller sections of freshwater swamp forest,
melaleuca forest, heath forest, limestone forest, and quartz ridge forest are also
present. Considering the composition of these forests in Malaysia, the types can be
generalised into three types, which are inland, peat swamp, and mangroves.

In Malaysia, sustainable forest management (SFM) is the pillar for forest resource
management that strikes a balance between resource protection, conservation, pro-
duction, and consumption. To guarantee that these resources are sustained, many
technologies are utilised as management and research and development (R&D)
instruments in the forestry sector. Remote sensing is a well-known technique for
determining and characterising the biophysical and biochemical aspects of
Malaysian forests at various sizes and geographical, radiometric, and temporal
resolutions. This technology is also used to customise management prescriptions
and as a monitoring and enforcement tool.

Remote sensing has made it possible to monitor forest characteristics consistently
and repeatedly in qualitative and quantitative ways. Such data collection and
reporting are a significant factor that assists in research and development processes.
It also makes it easier to integrate forestry with other agencies. Nowadays, remote
sensing is applied in different areas of forest management.

It is also desirable to use remote sensing data to monitor forests consistently and
repeatedly over large areas, and automated image analysis techniques. Several types
of remote sensing data, including optical multispectral scanner, synthetic aperture
radar (SAR), light detection and ranging (LiDAR), aerial photography, and
unmanned aerial vehicle (UAV) data, have been used by forest research and
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operational agencies to detect, identify, classify, evaluate, and measure various
forest cover types and their changes. Over the past decades tremendous progress
has been made in demonstrating the potentials and limitations of the applications of
remote sensing in forestry.

In both qualitative and quantitative methods, remote sensing can detect, identify,
classify, evaluate, and measure many forest properties. Forest cover types can be
classified qualitatively as coniferous and deciduous forest, mangrove forest, marsh
forest, forest plantations, and so on using remote sensing. Quantitative analysis can
quantify or estimate forest metrics such as density, height, basal area, number of
trees per unit area, timber volume, and woody biomass, as well as floristic composi-
tion, life forms, and structure. Users of forest data are looking for new sensors and
platforms for a variety of remote sensing applications in forestry in certain locations
of the world, such as tropical areas. An inventory of all remote sensing applications
in the forestry sector in Malaysia is required to determine what kind of information
we can extract from current remote sensing sensors and platforms, as well as how
accurate that information is.

This chapter highlights recent advancements in remote sensing methodology and
applications in the perspective of multiple platform types including spaceborne,
airborne, and UAV, and sensor types, i.e. optical (multispectral and hyperspectral),
SAR, and LiDAR. This chapter also identifies limitations of applied methodology
and opportunities for future improvements in remote sensing technology
applications in the forestry sector in Malaysia.

2 Remote Sensing as Tool for Forest Mapping and Inventory

Forestry was one of the first disciplines in Malaysia to identify the importance of
remote sensing in acquiring timely and accurate data, which is critical for long-term
forest management and tracking trends in forest land use (Kamaruzaman and Souza
1997). Among the first attempts that were made to use remote sensing data in
forestry are Thang (1983), Thang et al. (1987), and Wan Yusoff (1988). But that
time, the applications were concentrated only on classification methods for forest
cover mapping. In the case of forest inventories and practices, the role of remote
sensing technology has grown significantly because it can provide enhanced infor-
mation directly or indirectly, as well as collect forest resource information with high
spatial accuracy, allowing tactical, strategic, and operational forest planning and
management. Since the early 1990s optical remote sensing has been widely used also
for forest inventory parameter assessment (Wulder 1998). Government agencies in
Malaysia, such as the Forestry Department of Peninsular Malaysia (FDPM), have
been using remote sensing technology for nearly two decades to plan, manage, and
monitor their forest areas (Wan Abd Rahman 2016).

Factors to consider when selecting remote sensing products include spatial
resolution, spectral resolution, radiometric resolution, and temporal resolution. Spa-
tial resolution refers to the size of the smallest object that can be detected on an
image. There are also some common considerations that need to be taken into
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Fig. 1 Common
considerations in forest
assessment using remote
sensing

Fig. 2 The trade-offs
between cost and accuracy of
using remotely sensed data in
assessing forests

account when using remote sensing in various applications in forestry. The most
common are cost of data acquisition, scale of the studied areas, attainable accuracies,
time to process the data, and the rapidity and replicability of the end products
(Fig. 1).

Depending on the objectives of the studies, remote sensing offers some trade-offs
between cost and accuracy. It is often that the higher the resolution of the data, the
higher the cost. And this can be directly related to the scale or size of the study area.
Figure 2 illustrates how cost and accuracy are related to each other and how these
factors can influence the selection of remotely sensed data in specific study area with
justified objectives.

There are several studies that used remote sensing data for forest mapping and
inventory in Malaysia. Mohd Najib and Kanniah (2019) employed the Carnegie
Landsat Analysis System-Lite (CLASlite) algorithm to determine forest cover using
Landsat satellite data in Peninsular Malaysia. The goal of this project was to create a
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map of forest cover in Peninsular Malaysia. The study’s findings reveal that the
CLASlite algorithm incorrectly identified some oil palm, rubber, and urban areas as
forest vegetation. By integrating Landsat and Advance Land Observation Satellite,
Phased-Array type L-Band Synthetic Aperture Radar (ALOS PALSAR) images to
detect oil palm, rubber, and urban areas and then eliminating them, a valid forest
cover map was created. The ALOS PALSAR (threshold technique) data on
horizontal-horizontal (HH) and horizontal-vertical (HV) polarisations could detect
oil palm plantations with an overall accuracy of 85%. With an overall classification
accuracy of 94.5%, these techniques generated a forest cover reading of
5,914,421 ha.

Landsat missions have been producing a consistent dataset over Malaysia regions
since year 1978 (Fig. 3). It is the only satellite that can provide historical data on
forest cover and other land uses. Hamdan et al. (2021) utilised Landsat-5 Thematic
Mapper ™ and Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8-
Operational Land Imaging (OLI) to map the forest cover and changes from 2005
to 2020. The study found that forest cover in Malaysia has declined from about
19.3 million ha (in 2005) to 18.2 million ha in year 2020 (Table 1). The study found
that the deforestation from 2005 to 2020 amounted to the loss of 1,087,030 ha
(5.6%) of its year 2005 forest cover, with the annual rate of deforestation at 0.37%
year-1.

Hamdan et al. (2020a) also conducted a study to map mangroves at national level
using Landsat-8 OLI data. To create a mosaic that covers the entirety of Malaysia, at
least 29 scenes of Landsat images are required. However, due to its location in the
tropics, Malaysia is constantly shrouded in clouds that are very impossible to remove
completely. To produce a cloudless image, many images taken at different times
over the same spot are required. For further processing, the study has set a restriction
of five top photographs of the same scenes taken within 3 years of the targeted year.
These photos must have a cloud cover of less than 30% and be taken between the
specified time frames. Even with Landsat’s 16-day repetition cycle, which produces
around 22 scenes over the same coverage in a year, finding the best image is still
challenging. This is owing to the dense cloud cover in Malaysia’s atmosphere,
particularly in hilly areas and during the monsoon season (October to February).
Cloud covers in most settings range from 10 to 90%; thus, the chances of getting a
cloud cover of 30% are slim. To obtain cloud-free images over Malaysia for a
one-time observation, at least 145 scenes of Landsat-8 datasets are required. This
problem was remedied, though, by having many high-quality sequences. The Fmask
method was used to detect and mask the clouds in these images (Fig. 4). About
629,038 ha of mangroves cover in the whole country for the year 2017 was mapped
from this study. The accuracy was verified by using ground truthing points, which
attained at least 85% (Fig. 5).

About similar study was conducted by Kanniah et al. (2015) in Iskandar Malaysia
(IM), the fastest growing national special economic region located in southern Johor,
Malaysia. The Maximum likelihood classification (MLC) was adopted, and the
technique provided significantly higher accuracies compared to the support vector
machine (SVM) technique. The classified satellite images using the MLC technique
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Fig. 3 The Landsat datasets (top) and the produced forest cover map (bottom)

showed that IM lost 6740 ha of mangrove areas from 1989 to 2014. Nevertheless, a
gain of 710 ha of mangroves was observed in this region, resulting in a net loss of
6030 ha. Earlier, a study was conducted within the same study area at the Sungai
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Fig. 4 Cloud masking process and the final product of a scene of Landsat

Pulai RAMSAR site and its surrounding areas. This study was carried out to identify
and map land cover types using SPOT-4 imagery. Through unsupervised classifica-
tion technique a total of seven classes of land cover type were mapped, where the
accuracy was attained at about 90%. Later, vegetation densities were classified into
five levels, namely, very high, high, medium, low, and very low, based on crown
density scale using vegetation indices such as normalized difference vegetation
index (NDVI), advance vegetation index (AVI), and optimized soil adjusted vegeta-
tion index (OSAVI) (Ismail et al. 2011).

Moving to the lesser-known wetland ecosystem type, Melaleuca forest, known as
Gelam forest, a study was conducted to identify its coverage and locality. Hamdan
et al. (2020b) used optical images from Landsat-8 OLI as primary input for this
study. Spectral characteristic from visible and infrared channels was derived from
the images to produce a specific vegetation index, i.e. NDVI, land surface water
index (LSWI) (also known as normalized difference infrared index (NDII)), soil-
adjusted vegetation index (SAVI), and enhanced vegetation index (EVI), which
were used for recognising Melaleuca forest on the images. The study demonstrated
that the Melaleuca forest covered about 23,000 ha in Peninsular Malaysia (Fig. 6). It
also demonstrated that the use of Landsat-8 OLI satellite images was good at
delineating Melaleuca forest. The integration of multispectral bands and VIs has
improved the classification accuracy from 72.3 to 93.7%. Green and near-infrared
(NIR) bands together with soil-adjusted vegetation index (SAVI) were the most
important input for the classification.

3 Remote Sensing for Biomass Carbon Assessment

Remotely sensed data is currently being extensively used for estimating forest
biomass. Satellite-based estimates of carbon stock are likely to become more
accessible over the next few years (Vashum and Jayakumar 2012). Remote sensing
data does not directly determine the quantity of biomass present in the forest. It only
analyses biomass-related factors such as tree height, crown size, forest density, forest
type, forest volume, leaf area index, and so on. The above-ground biomass (AGB) is
estimated using remote sensing data combined with field-based forest
measurements. Field measurements are frequently used to create predictive models



Multiple Sensors and Platforms for Biophysical and. . . 35

Fig. 5 The Landsat datasets (top) and the produced mangroves cover map (bottom)

or allometric equations for biomass and to verify remotely sensed data results. Once
validated, remotely sensed data can be used to estimate forest biomass for a larger
area where field measurement data is few or not existent.

Generally the source of remote sensing data, sensor type, algorithm employed,
processing technique, bioclimatic conditions, and forest types all influence the
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Fig. 6 The Landsat datasets (left) and the produced Melaleuca forest cover map (right)

reliability estimation of AGB using a remote sensing technique. Developing
modelling regression to obtain the best AGB prediction would be a new approach,
especially in terms of comprehending the integration of allometric equations and
remote sensing modelling (Mohd Zaki and Abd Latif 2017). Malaysia with variety
of forests, various stand conditions, and management practices would offer different
challenges in AGB estimations using remote sensing. The users need to be very
selective in the applied methodologies, field survey protocols, allometric equations,
and the sensor type used to quantify AGB in the forests of Malaysia.

Optical and SAR (and the combination of both) systems are utilised widely for
biomass assessment in Malaysia since the last two decades at different scales and
forest types. To some extent where more accurate results are required, high-resolu-
tion images and LiDAR are engaged by adopting various processing techniques. Seo
et al. (2014) estimated the AGB and distribution of tropical forest in a production
forest reserve in Tangkulap Forest Reserve (FR), Sabah, using k-NN method in
combination with field survey data, Landsat TM-5 image spectral bands, and GIS
data. The k-NN method was used to determine the number of reference plots.
Common NDVI with 3 × 3 texture measure was found to be the best indicator for
estimating AGB as compared to the original digital number without filtering.

Another study to estimate AGB was conducted by Langnera et al. (2012) a
Tangkulap and Deramakot FR, Sabah. They identified that the mid-infrared band of
Landsat-8 OLI, which is sensitive to soil components and vegetation moisture
content, was the best at representing the crown cover condition and forest status.
High reflectance values indicate openings in the crown cover. Younger vegetation
and regrowth and characteristic successional land cover types with intermediate
reflectance values can be separated from pristine forests, which show lower



Multiple Sensors and Platforms for Biophysical and. . . 37

reflectance values. Crown cover and forest status (CCFS) index is derived as
the reciprocal of the illumination and atmosphere-corrected reflectance values
(MidIR(b7)corr). A haze correction was done by using the reflectance values of the
blue band. The resulting modified bands (Blue(b1)mod) were finally used to correct
the CCFS index:

CCFScorr =
1

MidIR b7ð Þcorr - 0:3 ×Blue b1ð Þmod

Two models to estimate AGB in the study area were proposed, which are:

Model 1: AGBLandsat = CCFS2corr + CCFScorr
Model 2: AGBLandsat = CCFS2corr

Aster and SPOT satellites were also considered in developing alternative methods
for biomass estimation. A similar study was conducted by Abd Latif et al. (2015) at
Besul FR, Terengganu, to detect the impact of logging operations to the forest loss
using SPOT-5 satellite imagery. The data was used to detect forest canopy loss and
to extract parameters for estimating biomass loss between years 2012 and 2014.
Forest AGB was estimated at 259.1 Mg ha-1 by using original digital number from
individual bands without filtering and 263.4 Mg ha-1 estimated from NDVI. Slightly
lower estimates were produced when 3 × 3 filtering was applied, with the estimated
AGB being 248.1 and 257.3 Mg ha-1 from the individual bands and NDVI,
respectively.

Focusing more on the image-processing method, Tangki and Chappell (2008)
used a total of 50 sampling plots of 0.1 ha to quantify mean tree biomass in different
conditions of forest, i.e. virgin and logged forests at Ulu Segama RF, Sabah. These
data were then correlated with the spectral radiance of individual Landsat-5 TM
bands over the 15 km × 15 km study area. At this scale, a two-parameter linear model
of Landsat TM radiance in the NIR band explained 76% of the variation in biomass.
The differences in mean radiance may be related to a change in the proportion of
emergent tree canopy compared to a cover of either pioneer trees or ginger/shrubs,
according to the local-scale measurements; the canopies of emergent trees have the
lowest NIR radiance of the vegetation characteristic of selectively logged forest.

On the other hand, Minerva et al. (2014) developed a novel Fourier transform
textural ordination (FOTO) method, which involves the combination of 2D fast
Fourier transform (FFT) and ordination through principal component analysis (PCA)
for characterising the structural and textural properties of vegetation. In the context
of tropical forest in Sabah, this research shows the potential of Fourier transform
approaches in estimating different forest types, their stand structure, and biomass
dynamics. The approach was used to record the research area’s very-high-resolution
(VHR) Satellite Pour l’Observation de la Terre (SPOT) imagery. The method was
effective in discriminating between forest types and constructing distinct biomass
estimation models for different forest types. The FOTO approach correctly resolves
high AGB values of diverse forest types, according to the results.
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Table 2 Summary of the correlations between AGB and backscatter of HV polarization

Year Sensor
Prediction
equation R2

Number of
samples (n)

RMSE
(Mg ha-
1)

2010 PALSAR y = 2182.9e0.1442x 0.2735 254 115.89

2016 PALSAR-2 y = 8665e0.2535x 0.5581 80 117.45

2010 and
2016

PALSAR +
PALSAR-2

y = 3166.7e0.1744x 0.3541 334 116.91

Backscatter is in gamma nought (γ°, dB) and AGB in (Mg ha-1). All correlations are significant at
p < 0.05

An alternative to the optical satellite systems, spaceborne SAR data have become
one of the primary sources for AGB estimation. Radar is well known for its
capability to penetrate cloud cover and it has been recognised as the most significant
advantage compared to optical sensor systems. The possibility of obtaining cloud-
free, wall-to-wall images is higher for a tropical region, especially Malaysia. More-
over, long wavelength SAR such as L-band is more reliable for AGB estimation in
various forest ecosystems. However, studies demonstrated signal saturation at cer-
tain biomass level. This has become another constraint for estimating AGB in
Malaysia’s forests. Hamdan et al. (2015) confirmed that the L-band SAR backscatter
started to saturate at AGB of 200 Mg ha-1. A direct approach may not be appropriate
to address this limitation and some indirect approaches are needed to produce
accurate estimate of very high levels of biomass. Hamdan et al. (2014a) also
indicated that the saturation occurred in mangrove forest when the biomass level
reached at 100 Mg ha-1. The errors associated with the prediction model were also
observed to increase largely as the AGB exceeded 150Mg ha-1. However, the use of
L-band SAR can provide an alternative that allows rapid assessment of AGB in large
areas where access is limited.

Understanding and identifying major uncertainties caused by different stages of
the AGB estimation procedure and devoted efforts to reduce these uncertainties are
critical. Hamdan et al. (2014b) did a review on the use of L-band SAR data primarily
from ALOS PALSAR for AGB assessments in tropical regions including Malaysia.
Issues related to approaches, methodologies, advancements, limitations, and options
for AGB estimation by using L-band SAR data are also elaborated. Example uses of
L-band PALSAR and PALSAR-2 data for AGB estimation in Malaysia were
presented by Hamdan and Muhamad Afizzul (2018). Predictive models were derived
from these systems as summarised in Table 2. Since the sample plots covered only
lowland, hill, and hill dipterocarp forests, the equation produced is only valid for
these forests and not accurate for other types of vegetation. This equation is also
valid only for PALSAR and PALSAR-2 datasets.

When the use of a single system portrays some issues, synergetic use or attempts
to combine multiple sensors then came into the picture to address these issues. The
synergy of the prediction has been obtained when the variables were integrated into
an empirical prediction equation derived from multiple line regression. This method
was applied to the single PALSAR-2, to Sentinel-1A polarisation, and also to the
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Table 3 The best correlations derived from multiple regression from a single sensor and combi-
nation of sensors

Sensor Prediction equation R2

PALSAR-2 146.90HH + 169.78HV - 7.03(HH × HV) + 416.96(HH × HV)1/
2 + 227.07

0.342

Sentinel-1A -17.040VH - 2.344(VV × VH) + 24.327(HH × HV)1/2 + 181.918 0.138

Combination -10.877VH - 13.292(HH × HV)1/2 + 139.702HH + 162.287HV -
6.526(HH × HV) + 394.502(HH × HV)1/2 + 238.524

0.356

All polarizations are in sigma nought (σ0, dB). All correlations are significant at p < 0.05

variables from the combination of both PALSAR-2 and Sentinel-1A. The best three
models have been produced as summarised in Table 3. Evidently the combination of
PALSAR-2 L-band and Sentinel-1A is able to strengthen the relationship between
AGB and the polarisation, thus improving the accuracy of estimates (Hamdan et al.
2017). Both data have complemented each other that eliminated the effects of
backscattering diffusion.

This effort was also demonstrated by Cutler et al. (2012), where multispectral
Landsat TM and Japan Earth Resources Satellite (JERS-1) SAR data were used
together to estimate tropical forest biomass at three separate geographical locations:
Brazil, Malaysia, and Thailand. Texture measures were derived from JERS-1 SAR
data using wavelet analysis and grey level co-occurrence matrix methods, then
combined with multispectral data to provide inputs to artificial neural networks
that were trained under four different raining scenarios and validated using biomass
data from 144 field plots. The addition of SAR texture to multispectral data revealed
good relationships with above-ground biomass when trained and tested with data
taken from the same site (r= 0.79, 0.79, and 0.84 for Thailand, Malaysia, and Brazil,
respectively). Furthermore, the level of correlation (r = 0.55) was stronger when
networks were trained and evaluated with data from all three locations than previ-
ously reported results from the same sites using only multispectral data.

Laser instruments, namely, LiDAR and terrestrial laser scanner (TLS), are
another popular sensor type that is currently used for AGB estimation in tropical
forest with high density and complex stand structures. An intensive investigation of
the relationship between LiDAR properties with the AGB was carried out by
Hamdan et al. (2020c) in 50 ha Pasoh Dynamic Plot (PDP) by using airborne
LiDAR and a comprehensive census data. PDP is situated on a 50 ha dynamic plot
in the Pasoh Forest Reserve in Negeri Sembilan, which is a lowland dipterocarp
forest, a type of evergreen tropical forest. The LiDAR metrics have generated a lot of
variables. These factors were compared to AGB calculated from census data. The
CHM and a few matrices were determined to be the best predictors of AGB and were
thus utilised to estimate AGB across the study area. The estimated AGB ranged from
52 to 718 Mg ha-1, with a root mean square error (RMSE) of about 59 Mg ha-1,
with an accuracy of 83.36%. The study also demonstrated that estimating AGB in
tropical forest by using waveform LiDAR can be improved by reducing RMSE up to
40 Mg ha-1 as compared with other estimates from satellite imagery data.
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Meanwhile, Solomon et al. (2020) explored the viability of terrestrial laser
scanning (TLS) in the tropical forest of Malaysia for forest inventory and AGB
estimate. Manual and automatic detection methods were used to identify individual
trees. The manual and automatic detection methods produced an average tree
detection rate of 99.6% and 93.8%, respectively. Using field diameter at breast
height (DBH) as reference, the accuracy measured from TLS was confirmed. For
manually and automatically measured TLS DBH, the root mean square error
(RMSE) was 1.37 cm (6.6%) and 2.36 cm (11.5%), respectively. TLS-based tree
height was also evaluated using the height of an airborne laser scanner (ALS) as
reference, yielding RMSE of 1.74 m (9.30%) and 3.17 m (17.40%) for the manual
and automatic methods, respectively. Finally, the variables extracted from the TLS
data were used to calculate AGB. The R2 value was 0.98, and the RMSE was 0.08
Mg. The findings of this study showed that TLS, as a nondestructive method, can
accurately estimate forest characteristics and AGB under dense tropical forest
circumstances. This suggestion was supported earlier by Abd Rahman et al.
(2017). These instruments were not used alone or separately. An attempt to combine
both ALS and TLS that was made by Muluken et al. (2018) found the integrative use
of ALS and TLS can enhance the capability of estimating more accurately AGB or
carbon stock of the tropical forests.

The selection of sensor systems, method, and techniques varied between geo-
graphical regions and the forest types being studied. High-resolution images were
not missed in this application. Ahmad et al. (2021) conduct a thorough assessment of
the literature on AGB estimation and mapping using high-resolution optical satellite
images (with a spatial resolution of 5 m) from around the world. In 15 years
(2004–2019), 44 peer-reviewed journal articles were published, according to the
literature review. Asia had 21 studies, North America and Africa had 8, South
America had 5, and Europe had 4. The published approaches for AGB prediction
modelling and validation are examined in this review study. According to the
literature review, QuickBird, WorldView-2, and IKONOS satellite photos were the
most extensively employed for AGB estimations, with higher estimated accuracies,
along with the integration of other sensors.

4 Remote Sensing for Tree Species Recognition

Forest trees species recognition and identification are among remote sensing
applications that are being used and explored in the forestry sector in Malaysia.
Various platforms including spaceborne and airborne, and multiple sensor systems
are used to venture this application. The high diversity in species composition and
distribution will definitely add to the complexity of the classification. Despite the
fact that numerous methods have been used to identify tree species in forests, the
challenges remain unanswered, and this application has yet to mature.

Ruhasmizan et al. (2013) used an airborne hyperspectral data to identify several
timber species in Balah Forest Reserve, Kelantan. Spectral Angle Mapper (SAM)
technique was applied and found that the highest spectral signature in NIR range was
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Kembang semangkok (Scaphium macropodum), followed by Meranti sarang punai
(Shorea parvifolia) and Chengal (Neobalanocarpus heimii). Meanwhile, the lowest
spectral response was Kasai (Pometia pinnata), Kelat (Eugenia spp.), and Merawan
(Hopea beccariana), respectively. The overall accuracy obtained was 79%. Another
attempt was made by Misman et al. (2021) to use UAV-based OCITM-F
hyperspectral imager sensor in identifying six tree species on the campus of Forest
Research Institute Malaysia (FRIM). To find the best strategy to identify tree species,
this study investigated different data formats and classification approaches. A log of
spectral reflectance (LogR) and derivative of the log of spectral reflectance (DLogR)
were evaluated using random forest (RF) and support vector machine (SVM)
classifiers in addition to reflectance (R) and derivative (D) spectra. The Boruta
approach was also utilised to minimise the data input’s dimensionality. The results
showed that the performance varied depending on the data input and classifier used.
Reflectance spectra identified with the SVM classifier had the best accuracy of
72.6%, while the combination of derivative spectra and RF classifier had the lowest
accuracy of 52.9%. Based on this study, the UAV-based OCITM-F hyperspectral
imager sensor has the potential to be used to identify forest tree species in a tropical
forest with acceptable accuracy.

This kind of study was also conducted in mangrove forest. Zulfa et al. (2020)
measured in situ spectral signatures of 19 mangrove species to investigate whether
mangrove species could be discriminated through spectral reflectance data. The
research was carried out at the Matang Mangrove Forest Reserve, and the spectral
signatures were captured with a handheld spectroradiometer. The study successfully
distinguished 7 visible wave bands (400–700 nm), 9 NIR wave bands (701–1000
nm), 16 SWIR-1 wave bands (1001–1830 nm), and 19 SWIR-2 wave bands
(1831–2500 nm) in the visible area. The study found that mangrove species’ leaf
spectral reflectance is low in the visible region (400–700 nm) due to excessive
chlorophyll concentration. The most essential component in this variance seems to
be leaf surface reflectance. Further, Zulfa et al. (2021) spectral information diver-
gence (SID) algorithm was compared with that derived from the Landsat 8 using the
SAM algorithm for the species. They found that the two methods offered different
but complementary information with different rates of accuracy. The observed levels
of classification accuracy for SID and SAM algorithm were at 84.95% and 85.21%,
respectively.

Similar to the AGB studies, species recognition can also be conducted by using
combination of sensors. Using aerial hyperspectral data, Nik Effendi et al. (2021)
used a comparison classification strategy to investigate multiple classifiers. In
addition, hyperspectral data was used to extract the crown of individual tree species
for classification and estimate using the object-based image analysis (OBIA)
approach. To decrease the data dimensionality and diverse training samples from
the numerous species employed in this study, the minimum noise fraction transform
(MNF) was used. When compared to other classifiers in the tropical forest, SVM and
RF achieved the highest overall accuracy above 50%.
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5 Remote Sensing for Forest Structure

Forest structure is the three-dimensional arrangement of trees and other plants, in
combination with nonliving spatial elements such as soils, slopes, and hydrology. In
short, structure is the physical geography of the forest, considered at a range of
spatial scales. Remote sensing has been used for such assessments of forest structure
in various ways. Satyanarayana et al. (2011) assessed the mangrove vegetation at
Delta Kelantan based on ground-truth and remote sensing measurements. The
mangroves are composed of several species including Nypa fruticans, Sonneratia
caseolaris, Avicennia alba, Rhizophora apiculata, R. mucronata, and Bruguiera
gymnorhiza, in order of dominance. The stem density and basal area were estimated
using the point-centred quarter method (PCQM) at various ground locations. Land-
use/cover classification and normalized differential vegetation index (NDVI)
mapping for the delta were created using recent high-resolution multispectral satel-
lite data (QuickBird 2006, 2.4 m spatial resolution of the multispectral images). The
study found that there was a relationship between the (mean) NDVI and stem
density.

Phua et al. (2014) used IKONOS image to delineate tree crown with dark object
subtraction and topographic effect correction prior to watershed segmentation. The
overall segmentation accuracy was 64% when compared to the field observation.
The detection of crowns revealed a strong relationship with tree density. Further-
more, the satellite-based crown area exhibited the best association with the DBH
observed in the field. They created a DBH allometric model that explained 74% of
the variance in the data. The IKONOS-2 image was segmented to provide two crown
variables: crown perimeter and crown area. By assuming a circular shape, the crown
diameter was derived from the crown area. The DBH and thus AGB of the individual
trees measured on the ground were then linked with these variables.

Focusing on the Matang Mangrove Forest Reserve (MMFR) in Perak Province,
Malaysia, Otero et al. (2018) investigated the use of UAV imagery for retrieving
structural information (i.e. height and AGB) on mangroves. The study suggested that
UAV data are viable for retrieving canopy height and biomass from forests that were
relatively homogeneous and with a single dominant layer. More advance
assessments on tree crowns were made by Wan-Mohd-Jaafar et al. (2017, 2018)
and Nordin et al. (2018) by using LiDAR and UAV hyperspectral data, respectively.
The method, namely, individual tree crown (ITC) segmentation, was developed from
the studies. The studies isolated successfully individual trees from the background
vegetation and precisely delineate the crown boundaries by using separate
processing methods for LiDAR and hyperspectral.

Coarser image resolution from Moderate Resolution Imaging Spectroradiometer
(MODIS) was also used in vegetation structure assessment. A study conducted by
Kanniah et al. (2021) used the leaf area index (LAI) and gross primary productivity
(GPP) produced by MODIS to inspect the impact of fragmentation on the mangrove
ecosystem process in Iskandar Malaysia, Johor. The impact on LAI and GPP due to
fragmentation was found to rely on the patch characteristics, i.e. size, edge, and
shape complexity.
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Another attempt was made by Charissa et al. (2020) to use SRTM data to estimate
growth progress of mangrove in Sabah. A tree-level approach was developed to deal
with the substantial temporal discrepancy between the SRTM data and the
mangrove’s field measurements. A canopy height model (CHM) was derived by
correcting the SRTM data with ground elevation and the annual growth of diameter
at breast height was predicted from the CHM, while in Berkelah FR, Pahang, a study
was carried out by Rozali et al. (2020) to extract feature changes in tropical rainforest
cover using Landsat image and airborne LiDAR (ALS). Disturbance index
(DI) derived from Landsat-8 OLI images was used together with an ALS height
by using object-based segmentation process. The accuracy increased with the inte-
gration of ALS in Landsat image.

Looking at a larger scale with attention to the management practices in Matang
Mangrove Forest Reserve (MMFR), Otero et al. (2019) used a time series
(1988–2015) of Landsat data to (1) detect clear-felling events that take place in the
reserve as part of the local management and (2) trace back and quantify the early
regeneration of mangrove forest patches after clear-felling. From this series, they
found that the average period mangroves recover after the clear-felling event was 5.9
± 2.7 years. Continually Lucas et al. (2020a) used Japanese Earth Resources
Satellite (JERS-1) SAR, ALOS PALSAR, PALSAR-2, and WorldView-2 to pro-
duce thematic and continuous environmental descriptors, including lifeform, forest
age, canopy cover, AGB, and relative amounts of woody debris. The work was
carried out under the framework of the Earth Observation Data for Ecosystem
Monitoring (EODESM). In addition to the earth imaging satellites, topographic
data from NASA Shuttle RADAR Topography Mission (SRTM) and TanDEM-X
data were also obtained for the MMFR and the surrounding landscapes. The study
was then supported by Lucas et al. (2020b) with additional UAV images as the high-
resolution images’ input to the structural characterization of mangrove stands
in MMFR.

6 Limitation and Advancement in Remote Sensing

Tropical forests in Malaysia, with dense trees and canopies, various types and
geomorphology of forest, various levels of horizontal and vertical strata, complex
canopy structure, different management perspectives at various growth conditions,
undulating topography, and cloudy atmosphere, always offer greater challenges as
compared to the other forest types in the world. These to some extent hinder the
assessments of certain biophysical properties of forests. However, with the recent
advancements in sensor development, some of the challenges can be addressed.
Additional spectral bands on board satellites with optical sensors, longer wavelength
on SAR sensors (e.g. L-band and P-band), and more high-resolution satellites
launched to the space will open wider windows for forestry applications, especially
in Malaysia. Latest upgrades on UAV sensor system such as hyperspectral, multi-
spectral, thermal, LiDAR waveform, and even close-range TLS with a mobile



44 H. Omar

capability will ensure that the measurement of biophysical and biochemical of trees
can be conducted with zero contact to the trees.

The combination of multiple sensors such as optical with SAR and LiDAR with
hyperspectral and UAV photogrammetry seems, in many cases, although cannot
fully address some issues, to complement each other. Optical or synthetic aperture
radar (SAR) system has its own potential in retrieving forest attributes, but several
issues remain unaddressed. While optical remote sensing is often hindered by cloud,
SAR systems are always limited by signal saturation and demanding in data
processing. Besides, development of new and improvement on algorithms in
image processing such as SVM, random forest, and artificial neural network
(ANN) can provide alternatives to the analysis. The emerging new remote sensing
data processing software, especially open source, also offers solutions for specific
applications.

7 Opportunity

This review of remote sensing image analysis techniques, with reference to forest
structural parameters, illustrates the dependence of spatial resolution to the level of
detail of the parameters which may be extracted from remotely sensed imagery. As a
result, the scope of a particular investigation will influence the type of imagery
required and the limits to the detail of the parameters that may be estimated (Indu
et al. 2019). The complexity of parameters that may be extracted can be increased
through combinations of image-processing techniques. For example, multitemporal
analysis of image radiance values or multispectral image classification maps may be
analysed to undertake the assessment of such forest characteristics as area of forest
disturbances, forest succession and development, or sustainability of forest manage-
ment practices. Further, the combination of spectral and spatial information extrac-
tion techniques shows promise for increasing the accuracy of estimates of forest
inventory and biophysical parameters.

It was clear from the review that the limitations of the traditional techniques lead
to the development of most advanced technologies including remote sensing. The
integration of the advanced technologies along with conventional field
measurements can also be used for the accurate and effective measurement of the
forest parameters. For example, the limitations of optical remote sensing in the
estimation of forest structural parameters lead to the advancement of active remote
sensing, e.g. LiDAR and SAR for forest mensuration. Dealing with large forest
landscapes, upscaling concept might provide opportunities in forestry research
(Rasib et al. 2018). It involves the combination of data sources at different spatial
and temporal scales to produce accurate information at large coverage (Fig. 7).
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Fig. 7 The concept of upscaling in remote sensing

8 Conclusion

Although remote sensing technology has long been introduced in Malaysia, its
application in forestry is still limited to mapping and monitoring functions. Even
though there are studies on the assessment on various forest attributes, the scales are
relatively confined to a small area and not ready for operational level. In addition,
lack of exposure, expertise, and high cost are among the main challenges that need to
be addressed to achieve the objectives of sustainable forest management and
planning. Remote sensing can not only be used for obtaining information on forested
land but also can be expanded for planning, logging operation, biodiversity assess-
ment, and even wildlife beneath the forest canopies. The forestry sector in Malaysia
is expected to last forever since the importance of forest ecosystem for the people is
borderless. Remote sensing technology is also expected to become more advance in
the near future along with the developments of the country. These advances in sensor
technology are occurring concurrently with changes in forest management practices,
requiring detailed measurements intended to enable ecosystem-level management in
a sustainable manner. The use of this technology benefits the management of the area
and encourages savings to the cost of labour, as well as benefits the storage of more
efficient information for a long period of time. The accuracy of the data containing
the information of forest areas is very important to determine the sustainability of
both forestry and remote sensing sectors.
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Abstract

Forest landscape restoration (FLR) is the process where vegetation is recovering
in terms of its forest traits, ecosystem functionality, climate change mitigation,
building up human livelihoods, and well-being in deforested and degraded forest
landscapes by promoting accelerated forest regrowth. Several countries within
the Global Partnership of FLR have made ambitious pledges to promote FLR
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globally and to restore at least 350 million ha of degraded and deforested lands by
2030 worldwide. FLR accountability has been limited to the schematic quantifi-
cation of how much the land area in the forest has been restored and how many
trees have been replanted for conservation purposes. Natural regeneration,
old-growth forests, and mixed-species plantations of different types of species
are some of the FLR strategies. Monitoring the outcome of complex forest
restoration efforts requires appropriate methods and sophisticated tools. The
logical procedures are by distinguishing the different forest cover types across
different forest landscapes and second by identifying their respective values to
ecosystem services and biodiversity conservation. Canopy structural attributes
are one of the most important parameters that can act both, distinguishing the
forest cover types and indicator to the forest respective values. Traditional
assessments rely heavily on field-based inventory, which is cost-prohibitive and
difficult to track a million hectares scale progress. Light detection and ranging
(LiDAR) remote sensing has emerged as a great alternative to monitoring forest
structure, function, and composition. With the ability to penetrate the forest
canopy it allows an accurate measurement of structural canopy parameters
along with the vertical profile. This paper will review the trends of FLR and the
use of LiDAR remote sensing technology to monitor forest restoration outcomes
towards achieving sustainable forest management practices.

Keywords

Forest landscape restoration · LiDAR · Forest type · Forest structure · Structural
attributes

1 Introduction

The area of tropical forests has been drastically changing over the last several
decades, with forest cover declining by 2101 square kilometres every year (Hansen
2013). Massive climate change consequences have resulted in increasingly one of
the biggest carbon dioxide emissions across Southeast Asian nations, as a result of
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excessive deforestation. Malaysia’s progress and economic development activities
also contribute to increased carbon emissions through land clearance and conversion
of forested areas to other residential and commercial usage sectors such as farming,
habitation, quarrying, and fishery (Begum et al. 2020).

Issues and local efforts have generated democratic influence for the restoration of
150 million ha of forest landscapes by 2020 and 350 million ha by 2030. The Bonn
Challenge is based on the forest landscape restoration (FLR) concept, which varies
from more efficient ecological restoration in that human livelihoods and biodiversity
protection are given equal importance (Stanturf et al. 2017). Ecological restoration
approaches vary, from singular or mixture plantings for storing carbon (Nave et al.
2019), to focused species selection to meet animal habitat needs (Hale et al. 2020).
Therefore, assessing the efficiency of ecological restoration in restoring the desired
ecological resources and activities is a significant difficulty.

Both biodiversity protection and human livelihoods are top priorities for FLR. It
involves planting new trees, protecting wildlife reserves, regenerating forests, creat-
ing ecological corridors, agroforestry, riverbank plantings to preserve streams,
managed plantations, and agriculture. Within and across whole landscapes, this
pattern of communicating land cover begins – a level whereby ecological, social,
as well as economic goals maybe harmonised (Matrushka 2020). FLR is a method
for regaining, improving, and maintaining vital ecological and social services in a
degrading or deforested landscape over time, as well as increasing the resilience
against ecological and societal transformations.

Monitoring is a key aspect of determining the efficacy of restoration efforts. It is
critical to approach assessment in order to advise future efforts and prevent restora-
tion failures (Zhang et al. 2019). Key response qualities must be defined in order to
quantify the short- and long-term efficacy of restoration operations (Maginel et al.
2016). In many situations, indicator species are employed to assess the progress of
the ecological restoration in comparison to a reference system. In a broader sense,
the structural complexity of an ecosystem, such as a forest, is regarded as a reliable
and repeatable indicator of biodiversity and can reflect an ecosystem’s health and
function (Hao et al. 2021) and also has provided a reference condition against which
to guide (and assess) the efficiency of restoring a decreased environment (Perring
et al. 2015). Field data normally monitor forest restoration results by assessing the
forest structure parameters, such as canopy gap, the diameter of the trees and the
height (estimates of biomass and carbon stocks are possible), as well as diversity
factor. Furthermore, restoring spatial structure has advantages that are connected to a
variety of ecosystem services. The abundance of deadwood and coarser deadwood,
for example, has a direct impact on ecosystem functions and animal habitats
(Camarretta et al. 2020). In reality, canopy layers have a positive impact on bird
populations and the mix of tree species (Viani et al. 2017). Aboveground biomass
(AGB) is a significant variable to monitor in restoration efforts since it is among the
most essential restoration results in tropical forest areas (Aragón et al. 2021). This is
a good proxy for a variety of other variables related to tropical forest succession
(Chazdon 2014). Another important ecological indicator in restoration plantations is
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canopy openness, which is linked to the reduction of grasslands and natural forest
regrowth (Viani et al. 2017).

Remote sensing is being effectively utilised to obtain forest structural information
that might aid decision-making. Nevertheless, the direct carbon storage estimate in
moderate to high biomass forests continues to be significantly difficult for remote
sensing. While it has been very effective in quantifying the biophysical properties of
vegetation in places with low plant canopy cover, quantifying vegetation structure in
areas with a leaf area index (LAI) more than three seems to be less successful.

LiDAR (light detection and ranging) is a relatively new sensor technology
gaining considerable interest in the forestry sector as a speedy and effective method
for forest inventories. In contrast to passive remote sensing techniques such as
photogrammetric mapping, active remote sensing techniques such as airborne
LiDAR may immediately capture precise three-dimensional point cloud data to
describe the earth’s geomorphologic profile (Hui et al. 2019). Typically, airborne
LiDAR scanners can classify first/last or numerous returns. Furthermore, because
they may both be georeferenced using the same direct exterior orientation (direct
EO) methods, LiDAR scanners can be coupled by a different camera system to assist
in interpreting LiDAR returns. There are also full-waveform aerial LiDAR systems
available, albeit the usage in forestry can be limited to the research community (van
Leeuwen and Nieuwenhuis 2010). Models constructed utilising ALS data were the
most exact, while incorporating information from various sources resulted in a
negligible improvement in structure prediction (Dash et al. 2016).

2 Forest Landscape Restoration

2.1 Definition

Modern commercialisation by humans and modification of the world’s ecosystems
have resulted in extensive habitat extinction and reductions in ecosystem conditions,
resulting in decreased ecosystem production (Bullock et al. 2011; Muhmad
Kamarulzaman et al. 2022). Although recent data reveal that deforestation is now
starting to decrease, the overall amount of deforestation remains high (OECD-FAO
2021). In Southeast Asia, for example, Fox and Vogler (2005) stated that up to 49%
of these additional agricultural areas have been subsequently developed, abandoned,
and become shrub, bush, or other types of secondary forest. Unplanned deforestation
has resulted in several social, economic, and environmental issues (Chomitz 2007;
Wan Mohd Jaafar et al. 2020a, b). In the tropics, this is particularly true. Despite the
riches created by cutting tropical forests, many local people live mainly around these
settings, and biodiversity and soil have suffered significant losses (Saad et al. 2020).
However, several developments are currently taking place that will impact the
amount towards which existing forest areas are preserved and the chance of
deforested areas being restored.

Restoration ecology has made great progress in recent years, both as a scholarly
field and as useful management of environmental management. Significantly,
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restoration ecology has improved the environmental management system since it can
enhance human livelihoods and biodiversity. Chazdon (2008) gives a present over-
view of forest ecological restoration, emphasising the work done in many nations to
reverse current forest degradation and loss. However, as noted by Newton and
Tejedor (2011) the effects of bigger-scale forest restoration along with future
landscape’s composition and function, as well as the species that populate them,
are still unknown. There is also limited research on the consequences of various
restoration procedures of the restoration of ecosystem services and their connections
to biodiversity. Traditional techniques have been site-based, focusing on a few forest
products, relying primarily on non-native tree planting, and failing to deal with the
core causes of forest loss and degradation. Forest landscape restoration is one of the
restoration approaches examined in this research (FLR). In response to the wide-
spread inadequacy of more traditional techniques for forest restoration, the World
Wildlife Fund (WWF), as well as the International Union for the Conservation of
Nature (IUCN), devised the FLR idea during a workshop in 2000 (Mansourian et al.
2005a). Therefore, the outcome resulted in several principles of forest landscape
restoration.

2.2 Principles of Forest Landscape Restoration

An effective FLR, according to Mansourian et al. (2005a, b) and Newton and
Tejedor (2011), is forward-looking and dynamic, focusing on building landscape
resilience and developing future choices to modify and further optimise ecosystem
products and services when societal requirements change or new obstacles emerge. It
integrates a number of guiding of six principles of forest landscape restoration
(Fig. 1).

Fig. 1 Principles of forest landscape restoration (Source: IUCN)



54 S. M. Mazlan et al.

2.2.1 Focus on Landscape
The landscape is a human construct that can have a variety of interpretations
according to whoever is saying. A conservation effort will generally operate within
a predetermined ‘conservation landscape’, which is frequently based on
considerations such as the amount of land required to preserve functioning
ecosystems and species. It’s also essential to identify any ‘culture landscapes’ nested
inside or overlapped with the restoration landscape, in addition to picking the
conservation landscape. A cultural landscape is described as an area of particular
importance to people who live in or visit the landscape often, such as a community, a
strip of land utilised by nomadic people, or a forestry concession (Maginnis and
Jackson 2002).

FLR occurs throughout and across landscapes, rather than specific locations, and
represents mosaics of overlapping land cover and management methods under
multiple ownership and governance regimes. Ecological, social, and economic
interests can be synchronised at this scale. The WWF has several Ecoregion Action
Programs, many of which are in forest ecoregions (Bowling 2004). The WWF’s six
worldwide Target Driven Programs (on forests, marine and freshwater species,
climate change, and toxics) aim to complement efforts in key conservation
ecoregions while also having global scope. In the case of forests, the link may be
described as in Fig. 2.

The forest program is trying to improve the integration of its goals and ecoregion
programs. It has focused on priority landscapes in key ecoregions identified through
the ecoregion conservation process. Each priority region, or priority conservation
landscape, will comprise several sites that form a landscape mosaic. Conservation
landscapes range in size from a few tens of thousands of hectares to a million
hectares or more, and techniques must adapt to account for these differences. In
theory, a program like this could be implemented across an entire ecoregion.

When considering landscape-scale advantages, it is necessary to pay greater
attention to the aggregate worth of numerous sites rather than individual sites. One
possibility is a woodland patchwork similar to the ones in Fig. 3 comprises a
scattering of protected areas of multiple IUCN categories (and thus various manage-
ment regimes) for forests with the most significant conservation efforts; some
handled native woodland to provide a mix of biodiversity and human benefits;
some replanned wood products and fibre plantations; forests controlled for environ-
mental consequences such as watershed protection; and careful restoration is

Fig. 2 The link between Forest for Life and Ecoregion Action (Source: Bowling 2004)
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Fig. 3 Scattering of protected areas of multiple IUCN categories (Source: Bowling 2004)

planned at the landscape scale to achieve maximum efficiency. Tropical forests
would also need to coexist towards other land uses such as farming and population.

The specific combination would vary depending on location, forest type, and
biome and would most likely appear considerably different in a region that still
included vast tracts of natural woods. However, the notion of pursuing a balanced
combination of preservation, management, and restoration that provides biological,
ecological, economic, and social advantages while opposing harmful change
remains unchanged.

2.2.2 Preservation and Enhancing Natural Ecosystems Within
Landscapes

Tropical forests and other ecosystems are not converted or destroyed as a result of
FLR. This principle relates to preserving and restoring the dynamic behaviour and
interconnectivity of all forms of tropical forest, meadows, scrublands, and swamps
within a landscape to increase economy, ecosystem functions, and biomass produc-
tion. It helps to improve forest and other ecosystem conservation, recovery, and
long-term management (Chazdon et al. 2019). Several tropical forests are
decreased—but not damaged—due to human activity and conservation areas,
including trees and timber harvesting, hunting, crop production, and mining. It is
critical to consider this degradation as a type of bad forest ecosystem that may be
corrected and restored in order to properly address it. The intention or duty to
maintain ecological and related cultural traditions of such landscape areas (Higgs
and Hobbs 2010) related towards the structural and functional of ecosystems will
promote ecological restoration inside such conservation zones.
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2.2.3 Work Collaboratively with the Stakeholders and Participate
in Government

To have the impact that’s required, FLR requires very well-organised and scheduled
participation of stakeholders. This principle emphasises the engagement of all
relevant stakeholders—including women, young people, and vulnerable groups—
in planning and decision-making processes, including setting goals and strategies,
deciding on implementation and benefit-sharing methods, and carrying out monitor-
ing, assessment, and review. FLR success is built on long-term engagement and
participation between members and stakeholders (Egan et al. 2011), especially when
protected areas include permanent or native indigenous populations. Some nations
have a legal responsibility to consult traditional and indigenous peoples and
informed permission should always be acquired for projects on their land. Engaging
stakeholders in preparation, implementation, and mutual learning may promote
communication of ownership and loyalty, as well as a population of supports (Hill
et al. 2010) for forest restoration. Awareness of forest landscape restoration can
provide useful experience and knowledge (Berkes et al. 2000). Paying attention and
being willing to act on what is heard may assist in optimising community benefits,
uncovering possible concerns, effectively engaging in restoration, observations, and
reuniting communities with nature. Hence, FLR can help prevent degradation and
assist in attaining larger reserved territory and biodiversity environmental conserva-
tion by encouraging people, especially visitors, to protect areas.

2.2.4 Adapt to the Local Environment Through a Variety of Methods
Every community, landscape, and ecosystem are different, and FLR interventions
need to take this into account to succeed. The best way to ensure that FLR is well
adapted to local conditions is for local stakeholders to be fully involved in its
development, implementation, monitoring, and assessment. They were generating
local benefits, including opportunities to increase incomes and develop sustainable
supply chains. Residents and stakeholders, travellers, and staff of the protected area
who interact with the public are the major targets of communication initiatives.
When different methods and techniques are used to target different audiences,
communication and learning become more successful. Local gatherings, guided
tours, talks, exhibitions, and the utilisation of a variety of media were established
as communication and learning choices. They were given to a varied audience in a
variety of locations (Keenleyside et al. 2012).

2.2.5 Restore Multiple Functions for Multiple Benefits
Successful FLR uses locally based expertise to restore a wide variety of economic,
social, and ecological processes within such a landscape and provide environmental
products and solutions that appropriately benefit stakeholders. According to the
handbook by (Keenleyside et al. 2012), many environmental functionalities also at
landscape scale are strongly related to the existence of forest resources that can be
managed or regenerated to satisfy many complementary purposes. Although the
multifunctional organisation is not a dominant approach in the forest sector, in
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reality, examples are developing via FLR spanning from the local level, such as
community forestry systems, to the large scale, including such jurisdictional
programmes to implement REDD+ techniques.

2.2.6 Manage Adaptively for Long-Term Resilience
The ability of a system to absorb disturbance and reorganise while experiencing a
change in order to keep the same function, structure, identity, and feedback is
referred to as resilience (Walker et al. 2004a, b). An ecosystem’s resistance to
change is a key component of its resilience. FLR actions such as implementing an
adaptive management system and re-establishing natural stream flow, removing
invasive species, and providing migration/dispersal corridors between protected
areas contribute to resilience by maintaining diversity, continuously measuring the
biophysical dimensions of the landscape, and periodically assessing vulnerability to
climate change and evolving gene pools over time (Elmqvist et al. 2003; Walker
et al. 2004a, b). Factors such as ecologically effective population sizes, genetic and
functional diversity, densities of highly interactive species, ecological community
tolerance to extreme events, and microtopographic diversity are also important
considerations in restoration strategies aimed at maintaining or restoring resilience
and encouraging open access to and sharing of information and knowledge (Gilman
et al. 2010).

3 Understanding Forest Types

The three main forest biome categories found throughout the world are boreal,
temperate, and tropical forests. Forest biomes are classified into broad categories
based on their distribution by latitude, starting with the most northern (boreal) and
progressing through the temperate and tropical zones (Landsberg and Waring 2014).
Figure 4 shows the distribution of the main forest biome around the world.

Boreal forest, also known as taiga, is characterised by evergreen coniferous trees
with needle-like leaves. Boreal forests cover a large area of Eurasia and North
America, with two-thirds of them in Siberia and the remainder in Scandinavia,
Alaska, and Canada. Temperate forest is made up of broad-leaved plants that are
leafless during winter. This forest type is found only in Europe, eastern Asia, and
eastern North America in the northern hemisphere. Closer to the equator, tropical
forest is a lush forest found in wet tropical in both uplands and lowlands. It is one of
the world’s biggest biomes characterised by a dense upper canopy of broad-leaved
trees (layer of foliage) and supports an abundance of vegetation and other life
(Armstrong 2018).

Forests are shelters to the million flora and fauna species in this world, supplying
ecosystem services essential to agriculture, communities, and humans. Forests are
identified as ground spanning more than 0.5 ha with trees above 5 m and with a cover
for the canopy higher than 10%, or trees able of reaching these threshold limits in
their natural environment. There are some exceptions, such as land that is mainly
used for agricultural or municipal purposes. Forests cover 31% or 4.06 billion ha of



58 S. M. Mazlan et al.

Fig. 4 The distribution of the main forest biome around the world (Source: plantlet.org)

the global land area. About half of the forest area is relatively undisturbed, and more
than a third is primary forest (FAO 2020).

While forest cover on a global scale decreased, forest cover is rising in several
regions as a result of the expansion of ‘new forests’ (i.e., secondary forests,
plantations, and other woody vegetation). In this context, forest land has been
categorised as primary forest, secondary forest, and restored forest (Fig. 5).

3.1 Primary Forest

Primary forests are recognised as having an aesthetic, cultural, and natural conser-
vation value due to their content. It has become a diverse host to a variety of
magnificent flora and fauna and is critical for maintaining biodiversity as well as
ecological processes. The concepts of primary forest which are also known as
old-growth forest or virgin forest was described as a forest land with naturally
regenerated forest growth of a native species and not facing any obvious or visible
human activities and any significant disturbance to the forest ecology process (FAO
2015). The ecosystem of primary forests is dominated by large, aged forest trees of
mixed-species forest community and uneven-aged population distribution.
According to the World Resources Institute (2021), it is estimated that only 21%
of forest distribution around the world is categorised as remaining primary forest;
35% of these intact landscapes are found in South America, specifically in Brazil’s

http://plantlet.org
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Fig. 5 (a) Primary Forest (source: rainforestjournal.com), (b) Secondary Forest (Source: oneearth.
org) and (c) Restored Forest (source: europeanscientist.com)

Amazon rainforest; 28% in North America, particularly Canada and Alaska; and
19% in North Asia (world’s largest boreal forest) and South Africa accounting for
around 8% of the total. South Asia Pacific has only 7% of intact virgin forest left all
over the world and merely about 3% of the world’s remaining primary forests exist
in Europe, and more than 150 km2 is removed each year (Worldatlas 2021).

The nature of the primary forest is determined by its characteristic and natural
coverage. This forest stands with a complex structure such as multiple horizontal
layers, gaps of foliage within the canopies, massive standing dead plants, and logs
laying on the forest ground. The topography of the primary forest can be described as
pit and mound, and in a tropical region, it lies on peak and valley ground structure.
The nature of forest trees in primary forest landscapes is massive, tall, and aged and
they may have similar species with secondary forests (Kormos et al. 2016). The
Food and Agriculture Organization of the United Nations FAO (2015) had
underlined the main characteristics of primary forest or old-growth as the forested
landscape which displays a natural forest-growing process, such as natural species
formation, the existence of deadwood, age structure, and natural growth of forest
regeneration. The landscape of primary forest is sufficiently wide to preserve its
natural composition, without any sign of substantial human interference, or if any, it
occurred a long time ago which allowed the forest structure and its composition to be
re-constructed and regenerated.

http://rainforestjournal.com
http://oneearth.org
http://oneearth.org
http://europeanscientist.com
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The primary forest ecosystem is an ecological unique landscape that offers
significant value that is needed to be maintained and managed for a variety of
purposes due to its importance towards the overall forest ecosystem. This complex
structure supports a variety of wildlife, plants, and endangered species (Gilhen-
Baker et al. 2022), and decaying woods and forest residue play a significant
influence on the composition of its habitats and nutrient cycle (Hilbert and
Wiensczyk 2007). Due to its aged and undisturbed condition, primary forests retain
more carbon than other forest types which help in stabilising the earth’s climate and
are usually irreplaceable in a biodiversity context. Even if forest regrowth occurs, the
recovered secondary forest will not be able to equal the carbon and biodiversity
values of a primary forest for several decades or longer (Hilbert and Wiensczyk
2007). The destruction of these forests causes carbon to be emitted into the atmo-
sphere and causes greenhouse gas (GHG) emission, leading to the risk of global
climate change (Wan Mohd Jaafar et al. 2020a, b). In addition, primary forest helps
protect communities and the environment from natural disasters including forest
fires, landslides, and floods and simultaneously acts as a natural water reservoir for
the needs of life (Kormos et al. 2016). For indigenous people and local people who
live in or near them, primary forest is equally essential because of their enormous
biological productivity. The forest provides shelter as well as essential resources
such as food, medicine, and freshwater (Kormos et al. 2016).

Primary forest had faced great challenges and threats including human
disturbances, natural disasters including forest fire, landslides, species, and plant
disease, and forest conversion to agriculture. Consequently, vast species of plants
and wildlife were threatened (Betts et al. 2017), and the forest landscape was
exposed to massive damage and altered the forest biodiversity and global climate.
Logging and forest clearing also become major factors of the challenge to sustain the
primary forest. As a result, the primary forest was declining all over the world due to
the difficulties in maintaining and replacing the forest cover.

3.2 Secondary Forest

More than 50% of the global tropical forests are not primary forests but naturally
regenerating forests, also known as secondary forests. In the next few decades,
secondary forests will account for a significant portion of the global total forest
area (FAO 2010). A secondary forest is a forest that regenerates largely naturally or
unnaturally following disturbances caused by humans or nature. The main contribu-
tor to forest transition from primary to secondary forest is agriculture. Agriculture
remains the primary driver of global deforestation, and agricultural, forestry, and
land policies frequently conflict (FAO 2016).

Secondary forests mainly regenerated naturally after significant disruption of the
primary forests exhibits significant forest structure and/or species composition
differences compared to pristine primary forests (FAO 2003). Secondary forest
vegetation is grown through either natural or artificial regeneration. Regeneration
occurs naturally when seeds are dispersed without human intervention. The process
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regenerates forests through self-sowing seeds, root suckers, or coppicing, while
artificial regeneration involves direct seeding and planting (Huss 2004).

Secondary forests differ significantly from the nearby primary forest in terms of
forest structure and/or canopy species composition, goods, and services. However,
compared to plantation forests, naturally regenerating forests make a greater contri-
bution to biodiversity conservation and offer a wide range of advantages and certain
ecosystem services (Brockerhoff et al. 2017). Secondary forests are also viewed as
having greater potential than primary forests in some ways. For instance, it has been
demonstrated secondary forests sequester tenfold the amount of atmospheric carbon
as CO2 as primary forests (Poorter et al. 2016).

3.3 Restored Forest

The restored forest is where the forest area has been restored from degradation and
deforestation. In the context of forest restoration, this refers to restoring the ecologi-
cal functions through the assisted or unassisted process of natural regeneration of the
area to benefit humans (contribute to rural economies and livelihoods), wildlife, and
the environment (Chazdon et al. 2020).

Restoration goals may be classified broadly into diverse strategies such as
rehabilitation reconstruction, reclamation, and replacement. The term rehabilita-
tion refers to the process of re-establishing a damaged ecosystem’s desired species
composition, structure, or processes. Reconstruction is the process of re-establishing
native plant communities on land previously used for another purpose, such as crop
production or pasture. Reclamation describes seriously degraded land that is gener-
ally empty of vegetation and is frequently the result of extraction of underground
resources, such as mining or oil and gas drilling work platforms, and replacement
will involve replacing species that are being moved in changes of the climate
resulting in the emergence of previously unknown species or genotypes of familiar
species for an extended period.

Given the active human activities and natural disasters, many forest areas are
extremely disturbed resulting in their ecological function being in doubt. Hence,
forest restoration is urgently needed as a sustainable plan to recover the forest
function and improve the quality of community well-being in this degraded forest
(Mansourian et al. (2005a, b); César et al. 2021). Restored forests offer many
benefits to the forest landscape ecology and human society. According to César
et al. (2021), restored forest benefits can be categorised into several aspects: (1) ecol-
ogy benefit, (2) economic benefit, (3) socio-economic benefit, and (4) human aspect.
For the ecology aspect, forest restoration may generate carbon sequestration towards
climate change mitigation and biodiversity conservation and serves to protect water
and soil (Báez et al. 2011; de Souza et al. 2016). In economic aspect, restoration of
the forest is believed to help enhance the productivity of the forest land, help in food
security issues since forests become the sources of food to certain communities, able
to generate new jobs and income for the community, and increase the forest-related
product for trading purposes (Adams et al. 2016). Forest restoration is offering a
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great benefit to the improvement of human well-being as well as socio-economic
outcome through its non-material benefits. The well-restored forest landscapes can
enhance the quality of the environment and create a potential recreational site for
eco-tourism (Chadourne et al. 2012; Adams et al. 2016) as well promote the
improvement of physical health (César et al. 2021).

Monocultures may be an option in a forest restoration context, where fast-
growing tree species with worldwide demand potential for timber are readily avail-
able (Cummings et al. 2012), where it is advantageous to generate rapid revenue for
the local community. However, the planting of multiple species, on the other hand, is
also necessary since different species frequently affect distinct ecosystem functions;
focusing exclusively on a single function will grossly underrate the biodiversity
necessary to sustain an ecosystem with various purposes at numerous times and
locations in an altering environment (Isbell et al. 2011).

4 Light Detection and Ranging (LiDAR)

4.1 An Overview of LiDAR

There has been a growing interest in using light detection and ranging (LiDAR) in
forestry applications for measuring forest characteristics in the last two decades.
LiDAR is an accurate distance measurement technology based on measuring the
travelling time of laser pulses between the instrument and the target. This measure-
ment is enabled by sending narrow beams of near-infrared light and recording the
return time. LiDAR instruments are primarily mounted on airborne platforms where
a LiDAR system registers the instrument position and orientation for the returned
pulses using a GPS interior measurement unit (IMU) in order to determine the target
coordinates. In a forest environment, LiDAR penetrates the forest canopy and
records different reflections from different parts of the plants describing the vertical
structure of the forest canopy. These multiple returns per pulse energy are stored
either as discrete points or as a full waveform.

In a discrete LiDAR, a system predefined threshold is used to distinguish a true
return from noise and the true discrete returns are recorded as coordinates and
intensity when the return energy exceeds the predefined threshold. Common current
systems record multiple returns including the first (top of canopy), last (ground
surface), and three other intermediate returns. In the case of the full-waveform
LiDAR, the entire energy pulse responses are stored as a function of time. This
waveform characterises the multiple targets’ vertical structure from the upper canopy
to the ground surface within individual pulses.

LiDAR systems in forestry are also classified as small- or large-footprint LiDAR.
Small-footprint LiDAR is usually operated on low-flying altitude air platforms with
a scanning instrument that goes back and forth with a beam diameter at intersecting
surfaces of less than 1 m (5–30 cm). It records the returned signal as discrete points at
high sampling densities, while the flying speed and altitude determine the number of
shots per square meter according to the intended application. The large-footprint
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LiDAR is commonly seen as a full waveform. In these instruments, a larger beam
diameter (between 5 and 25 m) at intersecting surfaces is used in a cross-track
scanning system where the signal is averaged across the footprint and used to sample
the vegetation cover (Dubayah and Drake 2000; Drake et al. 2002).

Through enabling the direct measurements of the top of canopy elevation, ground
topography, and vertical distribution, a wide range of forest characteristics can be
derived (Dubayah and Drake 2000). Forest canopy height can be typically calculated
directly by subtracting a digital elevation model (DEM) fitted to the return classified
as ground points from other returns. Other characteristics can be modelled or inferred
based on these directly measured attributes either in a plot scale or individual tree
scale analysis (e.g. aboveground biomass could be derived based on individual tree
dimensions and existing metrics or using multiple regression analysis between
LiDAR-derived attributes and field data to derive biomass at plot scale).

5 LiDAR in Monitoring the Effectiveness of Forest
Restoration

Forest structural attribute is a crucial factor in the estimation of aboveground
biomass. Therefore, many studies have been conducted to find the best finding and
give the best improvement and new technologies. In a nutshell, precise and consis-
tent assessments of planted forest structural characteristics are critical for forest
managers to make long-term sustainable forest management choices (Ozdemir and
Karnieli 2011). On the other hand, remote sensing imaging is more useful when
assessing forest restoration due to its capacity to identify variations in locations that
are difficult to analyse from the ground (Liu 2019). Light detection and ranging
(LiDAR) is one of the current active remote sensing technologies that can penetrate
the vegetation canopy (Asner and Mascaro 2014) and describe the three dimensions
of forest structure (Almeida et al. 2016) allowing for AGB assessment and canopy
openness over enormous regions (Almeida et al. 2019).

6 LiDAR in Quantifying Structural Attributes

6.1 Tree Dimensions

Tree species are classified based on the shape and geometry of their branches
(Koenig and Höfle 2016). As well as height information, multiplex geometric
metrics extracted from LiDAR which captures tree spatial neighbourhood data in
3D or 2D (two-dimensional)—such as grid, raster, voxel, or height layers—are
beneficial. Utilising LiDAR-derived data, we quantified the 3D texture, leaf cluster-
ing degree, foliage clustering scale, and gap distribution of a single tree in horizontal
and vertical directions. The approach attained an overall accuracy of 77.5% (k= 0.7)
for the categorisation of four species. According to Li et al. (2013) tree extraction
should be improved to further improve the classification accuracy. A method for
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categorising conifer species according to their inside and outside crown structure
was proposed by Harikumar et al. (2017). Using 3D region growth and key element
analysis, this model accurately describes the branch structure. 94.7% accuracy was
achieved for species categorisation using the proposed method, and its usefulness
was proven for recognising the species of conifers. It is important to test the
recommended modelling method more extensively to study the influences of
crown overlap and understory vegetation, as well as the impact of damaged trees
with missing branches and trees with asymmetrical crowns. Feature representations
of the internal structure of the crown are useful in tree species classification (Li et al.
2013; Lin and Hyyppä 2016). LiDAR data with an extremely dense resolution is
needed for identifying such features.

6.2 Aboveground Biomass

Aboveground biomass (AGB) from forests is critical for monitoring the global
carbon cycle and reducing climate change’s consequences (Ghosh and Behera
2018). Although aboveground biomass comprises both alive and dead plant mate-
rial, current research on biomass measurement has concentrated somewhat on the
‘active’ component (live trees) due to its significance. To better understand the
consequences of deforestation and environmental degradation on climate change,
accurate biomass calculations are necessary. Aboveground biomass measurement
provides the foundation for carbon inventories and the bulk of global discussions on
carbon trading regimes. Carbon markets need continuing data on carbon stocks,
especially the aboveground ‘living’ biomass, which is the most dynamic, change-
able, and manipulable of all biomass pools. This is the component of biomass that is
‘merchantable’ (Kumar and Mutanga 2017). Since the early 1970s, remote sensing
technology has been used (Ghosh and Behera 2018) to estimate biomass, and several
approaches have been developed, either in terms of model complexity (Becknell
et al. 2018) or through the use of an unmanned aerial vehicle (UAV), which provided
a novel solution (Zheng et al. 2019) for biomass estimation. The AGB value can be
determined using existing biomass allometric equations (O’Brien et al. 2019). This
was accomplished using cross-validation against an AGB subset of a vast worldwide
dataset of on-the-ground measured stem diameters, heights, and crown widths
(Camarretta et al. 2020).

6.3 Deadwood

Coarse woody debris (CWD) and deadwood are seen by forest managers as unnec-
essary consequences. Sustainability in forest management must not be ignored.
Additionally, deadwood contributes to the ecosystem by replenishing soil nutrients
and establishing microsites where plants and trees may grow. Nowadays, there is
some study that helps on detecting the CWD by remote sensing technologies such as
a high-resolution terrestrial laser scanner (TLS), an unoccupied aerial vehicle (UAV)
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laser scanner (ULS), and a combination of data from both sensors (Shokirov et al.
2021). However, a random forest (RF) classification algorithm was used and accu-
racy was very varied, depending on the data and ground vegetation cover, and
ranged between 20% and 86%, and 12% and 96%, respectively, when compared
to field data. The accuracy of CWD identification varied according to plant type, the
quantity of ground vegetation cover, and LiDAR data. The density of ground cover
had a significant detrimental effect on accuracy, notably for TLS and FLS data.

Other studies are using optical imagery and multispectral aerial LiDAR (Queiroz
et al. 2020) and airborne laser scanning (ALS) (Joyce et al. 2019; Jarron et al. 2021).
The use of optical imagery and multispectral aerial LiDAR with the chosen models
achieved high predictive accuracy (0.623 R2 and 0.224 root mean square error in
cross-validation; 0.721 R2 and 0.198 root mean square error in the verification area)
but required a sophisticated set of inputs, including high-resolution aerial images,
dense LiDAR point clouds, and machine learning point clouds.

As for the ALS, The accuracy of CWD detection is then evaluated at the
individual log level, and CWD volume is predicted at the plot level. The volume
totals of CWD predicted by ALS were compared to field-measured CWD and found
to be highly correlated (R= 0.81 by Jarron et al. (2021) and R = 0.96 by Joyce et al.
(2019)), allowing to expand the methodology and map CWD over a larger region.
LiDAR-based CWD identification and mapping will be beneficial for applications
that concentrate on bigger and longer pieces of CWD or applications focused on total
CWD volume.

6.4 Canopy Structure and Layering

A rainforest’s overstory, canopy, understory, shrub layer, and ground level are only a
few of its features. The canopy refers to the dense canopy of leaves and tree branches
formed by densely packed forest trees. The upper canopy rises 100–130 ft above the
forest floor, with the overstory made primarily of irregular emergent trees 130 ft or
higher. In contrast, the understory comprises leaf and branch layers under the canopy
ceiling. The shrub layer is the understory’s lowest layer, rising 5–20 ft (1.5–6 m)
above the ground, and consists of shrubby plants and tree seedlings. Field-based
observations of vertical forest structures over huge regions are time intensive and
complex, limiting the data’s use when applied to larger areas (Whitehurst et al.
2013).

Consequently, LiDAR remote sensing is an excellent technology for detecting
layers inside the vertical canopy structure. However, it is capable of providing
exceedingly detailed vertical and horizontal information (Camarretta et al. 2020).
Compared to LiDAR, structure from motion can have poor ground-level penetration
because canopy openings are too small to allow for equivalent illumination of the
ground and canopy, resulting in underexposure in imagery, and to be viewed at the
oblique angles required triangulation of position (Zarco-Tejada et al. 2014; Dandois
et al. 2017). It might, however, be enhanced by including terrestrial laser scanning
(TLS) (Fig. 6) and structure from motion (SfM) (Fig. 7). Both of these developing
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Fig. 6 Various platforms and examples of a single tree point cloud: (a) represents the terrestrial
laser scanning (TLS) platform, (b) represents the unmanned aerial vehicle (UAV) LiDAR platform,
and (c) represents the unmanned aerial vehicle (UAV) platform equipped with a digital camera.
(d, e) represent the TLS and UAV LiDAR point clouds of a single tree, respectively (Source: Zhang
et al. 2021)

Fig. 7 Cross-sections of the same forest area at Hutan Harapan obtained using (a) LiDAR
(airborne laser scanning) and (b) Structure from Motion (SfM) point clouds: The points are shaded
based on their unnormalized height above mean sea level (AMSL). The solid black and red lines
represent the digital terrain models created using LiDAR and SfM measurements, respectively
(DTM). Despite the fact that SfM generates much greater point densities, its inability to identify
ground points results in an overestimation of the ground location and, thus, an underestimate of the
top-of-canopy height (TCH; dashed lines) as compared to LiDAR. The vertical bars represent tree
heights, which are skewed downward when assessed with SfM (Source: Swinfield et al. 2019)
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technologies can collect the information below the canopy (Zhang et al. 2021) and
enhance ground position (Swinfield et al. 2019). These technologies can signifi-
cantly increase the value of UAV surveys for monitoring forest health changes and
direct restoration despite requiring wall-to-wall LiDAR coverage.

6.5 Vegetation Cover

The traditional way to identify vegetation cover is by remote sensing systems
utilising active and passive optical image sensors used in conjunction with one
another (Moorthy et al. 2011). As opposed to passive optical imaging sensors,
which can only provide comprehensive measurements of horizontal distributions
in vegetation canopies, LiDAR systems are capable of producing more accurate data
in both the horizontal and vertical dimensions (Lim et al. 2003; Vazirabad and
Karslioglu 2011), allowing for the creation of high-resolution (Asner and Mascaro
2014) digital elevation models (DEMs). Fisheye photography is a typical strategy
that may provide precise results, but it is inefficient when used in a small area since it
requires several sample locations and takes too much time. In contrast, high-
resolution aerial images, satellites, and their integration with LiDAR data are the
only options available for large areas.

6.6 Tree Species Composition

Accurate estimation of the tree species composition in forest contexts would benefit
forest ecologists, land managers, and commercial harvesters. Additionally, it may be
used to monitor biodiversity trends (Shen and Cao 2017), predict wood stocks, and
enhance forest fire risk assessments (Fricker et al. 2019). In remote sensing technol-
ogy for tree species composition, the first application was manually interpreting the
aerial photograph. However, the consequences of this technique are slow, costly in
money, and very dependent on the knowledge of researchers towards tree species
(Wang et al. 2018). Therefore, initiatives have adopted various remote sensing data
sources and classification methods to overcome these concerns. Tree species can be
distinguished by high-resolution multispectral satellite remote sensing (Immitzer et al.
2012), hyperspectral airborne imaging (Martin et al. 1998; Clark et al. 2005), and even
non-spectral airborne light detection and ranging (Holmgren and Persson 2004). In
addition, there are numerous approaches for classifying using a data fusion strategy,
integrating LiDAR with multispectral (Dalponte et al. 2012), airborne hyperspectral,
or hyperspectral images (Asner et al. 2012; Marrs and Ni-Meister 2019).
However, there are a few methods to evaluate the various techniques. For example,
Chauhan et al. evaluated classification performance by using random forest (RF),
while Shen and Cao (2017) used LiDAR metrics which were extracted and selected
by the indices of principal component analysis (PCA) and the mean decrease in Gini
index (MDG) from random forest (RF). Other studies have used different ways to
classify the tree by (Fricker et al. 2019) using a convolutional neural network classifier
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(CNN). Since many research reveal the capability of RS applications to classify
vegetation types and species, significant challenges remain in increasing the overall
diversity of species spotted and in enhancing the excellent magnification details
needed for morphological characteristics over vast areas without sacrificing the
required level of resolution (Camarretta et al. 2020).

6.7 Structural Complexity

A researcher from the University of Connecticut, Virginia Commonwealth Univer-
sity, and Purdue University prove for the first time that the structural complexity of a
forest is a more prominent predictor of carbon sequestration potential than tree
species variation (Elaina Hancock 2019). The classification of forest tree species
utilising RS systems has been studied using ALS data and remotely sensed pictures.
Therefore, many studies have been conducted to detect the structural complexity of
forests.

A study by Jayathunga et al. (2018) investigated airborne LiDAR data and aerial
photography to derive structural complexity forest by integrating multiple forest
structural attributes. First, the capacity of each plot to represent vertical and horizon-
tal differences in forest structure was determined, and second, plot-level metrics
were generated by field measurement and remote sensing data. A multivariate
collection of forest structural variables was utilised to categorise forest structure
into structural complexity classes. The canopy height, canopy density, and surface
area ratio will be measured using LiDAR and the percentage of broadleaf cover by
one image metric. The findings indicate a strong connection where the
measurements have a similar structural pattern between the different measurements.

Another research by LaRue et al. (2018) employs terrestrial LiDAR
measurements of structural complexity to characterise the organisation of plants in
the canopy and might be connected with Landsat-derived metrics via their effect on
energy and light. Connecting Landsat to terrestrial LiDAR may allow for a more
nuanced interpretation of Landsat-derived metrics and a broader spatial scale for
evaluating structural complexity. The results indicated a correlation between canopy
reflectance, greenness, and brightness and numerous indices of canopy structure.
Greenness was more correlated in stands with a higher canopy, a higher leaf area
density and diversity, and a less open and porous canopy. The result shows NDVI
had the strongest correlation with (adj. R2 = 0.52–0.62) of all greenness indicators
for the six metrics.
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Assessment and Modelling of Forest
Biomass and Carbon Stock
and Sequestration Using Various Remote
Sensing Sensor Systems

Yousif Ali Hussin

Abstract

The global climatic crisis along with the threat to the forests has increased the
need to research for more accurate and accessible methods and techniques to
quantify biomass and carbon in forest while supporting the REED+ and other
world objectives. With the aim of reaching zero net deforestation, all participant
countries of the United Nation Framework Convention on Climate Change
(UNFCCC) have to present an up-to-date report of their carbon balance periodi-
cally, as well as compensation actions of REDD+ programme. In the 2020s,
REDD+ compensation payments should start to be implemented along with the
compensation actions in which money from emission countries should be paid to
carbon stock countries. Therefore, accuracy, transparency and accessibility of the
carbon quantification processes are essential to achieve REDD+ objectives and
ultimately the conservation and enhancement of forest carbon stocks. Measure-
ment, Recording and Verification (MRV) is the mechanism to make sure that the
claim of countries that they have more carbon stock than emitted is correct.

For ages, assessment of forest aboveground biomass (AGB) and aboveground
carbon (AGC) or carbon stock has relied on the classical forest inventory
approach. Usually, DBH and tree height are measured in the field to assess forest
AGB using an allometric equation. Although forest inventory data provide the
needful information, it is time-consuming and less accessible, and datasets are
often limited to a small area. Therefore, having a robust method using remote
sensing technology to assess AGB and AGC is essential in monitoring forest
biomass and carbon stock. This technology is reasonably accurate, economical
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and operational along with the complement of field measurement. This chapter
will review several latest remote sensing sensor systems (e.g. VHRS, Airborne
RGB, SAR, Airborne LiDAR, terrestrial laser scanner and UAV RGB and MSS
images) and analysis techniques and their applications in the assessment of AGB
and carbon stock and sequestration.

Keywords

Forest AGB · Carbon stock · Carbon sequestration · Remote sensing · LiDAR ·
SAR · TLS · UAV

1 Introduction

The current climate change crisis is caused by the effects of global warming, which
is produced by the increment in the concentration of greenhouse gases (GHG) in the
atmosphere (IPCC 2018). Carbon dioxide is one of the main GHGs which resulted
from land use changes, e.g. deforestation and forest degradation. The Intergovern-
mental Panel on Climate Change (IPCC) reported that the amount of carbon dioxide
in the atmosphere is increasing by 1.4 ppm per year and this will contribute to the
increase in temperature by 1.8–4 °C by the end of the century (IPCC 2007).
Dramatic increase of CO2 concentration is highly related to human activities. Over
the past 20 years, about 75% of the anthropogenic emissions of CO2 to the atmo-
sphere are due to fossil fuel burning (IPCC 2007). The rest is mostly due to land use
change, especially deforestation. Reducing carbon emissions from deforestation and
forest degradation in developing countries is important to combat global warming. A
tonne of carbon in trees is the result of the removal of 3.67 tonnes of carbon dioxide
from the atmosphere; thus, the world’s forest ‘sink’ holds more carbon than the
atmosphere. Maintenance of existing forests as well as increasing forest area can
contribute highly to the mitigation of global climate change.

Aboveground biomass (AGB) estimation is a key for quantifying carbon stocks in
forests. The carbon stored in the aboveground living biomass of trees is the largest
pool and the most directly impacted by deforestation and forest degradation (Gibbs
et al. 2007). Thus, estimation of the AGB with sufficient accuracy to analyse carbon
stored in the forest is important for recently emerging policies like REDD+. How-
ever, the most accurate method for the estimation of biomass is through cutting of
trees and weighing of their parts, which is time consuming and expensive for large
areas. This destructive method is often used to validate other less invasive and
cheaper methods, such as the estimation of carbon stock using non-destructive
in-situ measurements and remote sensing. The aim of this chapter is to assess the
accuracy of various remote sensing sensor system data to estimate and model forest
AGB and AGC.
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2 Remote Sensing and AGB/Carbon Stock Assessment

Remote sensing technology is widely used in forestry to retrieve forest parameters,
e.g. DBH, trees and stand height, trees and stand BA, trees and stand volume,
aboveground biomass (AGB) and carbon stock. Remote sensing has the advantage
of acquiring spatial data over a larger area that is not accessible to traditional field
survey. Remote sensing techniques, through different sensors and methods, offer
means for estimating AGB. The advantage of using remote sensing data is that
spatial distribution of forest biomass can be obtained at reasonable cost and with
acceptable accuracy. Moreover, attempts have been made to estimate forest biomass
and carbon stock using different platforms (airborne and space-borne) and sensors
(optical, radar and LiDAR). However, some of these remotely sensed images and
data tend to be inaccurate or very costly for AGB estimation in tropical forest (Gibbs
et al. 2007). Furthermore, several methods have been proposed for estimating forest
biomass using remote sensing techniques that make use of a combination of regres-
sion models, vegetation indices and canopy reflectance models.

Very high-resolution satellite (VHRS) images in the early 2000s together with
object-based image analysis (OBIA) techniques have started providing opportunities
to improve AGB estimation analysis through assessing tree crown projection area
(CPA) using OBIA and image segmentation techniques. The relationship between
stem diameter at breast height (DBH) and CPA of a tree opens a possibility to
calculate AGB using high-resolution optical imagery where every tree is identifiable.

Crown area or crown projection area is defined as the proportion of the forest
floor that is covered by the vertical projection of the tree crowns (Jennings et al.
1999) as shown in Fig. 1. CPA is calculated from the maximum crown diameter
assuming a circular crown projection.

During the 2010s, LiDAR (light detection and ranging) or ALS (airborne laser
scanner) becomes more accurate in assessing tree height. ALS uses its laser beams
which are sent from aircraft to the forest canopy, and through the technique the
canopy height model (CHM) or tree height can be calculated by subtracting DTM
(digital terrain model) from DSM (digital surface model) as seen in Fig. 2. The

Fig. 1 Crown projection area, after (Gschwantner et al. 2009)
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Fig. 2 Canopy height model
CHM = DSM - DTM

Fig. 3 TLS measurements and output in a forest circular sample

presentation of the ALS data is 3D point clouds, which is considered as the most
accurate remotely sensed data in terms of geometry and coordinates.

The density of point clouds would make the shape of the object (tree). The higher
the number of point clouds per square meter, the better the representation of the
object. Hence, high density, e.g. 30–40 point clouds per square meter, can show
much higher details of the object, while low point cloud density would poorly
represent the object. Combining CPA measured from VHRS images and tree height
measured using ALS has improved the AGB estimation using regression models.

Terrestrial laser scanning (TLS) is also known as ground-based LiDAR. It uses a
laser and a scanning system to automatically measure the surrounding environment
during a very short timeframe. The TLS is typically mounted on a tripod over a
ground position specified by a certain application (Fig. 3). The objects around the
static scanning position are captured by 3-D points reflected by the nearest object
surfaces in the direction of the laser beams. The scanner measures the surrounding
environment in horizontal and vertical directions stepwise, with a fast vertical mirror
rotation and a slower horizontal instrument rotation. The output of multiple scanning
of a circular plot in forest is a group of hundreds of thousands of point clouds and a
very accurate 3D presentation of trees.

From TLS data DBH, height, stem and canopy volume can be measured.
SAR or synthetic aperture radar is a type of radar sensor that has been widely used

to monitor land surfaces due to its characteristics of using its own illumination
energy, penetration of earth superficial materials and night imaging and
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Fig. 4 Scattering contribution from the forest [Images adapted from Carver (1988)]

all-weather imaging capability. SAR as an active sensor is a side looking system: It
transmits electromagnetic pulses as it moves along its path and sequentially records
the backscattered signal. The received backscatter results in the detection of object
and determination of its position. In forestry, the penetration properties of the radar
image are of significance to model forest AGB. The pulse penetration has a signifi-
cant influence on the choice of a wavelength and polarisation channel for forest
biomass estimation. The wavelength bands from X, C, S, L, P and polarisation
channels of the radar system determine the penetration ability of the electromagnetic
pulses and scattering mechanisms of signals received by the radar sensor. Wave-
length bands L and P together with cross-polarisation VH and HV are known for
their penetration characteristics within the forest layer which in turn results in three
types of radar pulse scattering mechanisms. The mechanisms are surface scattering
or single bounce, double bounce or ground and tree trunk and volume scattering. The
volume scattering from forest canopy is of importance for forest AGB estimation.
Figure 4 shows an example of the volume scattering of L-band cross-polarisation as
adapted from Carver (1988).

Data acquisition using unmanned aerial vehicle (UAV)-based platform has high
operational flexibility in terms of cost, time, platforms, place and repeatability
compared to the satellite-based platform and traditional manned photogrammetric
operations. UAV has the capability of providing high spatial and temporal resolution
data which is useful in assessing AGB and carbon stock (Fritz et al. 2013). UAV
platform can capture high-resolution images that can be used effectively and effi-
ciently to generate the digital terrain model (DTM), digital surface model (DSM) and
orthomosaic image (Stöcker et al. 2017). Moreover, conventional remote sensing
techniques can provide horizontal forest structure accurately rather than vertical
forest structure. On the contrary, UAV is capable of providing horizontal and vertical
forest structure. Therefore, more accurate estimation of forest stand parameters,
e.g. CPA, height and AGB, can be assessed from 3D orthomosaic UAV images
(Fig. 5).

The captured images from the UAV platform are used to generate DSM, DTM
and orthomosaic based on structure from motion (SfM) technique. Structure from
motion (SfM) represents the process to obtain a three-dimensional structure of a
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Fig. 5 UAV orthomosaic image (left) and CHM or trees height image (right)

scene of an object from a series of digital images (Micheletti et al. 2015). SfM
photogrammetry is cost- and time-effective to estimate forest AGB and carbon stock.
SfM uses a sequence of overlapping images to produce a sparse 3D model of the
scene. SfM photogrammetry approach is capable of generating a digital surface
model, reflecting the top of the canopy in the case of a forest and a digital terrain
model. Canopy height model (CHM) can be generated from DSM and DTM. From
CHM, the tree height can be extracted that would be the input for allometric
equations to assess biomass and carbon.

Among all biophysical parameters of the tree, diameter at breast height (DBH) is
one of the essential variables to assess the biomass and carbon because it explains
more than 95% variation in biomass (Gibbs et al. 2007). Studies have proved that
there is a significant relationship between CPA and DBH (Anderson et al. 2000;
Hussin et al. 2014). The correlation was demonstrated between CPA and all parts of
trees such as foliage mass, branch mass and stem mass for biomass. Tree height can
be estimated using CHM. Thus, aboveground biomass and carbon stock can be
assessed based on the relationship between CPA and DBH and CHM using regres-
sion model and allometric equations.

3 Key Literatures of Remote Sensing Applications in Forest
AGB and Carbon Stock Estimation

The following are samples of key development in research work using different
remote sensing sensor systems to assess forest AGB and carbon stock in this decade.
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3.1 Very High-Resolution Satellite (VHRS) Image Applications

Hussin et al. (2014) have reported that the methods of forest carbon estimation using
remote sensing data and techniques are evolving within a short timeframe as
compared to traditional forest inventory methods. Object-based image analysis
(OBIA) provided new opportunities to improve biomass and carbon stock estimation
and mapping by delineating and classifying crown projection area (CPA) of individ-
ual trees. In this paper, image segmentation techniques of OBIA (region growing and
valley following) are being applied on GeoEye-1 satellite data and compared in
terms of accuracy in Ludhikhola watershed in the Gorkha District of Nepal. Accu-
racy assessment of tree crown delineation of both segmentation approaches was
analysed using accuracy measures of D and one-to-one (1:1) correspondence. The
combination of over-segmentation and under-segmentation, D is interpreted as the
‘closeness’ measure to an ideal segmentation, results in relation to a predefined
reference set. Region growing and valley following segmentation with 68% and 58%
accuracy, respectively, were achieved and linear regression model was developed for
carbon stock for Shorea robusta which resulted into a coefficient of determination
value of 0.67 at 95% confidence level and the coefficient of determination resulted
into a value of 0.70 for other species. The research concluded that region growing
approach showed better delineation as compared to valley follow approach, since it
used both features of local maxima and local minima.

A study by Karna et al. (2015) in which they aimed to develop species-specific
regression model using canopy projection area (CPA) and LiDAR (ALS) derived
tree height as predictor variables for accurate estimation and mapping of carbon
stock in tropical forests of Chitwan, Nepal. In this study WorldView-2 image was
co-registered to airborne LiDAR data. LiDAR data was further processed to obtain
the canopy height model (CHM) by subtracting digital terrain model (DTM) from
digital surface model (DSM). Both the pan-sharpened image and CHM layers were
used for tree crown delineation to extract CPA and height of the individual trees.
Aboveground carbon stock was calculated from field-measured DBH and height
using species-specific allometric equation and a conversion factor. Species-wise
multiple regression models were developed using CPA, LiDAR height and field-
measured carbon stock for carbon mapping of the study area. Shannon diversity
index of each community forest (CF) was calculated to find out the relationship
between tree species diversity and carbon stock of CF.

LiDAR or ALS-derived height showed overestimation of field height with RMSE
of 3.84 m and was able to explain 76% of variability in height measurement. Multi-
resolution segmentation resulted with overall accuracy of 75% in 1:1 correspon-
dence and 67% segmentation accuracy (33% error) was observed from goodness of
fit (D value). Transformed divergence indicated a good separation among different
tree species with best average separability of 1970.99. NIR1, NIR2 and Red-Edge of
WorldView-2 image were found to be the best bands for spectral separability. Tree
species classification resulted in overall accuracy of 58.06% and Kappa statistics
0.47 for classifying six tree species. On average correlation coefficients of CPA and
carbon, height and carbon and CPA and height were found to be 0.73, 0.76 and 0.63,
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respectively, and indicated significant relationship for five dominant tree species.
Species-wise multiple regression models were able to explain 94%, 78%, 76%, 84%
and 78% of variation in carbon estimation using CPA and LiDAR height for Shorea
robusta, Lagerstroemia parviflora, Terminalia tomentosa, Schima wallichii and
others, respectively. A total of 188,485 Mg C carbon stock was estimated with an
average of 216 MgCha-1. The relationship between tree diversity and carbon stock
at CF level was not significant and indicated weak correlation. They concluded that
WorldView-2 satellite imagery and airborne LiDAR data are very promising remote
sensing sources for estimating and mapping species-wise aboveground carbon stock
of tropical forests.

3.2 Airborne Laser Scanner (ALS) Applications

A study by Bazezew et al. (2018) presents an approach for accurate assessment of
AGB of tropical rainforest of Ayer Hitam, Malaysia, by integrating airborne laser
scanner (ALS) and terrestrial laser scanner (TLS). Integrative use of ALS and TLS of
modern remote sensing technologies has enabled to detect a comparable number of
manually recorded trees. ALS and TLS were used to detect and extract upper and
lower canopies tree parameters, respectively. About 62% of trees were detected by
ALS, while the remaining 38% were detected by TLS. The height of upper and lower
canopy trees was then measured from the corresponding ALS and TLS point cloud
data. Diameter at breast height (DBH) of all trees was measured by TLS, and ALS
detected trees were matched and linked with the corresponding tree stems detected
by TLS for DBH use. DBH derived from TLS was validated using manually
measured field DBH. On the other hand, two ways of tree height validation were
implemented: upper canopy and lower canopies tree height. Upper canopy tree
height measured from ALS was used as a ground-truth reference to validate
corresponding field-based tree heights.

For lower canopy trees height measurement validation, controlled field experi-
ment was performed to assess the accuracy and height measurement variation of the
TLS and handheld laser instruments (Leica DISTO 510, TruPulse and Forestry Laser
Rangefinder). Height measurements were done in the known height of the
windowsills and selected solitary and complex cluster of trees. The result showed
TLS provides highly accurate height approaching to the actual heights of the
windowsills with root mean square (RMSE) of 5 cm, while Leica DISTO
510, TruPulse and Forestry Laser Rangefinder provided RMSE of 60, 73 and
85 cm, respectively. Height measurement with handheld laser instruments showed
deviations from regression line with increasing distance and height of the object. On
the other hand, handheld laser instrument height measurement of selected trees
showed significant differences among observers and distances to the tree.

Coefficient of determination (R2) and RMSE between field and TLS-based DBH
were 0.989 and 1.30 cm (6.52%), respectively. The R2 and RMSE between upper
canopy tree field-based height and the corresponding heights identified by ALS were
0.61 and 3.24 m (20.18%), respectively. On the other hand, R2 of 0.69 and RMSE of
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1.45 m (14.77%) were found for lower canopy tree heights when field-based height
was validated with TLS-measured tree heights. The AGB calculated from the
combination of ALS- and TLS-derived parameters was compared with the tradi-
tional field-based AGB at the plot level, and R2 of 0.966 and RMSE of 0.62 Mg
(7.64%) were achieved.

Wassihun et al. (2019) have investigated the effect of forest stand density on the
estimation of AGB/carbon stock using ALS- and TLS-derived tree parameters in
Berkelah tropical rainforest, Malaysia. Purposive sampling approach was adopted
for the selection of the unit of analysis. Results are based on data collected from
32 sample plots measured and scanned in the field. ALS was used to derive upper
canopy tree height, while TLS was used to derive the height of lower canopy trees
and DBH of all scanned trees in all sampled plots. DBH measured in the field was
used to validate the DBH manually derived from TLS (terrestrial laser scanner) point
cloud data and it was also used to compute the stand basal area of field-measured
trees and extracted from TLS point cloud data. The DBH manually derived from
TLS point cloud was used to estimate AGB of the sampled plots for both upper and
lower canopy trees. Descriptive statistics, linear regression and correlation analysis
were used to answer the research questions of this study.

The coefficient of determination (R2) and RMSE of the DBH manually derived
from TLS point cloud data validated by field-measured DBH were 0.99 and 1.37 cm,
respectively. This result revealed the existence of almost one-to-one relationship,
and based on the statistical test undertaken, there is no statistically significant
difference between the two DBH measurements. Out of 1033 trees measured and
scanned in the field, 855 trees (82.7%) were extracted from TLS point cloud data and
178 trees (17.3%) were missed. The Pearson’s correlation coefficient (r) between
total number of trees measured and scanned in the field and total number of trees
extracted from TLS point cloud was 0.95. R2 of 0.89 and 0.15 was found to explain
the relationship between the number of missed trees per plot against number of trees
measured in the field and number of missed trees against forest stand density,
respectively, per plot regardless of the size of missed trees. On the other hand, R2

of 0.912 and 0.179 was found for forest stand density against aboveground biomass
and number of trees per plot against aboveground biomass, respectively. Further-
more, for AGB sensitivity analysis, when TLS tree height was validated by
corresponding trees height from ALS, 0.72 and 2.42 m were found for R2 and
RMSE, respectively, and AGB was not sensitive to TLS tree height measurement
variation. Finally, based on the findings, forest stand density significantly affects the
estimation of aboveground biomass at alpha equal to 0.01 significance level.

Ojoatre et al. (2019) in a study aimed at assessing the uncertainty of tree height
and aboveground biomass from terrestrial laser scanner (TLS) and hypsometer using
airborne laser scanner (ALS) data in tropical rainforests of Ayer Hitam, Malaysia.
Then they assess the effects of tree height accuracy on the forest biomass and carbon
stock through sensitivity analysis of the error in height measurement and how it
affects the accuracy of tree biomass/carbon stock. Field height measurement using
Leica DISTO 510 showed underestimation of tree height with RMSE of 4.07 m,
while TLS showed underestimation of height with RMSE 1.33 m when airborne
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LiDAR was used as a standard to validate the field and TLS measurements. There
was significant difference in the amount of AGB and carbon stock from the three
(3) different measurements notably 146.33 Mg of AGB and 68.77 Mg of carbon
from field measurements, 170.86 Mg of AGB and 80.31 Mg of carbon from TLS and
179.85 Mg of AGB and 84.53 Mg of carbon from the airborne LiDAR. Considering
the airborne LiDAR measurement as the most accurate, the AGB and carbon stock
from field represent 85.55% of respective total AGB and carbon stick estimation
from airborne LiDAR. Meanwhile TLS measurements reflect 95.02% of respective
AGB and carbon stock estimated using airborne LiDAR as a standard measurement.
The results have shown that the amount of AGB and carbon stocks is sensitive to
height measurement errors resulting from the various methods used to undertake the
measurements and the forest conditions; airborne LiDAR measures tree height more
accurately compared to field measurements using Leica DISTO 510 and TLS as they
are terrestrially based and cannot accurately capture the top of trees as airborne
LiDAR.

Kumar et al. (2012) have reported that light detection and ranging (LiDAR), a
relatively recent active remote sensing technology, can provide accurate appraisal of
vertical forest canopy structure. Individual tree and stand-level physical attributes
such as height, vertical structure, canopy closure and density can be retrieved from
LiDAR data. In their research they present a novel method to precisely detect
individual trees from high-density airborne LiDAR point cloud data. Tree canopies
are delineated using object-based image analysis and a new approach of Thiessen
polygons. Further an array of important tree parameters such as tree height, canopy
projection area (CPA), canopy base height, canopy volume, canopy density, canopy
gaps, local tree density and canopy inclination have been extracted from the LiDAR
point cloud data to prepare geospatial forest inventory. The research also deals with
tree species classification based on query method on structural tree parameters in
inventory database. Lastly, the sequestered forest carbon in the study area has been
assessed by developing regression equation from the extracted parameters. Tree
peaks were detected with high accuracy of 96%, while best crown segmentation
accuracy for region growing segmentation approach was 84% with 93.5% one-to-
one (1:1) correspondence. Thiessen polygon segmentation approach proved to be a
good estimator of CPA with 94.2% 1:1 correspondence and it could explain refer-
ence CPA with R2 = 0.90, RMSE = 3.2 m2. Tree height was extracted with
R2 = 0.86, RMSE = 0.86 m, while canopy base height was extracted with an
accuracy of R2 = 0.73, RMSE = 0.86 m. Species classification was achieved with
an overall accuracy of 97%. The best carbon model using extracted parameters had
accuracy of R2 = 0.78, RMSE = 0.23 kg. In this research, LiDAR has emerged as a
potential technology to fulfil the needs of precision forestry.

3.3 Terrestrial Laser Scanner (TLS) Applications

In a study by Kalwar et al. (2021), they assessed forest inventory parameters
(species, position, diameter at breast height (DBH), tree height, etc.) in tropical
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rainforest of Royal Belum State Park of Malaysia using TLS. Data on these
parameters were collected from field observations to be used as ground truth. TLS
data of the sample plot were acquired through multiple scanning using a Riegl
VZ-400 scanner. Pre-processing and registration of multiple scans were done in
RSCAN PRO software. After that all sampled trees within the inventory plots of
500 m2 were extracted manually in RiSCAN PRO. Then DBH and tree height were
measured manually in RiSCAN PRO and CloudCompare software. Automatic
derivation of DBH and tree height was also computed using Computree algorithms.
The inventory parameters derived from different methods were compared to analyse
the relationships between them. Aboveground biomass (AGB) stocks of the sample
plots were estimated based on both the field-measured and TLS-derived DBH and
tree height using an allometric equation. A conversion factor (0.47) was used to
convert AGB stocks to aboveground carbon (AGC) stocks.

Plot-wise average manual and automatic detection rate of tree was 80 and 90 %
achieved with respect to field observations. The average of plot values of R2 and
RMSE was 0.95, 2.7 cm and 0.93, 2.29 cm, respectively, for manual and automatic
computation of DBH. Similarly, the average of plot values of R2 and RMSE for
manual measurement and automatic derivation of tree height was 0.77, 2.96 m and
0.04 and 5.35 m, respectively.

The average stocks of AGB and AGC estimated from field-measured DBH and
tree height were 286 Mg ha-1 and 134 Mg ha-1, respectively, while the average
stocks of AGB and AGC estimated from manually measured DBH and tree height
from TLS data were 278 Mg ha-1 and 130 Mg ha-1, respectively. Similarly, the R2

values for the estimated AGB and AGC from manually measured DBH and tree
height from T-LiDAR data were 0.93 and the corresponding RMSE values were
42.4 Mg ha-1 and 19.9 Mg ha-1. The RMSE% value for AGB and AGC was 14.8%,
i.e. AGB and AGC can be estimated with 14.8 accuracy with respect to field-
measured DBH and tree height.

Thus, this study suggests that TLS technology has potential to derive forest plot
inventory parameters (stem detection, BDH and tree height) for AGB and AGC
estimation in tropical forest. Compared with field measurement, these parameters
were manually measured with reasonable accuracy from TLS data. Automatic
derivation of these parameters was not very successful. There is a need to develop
robust algorithms for automatic derivation of forest inventory parameters.

Another study on TLS applications by Beyene et al. (2020) aimed at the assess-
ment of the effect of scanning positions of TLS on derivation of tropical forest
inventory parameters and aboveground biomass estimation in the tropical rainforest
of Ayer Hitam, Malaysia.

Therefore, for this study, four and five scanning positions were used to derive
forest inventory parameters and aboveground biomass or carbon stock estimation. A
total of ten sample plots were established to collect validation data from field.
Concurrently with the field data collection, the sample plot was scanned with TLS
using four and five scanning positions. The point cloud data was then processed
using manual and automatic extraction method in RiSCAN PRO and Computree
software. Thus, the individual trees were extracted manually and automatically from
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the point cloud. Respectively, the overall manual extraction percentage of trees was
97.99 and 99.55% for the four and five scanning positions. Similarly, the automatic
extraction of individual trees was analysed with respect to the collected field data
and the result showed that 91% and 93.75% of the trees were extracted from the four
and five scanning positions, respectively. Moreover, the accuracy of the automatic
and manually measured TLS DBH was validated using the field-measured DBH as
independent variable.

The root mean square error (RMSE) for the manually derived DBH from the four
and five scanning positions was 1.66 cm (8.06%) and 1.37 cm (6.60), respectively.
Similarly, the RMSE for the automatically derived DBH from the four and five
scanning positions was 3.12 cm (14.57%) and 2.36 cm (11.47%), respectively. The
RMSE for the automatically measured height from the five and four scanning
positions was 3.17 m (17.40%) and 3.68 m (19.97%). The result also showed R2

value of 0.98 and RMSE of 0.077 Mg for above aground biomass calculated from
five scanning positions. There was no significant difference of AGB 84.65 Mg and
39.78 Mg of carbon from manually measured parameters and AGB of 77.24 Mg and
36.31 Mg of carbon measured from automatically measured parameters with four
scanning positions. Similarly, the result of the aboveground biomass and carbon was
calculated manually and automatically from the five scanning positions and they did
not show a significant difference with a value of 101.2 Mg AGB and 47.48 Mg of
carbon and 83.75 Mg of AGB and 39.36 Mg of carbon, respectively. The result has
shown that increasing the number of scanning position from four to five did not have
any effect both in the derivation of parameters and aboveground biomass or carbon
stock estimation. However, it has an effect on the extraction of individual trees from
the point cloud data since increasing the number of scanning positions has the
potential to capture all the trees within the sample area.

In other study by Muumbe et al. (2021) they explored the feasibility of using
terrestrial laser scanner and quantitative structure modelling (QSM) to assess AGB
in a tropical rainforest of Ayer Hitam Forest Reserve, Malaysia. In this study point
clouds were acquired from 26 circular plots of 500 m2 using a RIEGL VZ 400 ter-
restrial laser scanner. Registration, extraction of individual trees and measurement of
DBH and height were conducted in RISCAN PRO v 2.1. One hundred (100) trees
were selected for the QSM reconstruction based on extraction quality and DBH
distribution. TLS-derived DBH and height with wood density were used to calculate
AGB from allometric equations. AGB was calculated from the QSM-derived vol-
ume and wood density. The DBH and height derived from the TLS were compared
to the DBH and height measured from the field. The AGB biomass derived from
allometric equations was compared with the AGB derived from QSM and the
distribution of AGB along the different parts of the trees was assessed. Sensitivity
analysis was carried out on parameters that affect the volume reconstruction. These
parameters are the number of runs, cover set diameters and nmin values. Above-
ground carbon (AGC) per tree was calculated by using a conversion factor of 0.47 to
convert the AGB/tree into AGC/tree.

Field-measured DBH with TLS-derived DBH showed a high correlation with an
R2 of 0.993 and an RMSE of 1.1 cm, while field height and TLS height showed a low



Assessment and Modelling of Forest Biomass and Carbon Stock. . . 87

correlation with an R2 of 0.589 and an RMSE of 3.4 m. Of the 100 trees,
29 observations had trunk biomass greater than canopy and 71 observations had
canopy biomass greater than trunk biomass. Of the 29 observations, there was a
strong relationship between AGB from allometric equations and from QSM. An R2

of 0.968 with an RMSE of 120 kg/tree was observed when using the FAO default
wood density value for Asia (0.57 g/cm3) and an R2 of 0.934 and an RMSE of
131.61 kg/tree were obtained using species-specific wood density. The
71 observations showed a slightly lower relationship with an R2 of 0.817 and an
RMSE of 163 kg/tree using 0.57 g/cm3 wood density and an R2 of 0.797 with an
RMSE of 198 kg/tree using species-specific wood density. Compared to the allome-
try reference AGB was overestimated by 47% for 100 trees. No statistically signifi-
cant difference was observed in using either the FAO default wood density value or
species-specific wood density in calculating AGB. The average AGC per tree was
294 kg/tree using species-specific wood density values and 281 kg/tree using the
FAO default wood density value.

This study shows the potential of TLS and QSM in estimating AGB but further
work is needed for accurate reconstruction of trees in a heterogeneous forest.
Reconstruction of the trees was not very successful as many factors play a role in
producing a robust reconstruction. There is a need to develop algorithms that
properly extract individual trees from point clouds, accurately separate the branches
and leafs before reconstruction and also automate the process of finding optimum
modelling parameters to suit the variety of species.

3.4 Synthetic Aperture Radar (SAR) Applications

The first study on SAR application in assessing AGB is by Masolele et al. (2019),
which examined the application of L-band ALOS-2 PALSAR-2 SAR data to model
the AGB/carbon stock and carbon sequestration of the tropical rainforest. The SAR
parameters were evaluated on the basis of the single SAR backscatter image and time
series analysis of SAR backscatter, together with an analysis of the influence of
combined HV and HH backscatter on AGB estimation. Also, the saturation effect of
radar backscatter for AGB estimation was established by determining the saturation
level at which AGB prediction tends to level off. The seasonal (moist, dry) depen-
dence of SAR backscatter for AGB estimation was also analysed. The satellite SAR
data used for this study were represented by a time series of SAR images acquired in
three-time periods: September 2006, January 2017 and September 2017 by the
ALOS-2 PALSAR-2 sensor. The study area is in the tropical rainforest Berkelah,
Malaysia, and represented a typically managed complex tropical rainforest land. The
relationship of different L-band SAR parameters and their temporal stability was
studied along with reference field AGB data calculated from forest DBH and tree
height measurements. Further, two polarimetric parameters, cross-polarisation and
co-polarisation backscatter, were chosen for further investigation and AGB retrieval.

A relationship between forest AGB and L-band SAR parameters was established
using the linear, logarithmic and multiple regression approaches. Ways of obtaining
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the optimal combination of L-band SAR images were evaluated as well. For a single
scene, the best results were observed with HV-polarised backscatter (R2 ≈ 0.82,
RMSE ≈ 79 tons ha-1) and (R2 ≈ 0.87, RMSE ≈ 68 tons ha-1) using logarithmic
regression for scenes acquired in September 2016 and September 2017 conditions,
respectively. SAR backscatter saturation was estimated at 270 tons ha-1, the point at
which SAR backscatter response to AGB started to decrease by 0.02dB. At the same
time, AGB validation result with an (R2 ≈ 0.8, RMSE ≈ 84 tons ha-1) and (R2 ≈
0.78, RMSE ≈ 88 tons ha-1) was achieved for logarithmic and linear regression
analysis of HV backscatter, respectively. Hence, logarithmic regression was a better
predictor of AGB than using linear regression. Multiple aggregations of HV and HH
did not significantly improve the AGB estimates for both studied SAR parameters
with p-value> 0.05. The stronger achievement was observed in the estimation of the
amount of carbon sequestration between September 2016 and September 2017. An
estimated total of 3.62 tons ha-1 of carbon was sequestered in Berkelah forest in
1 year. This study proved that combining temporal series of SAR scenes could be a
better estimator of carbon sequestration.

In general L-band, SAR backscatter has proved to have a significant potential for
AGB/carbon stock estimation and carbon sequestration. It provides an opportunity
for climate change programmes (REDD+) to engage more in using SAR data for
forest carbon monitoring. However, challenges of SAR backscatter saturation,
moisture effect on SAR backscatter and accurate forest height estimation for AGB
estimation using SAR data still need to be addressed.

However, when using SAR data to assess AGB in mangrove forest, the accuracy
estimation is relatively low according to the literatures. In this context, Nesha et al.
(2020) study was carried out to estimate AGB/carbon stock using backscatter
coefficients of ALOS-2 PALSAR-2 in the part of the mangrove forest at Mahakam
Delta, East Kalimantan, Indonesia. The forest parameters (DBH and tree height)
were collected from a total of 71 sampling plots in October 2018. The forest
parameters were used to calculate the field-based AGB using an allometric equation
for the mangrove forests. PALSAR-2 data with level 1.1 fine beam dual (FBD)
polarisation was obtained from JAXA. A linear regression model was applied to
estimate AGB in the study area (105 ha) using HV and HH polarisation backscatter
of PALSAR-2. The accuracy of the AGB estimation was assessed in terms of R2,
RMSE and p-value. The results of the linear regression models revealed that HV
backscatter coefficients estimate AGB with high accuracy at R2 of 0.89, RMSE of
23.16 tons ha-1 and p-value < 0.01. The accuracy of the model validation was also
high at R2 of 0.89, RMSE of 22.69 tons ha-1 and p-value < 0.01. This implied that
HV backscatter coefficients of PALSAR-2 predicted AGB in the mangrove forest
with 89% accuracy in our study. Therefore, the equation derived from the simple
linear regression model was used to map the AGB and carbon stock in the study area.
The estimated AGB in the study area of the mangrove forest ranged from 1 to
350 tons ha-1 with an average of 181 tons ha-1, and the total AGB accounted for
13,719 tons.

The findings of our study showed a promising accuracy in estimating AGB using
HV-polarised ALOS-2 PALSAR-2 backscatter coefficients in the mangrove forest.
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Therefore, our study concluded that L-band ALOS-2 PALSAR-2 data has a great
potential to estimate AGB with high accuracy in the mangrove forest as in the inland
forest in the tropics. Thus, the findings of our study can contribute to the MRV
mechanism of UN-REDD+ programme for monitoring the carbon emission reduc-
tion in the mangrove forests in the tropics.

Sumareke (2016) in her study model and map AGB and carbon stock of Ayer
Hitam Rainforest Reserve in Malaysia using ALOS PalSAR images, data from
27 plots were assessed. Out of these data, 17 plots were used for developing the
model and other 10 plots were retained for model validation. AGB was obtained
based on plot level using the improved allometric equation developed by Chave et al.
(2015). Meanwhile, backscatter coefficient from HH and HV polarisation was
retrieved and converted to sigma nought. Besides, total stand BA, average DBH
and height were also obtained.

Correlation and simple linear regression analyses were done separately between
observed AGB and backscatter coefficient of ALOS-2 PALSAR, HH and HV
polarisation. Results of the analysis showed a positive and strong relationship
(R2 = 0.817) between AGB and HV-polarised backscatter. About 82% of the
variability in AGB was explained by the HV backscatter coefficient. The ten
independent data were used to validate the model. The predicted AGB was plotted
against the observed AGB. A strong correlation was identified with R2 of 0.796. The
correlation was significant at 99 and 95% confidence level. The AGB of the study
area was estimated using the simple linear regression developed with HV backscatter
and AGB. The AGB and carbon stock map of the Ayer Hitam Forest Reserve were
produced. Carbon stock values were calculated using 0.5 conversion factor.

The observed amount of AGB of AHFR obtained from the measured data using
the allometric equation ranges from 60.17 to 367.07, while the estimated AGB using
the simple linear model with HV SAR data ranges from 20 to 576.42 tons ha-1. The
average AGB for observed and estimated was 208.79 tons ha-1 and 257.98 tons ha-
1, respectively. The total estimated AGB of the whole study area of AHFR derived
from HV backscatter is. 321,966.28 tons, while the total AGB observed is about
260,574.27 tons. Average estimated carbon stock of AHFR is 128.99 tons ha-1 and
the total estimated carbon stock is 160,983.14 tons.

The present study found that the average value of AGB per ha-1 obtained in
AHFR agrees with several similar studies which were carried out in tropical
countries as well in Malaysia using ALOS PALSAR. This indicates that ALOS-
2 PALSAR-2 is able to estimate AGB accurately in tropical countries. Further study
is needed to be undertaken in saturation sensitivity analysis of ALOS-2 PALS-2 in
tropical forest with high density of biomass.

3.5 Unmanned Aerial Vehicle (UAV) Applications

Reuben et al. (2017) have investigated the accuracy of tree height derived from point
clouds of UAV compared to airborne laser scanner and its effect on estimating
biomass and carbon stock in a part of tropical rainforest of Ayer Hitam, Malaysia.
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The accuracy of photogrammetry (structure from motion (SfM)) image matching
DTM of UAV and that of LiDAR was assessed by using height (z value) recorded by
differential global positioning system (DGPS), and it was revealed that RMSE of
UAV DTM was 3.84 m or 7.96% and R2 = 0.96, while the same measures for
LiDAR RMSE, RMSE% and R2 were 1.25 m, 2.75% and 0.99. Then the accuracy of
the DTM of UAV was assessed by comparison to the DTM of ALS in all six flights
of UAV, and the results revealed that RMSE, RMSE% and R2 were 0.31–1.49 m,
1.57–8.34% and 0.53 to 0.82, respectively. The accuracy assessment went further
and assessed DTM generated from photogrammetry image matching of UAV in
the area which shows small difference between UAV and LiDAR DTM. In this case
the RMSE was 0.19 m, RMSE% = 0.5%, and R2 was 0.99, while at the same area,
the estimated tree height of UAV images compared to tree height from airborne
LiDAR showed RMSE of 1.56 m and RMSE% of 8.7 with R2 of 0.80.

Tree height measurements were conducted by using three main methods: field
measurement using Leica DISTO, UAV and ALS. The accuracy of estimating tree
height of the field and UAV was validated by using the tree height derived from
ALS. The validation of field-measured tree height revealed that the RMSE was 2.55
m RMSE% of 15.25 and R2 of 0.62. When the estimated tree height of UAV was
regressed with derived tree height from ALS, R2 was 0.78, while RMSE was 1.7 m
and RMSE% was 9.63. Furthermore, the AGB and carbon stock were computed
using an allometric equation which utilised diameter at breast height (DBH), tree
height and wood density. The AGB and carbon stock did not show statistically
significant difference, and the total biomass computed was 189.48 Mg, 177.13 Mg
and 172.97 Mg for ALS, UAV and field, respectively. The accuracy assessment
revealed that 97% of field biomass was accurately modelled by ALS computed
biomass, with RMSE of 0.11 Mg (24%), while 99% of calculated UAV biomass was
accurately predicted by ALS computed biomass, with RMSE of 0.06 Mg and RMSE
% of 13.The measured tree heights were later adjusted to reveal its influence on the
calculated AGB and carbon stock. The field tree height was adjusted based on
RMSE of 3 m, while tree height derived from photogrammetry image matching of
UAV was adjusted by RMSE = 4 m.

Kustiyanto et al. (2019) have assessed aboveground biomass (AGB)/carbon stock
using UAV images of 2017 and 2018 as well as calculate carbon sequestration over a
1-year period in a part of mangrove forest in Mahakam Delta, East Kalimantan,
Indonesia. Fieldwork was done to collect biometric mangrove tree parameters such
as diameter at breast height (DBH) and tree height to calculate aboveground
biomass/carbon stock and carbon sequestration using UAV images of October
2017 and December 2018. These results were compared with biometric data col-
lected in the field to assess its accuracy.

The results show that there was a significant relationship between crown diameter
derived from crown projection area of UAV images and the ground-truth DBH of
both 2017 and 2018. The results reveal that there was a strong relationship between
tree height derived from canopy height model (CHM) of UAV images and tree
height derived from terrestrial laser scanner (TLS) data in 2017 and 2018. The AGB
modelled from UAV images was 102 Mg/ha and 112Mg/ha in 2017 and 2018, while
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the AGB from biometric (i.e. ground truth) data in 2017 was 104 Mg/ha and in 2018
was 114 Mg/ha. According to the results from UAV images in the period from
October 2017 to December 2018, sequestered carbon was 6 Mg/ha/year compared to
5 Mg/ha/years of carbon sequestration assessed using biometric ground-truth data.

Hashem et al. (2019) have investigated the assessment of forest aboveground
biomass/carbon stock and carbon sequestration using high-resolution UAV images
in tropical forest of Kebun Raya Samarinda, East Kalimantan, Indonesia. The DSM,
DTM and orthomosaic were generated based on structure from motion (SfM) and 3D
point cloud filtering techniques. The canopy height model (CHM) was generated
from the DSM and DTM. The height extracted from the CHM and the predicted
DBH calculated from the CPA based on the quadratic model were used as input in
the generic allometric equation to estimate AGB and carbon stock.

The F-test and t-test revealed that the tree height extracted from CHM and the
field-measured tree height had no significant difference. The relationship between
field DBH and manually delineated CPA was made and showed the highest coeffi-
cient of determination and lowest RMSE for the quadratic model. The model
validation also performed and showed a strong correlation between observed DBH
and predicted DBH. The results of the F-test and t-test revealed that there was no
statistically significant difference between field-based AGB and UAV-based AGB.
The total amount of sequestered carbon for 1 year was assessed at 6.32 Mg ha-1. The
difference of UAV-based AGB with and without inflated/deflated height was found
to be 21.66 Mg ha-1 which is equivalent to 8.73% of original estimated UAV-based
AGB without inflation and deflation of height. The single factor/one-way ANOVA
test revealed that there was a statistically significant difference between estimated
UAV-based AGB with 8.94% inflation and deflation of height and UAV-based AGB
without inflation/deflation of height. The average variation of biomass due to 1%
inflation and deflation of CPA was 2.47 Mg ha-1 and showed statistically insignifi-
cant influence on biomass estimation. For 5% inflation and deflation of CPA, the
average variation of biomass was estimated to be 12.37 Mg ha-1. Despite its large
variation, it had no statistically significant difference from original biomass, but the
amount of AGB was observed very much close to the estimated amount of
sequestered biomass for 1 year. On the other hand, the average variation of biomass
24.70 Mg ha-1 was estimated to be 10% inflated and deflated CPA that showed a
statistically significant difference and it affected 9.96% variation of AGB from the
original biomass. The estimated amount of carbon due to CPA error was double
compared to the amount of sequestered carbon for 1 year. To summarise, this study
showed a novelty by assessing carbon sequestration using UAV images for 2 con-
secutive years.

Gaden et al. (2022) have assessed the potential of UAV multispectral imagery
over the UAV RGB images for estimation of AGB and carbon stock in coniferous
forest of Haagse Bos, Netherlands.

Tree parameters derived from UAV multispectral and RGB imagery to estimate
aboveground biomass or carbon (AGB/AGC) were evaluated in a temperate conifer
forest of the Netherlands. A total of 650 trees measured in 35 plots were employed as
a reference parameter to assess the accuracy of UAV-estimated parameters through
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linear regression using statistical indicators such as correlation (r), determination of
coefficient (R2), the slope of the regression (β) line, RMSE and bias (%). The results
demonstrate the potentiality of UAV multispectral images with SfM algorithm to
retrieve tree parameters to estimate AGB/AGC.

Tree crown diameter (CD) was derived from canopy projection area (CPA)
manually digitised from multispectral (MS) and RGB orthomosaic. The comparison
of crown diameter from MS CPA showed higher (r = 0.98) agreement with RGB
CPA. However, a paired t-test showed a significant difference in mean tree crown
diameter (t = -7.94, df = 629, p < 0.05).

The tree height (TH) in this study was extracted from the canopy height model
(CHM) produced from a digital surface model (DSM) and digital terrain model
(DTM). The study found that MS-derived tree height (R2 = 0.72, RMSE = 2.6 m)
was less accurate than RGB-derived tree height (R2 = 0.75, RMSE = 2.2 m).
One-way ANOVA F-test showed a significant difference between the group
means of tree height (F (2, 1887) = 36.95, p < 0.05). The follow-up Tukey post
hoc test showed a significant difference between all group means of tree height ( p<
0.05).

A set of regression models were compared to determine how accurately the tree
diameter at breast height (DBH) can be estimated using UAV-derived parameters.
Among the models, tree height and crown diameter (TH × CD) were better in
predicting DBH compared to TH, CPA and CD as an independent predictor. The
model validation using independent dataset showedMS model (R2= 0.82; RMSE=
4.39 cm) performing better than RGB model (R2 = 0.79; RMSE = 4.65 cm) in
estimating DBH. However, the one-way ANOVA F-test showed no significant
difference in a group means of DBH (F (2, 747) = 0.01, p > 0.05).

The species-specific allometric equation was used in this study to estimate the
AGB. At the plot level, the mean AGB estimated from field-measured parameters
was 9.02 Mg plot-1, while the mean AGB estimated from MS and RGB imagery
was 8.50 and 9.10 Mg plot-1, respectively. Since half of the AGB was considered as
a carbon conversion factor, the mean AGB estimated from the field, MS and RGB
parameters were 4.50, 4.24 and 4.54 Mg plot-1, respectively. One-way ANOVA F-
test showed no significant difference between the group means of AGB estimates
(F (2, 1887) = 0.76, p > 0.05).

The accuracy of AGB estimates was assessed both at a tree and hectare level by
extrapolating the plot-wise AGB estimates. At tree level, the accuracy of MS AGB
estimates (R2 = 0.89; RMSE = 166.96 kg) was higher than RGB AGB estimates
(R2 = 0.86; RMSE = 193.29 kg). Similarly, at hectare level, the accuracy of MS
AGB estimates (R2 = 0.93, RMSE = 25.40 Mg) was higher than RGB AGB
estimates (R2 = 0.89, RMSE = 31.83 Mg). Simple t-test showed that the slope of
regression line between field and UAV-based AGB estimates was significantly
different from one (β ≠ 1, p < 0.05).
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4 Conclusions

The following conclusive remarks can be made:
• VHRS images can be used to assess AGB and carbon stock with reasonable

accuracy based on the identification of canopy projection area (CPA).
• Airborne laser scanner (ALS) or airborne LiDAR can be used to assess tree height

with high accuracy. It also can detect and delineate CPA accurately. However,
when ALS height is used together with CPA from VHRS, a good accuracy can be
achieved for AGB and carbon stock.

• High-density point clouds (35/m2 or more) from ALS can assess AGB and carbon
stock very accurately.

• L-band cross-polarised radar backscatter can model AGB, carbon stock and
carbon sequestration with good accuracy.

• Terrestrial laser scanner data can be used to assess AGB and carbon stock with
good accuracy only on plot basis.

• Very high-resolution unmanned airborne vehicle (UAV) RGB or MSS images
can be used to assess AGB, carbon stock and carbon sequestration with good
accuracy.
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Part III

Modelling and Monitoring



Forest fires are inevitable events that cause negative impacts on forests and
threaten the sustainability of forest resources. For effective combating against
forest fires, the ground teams should arrive at the fire scene in critical response
time in which the possibility of extinguishing the fire is very high. Road
networks, including public and forest roads, are the main structures that ensure
ground access to the forest resources for management and protection purposes. A
network analysis method is effectively used to solve complex transportation
problems. Most recent advances in computer technology and geographical infor-
mation system (GIS) tools with network analysis-based modules have made it
possible to develop GIS-based decision support system (DSS) for solving such
transportation problems. Network analysis features of proprietary and open
source software provide managers with effective methods to define the fastest
fire-access route and accessible forested areas by ground teams considering the
critical response time. The new route and closest facility methods under Network
Analyst tool of ArcGIS software assist fire managers to search for the optimum
route that minimizes the travel time of the ground team to the fire. A new service
area, which is a well-known method under Network Analyst, is used to evaluate
accessibility of the forest areas by the ground teams. This chapter provides a
comprehensive review of the previous studies, conducted on the spatial modeling
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of transport and accessibility for the forest resources based on the specific GIS
modules.

Keywords

Forest fires · Fire-access route · GIS-based DSS · GIS tools · Closest facilities ·
New service area

1 Introduction

The public pressure and demands on forest products have increased the pressure on
forest resources. The most obvious reflections of the pressure on forest resources are
manifested as opening up of forests, illegal cutting, and forest fires. Forest fires are as
one of the top severe factors damaging forest resources in many regions in the world
due to the existence of fire-sensitive plant species and the arid climatic conditions in
summer (Haska et al. 2021). Forest fires lead to reduction in the economic values of
the trees, which become more susceptible to insects and fungus after fire damages.

The efficiency of the firefighting activities is of great importance in reducing
possible volume and value losses of forest resources due to forest fires. To effec-
tively respond to forest fires, especially in fire-sensitive forests, the transportation
time of the ground team to the fire scenes should not exceed the critical response
time. For this reason, the optimum route that will enable the ground team to arrive at
the fire areas in the shortest time possible after the fire announcement is received
should be determined. The network analysis method is widely preferred in solving
transportation problems involving the determination of the optimum route that
minimizes the travel time of a vehicle between two know points. The advances in
computer programming and GIS technology make it possible to use network
analysis-based GIS techniques to solve transportation problems. Particularly, the
new route, new closest facility, and new service area methods under Network
Analyst tool of ArcGIS software provide fire managers with effective tools to search
for the optimum route to the fire areas and to determine the forest areas that can be
reached within the critical response time (Akay et al. 2012).

The GIS-based DSS using the new route and new closest facilities methods has
been examined to determine the most appropriate route that allows firefighting teams
to reach the fire areas in the shortest time (Dimitrakopoulos et al. 2011; Akay et al.
2012; Podolskaia et al. 2019a, 2020a, b). In such studies, the effects of variables such
as road type, road condition, and population density on the solution phase were
evaluated. The decision support systems using new service area have been also used
to determine where fire trucks should be placed to maximize firefighting efficiency
(Akay et al. 2018; Akay and Taş 2020). In this chapter, a broad overview on spatial
modeling of transport and resources accessibility for protecting forest ecosystems
against forest fires was presented by reviewing previously conducted studies. Firstly,
the studies on the optimum ground access route to forest fires, accessible forest lands
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by firefighting teams, and their optimal locations are provided, and then the studies
on the forest roads as effective infrastructures for fire protection are reviewed.

2 The Optimum Ground Access Route to Forest Fires

For effective firefighting activities, it is crucial that the ground team should arrive at
the fire scene within the critical response time. In a study conducted by Bilici (2009),
the effects of forest roads along with fires firebreaks and fireline on early access of
ground teams to the fire areas were investigated by using the GIS-based network
analysis method. Gallipoli National Park in the city of Çanakkale in Turkey was
selected as the study area. The network analysis method was used in order to
compare the road network without fires firebreaks and fireline and the road network
with fires firebreaks and fireline in terms of the fastest access to fire. With this
method, it was found that in 27 of 30 inquiries made for 10 potential fire points, the
route in the road network with fires firebreaks and fireline was shorter than the route
on the road network where fires firebreaks and fireline were not considered. In
addition, it has been revealed in the study that the walking distance from the end
of the road to the fire point on the route formed as a result of an inquiry was shorter in
the road network with fires firebreaks and fireline. When the results of the inquiry
were examined, it was determined that fires firebreaks and fireline contributed
positively to forest fires at the point of early intervention, and it was revealed that
forest roads should be planned together with fires firebreaks and fireline.

Akay et al. (2012) developed a GIS-based DSS to find the optimum route which
minimized the transportation time of the ground team from stations to the potential
forest fire locations. The application area of the project consists of six forest
enterprise directorates located in Regional Forestry Directorate of Kahramanmaraş
in Turkey. These Enterprises were classified as sensitive to forest fire and there were
20 fire stations available in the region. In the study, firstly, the digital layers for the
road networks (forest roads, rural roads, highways), the fire stations, and previous
fire areas (15 fires) were produced by using ArcGIS. Then, network database was
generated based on the road layer where travel time of fire truck was assigned to each
road section. The travel time was a function of the section length and average truck
speed, which varied based on road type and condition. Finally, the optimum route
from each ground team to the potential fire areas was found by the new closest
facility method (Fig. 1). Besides, inaccessible roads, closed due to fire or some other
reasons, were eliminated in the network database, so that the optimum route also
provided the safest path. The results indicated that ground teams could not reach
7 out of 15 potential fire areas on time. When the barriers were placed in the
database, inaccessible fires increased to eight fires. To increase the efficiency of
the ground teams in the study area, it was suggested to locate new fire station,
increase the road density, and improve the road standards.

In a study conducted by Podolskaia et al. (2019a), the traveling time of special
vehicles (fire trucks, tank trucks, etc.) and the distance from the nearest fire station to
a forest fire were estimated using the regional transport model, generated by the
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Fig. 1 Optimum routes to potential fire areas (Akay et al. 2012)

Network Analyst tool in ArcGIS (Fig. 2). Based on the dataset of 16 years
(2002–2017), the study was conducted in Irkutsk region of Russian Federation
where forests are highly sensitive to fires (Goldammer et al. 2003). The GIS dataset
was developed to have digital data of necessary layers such as road network, forest
glades, fire stations, and forest fire locations. Then, the travel time of the vehicle was
computed based on average speed and distance data and then it was assigned to each
road section in road network layer. The vehicle speed was computed for each road
section based on the road types, elevation data, and terrain slope. The forest fire data
detected by MODIS (Moderate Resolution Imaging Spectroradiometer) satellite
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Fig. 2 Optimum routes to forest fires according to travelling time classes (Podolskaia et al. 2019a)

system (2006–2012) was used for model validation. The digital layers for fire
protection zones were generated to evaluate the accessibility of ground teams for
three time periods (i.e., 1, 2, and 3 h) recommended by the guidelines to ensure the
prompt response to forest fires based on the fire danger classes of the forests
(Classes I, II, and III). It was found that forest fires are mostly located within the
zones of 1 (68.2%) and 2 h (24.3%) availability, while almost all of the fires (98.5%)
were accessible in 3 h. The results revealed that the ground protection zone was
designed by considering the arrival time of the ground team to the forest fire within
3 h. It was emphasized that the success of the transport value depends on up-to-date
spatial data on the road networks and forest glades.

Podolskaia et al. (2020a) developed a GIS technology to determine the optimum
ground access routes for special fire vehicles departing from fire-chemical stations
and arriving at the detected fire areas. The study was implemented in the central part
of the Siberian Federal District in Russian Federation. In the study, the digital data
layers for public roads, forest glades, locations of the fire-chemical stations, and
forest fires detected by MODIS satellite system (2002–2019) were generated in
ArcGIS. Then, a GIS technology consisted of a Python-based set of programs was
developed to generate a thematic map of road accessibility to forest fires based on
key elements including access time (in hours), road length (in kilometers), and
average vehicle speed (in kilometers per hour). The results indicated that most of
forest fires recorded in 2002–2019 were accessible by the ground team. However,
forest fires located away from the center of the Siberian District were not well
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accessed by the ground teams. It was also pointed out that forest fires become less
accessible when the forest areas get larger.

Some current experience in solving the transport modeling tasks for ground
access, mainly in the Russian forestry, is described in a study conducted by
Podolskaia (2021a). The geodata sources, data services, and Open Source
developments, as well as using various remote sensing data and spatial resolution
for the transport modeling, were noted. The projects were done by the scientific and
educational institutions in Russia on forest transport accessibility which is a complex
issue accenting on the environment and economy. It was suggested that the work
should be continued to determine the optimum location for the fire stations, cutting
areas, and forest warehouses considering different regions and forest infrastructures.
Other potential future studies provided in the study were developing new methods to
balance the infrastructural load and natural stability of forest ecosystems.

3 Accessible Forest Lands by Firefighting Teams and Their
Optimal Locations

The term “transport accessibility” is widely used in different applications. In the
modern forest management worldwide transport logistics of technical means and
human resources along the roads to timely reach a place of forest fire or a forest area
are among the most challenging ones for forest ecosystem protection and use.
Relevant geospatial data for public roads of seasonal and off-seasonal use as well
as forest roads and their volume and quality remain essential for the forestry projects
(Podolskaia 2021b). From the data management point of view, spatial modeling of
transport and resources accessibility depends on the continuous increase of geodata
archives and complexity of their practical use.

Implementation of GIS for the ground and aviation transport accessibility and
links between fire stations and destinations in the forests at the regional and country
levels have been among the research topics already for certain years, especially in the
countries covered by forests and having strong and constant forest fire periods.
Russia and Turkey are two country examples with such forest fire activity in their
warm respective seasons of the year, mainly from spring to autumn.

Ground transport accessibility relates with a question of placing a fire station
(a fire-chemical station in Russian forestry terminology) or a logistical center in a
particular region. According to the Russian forestry regulations, fire stations and
their firefighting brigades are putted in place in the regions to prevent, detect, and
limit the spread of forest fires in a timely manner. They are located mainly in the
settlements, make a forest fire regional protection network, and include forest
enterprises, national parks, and state nature reserves. They have special firefighting
equipment, heavy vehicles, and staff.

A research undertaken by Akay et al. (2018) showed that about 1/3 of forest land
(Mustafakemalpasa, Bursa, Turkey) was reachable from presently located fire
stations in a time frame regulated by the forestry in Turkey. Forest accessibility
increased up to 72% when the authors applied a scenario with new fire station
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location. This scenario includes implementation of GIS-based decision support
system (Akay et al. 2012). Fire risk degrees for the fire-sensitive areas have been
considered and presented in the cartographic form, including accessibility maps for
forest areas with a system of access time frames in the paper (Akay and Taş 2020) for
the Yenikoy Forest Enterprise Chief which is closed to the Karacabey Forest
Enterprise Directorate (Bursa, Turkey). An important study’s output states that
about 24% of forest areas were accessible for fire extinguishing works within
30 min.

In Russian Federation forestry transport modeling is a research area for educa-
tional and scientific institutions. At the Center for Forest Ecology and Productivity of
the Russian Academy of Sciences (CEPF RAS), there is a “Transportation Task”
research group which is a part of the Laboratory of Forest Ecosystems Monitoring.
Its ongoing activities and projects include the implementation of Open Data and
Open Source GIS tools, globally known datasets of OSM and QGIS (Podolskaia
2020, 2021c). In the paper of Podolskaia et al. (2020a), they did a quality control of
existing transport systems’ datasets by road type (public, forest road, forest glades)
and made a comparison with the archived road data.

One of the recent studies was a work done by Podolskaia et al. (2019b) for the
large territories of Siberia, the Russian Federation. In order to estimate the spatial
location of fire stations the authors suggest three data groups, namely: presence of
road network (length, density, and configuration), forest fires detected by satellites,
and fire station service areas. GIS analysis with its buffering, allocation, density, as
well as geographic and directional distribution, was used as method. The researchers
noted that there are other factors and data, and they can certainly influence the fire
station’s location (access regime of protected areas, use of road depending on the
season, zones of protection against forest fires, placement of stations in the most
populated areas, etc.). It was advisable to make a fire station placement analysis
before and after the fire hazardous season; its results would be of help for retrospec-
tive evaluation and forecasting of forest firefighting events.

Accessibility of forest resources presented in the work of Podolskaia et al.
(2020c) uses a scenario approach for the territory of regional scale in Russia. A
general scheme of methodology including brief data description and operations with
data is presented in Fig. 3; it consists of the steps of scenario’s preparation, then
mapping and analysis.

Novosibirsk region, located in the southwest of the Siberian Federal district of
Russian Federation, has been chosen as a key research area because of its developed
infrastructure in combination with constant annual forest fire activity; according to
the MODIS data it is classified by mixed broadleaf-coniferous forests and non-forest
vegetation (Fig. 4). In the study (Podolskaia et al. 2020c) the authors have moved
from the previous estimations of forest fires’ accessibility (Podolskaia et al. 2019b,
2020b) to the accessibility of forest areas and their resources (Podolskaia et al.
2020c). Spatial transport modeling included creation and use of transport model
for two forest management scenarios, namely: without any barriers and with
forestries (unit of forestry management in Russia) as barriers; this second one is
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Fig. 3 General scheme of methodology (Podolskaia et al. 2020c)

Fig. 4 Key area (Podolskaia et al. 2020c)

spatially presented in Fig. 5. As we can see on the map, the majority of forestries
have at least one fire station within their borders.

In that study, the location of existing fire stations has been evaluated under the 3 h
condition which is an actual critical response time to access forest fires by ground
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Fig. 5 Fire stations and forests as barriers within Novosibirsk region (Podolskaia et al. 2020c)

technical means in Russian forestry. Fire stations were used as starting points of
move along the roads. By implementing this relatively strict time limit for the
“no-barriers” scenario, the authors noted that there were about 17% of inaccessible
forest areas (namely, forest pixels of MODIS satellite coverage); about 14% of areas
were reachable within more than 3 h and 20%—within an hour (Fig. 6). Quantitative
results confirmed that forest management scenario of “no barriers” is more
promising than a scenario with barriers. The authors detailed that up to 83% of
forests (MODIS pixels) of Novosibirsk region were reachable by moving along the
roads of different types in “no-barriers” scenario.

Along with the proprietary GIS software like ArcGIS from ESRI, Open Source
tools nowadays are of great importance in the geoinformation research. A review of
Open Source QGIS forestry plugins done in the study conducted by Podolskaia
(2021c) described plugins for the tasks of forest fire and forest resources monitoring
and management. Plugin analysis done in this work was aimed to help future
researchers by providing them with a list of QGIS plugins compatible to QGIS
version 3.18 (as an example of version available for the users in 2021) for a forestry
GIS project. An option for future research subjects may be a development of plugins
with available data in the form of cartographic services for territories of different
spatial coverage, taking into account that archived data and their accessibility is a
key asset in the forestry. Subject-related forest scope in the present-day repository of
QGIS plugins tends to be relatively limited. Such review of plugin functionality has
to be performed repeatedly, following the QGIS developments and trends. Overall,
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Fig. 6 Transport accessibility of forest resources in Novosibirsk Region. No-Barriers scenario
classified by time, in hours (Podolskaia et al. 2020c)

the role of Open Geodata and Open Source GIS instruments will be stably very
important in the forestry industrial and scientific projects.

4 Forest Roads as Effective Infrastructures for Fire Protection

Forest fire is recognized as one of the most detrimental natural disasters damaging
forest resources. Aricak et al. (2014) facilitated high-resolution GeoEye satellite
images and GIS data to investigate the potential fire risk zones in the forest area
based on stand characteristics (age, crown closure, tree species). The flowchart of the
implemented methodology is given in Fig. 7. In the study, the road networks in the
forest area located in the Central District of the Kastamonu Regional Forest Direc-
torate in Turkey were also included in the database. The fire trucks used during
extinguishing of forest fires were able to spray water and chemicals with the pressure
of 40 bars. Thus, in spite of ground slope steepness, a fire truck can intervene in an
area with a minimum diameter of 400 m. Then, a buffer zone with the width of 400 m
was generated for both sides of the roads using proximity tool in ArcGIS. Finally, the
areas that can and cannot be intervened in the potential fire risk areas from the
existing roads have been effectively determined by using GIS techniques. In a
similar study conducted by Drosos et al. (2014), a model was developed to optimize
opening ups in forest lands by primarily considering the fire prevention and
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Fig. 7 Work flow of the study (Aricak et al. 2014)

suppression. The fire-suppression buffer zones were generated based on topography
to define the lands being reached by the hoses of fire trucks. In the study, the buffer
widths were considered as 150–300 m for uphill and 250–500 m for downhill from a
location where the fire trucks are located.

Akay et al. (2017) searched for the fire-access zones by fire trucks in forested
areas located in Kahramanmaraş where forests are sensitive to forest fires because of
high temperatures and low humidity in summer season. In the study, GIS techniques
were used to determine fire-access zones in forested areas by using the reach distance
of the water sprayed by the fire hoses of fire trucks. The accessible buffer zones were
defined from both sides of the roads, while taking into account ground slope, terrain
structures (uphill, downhill, and flat), and the capabilities of the fire trucks. In the
first stage, GIS database was generated to produce necessary data layers including
road network map, forest land map, and fire sensitivity map. The ground slope map
was produced using the Digital Elevation Model (DEM) derived from an ASTER
satellite image. Then, the terrain structure of the study area was produced by
considering the road network as the reference surface. For the locations over the
reference surface, the terrain structure was determined as uphill, while it was
downhill when they are under the reference surface. The locations that were at the
same elevation with the reference surface were defined as flat areas. In the study,
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Fig. 8 The accessible and
inaccessible forest areas

specific formulas were developed to determine the fire-access zone widths for
downhill, uphill, and flat areas, considering the maximum water pressure at the
pump, the minimum water pressure at the nozzle, the water pressure loss for each
10 m distance from the fire truck due to friction, and the ground slope. The areas with
very high slope (more than 60%) were excluded from the fire-access zones since it
could be unsafe and not applicable to conduct firefighting on steep slopes. Finally,
the fire-access zone map was generated, indicating protected and unprotected forest
areas (Fig. 8). The results indicated that the accessible forests, sensitive to fire with
the first, second, and third degrees, were 69.59%, 69.96%, and 67.16%, respectively.
The results revealed that determining the areas outside of reach distance of the hoses
can provide an important information to evaluate the capabilities of the road network
in firefighting activities.

Forest road networks are the most important infrastructures that provide access to
forest areas for the protection and operation of forest resources. Increasing vehicle
speed by improving road standards, especially in forests with high fire risk, will
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make a significant contribution to the expansion of accessible forest areas within the
critical response time. Therefore, the improvement of road standards and the effec-
tiveness of firefighting activities should be evaluated together. Akay et al. (2021)
used GIS techniques to search for the potential contribution of improving road
standards on expanding the forest areas that can be reached by the ground team
within the critical response time. The study was implemented in the first-degree fire-
sensitive forests located in Mediterranean city of Kahramanmaraş in Turkey. In the
study, primarily the forest areas that can be reached by the firefighting team (six
available teams in the region) within the critical response time were determined by
considering the existing road network in the study area. Then, the possible increase
in the accessible forest areas with high fire risk was investigated considering the
improved road standards with higher vehicle speed on forest roads. In the solution
process, the new service area method of Network Analyst tool in ArcGIS was used to
determine the forest areas that firefighting team can reach within the critical response
time. The results indicated that the accessible forested areas in critical response time
increased by 19% by considering improved road standards (Fig. 9). They
emphasized that increasing the design speed of the forest roads minimizes the arrival
time of ground teams to the fire, which increases the accessible forest areas in critical
response time.

In a study conducted in Tirana Albania, Haska et al. (2021) generated digital data
layers for the locations of fire stations and road networks using ArcGIS 10.4
software. They determined the forest areas that firefighters could reach within the
critical response time to the fire using Network Analyst. According to result of the
study, it was found that 27% of the forest areas in the study area at Tiran was
accessed by the ground team within the critical response time. In the application, an
optimal location was suggested for the additional station which potentially increased
the accessible forest areas up to 65%. In a similar study, Laschi et al. (2019)
emphasized the essential rules for planning efficient forest road network in fire-
sensitive forest lands. They suggested that the functions of forest roads should be
analyzed in fire prevention and suppression and the importance of forest roads for
protecting forests against fires should be considered in planning and building stages.
Besides, the construction and maintenance characteristics should be considered for
building and maintaining an efficient forest road network against fires. As a con-
cluding remark, it was emphasized that road maintenance activities should be
performed appropriately to have efficient transportation accessibility to potential
forest fire areas.

5 Conclusion

This chapter described three topical directions of international research in the
forestry spatial modeling indicating the optimality of access routes to forest fires
and accessibility of forest resources and forest fires and highlighting the forest roads
as a key element of forestry infrastructure. Ground transport features are regularly
changing geometrically and attributively and becoming just more complex from
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Fig. 9 The accessible forest areas for existing roads and improved roads

their technical maintenance, data management, and data analysis points of view.
Forestry as industry uses a mixed network consisting of public off-seasonal and
seasonal roads as well as of special forest roads used for logging purposes mainly.

Experience of two countries with different geographical location, state forestry
situation, rules in the forest management, as well as spatial extents of key areas gave
an opportunity to find the commonalities and differences in the undertaken studies.
For example, research done by Turkish scientists confirmed by calculations that
improved road standards and timely and appropriate maintenance of forest roads
would improve the accessibility to the forest resources and forest fires.

The presented examples also show that current and future research directions are
undoubtedly based on the combination of network analysis, decision support
systems, and forest management scenarios with the help of modern GIS, namely,
extensions and plug-ins of proprietary and Open Source software. Supporting
cartographic materials with research key areas included in the chapter served as
spatial modeling results’ visualization.
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Abstract

Tropical forests play the main role in the earth’s carbon cycle sources. Nowadays,
the study for conservation and management of forest restoration is increasingly
needed to preserve the biodiversity of forests and retain the valuable species of
tropical forest for the next generation. The accurate tropical tree species recogni-
tion is one of the important issues in forest management that have relation to the
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increasing need to better understand the role of the forest ecosystem. It is essential
and valuable information towards an understanding of the ecosystem biodiversity
and its function over large spatial scales. Information such as the tree species and
location of the trees is crucial for species regeneration and ecological purposes.
Currently, machine learning (ML) has been shown a remarkable efficient evolu-
tion utilized in artificial intelligence along with the inclination of deep learning
(DL) usage in many research, and this includes tropical forest carbon stocks.
Therefore, this study aimed to classify the forest aboveground biomass by
estimating crown projection area using object-based image analysis (OBIA) and
to determine the accuracy assessment for estimating forest aboveground biomass
using an artificial neural network (ANN) and random forest (RF). This study
involved the use of the object-based technique by fusing SuperView-1 imagery
and airborne LiDAR to estimate the aboveground biomass using RF and ANN
algorithm. Statistical tools from open-source R will help bridge the gap between
analysis and implementation. This study hopes to solve the fundamental issues of
forest inventories and carbon stock modeling and will help several organizations
for estimating carbon stocks and forest fluxes.

Keywords

Machine learning · Tropical forest · Aboveground biomass · Carbon stocks

1 Introduction

The ecosystem of the forest is the biggest and the terrestrial environment’s most
significant natural ecosystem, which has a significant impact on global ecological
balancing, global biological evolution, and society’s succession (Li et al. 2020). One
of the most well-known ecosystem services that are supplied by trees is atmospheric
carbon (CO2) absorption and storage (Chazdon et al. 2016). Carbon (C) was kept in
both the aboveground and underground parts of the tree. Aboveground biomass
consists of stems, stumps, branches, bark, seeds, and leaves, while underground
biomass consists entirely of living biomass in the form of live roots. Aboveground
biomass in the forest is a major factor in tracking the carbon cycle on a global scale
and reducing climate change’s effects (Ghosh and Behera 2018).

In the study conducted by Urbazaev et al. (2018), the entire amount of above-
ground live organic matter in plants is referred to as aboveground biomass. It is
measured per unit area of oven-dry tons. Aboveground biomass in forests is an
essential variable for determining the ecological system of the forest structure and
function (Gao et al. 2018). Forest biomass estimation is important for accounting for
carbon budgets, monitoring carbon fluxes, and studying the forest ecosystem’s
reaction to climatic changes (Nandy et al. 2019). Therefore, estimating plant bio-
mass/carbon reserves helps with REDD (reducing emissions from deforestation and
forest degradation) and long-term forest conservation (Hussin et al. 2014).
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According to Vafaei et al. (2018), the main weakness of the AGB estimate in
terms of optical data is due to forest features such as a tight canopy, high variety, and
other complicated structures. As a result, optical data may become saturated and less
sensitive in high-biomass locations, making it difficult to estimate the AGB accu-
rately. However, AGB estimation is inaccurate due to data constraints (e.g., data
saturation for optical and radar data and spectral and spatial resolution limits) and
complicated connections between AGB and spectral variables (Gao et al. 2018).

According to most previous studies, the best method for estimating forest AGB is
to combine field measurements and remotely sensed datasets. However, current
AGB estimations are still subject to significant uncertainty due to inaccuracies in
the allometric equations that were utilized to estimate aboveground biomass, as well
as uncertainties in remote sensing datasets and algorithms used to estimate AGB.

Previous researchers used pixel-based methods to link AGB to environmental and
remote sensing data at the plot level. However, if compared to the object-based
image analysis classification, the majority estimation by pixel-based techniques has
some weaknesses (Silveira et al. 2019). For example, a field plot is more likely to be
found in an object than in a single pixel. Employing object-based image analysis
could decrease the unpredictability of positioning mismatch between field and image
data and using a “pure” object can successfully minimize local noise and heteroge-
neity (Zhang et al. 2018; Addink et al. 2007).

Machine learning approaches have been utilized since they successfully estimate
forest AGB in several previous studies (Vafaei et al. 2018). Although the benefits of
applying nonparametric and machine learning approaches to estimate AGB were
acknowledged, the accuracy of their estimate is highly dependent on the parameter
optimization employed in appropriate algorithms and the data’s representativeness
(Gao et al. 2018). Algorithms either learn from data or are “fit” to a collection of
data. Random forest and artificial neural network are the algorithms which have
proven the best performance in previous research. Algorithms such as artificial
neural network (ANN), random forest (RF), and support vector machine (SVM)
are widely being utilized to predict biomass by combining remote sensing and field
data in recent years (Dhanda et al. 2017; Pandit et al. 2018; Wu et al. 2016).

Previous studies have shown the importance of remote sensing technology in
accurately estimating forest aboveground biomass, even at the regional scale. In
Hunan Province’s subtropical forests, Li et al. (2020) utilized remote sensing
datasets which were combined with machine learning approaches like extreme
gradient boosting (XGBoost), linear regression, and random forest. XGBoost is a
tree-boosting algorithm that is a scalable framework common among data scientists
that produces cutting-edge results for a variety of issues. Data compression, data
fragmentation, and the usage of certain cache access patterns are all used to analyze
billions of samples in a whole dataset with just a small number of computational
resources. Previous research has also shown that decision tree-based methods, such
as gradient boosting (GB) and random forest (RF), perform very well in biomass
estimation models.
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The types of remote sensing data, combined with appropriate selection
algorithms, play an important role in accurately estimating biomass. The previous
studies showed the datasets that have been used by Li et al. (2020) were the Landsat
8 Operational Land Imager and Sentinel-1A satellites, as well as data from China’s
National Forest Continuous Inventory, which were combined with three algorithms.
Landsat, SPOT, WorldView-2, and Sentinel-2 optical remotely sensed data, as well
as their outputs, such as vegetation indices and texture pictures, have also been found
to be strongly connected to biomass (Li et al. 2020), while Vafaei et al. (2018) used
ALOS-2 PALSAR-2 and Sentinel-2A images to increase the accuracy of forest
aboveground biomass estimation. ALOS-2 PALSAR-2 data that has been combined
with Sentinel-2 MSI data has been the choice of use because the Sentinel-2A sensor
contains multispectral bands that depict different types of canopy cover reflections,
whereas the long wavelengths of the ALOS-2 PALSAR-2 sensor allow it to pene-
trate dense forest canopy. Meanwhile, Gao et al. (2018) used various datasets and
modeling methods (e.g., ALOS PALSAR L-band data, Landsat Thematic Mapper
(TM), and their mergers).

Several machine learning approaches were chosen and evaluated, such as support
vector regression (SVR), Gaussian processes (GP), random forest (RF), and multi-
layer perceptron neural networks (MPL neural nets) (Vafaei et al. 2018). These
algorithms were chosen because they’ve been shown to be successful in estimating
forest aboveground biomass for many types of studies. Meanwhile, Gao et al. (2018)
used several algorithms, such as random forest (RF), linear regression (LR),
k-nearest neighbor (kNN), support vector regression (SVR), and artificial neural
network (ANN) to estimate stratification and non-stratification of forest categories in
a subtropical area. Machine learning techniques and nonparametric such as RF,
SVR, kNN, and ANN can manage nonlinear connections in this situation. As a
result, throughout the last decade, these algorithms have gotten a lot of attention.

Therefore, this study intends to analyze the capability of the OBIA technique and
the machine learning approach using SuperView-1 imagery to improve the accuracy
of estimation of forest aboveground biomass.

2 Study Area

The Forest Research Institute Malaysia (FRIM) was selected as the study area due to
its closed forest canopies, diverse tree species composition, and structural variety.
This area’s coordinates are 3° 14′ 13′′ N, 101° 38′ 16′′ E, and it is located at
Kepong, Selangor Darul Ehsan, Malaysia. FRIM is one of the world’s foremost
research institutes on tropical forests and is classified as a lowland dipterocarp forest.
According to Nik Effendi et al. (2021), this location was chosen since it
encompasses around 545 ha and has approximately 2500 tree species. Figure 1
displays the study area map for this research.
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Fig. 1 Study area at Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia

3 Research Methodology

There are several data processes carried out in order to accomplish the aims and
objectives of the research work. The methodology of this project was divided into
four main phases, such as: (1) data collection, (2) preprocessing, (3) post-processing,
and (4) machine learning processing. The first phase project was data collection. The
datasets used in this study were tree inventory data, the SuperView-1 satellite, and
LiDAR data. The second phase project was preprocessing. The methods used in this
phase were georeferencing, orthorectification, and LAS tool processes. Then, the
third phase project was post-processing, which uses SuperView-1 satellite image and
LiDAR data to produce the accuracy assessment. The fourth phase project was
machine learning (ML) processing, which used an ANN and RF algorithm.

4 Forest Inventory, SuperView-1 Satellite Image,
and LiDAR Data

Forest inventory is referred to as the systematic acquisition of data on forest
resources within a certain region. Tree data in this study were tree ID, coordinates
for horizontal point (x) and vertical point ( y), DBH (cm), CBH (cm), CD (m), Ht
(m), family, species, common name, and status or remarks. SuperView-1 is a
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high-resolution satellite which has 0.5 m panchromatic band and four multispectral
bands. The multispectral bands for SuperView-1 are blue, green, red, and near-
infrared (NIR). Airborne LiDAR data has been used in this study to estimate the
canopy height model (CHM) of the FRIM forest. Airborne Airborne LiDAR data
was acquired in 2013, and projected to the Malayan Rectified Skew Orthomorphic
(MRSO) system.

5 Georeferencing and Orthorectification

Georeferencing involves the ability of digital maps or aerial photos’ internal coordi-
nate system to be matched to a ground system of geographic coordinates. The
georeferencing process was performed in this study using ArcGIS software. A
total of ten GCPs were chosen based on permanent benchmarks such as road corners,
automobile parking, and buildings on the ground, which was modified from GPS
data and then detected in the LiDAR point cloud on the ground (Nik Effendi et al.
2021). The projection coordinate system employed in this study was the Malayan
Rectified Skew Orthomorphic (MRSO). The orthorectification was accomplished,
and the total root mean square error (RMSE) that has been achieved was 0.249 m.

6 Segmentation and Classification Process of Tropical Forest

In order to decide the size of the objects, the algorithm must specify a scale
parameter, as well as color, shape, and smoothness/compactness weights, with a
small value creating more objects and a high value generating fewer objects (Zhang
et al. 2018). In this study, multi-resolution segmentation was performed using
27 scale parameters with 0.9 for shape and 0.8 for compactness based on trial and
error. This study used normalized difference vegetation index (NDVI) as the statis-
tical classification algorithms.

The range for tree classification is less than or equal to 0.41–0.86. This study used
mean value of brightness to find a suitable min and max range for masking the
shadow in SuperView-1 image. The range for shadow classification is less than or
equal to 310–380. While the value of max different has been used to classify the
building and road, the range that has been selected for building classification is less
than or equal to 0.2–1. Morphological methods are important for determining the
prevailing crown sizes through the geometric and structural information of tree
crowns (Jaafar et al. 2018). This study used close image objects for operator and
mask size for width value was 17. The width value that has been selected was size
13, and the circle mask.
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7 Tree Classification

This study used NDVI as the statistical classification algorithm. This algorithm has
been chosen because it can measure plants by calculating the differences between
near-infrared light that represents the vegetation strongly reflects and red light that
indicates the vegetation absorbs calculated as follows:

NDVI= NIR- Re dð Þ= NIRþ Re dð Þ 1Þ
The NDVI values always vary from -1 to +1. For example, if the NDVI value is

negative, that means the feature is water. If an NDVI value is close to +1, there could
be dense green leaves, and when NDVI is close to zero, there are not green leaves, or
it could be an urbanized region. When compared to other wavelengths, vegetation
chlorophyll reacts or reflects more near-infrared (NIR) and green light. However, it
absorbs more red and blue light. That’s why human eyes can detect vegetation in
green and near-infrared colors. This study used NDVI resolution to classify the tree
crown of tropical forest at the Forest Research Institute Malaysia (FRIM). The range
for tree classification is less than or equal to 0.41–0.86 with a small value creating
more objects and a high value generating fewer objects (Zhang et al. 2018).

8 Shadow Masking and Building Classification

The shadow was masked out of the image to outline the tree canopy using numerous
rulesets. This study used mean value of brightness to find a suitable min and max
range for masking the shadow in SuperView-1 image. The range for shadow
classification is less than or equal to 310–380. While the value of max different
has been used to classify the building and road, the range that has been selected for
building classification is less than or equal to 0.2–1.

9 Morphology

Morphological methods are important for determining the prevailing crown sizes
through the geometric and structural information of tree crowns (Jaafar et al. 2018).
Morphological operators have two types of operators, which are closing and open-
ing, that have been used to improve the shape of the segmented results’ margins.
Furthermore, the morphology parameters were adjusted to modify the mask value
depending on the appropriateness of the tree crown. The width value that has been
selected was size 13, and the circle mask. Each of the sizes should be trial and error,
based on the type of satellite image. This study used close image objects for operator
and mask size for width value was 17.
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10 Accuracy Assessment of Segmentation Output

The concepts of under-segmentation and over-segmentation have been created in
order to evaluate the multi-resolution segmentation outcome. Under-segmentation
occurs when the training sample is smaller than the segmentation output, while over-
segmentation occurs when the training sample is larger than the segmentation result.

Under‐segmentation= 1- area xi \ yjð Þð Þ= area yjð Þð Þ 2Þ
Over‐segmentation= 1- area xi yj = area xi 3

According to Eqs. 2 and 3, xi is defined as a training sample, while yj is defined as
a segmentation polygon. The over- and under-segmentation, which requires the area
of the training sample (xi), the segmentation output (yj), and the intersect area, were
used to calculate the distance index (D).

D= √ Over Segmentation^2þ Under Segmentation^2ð =2
� ð4Þ

The distance index has been used to show the ideal segmentation or closeness of
the space. The accuracy of segmentation is evaluated using a distance index (D),
which varies from 0 to 1, with 0 indicating an ideal match between xi and yj and
1 indicating the smallest discrepancy (Mohd Zaki et al. 2015).

11 Allometric Equation for AGB and Carbon Stock Estimation

This study has chosen Kenzo et al. (2009) and Mohd Zaki et al. (2018) allometric
equations for estimating forest aboveground biomass and carbon stock using a
fieldwork approach.

AGBest = 0:0829×DBH 2:43 ð5Þ
ln Sc= - 4:092 0:898 ln hL 2:073 ln DBH- 0:058 ln CPA 6

where AGBest is the aboveground estimation and DBH is the diameter at breast
height (cm), Sc is for carbon stock (kg), hL is the height of the tree from the LiDAR,
and CPA is in (m).

12 Artificial Neural Network (ANN) and Random Forest (RF)

The data used in this study consists of two types which were dependent variables and
independent variables. Dependent variable data was carbon stock (CS), while
independent variables are diameter breast height (DBH), crown projection area
(CPA), total height of tree measured in the field (hF), and height extracted from
LiDAR (hL).
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The independent variables (i.e., DBH, hL, and CPA) were used to estimate carbon
stock (dependent variable) using machine learning algorithms. Multiple linear
regression was used to estimate dependent variables. Before implementing at the
landscape level, it is vital to develop a regression model for AGB estimate at the stem
level in order to identify the most essential LiDAR metrics that correlate with field
AGB.

The Excel data in CSV (comma delimited) format was imported into RStudio
through the import dataset. The data entered were shown in the RStudio Interface’s
R-Environment. Specific scripts were utilized in conjunction with the artificial neural
network and random forest model for processing, and the packages used were
defined in the code editor to ensure that the scripts ran smoothly. The packages,
such as the “neuralnet” and “randomForest” packages used in this study, have been
installed in the graphical output of the RStudio Interface to ensure that the scripts can
be launched. The R-Console displayed the scripts that have been run. If an error
occurs when running the scripts, the errors were presented on the R-Console so that
the parts of the scripts that exhibit the issue may be rectified. The methods involved
in carbon stock prediction were data normalization, training and test sets, model
fitting, and model validation, which comprised prediction and correct computation.

To reduce the impact of a very significant predictor, two significant training
parameters were defined in RF modeling: Ntree, which is recognized as the number
of trees to be developed in the forest, and Mtry, which appears to be the number of
randomly selected variables for each node of the tree—or Ntree (number of trees
grown) or Mtry (number of predictors sampled for splitting at each node) (López-
Serrano et al. 2020).

An artificial neural network has two types of hidden layer, which are one hidden
layer and two hidden layers. In random forest, Ntree is the number of trees to be
developed in the forest, and Mtry appears to be the number of randomly selected
variables for each node of the tree, or Ntree (number of trees grown) or Mtry
(number of predictors sampled for splitting at each node) (López-Serrano et al.
2020). The data had been split into training set (70%) and testing set (30%). Data
normalization was done after done the splitting dataset using minimum and maxi-
mum normalization. Next, the model was fit using neural network or random forest
algorithm. Prediction of the independent variable and model validation was done
after the process was done.

13 Regression Model Evaluation

The following equation represents the difference between the original and predicted
values extracted by averaging the absolute difference over the dataset.

MAE=
1
N

XN

i= 1
y-byð Þ 7Þ
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The below equation represents the difference between the original and predicted
values extracted by squaring the average difference over the dataset.

MSE=
1
N

XN

i= 1
y-byð Þ2 ð8Þ

This equation represents the error rate by the square root of MSE.

RMSE=
ffiffiffiffiffiffiffiffiffiffiffi
MAE

p
=

ffiffiffiffi
1
N

r XN

i= 1
y-byð Þ2 ð9Þ

The R2 refers to the multiple coefficient of determination which measures how
well the values fit compared to the original values. The values range from 0 to 1 and
are interpreted as percentages. The higher the value, the better the model.

R2 = 1-
P

y-byð Þ2P
yð Þ2 ð10Þ

where:

y = mean value of yby = predicted value of y

An artificial neural network consists of two types of hidden layer, which are one
hidden layer and two hidden layers.

14 Results and Analysis

14.1 Description of Statistical Values of Dependent
and Independent Variables

This study applied a variety of datasets from different years, such as field data,
SuperView-1, and LiDAR dataset. Table 1 represents the statistical values of
variables that have been collected using field and remote sensing approaches.

The main objective of this study was to assess the tropical forest aboveground
biomass from SuperView-1 satellite image using machine learning (ML) approaches
of an ANN and RF. Field observation data has been used to calculate diameter breast

Table 1 Statistical values of variables (number of trees = 279)

Carbon stock (kg/tree) DBH (cm) hL (m) CPA (m2)

Min 4.891 6.015 -0.283 -0.135

Max 8407.818 10.169 3.541 0.345

Mean 1442.423 7.902 3.246 0.236

Standard dev. 1411.788 0.880 0.335 0.063
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height (DBH), while LiDAR data has been used to estimate height from LiDAR (hL)
by producing a canopy height model (CHM), and SuperView-1 image has been used
to calculate crown projection area (CPA). These values were vital in order to
estimate the carbon stock of tropical forests at the Forest Research Institute Malaysia
(FRIM).

Table 1 represents statistical values for variables from field and remote sensing
data. The statistical values for the carbon stock (kg/tree) were 4.891 min, 196.250
max, 101.142 mean, and 46.340 standard deviation. There were 6.015 min for DBH
(cm), 10.169 max, 7.902 mean, and 0.880 standard deviation. The statistical values
for hL (m) were -0.283 min, 3.541 max, 3.246 mean, and 0.335 standard deviation.
For CPA (m2) the values were -0.135 min, 0.345 max, 0.236 mean, and 0.063
standard deviation.

14.2 Analysis of Statistical Value and Accuracy Assessment of OBIA
Output

The data for crown delineation that has been segmented in eCognition software
should be overlaid with manual digitizing in ArcMap software to get the best
accuracy. Figure 2 shows four categories of tree crown segmentation that have
been processed in this study, which are: (a) perfect match, (b) mismatch segmenta-
tion, (c) over-segmentation, and (d) under-segmentation. The red line in Fig. 2
represents automatic segmentation, while the yellow line represents manual
digitization.

Table 2 represents statistical values for crown delineation reference polygons.
The statistical values for the manual digitizing output were 3034.250 m2 total area,
36 m min, 196.250 m max, 101.142 m mean, and 46.340 m standard deviation.

Fig. 2 Tree crown segmentation. (a) Perfectly match (b) Not match (c) Over-segmentation (d)
Under-segmentation
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Table 2 Statistical values for crown delineation reference polygons

Reference Manual digitizing Segmentation Intersection area between
polygon (30) output (xi) output (yj) xi and yj

Total area (m2) 3034.250 2791.051 2791.051

Min 36.000 35.695 35.695

Max 196.250 171.729 171.729

Mean 101.142 93.035 93.035

Standard
deviation

46.340 38.614 38.614

Table 3 Accuracy assessment of OBIA output

Accuracy segmentation

Total reference
polygon

Total 1:1
match

Over-
segmentation

Under-
segmentation

1:1 30 29

Goodness
of fit

0.000 0.080 0.040

Total
accuracy

96.6% 96%

There were 2791.051 m2 total area for segmentation output, 35.695 m min,
171.729 m max, 93.035 m mean, and 38.614 m standard deviation. The statistical
values for the intersection area between xi and yj were the same as the segmentation
output, which had 2791.051 m2 total area, 35.695 m min, 171.729 m max, 93.035 m
mean, and 38.614 m standard deviation.

Table 3 represents accuracy assessment of OBIA output. This study chose thirty
(30) total reference polygons to get the accuracy assessment output of OBIA. Based
on the results of Eqs. 2–4, the goodness of fit (D value) was calculated to be 96%
segmentation accuracy with 4% error. In a 1:1 match, the overall accuracy of multi-
resolution segmentation was 96.6%. The total accuracy of segmentation in this study
was more accurate than in previous studies by Nik Effendi et al. (2021) which were
86% and 0.14 for the distance index (D). As a result, the accuracy of the segmenta-
tion output in this study is acceptable and can be applied for further investigation.

14.3 The Accuracy Assessment for Estimating Forest Aboveground
Biomass Using an Artificial Neural Network (ANN)
and Random Forest (RF)

Tables 4 and 5 show the accurate assessment of the model using the artificial neural
network algorithm with different layers. The accuracy of the prediction model was
evaluated using conventional validation indices such as MAE, MSE, RMSE, and
R2adj (López-Serrano et al. 2020). Two types of hidden layers have been tested to
obtain the accuracy value in order to estimate the carbon stocks by using one hidden
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Table 5 Accuracy assessment of two hidden layers

Two
Model hidden

layer
R- Data

1 DBH +
hL - CPA

c (1,3) 709.906 654,261 808.864 0.745 Field,
LiDAR,
SV1

2 DBH +
hL - CPA

c (2,2) 1041.939 1,346,346 1160.321 0.476 Field,
LiDAR,
SV1

3 DBH +
hL - CPA

c (3,1) 617.628 493,600.5 702.567 0.808 Field,
LiDAR,
SV1

DBH diameter at breast height, hL height extracted from LiDAR, CPA crown projection area, SV1
SuperView-1

layer and two hidden layers. Based on the table, Model 3 shows the lowest accuracy
(RMSE = 702.567 Mg ha-1 and R2 = 0.808) obtained by using two hidden layers c
(3, 1) followed by model 1 with (RMSE = 808.864 Mg ha-1 and R2 = 0.745). The
less accurate result based on the table was Model 2 with (RMSE= 1160.321 Mg ha-
1 and R2 = 0.476). From the table, all the accuracy assessments of the model that
used one hidden layer had shown higher in error compared with two hidden layers.
From this, it can be concluded that using two hidden layers for prediction was better
than using one hidden layer (Thomas et al. 2017).

Table 6 shows the three variable results that been processed using a random forest
algorithm in RStudio software. In order to increase the accuracy, the model differs
based on the Mtry value obtained using the tested methods ofm= P/3, (m= √P) and
m = P, where P is the number of independent variables (López-Serrano et al. 2020).
According to the table, Model 2 has the greatest accuracy assessment
(RMSE = 55.067 Mg ha-1 and R2 = 0.998), followed by Model
3 (RMSE = 67.390 Mg ha-1 and R2 = 0.998), and finally Model
1 (RMSE = 141.326 Mg ha-1 and R2 = 0.992).

14.4 Plot the Graph and Evaluation Model of ANN and RF
Algorithms

In this study, two algorithms of machine learning approaches (ANN and RF) were
used to estimate the carbon stocks of tropical forest at FRIM by integrating field data
combined with remote sensing data such as LiDAR data and SuperView-1 image.
Figure 3 represents an accuracy graph for Model 3 of the artificial neural network
(ANN), and for Model 2 of the random forest (RF). The data for crown delineation
that has been segmented in eCognition software should be overlaid with manual
digitizing in ArcMap software to get the best accuracy.

Table 7 represents the comparison and evaluation model using ANN and RF
algorithms that have been used with the same three variable data sources. Based on
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Fig. 3 Accuracy graph: (a)
Model 3 of the artificial neural
network (ANN) (b) Model
2 of the random forest (RF)

Table 7 Comparison and evaluation model using ANN and RF algorithms

No. Algorithms MAE MSE RMS E R-squared Data sources

3 ANN 617.628 493,600.5 702.567 0.808 Field, LiDAR, SV1

2 RF 34.051 3032.437 55.067 0.998 Field, LiDAR, SV1

the validation result obtained, Model 2 that used RF algorithm represented the most
accurate accuracy assessment with an R2 value (0.998) and lower RMSE (55.067 Mg
ha-1) compared to Model 3 that used ANN algorithm which obtains the result of R2

value (0.808) with the highest RMSE value (702.567 Mg ha-1). Higher R2 and lower
RMSE values show that the model’s estimating accuracy is better (López-Serrano
et al. 2020; Li et al. 2020). Based on the previous study by Nik Effendi et al. (2021),
the multiple coefficient of determination (R2) between AGB predicted and observed
using hL, CPA, and DBH was 0.949. It was possible to conclude that a combination
of LiDAR, hyperspectral data, and field observations can be applied to estimate
AGB in a tropical forest. Overall, random forest (RF) was more suitable to estimate
carbon stock compared to an artificial neural network (ANN), and the coefficient of
determination (R2) that using random forest (RF) for Model 2 represented the
independent variables (hL, DBH, and CPA) was suitable to estimate the dependent
variable (Sc).
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15 Conclusion

Natural forests represent areas of different species of flora and fauna. Trees are vital
elements for ecosystem balance that supply the storage of oxygen to humans and
store carbon dioxide. Many effects can happen if the value of carbon dioxide is
higher, such as green house, climate change, thinning of the ozone layer, global
warming, and others. This study has been conducted to estimate the carbon stock in
the tropical forest in order to maintain the terrestrial ecosystem balance for the
Malaysian community, especially at FRIM Forest, Kepong, Selangor.

The first objective of this study was to classify the forest aboveground biomass by
estimating crown projection area (CPA) using object-based image analysis (OBIA).
This study used three combinations of data which were field observation, LiDAR
data, and SuperView-1 image in order to estimate the carbon stock in tropical forests.
LAS tool has been used in order to obtain canopy height model value. An OBIA
approach has been applied in this to classify the tree crown using automatic
segmentation and manual digitize. The OBIA approach had more advantages com-
pared to pixel-based classification, which can classify the object through its shape
and can save time without classifying the object by pixel.

The second objective was to determine the accuracy assessment for estimating
forest aboveground biomass using an artificial neural network (ANN) and random
forest (RF). This study used artificial neural network (ANN) and random forest
(RF) algorithms for machine learning approach in order to calculate the accuracy of
assessment of dependent and independent variables. Three independence variables
(DBH, hL, and CPA) have been applied in this study in order to calculate the
dependent variable (carbon stock). The random forest algorithm was more suitable
to calculate the accuracy assessment of dependent variables (Sc) and independent
variables (hL, DBH, and CPA) since it can obtain higher R2 and lower RMSE values.
The number of observation values and the number of independent variables are
crucial in obtaining an accurate and low-error validation value and ensuring that the
findings produced are neither over- nor underfitting. This study was successfully
proven by Mohd Zaki et al. (2018) since the independent variable can be used to
estimate carbon stock. In conclusion, the objectives of this study have been success-
fully achieved.
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Potential Tree Species Distribution
Modelling Using MaxEnt Model for
Resource Partitioning in Azad Jammu
and Kashmir (AJK), Pakistan
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Abstract

This chapter aims to spatially predict the potential distribution of four native
tree species (Abies pindrow, Olea ferruginea, Pinus roxburghii, and Pinus
wallichiana) using 21 bioclimatic, 2 biophysical, and 3 topographical remotely
sensed variables through MaxEnt modelling in the region of Azad Jammu and
Kashmir (AJK), Pakistan. In the MaxEnt model, a total of 739 tree occurrence
from 45 circular plots of selected species were used with selected variables,
filtered through multicollinearity tests. The jackknife test showed different essen-
tial variables influencing the prediction of species distribution, including eleva-
tion, vegetation indices, temperature, and precipitation. For all the tree species
distributions, satisfactory results were achieved with area under ROC (receiver
operating characteristic) curve (AUC) testing and training values greater than
0.74 and 0.88, respectively. Based on the 10-percentile training presence
threshold-dependent values, the True Skill Statistic (TSS) test attained at least
76% overall accuracy for tree species distribution. Abies pindrow covered
429.58 km2, Pinus wallichiana 346.28 km2, Pinus roxburghii 341.93 km2, and
Olea ferruginea 27.53 km2 area within the very highly suitable category of
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predicted potential distribution. The results also showed that the Himalayan
subtropical pine forest ecoregion has the highest tree species diversity. The
resulted resource partitioning of the selected tree species can be considered as
recommended hotspots for management and conservation activities by the local
stakeholders and government agencies to make informed decisions.

Keywords

Tree distribution · Bioclimatic · Topographical · MaxEnt · True Skill Statistic
(TSS) · Ecoregion · Resource partitioning

1 Introduction

A habitat is an integral part of the environment and home to several diverse animal
and plant species. Different species are products of the same or different habitats for
fulfilling their needs like food requirements, shelters, space occupation, and other
survival needs (Qamar et al. 2011). These species are the building blocks of a
geographic region (Chetan et al. 2014). For ecologists and conservationists, it is
vital to understand a specific species relationship with its surrounding climate and
biophysical environment (Kaky et al. 2020). To conserve and manage various plant
and animal species, reliable and accurate information on their respective habitats is
of key importance (Qamar et al. 2011).

Ecological niche models (ENMs) or species distribution models (SDMs) are
algorithmic tools that attempt to relate a geographic area’s environmental, climatic,
and other biophysical characteristics with the distribution and occurrence of a
particular species (Jaryan et al. 2013). ENMs or SDMs are extremely important to
predict the potential geographic zones of species when limited occurrence data is
available (Zhang et al. 2019). The distribution and diversity maps generated through
the ENMs or SDMs are used to design scientific surveys for scheming management
and conversation activities by related departments and authorities (Kumar et al.
2014). There are many SDMs that are being used by researchers, including
generalized linear model (GLM) (Guisan et al. 2016), multivariate adaptive regres-
sion splines (MARS) (Quirós et al. 2009), boosted regression trees (BRTs) (Becker
et al. 2020), domain environmental envelope (DOMAIN) (Carpenter et al. 1993),
ecological niche factor analysis (ENFA) (Basille et al. 2008), generic algorithm for
rule-set production (GARP) (Yang et al. 2020), and maximum entropy modelling
(MaxEnt) (Jaryan et al. 2013). Among all these SDMs, MaxEnt is particularly
endorsed and used widely by the scientific community as it produces more accurate
predictions (Gilani et al. 2020; Kaky et al. 2020). SDMs primarily rely on the
presence-only occurrence data of species for their potential spatial distribution
modelling (Bobrowski et al. 2017; Gilani et al. 2020). However, presence-absence
occurrence records of species from the field produce more certain distributions than
occurrence-only data if available (Gilani et al. 2020).
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In Pakistan, different studies reported biodiversity analysis, some of which have
used SDMs, to assess the potential distribution of animal and plant species (Qamar
et al. 2011; Khanum et al. 2013; Ali et al. 2014; Kazim et al. 2015; Ashraf et al.
2016; Zaidi et al. 2016; Fatima et al. 2016; Kabir et al. 2017; Gilani et al. 2020;
Hameed et al. 2020; Khalil et al. 2021). For instance, Qamar et al. (2011) focused on
distribution modelling of different mammal species (snow leopard, common leop-
ard, musk deer, wolf, long-tailed marmot, etc.) in Pakistan’s three national parks in
the Western Himalayas. They used mammal occurrence data along with digital
elevation model (DEM), land use and land cover (LULC) maps, and other topo-
graphical information in GIS to generate habitat maps of these animal species. The
following study by Khanum et al. (2013) used MaxEnt to assess the spatial distribu-
tion of medicinal Asclepiad species (Pentatropis spiralis, Tylophora hirsuta, and
Vincetoxicum arnottianum) in Pakistan. They used field-based occurrence informa-
tion of these species for 2010 and 2011 to run the model. The study by Ali et al.
(2014) also used MaxEnt for predicting the present and future distribution of Abies
pindrow (tree species) in Swat district in Khyber Pakhtunkhwa (KP) province of
Pakistan. Kazim et al. (2015) reported 29 species (from 17 families under 25 genera)
of spider fauna in the Gilgit-Baltistan (GB) administrative area of Pakistan. They
reported spiders’ biodiversity using literature and extensive field surveys. The study
by Zaidi et al. (2016) used MaxEnt modelling to predict the distribution of screw-
worm larvae (a fly species) in the northwest region of Pakistan. Among the four
eco-zones of the study area, the species preferred zones with more moisture content
in the climate. The subsequent study by Ashraf et al. (2016) predicted the potential
distribution of Olea ferruginea (tree species) in Pakistan. They used MaxEnt to
predict the distribution of Olea ferruginea for future climatic scenarios. Fatima et al.
(2016) used MaxEnt for modelling the spatial distribution of mosquitoes (Aedes
aegypti) in the Lahore district of Punjab, Pakistan. They related this distribution with
the spatial spread of dengue fever in the study area. The study by Kabir et al. (2017)
focused on assessing habitat suitability and movement corridors of grey wolf (Canis
lupus) in northern Pakistan. They also utilized MaxEnt for this purpose.

Similarly, Hameed et al. (2020) identified priority landscapes for snow leopard
conservation in Pakistan using MaxEnt modelling. They used 98 presence points and
11 environmental variables to achieve their objectives. The study by Gilani et al.
(2020) predicted six native tree species (Abies pindrow, Betula utilis, Cedrus
deodara, Picea smithiana, Pinus wallichiana, and Quercus ilex) in GB, Pakistan,
under a climate change scenario. They used 21 bioclimatic and three topographic
variables to perform this spatial prediction using MaxEnt. The latest study in this
regard by Khalil et al. (2021) used MaxEnt to map the potential distribution of potato
(Solanum tuberosum) crop cultivation in Pakistan. This study utilized 19 bioclimatic
variables, covariates (soil type, elevation, and irrigation), and 58 occurrence points
for modelling the distributions under climate change scenarios.

Keeping in view the discussed literature, the objectives of this study are i)
predicting the potential spatial distribution of four native tree species (Abies
pindrow, Olea ferruginea, Pinus roxburghii, and Pinus wallichiana) of Azad
Jammu and Kashmir (AJK), ii) assessing the tree species diversity in AJK, and iii)
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identifying the most diversified ecoregion based on these four native tree
species distributions.

2 Study Area

The region of AJK lies in the northeast of Punjab province, east of Islamabad Capital
Territory (ICT), east of Khyber Pakhtunkhwa (KP) province, and south of Gilgit-
Baltistan (GB) territory in Pakistan. The geographical extent of AJK lies between
32.767283° north to 35.154967° north latitude and 73.395781° east to 75.465172°
east longitude (Fig. 1). The study area is comprised of ten districts. The elevation
variation of the region ranges between 225 meters (m) to 6000 m. As a part of the
Western Himalayas, the region received rainfall in winters and summers with annual
precipitation exceeding 1300 millimetres (mm). The region is classified as subtropi-
cal, temperate, and alpine forests with dominant native conifer species of Pinus
roxburghii, Pinus wallichiana, Abies pindrow, and Cedrus deodara (Khan et al.
2020). Among important native broadleaved species, one is Olea ferruginea. The
leave extracts of Olea ferruginea are used for treating skin disease in the study area,
Pinus roxburghii is used for firewood and furniture (Azeem et al. 2020), and Pinus
wallichiana and Abies pindrow are used for medicinal purposes as well as for
construction, fuel, and exporting (Ishtiaq et al. 2012). Some of these tree species
are endangered and can become extinct if no conservation measures are taken soon
(Azeem et al. 2020).

3 Materials and Methods

The methodology is broadly split into (i) data preparation and processing
(ii) MaxEnt model calibration and evaluation (iii) tree species diversity maps. Fig-
ure 2 presents a systematic flow chart of the detailed methodology adopted to
achieve the research objectives.

3.1 Data Preparation and Processing

For this study, 739 trees species records were used for the potential spatial distribu-
tion and mapping over the entire region of AJK (Fig. 3). Geographically well-
distributed 45 circular plots (~1 ha or 0.01 km2 area) were measured.

The circular plots with specific dominant species were selected for modelling
(Table 1). For the tree species distribution, four important tree species were selected
based on their respective importance. Three (Abies pindrow, Pinus roxburghii, and
Pinus wallichiana) out of four species belong to the conifer tree species group, while
one (Olea ferruginea) belongs to the broadleaved tree species group.

Landsat-8 OLI (Operational Land Imager) 30 m cloud-free satellite data was used
to extract two biophysical variables using Google Earth Engine (GEE) cloud-
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Fig. 1 The topography and districts of Azad Jammu and Kashmir (AJK), Pakistan

computing platform. We used normalized difference normalized vegetation index
(NDVI) and enhanced vegetation index (EVI) as biophysical variables in MaxEnt
modelling. These remote sensing-based vegetation indices strongly correlate with
the changes in the chlorophyll content of tree species (Gu et al. 2007).
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Fig. 2 Systematic flow diagram of the adopted methodology
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Fig. 3 Spatial occurrence of four tree species used in distribution modelling

Table 1 Selected four native trees species for distribution modelling in AJK

The scientific name of the tree Vernacular/local name of the tree Number of Tree
species species plots counts

Abies pindrow Fir 9 120

Olea ferruginea Kahu 7 221

Pinus roxburghii Chir pine 11 102

Pinus wallichiana Blue pine 18 296
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Through GEE 30 m Shuttle Radar Topography Mission (SRTM), DEM was
extracted over the study area. The DEM generated the aspect and TRI over the
AJK region. These independent topographic variables were selected as they greatly
influence the species distribution (Wang et al. 2009).

This study included 21 readily available bioclimatic variables with ~1 kilometre
(km) spatial resolution at the equator from the Chelsa-climate web portal (https://
chelsa-climate.org/bioclim/). These bioclimatic products consist of temperature and
precipitation datasets averaged annually, quarterly, and seasonally (Table S1). The
annual aridity index (AI) and potential evapotranspiration (PET) global products
were accessed and downloaded from the CGIAR-CSI web portal (https://cgiarcsi.
community/data/global-aridity-and-pet-database/).

The global ecoregion datasets produced by Dinerstein et al. (2017) were used for
tree species diversity assessment over ecoregions lying within the study area. The
dataset was downloaded from the RESOLVE web portal (https://ecoregions.
appspot.com/).

All datasets, including bioclimatic, biophysical, and topographical variables,
were clipped over the study area i.e. AJK administrative boundary. The biophysical
and topographical 30 m variables were rescaled to ~1 km to match the resolution of
the bioclimatic variables. All variables were projected to the geographic coordinate
system (WGS84) and, after analysis, reprojected to the UTM 43N zone for area
calculation. Final rasters were converted into ASCII format as this is the format that
MaxEnt desktop software takes as input.

Multicollinearity is one of the communal problems when a high association
among variables exists, leading to unfavourable and unreliable regression
evaluations (Gilani et al. 2020). A multicollinearity test was performed among all
26 variable values, extracted against each occurrence point of each tree species.
Pearson’s correlation, one of the most widely used correlation coefficients, was used
to perform this test (Table S2). Highly correlated variables (r ≥ ±0.9) against each
tree species were disregarded for processing in MaxEnt model (Graham 2003).

3.2 MaxEnt Model Calibration and Evaluation

Out of all the tree species occurrence data, 75% points were used to train the model,
while the remaining 25% were used for 10-percentile training presence threshold-
dependent cross-validation. Only for Olea ferruginea, 35% occurrence points were
used for model validation as 25% were insufficient given the low number of
occurrence points compared to other tree species. The resultant output raster of the
MaxEnt model ranges between 0 and 1, with 0 referring to the lowest possible
occurrence space for selected species and 1 referring to the highest potential space of
selected species occurrence (Phillips and Dudík 2008). To generate absence or
background points, 10,000 randomly distributed points were generated in
MaxEnt model, which helped to calculate the reliability and accuracy of the species
prediction modelling.

https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://cgiarcsi.community/data/global-aridity-and-pet-database/
https://cgiarcsi.community/data/global-aridity-and-pet-database/
https://ecoregions.appspot.com/
https://ecoregions.appspot.com/
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The area under the ROC curve AUC is primarily used to evaluate the performance
of the MaxEnt model (Phillips et al. 2004; Gilani et al. 2020). The AUC score of
0.7–0.9 range shows that the model achieved adequate accuracy, while a score of
>0.9 represents the very high accuracy of the model (Gilani et al. 2020). However,
the AUC alone is inadequate to show the accuracy of a model because it does not use
a threshold approach for explaining predictive accuracy (Allouche et al. 2006).
Therefore, a threshold-dependent error matrix was generated to measure the values
of sensitivity, specificity, overall accuracy, kappa statistic, maximum kappa, and
True Skill Statistic (TSS). This error matrix correlated observed and predicted values
and evaluates the performance of the species prediction modelling. A 10-percentile
training presence threshold was used in this study to calculate these values, with
kappa values ranging from -1 (poor performance) to +1 (best performance)
(Allouche et al. 2006).

The resultant output raster of MaxEnt of each tree species was regrouped into five
classes, as Gilani et al. (2020) proposed. The prediction values were classified as
(1) least potential (0–0.2), inadmissible natural surroundings; (2) less potential
(0.2–0.4), scarcely reasonable living space; (3) moderate potential (0.4–0.6), appro-
priate territory; (4) high potential (0.6–0.7), an exceptionally appropriate environ-
ment; and (5) very high potential (0.7–1), profoundly reasonable living space. The
area in km2 and the percentage of each regrouped class against each species were
calculated and reported.

3.3 Tree Species Diversity Maps

A tree species diversity map was generated using equally weighted overlay analysis
of output rasters of all four potential species distributions (Ranjitkar et al. 2016). The
tree species diversity map was categorized into five classes: (1) very low, (2) low,
(3) moderate, (4) high, and (5) very high. Class 1 refers to a low to no species
diversity, and class 5 to pixels with the richest tree species diversity.

Six ecoregions: (1) Himalayan subtropical pine forests, (2) western Himalayan
broadleaf forests, (3) western Himalayan subalpine conifer, (4) Aravalli west thorn
scrub forests, (5) Karakoram-West Tibetan plateau, and (6) northwestern Himalayan
alpine shrub and meadows were laid over tree species diversity raster to identify the
ecoregion with the least to highest diversity.

4 Results

The Results sections are divided into five sections: (1) selected independent
variables for MaxEnt modelling, (2) model calibration and evaluation, (3) tree
species distribution maps, and (4) tree species diversity maps.



144 A. Ahmad et al.

4.1 Selected Independent Variables for MaxEnt Modelling

Using multicollinearity test, 10 independent variables for Abies pindrow, 11 forOlea
ferruginea and Pinus roxburghii each, and 9 for Pinus wallichiana were selected
(Table 2). Among all these independent variables, AI, Aspect, DEM, EVI, NDVI,
TRI, Bio02, Bio07, and Bio15 were commonly used for all four tree species
prediction in the MaxEnt model. Bio04 independent variable was only used for
predicting Apies pindrow, while Bio12 and Bio14 were used for predicting Olea
ferruginea and Pinus roxburghii, in addition to common independent variables. All
other independent variables showed a strong Pearson correlation (r≥ ±0.9) and were
eliminated accordingly.

4.2 Model Calibration and Evaluation

The AUC values attained using MaxEnt (Table 3) show that the highest training
accuracy (0.9963) was achieved for Olea ferruginea and the lowest (0.8776) for
Abies pindrow. On the other hand, the test accuracy showed the highest value
(0.9873) for Pinus wallichiana and the lowest value (0.7389) for Olea ferruginea.
All these values were satisfactory if it ranged from adequate to very high accuracy.

The jackknife test (Fig. 4) showed different important variables influencing the
prediction of species distribution, including elevation, vegetation indices, tempera-
ture, and precipitation. AI and DEM showed prediction importance for Abies
pindrow, Olea ferruginea, and Pinus roxburghii; NDVI for Olea ferruginea, Pinus
roxburghii, and Pinus wallichiana; and Bio12 and Bio15 (temperature products) for
all selected tree species. All remaining independent variables showed the importance
for relative tree species.

Based on 10-percentile training presence threshold-dependent, more than 80%
accuracy was achieved except Pinus roxburghii (Table 3). TSS values of >0.8 were
achieved for Abies pindrow and Pinus wallichiana. A very low TSS (0.33) was
achieved for Olea ferruginea, while a moderate TSS (0.60) was achieved for Pinus
roxburghii.

4.3 Tree Species Distribution Maps

The tree species distribution maps show that the northeastern and southwestern part
of the study area lies within inadmissible natural surroundings for any of the selected

Table 2 Area under the ROC (receiver operating characteristic) curve (AUC) values attained using
MaxEnt for each tree species by partitioning tree species data into training (75%) and test (25%)

Abies pindrow Olea ferruginea Pinus roxburghii Pinus wallichiana

Training 0.8776 0.9963 0.9387 0.9215

Test 0.8389 0.7389 0.7826 0.9873
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tree species (Fig. 5). Abies pindrow and Pinus wallichiana are distributed on the
higher elevations of the study area, whileOlea ferruginea and Pinus roxburghiiwere
predicted on lower elevations.

The area graph (Fig. 6 and Table S3) shows that Abies pindrow occupies the
highest area (3.23%) within the profoundly reasonable living space category,
followed by Pinus wallichiana (2.60%), Pinus roxburghii (2.57%), and Olea
ferruginea (0.21%).

4.4 Tree Species Diversity Maps

Figure 7 shows the spatial distribution of the tree species diversity in the study area
based on the four selected tree species (Abies pindrow, Olea ferruginea, Pinus
roxburghii, and Pinus wallichiana). Most of the northern and southern latitudes of
the study area possess the least diverse region that also corresponds to high
elevation—snow areas above tree line and low elevation areas—agricultural and
settlements areas, respectively. In the middle latitudes of the study area, tree species
diversity hotspots or corridors can be observed clearly.

Out of the six ecoregions laid over the study area, ecoregions 3 (western Himala-
yan subalpine conifer), 4 (Aravalli west thorn scrub forests), and 5 (Karakoram-West
Tibetan plateau) possess the least diverse tree species covering more than 90% area
under the very low to low diversity category (Fig. 8). This is followed by ecoregion
6 (northwestern Himalayan alpine and meadows), covering only 3.1% area under
high diversity. Ecoregion 1 (Himalayan subtropical pine forests) is the highest
diverse ecoregion in terms of very high diversity class, covering an area of 2.8%,
followed by ecoregion 2 (western Himalayan broadleaf forests) covering an area of
1.6% in the same class. Overall, ecoregion 2 possesses 36.5% area within high to
very high diversity class, the highest among all other ecoregions in the study area.

Table 3 Result evaluation of MaxEnt model through 10-percentile training presence-threshold-
dependent True Skill Statistic (TSS), specificity, sensitivity, kappa statistics, and overall accuracy
values

Abies
pindrow

Olea
ferruginea

Pinus
roxburghii

Pinus
wallichiana

10-percentile training presence- 0.54 0.651 0.323 0.476
threshold-dependent

Sensitivity 1.00 0.33 0.83 1.00

Specificity 0.86 1.00 0.76 0.82

TSS 0.86 0.33 0.60 0.82

Kappa 0.01 0.048 0.00 0.01

Kappa maximum 0.44 0.15 0.32 0.44

Overall accuracy 0.86 1.00 0.76 0.82
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Fig. 4 The evaluation of relative importance of independent variables for each species using the
jackknife test
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Fig. 5 Potential spatial distribution of four tree species (Abies pindrow, Olea ferruginea, Pinus
roxburghii, and Pinus wallichiana) in AJK
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Fig. 6 The area (%) occupied by each suitability category against each tree species

5 Discussion

Using MaxEnt model, the potential distribution of four tree native species in the
region of AJK was spatially predicted. The independent variables (bioclimatic,
biophysical, and topographical) were processed at ~1 km spatial resolution. A
very few studies in Pakistan have used SDMs for assessing the potential distribution
of plants and animals, and out of these studies, only five studies focused on plant
species distribution. Different factors contribute towards the low tendency of litera-
ture available in Pakistan, including the unavailability of tree species occurrence
data, financial constraints to design extensive field surveys, and difficult terrain
(especially in the northern Himalayan region of Pakistan).

The studies in Pakistan on tree species diversity mainly used only bioclimatic
variables as independent variables for modelling in MaxEnt. The studies by Ashraf
et al. (2016) and Gilani et al. (2020) incorporated topographical variables in
modelling tree species distribution along with bioclimatic variables. This study
incorporated biophysical (NDVI and EVI) variables with bioclimatic and topograph-
ical variables. The jackknife test shows that these biophysical variables influence the
distribution of Abies pindrow, Olea ferruginea, Pinus roxburghii, and Pinus
wallichiana tree species in AJK. Chhetri et al. (2018) also reported a greater
influence of biophysical variables than other variables used in the prediction
modelling in the Himalayan region.

The study by Qamer et al. (2016) reported deforestation and forest degradation in
the western Himalayan region of Pakistan. They reported that AJK has the highest
percentage of forest cover compared to other administrative areas of Pakistan, with
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Fig. 7 Spatial distribution of
tree species diversity in AJK

Abies pindrow and Pinus wallichiana among the dominating tree species. Our study
authorizes this information as the same two species reported falling under a pro-
foundly reasonable living space class.

The tree species diversity is an indicator of the overall biodiversity of a region. To
manage, protect, or regenerate biodiversity, the idea of ecoregion-based identifica-
tion of tree species diversity hotspots is more focused and narrowed down. This is
because biodiversity is not merely a varied life form but should be discussed under
the arena of ecological complexes (Wang et al. 2010).

This study used a very limited number of tree species occurrence points for the
prediction modelling in MaxEnt. This resulted in a very low TSS score for Olea
ferruginea because this tree species also had the lowest number of circular plots
compared to other tree species predicted in this study. The field surveys designed for
collecting such field data also have some limitations, including collecting samples
from steep slopes, narrow valleys, unfavourable weather, positional accuracy issue
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Fig. 8 Ecoregion-based spatial distribution of tree species diversity and statistics

of locational devices, etc. All independent variables were rescaled to ~1 × 1 km
spatial resolution because the bioclimatic variables are available in this spatial
resolution. This is a coarse resolution for extracting values of topographical and
biophysical variables.
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6 Conclusion

This study attempted to predict the spatial distribution of four native tree species
(Abies pindrow, Olea ferruginea, Pinus roxburghii, and Pinus wallichiana) in AJK,
Pakistan, using MaxEnt model. Through a multicollinearity test, the prediction
modelling involved selected bioclimatic and remote sensing-based (biophysical
and topographical) independent variables. The role of remotely sensed datasets
and their products is of fundamental importance for such prediction modelling.
Introducing more related independent variables in modelling tree species in such
environments can produce more reliable results. Integration of long-term satellite-
based and ground-based bioclimatic information can also help to produce better
results. Along with MaxEnt, other SDMs can also produce potential distribution
scenarios for the same tree species. The results from these ENMs can be spatially
overlaid and produce interesting results.

The introduction of ecoregion-based tree species diversity opens up a new
horizon of linking tree species diversity intensity with specific ecoregions. The
ecoregion zones and their link with overall tree species diversity or potential
distribution of a specific tree species enhance our understanding of diversity and
distribution behaviour. On a regional scale, the results of this study can be used to
design conservation corridors for these tree species in AJK and help stakeholders
and other agencies to plan plantation activities in suitable areas.
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Application of Remote Sensing Vegetation
Indices for Forest Cover Assessments

Weeraphart Khunrattanasiri

Abstract

Forests are an indispensable foundation of life for humans. They fulfil multiple
functions in a single area: they are a source of income to many; they provide
wood, an environmentally compatible, renewable resource, as well as foodstuffs
and many other basic commodities; they protect the soils from erosion and
stabilize the water table; they stabilize the climate on a regional and global
level and they offer humans numerous opportunities for recreation and relaxation.
These functions have different levels of significance in the various regions of the
earth. For the past 20 years, increases in the produce and income generated
resulted from the increase of the agricultural area rather than that of products
per unit area due to the high rate of population growth correlated with a limited
area of land available for cropping and housing. Situations such as poverty and a
scarcity of food have forced villagers to migrate into the forest reserves, where
they subsequently destroy the forests through shifting cultivation, especially in
the watershed areas.

and global forest cover assessment. Satellite images permit the observation of
large geographical areas and can be repeated at short time intervals and the costs
are reasonable. The basic forest cover information that can be obtained from
satellite images at different spatial resolutions relates to the area and spatial
distribution of broad forest cover types, to the degree of canopy fragmentation
and to the forest cover changes occurring. Recent research papers show that
remotely sensed data are well correlated with forest stand parameters. Vegetation
index is a spectral transformation of at least two optical bands to obtain the

W. Khunrattanasiri (*)
Department of Forest Management, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
e-mail: fforwpk@ku.ac.th

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2022
M. N. Suratman (ed.), Concepts and Applications of Remote Sensing in Forestry,
https://doi.org/10.1007/978-981-19-4200-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4200-6_8&domain=pdf
mailto:fforwpk@ku.ac.th
https://doi.org/10.1007/978-981-19-4200-6_8#DOI


154 W. Khunrattanasiri

vegetation properties. Normalized difference vegetation index (NDVI), green
normalized difference vegetation index (GNDVI) and soil-adjusted vegetation
index (SAVI) were cited in numerous research papers and they have been widely
used in the forest researches to investigate the relationship between forest
parameters such as diameter at breast height (DBH), per cent crown cover, tree
age class, tree height, basal area, tree volume and aboveground living biomass.
Nowadays it has been possible for researcher worldwide to access the satellite
data with free download, for example, Landsat 8, Landsat 9 or Sentinel-2. The use
of vegetation index is necessary for understanding the forest area in a global level
and the greater efficiency of sustainable forest management.

Keywords

Vegetation index · Forest parameter · Satellite image

1 Introduction

After the 26th UN Climate Change Conference in November 2021 the member states
are expected to fulfil responsibilities to mitigate climate change, cooperating in
preparing for adaptation measures to deal with the impact of climate change, as
well preparing public awareness material to promote education and training material
related to combatting climate change. Some countries set the goal to accelerate the
phase-out of coal, curtail deforestation, speed up the switch to electric vehicles and
encourage investment in renewables. Climate change is already affecting every
region on earth. Due to climate change issues nowadays it turns the public interest
in the state of the world’s forest resources because the forest areas are an important
part of the global carbon cycle. They contain the largest store of terrestrial carbon
and continuously transfer carbon between the terrestrial biosphere and the
atmosphere.

The Food and Agriculture Organization (FAO) of the United Nations has been
monitoring the world’s forests at 5- to 10-year intervals since 1946 and the latest
information about the status of global forest resources was reported in Global Forest
Resources Assessment 2020 (FAO 2020). The world has a total forest area of
4.06 billion ha, which is 31% of the total land area. This area is equivalent to
0.52 ha per person. The tropical domain has the largest proportion of the world’s
forests (1834.14 million ha or 45%), followed by the boreal, temperate and subtrop-
ical domains. More than half (2188.63 million ha or 54%) of the world’s forests is in
only five countries such as the Russian Federation, Brazil, Canada, the United States
of America and the Republic of China (FAO 2020).

Most of the spatial data explaining the status of global forest resources in FRA
report were normally derived not only from field observation or forest inventory but
also from satellite remote sensing technology. Field measurement has been
laboured-intensive and expensive and the time required for field data measurements
was long. Remote sensing using satellites can make a significant contribution to
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regional and global forest cover assessment. Satellite images permit the observation
of large geographical areas and can be repeated at short time intervals and the costs
are reasonable. Remote sensing models can be divided into two categories: passive
or optical remote sensing and active or microwave remote sensing. Passive remote
sensing measures the electromagnetic radiation reflected by or emitted from the
earth, while active remote sensing satellites use their own energy sources to illumi-
nate the earth and detect and measure the reflected radiation. Although both types of
remote sensing can produce high-quality information over the large area at a low
cost, for the forestry research passive remote sensing had been widely chosen to
investigate the stand parameters because of the high number of spectral bands
including visible light, near-infrared and short-wave infrared. The basic forest
cover information that can be obtained from satellite images at different spatial
resolutions relates to the area and spatial distribution of broad forest cover types, to
the degree of canopy fragmentation and to the forest cover changes occurring.
Recent papers show that remotely sensed data are well correlated with forest stand
parameters such as diameter at breast height (DBH), per cent crown cover, tree age
class, tree height, basal area and volume.

The most frequently used remote sensing products continue to be from optical
sensors with a moderate spatial resolution (10–30 m). Examples include Thematic
Mapper (TM) of Landsat 5, Enhanced Thematic Mapper Plus (ETM+) of Landsat
7 and Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) of
Landsat 8 and Multispectral Scanner of Thaichote (Thailand First Observation
Satellite), which are all multispectral sensors with 3–11 broad spectral bands.
Presently, the satellite image is widely used in scientific research due to the free
access data of Sentinel-2 satellite by the Copernicus programme of the European
Space Agency (ESA) with 10 m spatial resolution in visible and near-infrared band
of MSI sensor and the newest generation of Landsat programme “Landsat 9”
satellite, which is designed and operated to repeatedly observe the global land
surface at a moderate scale and to reduce the build time and a risk of a gap in
earth observations. Landsat 9 data bring the research interest back to analyse the free
of charge dataset. However, Sentinel-2 Landsat 8 and Landsat 9 are suggested,
because they were developed to support vegetation, land cover and environmental
monitoring.

2 Spectral Reflectance of Vegetation

To understand the forest status, a graph of the spectral reflectance is used to explain
the object area or phenomena on the earth surface. A graph of the spectral reflectance
of an object as a function of wavelength is termed a spectral reflectance curve. The
configuration of spectral reflectance curves gives us insight into the spectral
characteristics of an object and has a strong influence on the choice of wavelength
regions in which remote sensing data are acquired for a particular application. The
vegetation reflectance is used to synthesize the index from satellite image data.
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Fig. 1 Spectral reflectance curves of some typical objects (Peterson et al. 1988)

Figure 1 shows that the reflectance of healthy vegetation increases dramatically in
the region from the visible to the near-infrared portion of the spectrum at about
0.7 μm. In the range from 0.7 to 1.3 μm, a plant leaf typically reflects 40–50% of the
energy incident upon it. Most of the remaining energy is transmitted, since absorp-
tion in this spectral region is minimal (less than 5%). Plant reflectance in the range
0.7–1.3 μm results primarily from the internal structure of plant leaves. This struc-
ture varies greatly between plant species. Because the position of the red edge and
the magnitude of the near-IR reflectance beyond the red edge are highly variable
among plant species, reflectance measurements in these ranges often permit us to
discriminate between species, even if they look the same in visible wavelengths
(Lillesand and Kiefer 2015). In general, in the visible region, leaf pigments govern
the leaf spectrum. The normal chlorophyll-pigmented leaf has a minor but charac-
teristic green reflection peak. In the anthocyanin-pigmented leaf, the green reflection
is absent and there is greater reflection in the red wavelength, giving a red.
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3 Vegetation Index

Forest is a type of vegetation cover over the land, and it can automatically classify
from satellite image by using pixel-based techniques. Basically, the value stored in
each pixel is digital number (DN) which is normally in the form of integer in the
range of satellite sensor bit depths. For example, OLI-2 sensor on board Landsat
9 was designed to store the range of energies examined in 16 bits (0–65,535). During
the 1980s and 1990s, most classification techniques employed the image pixel as the
basic unit of analysis, in which each pixel is labelled as a single land-use land cover
class. With the pixel as the basic analysis unit, a series of classification techniques,
such as unsupervised, supervised (i.e. maximum likelihood, artificial neural net-
work, decision tree, support vector machine, random forests) and hybrid classifica-
tion (i.e. semi-supervised and fusion of supervised and unsupervised learning), is
still an active classification technique in the areas of multispectral and hyperspectral
remote sensing image analysis (Li et al. 2014). With the improvement of spatial
resolution of remote sensing images, remote sensing image classification gradually
formed three parallel classification branches at different levels: pixel-level, object-
level and scene-level classification (Cheng et al. 2020). However, the latter
considerations demonstrate that the quantitative interpretation of remote sensing
information from vegetation is a complex task. Many studies have limited this
interpretation by extracting vegetation information using individual light spectra
bands or a group of single bands for data analysis (Xue and Su 2017). Remote
sensing of vegetation is mainly performed by obtaining the electromagnetic wave
reflectance information from canopies using passive sensors. It is well known that
the reflectance of light spectra from plants changes with plant type, water content
within tissues and other intrinsic factors (Chang et al. 2016). Vegetation indices are
frequently used to characterize spatial and temporal trends in vegetation richness or
productivity. Vegetation indices are based on mathematical calculations of canopy
reflectance at specific visible and near-infrared wavelengths. Two or more spectral
bands need to be combined in mathematical formulas. Many vegetation indices have
been used in agricultural and ecological research; however, four widely cited indices
are chosen to show an example.

3.1 Ratio Vegetation Index

A very useful image processing technique used to describe the vegetation richness of
a specific area is band rationing. A ratio of different spectral bands from the same
image is useful in reducing the effect of topography, as a vegetation index, and for
enhancing subtle differences in the spectral characteristics for rocks and soils.
Although the ratio image is a concept of image enhancement, it can well explain
the vegetation status over the land also. Four spectral bands such as blue, green, red
and near-infrared bands that are sensitive to plant biomass and vigour are mostly
selected to analyse the ratio image and also other following vegetation indices.
Within these four bands the reflectance of the vegetation showed significant
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difference with soil and clear water bodies especially in near-infrared band. An
example of ratio vegetation index is near-infrared band divided by red band.

3.2 Normalized Difference Vegetation Index

The normalized difference vegetation index (NDVI) was developed in the 1970s
(Rouse et al. 1973) when a research team at Texas A & M University studied data
beamed back from earth observation satellites. The NDVI, one of the earliest remote
sensing analytical products used to simplify the complexities of multispectral imag-
ery, is now the most popular index used for vegetation assessment (Huang et al.
2021). The ratio of the difference of the red and infrared radiances over their sum
uses to adjust or “normalize” the effects of the solar zenith angle. Originally, they
called this ratio the vegetation index. The NDVI is one of the oldest vegetation
indices and the most widely used because of the simplicity of its calculation, and this
is the reason why all sensors have bands on red and NIR. The explanation of results
is easy, and most publications have used it in a supportive way in the research
(Giovos et al. 2021).

NDVI=
NIR-RED
NIR RED

The development of NDVI (which more strongly relates to reflectance as
measured in the image to forest conditions) was instrumental in showing that useful
information can be extracted from remote sensing imagery, and once the forest
information content of the NDVI was determined, it became more obvious which
applications would be worthwhile. The NDVI is based on the use of a near-infrared
(IR) band and a red (R) band.

The NDVI is a dimensionless index, so its values range from –1 to +1. In a
practical sense, the negative values corresponded to water bodies and the values
close to 0 are bare soil, while higher values are indicators of high photosynthetic
activity linked to scrub land, agricultural area, temperate forest and evergreen forest.
Areas of barren rock, sand or snow usually show very low NDVI values (e.g. 0.1 or
less). Sparse vegetation such as shrubs and grasslands or senescing crops may result
in moderate NDVI values (approximately 0.2–0.5). High NDVI values (approxi-
mately 0.6–0.9) correspond to dense vegetation such as that found in temperate and
tropical forests or crops at their peak growth stage (Brown 2018). Although the
extraction of NDVI from imagery is straightforward, the interpretation of NDVI
values for different forest types has sometimes been problematic (Franklin 2001).
Normally, one would expect a high NDVI to be found where there’s a high leaf area.
Foliage reflects little energy in the red portion of the spectrum because most of the
near infrared is reflected by foliage (Gausman 1977).
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3.3 Green Normalized Difference Vegetation Index

The green normalized difference vegetation index (GNDVI) was introduced by
Gitelson et al. (1996). It has a similar formation to NDVI except that it measures
the green spectrum band from 540 to 570 nm instead of the red spectrum band. This
index is more sensitive to chlorophyll concentration than NDVI. The GNDVI is used
for estimating the photosynthetic activity of the vegetation cover, and it is most often
used in assessing the moisture content and nitrogen concentration in plant leaves
according to multispectral data which do not have an extreme red channel. The
formation of GNDVI is similar to NDVI except that instead of the red spectrum
band, it measures the green spectrum band in the range from 0.54 to 0.57 μm.

GNDVI=
NIR-GREEN
NIR GREEN

Compared to the NDVI index, GNDVI is more sensitive to chlorophyll concen-
tration. It is used in assessing depressed and aged vegetation, assessing the moisture
content and nitrogen concentration in plant leaves according to multispectral data
which do not have an extreme red channel.

3.4 Soil-Adjusted Vegetation Index

In areas where vegetative cover is low and the soil surface is exposed, the reflectance
of light in the red and near-infrared spectra can influence vegetation index values.
Huete (1988) proposed the soil-adjusted vegetation index (SAVI) to correct NDVI
from the influence of soil brightness in satellite images where sparse vegetative
cover occurs. The NDVI is successfully used to investigate the vegetation richness
above ground; however, the use of NDVI in some satellite images which appear just
few percent of vegetation cover is not recommended. In the SAVI the red and NIR
spectral wavelengths are used. The SAVI can nearly eliminate the soil influences in
vegetation indices. It was developed as a modification of the NDVI with the addition
of soil brightness correction factor (L ).

SAVI=
NIR-RED
NIR RED

× 1þ L

The L value varies by the amount or cover of green vegetation: in very high
vegetation areas, L value is set to 0 (SAVI value same as NDVI), and in areas with no
green vegetation, L value is set to 1. Generally, 0.5 of L value works fit for the area
with intermediate level of vegetation cover and this value is used most widely in
ecological and agricultural research. The soil factor of 0.2, 0.5 and 0.9 was compa-
rable to NDVI result when 0.5 is best suited with vegetation and 0.9 is the best suited
soil factor for the land where the soil influence is more. The SAVI is the best suited
vegetation index in semi-arid areas (Vani and Mandla 2017).
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4 Use of Vegetation Indices for Forest Cover Assessments

Forests are changing in response to climate, with potentially important feedbacks to
regional and global climate through altered carbon cycle. In the assessment of forest
cover by means of remote sensing, numerous vegetation indices are usually
extracted from the scene classification of remote sensing images. The most applied
technique for forest assessment is vegetation index because the output index values
can well use to explain the forest status worldwide. The relationship between
vegetation index values and measured property is nonlinear which makes the use
of vegetation index somewhat difficult. Weeraphart Khunrattanasiri (2007)
investigated the potential of Landsat 5 TM image to estimate forest parameters to
supplement the forest inventory data in a dry evergreen forest of Khao Ang Runai
Wildlife Sanctuary. Different forest parameters derived from forest inventory sample
plots were investigated and compared with the reflectance values of Landsat 5 TM.
The results of the study showed that middle infrared band (band 5) minus red band
(band 3) of the Landsat 5 TM provided a useful technique to establish the connection
between the pixel values and the per cent crown cover—percentage of the plot area
covered by the vertical projection of all of the visible crowns of trees and shrubs on
the plot—derived from forest inventory plots, better than for the other forest
parameters. The internal structure of leaves absorbs the spectral bands and reflects
them back to the detectors. It is impossible in this case for the spectral bands to
penetrate the top layer. In some places where the crown cover is less dense, the
reflectance can penetrate the crown to the level of other parameters and the correla-
tion in such cases relates with other attributes such as basal area and tree volume.
Loranty et al. (2018) found also that the NDVI is related to forest cover.

Carmen Lourdes Meneses Tovar (2009) attempted to establish relations between
forest usage and the NDVI estimated from satellite imagery. The study showed a
disturbance in a vegetation community was reflected in a corresponding fall in the
value of NDVI. The greater the NDVI contrast between vegetated and water areas,
the higher the spatial variability of Landsat 8 OLI NDVI, indicating that the new
sensor has better capability in land surface process monitoring, such as land cover
mapping, spatiotemporal dynamics of vegetation growth and drought assessment
(Ke et al. 2015).

The Royal Forest Department (RFD), Ministry of Natural Resources and Envi-
ronment of Thailand, has the main responsibility of analysing the forest status from
satellite image since 1973. At the beginning satellite imageries from Landsat 5 The-
matic Mapper (TM) were used for forest status classification with visual interpreta-
tion techniques until 2008. The forest assessment using visual interpretation of large-
scale image (1:50,000) and using GIS to calculate forest land-use areas is more
reliable and accurate than small-scale image (1:250,000) (Ongsomwang 2003).
Following the launching of Thailand’s Thaichote satellite (former name THEOS),
in 2012 RFD together with the Faculty of Forestry, Kasetsart University (KUFF),
used Thaichote satellite images to replace the Landsat 5 TM data because of the
better spatial resolution from 30 m of Landsat 5 TM down to 15 m of Thaichote MS
sensor. Because of change in spatial resolution, the concept of segmentation based
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NDVI from Thaichote satellite image Image segmentation on NDVI 

NDVI segments on Thaichote satellite image Polygon of forest area 

Fig. 2 Use of NDVI and Thaichote satellite image segmentation technique for forest cover
assessment

on NDVI dataset was suggested to be used for forest area analysis (Fig. 2). The per
cent of total accuracy was 98.56% calculated from 862 ground verification points.

The potential of NDVI and SAVI-based classification for detection of forest cover
changes in comparison to supervised classification showed that the NDVI performed
better in forest cover change detection than the SAVI (Islam et al. 2021). A joint
research in 2018 between the KUFF and Double A (1991) Public Company Limited
aimed to investigate the efficiency of various vegetation indices such as the NDVI,
GNDVI, infrared percentage vegetation index (IPVI), SAVI and transformed vege-
tation index (TVI) calculated from Landsat 8 OLI sensor with 30 m spatial resolution
for the detection of eucalyptus plantation in Prachin Buri Province, Thailand. The
results showed that the SAVI with L factor equal to 0.5 was the best vegetation index
for eucalyptus detection and volume estimation. The linear regression is used to
explain the relationship with coefficient of determination equal to 0.80 and the error
of estimation equal to 0.93 (Weeraphart Khunrattanasiri 2018).

5 Use of Vegetation Indices for Forest Type Classification

Vegetation index is highly related to leaf area index, absorbed photosynthetically
active radiation and vegetation cover. Vegetation index reflects photosynthesis
intensity of plants and manifests different forest types (Jinguo and Wei 2013). In
Thailand, the first GIS dataset of national forest types was firstly created in 2000 by
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the Royal Forest Department. A visual interpretation based on Landsat 5 TM satellite
imageries at 1:50,000 map scale was used as the main technique together with
ground verification for the entire country (Royal Forest Department 2021). The
second dataset of GIS national forest types is ready for use since 2018. The NDVI
dataset derived from Sentinel-2 MSI sensor with 10 m resolution of blue, green, red
and near-infrared spectrum band was used together with the Global Digital Elevation
Model (GDEM) to improve the first national forest type dataset. The specific range
of elevation calculated from GDEM was used as a parameter to group forest types,
because most of the forest types appear in specific elevation. A total of 741 ground
verification points were used for an accuracy assessment task, and they were located
in the entire country. An overall accuracy was 80.43%.

Klaydach and Khunrattanasiri (2012) studied the reflection of light derived from
multispectral instrument on board Thaichote satellite. The NDVI, ratio vegetation
index (RVI), difference vegetation index (DVI), infrared percentage vegetation
index (IPVI), transformed normalized difference vegetation index (TNDVI) and
SAVI were utilized to investigate the relationship between forest types and vegeta-
tion index in Doi Luang national park, Thailand. Mixed deciduous forest, dry
evergreen forest and deciduous forest can be well classified by using NDVI with
65.25% accuracy.

The NDVI, TVI and GNDVI and the various vegetation indices based on the
simple mathematical operations of four-band (blue, green, red and near-infrared
bands) data from Thaichote satellite were used for forest type classification. The
results showed the vegetation index of R - NIR/B + G has the highest overall
accuracy with 60.51%. The ratio of R – NIR/B + R, GNDVI, NIR/G, NDVI, NIR/B
and TVI appeared to have the overall accuracy of 55.90%, 54.87%, 52.82%,
52.31%, 52.31% and 37.97%, respectively. It can be concluded that the vegetation
index calculated by dividing the difference in the red bands and near infrared by the
sum of the blue and green bands is the best appropriate index for Thailand forest type
classification. Nguyen Trong et al. (2020) found the possibility of using random
forest algorithm with Sentinel-2 in forest type classification in line with vegetation
index application.

6 Recommendation Before Using Vegetation Index
for Forest Assessment

Firstly, a misregistration of the ground data in the satellite imagery is always a
serious problem when satellite images are applied in ecological research. A position
accuracy assessment process was necessary to relate the ground truth and remote
sensing data, to be sure that both datasets could be overlaid onto the same geograph-
ical position. Under the tree cover in natural forest, the detection of a desired weak
GPS signal is often problematic because the strong signal is not adequately
attenuated by the receiver processing. Forest canopy affects the GPS signals due
to obstruction, attenuation and reflection (Pırtı 2008). The misregistration causes an
important error when terrain variables are correlated with remotely sensed data. It
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Fig. 3 Three techniques for matching sample plot to image

can occur during the analysis process, when the ground truth data is being laid onto
the satellite image and through the distortion of the satellite image during geometric
correction. The misregistration of ground truth data occurring in satellite imagery
was calculated by position accuracy assessment. Therefore, three ground plot-to-
pixel matching approaches have been developed to compensate for positional errors,
namely, the one plot-one pixel technique, the 3 by 3 pixel technique and the 5 by
5 pixel technique. Basically, one plot-one pixel was the first technique used, with a
single sample plot laid directly over a single pixel with the same geographic location
after the geometric correction process of satellite image. The second technique
employed a 3 by 3 pixel window overlay over a plot centre to guarantee that if
misregistration appears, the plots will as a result be shifted inside the specific
window area. The pixel windows were created around the plot location (Fig. 3) to
solve the misregistration aspect. The new pixel value was calculated by the mean of
all pixels in a window size covering the location. The correlation coefficient was
used to determine the precision of forest parameters derived from ground sample
plots and vegetation values. It is, therefore, essential to make a measurement on
homogeneous areas of at least 3 by 3 pixels. Finally, a 5 by 5 pixel window was built
around a plot centre.

Secondly, the absence of radiometric correction process in satellite data can create
a course of unexpected results. The radiometric correction involves subtracting the
background signal and dividing the gain of the satellite sensor, which converts the
raw sensor output (in digital number, DN) to a radiance. Satellite image with
radiometric corrected is suggested to calculate various vegetation indices because
the conversion of DN into apparent reflectance is the most important step for
vegetation index correction (Guyot and Gu 1994). Gu et al. (2011) reported that
the use of vegetation indices from multiple radiometric correction images can better
exploit the capabilities of remote sensing information, thus improving the accuracy
of LAI estimating. Different radiometric correction levels of remote sensing image
could help mine valuable information from remote sensing image and thus improve
the accuracy of vegetation fractional coverage estimation (Gu et al. 2008). The
proper use of atmospheric correction methods is crucial and has a significant impact
on NDVI estimation (Moravec et al. 2021). Dewa and Danoedoro (2017) tried to
investigate the influence of various radiometric correction levels of Landsat 8 OLI
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Fig. 4 Sentinel-2 satellite images of mixed deciduous forest in wet and dry seasons

and the number of vegetation strata on the accuracy of vegetation density estimates.
It found that different radiometric correction methods resulted in canopy density
estimates with different accuracies. The number of canopy strata also played an
important role. Every vegetation index transformation performed its best accuracy
by using different radiometric correction method and different number of canopy
layers.

Finally, the researcher needs to understand the forest stand characteristics. Forest
types are often classified according to topographical characteristics and species
compositions of the forests. For example, forests in Thailand can be classified into
two main types: namely, evergreen forest and deciduous forest. In the areas of
evergreen forest, vegetation index can be used effectively without any consideration,
because the evergreen tree retains its leaves through the year and into the following
growing season. In contrast, for deciduous forests, the trees shed all their leaves
during the dry season and they regrow new foliage during the next suitable growing
season. In this case the selection of satellite image data should be highly considered.
The periods when the deciduous trees remain to have complete leaf are the first
criteria for satellite dataset query. Figure 4 illustrates the Sentinel-2 satellite images
of mixed deciduous forest comparing the dry season on 25 March 2021 and wet
season on 3 June 2021. The area of mixed deciduous trees that appeared in satellite
images is red colour. Another interesting point when using vegetation index for time-
series analysis is that a set of satellite images for the same months are needed as a
preliminary data for yearly analysis to prevent the seasonal errors of tree cover.

7 Conclusion

With the high rate of deforestation in tropical forests in most countries over the last
decade, the rapid collection of information on the status of forests is vital in order to
assist governments and landowners in monitoring the forest area. Detection of
vegetation dense can be used as a tool for monitoring the dynamics of ecosystem.
Forest assessments using remote sensing techniques have become an important
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component of ecological research, due to the lack of detailed spatial information on
forest resources. Spatial resolution improvement through several decades of devel-
opment and rapidly temporal resolution of the new earth observation satellites will
play important roles for researchers to produce more effective vegetation index
datasets. Numerous advantages of vegetation indices in remote sensing also help
improve the useful data in ecological research together with the AI-based classifica-
tion. Consequently, positive vegetation index trends may be associated with declines
in terrestrial carbon storage. Moreover, vegetation indices calculated from satellite
image can used to monitor the long-term ecological changes such as large changes in
forest density or variable forest parameters.

Techniques to assess the carbon sequestration of the trees or the forest areas from
vegetation index will lead the research direction because they provide quick answers
related to global climate change. Machine learning, which is a part of artificial
intelligence, will become a useful algorithm to forecast several environmental
indicators, including vegetation indices. Development of machine learning will be
a useful indicator for monitoring and mitigating forest changes on the earth’s surface
in the future.
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Rainforest Assessment in Brunei
Darussalam Through Application of Remote
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Abstract

Remote sensing application has advanced over the decades from primarily aerial
photography to detection and measurement of energy patterns from different
portions of the electromagnetic spectrum to obtain information of an area or
phenomenon on the earth surface or near environmental surface to study the
physical and chemical characteristics from a distance. This is common and ideal
in the forest sector study particularly in monitoring and assessment of forest cover
changes. These interrelated disciplines have succeeded to observe the changing
patterns of the rainforest in Brunei Darussalam from the year 1990–2015 based
on primary and secondary sources relative to Brunei Darussalam. The annual
deforestation rate used to estimate the net loss of forest cover is the contributory
factor. The monitoring and assessment of Bruneian forest using remote sensing
technique has been suggested for this investigation. The monitoring and assess-
ment of rainforest cover with more than 90% accuracy using multitemporal
Landsat images deduced the trend of forest cover change in Brunei Darussalam
with 46% non-forest expansion, 27% forest conversion, and 12% forest regener-
ation in 25 years. Relatively, health, safety, and environmental (HSE) procedure;
statistical data for non-wood forest products; recognition of the shared indigenous
culture in Brunei in relation to Borneo; and sustainable development are
suggested to supplement rainforest sustainability through the application of
remote sensing for comprehensive rainforest resources monitoring and assess-
ment in Brunei Darussalam.
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1 Introduction

The tropical rainforest’s significance in the global environmental and economic role
beyond boundaries (Maini 1992). This should increase demand for forest and
agricultural products as well as settlement development and construction for urban
development and economic growth and uneven distribution of forest resources
(Schaller 2005). This highly bio-diverse tropical rainforest with 80% biodiversity
has been deforested up to 40 million ha approximately since 2000 (FAO 2010)
distinctively in the Amazon, Congo Basin, far East Russia, Borneo and Sumatra.

The science of remote sensing developed 150 years ago has advances to sense and
quantifies energy representations of the electromagnetic spectrum (Lira and Taborda
2014) for environmental properties and processes (Zheng et al. 2004). The applica-
tion through multitemporal change detection analysis technique using Landsat
images is common in forestry studies to assess forest depletion in a large spatial
and temporal scale and capable of deducing different types of forest cover (Becek
2008). Rapid data acquisition (Soon 2011) and high re-visitation frequencies over
large areas of interest (Zheng et al. 2004) are among the advantages of remote
sensing application using Landsat images. Nevertheless, noises in the Landsat
images could hinder Landsat signal from the earth surface (Surayah 2018).

In the tropical region about 27 million ha of forest has been removed from 2000 to
2005 mainly for timber or plantation, while another 398 million ha allotted for the
timber industry (Bryan et al. 2013) notably in SEA and South America (Becek and
Odihi 2008). Particularly, Borneo states of Sabah and Sarawak are renowned
deforestation hotspots with unsustainable harvesting practices of oil palm and
logging industries (Bryan et al. 2013; Gaveau et al. 2013). The main cause is
believed to be due to the leading species of Dipterocarpaceae tree family for its
marketable timber and non-timber forest products (Chandra 2011) and the introduc-
tion of mechanized harvesting such as chainsaw and caterpillar in the 1950s which
speeded land clearance after the Second World War (Haase and Camphausen 2007)
whereas infrastructural development, poor forest management, encroachment,
shifting cultivation, and illegal logging are the major interlinked factors [8]. Air
pollution, groundwater level change, drought, and global warming are the large-
scale slow degrading factor (Becek and Odihi 2008).In addition to the small temper-
ature range of the natural thermal regime of tropical vegetation of 10% (24–34 °C)
compared to the temperate region, which is 70% (-30 °C) to 40 °C (Becek and
Odihi 2008).

Brunei has the highest proportion of intact forest cover area (56.9%) compared to
other states in Borneo, Kalimantan (39.6%), Sabah (19.1%), and Sarawak (14%)
(Gaveau et al. 2013). The slow rate of annual forest depletion of about (0.8%) on
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average (Becek and Odihi 2008) ranked as the lowest proportion of degraded forest
area, with an estimated decrease of growing stock of 2598 ha (0.9%) per year, but
increase by 1297 ha per year (0.82%) in the secondary forest in the 14 years from
1990 (Hunting Technical Services Ltd 1969). The change is derived from national
development, mineral exploitation, urbanization, forest exploitation, forest develop-
ment, agriculture activities (Hunting Technical Services Ltd 1969), and settlement
(Pescott and Durst 2010).

Tropical forests were converted into percentages by giving a value of 0.58 each.
50 out of 57 indicators were satisfied with the total value of 29, aligned with index
4 from the index-weighing matrix, reflecting a well-managed forest contributing to
sustainable conditions (Surayah 2018). This is owing to centralized forest manage-
ment, dominance of the oil and gas industry, change in people’s lifestyle within
interior regions to urban areas along the coastlines, preference of involvement with
formal sectors, and awareness of the importance of education in Brunei (Surayah
2018).

While the other component is image processing by Multispec 2.12.15 for
multitemporal change detection analysis of forest and non-forest cover by the
supervised reclassification of Landsat 4-5 TM (1990), 7 TM+ (2001), and 8 OLI
(2015) derived from USGS. In addition to Google Earth for desk-ground throthing
and image layering apart for using GIMP 2.8.1.4 application for the processed image
masking. The image analysis portrayed patches of non-forest in the interior parts of
Brunei in 1990 and spreads into the surrounding forest cover through 2015,
segregating large forest cover block. This situation is deduced from the increasing
non-forest expansion from 33% to 40% and forest conversion from 14% to 27% with
extension of tracks linking most of the identified areas together with a decrease in
both shift deforestation from 3% to 0% and forest regeneration from 19% to 12%
between 2001 and 2015 resulting in forest cover changes within the 25 years period
(Surayah 2018).

This study aimed to measure tropical forest sustainability in Brunei, with refer-
ence to the existing forest initiatives and forest cover progression from the past until
the present years through three objectives: (1) defining a logical framework of
Brunei’s forestry by outlining forestry initiatives in Brunei and delineating it to the
International Tropical Timber Organization Criteria and Indicator of Sustainable
Forest Management (ITTO C & I of SFM) for Tropical Forests (ITTO 2005);
(2) determining past and present Brunei’s tropical forest cover through remote
sensing application using Landsat images for a real visualization of Brunei forest
cover extent; and (3) recommending forest sustainability initiatives through the
identified loose factor based on this research findings.

2 Physical Characteristic of Case Study Area

Brunei is covered with tropical forests that comprise the dominant Mixed Diptero-
carp forests (MDF) and the less dominant Peat Swamp, Mangrove, Mixture, Fresh-
water Swamp, Montane, and Heath forests (Anderson and Marsden 1984). MDF
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Fig. 1 Map of Brunei Darussalam (Map Source: Kafli 2017, Retrieved on 23 July 2017)

comprises >200 species of Dipterocarpaceae family (Engbers 1998) including the
marketable wood species for timber such as Meranti (Shorea spp.), Urat mata
(Parashorea spp.), Resak (Vatica spp.), and Kapur (Dryobanalops spp.) (Engbers
1998). The total land area of the country is 5,765.32 km2 occupies 1% of Borneo
Island in the north west coast facing the South China Sea within the Southeast Asian
region, surrounded by the Malaysian states of Sarawak and Sabah and the Indone-
sian state of Kalimantan (Forestry Department 2011). Brunei’s geographical location
of 443 km ahead of the Equator on the longitude between 114° 23′ and 115° 23′ east
and latitudes of 4° 00′ and 5° 05′ north (Becek 2008; Forestry Department 2011)
influenced experiencing tropical climates (Fig. 1).

The maximum and minimum mean temperatures are between 32 and 28 °C with
mean annual rainfall approximately 2300 mm to over 4000 mm (Becek 2008) and
high humidity of about 82% (FAO 2012). The seasonal variations are influenced by
monsoon winds of Northeast Monsoon from December to March and Southwest
Monsoon from May to October (Engbers 1998). Mainly, low relief topography is
observable in both coastal areas and in Belait and Tutong river basins. Also in Brunei
bay, flat alluvial swamp deposits are common (Surayah 2018) which was formed
after the last significant sea level subsidence 500–600 years ago (Surayah 2018). Flat
alluvial swamp deposits are common in Brunei bay (Engbers 1998; Becek 2008).
The islands are drained by four major rivers, namely the Belait River, Tutong River,
Temburong River, and Brunei River which collectively account for about 15 Km2

(Becek 2008). This influences the vegetation cover where rainforests persist in the
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interior part, peat swamps on the alluvial plains (Engbers 1998), mangrove on the
brackish wetlands near riverbanks, and heaths on the sandy deposits (Engbers 2010,
1998; Forestry Department 2011)

3 Data and Methodology

This study adopts a mixed method that synchronously runs both qualitative and
quantitative methods through exploratory and experimental design. This ought to be
the nature of both qualitative and quantitative methods, which comes hand in hand in
order to gain a better understanding of the phenomena. The main materials used for
this research are the revised International Tropical Timber Organization Criteria and
Indicators of Sustainable Forest Management (ITTO C & I of SFM) for Tropical
Forests which was published by the ITTO (2005) and the Landsat 4-5 TM, 7 ETM+
and 8 OLI images derived from the USGS online in 2015. The ITTO C & I of SFM
[16] are delineated to Brunei forestry and evaluated into simplified numerical output
using an arithmetical approach, which are then keyed into “Criteria and Indicators
Analytical Framework” (CIAF). The CIAF consists of a total of 7 criteria and
57 indicators that are converted into percentage form giving the value of 0.57 to
each indicator. From the working of the CIAF, 50 out of 57 indicators were satisfied
leaving 7 indicators unsatisfied identified as loose factors prevalence from its
inapplicability to the country and unavailability of data and information. The sum
of the satisfied indicators is multiplied with 0.57 and rounded off giving the final
value of 29 whereas the criteria and indicators are listed in the summary of the
CIAF’s Table 1 as follows.

N=
X

C1þ C2þ C3þ C4þ C5þ C6þ C7ð × 0:57 ð1Þ

On the remote sensing component of multitemporal change detection analysis,
supervised classification based on>90% accuracy for each raw Landsat 4-5 TM and
8 OLI images was performed using Multispec 2.12.15 software from the year 1990
to 2015 acquired from USGS (2015).

Table 1 Summary of criteria and indicators analytical framework (CIAF)

No. Criteria Indicator Satisfied Unsatisfied

C1 Enabling condition 11 10 1

C2 Extent of forest condition 6 5 1

C3 Forest ecosystem health 2 1 1

C4 Forest production 12 11 1

C5 Biological diversity 7 7 0

C6 Soil and water productivity 5 5 0

C7 Economy, social and cultural aspects 14 11 3

Total 57 50 7
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The classification is based on the principle of spectral signature produced by
unique spectral reflectance properties of each land use and land cover types through
recorded spectral reflectance on radiometric band into seven classes and further
summarized into two main thematic classes of forest and non-forest areas. Amid
the classifications process, Google Earth was applied as a desk ground-truth map for
image-to-image referencing for higher image accuracy and image layering for
national border identification between Brunei and the neighboring states. Succes-
sively GIMP 2.8.14 application was used to mask the classified image.

The extent of harvested compartments according to the harvesting plans is not
confirmed with the prevalence of information that starting about 40,000 ha of forest
was logged but remains without silvicultural treatment (Yussof 2000). However,
compartment system was observed as the forest reserves are divided into
compartments or known as logging management unit, ranging from 200 to 400 ha
for each component. The components are further divided into smaller manageable
logging blocks ranging between 50 and 70 ha each where a compartment applies to
only one logging license or permit (Yussof 2000). Another is the acknowledgement
of the ratification of 7 permit types as a key to enter and allow actives within the
restricted forest reserves as stated under the Forest Act (1934) Chapter 46, revised in
2002 Amended in 2007 (Attorney General Chambers 2009).

4 Results and Discussion

The role of tropical rainforest in the global environment (Surayah 2018) is seen
through ecosystem services that are experienced beyond boundaries despite their
static location (Maini 1992). The ecosystem services are the condition and process
where the ecosystem could naturally withstand and satisfy human needs (Daily
1997; Kremen and Ostfield 2005 in Gonzales Inca 2009). It resulted from physical,
chemical, and biological processes of ecosystem functioning for self-maintenance
(King and Mazzotta 2000). Soil erosion prevention, air purity, filtered water, climate
change mitigation, and essential timber, food, and medicine resources supports the
indigenous community and adverse diversity. The ecosystem services are identified
as provisioning services, regulating services, cultural and amenity services, and
supporting services (Gonzales Inca 2009). Figure 2 provides a general overview
and rainforest characters in Brunei Darussalam in 2020. The figure shows that the
scenario of rainforest areas in 2016 and 2020 is degrading.

Figure 2 shows a major category of forest which is mixed dipterocarp which
covers 38% of the land base (Islam et al. 2019). The lowest category of forest is
montane forest that covers 1.2% of total forest area in Brunei Darussalam. The
deforestation rate in Brunei is 34.5% in the recent tenant and it is gradually
increasing. In 1990 104,277 ha (18%) of forest areas are cleared whereas
200,893 ha (34.5%) were cleared in 2016. This has occurred within 40 years in
Brunei Darussalam. A detailed classification of forest status is shown in Table 2.
Seven major forest classifications have been recognized in Brunei Darussalam
(Islam et al. 2018).
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Fig. 2 General overview of land cover and rainforest areas in Brunei Darussalam in 2020

Table 2 Extent of forest in Brunei Darussalam in 1980 (Source: Anderson and Marsden 1984)

Area (ha in % of Forest Area (ha in Total (5) of forest
1980) areas 2000) areas

Mangrove 18,487 3.2 12,633 2.2

Freshwater Swamp 13,656 2.3 12,001 2.1

Peat Swamp 105,994 18.2 78,269 13.4

Kerangas 9506 1.6 7453 1.3

Mixed dipterocarps 226,159 45.7 221,414 38.0

Montane 7100 1.2 7160 1.2

Secondary 56,958 9.8 42,374 7.3

Total 477,920 82.0 381,304 65.5

Cleared and
cultivation

104,277 18.0 200,893 34.3

Grand Total 582,197 100.0 382,197 100.0

However, continuous illegal logging activities, poor management practices, and
increasing demands of forest and agricultural products enabled accessibility, settle-
ment, and land conservation in the forest, thus allowing forest exploitation. There are
grounded on a combination of factors of demographic increase (Surayah 2018).

They are grounded in a combination of factors: demographic increase (Surayah
2018). Deforestation is severe in the highly bio-diverse ecosystem with 80% of the
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world biodiversity in the tropical region. Approximately 40 million ha has been
deforested since 2000 (FAO 2010) notably in the Amazon, Congo Basin, Far East
Russia, Borneo and Sumatra (Surayah 2018). For instance, the Borneo Island holds
more than 600 bird species, 15,000 plant types, and hundreds of indigenous forest-
dependent communities for food and shelter, while in its fragmented form, 25 acres
of tropical forest hold over 700 species of trees, equivalent to the North American
tree diversity (Surayah 2018).

4.1 The Status of the Tropical Rainforest in Brunei Darussalam

Brunei’s economic developments are manly generated by the natural resources of the
oil and gas industry since 1929, which allowed the preservation of the country
tropical rainforest. A study by Gaveau et al. (2013) found that Brunei has the highest
proportion of intact forest cover area of 56.9% compared to other states in Borneo
with 39.6 in Kalimantan, 19.1% and 14% in Sabah and Sarawak, respec-
tively (Engbers 2010; Islam et al. 2019). This is related to the FRA estimation of
growing stock in 2014 where the primary forest decreases from 70,403 to 59,045 m3

while secondary forest increases from 11,176 to 213,215 m3 from 1990 to 2010.
Despite the increase in the forest cover and growing stock within the secondary
forest, the reduced primary forest values are however irreplaceable (Surayah 2018).

4.2 The Management of Rainforest

From the working of the CIAF, it resulted that criteria 1 weighted 6.0, criteria
2 weighted 3.0, criteria 3 weighted 1.0, criteria 4 weighted 6.0, criteria 5 weighted
4.0, criteria 6 weighted 3.0, and criteria 7 weighted 6.0. These weights are summed
up producing a total value of 29 with most of the indicators accomplished albeit
several unaccomplished indicators.

Through the CIAF working, it is found that 10 indicators out of 11 are satisfied
under criteria 1, 5 out of 6 indicators are satisfied under criteria 2; 1 out of 2 indicators
are satisfied under criteria 3; 11 out of 12 indicators are satisfied under criteria 4;
11 out of 14 indicators are satisfied under criteria 7, whereas 7 and 5 indicators under
the respective criteria of 5 and 6 were all satisfied. Altogether, 50 indicators out of
57 indicators were satisfied leaving 7 indicators, a summary of which is presented in
Table 3.

Subsequently, prior to the acquired result from the CIAF operationalization, an
index-weighting matrix is applied, where forest management is categorized into
poorly managed, moderately managed, and well managed which reflect the forest
sustainability conditions of unsustainable, marginally sustainable, or sustainable as
presented in Table 4. The resulted CIAF value of 29 is grouped into a built index
matrix for forestry sustainability status that stood between 25 and 32 aligned with
index 4 under well-managed category that indicates sustainable condition, which
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Table 3 Summary of criteria and indicators analytical framework (CIAF)

Criteria Indicators Satisfied Unsatisfied

Condition of SFM 11 10 1

Extent of forest condition 6 5 1

Forest ecosystem health 2 1 1

Forest production 12 11 1

Biological diversity 7 7 0

Soil and water productivity 5 5 0

Economy, social, and cultural aspects 14 11 3

Total 57 50 7

Table 4 Index-weighting matrix

Weighting Index Categories Condition

1–8 1 Poorly managed Unsustainable

9–16 2 Moderately managed Marginally sustainable

17–24 3

25–32 4 Well managed Sustainable

reflects sustainable condition of Brunei forest under well management practice as
presented in Table 4.

4.3 Monitoring and Changing Pattern of Rainforest

Land use and land cover transition relative to forest cover changes from 1990 to
2015 were observed. In 1990, the intact forest cover areas especially in the interior
Tutong and Belait district were partly converted into built, plantation and sparse
vegetation as non-forest, distinctive along the coastline (Engbers 2010) (Fig. 3). The
spreading inwards leads to the detachment of forest areas in the interior region. The
horizontal and vertical stretch of non-forest cover from east to west and southwards
is presented in Fig. 4.

Over time, the forest is divided into north and south due to sparse vegetation
extension over the areas observed in 2015 (Fig. 5) whereas Temburong district
showed undistinguishable changes over the 25 years period. From the multi-
temporal change detection technique of the Landsat images, the trend of forest
cover change in Brunei was deduced to be driven by (1) non-forest expansion
from its focal point (Surayah 2018); (2) forest conversion into non-forest for built
areas, plantation that overtime partially generate into sparse vegetation; (3) shift
deforestation of forest regeneration and forest conversion on side to side; (4) incom-
parable forest regeneration, (5) tracks development; and (6) water body as develop-
ment of reservoir. The extent and trend of the forest and non-forest cover changes
over the years is presented in Figs. 5 and 6.

Figure 5 shows existing forest area (43%), existing non-forest area (53%), and
missing data area (5%) in 1990. By 2015 (Fig. 6), the existing forest area had
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Fig. 3 The supervised image re-classification of forest and non-forest cover in 1990

Fig. 4 Supervised image re-classification of forest and non-forest cover in 2015

undergone changes which detects increasing non-forest expansion (46%), forest
conversion (27%), decreased forest regeneration (12%), tracks development (6%),
and newly covered water body (6%) leaving shift deforestation and existing forest
area 0% whereas the missing data areas have newly gained coverage identified as
existing non-forest areas (3%). Therefore, the adoption of both ITTO C & I and
remote sensing application in this research has perceived tropical forest
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43%

52%

5%

(A) Existing Forest Area

(B) Existing Non-Forest Area

(n/a) Data Not Available

Fig. 5 Forest and non-forest cover trend of changes in 1990

3%

46%

27%

12%

6%

6%

(A) Existing Forest Area

(B) Existing Non-Forest Area

(n/a) Data Not Available

(i) Non-Forest Expansion

(ii) Forest Conversion

(iii) Shift Deforestation

(iv) Forest Regeneration

(v) Track Development

(vi) Water Body Existence

Fig. 6 Forest and non-forest cover trend of changes in 2015

sustainability and visualized the progress of forest cover change in the frame of
development, urbanization, and economic demand.

These forest changes leave only 6% of the existing forest areas (A), none or 0% of
the existing non-forest areas (B), and 3% of uncovered areas (n/a). Through 14 years,
which is by 2015, non-forest expansion increased to 46% (1), forest conversion
increased to 27% (2), There was no new or shifting deforestation (3), and forest
regeneration accounted for 12% of the total. Tracks also dropped to 6%, indicating
that much of it has expanded and become non-forest areas. Water body is just
discovered which accounts for 6% (6) of the identified areas. These again leave
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Table 5 Summary of the forest trends of changes in 1990, 2001, and 2015

Year/trend of changes A B n/a i ii iii iv v vi

1990 43% 54% 5%

2001 6% 0% 3 33 14% 3 19 22 0

2015 0% 3% 0% 46% 27% 0 % 12% 6% 6%

none or 0% of both the identified existing forest (A) and uncovered areas (n/a),
where 3% of the missing areas has newly gained coverage identified as existing
non-forest areas (B). These outcomes are assembled in Table 5.

Through this it is analyzed that the existing forest areas are reducing, in contrast
to the increasing existing non-forest over the years. Through this research, it is
inferred that the sustainability of the global tropical rainforest is mainly challenged
by the continuous demographic increase in economic growth and uneven distribu-
tion of forest resources, combined with increasing demand for forest and agricultural
products. This results in forest exploitation through logging, encroachment, and land
conservation for development, plantation, and also settlement leading to accessibil-
ity. Especially to Brunei, the erosion proneness of Brunei’s sedimentation and
alluvial in Brunei Muara, Tutong and Temburong districts, and the largely peat
swamp cover in Belait district support regional diverse and complex tropical
rainforest bio-ecology. However, continuous challenges from the industrial devel-
opment, urbanization, mineral exploitation, forest exploitation and forest develop-
ment, agricultural activities, and settlement affect the country’s forest cover as
recorded from 81% in 1979 (Ryni 2014) to 65.5% in 2000 (Becek 2008; Becek
and Odihi 2008), which is a concern for the present sustainability of the country’s
forest cover.

5 Conclusions

Through this research, it is inferred that the sustainability of the global tropical
rainforests is mainly challenged by the continuous demographic increase and eco-
nomic growth as well as uneven distribution of forest resources, combined with an
increasing demand for forest and agricultural products. This results in forest exploi-
tation through logging encroachment and land conversion for development, planta-
tion, and also settlement leading to accessibility. Specifically, to Brunei, the erosion
proneness of Brunei’s sedimentation and alluvial in Brunei Muara, Tutong and
Temburong districts, and the largely peat swamp cover in Belait district support
regional diverse and complex tropical rainforest bio-ecology.

Through the provisions of this research methodology, we have therefore
recognized the adaption of the mixed method within research, involving few
research designs and approaches under the qualitative and quantitative methods.
This allowed for the identification of several research materials, including ITTO C
and I of SFM for tropical forest and Remote Sensing application of multi-temporal
change detection analysis, which have measured and comprehended Brunei
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tropical forest sustainability. The centralized forest management practices that are
accompanied by active forest cover change in Brunei are contributed to by the
centralized forest management practices (Abee 2000), the oil and gas industry
(Pescott and Durst 2010), traditional lifestyle evolution in modern form (Faisal
2009), the preference for involvement in the formal sector and an understanding of
the value of formal education (Gira 2003).

Nevertheless, in association with the loose factors, relative initiatives to supple-
ment forest sustainability in Brunei are suggested for instance: (1) a set of detailed
HSE procedures to guide forest workers, forest environment, forest industry, and
environmental forestry including educational or recreational forestry; (2) consider-
ation of the non-wood forest products statistical data and harvests in the informal
market as its myriad products are used or consumed in everyday life, hence would be
beneficial and significant resources; (3) recognition of the regionally shared unique
indigenous culture of Brunei with the neighboring states would be an added value to
both forestry and eco-tourism industry hence to the national economy; and (4) rele-
vant sustainable development initiative (CATIE 2012) to support sustainable forest
cover of the country in the long run such as co-finance investment between govern-
ment and investors for certain land use or promotion of production practices in
afforestation, sustainable forest management, and sustainable land management, as
well as subsidies provision for sustainable land management practice; green tech-
nology (water treatment plants, soil conservation equipment, energy-efficient light
bulbs); or non-monetary provision of technical assistance, seeds and plants.

Therefore, it is deduced that the adoption of C & I for SFM in this study would be
able to strengthen efficacy of forest management as it could identify looseness or
development relevant to further enhance the country’s forest sustainability system-
atically. Furthermore, the application of the remote sensing approach would be an
advantage for forest monitoring and assessment timelessly; this is seen to be an
effective mechanism to achieve full equilibrium of SFM for forest sustainability, as it
is capable of distinguishing the Brunei’s forest cover extent in 25 years period in a
short time. In addition to extraction of the forest cover within the frame of develop-
ment, urbanization and economic demand coincides with the increasing population
within the limited land supply. It is also vital to be aware of the extent of forest cover
in the country considering forest contribution to the country’s environmental, eco-
nomic, and social functions and services.
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Rubber Trees and Biomass Estimation Using
Remote Sensing Technology
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Abstract

In Southeast Asia, rubber plantation is considered the second largest main crop
after oil palm. Hence, it also becomes more critical when seeing rubber as part of
the forest ecosystem that possesses an essential biomass and carbon sequestration
source. In general, the changes in carbon stocks of the terrestrial ecosystem may
have direct implications on the socioeconomics of local communities and biodi-
versity. However, the process of measuring carbon stock over time is essential to
complement climate change mitigation needs. Therefore, there are several num-
bers or errors in estimating the given carbon pools. It varied from sampling error
in the number of plots within the tree’s population, error in measuring soil carbon
and stem diameter, and error when applying regression using inventory data or
biomass conversion. Unfortunately, the estimation of biomass and carbon fluxes
from rubber plantations has been rarely studied. This chapter mainly elaborates
the related studies and discussions towards biomass, specifically above-ground
biomass (AGB), the accretion of biomass utilization since it was first discovered,
the benefit for renewable energy intervention, and the significant role in
sequestrating the atmospheric carbon. More importantly, several studies refer to
remote sensing applications for biomass quantifications that engage different
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remote sensing systems. This paper’s main perspective is to give insight into the
ability and potential of remote sensing for delivering an efficient spatial approach
as the primary tool for rubber plantation biomass estimates.

Keywords

Rubber tree · Biomass · Allometric equation · Remote sensing · Spatial techniques

1 Introduction

Global warming caused by greenhouse gasses (GHCs), primarily carbon dioxide
(CO2), is one of the most urgent global contributors. The uncontrolled emission of
CHGs can potentially cause irreversible and disastrous damage to the whole bio-
sphere if it is not managed appropriately. Among anthropogenic CHGs, CO2 is the
most abundant and is responsible for more than half the radiation associated with the
greenhouse effect (Solomon and Srinivasan 1996). In order to utilize the mitigation
program towards global warming, recent studies have shown the significant impact
of using biomass for both alternative renewable fuel and the source of carbon
sequestration that are critically important in maintaining the global climate (Gao
and Zhang 2021). According to FAO (2005), global forest ecosystems store more
than 638 Gt carbon (Egbe et al. 2012), which is essential to control atmospheric
carbon. The ability of vegetation and soil organic matter to sequester atmospheric
CO2 has recently received much attention. Two management options for enhancing
carbon sequestration include tropical forest conservation and plantations (Yang et al.
2004). Both of these options have a similar intention to optimize the carbon
concentration within the biomass.

Rubber tree, or Hevea brasiliensis, is a major world crop cultivated for natural
rubber production. It is mainly grown in tropical areas and has an economic lifespan
of 30–35 years. It occupies more than 11 million ha of agricultural land globally.
Approximately 9.2 million ha (78%) of total rubber is planted in Southeast Asia,
with about 3.67 million ha (31%) in Indonesia and 3.23 million ha (27%) in Thailand
(FAO 2020). Rubber trees are typically grown for approximately 25–35 years before
being felled for timber production. Therefore, the total carbon stock of rubber in
plantations has been estimated to be higher than many tropical forestry and agrofor-
estry systems (Brahma et al. 2016). The time-averaged carbon stock of lowland and
highland rubber plantations is estimated to be 58 and 28 MgC/ha, respectively (Yang
et al. 2016). In addition, the role of rubber in mitigating climate change has been
recognized globally (Verchot et al. 2007; Fox et al. 2014; Min et al. 2020).
Therefore, the accurate estimation of biomass and carbon stock in rubber plantations
has become more critical than previously.

Remote sensing is considered the best approach in biomass estimates at a regional
level, where field data are scarce or difficult to collect. Almost two decades have
passed since pioneers such as Tucker et al. (1985) and Sader et al. (1989) studied the
relationship between biomass and the reflectance value recorded at the sensor. Since



Rubber Trees and Biomass Estimation Using Remote Sensing Technology 187

then, many studies in different regions have found strong correlations between
biomass and reflectance at different wavelengths. Several review papers have been
conducted on biomass estimation in the past few years. However, most of them have
described remote sensing-based estimates for forest biomass (Lu 2006; Goetz et al.
2009; Song 2013; Lu et al. 2016). This current review incorporates remote sensing-
based biomass estimation for three major vegetation ecosystems: forest, grassland
and rangelands, and tropical savanna, which covers around 80% of earth’s
vegetations (FAO 2005, 2012). These vegetative surfaces on earth are more “natu-
ral” ecosystems without much human disturbance, unlike agricultural lands, which
are heavily dependent on cropping management, and thus provide an opportunity to
the reader to assess the challenges and differences in remote sensing-based biomass
estimations for these ecosystems (Kumar et al. 2015).

This paper mainly elaborates the related studies and discussions towards biomass,
specifically above-ground biomass (AGB), the accretion of biomass utilization since
it was first discovered, and the significant role in sequestrating atmospheric carbon.
More importantly, several studies refer to remote sensing applications for biomass
quantifications that engage different remote sensing systems. This paper’s main
perspective is to give insight into the ability and potential of remote sensing for
delivering an efficient spatial approach as the primary tool for rubber plantation
biomass estimates.

2 Biomass at a Glance

In the mid-1800, biomass had dominated the primary world’s energy supplies.
However, it decreases with the invention of fossil fuel, which is later intensely
implemented in industrialized countries. When the world hit the First Oil Shock in
mid-1970, biomass was realized again by many countries to support the viability of
energy supplies. It was also believed to help reduce oil consumption that caused
some severe national deficit by dependency on imported oil (Klass 1998).

Biomass is considered the most developed renewable energy source, which
provides 35% of the primary energy needs in developing and industrialized
countries. It has more flexibility as an energy resource than other sources such as
wind and sunlight (Li et al. 2020). The technology development in harvesting
biomass for energy supplies is not as progressive as other energy sources. Biomass
can be used for direct heating in industrial or domestic applications, steam produc-
tion for electricity generation, or gaseous or liquid fuels. Among the policymakers,
biomass is gaining considerable interest in electricity production, which utilized
direct heating as the most widespread application (Boyle 1996; Wereko-Brobby and
Hagan 1996).

Besides its advantage as the energy source, biomass has taken a significant role in
the terrestrial carbon cycle. Almost half of the biomass content is counted for carbon.
Although biomass carbon is considered a tiny fraction, it is significant. It helps
maintain the delicate balance among the atmosphere, hydrosphere, and biosphere to
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Fig. 1 Features in biomass energy. (Source: Klass 1998)

support all life forms essential to species diversity that inhabit the earth and sustain
their gene pools (Klass 1998).

Originally, biomass resources could be grouped into several formations. Wood
residues are generated from wood product industries; agricultural residues generated
from crops, agro-industries and animal farms, energy crops, trees dedicated to
energy production such as rubber plantation, municipal solid waste, and also,
tropical forest as the vast virgin biomass that is available naturally (Easterly and
Burnham 1996). Meanwhile, the largest reservoir of biomass carbon resides in life
forest biomass. This is because it fixes atmospheric CO2 during most of its life cycle.

Forest biomass dominates the carbon stocks and has more carbon than the total
carbon stock in the atmosphere. Among the different biomass, only the tropical
forest holds as much carbon in its vegetation carpet. Despite only covering 28% of
the land surface, tropical forests contain 80% of the terrestrial carbon and net
primary production (Wright 2010) and are stored as biomass and soil organic carbon
(Voivontas et al. 2001; FAO 2005).

In a conventional method, biomass is harvested for feed, food, fiber, and con-
struction materials or left in the growth areas where natural decomposition occurs.
The waste products from harvesting and processing biomass disposed of inland can
theoretically be recovered after a long time as fossil fuels (Fig. 1). Alternatively,
biomass and any wastes from the process could be converted directly into synthetic
organic fuels if suitable conversion processes were available. The energy content of
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biomass could be diverted to direct heating applications or electricity production by
combustion. Moreover, biomass can also be harvested by growing certain species of
vegetation that store significant biomass sources, such as the rubber tree. In this case,
biomass serves the dual role of carbon fixing apparatus and a continuous source of
hydrocarbons without being consumed in the process (Klass 1998).

Forest biomass is considered a key variable in annual and long-term changes in
the terrestrial carbon cycle. It is substantial to have a standardized carbon estimation
modeling to describe the uptake and redistribution process of the carbon cycle within
the ecosystem (Houghton 2005). However, the estimations of global terrestrial
biomass remain uncertain and are still being studied in line with understanding the
global carbon cycle (Gibbs et al. 2007). The dynamic anthropological activities and
the increasing population continuously disturb the sustainability of the world’s
biomass growth areas. It has been estimated that tropical forest is disappearing at a
rate of tens of thousands of square miles per year and contributes about a fifth of total
anthropogenic carbon dioxide (CO2) emissions to the atmosphere (Gibbs et al.
2007). Deforestation counts for 40% of the total CHG emissions (IPCC 2007).
Most of those contributors come from tropical countries (Houghton 1991). Due to
this high carbon content of vegetation biomass, it is essential to acquire accurate
quantification and monitoring of forest biomass to reduce carbon emissions from
changes in the forest area.

Consequently, the forest plays the most significant role among different terrestrial
ecosystems in mitigating climate change impacts and controlling the global carbon
balance (Houghton 2005 in Hamdan et al. 2014). Therefore, quantifying carbon in a
forest is crucial for monitoring and reporting the changes in the global environmental
condition. Since this issue has reached a wide range of interest in many countries and
regional levels, the quantification method should be arranged within comprehensive
guidance and proper legal binding. These include assigning forest carbon to suit
previous land use analysis, such as determining whether the carbon was caused by
afforestation or deforestation, and a consistent scaling procedure through a large area
where it could produce a reliable estimation (Zheng et al. 2008).

3 Carbon Sequestration

Carbon dioxide (CO2) is the major greenhouse gasses from the land-use sector,
particularly forests and grasslands. Besides being caused by the burned fossil fuel
from industrial activities and transportation, it is also caused by the conversion of
forests (tropical deforestation), loss of soil, forest degradation due to non-sustainable
logging and fuelwood collection, and forest fire. The process of producing, emitting
carbon through the surrounding environment, and then sequestered by natural
livings is described as the carbon cycle. It explains the movement of carbon within
the biosphere, atmosphere, geosphere, and oceans. Carbon, notably carbon dioxide
(CO2), is cycled between different system components. For example, green plants
absorb CO2 from the atmosphere during photosynthesis (also called primary pro-
duction) and release CO2 back into the atmosphere during respiration. Two critical
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anthropogenic processes that contribute to CO2 emission into the atmosphere are
burning fossil fuels and changes in land use. Fossil fuels are burned in industries,
power plants, and automobiles. Land-use change is a broad term that encompasses a
host of essentially human-induced activities, including the conversion of natural
ecosystems such as forests and grasslands into managed systems such as cropland,
grazing land, and settlements (Ravindranath and Ostwald 2008).

In addition, trees act as a sink for the carbon stored by fixing carbon during
photosynthesis and storing excess carbon as biomass. The net long-term carbon
source or sink dynamics of forests change through time as trees grow, die, and decay.
Human influences on forests can further affect the carbon dynamics through fossil
fuel emissions and harvesting or utilization of biomass (Crane and Novak 2001). The
efforts to sequester more carbon through trees and forests are widely emphasized as a
necessary climate change mitigation.

Above-ground biomass is the most significant form of carbon sequestration
compared to other parts like soil carbon. According to Houghton (1995), carbon
sequestration estimation is half of the amount of AGB. However, it is more chal-
lenging to evaluate the amount of carbon sequestered over time than the overall
potential sequestered due to the high uncertainty of parameters. Many factors
influence the process of accumulation which affects the nonlinear increase of carbon
sequestration. Although there is prominent literature debate regarding the functional
form of carbon sequestration in biomass, the linear increase is wisely chosen to
simplify the calculation (Yang et al. 2003).

In the end, the management for carbon sequestration in the tropical area means
increasing the amount of carbon stored in vegetation such as living above- and
below-ground biomass, dead organic matter, and soil that includes litter, deadwood,
and mineral soil. In order to increase the capacity of the carbon pool, silvicultural
treatments can be attempted in the existing forest by protecting the secondary forest
and other degraded forests where carbon and biomass were accumulated less than
their maximum capacity. In addition, the forest can be encouraged to sequester more
carbon by natural or artificial regeneration or increase the tree cover on the agricul-
tural forest for environmental protection and local need (Yang et al. 2003).

4 Application of Remote Sensing for Rubber

The remote sensing technique provides spatial information and temporal data of a
specific place in the world. The complementary functions between GIS and remote
sensing techniques have been increasingly used for planning, decision-making, and
environmental management. GIS and remote sensing are also often combined with
environmental or ecosystem modeling in many applications such as forest-
degradation analysis, biomass analysis, and terrestrial carbon cycle (Skidmore
2002; Turner et al. 2004). In particular, remote sensing was explicitly designed to
capture spatiotemporal information on landscape and vegetation reflectance
properties, while models focus on the underlying biogeochemical process (Turner
et al. 2004).
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Monitoring by using remote sensing plays an essential role in agricultural man-
agement and production. Through practical and intensive monitoring, producers can
identify corrective and preventive steps to optimize input while maximizing produc-
tion. Traditionally, rubber tree monitoring is time-consuming and labor-intensive.
The collection of ground data relies heavily on conventional monitoring methods. It
has played a vital role in mapping rubber trees at local and regional scales and has
facilitated understanding of changes in spatial patterns of rubber plantations over
time. For rubber tree biomass and carbon and leaf area index estimation, most studies
develop models to establish relationships between remote sensing data and biophys-
ical parameters. Examples of model inputs include spectral bands, vegetation
indices, and tree growth data.

There are several ways remote sensing imagery can estimate carbon density and
changes in carbon density. It can be estimated directly based on quantifiable
relationships between biomass and spectral responses. Also, it can be estimated
based on classification techniques, indices, and regression equations or models
developed through research pairing measurements with remote sensing reflectance
measurements. This study mainly discusses the utilization of various remote sensing
data and techniques to obtain feasible biomass estimation and carbon stock in rubber
plantations. The apparent reason is to tackle the time- and labor-consuming problem
due to the significant spatial locus and the need for continuous temporal data.

5 Vegetation Indices for Biomass Calculation

Vegetation indices feature the extraction operations designed to yield the estimation
of vegetative cover from an image. These indices are based on the fact that vegeta-
tion absorbs well in the visible and reflects very efficiently in the near-infrared
spectrum of electromagnetic waves. Numerous spectral vegetation indices (VIs)
have been developed to characterize vegetation canopies for retrieving vegetation
structure from optical remote sensing. These indices are well correlated with vege-
tation parameters, including green leaf area, biomass, percent green cover, produc-
tivity, and photosynthetic activity (Asrar et al. 1984; Hatfield et al. 1984; Sellers
1985).

Another reason for applying remote sensing is to utilize the excellence of remote
sensors that are sensitive to capture the earth’s surface features, especially vegetation
characteristics. Various types of vegetation indices such as NDVI (normalized
difference vegetation index), LAI (leaf area index), EVI (enhanced vegetation
index) from LANDSAT, and MODIS have been used by many researchers to
analyze vegetation features like phenology, biomass, and forest carbon cycle (Turner
et al. 2004; Anaya et al. 2009; Gasparri et al. 2010; Morel et al. 2011; Tian et al.
2012; Shidiq and Ismail 2016). Retrospectively, remote sensing sensors could
capture the radiative process in plant canopies, which was further used as input
information for biomass modeling (Zheng et al. 2007). For instance, LAI which is
generated from several vegetation indices is often used to calculate biomass. It is
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usually combined with other parameters such as stand age and forest type to produce
high accuracy of biomass calculation.

6 Rubber Tree Biomass as a Carbon Sink

Since the invention of latex for the manufacturing sector, the demand for rubber
production has increased vastly, pushing countries with suitable climate conditions
like China, Malaysia, Thailand, and Indonesia to expand the rubber plantation area
extensively. Besides being planted in 20 countries for many latex productions,
rubber is primarily planted in Southeast Asian countries which became a world
leader for natural rubber production. More than 70% of rubber world is cultivated in
Indonesia, Thailand, and Malaysia (Shigematsu et al. 2011).

In addition to its benefit as the primary crop tree production, rubberwood also
holds promising gains in biomass production, thus becoming a renewable energy
source. Alternative renewable energy is turning into such an important issue in the
global discussion. Many parties have realized that the over-dependency only on
fossil fuel is entirely unsustainable and risky against global dynamics. Biomass
offers one alternative solution which relates to the natural environment provided
within the country. It has been studied that a standing tree can produce biomass from
different sources, including the trunk, branches, twigs, and leaves (Ratnasingam and
Scholz 2009).

Moreover, Lim et al. (2000) mentioned that the energy content of rubberwood
reaches up to 68.61 GJ per year or 40.04 GJ per hectare per year. The amount of this
estimation is quite considerable to be applied for alternative energy compliance. The
conversion technologies including combustion, pyrolysis (Shaaban et al. 2013), and
gasification (Kaewluan and Pipatmanomai 2011; Adisurjosatyo and Nugroho 2012)
have been used to generate energy from rubberwood biomass.

Apart from storing biomass for alternative energy, a forest plantation, including
rubber plantation, can be a significant carbon sink, which is important to control
global climate change. Studies show that the average carbon concentration for trees
components was 48.7% (Wauters et al. 2008), and some are nearly 50% (IPCC
2004). Therefore, preserving forest plantations, mainly rubber plantations, becomes
an essential climate change mitigation and sustainable development strategy. In
tropical countries, forest plantation serves as a tool of carbon credits utilized by
countries worldwide. The carbon sink in countries like Malaysia and Indonesia are
that much important for countries in Europe and America, where emissions from
industrial activities are the main contributors to climate change (Houghton 2005;
Vieira et al. 2005; Shin et al. 2007; Egbe and Tabot 2011). Since the carbon sink
from the forest plantation ecosystem is quite significant for maintaining the environ-
ment, the addition of a carbon sink could be very favorable by utilizing the
deforested land. It creates new carbon sinks which complement prior sinks from
other natural forests (Garrity et al. 2006; Serigne et al. 2006).
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7 Remote Sensing for Biomass Estimation

The distribution of global biomass has a unique pattern determined by the geograph-
ical characteristics of a particular area. The suitability and also the site-specific
characteristic highly relate to the spatial aspect upon its availability. This makes
biomass estimation challenging, especially in areas with complex forest stand
structures and environmental conditions requiring accurate and consistent measure-
ment methods (Thenkabail et al. 2004a; Lu 2006). Hence, remote sensing is consid-
ered the best approach to estimate biomass at a regional level where field data are
difficult to collect (Kumar et al. 2015). It becomes the most prominent and feasible
approach for generating information for biomass estimation at a reasonable cost and
acceptable accuracy. It is also considered the most feasible effort because of the
benefit of repeated data collection, multispectral and multi-temporal images, synop-
tic view, fast digital processing of large quantities of data, and compatibility with
GIS (Lu et al. 2004).

Studies on biomass estimation have been published in the past few years, and
most of them have described remote sensing-based estimation for forest biomass
(Foody et al. 2003; Zheng et al. 2007; Goh et al. 2014; Koju et al. 2019; Kashongwe
et al. 2020). In addition, the studies vary among different types of remotely sensed
data and various forest locations. The distinct types of forest, such as a mature forest
with the high complexity of vegetation texture up to degraded forest that changes
into secondary forest planted with crop plantation, also determine these studies’
results. Several types of research have explored the estimation of above-ground
estimation in tropical regions based on Landsat Thematic Mapper (TM) (Sader et al.
1989; Lucas et al. 1998; Boyd 1999; Nelson et al. 2000; Steininger 2000; Foody
et al. 2001, 2003) or synthetic aperture radar data (SAR) (Rignot et al. 1995;
Luckman et al. 1997, 1998; Santos et al. 2002, 2003). Those have shown the
difficulty of AGB estimation based only on spectral responses from optical sensor
data or backscatter data. Lucas et al. (2004) comprehensively reviewed SAR data for
AGB estimation in tropical forests and indicated the difficulty and data saturation
problem in AGB estimation. Along with the progress of biomass estimation perfor-
mance, other studies also examined the roles of textures in improving the relation-
ship between remotely sensed data and biomass estimation (Smith et al. 2002; Zhang
et al. 2003; Lu et al. 2004). They have shown that textures are also valuable for
improving land cover and vegetation classification (Franklin et al. 2001; Podest and
Saatchi 2002; Zhang et al. 2003). However, it is still challenging to properly select
suitable textures that effectively improve the biomass estimation performance due to
various attributes and site-specific characteristics.

Since it is impossible to directly measure tree crown in the middle and lower layer
of multilayer forest stands, estimating biomass starts with measuring tree crown
diameters on aerial photographs or high-resolution satellite images. Then, using
those values to estimate tree biomass because the biomass of each tree increases as
its crown size (diameter and area) increases. However, the main requirement to
successfully apply this method is that the individual crown must be visible. The most
suitable forest is the open forest with large crown trees where remote sensing sensors
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can capture the tree’s information individually. The secondary or bamboo forest is
less suitable for utilizing this method because of the probability of misdetection
through similar tree crowns (Hirata et al. 2012).

Although the biomass of an individual tree increases predictably with the tree
crown size, which consists of diameter and area of tree cover (Kiyono et al. 2011),
the measurable diameter of a tree crown depends on the ground resolution of the
remote sensing imagery being used. The crown diameter of an upper layer tree can
be measured on an aerial photograph or a satellite image with high ground resolu-
tion. In addition, the measurement of tree crown diameters is influenced by the
availability of color information, the data acquisition time, and whether a stereo pair
of images makes it easier to discriminate tree stratum and adjacent tree crowns using
height information (Hirata et al. 2012). In their paper, Kumar et al. (2015) have
comprehensively described the application of three different types and methods of
remote sensing in forest biomass estimation.

8 Optical Remote Sensing for Biomass Estimation

Optical remote sensing data have been widely used for biomass estimation using
different types of spatial and temporal resolution as well as a variety of image
processing technologies (Zheng et al. 2004; Lu 2005; Muukkonen and Heiskanen
2005; Rahman et al. 2005; Li et al. 2008; Song 2013; Koju et al. 2019). The most
commonly used approaches are multiple regression analysis, k-nearest neighbor, and
neural network (Steininger 2000; Foody et al. 2003; Zheng et al. 2004; Halme et al.
2019). Optical data can be used to perform vegetation classification from the
particular area where biomass is predictably generated. On the other hand, for
indirect biomass estimation, optical remote sensing data are relatively used to
determine vegetation parameters such as tree canopy or crown diameter using
multiple regression analysis or canopy reflectance models (Phua and Saito 2003;
Popescu et al. 2003). Different types of vegetation indices and band ratios derived
from optical data can also be obtained to extract biomass estimation by correlating
vegetation index values or band ratio values with field biomass quantification (Dong
et al. 2003).

According to previous studies, at least three different spatial resolutions of optical
remote sensing data can be attempted as particular tools in forest biomass estimation.
First, the high-resolution data from range sensors can be applied to generate tree
parameters of forest canopy structures (Kumar et al. 2015). High-resolution data
from IKONOS and QuickBird have been used for generating tree crown size (Song
et al. 2010) and estimate biomass as well as carbon calculation conducted in
secondary forest oil palm plantation (Thenkabail et al. 2004b). These applications
of high-resolution data reveal large-scale photographs and photo mensuration
methods that can be used to obtain forest characteristics such as tree height, crown
diameter, crown closure, and stand area (Bertolette et al. 1999; Clark et al. 2005).
However, there are some limitations from this type of resolution related to the aspect
of shadows and spectral separability. A study from Hirschmugl et al. (2007) suggests
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that spectral variance between tree crowns creates some distress in developing
expected biomass estimation models.

Furthermore, the substantial need for more extensive storage also becomes a
primary issue when using high spatial resolution data, especially if the estimation
model required massive broad areas with various land covers surrounding the forest.
Moreover, the vegetation classifications become more complex when using the
traditional pixel-based spectral classifiers (Kumar et al. 2015). However, some
studies have found that integrating textual information and object-based method
has successfully addressed this problem (Blaschke and Strobl 2001; Blaschke 2010).
It is supported by extracting such variables of statistic spectral band, geometric
features, and texture features. It has been strengthened by a study from Lu and
Batistella (2005) that used variables of GLCM texture (mean, median, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation) with Landsat TM
bands 2–5 and 7, which found a strong relationship between textural images and
biomass for a mature forest with complex vegetation structure. However, the result
showed a weak relationship for a secondary forest with a simple stand structure.

Second, the medium spatial resolution also has been frequently used in biomass
estimation. Linear or nonlinear regression models, k-nearest neighbors, neural
networks, and vegetation canopy models are several methods that are mainly applied
when using this type of resolution. Landsat TMwas used to estimate tree volume and
biomass using the k-nearest neighbor estimation method (Franco-Lopez et al. 2001;
Halme and Tomppo 2001; Tomppo et al. 2002), whereas SPOT 5 was used to
estimate above-ground forest biomass from canopy reflectance model inversion
(Ghasemi et al. 2011). Some limitations related to the application of medium spatial
resolution are visible when estimating the tropical area. Previous studies revealed
that spectral reflectance and vegetation indices were not reliable to act as biomass
predictors and the low sensitivity through the biomass changes (Steininger 2000;
Foody et al., 2003). However, advanced studies have successfully added significant
factors to improve sensitivity performance. The use of texture information in the
change analysis process by Lu (2005) and Nichol and Sarker (2011) has favorably
improved biomass estimation results in the tropical forest. In other cases,
incorporating spectral variables with age into Landsat TM of the forest also posi-
tively influenced estimating forest biomass. Additionally, vegetation indices have
been advantageous in minimizing spectral variability when measuring biophysical
properties for biomass estimation, especially in complex vegetation stand structures.
The utilization of vegetation indices strengthened the combination of image texture
and spectral reflectance for improving biomass estimation performance.

Lastly, coarse-spatial resolution AVHRR NDVI data have been used to estimate
biomass in temperate woody biomass in Canada, Finland, Norway, Russia, Sweden,
and the USA (Dong et al. 2003). Numerous spectral types from MODIS data have
successfully improved biomass estimation accuracy at the continental or global
scale. For example, a recent study in the Amazon basin conducted by Saatchi et al.
(2007) and in the USA by Blackard et al. (2008) used MODIS data to compose tree-
based models and metrics combined with radar data, climate, topography, and
vegetation maps. MODIS data also shows positive performance for biomass
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estimation when integrated with precipitation, temperature, and elevation in the
national forest of California, USA. On the other hand, compared to the other two
kinds of spatial resolution, this type of optical sensor has more complex limitations
due to the occurrence of the mixed pixel, a saturation of spectral data at high biomass
density, and the mismatch between the size of plots and pixel (Kumar et al. 2015). As
a result, some studies utilized course and medium resolution combined with different
modeling approaches to attain preferable biomass estimation results for more expan-
sive areas (Hame et al. 1997; Tomppo et al. 2002).

In general, optical sensor data in 2D types are considered more appropriate for
extracting vegetation structure such as vegetation types and canopy cover but less
effective for estimating vertical aspects such as canopy height, which become
essential predictors for biomass estimation (Kumar et al. 2015). Studies found
these optical sensor data have prospected opportunity to improve the viewing
capability, hence establishing more accurate canopy height estimation (St-Onge
et al. 2008; Ni et al. 2014). More accuracy has been shown from 3D data generated
from SPOT 5, which adequately mapped the tree height, stem diameter, and forest
tree volume (Reinartz et al. 2005; Wallerman et al. 2010). Therefore, it can be
concluded that high-resolution data can be used extensively as an alternative to
deriving height vegetation information compared to other types of data.

9 Radar Remote Sensing for Biomass Estimation

Recently, the use of synthetic aperture radar (SAR) data for biomass estimation has
been rapidly increasing, especially in the area where frequent cloud cover is clearly
discovered. It results in the difficulty of the optical sensor to obtain high-quality
images. SAR sensors can catch various data within all weather and light conditions,
penetrating through vegetation in different degrees and generating information of
structure distribution in 3D format (Zhou et al. 2009). Several studies have shown
that the utilization of SAR data mainly focuses on developing algorithms for
classification and biomass estimation in the closed-canopy forest (Lucas et al.
2006, 2010) and complex subtropical forest (Sarker et al. 2012). The available
SAR sensors widely used for remote sensing studies are TerraSAR-X, and the
Advanced Land Observing Satellite and Phased Array L-band SAR (ALOS-
PALSAR). Those SAR data can be retrieved to examine the relationship between
ground-based biomass estimation and single-channel data (Zhou et al. 2009).

SAR is an active sensor that transmits microwave pulses to the earth’s surface and
then detects the reflected pulses back from the earth’s surface. The backscattering
coefficient is derived from the reflected signals (Shimada 2010). The correlation
between the backscattering coefficient and biomass is high for long-wavelength
(L band, about 23 cm, but saturation occurs at a biomass of about 100 t/ha 3). For
comparison, the above-ground biomass of mature tropical forests can be as high as
400–500 t/ha and usually exceeds 200 t/ha. For this reason, it is not easy to estimate
the biomass of a mature forest. However, the method is suitable for mapping biomass
changes over a large forest area, recovering from some large-scale disturbance (e.g.,
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slash-and-burn or plantation agriculture). In hilly terrain, topographic distortion
should be corrected (Hirata et al. 2012).

Since the SAR sensor can detect both horizontal (H) and vertical (V) components
from backscatter radiation, four possible polarization configurations are applied
within this sensor system. First, HH consists of horizontal transmit and horizontally
received, which are available on ERS satellite. Vertical transmit and vertically
received is called VV that belongs to the RADARSAT satellite. The other is a
combination of previous polarization: HV from the horizontal transmission and
vertical reception, and VH from the vertical transmission and horizontal reception.
The pattern of those polarization components depends on the states from detected
radar signals (Kumar et al. 2015). The backscatter radar of P and L bands has
particularly shown a positive correlation with various primary forest parameters
such as tree age, tree height, DBH, basal area, and above-ground dry biomass
(Imhoff et al. 2000; Castel et al. 2002; Santos et al. 2002; Sun et al. 2002).

Studies have discovered that L-band is the most useful for forest biomass
estimation (Le Toan et al. 1992). However, those SAR bands still showed the
correlation between biomass and forest parameters. For instance, a study conducted
by Harrell et al. (1997) used SAR C and L band multi-polarization for biomass
estimation in the southern USA and found L band HH data is essentially significant
to obtain accurate estimation. Furthermore, they also found that the addition of C
band HH and HV significantly improves the estimation performance. For the area of
after-logged forest, JERS-1/JERS is found useful to conduct forest biomass estima-
tion (Kuplich et al. 2000) and in the mountainous area (Santos et al. 2002). While in
the tropical forest, RADARSAT has been tested for biomass estimation and yielded
satisfactory results, although there are some problems in data saturation, especially
when reaching complex forest stand structures (Sarker et al. 2012). Lastly, PALSAR
data indicate a promising ability to map forest with encouraging results in a more
complex forest area like Amazon and Siberia (Lucas and Armston 2007).

According to Zhou et al. (2009), there are several advantages of using radar
compared to optical sensors for biomass estimation. Radar sensor performs freely
from solar radiation variations caused by high penetration through cloud and haze. It
is essential when applied in tropical areas. Furthermore, it can actively manage the
sensors and power outlet, thus ensuring consistent transmit and return rates. How-
ever, radar data are less applicable in regional studies due to the small swath width,
high costs of airborne acquisitions, and limited coverage (Lucas et al. 2010).

10 LiDAR Remote Sensing for Biomass Estimation

LiDAR is a relatively advanced new technology developed to resolve spatial analy-
sis limitations using previous 2D remote sensing. It can transform two-dimensional
into third-dimensional data, which simplifies the analytical process of remote sens-
ing. LiDAR instruments can detect the vertical distribution and canopy surface
(Dubayah and Drake 2000; Harding et al. 2001), which has become the most
efficient technology for structural assessment since it can capture landscape
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structural data for more accurate biomass estimation (Zhao et al. 2009). Previous
studies have shown a robust relationship between LiDAR metrics and above-ground
biomass that enhance the ability to estimate forest biomass (Lefsky et al. 1999;
Means et al. 1999). Moreover, LiDAR also gained more sophisticated technology in
waveform digitizing sensors, increasing the image quality captured in a more
complex forest structure (Lefsky et al. 1999, 2002; McGlinchy et al. 2014). How-
ever, some restrictions have also been adhered to when using LiDAR for field
application: (1) fewer simple data analysis that requires advanced image processing
knowledge and skill and (2) more expensive data acquisition process which covers
smaller detection areas. Due to these restrictions, few and very specific studies can
be conducted using this type of sensor, and hence it is not widely applied for biomass
estimation in a larger area (Kumar et al. 2015).

As mentioned in study results from passive sensors, the problem of attaining
optimum detection emerges severely in mature and complex structure forests. Most
of the sensors failed to correlate the forest structure and biomass variables (Lu 2006).
However, LiDAR data can estimate structure variables such as height, crown size,
and stem volume through vertical appearance. There are two types of LiDAR for
conducting sensor operations. Todd et al. (2003) mention that the first type is
discrete return LiDAR (small footprint), and the second is full-waveform LiDAR
(large footprint). Both are calibrated to operate in the 900–1064-nm wavelengths
where vegetation reflectance is the highest. The discrete return LiDAR has two
approaches: (1) area-based and (2) individual tree-based methods (Chen 2013).
Area-based methods develop statistical models to relate biomass with metrics
derived from a LiDAR point cloud at the plot or stand level. This model is
subsequently applied to accurately estimate the entire study area (Thomas et al.
2006; Gleason and Im 2012). Height metrics are the most frequently utilized
parameter implemented in area-based LiDAR, which can be computed from differ-
ent variables such as the first and all returns or by a grid of the canopy heights (Lim
et al. 2003; Asner et al. 2009).

On the other hand, the individual tree-based method applies the approach by
identifying the individual tree crown then generating the information from the
LiDAR point cloud. The biomass estimation can be attained by processing the tree
height or crown size information related to the amount of biomass within the forest.
Both the area-based and individual-based approaches need calibration and field
validation, but the individual approach requires less validation because the data
needed are only for a few numbers of the tree for data sampling.

Like other sensors, the biomass estimation generated from LiDAR is also derived
from some structure variables. The most widely used is tree height which several
studies have utilized to obtain biomass estimation. García et al. (2010) conducted a
biomass model based on LiDAR height or intensity, both used separately or com-
bined. They found that the normalized intensity-related variables are more helpful in
explaining the biomass estimation than the other variables. Other studies from
Lefsky et al. (2005) and Popescu et al. (2011) revealed the broad application of
space-borne LiDAR for accurate biomass estimation. A summary of the remote
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sensing methods, data types, and some examples for forest biomass estimation is
shown in Table 1.

11 The Allometric Equation for Biomass Estimations

Scaling equations that relate to the sizes of different parts of a tree are called
allometric equations. Recently, the allometric equation has been considered a pow-
erful tool for assessing tree weight from independent forest variables. The equations
are developed through destructive methods and field sampling that applied trunk
diameter, age, type of species, wood density, and total height assessment. Several
cut-down trees were taken and dried up to a certain temperature to attain dry weight.
This dry weight is considered as an actual biomass amount. The following step uses
the data sampling from the forest site to be statistically analyzed, thus obtaining the
needed equation (Sone et al. 2014). The results will be varied across the site-specific
or species-specific up to different climate, forest types, and methods to execute the
field sampling.

However, there is some limitation when applying allometric equations, especially
when encountering various variables with different site condition. The results often
show several types of relationships among the variables, hence generating less
general interpretation to be applied in other common studies. It is important to
choose an allometric equation suitable for the region’s environmental conditions
and the forest type, such as evergreen or deciduous (Cairns et al. 1997; Mokany et al.
2006). Furthermore, it is also too complicated and costly to utilize a series of
allometric equations for each tree species and forest site. Therefore, it is essential
to develop a general allometric equation that can be applied in various forest site
conditions and geographical locations. Eventually, the general equation can be
obtained using common predictors of tree structure based on biological or physical
theories (Komiyama et al. 2005).

One of the most referred biomass estimations for tropical trees is the allometric
equation developed by Chave et al. (2005), updated in Chave et al. (2014). They
mainly analyzed the global database of directly harvested trees at 58 sites, spanning a
wide range of climatic conditions and vegetation types, with the indictable effect of
the region or environment factors. According to Chave (2005), the most critical
AGB predictors are trunk diameter (D), wood specific gravity or wood density, total
height (H ), and forest type (dry, moist, or wet). Since, in particular conditions, total
height data is challenging to obtain, or the availability is less accurate to reveal the
actual conditions of tree’s height, Chave’s equations focused on two conditions of
height data availability, with or without height data. In a particular situation, tree
height may improve the model’s quality but ignore the total height and might be
helpful when predicted to cause some bias. In addition, when utilizing the equations
into a much broader range of vegetation, wood density is a significant predictor for
AGB estimation (Chave et al. 2014). Chave’s model restricts the model only for the
tropical forest with broadleaf tree species, excluding plantations or other manageable
forests.
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Table 1 Summary of the remote sensing methods, data types, and some examples for forest
biomass estimation

No. Methods Data used Characteristics Examples

1 Methods based on
the spatial resolution
data (<5 m)
(parametric
classifiers, MLC,
MDM, etc.;
nonparametric
classifiers,
ISODATA, k-means)

Aerial photographs,
IKONOS,
QuickBird, GeoEye,
WorldView

Per-pixel level Asner et al. (2002),
de Jong et al. (2003),
Thenkabail et al.
(2004b), Song et al.
(2010)

2 Methods based on
medium-spatial
resolution data
(10–100 m) (linear,
exponential, and
multiple regression
analysis, neural
network, k-nearest
neighbor method,
productivity model)

Landsat 4 5 7 TM/
enhanced TM+,
Systeme Probatoire
D’Observation de la
Terre (SPOT)

Per-pixel level Franco-Lopez et al.
(2001), Foody et al.
(2001), Halme and
Tomppo (2001),
Tomppo et al.
(2002), Soenen et al.
(2010)

3 Methods based on
coarse-spatial
resolution data
(>100 m) (regression
models and artificial
neural network
(ANN), k-nearest
neighbor, statistical
model)

IRS-1C WiFS,
AVHRR, MODIS,
SPOT, vegetation

Per-pixel level Hame et al. (1997),
Barbosa et al. (1999),
Tomppo et al.
(2002), Dong et al.
(2003), Baccini et al.
(2004), Saatchi et al.
(2007), Baccini et al.
(2008)

4 Methods based on
radar data (regression
model, canopy height
model, multiplicative
models)

SIR-C, SAR-L
JERS-1 SAR-L,
AeS-1 SAR-P,
InSAR, airborne
laser, large and small
footprint LiDAR

Per-pixel level Le Toan et al. (1992),
Santos et al. (2003),
Lefsky et al. (2005),
Asner et al. (2009),
Popescu et al. (2011),
Gleason and Im
(2012), Chen (2013)

5 Methods based on
image fusion
techniques (intensity
hue and saturation
(HIS), Brovey, PCA)

Multispectral and
panchromatic

Chen and Stow
(2003), Amarsaikhan
and Douglas (2004),
Choi et al. (2005)

6 Vegetation index-
based method
(NDVI, ratio)

Object-level Elvidge and Chen
(1995), Blackburn
and Steele (1999), Lu
et al. (2004),
Mutanga and
Skidmore (2004)
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Table 1 (continued)

No. Methods Data used Characteristics Examples

7 Object-based
(segmentation and
classification, ANNs,
k-nearest neighbor,
statistical models,
random forest)

Object-level Blaschke and Strobl
(2001), Lu and
Batistella (2005),
Goodchild et al.
(2007), Blaschke
(2010)

8 Advanced classifiers
spectral mixture
analysis (SVM),
random forest,
support vector
machine (SVM)

Multispectral Per-pixel level Dennison and
Roberts (2003), Lu
et al. (2004), Calvao
and Palmeirim
(2004), Lu and
Batistella (2005)

Adapted from Kumar et al. (2015)

Unlike the tropical forest, which contains hundreds of tree species, and diverse
trees’ physical appearance, plantation or manageable forest has a similar condition
for tree age, type of species, and forest management practice. Thus, the appropriate
model will be slightly or much different from biomass equations for tropical forests
(Brown 1997; Chave et al. 2005, 2014; Houghton 2005). Previous studies upon
biomass estimation with and carbon sequestration have been conducted in
mangroves (Sherman et al. 2003; Komiyama et al. 2005), oil palm (Asari et al.
2013), and rubber plantations (Yang et al. 2005; Wauters et al. 2008; Sone et al.
2014). Specific allometric equations also have been developed from those types of
plantations. Biomass estimation in rubber plantations strongly engages the tree age
as an important variable since it determines the trunk diameter and total height
(Wauters et al. 2008; Sone et al. 2014). Results from Sone et al. (2014) show that the
biomass estimation relationship with tree age increased consistently from 5% at the
age of 3 years to 40% at the age of 20 years in rubber tree.

A biomass expansion factor converts the trunk volume into the volume of the
whole tree, including branches, leaves, and roots. This factor depends on the tree
species and the forest stand age. That value is converted to carbon stocks by
multiplying it by 0.5. Since species, forest age, and forest management practices
are constant in the case of a plantation, it can be assumed that tree size and growth
conditions are also constant. In this case, the biomass expansion factor can be used as
follows:

C= V ×WD ×BEF½ �� 1þ Rð Þ×CF
Here, C is carbon stock per unit area (t-C/ha), V is stand volume (m3/ha), WD is

wood density (t/m3), BEF is the biomass expansion factor, and CF is the carbon
content ratio (t-C/m3).

Table 2 lists the most commonly used biomass allometric equations based on a
destructive method. Some of them were conducted by taking the area of tropical
forest in Southeast Asian countries and focusing on primary and secondary forest.
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Table 2 List of most common used biomass allometric equations cased on destructive method

No. Source Allometric equations Site

1 Kato et al.
(1978)

1/H = 1/(2.0 * D) + 1/61 Primary forest, Peninsular
MalaysiaFrom the values of D and H the dry

mass of stem, branches, and leaves of
the tree is estimated

Ms = 0.0313 * (D2H )0.9733

Mb = 0.136 * Ms1.070

1/M1 = 1/(0.124Ms0.794) + 1/125

2 Ketterings
et al.
(2001)

ln(Wt) = 2.59 × ln(D) - 2.75 Secondary forest, Sumatera,
Indonesia

3 Chave
et al.
(2005)

Wt = ρ * exp(-1499 + 2.148 * ln
(D) + 0.207 * (ln(D))2 - 0.0281 * (ln
(D))3)

Pasoh 50 ha plots and other
Center for Tropical Forest
Science (CTFS) plots

4 Basuki
et al.
(2009)

ln(Wt) = 2.196 × ln(D) - 1.201 Secondary forest, Kalimantan,
Indonesialn(Ms) = -1.472 + 2.180 * ln(D)

ln(Wt) = - 0.097 + 1.361 * ln(D)

ln(Wt) = -1.392 + 1.250 * ln(D)

5 Kenzo
et al.
(2009)

Wt = 0.0829 × D2.43 Secondary forest, Sarawak,
Malaysia

6 Sone et al.
(2014)

Wt = 0.144 × D2.40 Rubber plantation forest, north
Sumatera, IndonesiaWt = 279 × (D2 × H )0.867

7 Wauters
et al.
(2008)

exp - 6:748þ2:723 × ln C170ð Þð
0:487

Rubber tree plantation in
Western Ghana and Brazil

8 Asari et al.
(2013)

71.797Hpalm - 7.0872 Oil palm plantations in south
Sumatera, Indonesiaπr2Hpalmρ

9 Tang et al.
(2003)

Wt = 0.1190219 × (D2H )0.6052483 Secondary tropical forest,
Xishuangbanna

10 Brown
(1997)

Wt = exp(-2.134 + 2.530 × ln(D)) Tropical forest

11 C stocks: W × Fc

Fc is a standard conversion factor of
0.5 kg C kg-1

Note:H is the total tree height;D is the stem diameter at breast height (dbh); Ms, Mb, andM1 denote
the dry mass of stem, branches, and leaves, respectively; Wt is the above-ground biomass of
standing trees, and ρ is the wood density. (Adapted from Hamdan et al. 2014)

However, the recently updated models have been elaborated on the plantation forest,
which possesses different tropical primary and secondary forest characteristics.

Finally, there are some critical reviews for forest biomass estimation models,
common mistakes, and corrective. A large degree of uncertainty exists in estimated
forest biomass, carbon stocks, and fluxes (Somogyi et al. 2007; van Breugel et al.
2011; Clark and Kellner 2012; Ahmed et al. 2013; Molto et al. 2013). Lack of
consensus on definitions, methodological inconsistencies, and assumptions also lead
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to widely differing results even among similar studies (Somogyi et al. 2007; Clark
and Kellner 2012). In addition, Sileshi (2014) explained that the common mistake in
developing biomass allometric equations was the arbitrary choice of analytical
methods, inadequate model diagnosis, ignoring collinearity, uncritical use of
model selection criteria, and uninformative reporting of results. In other cases, errors
in parameter estimates were not checked, and model uncertainty was ignored when
interpreting and explaining the results. It is crucial to choose a reasonably simple
functional expression that involves less non-interpretable parameters, to minimize
the risks of mistakes when applying or developing allometric equations. It can be
simpler equations with fewer parameters and “independent” predictors and without
polynomial terms. As expected, by alerting those common mistakes, the far-reaching
consequences of biomass allometric equations will be more accountable.

12 Remote Sensing for Rubber Trees Above-Ground Biomass
(AGB)

There is a limited number of studies focusing on remote sensing for rubber tree AGB
estimation. Most of the studies elaborate primary tropical forest, consisting of mixed
vegetation, broader leaves, and different tree ages. On the other hand, the rubber tree
biomass estimation is discussed through allometric equations generated from
destructive sampling in several forest types (Brown 1997; Wauters et al. 2008;
Basuki et al. 2009; Sone et al. 2014). Yasen and Koedsin (2015) had precisely
elaborated this topic in Thailand. They used the multispectral bands of high spatial
resolution satellite imagery for estimating rubber tree biomass at Phuket, Thailand.
The multispectral bands of WorldView-2 are used as the input variables for multiple
linear regression and artificial neural network to construct the model of rubber tree
AGB.

The application of remote sensing for capturing forest structure extensively
depends on spectral bands combinations that formed vegetation indices. It is also
applied when performing specifically for rubber tree plantations. A previous study
(Yakham et al. 2012) reported that normalized difference vegetation index (NDVI)
derived from SMMS satellite images could classify the rubber stand age with
reasonable accuracy. Likewise, Sopharat (2009) found that soil-adjusted vegetation
index (SAVI) derived from SPOT-5 was strongly related to the leaf area index (LAI)
of the rubber tree. Several studies of other vegetation types found that vegetation
index such as NDVI correlates with biomass and LAI (Wang et al. 2005; Heiskanen
2006; Devagiri et al. 2013).

Besides, Lu (2005) has clearly explained the AGB model and vegetation indices
based on his study. The TM spectral responses are more suitable for AGB estimation
in sites with relatively simple forest stand structures than sites with complicated
forest stand structures. On the other hand, textures appear more critical than spectral
responses, and textures improve AGB estimation performance. Biophysical
conditions are largely affecting AGB estimation performance. Therefore, many
remote sensing variables, including spectral signatures, vegetation indices,
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transformed images, and textures, may become potential variables for AGB estima-
tion. However, not all variables are required because some are weakly related to
AGB or highly correlated. Hence, selecting the most relevant variables is critical for
developing the AGB estimation model. In general, vegetation indices can partially
reduce the impacts on reflectance caused by environmental conditions and shadows,
thus improving the correlation between AGB and vegetation indices, especially in
those sites with complex vegetation stand structures (Lu et al. 2004). Since rubber
tree plantation has a less complex structure, it is expected to be more straightforward
in identifying suitable textures that are strongly related to AGB but weakly related to
each other.

Not only important to generate a comprehensive rubber plantation map, an
evident and reliable vegetation structure that is strongly related to AGB estimation
might also be discovered from a remote sensing approach. The difficulty of mapping
rubber plantations from optical images mainly focuses on the effect of frequent cloud
cover on tree delineation and the similarity of spectral characteristics between rubber
trees and another forest type. Compared to an optical sensor, SAR can successfully
penetrate clouds above the tropical forest through tree canopies, especially for longer
wavelengths (L-band SAR) (Baghdadi et al. 2009). When the SAR sensor transmits
the radar pulse, the transmitted energy is called forward scattering, and the returned
signal after interacting with the forest is called backscatter. It is much influenced by
the electric and structural properties of the forest structure, consisting of canopy,
leaves, branches, and trunk of the tree. In addition, the forest medium can be
considered a homogenous medium containing a large number of scatters of a single
category. The backscatter value depends mainly on the backscatter and forward
scatter function’s orientation, size, and dielectric constant (Chen et al. 2009). In
addition, Dong et al. (2012) found that the use of cloud-free PALSAR data supported
robust mapping, and the integration of PALSAR 50-m forest maps and 250-m
MODIS NDVI phenology can map fractional cover of rubber plantation extent
accurately.

Two groups of studies have used optical remote sensing data to delineate rubber
plantations. The first group focuses on using spectral signatures with cluster analysis
and traditional classifiers to identify and map rubber plantations, such as
Mahalanobis classifier (Li and Fox 2011, 2012). The challenge from this group is
that rubber trees have similar spectral characteristics with the natural tropical forests,
mainly secondary forests, as observed by single-date multispectral data during peak
growing season (Li and Fox 2011). The second group of studies relies on the
temporal signals of optical images to delineate rubber trees. Recently Chen et al.
(2010) and Tan et al. (2010) utilized the intra-annual temporal profile of rubber
plantations to delineate them in Hainan, China. This approach relied on phenological
features of rubber plantations. However, the spatial resolution from low-res
imageries sometimes limits its suitability for rubber plantation mapping in
fragmented landscapes. In addition, the frequent cloud cover in tropical regions
makes it challenging to construct consistent year-long time series with reliable data
quality.
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On the other hand, the allometric equation faces some challenges in estimating
the rubber tree biomass appropriately. As Wauters et al. (2008) explained, site-
specific allometric equations were used to estimate the carbon content of the tree’s
components correctly. The inclusion of the clone type and total height only slightly
improved the model. The comprehensive understanding of tree components yet
vegetation structure becomes the substantial basis for constructing the fit model. It
is also reported by Sone et al. (2014) in their study toward rubber tree AGB in
Sumatera, Indonesia, that emphasizes the critical role of stand parameter and tree age
as significant input variables that are strongly related to AGB biomass. Estimation
AGB is based on the volume and structure of the trees, which considered the
diameter at the breast height (DBH) and height of the tree (H ) as the significant
parameters. The absence of the tree species-specific biomass equation will be
addressed by applying the wood density parameter, which considers the species-
specific volume equation with the forest type developed by Chave et al. (2005) for
moist forest stands. As supported by Komiyama (2005), the measurement of trunk
diameter or girth is more practical than other parameters, especially for those
working in closed and tall canopies where tree height is difficult to measure
accurately.

13 Conclusion

Comprehensive studies on the uses of remote sensing and allometric equation have
been conducted to highlight the existence of crop plantations for biomass contribu-
tion to the carbon cycle. However, the absence of similar previous research realizes
the current study is the prior work in developing such an inventory for both rubber
tree biomass models combined with remote sensing techniques. As elaborated
among the literature and research questions, the missing elements are expected to
be found in further study. It is also attributed to the other focuses and methodologies,
which eventually fill the gaps in this present work.

In fact, the combination of variables developed by previous allometric models
and remote sensing approaches is aimed to generate updated studies that reveal the
biomass estimation using remote sensing technique, specifically for rubber tree
plantations in tropical areas. Several inevitable challenges, such as site-specific or
species-specific characteristics, remote sensing imagery availability, limited field
sampling data, and un-fitted allometric equation, may have hindered the AGB
estimation performance. However, comprehensive elaboration through some studies
and previous research highlights the stand parameters like trunk diameter and height,
age tree from vegetation structure combined with spectral bands, backscattered
signal, and vegetation indices, to be appropriately applied as biomass predictors
and input variables. Remote sensing data will support land management decisions
and land-use policies. The information retrieved from remotely sensed data not just
become an essential indicator for monitoring plantation areas and observing bio-
mass, assessing carbon stocks, and predicting yield gain or loss. Remote sensing is
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expected to grow and continue to play an important role in managing global rubber
plantations in the future.
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The Use of Landsat TM Imagery
for the Application of Rubber Tree Area
and Stand Volume Predictive Models
in Rubber Plantations in Selangor, Malaysia

Mohd Nazip Suratman, Gary Bull, Valerie LeMay, Peter Marshall,
and Donald G. Leckie

Abstract

The requirement for information of the spatial distribution of forest resources has
increased rapidly in recent years. Integration of remote sensing data with Geo-
graphical Information System (GIS) hold the keys to contribute to effective
mapping and monitoring of forest resources. Globally, there have been tremen-
dous efforts of mapping of forest resources, agroforestry, forest plantations, and
agricultural tree crops at regional and local scales. Rubber tree (Hevea
brasiliensis) is one of the important agricultural tree crops which plays roles as
the main sources of natural rubber and wood products not only in Malaysia but
also in other countries such as Indonesia, Thailand, India, Vietnam, and China.
Effective management and appropriate policy for this tree crop require reliable
information on resource dynamics and forecasts of resource availability. The need
for inventories and effective monitoring prompted this study into utilising
Landsat Thematic Mapper (Landsat TM) for the application of rubber tree area
and stand volume predictive models which was previously developed by
Suratman et al. (Int For Rev 6(1):1–13, 2004). In this study, the application of
predictive models has produced thematic maps of spatial distribution of rubber
tree areas and stand volume for a case study area of rubber tree plantations in
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Selangor, Malaysia. The work in this study has demonstrated the development of
methods for mapping rubber plantation by linking ground information with
model projections based on satellite data. Additionally, the maps produced in
this work demonstrates a spatial distribution and availability of rubber tree
resources across landscapes. This information is needed for effective resource
planning aimed at maximizing the potential benefits of rubber tree crops for wood
and natural rubber supply in Malaysia.

Keywords

Rubber tree · Landsat TM · Predictive models · Model application · Regression
analysis

1 Introduction

The total natural forest area in Malaysia is 18.3 million ha, or 55.3% of the total land
base. Of this total, 10.9 million ha has been set aside for a permanent forest reserve to
be managed sustainably (Ministry of Energy and Natural Resources 2022). From this
area, about 4.1 million ha is state land production forests and 3.1 million ha is
protection forests. An additional more than two million ha of forest area is known as
conversion forest, which in due time, will be converted to other uses to meet the
needs of population growth and balanced economic development. In addition to
natural forests, the country has established about 0.25 million ha of forest plantations
consisting of fast-growing tree species such as Acacia (Acacia mangium), Batai
(Albizia falcataria), Yamane (Gmelina arborea), and Eucalyptus (Eucalyptus spp.).
Additionally, Malaysia has 5.27 million ha of agricultural tree crops which are
mainly rubber, oil palm, coconut, and cocoa (FAO 2002).

Rubber tree crops play pivotal roles in providing natural rubber, sources of wood
products, and other benefits that support basic human needs and economic develop-
ment (Killmann and Hong 2000; Suratman et al. 2004; Suratman 2011). Despite
their importance, little attention has been given to inventory, mapping, and monitor-
ing the crops. This could be because government agencies are often under-funded;
thus data on tree crop resource monitoring tend to be sporadic. In spite of the
country’s awareness of the socio-economic roles of rubber plantations, a decline in
the total area of rubber plantations in Malaysia occurred throughout the 1990s. At the
beginning of the decade, Malaysia had about 1.84 million ha of rubber plantations
compared to 1.43 million ha in 2000, representing about a 22% reduction (MRB
2002). At present, the planted area of rubber estates and small holdings in the
country is 1.14 million ha (MRB 2022).

Rubberwood timber from rubber tree plantation is available at the time of
replanting. The properties and utilisation of rubberwood have been studied since
the 1950s, but the commercial utilisation of the wood only began in the late 1970s.
The main utilisation of rubberwood before the development of the rubber industry
was fuelwood, which was estimated to be 67% of the total rubberwood annual
consumption. The other 33% were used as reconstituted products, charcoal, sawlogs,
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and plywood/veneer (Hong and Sim 1999). During the late 1970s, there was an
urgent need to find new raw materials to satisfy the demand for depleting light-
coloured timber species such as Ramin (Gonystylus bancanus) and Damar minyak
(Agathis borneensis). Rubberwood was identified as one of the promising materials
to be developed due to many similarities in characteristics between these species
(Abdul Razak and Hoi 1988). After many years of research, a number of inherent
weaknesses (e.g., susceptibility to fungal and insect attacks) have been identified,
and methods to overcome these problems have been determined (Mohd Dahlan et al.
1999). Research and development to broaden the utilisation of rubberwood has now
ventured into value-added products (Hong and Sim 1999).

Remote sensing technology offers potential gains in inventory efficiency based
on its ability to quantitatively characterise stand canopies through spectral reflec-
tance (Ahern et al. 1991; Lillesand and Kiefer 2000). At the regional level, the
potential advantages of using satellite images for mapping forest resources include
cost-effectiveness, broad coverage, and the ability to reveal landscape processes at
large areas (Wilkie and Finn 1996). While many studies have been conducted
looking at land use/cover changes, very little is understood at a local level about
the complex relationship between specific resource availabilities and the factors that
drive such changes (Mertens and Lambin 1997).

The need for effective inventories and mapping of rubber tree resources was the
impetus for this study into applying previously developed rubber tree area and stand
volume predictive models into an independent area of rubber plantations with
information from satellite remote sensing. The thematic maps produced from this
work may be used to serve the needs of rubber plantation agencies, owners, and land
use planners in their goal of characterising the existing condition of the rubber tree
resources as a baseline for later research and as a starting point for the development
of future scenarios. This point is particularly important, because in order to focus
policy interventions geographically, one needs to measure the resource availability
in relation to their spatial distribution at the landscape level. Such information is
essential to support the implementation of appropriate responses to forecast of
landscape-resource changes to ensure the sustainability of essential resources.

2 Materials and Methods

The predictive model application area chosen was located about 20 km south of
Kuala Lumpur in the State of Selangor, Malaysia, between 101° 250 and 101° 450 E
latitudes and 2° 500 and 3° 050 N longitudes, covering about 250 km2 (Fig. 1). The
region has a tropical climate characterised by a dry season (March to May) and a wet
season (November to January), with a mean annual precipitation of 2178 mm.
Daytime mean temperature ranges from 22.9 to 27.7 °C (Meteorological Service
2022). The selected area consists of rubber small holders and plantations in three
districts, namely Petaling, Sepang, and Kuala Langat. The topography in the area is
predominantly flat, with altitudes ranging from 5 to 80 m above sea level (ASL),
with the highest point at Permatang Kuang of 213 m above sea level. The area
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Fig. 1 Predictive model application area (in the box) in south of Kuala Lumpur, Malaysia. The full
scene is a pseudocolour composite (TM bands 5, 4, and 3) image of the State of Selangor (path
127, row 58) acquired on 1999/06/11

includes the Ayer Hitam Forest which was selectively logged several times between
1936 and 1965 (Faridah-Hanum 1999). According to Faridah-Hanum (1999), this
forest is one of the few remaining forests in the Klang Valley, along with the Bukit
Nanas Forest in Kuala Lumpur. The forest has been leased to the Universiti Putra
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Malaysia (UPM) for 80 years from the Government of Selangor as a facility for
research, demonstration, and education in the field of forestry. It is located 25 km
from the university campus. Other than rubber small holders and plantations, other
crop types include oil palm plantations, as well as varying sizes of mixed crops. The
mixed crops are characterised by diverse intercropping of traditional homegarden
systems, with a mixture of coffee, cocoa, coconut, banana, shrubs, and herbaceous
plants (Suratman et al. 2000). The grasslands in the study area are characterised by a
high percentage of grasses (e.g., Imperata cylindrica, Paspalum conjugatum, and
Axonopus compressus), which occur with scattered herbaceous plants and shrubs
(e.g., Melastoma malabathricum) (Chee and Ahmad 1990). This area is representa-
tive of the ecological and land use/cover conditions throughout the State of Selangor.

The area has been a focus of large-scale changes in land use over the last decade.
Rapid rates of land cover changes and land use conversions were due to the
development of the new Federal Government Administration Centre (previously in
Kuala Lumpur) known as Putrajaya started in 1994, covering an area about 4400 ha.
This resulted in the development of townships, residential and industrial estates, and
man-made lakes surrounding the site. The nearby town to the west is Cyberjaya,
where a new construction, Multimedia City, which covers 75,000 ha was completed
in 2011. This makes land use planning in this area one of most important issues for
the State of Selangor.

2.1 Satellite Image Acquisition and Reference Data

The remote sensing imagery acquired on 11 February 2099 was the full scene image
of the State of Selangor, Malaysia, from the TM sensor on Landsat-5 (Fig. 1). Due to
security reasons, attempts to obtain complete aerial photographic coverage of the
area from the Department of Survey and Mapping, Malaysia, were unsuccessful.
Available reference data to support this work consisted of ground truth data, a 1999
State of Selangor map at a scale of 1:125,000 (series 9101), and 1990 topographic
maps at a scale of 1:50,000 (sheet numbers 3756 and 3757) and a 1966 soil map at a
scale of 1:253,440 were used. All topographic and soil maps were obtained from the
Department of Agriculture, Malaysia. Together, the maps provided information on
Universal Transverse Macerator (UTM) coordinates, state and district boundaries,
contour lines, general land use/cover, soil types, village and built-up area, and
infrastructures.

2.2 Image Pre-processing

PCI Geomatics software was used to perform all image-processing functions
required to complete the land use/cover classification and change analyses. ArcView
GIS software was used to carry out data management and a spatial analysis.
Geometric correction is critical for producing spatially corrected maps of land
use/cover. Therefore, the scene acquired in 1999 was converted to UTM projected
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to the Zone 47 coordinate system. GCPs were extracted from topographic maps at
the scale of 1:50,000 based on easily identifiable points such as intersections,
bridges, and other landmarks. The RMSE of the registration process was less than
0.5 pixels.

2.3 Application of the Predictive Rubber Area and Stand Volume
Models

The following rubber area model developed using logistic regression model by
Suratman et al. (2004) was applied to the 1999 Landsat TM imagery using the
MODEL command in ‘Xpace’ utilities of PCI Geomatics software;

p̂=
exp ð14:86- 0:57×B2- 0:33×B3- 0:32 ×B4þ 0:47×B5- 0:05×B7Þ

1þ exp ð14:86- 0:57×B2- 0:33×B3- 0:32 ×B4þ 0:47×B5- 0:05×B7Þ
where bp is predicted probability of being rubber areas and B2, B4, B5, and B7 are
TM bands 2, 4, 5, and 7, respectively.

Output bitmaps of predicted rubber pixels were produced where the probability of
rubber was ≥0.5 and displayed on the imagery. The output bitmaps of rubber area
predicted by area model using a logistic regression was compared to the thematic
map of rubber area produced by a supervised classification.

Application of the volume model was based on a segmentation technique which
allows partitioning of an image into spatially continuous and homogeneous
polygons (Makela and Pekkarinen 2001). For this purpose, an eCognition software
was used to automatically segment the pixels of the 1999 Landsat TM image. The
rubber stands volume model predictive model developed by Suratman et al. (2004)
using multiple regression was applied to the mean values of all pixels classified as
rubber through a supervised classification process. The rubber tree stand volume was
estimated using the following equation:

Rubber tree stand volume : V̂ = - 2413:13þ 11:79×B1þ 158,296 ×B5- 1

- 19,439 ×B7- 1 þ 2843:55 ×GI1þ 2180:16×VCI4

where bV , predicted rubber tree stand volume; B1, TM band 1; B5, TM band 5; B7,
TM band 7; GI, Greenness Index I; and VCI, Vegetation Condition Index 4.

This step has produced the predicted rubber volume for the segment. Rubber
pixels within the segment area were then exported into a shape file (.shp) in ArcView
GIS, and the estimated rubber volume for each polygon was categorized into six
classes and superimposed on the pseudocolour composite image of Landsat TM to
display the volume spatial distribution.



The Use of Landsat TM Imagery for the Application of Rubber Tree Area. . . 221

2.4 Supervised Image Classification

The Landsat TM image was classified for general land use/cover and rubber volume
classes. This operation produced a thematic map with 12 classes which include
5 rubber tree stand volume categories. For methodological consistency, all images
were classified using supervised classification based on the maximum likelihood
algorithm. The selected training areas were digitised on the image. They were
selected to obtain adequate representation of land/use cover types. To ensure a
good sampling of land use/cover types, training areas were chosen from across the
full extent of the image, rather than in just a localised region. These training areas
were chosen from the images on the basis of a priori knowledge from reference data.
Twelve land use/cover and rubber tree stand volume classes were identified. These
were water, forest, oil palm, mixed crop, grasslands, cleared areas, urban areas, and
five rubber tree stand volume classes. The inclusion of rubber stand volume classifi-
cation was performed to evaluate the capability of the classifier to categorize rubber
stand volume measured from the field in combination with other land use/cover
classes. Training and testing areas for rubber volume classes were based on the
delineated rubber volume polygons. The 76 field measured stands were sorted
according to field volume measurements (m3/ha) and split into training and testing
areas. Splitting was done by matching cases in pairs of similar volume classes and
placing one of each pair into one of the two data sets. Volume class 1 ranged from
0 to 75 m3/ha, class 2 ranged from 76 to 150 m3/ha, class 3 ranged from 151 to
225 m3/ha, class 4 ranged from 226 to 300 m3/ha, and class 5 was greater than
300 m3/ha. The training signatures for the training areas of each volume class were
determined for supervised image classification using satellite data.

For each cover type, fairly large and homogeneous training areas were selected.
These areas covered 18,502 pixels and incorporated a representative example of
each of the 12 classes. Pixels were extracted from five to ten independent sites for
each class. From a statistical standpoint, the more pixels delineated, the greater the
accuracy in the calculation of means and covariance data required for the signature
construction stage (Lillesand and Kiefer 2000; Tole 2002). After the training areas
had been digitised, signature files were created. A histogram for each signature was
evaluated for normality.

The Jeffries-Matusita (J-M) Distance was calculated to test signature separability
between pairs of classes (Richards and Jia 1999). Signature separability is a statisti-
cal measure of the distance between two signatures (Bourne and Graves 2001) and
was calculated for each pair of land use/cover classes. A total of five to ten testing
areas containing representative examples of each land use/cover class were digitised
for estimating the accuracy of each classification. The test areas for the image
incorporating a representative example of each of the 12 classes. These areas were
chosen in areas of known land use/cover types identified from reference data and
were different from the training areas used in the classifier.
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2.5 Accuracy Assessment of the Land Use/Cover Classification

The accuracy of the classified products was assessed in comparison with indepen-
dent test areas using the standard procedures (Congalton 1991). This created error
matrices, which encompassed reference pixels with classified pixels. Four criteria
were used to assess the accuracy of the classifications: (1) overall accuracy;
(2) user’s accuracy or commission error; (3) producer’s accuracy or omission
error; and (4) Kappa coefficient = [(overall accuracy - expected accuracy)/(1 -
expected accuracy)]. The Kappa coefficient is an analytical way to evaluate the total
accuracy of the classification because it takes the contribution of uncertainty into
account (Rosenfield and Fitzpatrick-Lins 1986). Essentially, the Kappa coefficient
answers the question of how much better the overall classification is compared to the
classification if one randomly assigned class values to each pixel (Verbyla 1995).

3 Results and Discussion

3.1 Rubber Area Model Application

Investigation was carried out to decide whether to use the area model developed
from logistic regression or supervised classification for producing rubber area masks
for the volume model application. For this purpose, the output rubber bitmaps and
classification accuracies produced from both techniques were evaluated (Fig. 2).
Comparison of rubber area bitmaps produced from these techniques indicated some
spatial agreements, although, when applied to the full scene image, the rubber area
produced from a supervised classification was 10% higher than that produced from
the area model. In terms of accuracy, it was found that the supervised classification
using the maximum likelihood algorithm was superior to the area model. When
refitted with the entire data set, overall, the area model correctly assigned 94.5% of
the pixels. However, the model did a better job in predicting non-rubber (96.3%)
than that of rubber (87%) (Table 1). The supervised classification produced a higher
accuracy of classifying rubber at 96.9%. Therefore, it was decided that the rubber
area map produced from supervised classification would be used for the volume
model application.

3.2 Rubber Tree Stand Volume Model Application

With an image segment-based approach, the application of the rubber stand volume
model in classified rubber pixels was demonstrated. The mean of spectral radiance of
rubber stands were extracted by segments, and then the equation was applied to each
segment. The image segmentation technique resulted in 812 rubber segments, with
segment area ranging from 1.5 to 14 ha. The mean area of the segments was 3.3 ha,
and the estimated mean of rubber volume derived from the model was 237 m3/ha.
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Fig. 2 Rubber area maps from the 1999 Landsat TM image of the demonstration area: (a) output
bitmaps of rubber area predicted by area model using a logistic regression, and (b) thematic map of
rubber area produced by a supervised classification

Table 1 Classification accuracy of logistic regression model for predicting rubber areas

Training (n = 33,473 pixels) Validation (n = 16,794 pixels)

Predicted Predicted

Observed 0 25,905 979 96.4 13,027 509 96.2

1 846 5743 87.2 409 2849 87.4

Overall 94.5 94.5

Notes: 0 denotes “non-rubber”, 1 denotes “rubber”

Prior to the image segmentation analysis, an attempt was made to apply the
volume model to the scene at the pixel level. This experiment was attempted despite
the fact that the model was built at the stand level. In an ideal case, the application of
the model should also be at the stand level. As expected, the pixel-level model
application resulted in high estimation errors, as they were developed with stand
means. The presence of spectral variability among pixels within the rubber areas
resulted in errors.

Applying the model at the stand level allowed for the extraction of spectral
features to be carried out by segments, which are homogenous in the sense of their
spectral and stand characteristics. In the context of rubber management planning, the
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Fig. 3 Rubber volume assessment polygon produced from an application of volume model and an
image segmentation technique superimposed on the 1999 Landsat TM pseudocolour composite
(RGB = bands 5, 4, 3) image of the demonstration area

segments could be referred to as rubber estates or rubber small landholding units.
The resulting rubber assessment polygons with five volume classes (m3/ha)
estimated from the model are shown in Fig. 3.

Although the stand-based model application performed much better than the
pixel-based approach, there were minor exceptions. For example, of 812 rubber
segments, 14 segments gave negative volume estimates, and 5 segments gave
volume estimates greater than 600 m3/ha, which was an overestimation of stand
volume for rubber plantations. Negative volume estimations could have been
avoided if the exponential shape of the model by= xabxð Þ had been used, as this
function will not allow for them. However, during the initial stage of the model
building process, this function was tested and found to be less promising than others
that were applied in terms of the trend of residuals and goodness of fit.

Besides these minor problems, the analysis demonstrated that the stand attribute
model derived from satellite data could be applied using the image segmentation
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technique. This provides a useful tool for estimating average volume within
localised areas, plantations, or segments.

3.3 Land Use/Cover Classification

Preliminary examination of the data set revealed a wide range of spectral contrasts
among land use/cover types. Spectral separability was analysed using J-M Distance.
Measured values were between 0 and 2, where ‘0’ indicated a complete overlap
between the signatures of two classes and ‘2’ indicated a complete separation. An
analysis of the land use/cover class signatures suggested good spectral separability
among the different classes, with an average separability of 1.93. Spectrally, rubber
was fairly well separated from other classes, with separability ranging from 1.85 to
2.00. Spectral separability between classes was weakest in the case of grasslands and
mixed crops (1.41) which recorded user’s accuracy of 60.9% (Table 2). With the
exception of mixed crops and grasslands, each class exhibited over 90% producer’s
accuracy. The user’s accuracies for each class were all over 80% (Table 2).

The land use/cover map yielded an overall classification accuracy of 88.3%
(Kappa coefficient of 0.86) (Table 2). With the exception of mixed crops and
grasslands, the producer’s and user’s accuracies for each class were over 80%.
Overall, all maps met the minimum accuracy value of 85%, which is the basic
requirement for digitally classified images (Anderson 1971; Paul 1991; Wulder et al.
2002). The Kappa coefficient was 0.86 indicated that the classification achieved an
accuracy that is 86% better than what would be expected from random assignment of
pixels to the land use/cover types in the study area. This range of Kappa coefficients
represented a high accuracy and was well within the range of good classification
performance of 0.61–0.80 specified by Landis and Koch (1977). The overall accu-
racy indicated that these digitally classified images are useful in mapping the land
use/cover of the study area. The high accuracy may be partly attributed to the simple
classes used.

As expected, the main source of error in classification was in separating mixed
crops and grasslands and vice versa. The difficulty in separating mixed crops and
grasslands is evident from the confusion matrix. For example, the error matrix was
comprised of 6159 classified pixels, with 719 pixels in the mixed crop class: of
which 554 were correctly classified (user’s accuracy = 77.1%); 282 pixels
(16 + 74 + 187 + 5) were excluded (omission errors = 33.7%); and 187 were
erroneously classified as grasslands. On the other hand, 165 pixels (1 + 75 + 82 + 7)
were included in this class (commission errors = 22.9%), and 82 of these belonged
to grasslands. Similarly, 599 pixels were classified as grasslands, of which 365 were
correctly classified (user’s accuracy= 60.9%). Of 104 pixels (20 + 82 + 2) excluded
(omission errors = 22.2%), 82 pixels were misclassified as mixed crops, and
234 (3 + 25 + 187 + 4 + 15) were incorrectly included (commission errors= 39.1%),
187 of which belonged to mixed crops. These errors could be due to the training
areas containing internal variability within each class. Variability (e.g., in canopy
cover, density, and structure) increased the variance of the Gaussian distributions
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assumed for each class type and derived from the training data sets (Saatchi et al.
2000). The increase in the variance increased the confusion in choosing the class
label using the maximum-likelihood classifier. Another potential source of error was
because mixed crops containing ground vegetation may be similar to grasslands. To
some extent, grasslands and croplands may be interchangeable in the sense that at
certain times the croplands can be left fallow and become grasslands (Indrabudi et al.
1998).

Another area of misclassification is the minor confusion of forest as oil palm,
mixed crops, and rubber (Table 2). The misclassification of forests could be due to
the presence of some amount of low density or disturbed areas in the forests that may
have similar spectral responses with the latter classes. In tropical forests, the spectral
response of vegetation on satellite images is inevitably dominated by canopy cover
(Myers 1988).

In some areas, rubber and oil palm plantations were confused with forests. These
areas were probably unmanaged plantations that sometimes show similar reflectance
to logged-over forests. This could be explained by the similarity in the presence of
pioneer tree species that dominated the canopy of secondary forests and/or aban-
doned rubber and oil palm plantations such as Mahang (Macaranga spp.), Balik
angin (Mallotus spp.), and Sesenduk (Endospermum malaccense) (Kueh and Lim
1999).

From the classified image, rubber exhibited user’s accuracy 96.6% and
producer’s accuracy of 91.9% (Table 2). In previous studies, rubber plantations
have been classified using Landsat TM with varying degrees of accuracy. For
example, in a study monitoring deforestation in Sungai Buloh, Malaysia,
Kamaruzaman and Mohd Rasol (1995) reported that rubber had 79% classification
accuracy with 21% confusion with forests and 5% with grasslands. In mapping land
use/cover distribution in mountainous Langkawi Island, Malaysia, Baban and
Kamaruzaman (2001) achieved 74% classification accuracy for rubber, where
major misclassification was reported between rubber and forests (13%). This was
attributed to the topographic shadow effects on the island forest, with elevation
rising to 870 m ASL in some areas.

For this study, misclassification between rubber and forests was found to be less
than 7%. This confusion may be attributed to minor shadow effects due to relatively
flat topography in this area. In addition to misclassification of forests and mixed
crops as rubber, there was an additional confusion with oil palm and grasslands
classed as rubber. This could be because of rubber test areas containing young rubber
stands with ground vegetation cover which show a similar signature response to
grasslands, mixed crops, and understory vegetation of open (young) oil palm stands.

Water and cleared areas were the most accurately identified categories (Table 2).
They exhibited the similar highest user’s accuracies of 100%. This could be due to
their easy isolation with respect to other classes and to their homogeneity. Also,
because of the relatively higher reflectance of water in the visible region and almost
total absorption in the mid-infrared region of the electromagnetic radiation (EMR)
spectrum, enough contrast between water and other land features was observed. As
mentioned, the two least accurate classes were grasslands and mixed crops. Lower
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error could probably be achieved if these classes were simplified to broader cover
types, which probably are more suitable to TM capabilities. For example, in
mapping land use/cover in Georgia using Landsat TM imagery, Yang and Lo
(2002) combined grasslands, croplands, and other herbaceous vegetation as a single
class and achieved 96% user’s accuracy.

The mixed crop class is diverse and includes a variety of different crop types. In
North America, farms generally are large in size with single crop production (USDA
2001). In Malaysia and other tropical countries, croplands generally occur at a much
smaller area and can be likened to gardening with respect to the small size of plots
and variety of crops produced. Multi-crop fields and small field sizes produce texture
and tones that can be difficult to differentiate. Mixed crops are generally small, less
than 0.5 ha, but plots for a village are usually adjacent to each other (Suratman et al.
2000). The smaller plots and the variety of crop types within plots create heteroge-
neous surfaces, which are more difficult to characterise than larger plots with a single
crop. Cultivation of mixed crops and grasses grown for livestock often adjoin each
other, giving images a heterogeneous texture that is difficult to characterise.

With the exception of mixed crops and grasslands, the remaining vegetated
classes (i.e., forest and oil palm) achieved high individual accuracies (>85%) for
both user’s and producer’s accuracies for each classification. This could be due to
their spectrally homogenous characteristics, allowing easy definition using the
classification algorithm.

Positional errors from the map scale are often of concern in mapping since it
effects the information on a thematic map. The accuracy and precision are a function
of the scale at which a map is created. In this study, the use of topographic maps at a
scale of 1:50,000 and a land use map at a scale of 1:125,000 to aid in the selection of
training and testing areas resulted in positioning errors of ±25.4 m and ±65.5,
respectively.

3.4 Rubber Tree Stand Volume Classification

A good signature separation between the five rubber volume classes and the five-
land use/cover types (i.e., water bodies, forests, cleared areas, and urban) with an
average J-M Distance separability of 1.98 was obtained (table not shown). With the
exception of volume classes 4 and 5, the signature separability between the volume
classes and the two vegetation covers (i.e., mixed crops and oil palm) was moderate,
with an average of 1.73. Grasslands and mixed crops had lower separability with
volume class 1 (1.55 and 1.47, respectively). Among all volume classes, classes
4 and 5 were the two most well separated with the seven-land use/cover categories
(separability ranged 1.85–2.00).
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3.5 Signature Separability Between Rubber Volume Classes

There were spectral overlaps in signatures between rubber volume classes that were
from poor to moderate separability for all combination pairs of volume classes.
Average spectral separability between rubber volume classes was 1.08, with a range
of 0.51–1.79. Volume class 1 had moderately good separability with volume classes
4 and 5 (1.62 and 1.79), but poor separability with classes 2 and 3 (1.40 and 1.47).
Volume class 2 had very poor separability with volume class 3 (0.73). Also, volume
class 4 had very poor separability with volume 5 (0.51). This indicated that signature
separation of rubber volume generally could be grouped into two broad categories,
the first category consisting of volume classes 1–3 (0–225 m3/ha, young stands) and
the second category consisting of volume classes 4 and 5 (≥226 m3/ha, mature
stands).

3.6 Rubber Volume Classification Accuracy

Supervised classification resulted in a thematic map (Fig. 4) and error matrix table
(Table 3) consisting of seven land use/cover-class categories combined with five
rubber stand volume classes. The overall accuracy and Kappa coefficient values
were 67.7% and 0.64%, respectively. While water bodies, forests, cleared areas, and
urban areas were displayed without much confusion, mixed crops, grasslands, and
all rubber volume classes showed high amounts of misclassification. The low
accuracy was attributed to the difficulty in separating grasslands from rubber volume
class 1. In particular, 72% (430) pixels belonging to grasslands were misclassified as
volume class 1. Only 18.2% of the pixels (user’s accuracy) were correctly classified.
Major confusion was also observed between mixed crops and volume class 1. About
58% (417) of pixels belonging to mixed crops were confused with volume class
1, which resulted in a user’s accuracy of 27.1% (Table 3). These confusions can be
observed visually by analysing the resulting maps derived from the 1999 Landsat
TM (Fig. 3 vs. Fig. 4), where the majority of the area of grasslands and mixed crops
in Fig. 3 were occupied by rubber volume class 1 (0–75 m3/ha) in Fig. 4. Again, this
result can be attributed to the existence of ground vegetation and low rubber crown
closure in young rubber plantations (3–8 years of age for volume class 1), resulting
in similar signatures to grasslands and the undergrowth components of mixed crops.
As expected, due to poor separability, each of the volume classes recorded only poor
to moderately good classification accuracies. The user’s accuracy ranged from
18.2% (volume class 3) to 71.0% (volume class 1) (Table 3).

Rubber volume class 1 was clearly associated with grasslands and mixed crops,
and there was confusion among the five rubber volume classes. However, it is also
interesting to explore how well the classification with multiple volume classes
performed for just separating rubber from non-rubber classes and broader volume
class of rubber. Three approaches were used to investigate these questions.

The first approach was to reclassify the image by omitting volume class 1 from
the classification, reducing the number of classes to 11 classes. While this resulted in
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Fig. 4 Land use/cover thematic map combined with rubber volume class map produced by a
supervised classification of the 1999 Landsat TM image

improvements in the overall classification accuracy (67.7–76.7%), the user’s
accuracies of mixed crops (27.1–69.3%), and grasslands (18.2–57.8%), it did not
result in an appreciable increase in all rubber volume class accuracies (table not
shown).

The second approach involved comparing overall rubber volume classification
accuracy to general land use/cover classification (see grey boxes in Table 3). Results
from these analyses indicated that combining all rubber volume classes together
produced an overall user’s accuracy of 91.0% ((980/1078) × 100) and producer’s
accuracy of 47.8% ((980/2051) × 100). The poor overall producer’s accuracy was
attributed to the association of mixed crops and grasslands with rubber volume class
1. Combining all classes together except volume class 1 produced 89.2% user’s
accuracy ((839/941) × 100) and 78.1% producer’s accuracy ((839/1074) × 100)
overall. The main source of error was in separating oil palm and rubber volume class
2. Subsequently, combining all classes together except volume classes 1 and 2 pro-
duced an overall user’s accuracy of 78.6% ((608/774) × 100) and producer’s
accuracy of 75.1% ((608/810) × 100).
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Table 3 Confusion matrix of land use/cover and rubber volume classification accuracy by the
number of pixels classified correctly in the Thematic Map of the 1999 Landsat TM
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Water 664            664 100.0

Forest 10 1058 24 11   1  46 9 15 48 1222 86.6

Oil palm  26 685 69 4  4 9 60 1  2 860 79.7

Mixed crops  1 52 195 26   417 10 18   718 27.1

Grasslands 2  8 34 109 10  430 3 3   599 18.2

Cleared areas      637       637 100.0

Urban      15 368      383 96.1

Vol. class 1   5 9 4 1  96 9 9 2 135 71.0

Vol. class 2  10 1 7 1 1  13 38 10 32 54 167 22.8

Vol. class 3  1 23 6    7 20 16 3 12 88 18.2

Vol. class 4 1 1 1 11 1 2  4 54 62 232 53 422 55.1

Vol. class 5  3 4 2  1  1 23 37 124 69 264 26.1

Total 676 1100 803 344 145 667 374 977 264 164 406 240 6159 

Producer’s accuracy 98.2 96.2 85.3 56.7 75.1 95.5 98.5 9.8 14.4 9.7 57.2 28.8  

Notes: The bold values show the correctly classified pixels in each category. Numbers of pixel in the
grey boxes were used to highlight accuracy comparison between general land use/cover and rubber
volume classes
Overall accuracy= 664þ1058þ685þ195þ109þ637þ368þ96þ38þ16þ232þ69

6159

�
× 100= 67:7%

Overall Kappa coefficient = 0.64

The third approach was comparing general land use/cover classification with
rubber volume classification (12 classes) accuracy (Table 3) to a rubber class
using rubber volume classes as test areas as presented in an 8 × 5 confusion matrix
table (8 classes) in Table 4.

Using the 12-class category, of 135 pixels belonging to rubber volume class
1, only 9.7% (13) of pixels were misclassified as mixed crops and grasslands (see
Table 3). On the other hand, if the 8 classes were used, 67.4% (91) of rubber volume
class 1 pixels were incorrectly classified as mixed crops and grasslands (Table 4).
For the 12 classes, about 26.2% (23) of 88 pixels belonging to rubber volume class
3 were confused as oil palm, and 6.8% (6) pixels as mixed crops. However, using the
8 classes, 31.8% (28) and 22.7% (20) of rubber volume class 3 pixels were
misclassified as oil palm and mixed crops, respectively. About 89.3% (377) of
422 pixels belonging to rubber volume class 4 and 86.7% (299) of 264 pixels
belonging to rubber volume classes 5 were correctly classified as rubber (Table 4).
Therefore, the general land use/cover classification seemed to underestimate rubber
if it is young. From these approaches, it can be seen that rubber was fairly well
separated from the rest of the classes if young stands (i.e., volume classes 1–3) were
excluded.

Generally, errors from rubber volume classification were resulted from high
natural variability within volume classes. Also, the high error was likely due to the
volume classes used for the classification being too fine. This caused an overlap of
spectral signatures because the spectral characteristics of the volume classes were
not distinctive enough to be used for the identification and separation of individual
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rubber volume classes. Also, the volume classes are a continuum with transition
zones between them. A combination of these factors, in part, may have contributed
to the confusion in determining the volume classes using the maximum-likelihood
classifier.

The preceding analyses showed a comparison of two approaches for predicting
rubber stand volume in the demonstration area. They are (1) the use of a supervised
classification to delineate a rubber map for an application to rubber volume model
and (2) the use of ground information to provide training areas for a combined
supervised classification of land use/cover and volume classes. The first approach
resulted in 11.7% overall classification error with eight land use/cover as compared
to an overall classification error of 32.3% for the 12 classes in the second approach.
The classification errors using the first approach was 3.6% as compared to a
classification error of 29.0–81.8% (Tables 3 and 4) for the 5 rubber volume classes
in the second approach. Therefore, for the purpose of predicting rubber volume
classes within a spatial unit, the first approach was preferred.

4 Conclusions

The study presented in this chapter has demonstrated the usefulness of satellite
remote sensing for the application of rubber tree area and stand volume models
across landscape and in producing reasonable land use/cover and rubber tree
resource maps for the area south of Kuala Lumpur, Malaysia. The value of the
maps is a function of the accuracy of the classification. Accuracy assessments
confirmed the image processing procedures were useful in extracting land use/cover
and planted rubber tree areas, stand volume maps, and statistics for the areas. The
methodology used was based on an understanding of landscape features, sensor
characteristics, and the information extraction techniques employed.

In this study, the use of supervised image classification for rubber area delineation
and subsequent volume model application was a better procedure for rubber stand
volume prediction than the classification of a combined land use/cover and volume
classification. Eight categories of land use/cover of area south of Kuala Lumpur were
classified for 1999, with overall classification accuracy of 88.3%, respectively.
Rubber stand volume classification indicated low overall accuracy mainly due to
confusion between lower volume classes and grasslands and mixed crops.

The extent and nature of land use/cover that were identified can provide a useful
indicator of overall landscape in the area. The extent of land use/cover can also act as
an indicator for general land use planning. Studies such as this can assist decision-
makers in assessing the resource condition, availability, and dynamics of land
use/cover change in addressing the broader requirements of land use policy devel-
opment and planning.
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In Malaysia, land under oil palm plantation has been steadily increasing. Mean-
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The objective of this study is to assess the utility of Google Earth Engine with the
LandTrendr algorithm for classifying land cover, as a first step towards develop-
ing a tool for land cover change detection in Peninsular Malaysia to support
Roundtable on Sustainable Oil Palm (RSPO) certification. Ground validation data
on land cover and disturbance events from satellite imagery were used to calibrate
LandTrendr to detect and map change from forest to oil palm, other vegetation or
urban; other vegetation to oil palm; and oil palm to oil palm (replanting). The
resulting disturbance rasters were then used with a 2019 multispectral Landsat
mosaic in a random forests supervised classification. The classified maps of 2019
land cover showed a small improvement in accuracy with the addition of
LandTrendr rasters over using only Landsat imagery. Our results suggest that
disturbance history may provide useful ancillary information to support remote
sensing mapping and LandTrendr could potentially become a useful tool for
detecting land cover change in the tropics. In many cases the maps performed
better with the addition of LandTrendr rasters; however, the resulting difference
was small in overall accuracy. The method improved the accuracy of oil palm,
rubber, forest and urban land covers, while it decreased the accuracy for other
land cover classes. Vegetation classes such as oil palm, rubber and forest were
often confused and remain challenging to map.

Keywords

LandTrendr · Oil palm · Remote sensing · Historical land cover · Google Earth
Engine

1 Introduction

Operationalising the monitoring of oil palm using remote sensing is perhaps one of
the most critical applications for remote sensing of the environment in Southeast
Asia. The oil palm is a tree that grows within tropical regions, was traditionally
planted in smallholder groves in Africa, but in the early 1900s, oil palm was planted
on an industrial scale across the world. Since the 1980s, there has been a growing
awareness of the environmental impacts caused by oil palm expansion, as these
estates are being developed in tropical regions which are dominated by natural
forests (Miettinen et al. 2016; Tang and Al Qahtani 2020). By the early 2000s, the
oil palm industry and NGOs had developed a certification system for oil palm
growers which was believed to be the answer to halting deforestation of critical
natural habitats (Omont 2005; RSPO 2015), known as the Roundtable for Sustain-
able Palm Oil (RSPO). In order to qualify for RSPO certification, plantation owners
must conduct a Land Use Change Analysis (LUCA) to show that no virgin forest
was cleared for establishing the plantation.

The aim of this study is to improve the monitoring of deforestation by developing
a method for mapping land cover in tropical Southeast Asia using multi-temporal
Landsat data to characterise historical disturbance patterns. The focus is on
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deforestation driven by expansion of oil palm plantations. We first created multi-date
satellite image composites to address cloud cover issues. Then we used the image
time series with LandTrendr pixel-based trajectory analysis to analyse the temporal
characteristics of different land covers in order to differentiate between land covers
with similar spectral characteristics but different land cover change patterns. Finally,
raster outputs from LandTrendr and a Landsat mosaic are combined then classified
using supervised random forests to produce a land cover map. We used a case study
in Peninsular Malaysia to test and develop the remote sensing approach. We
concluded by discussing the results, limitations and application of the novel
approach for multi-temporal remote sensing in the tropics and suggestions for further
research, especially within the context of mapping oil palm to support RSPO
certification.

By investigating the utility of LandTrendr for land cover mapping, this project
contributes towards developing a tool to more efficiently carry out LUCA for RSPO
certification. This study provides a novel demonstration of LandTrendr to mapping
oil palm. LandTrendr was expected to improve the classification accuracy of oil
palm, forest and rubber by providing additional historical disturbance information
which is useful to help the random forest classifier to differentiate similar vegetation
classes. This is one of the first studies to apply such a novel approach.

2 Background to Remote Sensing Methods for Mapping Oil
Palm in Insular Southeast Asia

Land Use Change Analysis (LUCA) is an approach used by the RSPO for tracking
the success of conservation planning and natural resource management activities at
site, regional and national scales (RSPO 2015). Globally freely available spatial data
products (e.g. global forest watch forest change) and remote sensing imagery
(Landsat, MODIS and Sentinel) are increasing in quantity and quality, making the
provision of land cover and land use data no longer the sole responsibility of the
government (Lechner et al. 2020). In addition, a huge step change in the provision
and application of remote sensing is taking place due to the development of the
Google Earth Engine (GEE) where data is provided and analysed on the cloud,
dramatically reducing processing and development times (Kennedy et al. 2018,
Mutanga and Kumar 2019).

Remote sensing of land cover and land use in tropical Southeast Asian countries
such as Malaysia and Indonesia is challenging due to high incidence of cloud cover
and rapid changes in vegetation cover due to regrowth and conversion to other land
uses. The most dominant form of land conversion in Southeast Asia is for oil palm
(Kanniah et al. 2019; Stibig et al. 2014; Tang et al. 2019; Trisasongko and Paull
2020). However, clear felling and selective logging, shifting agriculture and rubber
plantations as well as urbanisation and mining are also common (Razali et al. 2014).

Remote sensing has been used for mapping oil palm for various purposes,
including plantation management and carbon stock auditing (Chong et al. 2017;
Trisasongko and Paull 2020), classification of oil palm extent and other land covers
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(Deilmai et al. 2014) and change detection (Pittman et al. 2013). Daliman et al.
(2014) classified oil palm at the plantation scale using GLCM-SVM and NDVI from
Worldview-2 imagery. Pittman et al. (2013) studied the expansion of oil palm across
Borneo by decade using Landsat imagery. The differentiation of oil palm from other
land covers was achieved at plantation scale by Kamiran and Sarker (2014) and at
subnational level by Deilmai et al. (2014) and Razali et al. (2014). Studies using
multitemporal data include Razali et al. (2014) who classified land cover in several
different years based on MODIS satellite imagery. Razak et al. (2018) used Landsat
time series to differentiate rubber from oil palm and other land covers. Oon et al.
(2019a, b) discriminated between large-scale and smallholding oil palm on tropical
peatlands using LANDSAT-8 and ALOS-2 PALSAR-2 L-band and Sentinel-1
C-band SAR.

For the purposes of long-term monitoring of land cover change in oil palm
landscapes, Landsat and MODIS are the only freely available datasets which go
back far enough to be useful for conducting LUCA for RSPO certification. Studies
that attempted to differentiate oil palm, rubber and/or forest used MODIS (Razali
et al. 2014; Senf et al. 2013), Landsat (Beckschäfer 2017; Deilmai et al. 2014; Lee
et al. 2016; Razak et al. 2018; Sun et al. 2017), SAR (Trisasongko et al. 2017) and
other satellites (Kamiran and Sarker 2014; Razali et al. 2014). To tackle spectral
similarity between rubber and forest, Razak et al. (2018), Beckschäfer (2017) and
Senf et al. (2013) used seasonal differences in rubber spectral data and vegetation
indices caused by defoliation of rubber trees to differentiate them from other land
covers and specifically from forest and oil palm. A variety of classifiers (CART, RF,
Minimum Distance, Maximum Likelihood, SVM) have been used with Landsat
imagery (Deilmai et al. 2014; Lee et al. 2016). Sun et al. (2017) used Landsat with a
decision tree classifier (C5.0 adaptive boosting algorithm) and additional filtering to
remove speckling. Problems included excessive cloud cover (Lee et al. 2016; Razali
et al. 2014; Sun et al. 2017), similarity between plantations and forest (Razali et al.
2014; Sun et al. 2017), mixed land cover pixels (Deilmai et al. 2014; Sun et al. 2017)
and difficulty gathering historical ground truth from satellite imagery (Beckschäfer
2017; Razak et al. 2018; Sun et al. 2017). Due to the lack of imagery due to cloud
cover, Sun et al. (2017) used a mixture of imagery from different seasons which
introduced spectral variability, but did not choose imagery based on rubber phenol-
ogy, making it more difficult to differentiate.

A key challenge for remote sensing in this region is associated with similarity in
spectral properties between woody vegetation, for example, agricultural land uses
such as palm oil and rubber being confused with natural forest (Miettinen et al.
2018). While the spectral signatures of these land covers are relatively similar, the
temporal change and multitemporal profiles of clearance, disturbance and regrowth
(natural and through plantations) can potentially be used in analyses such as with
LandTrendr (Kennedy et al. 2010).

Several change detection algorithms have been developed for use with spectral
time series, including LandTrendr, BFAST and VCT, using a range of active and
passive sensors (Boriah 2010). LandTrendr is used for disturbance and recovery
detection, whereas VCT only detects disturbance and BFAST is used for
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drought-related vegetation disturbance (Zhu 2017). For example, annual oil palm
extent in Malaysia and Indonesia has been mapped for 2001–2016 by Xu et al.
(2020), using ALOS PALSAR, ALOS PALSAR-2 and MODIS NDVI data, with
extent mapped using BFAST for those years in which high-resolution imagery is not
available. On the other hand, the LandTrendr algorithm is dependent on Landsat
imagery (Kennedy et al. 2010). LandTrendr has been used for land cover classifica-
tion (Zhu et al. 2019) and change tracking (Bartz et al. 2015), change agent detection
(Kennedy et al. 2015), tracking of insect damage (Liang et al. 2014) and monitoring
of forest health and extent (Hudak et al. 2013; Wang et al. 2016), among other
applications (Zhu 2017).

LandTrendr is an algorithm for “generating trajectory-based spectral time series
data” from Landsat imagery (Kennedy et al. 2010). It operates on a pixel-by-pixel
basis on annual mosaic stacks and returns simplified trajectories and segment
information. Unlike single image approaches to LUCA, LandTrendr uses satellite
data across a broad time period. This allows detection of both long-term and short-
term change while reducing inter-annual signal noise (Kennedy et al. 2010). A
variety of methods have been used with LandTrendr, including correlation with
ground-based measurements (Meigs et al. 2011; Pflugmacher et al. 2012), magni-
tude and relative magnitude threshold (Kennedy et al. 2012), sliding threshold
(Grogan et al. 2015), change characterization (Zhu et al. 2019), image stabilization
(Bartz et al. 2015) and classification of disturbance rasters (Hislop et al. 2019;
Rathnayake et al. 2020). While most applications have focused on North America,
studies targeting the tropics and Southeast Asia in particular have used LandTrendr
for studying forest disturbance related to rubber and timber plantations (Grogan et al.
2015; Shen et al. 2017; Tang et al. 2019), forest cover change (Fragal et al. 2016;
Wang et al. 2016; Ye et al. 2021), mining disturbance (Wang et al. 2020), clearance
of savannahs (Almeida de Souza et al. 2020), land cover change (Rathnayake et al.
2020) and cultivation patterns in smallholdings (Schneibel et al. 2017). LandTrendr
has been integrated with Google Earth Engine, making it widely available, allowing
for processing very large datasets on the cloud and convenient for carrying out and
sharing methods of land cover analysis (Kennedy et al. 2018).

This study is the first to use LandTrendr in Malaysia or at a national scale and the
first to study oil palm using LandTrendr. It adds to the small body of work on
LandTrendr which has been conducted in the tropics (Fragal et al. 2016; Grogan
et al. 2015; Schneibel et al. 2017; Shen et al. 2017; Shen and Li 2017; Tang et al.
2019; Yang et al. 2018), which have specific challenges associated with the region
including high cloud cover (Fragal et al. 2016; Shen et al. 2017; Tang et al. 2019),
spectral similarity between dominant tree-based land covers (forests and plantations)
(Mohd Najib et al. 2020) and rapid vegetation regrowth after clearance (Shen et al.
2017). LandTrendr was employed to help overcome some of these issues as it
utilizes the entire historical Landsat record to analyse both long-duration and abrupt
change and so helps to identify disturbance events and differentiate similar land
covers by characteristics of their spectral history (Kennedy et al. 2010; Zhu et al.
2019). Lack of imagery due to cloud cover was tackled by constructing annual image
mosaics from imagery taken from all seasons. LandTrendr with GEE makes it
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possible to develop a tool which can be easily shared for use by non-specialists in
GIS for conducting LUCA (Kennedy et al. 2018).

3 Methods

3.1 Study Area

Malaysia comprises two parts, East Malaysia, consisting of Sarawak and Sabah on
the island of Borneo, and Peninsular Malaysia, connected to mainland Southeast
Asia by the Kra Isthmus. Peninsular Malaysia, excluding surrounding islands, lies
between 1°150–6°440N and 100°70–104°180E and has an area of 132,090 km2 (Swee-
Hock 2018). It has a tropical equatorial climate influenced largely by the southwest-
ern and north-eastern monsoons (Tangang et al. 2012) and an annual average rainfall
of 2420 mm (Ahmad et al. 2017). In 2020, 58% of land in Malaysia was occupied by
forests (FAO 2020); however, deforestation is a major issue, with a reduction in tree
cover of 81,200 km2 between 2002 and 2019 (Global Forest Watch n.d.).

The population of Peninsular Malaysia is concentrated in coastal cities, particu-
larly in the metropolitan areas of Kuala Lumpur, Penang and Johor Bahru (Depart-
ment of Statistics 2017). Human land use is dominated by oil palm plantations and
urban areas, followed by rubber plantations, rice paddies and other agriculture
(Olaniyi et al. 2013; Samat et al. 2020). Land conversion to oil palm plantations
has been steadily increasing since 1974, with a rise in the area of land under oil palm
plantation from 5657.66 to 59,001.57 km2 between 1974 and 2019 (Department of
Statistics 2017). Oil palm plantations currently make up about 21% of the total land
area in Peninsular Malaysia (Malaysian Palm Oil Board 2019).

3.2 Overview of Methods

In this study we used historical disturbance identified with LandTrendr to map land
cover for Peninsular Malaysia using a method compatible with RSPO Land Use
Change Assessment (LUCA) (RSPO 2015) which is used to assess compliance for
certification. There were four steps to the processing (see Fig. 1):

1. LandTrendr disturbance rasters were extracted along with a 2019 multispectral
Landsat mosaic and SRTM elevation data to construct raster stacks.

2. Create LandTrendr disturbance rasters using sliding thresholds to optimize
LandTrendr parameters for each of five change patterns (see Table 1—Change
Pattern Macroclass). Some potential change patterns (such as ‘oil palm to urban
and other brown’) were not included in the study as there was not sufficient
ground truth data available for these land covers to accurately conduct the
analysis:
(a) ‘Forest to oil palm’
(b) ‘Oil palm to oil palm’ (replanting)
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Fig. 1 Flowchart of the process of gathering ground truth data (3.5), calibrating LandTrendr using
sliding rules (3.6), extracting disturbance rasters, assembling raster stacks and running Random
Forest classification (3.7) and conducting accuracy assessment (3.8)

(c) ‘Forest to urban and other brown’
(d) ‘Forest to other green’
(e) ‘Other green to oil palm’

3. Land cover maps of Peninsular Malaysia were produced using a supervised
classification with the random forest algorithm.

4. Confusion matrices were produced to compare accuracies for the land
cover maps.

3.3 Image Preparation

The GEE platform was used to build stacks of Surface Reflectance Tier 1 Landsat
TM/ETM+/OLI (Landsat 5, 7 and 8) images from 1988 to 2019 from the USGS free
Landsat archive. An image collection was created using the Peninsular Malaysia
boundary as the region of interest, from across 12 Landsat path/row numbers. The
Normalized Burn Ratio (NBR) was chosen as the index for LandTrendr to work on
(Grogan et al. 2015; Schneibel et al. 2017; Senf et al. 2015) as qualitative trials found
it to be more responsive to clearance events and to track the year of disturbance onset
more accurately than other bands and indices during the preliminary calibration.
Although NBR is used for detecting fires, it is also excellent at detecting small
changes in vegetation intensity (Schneibel et al. 2017). It is calculated from near
infrared and short-wave infrared as follows:



–
–

–
–

–
–

–
–

–
–

–
–

244 D. Platt et al.

Ta
b
le

1
Id
ea
liz
ed

la
nd

co
ve
r
cl
as
se
s,

R
S
P
O

ve
ge
ta
tio

n
co
ef
fi
ci
en
t,
re
le
va
nt

ch
an
ge

pa
tte
rn
s
an
d
la
nd

co
ve
r
m
ac
ro
cl
as
se
s
us
ed

fo
r
ch
an
ge

de
te
ct
io
n
an
d

su
pe
rv
is
ed

cl
as
si
fi
ca
tio

n
in

th
is
st
ud

y

M
ac
ro
cl
as
s

L
an
d
co
ve
r
cl
as
s

R
S
P
O
ve
ge
ta
tio

n
co
ef
fi
ci
en
t

R
el
ev
an
tc
ha
ng

e
pa
tte
rn

C
ha
ng

e
pa
tte
rn

m
ac
ro
cl
as
s

20
19

cl
as
s

F
or
es
t

U
nd

is
tu
rb
ed

ra
in
fo
re
st

1
F
or
es
t

F
or
es
t

F
or
es
t

L
ig
ht
ly

lo
gg

ed
/li
gh

tly
di
st
ur
be
d

fo
re
st

1
F
or
es
t

F
or
es
t

F
or
es
t

M
at
ur
e
se
co
nd

ar
y
fo
re
st

1
F
or
es
t

F
or
es
t

F
or
es
t

S
ec
on

da
ry

fo
re
st

0.
7

F
or
es
t

F
or
es
t

F
or
es
t

W
et
la
nd

s
M
ar
sh

1
O
th
er
G
re
en

O
th
er
G
re
en

O
th
er
V
eg
et
at
io
n

S
w
am

p
1

F
or
es
t

F
or
es
t

F
or
es
t

M
an
gr
ov

es
1

F
or
es
t

F
or
es
t

F
or
es
t

A
gr
of
or
es
tr
y

P
ol
yc
ul
tu
ra
l
or
ch
ar
ds

an
d

ag
ro
fo
re
st
ry

0.
4

O
th
er
G
re
en

O
th
er
G
re
en

O
th
er
A
gr
ic
ul
tu
re

A
gr
ic
ul
tu
re

O
il
pa
lm

0
O
il
pa
lm

O
il
pa
lm

O
il
pa
lm

R
ub

be
r

0
O
th
er
G
re
en

O
th
er
G
re
en

R
ub

be
r

R
ic
e

0
O
th
er
G
re
en

O
th
er
G
re
en

R
ic
e

M
on

oc
ul
tu
ra
l
or
ch
ar
ds

0
O
th
er
G
re
en

O
th
er
G
re
en

O
th
er
A
gr
ic
ul
tu
re

T
ea

pl
an
ta
tio

n
0

O
th
er
G
re
en

O
th
er
G
re
en

–

V
eg
et
ab
le
fa
rm

s
0

O
th
er
G
re
en

O
th
er
G
re
en

–

O
th
er

ag
ri
cu
ltu

re
0

O
th
er
G
re
en

O
th
er
G
re
en

O
th
er
A
gr
ic
ul
tu
re

W
at
er

R
iv
er

L
ak
e

P
on

d
fa
rm

s/
aq
ua
cu
ltu

re

D
eg
ra
de
d

B
ar
e
gr
ou

nd
/c
le
ar
ed

0
U
rb
an
O
th
er
B
ro
w
n

U
rb
an
O
th
er
B
ro
w
n

B
ar
e
gr
ou

nd

G
ra
ss
la
nd

0
O
th
er
G
re
en

O
th
er
G
re
en

O
th
er
V
eg
et
at
io
n

S
ca
tte
re
d
tr
ee
s

0
O
th
er
G
re
en

O
th
er
G
re
en

O
th
er
V
eg
et
at
io
n

S
an
d/
m
ud

0
U
rb
an
O
th
er
B
ro
w
n

U
rb
an
O
th
er
B
ro
w
n

B
ar
e
gr
ou

nd



þ

Using Historical Disturbance Identified with LandTrendr in Google. . . 245

NBR=
NIR- SWIR
NIR SWIR

Due to the scarcity of cloud-free images in Peninsular Malaysia, annual median
mosaics were created using multispectral images from across the whole year. All
30-m bands were used. Trials with shorter collection periods (i.e. less than 1 year)
resulted in large areas with no data. The biannual monsoon and significant regional
differences in the timing of the monsoon season (Hashim et al. 2016) also made it
challenging to use a single collection period which would capture sufficient imagery
for all years and across the whole study area. However, Malaysia’s equatorial
monsoon climate means that it has little deciduous forest (Zakaria et al. 2019) and
so relatively small seasonal variation in phenology of forest vegetation. The collec-
tion was masked in GEE for clouds, cloud shadow and water with the CFmask prior
to mosaicking. The CFmask uses decision trees and scene-wide statistics to label
pixels in the scene and identify cloud cover and iteratively estimates cloud heights
and projects them onto the ground to identify cloud shadow (CFMask Algorithm
n.d.). The CFmask was found to be the most accurate out of several cloud detecting
algorithms by Foga et al. (2017), including for detecting cloud and cloud shadow
over regions of brightness when thermal data is available. In addition, multi-
temporal rasters were derived by compositing several images using the median
method which discards the most extreme pixel values such as temporary excessive
brightness due to water.

3.4 Land Cover Classification Scheme

The land cover classification scheme was designed to represent the key land cover
classes found in Malaysia (Yoshino et al. 2010), with consideration for distinctions
in spectral appearance and structural differences. Two schemes were employed
(1) for the land cover classification for 2019 (9 classes—see Table 1: 2019 Class)
and (2) for the classification of historical disturbance patterns (5 classes—see
Table 1: Change Pattern Macroclass). We first started by identifying a set of
idealized land cover classes (Table 1) and from that identified a subset of classes
based on the remote sensing limitations and usefulness for RSPO mapping. Forest
was further split according to vegetation coefficient as described in the RSPO
guidelines (RSPO 2015) and disturbance history. Fine land cover classes were
grouped thematically into coarse Macro land cover classes (Table 1).

Different schemes were used for the land cover mapping and for use in change
detection to create the historical land cover change raster (Table 1). Classes for the
supervised classification were grouped together by assumed spectral similarity. For
example, bare ground and sand/mud were grouped together as ‘bare ground’ as they
have similar spectral characteristics, but ‘urban’ was not included as it was assumed
to show more permanent characteristics. For the change detection, only the classes
relevant to the major change patterns being studied were included, namely, forest, oil
palm, other green and urban and other brown (Table 2). We used a smaller number
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Table 2 Number of points used for optimizing parameters per change pattern

Forest to
oil palm

Oil palm to oil
palm (replanting)

Forest to urban
and other brown

Forest to
other green

Other green
to oil palm

Change 88 310 24 54 25

No
change

126 26 126 126 33

Total 214 336 150 180 58

for the change detection as other classes were not sufficiently represented in the
ground truth data.

3.5 Ground Truth Data for Calibration and Accuracy Assessment

Reference data was gathered in three batches using visual assessment of high-
resolution Google Earth Pro historical imagery (commonly World View), Landsat
imagery, World View Imagery in ArcGIS Pro, Google Timelapse (Gorelick et al.

) and land cover maps from Malaya Landuse, iPlan and an existing historical
Oil Palm mapping product by WRI (Harris et al. ). The data was digitised by
several interpreters, with the bulk of the points digitized by the same independent
interpreter. All reference points used a homogenous area of 90 m2 centred around
each point as the relevant area for inspection, equal to the 3 × 3 pixel window used
by the LandTrendr algorithm to reduce the effect of localized abnormalities in
spectral value and spectral trajectory, and geometric error between the Landsat
pixel and the reference data. Accordingly, the minimum distance allowed between
points was set at 180 m.

2019
2017

The LandTrendr algorithm was used with default LandTrendr parameters to
produce a raster showing year of disturbance. The default parameters were used
for maximum segments (6), spike threshold (0.9), vertex count overshoot (3),
prevent 1-year recovery (false), recovery threshold (0.25), p-value threshold (0.1),
best model proportion (1.25) and minimum observations needed (6). The index
selected was NBR. However, the annual date range for image compositing was
extended to cover the whole year from 01–01 to 12–31. Vegetation change type was
kept as ‘loss’ and sorted by ‘greatest’ disturbance. All filters were set to ‘false’
except for minimum mappable unit =11 pixels.

The resulting raster was used for stratifying 2000 random points equally
according to year of change (including no change) between 2001 and 2019
(Table 3). Data was recorded regarding current land cover, land cover in the year
2000, occurrence of change prior to the year 2000 and year of disturbance onset and
‘before’ and ‘after’ land cover class for any changes taking place after the year 2000.

To examine the satellite imagery, ground truth points were imported into Google
Earth Pro and Google Earth Engine. The annual historical imagery in Google Earth
and the high-resolution historical imagery were examined at each point, as well as
that of the surrounding landscape for context. An example of the use of context is
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Class Calibration Validation Total

Forest 241 219 460

Other vegetation 64 73 137

Oil palm 443 456 899

Rubber 100 104 204

Rice 58 52 110

Other agriculture 78 70 148

Bare ground 35 34 69

Urban 50 59 109

Water 12 104 116

Total 1081 1171 2252

assessing whether an area of dark green vegetation is surrounded by similar land
cover with no roads or settlements or if it is in an agricultural region near to towns
and villages—the former would indicate it is likely forest, whereas the latter would
suggest it could be oil palm plantation. The original land cover in the year 2000 was
examined, with comparison to previous years to determine if it was previously
disturbed—particularly important in differentiating primary and secondary forest
and in differentiating forest from plantation. The imagery was also examined up to
the present, noting the current land cover as of the year 2019 and any disturbances to
the land cover, such as forest clearance, plantation replanting, conversion to built-up
areas, flooding which destroys vegetation, extreme drought or draining of land,
conversion between different types of agriculture, damming of rivers, erosion and
change of river courses and forest regrowth. The type of change was not explicitly
recorded, but the time of disturbance onset was recorded, along with both the land
cover present before the disturbance occurred and the stable land cover which the
land cover became after recovery from the disturbance. If multiple disturbance
events occurred, each disturbance was recorded separately. Google Earth Engine
was used for viewing customized Landsat composites when a closer view of the
pixels was required or for inspecting a more specific time period to determine
whether a disturbance occurred in a certain year or in the following year.

Of the points examined, 172 were discarded due to falling on areas with hetero-
geneous land cover or with extremely complicated land cover histories, while 1828
points were kept for use in the analysis. Heterogeneous land cover included areas of
part forest mixed with oil palm, rubber or agriculture or oil palm mixed with rubber
or agriculture, as well as some points located on the edge of water bodies. Compli-
cated land cover histories generally involved areas which were cleared or disturbed
by flooding or drought multiple times to the point where individual disturbance
events could not be clearly differentiated by the interpreter and where an area of
otherwise homogeneous forest was cleared in sections with several years gap
between clearance events. As some land cover classes were under-represented, to
supplement these points for training and validation, a further 424 points were created
and labelled with current land cover only.
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An additional set of 333 points targeted towards the ‘other vegetation’, ‘rice’,
‘other agriculture’ and ‘bare ground’ land cover classes were created by digitizing
polygons in areas dominated by those land cover classes. Points were created
randomly within those polygons, maintaining a distance of 180 m from each other
and all existing points. They were labelled with current land cover only. Points were
discarded which fell on mixed land cover (‘other vegetation’, ‘rice’ or ‘other
agriculture’ mixed with each other, ‘forest’, ‘oil palm’ or ‘urban’ and ‘bare ground’
mixed with vegetation classes) or on other land cover classes. Once sufficient points
had been digitized for each class, any remaining unlabelled points were discarded. A
further set of 91 points covering the ‘water’ class were gathered with current land
cover to be used for validation only. These points were created manually, making
sure to keep a distance of at least 180 m between points. A total of 2252 ground truth
points were collected of which 1081 were used for calibration/training and 1171
were used in the accuracy assessment.

3.6 LandTrendr Historical Disturbance Mapping

3.6.1 Sliding Rule
We used sliding thresholds to optimize LandTrendr for each of five key land cover
change patterns that dominate Malaysia (Grogan et al. 2015; Kennedy et al. 2010)
(Table 2). One of the key challenges with applying LandTrendr to a new location is
the need to parameterise the LandTrendr model, and unlike many LandTrendr
studies, we used training data to systematically identify the best parameterisation
for running LandTrendr. As LandTrendr only identifies disturbance patterns
(i.e. magnitude, length of disturbance and date of disturbance onset), we calibrated
LandTrendr separately for each coarse-scale land cover change pattern (Table 2).
Calibration points for each change pattern were assigned to a reference and classified
dataset values as either change or no change (i.e. disturbance) based on the ground
truth data and the LandTrendr greatest disturbance segment data, respectively. The
reference and classified values were then compared and used to calculate overall
accuracy for four LandTrendr parameters (i.e. 1-year recovery, recovery threshold
and p-value) to identify the best combination of LandTrendr parameterization which
resulted in the most accurate detection of change for a period from 2000 to 2019.

The number of points per change lists produced from the reference data are
summarized in Table 2.

3.6.2 Calibration Points
The ground truth data were converted into change lists for each change pattern,
summarized in Table 2. Points were only included in a change list if the original land
cover in the year 2000 was of the relevant class. Points were assigned reference
values of either ‘Change’ if they subsequently underwent change to the relevant land
cover class or ‘no change’ if they remained unchanged with no disturbance having
occurred.
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3.6.3 LandTrendr Parameters
The LandTrendr algorithm was run iteratively with a sliding range of values for each
of four LandTrendr parameters: maximum segments, 1-year recovery, recovery
threshold and p-value. The remaining LandTrendr parameters were kept at conser-
vative values as they were determined during preliminary calibration to have little
effect. The range of values used are summarized in Table 4. A brief description of
each parameter is given below:

• Spike threshold—A sudden spike in spectral value may indicate false changes, for
example, due to clouds. LandTrendr removes spikes where the difference in
spectral values before and after the spike is less than a chosen percentage of the
magnitude of the spike itself.

• Pval threshold—If the p-of-F value is greater than the chosen threshold, the pixel
is considered no change.

• Maximum segments—The maximum number of segments allowed for the final
trajectory.

• Recovery threshold—Rapid recovery after disturbance may be an illusion caused
by cloud cover. A segment will be removed if it’s rate of recovery relative to the
total spectral range is less than 1/recoveryThreshold.

• Vertex count overshoot—The initial model is created with a greater number of
segments before undergoing simplification. This number is maximum
segments + vertex count overshoot.

• Prevent 1-year recovery—Complete recovery within a year after vegetation
disturbance is considered unlikely in many ecosystems but does occur in
Malaysia. Setting this parameter to true will remove those recovery segments.

• Best model proportion—After undergoing simplification, the model is chosen
which has the most vertices but with a p value no more than a certain proportion
from that of the model with the lowest p value.

• Minimum observations needed—If there are fewer than this number of annual
images in a pixel’s time series, then it will not be analysed by LandTrendr and no
output will be given.

A sample of some of the LandTrendr parameters used to run LandTrendr for the
parameterization is given in Table 5.

Parameter Value(s)

maxSegments 2, 4, 6, 8

spikeThreshold 0, 9

vertexCountOvershoot 3

preventOneYearRecovery TRUE, FALSE

recoveryThreshold 0, 0.33, 0.67, 0.99, 1

pvalThreshold 0.01, 0.05, 0.1

bestModelProportion 0.75

minObservationsNeeded 6
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For each iteration of LandTrendr, disturbance rasters were sampled using the
calibration points and values for magnitude and year of disturbance onset were
extracted. These data were filtered to include only disturbances beginning after the
year 2000.

3.6.4 Magnitude Threshold
Each point was assigned a classified value of ‘change’ or ‘no change’ based on a
sliding threshold for magnitude, from 0 to 500 at intervals of 10. Magnitude refers to
the change in spectral value, which has a possible range of 0–1000. If the magnitude
of disturbance was greater than the threshold value, then it was counted as ‘change’,
and if it was less than or equal to the threshold value, then it was counted as ‘no
change’. Given the average NBR value of forest and oil palm, and that of bare
ground, it is unlikely for small disturbances with magnitude of up to 100 or 200 to
represent true clearance. However, disturbances may show lower magnitudes if the
post-disturbance imagery does not capture the bare ground signature due to rapid
regrowth.

3.6.5 Accuracy Estimation
For each set of LandTrendr parameters and each magnitude threshold value, user’s
and producer’s accuracy for change detection was estimated (Grogan et al. 2015).
The equations for calculating accuracy are given below. nA is the number of points
where both the reference value and the classified value are ‘Change’. nB is the
number of points where the classified value is ‘Change’. nC is the number of points
where the reference value is ‘Change’.

User’s accuracy was calculated as:

UA=
nA
nB

Producer’s accuracy was calculated as:

PA=
nA
nC

Overall accuracy was calculated as:

OA=
UAþ PA

2

The maximum overall accuracy at any magnitude threshold was extracted for
each parameterization and was averaged across all change patterns and the best
parameterization was used to make the disturbance rasters.
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3.7 Supervised Random Forest Classification of Land Cover
for 2019

A random forest supervised classification was conducted using a raster stack which
included the disturbance rasters from LandTrendr, a Landsat multi-date 2019 mosaic
and SRTM elevation data. The final method was identified from an iterative process
which included combining ancillary data to achieve the best classification. In
addition, we compared classification results with and without the disturbance rasters.
Initially several iterations of the classification were conducted to attempt to improve
the accuracy of the output maps, which mainly proved to make little improvement to
the overall accuracy. The more useful measures attempted included using a water
mask to map the water class and including an elevation layer in the raster stack.
These were implemented in the final iteration of the classification. The elevation
layer was included as many land covers are spatially concentrated by altitude, such
as oil palm and rice in lower elevations and higher elevations dominated by forest
(Jarvis et al. 2008).

The random forest classification was conducted on two image stacks. One stack
consisted of a multispectral annual Landsat mosaic for the year 2019 with SRTM
elevation data. Seven 30-m resolution Landsat bands were used, including visible
light, ultrablue, near infrared and short-wave infrared. The second stack contained
additional LandTrendr disturbance rasters representing greatest disturbance segment
information extracted for each of the parameterizations chosen in the parameter
optimization step. The disturbance rasters consisted of seven raster layers
representing year of disturbance onset, end year, pre-disturbance NBR value, post-
disturbance NBR value, magnitude of change in NBR, duration of disturbance and
annual rate of disturbance (Hudak et al. 2013).

The calibration points used to train the random forest classifier were the same
points used for the parameter optimization step. Each point was assigned a current
land cover value. Points assigned to the ‘water’ class were removed, as were points
which fell on areas with no 2019 Landsat imagery available. The supervised
classification was run with 300 trees and a total of 1068 training points. After
classification, the JRC-GSW layer was used to map areas of the ‘water’ class
(Pekel et al. 2016). The ‘transition’ layer was used, and pixels labelled ‘permanent’,
‘new permanent’ or ‘season-to-permanent’ were masked as water. (We found that
the seasonal and ephemeral JRC water classes overlapped with rice paddy.)

3.8 Validation

The resulting land cover maps were assessed using a separate set of 1171 validation
points to produce confusion matrices. Percentage values for user’s, producer’s and
overall accuracy were produced. The matrices for the two land cover maps were
compared (with and without the inclusion of the LandTrendr disturbance rasters),
and areas of confusion between particular land cover classes were identified.
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4 Results

4.1 Optimal Parameters

The optimum parameters are presented in Table 6. These parameters were used in
producing the LandTrendr disturbance rasters for the raster stack. Table 7 presents
the maximum Overall accuracy values obtained with the optimal magnitude thresh-
old along with the User’s and Producer’s accuracies. Note also that although optimal
magnitude threshold values are presented, no magnitude filter was used in producing
the disturbance rasters for the supervised classification.

For comparison, the optimal overall accuracy for each individual change pattern
when optimized separately is presented in Table 8 and the raw accuracy values for
some of the tested iterations of LandTrendr in Table 9. The overall accuracy of
detection of each change pattern is slightly lower using the chosen parameters
(except for ‘other green to oil palm’ which remains the same) than if the change
pattern were optimized separately. However, as using multiple LandTrendr outputs
adds a large number of bands to the raster stack and so reduces accuracy, it is

Parameter Value

maxSegments 8

spikeThreshold 0.9

vertexCountOvershoot 3

preventOneYearRecovery FALSE

recoveryThreshold 1

pvalThreshold 0.1

bestModelProportion 0.75

minObservationsNeeded 6

Table 7 Optimal magnitude threshold and accuracy values for detection of each change pattern
when chosen LandTrendr parameters are used

Forest to
other
green

Change
pattern

Forest to
oil palm

Oil palm to oil
palm (replanting)

Forest to urban
and other brown

Other green
to oil palm

Magnitude
threshold

290 ≤110 310 150 ≤140

User’s
accuracy
(%)

72.41 96.94 44.83 58.90 60.00

Producer’s
accuracy
(%)

71.59 81.61 54.17 79.63 60.00

Overall
accuracy
(%)

72.00 89.27 49.50 69.27 60.00
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Overall accuracy (%)

Forest to oil palm 72.78

Oil palm to oil palm (replanting) 89.29

Forest to urban and other brown 50.30

Forest to other green 71.70

Other green to oil palm 60.00

necessary to compromise and use a parameterization that works reasonably well with
all five land cover change patterns.

4.2 Land Cover Maps

Figures 2 and 3 show the classified maps of land cover using Landsat, elevation and
LandTrendr data and using only Landsat and elevation data.

In Tables 10 and 11 are the confusion matrices for the land cover maps which
were classified using raster stacks of LandTrendr disturbance rasters, Landsat and
elevation data and Landsat and elevation data without LandTrendr disturbance
rasters. As can be seen from the last columns of Tables 10 and 11, the number of
points varies greatly between land cover classes. Oil Palm and Forest, as the
dominant land covers in Malaysia, have the most points. This imbalance affects
the classification, skewing the output map to favour oil palm, as shown by the high
number of points misclassified as oil palm among other classes.

4.3 Accuracy Assessment

User’s, Producer’s and Overall accuracy were calculated for both land cover maps
(Table 12).

The map produced using Landsat, elevation data and LandTrendr disturbance
rasters had an Overall accuracy of 60.45%, with User’s and Producer’s accuracy of
63.72% and 57.17%, respectively. User’s, Producer’s and Overall accuracy was
calculated for each land cover class. Water had the highest accuracy for all measures.
After Water, the class with the highest overall accuracy was Oil Palm (79.53%),
followed by Rice (77.89%) and Forest (70.08%). The same pattern was followed for
Producer’s Accuracy, with 89.25%, 80.77% and 69.27%, respectively. User’s accu-
racy was highest for Rice (75.00%), then Forest (70.89%) and Oil Palm (69.81%).
Bare Ground scored the lowest overall, with 30.00%, 36.36% and 33.18% User’s,
Producer’s and Overall accuracy, respectively. However, Rubber and Other Vegeta-
tion had the lowest Producer’s Accuracies at 15.39% and 24.66%.

In the map produced using only Landsat and elevation data, the relative
accuracies of the classes were about the same, although User’s accuracy was
considerably lower for Rubber (45.95%) and Forest (65.76%). The Overall accuracy
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Table 9 An example of some of the accuracy values obtained for various iterations of LandTrendr,
using different magnitude thresholds

Overall accuracy of ‘forest to oil palm’

Parameter ID 1 2 3 4 5 6 7 8
Magnitude
threshold

0 13.24 14.20 22.07 22.07 24.49 23.67 24.49 20.45

100 13.24 14.20 22.07 22.07 24.49 23.67 24.49 20.45

200 14.20 15.34 22.07 22.07 24.49 23.67 24.49 20.45

300 15.34 16.70 23.67 23.67 27.27 25.57 27.27 22.27

400 7.71 8.90 13.64 13.64 17.80 17.80 17.80 15.42

500 10.57 10.57 10.57 13.07 17.23 25.57 17.23 17.23

Parameter ID 9 10 11 12 13 14 15 16
Magnitude
threshold

0 14.20 14.20 23.67 23.67 24.49 27.84 24.49 25.57

100 14.20 14.20 23.67 23.67 24.49 27.84 24.49 25.57

200 15.34 15.34 23.67 23.67 24.49 27.84 24.49 25.57

300 15.34 16.70 23.67 23.67 27.27 30.62 27.27 27.84

400 7.71 8.90 15.42 15.42 21.14 21.14 21.14 17.80

500 10.57 10.57 10.57 13.07 17.23 25.57 17.23 17.23

Parameter ID 17 18 19 20 21 22 23 24
Magnitude
threshold

0 14.20 14.20 20.45 25.57 21.14 38.56 21.14 34.09

100 14.20 14.20 20.45 25.57 21.14 38.56 21.14 34.09

200 15.34 15.34 20.45 25.57 21.14 38.56 21.14 34.09

300 16.70 16.70 20.45 25.57 21.14 38.56 21.14 34.09

400 8.90 8.90 15.42 17.80 26.14 34.47 26.14 26.14

500 10.57 10.57 10.57 13.07 17.23 25.57 17.23 17.23

Parameter ID 25 26 27 28 29 30 31 32
Magnitude
threshold

0 12.84 10.97 66.54 64.70 67.88 67.59 68.34 69.55

100 12.84 10.97 66.35 65.24 69.35 69.02 69.43 70.59

200 11.80 12.27 64.02 62.83 67.43 67.05 69.67 70.03

300 14.04 14.77 59.38 57.20 64.89 64.39 68.66 68.92

400 5.11 5.57 45.45 44.69 53.13 52.42 54.89 53.32

500 6.82 7.71 38.40 36.82 43.66 42.35 42.42 41.09

Parameter ID 33 34 35 36 37 38 39 40
Magnitude
threshold

0 12.84 10.97 65.78 63.94 66.38 66.84 69.09 70.29

100 12.84 10.97 65.59 64.48 67.52 67.94 69.85 71.02

200 11.80 12.27 64.02 62.83 66.68 67.05 70.41 70.77

300 14.04 14.77 59.38 57.20 64.12 64.39 70.13 70.40

400 5.11 5.57 45.45 44.69 52.22 51.52 55.75 54.20

500 6.82 7.71 38.40 36.82 42.42 41.09 42.42 41.09

of Bare Ground, while remaining amongst the lowest two classes, was much higher
at 36.36%, as was Rice at 81.59%.

Tables 13 and 14 show the confusion matrices with percentages instead of
number of points for the map which used LandTrendr data in the input raster
stack. Percentages are calculated for Table 13 based on the total number of reference
points for each land cover class, while percentages for Table 14 are calculated based
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Fig. 2 Land cover map classified with LandTrendr disturbance rasters, Landsat and elevation data

on the total number of classified points for each land cover. The totals calculated
under ‘omission error’ and ‘commission error’ are the sum of percentages for each
column/row excluding correctly classified points. The bolded values running diago-
nally from top-left to bottom-right are the percentage of correctly classified points. In
Table 13 these values represent producer’s accuracy, while in Table 14 they repre-
sent user’s accuracy.

The highest source of omission error is from misclassification as oil palm for all
other classes except bare ground and rice. This is partly due to the over-
representation of oil palm in the training data and also due to the similarity between
oil palm and rubber, other vegetation and forest, which were the classes that were
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Fig. 3 Land cover map classified with Landsat and elevation data

most often misclassified as oil palm. The highest sources of commission error are
from confusion between ‘other agriculture’ and ‘other vegetation’ and confusion
between ‘urban’ and ‘bare ground’. The confusion between these classes is likely
caused by the similarity in their spectral appearances.

Tables 15 and 16 show confusion matrices with percentages for the map produced
without LandTrendr data. The main difference in commission error was in rubber—
commission went from 54% down to 41% with the addition of LandTrendr data.
When LandTrendr was added, user’s accuracy improved for forest, other vegetation,
rubber and urban. It remained the same for oil palm and decreased for rice, other
agriculture and bare ground. Producer’s accuracy averaged across all land covers
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Table 12 Accuracy values by land cover class and general for both classified images

With LandTrendr Without LandTrendr

UA (%) PA (%) OA (%) UA (%) PA (%) OA (%)

Forest 70.89 69.27 70.08 65.46 66.06 65.76

Other vegetation 54.55 24.66 39.60 53.85 28.77 41.31

Oil palm 69.81 89.25 79.53 70.25 87.50 78.87

Rubber 59.26 15.39 37.32 45.95 16.35 31.15

Rice 75.00 80.77 77.89 78.57 84.62 81.59

Other agriculture 47.69 44.29 45.99 49.23 45.71 47.47

Bare ground 30.00 36.36 33.18 36.36 36.36 36.36

Urban 67.31 59.32 63.32 64.71 55.93 60.32

Water 99.00 95.19 97.10 99.00 95.19 97.10

Total 63.72 57.17 60.45 62.60 57.39 59.99

decreased slightly but improved for forest, oil palm and urban. It remained the same
for bare ground and decreased for other vegetation, rubber, rice and other
agriculture.

Overall accuracy improved for the land covers of interest for mapping oil palm—
forest, oil palm and rubber (as it is spectrally similar). Therefore, while overall
accuracy for the map as a whole was only minimally affected by addition
LandTrendr data, it has made a larger improvement to differentiation of these key
land covers.

4.4 LandTrendr

Using LandTrendr disturbance rasters for supervised classification increased overall
accuracy by 0.45 percentage points. This suggests that historical disturbance data
from LandTrendr may be of some value for land cover change mapping in Malaysia.
Preliminary analysis showed that LandTrendr is capable of detecting disturbance due
to several different change patterns. However, the small change is also attributed to
the percentage area which is covered by oil palm. It is too soon to say conclusively
that it is feasible to use LandTrendr to differentiate types and timing of change in
Malaysia. However, it will certainly require further research before LandTrendr can
be used to this purpose.

A key challenge for historical land use and land cover change analysis using only
Landsat historical satellite imagery is developing accurate training and validation
data. The low resolution of the satellite imagery, high variation in appearance within
land cover classes and high similarity in appearance between certain land covers
makes it difficult to say with certainty what class of land cover is present and what
change has taken place. However, with time and experience, a human interpreter
could probably make a reasonable attempt to digitize land use and land cover change
using the available Landsat bands and supplementary data (Cohen et al. 2010). But
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this would be difficult to scale to the national level without losing spatial resolution
or taking a very long time.

5 Discussion

5.1 Overview

The method used in this study for mapping land cover LandTrendr to study land use
and land cover change. However, these previous studies have mostly focused on a
limited range of land cover classes or types of change, such as disturbances affecting
forest (Hislop et al. 2019) or abandonment of cropland (Dara et al. 2018). They also
tend to have already identified land cover distribution in the base year (Zhu et al.
2019) or restrict the study to an area with a narrow range of land cover change
patterns present (Grogan et al. 2015; Kennedy et al. 2012). In addition, LandTrendr
applications in the tropics for detecting disturbance (Grogan et al. 2015) and
recovery (Shen et al. 2017) in forests and timber plantations and conversion to
rubber plantations (Tang et al. 2019).

Other studies used LandTrendr output rasters for supervised classification; how-
ever, they used them to identify specific land covers or change patterns, rather than
for general land cover classification—or else they targeted a much smaller study area
(Rathnayake et al. 2020). In this thesis the method was also modified to suit the
tropics—utilizing full-year image collections for creating annual mosaics to reduce
cloud cover without affecting coverage, following Grogan et al. (2015), and
calibrating LandTrendr to change patterns prevalent in the region.

The results in this thesis did not show a clear advantage in using LandTrendr over
using only Landsat and elevation data nor did it show conclusive evidence that
LandTrendr is a viable tool for land cover change mapping. However, it does suggest
that LandTrendr has potential to be developed into such a tool. The use of
LandTrendr improved overall accuracy for oil palm, rubber and forest detection,
and specifically user’s accuracy improved for forest and rubber, while producer’s
accuracy improved for forest and oil palm. This means that use of LandTrendr
improves differentiation of these three very similar land covers and therefore careful
use of LandTrendr could have a positive impact on attempts to map change from
forest to oil palm. In contrast there was unexpected decreases in accuracy for certain
land covers when LandTrendr was used, such as increased confusion between bare
ground and rubber and bare ground and urban, decrease in producer’s accuracy for
rubber and the overall decrease in accuracy for rice and other agriculture. It may be
that LandTrendr outputs may have more relevance to the change patterns being
targeted.
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5.2 Parameterization

The parameters used were found to have a large effect on the accuracy of change
detection, with overall accuracy values ranging from below 10% for some change
patterns up to above 80% depending on the parameters and magnitude threshold
used. The overall accuracy under optimal conditions varied from 50.30% for ‘forest
to urban and other brown’ to 89.29% for ‘oil palm to oil palm’ (replanting). Lower
accuracy may reflect a lack of calibration points as the change patterns with the three
lowest overall accuracy values were also those with the fewest calibration points.
The variability in change events may also be a factor, with forest clearance and
replanting of oil palm widely following standard patterns of management, whereas
urban development may have a variety of time periods and spectral appearances
following clearance.

Only one LandTrendr parameter was used for producing disturbance rasters, as it
was found that including additional parameterizations had a negative impact on map
accuracy, likely due to having too many bands with too few training points.
Therefore, the algorithm hasn’t been able to detect each type of change equally
well. In choosing the optimum parameters, each change pattern was weighted
equally even though ‘forest to oil palm’ and ‘oil palm to oil palm’ (replanting) are
both the most prevalent change patterns and the patterns being studied. However, a
compromise seems better as it allows detection of all change patterns and reduces the
complexity of the classification. It would be useful in further studies to know in
which years conversion to oil palm is most prevalent. However, from the ground
truth data, we cannot accurately determine an overall temporal pattern in forest to oil
palm conversion.

5.3 Mapping

The two land cover maps produced with and without LandTrendr didn’t appear very
noticeably different from each other, with major areas of land cover remaining
largely the same in both. Out of 145.9 million total pixels, only 7.5% (10.9 million
pixels) differed between the two land cover maps. This is approximately 9913 km2.
Most of the differences were due to differences in the classification of oil palm and
forest. Only 1.7 million pixels (1563 km2) represented net differences between the
two methods. At a smaller scale, differences are visible in small groups of pixels with
differences between similar land cover classes and in mixed landscapes. Two
examples are given in Fig. 4 from Negeri Sembilan and the coast of Pahang.

The scene from Negeri Sembilan (a) shows a linear settlement with agriculture
that runs parallel to a highway with forest in the north-eastern corner. The two
images differ in their distribution of ‘forest’ and ‘oil palm’ pixels in the transition
zone, and the image with LandTrendr (a1) shows a section of road (‘urban’)
misclassified as ‘rice’. The scene from Pahang shows rice and oil palm fields (b),
with an area of denser vegetation between them and paths. The two images show
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Fig. 4 Examples of areas which show differences between land cover maps classified from an
input raster stack consisting of Landsat imagery, elevation data and LandTrendr outputs (a1, b1) and
produced from a raster stack consisting of only Landsat imagery and elevation data (a2, b2). The
locations are in Negeri Sembilan (a) and Pahang (b)

differences in distribution of the pixels making up the paths (classified as ‘urban’)
between rows of vegetation.

For the map classified using LandTrendr, the greatest sources of confusion were
between ‘other vegetation’ and ‘other agriculture’ (orchards and miscellaneous other
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types of agriculture such as large home gardens and banana fields—see Table 1:
2019 Land Cover) and between ‘bare ground’ and ‘urban’. In terms of the number of
misclassified points, the most frequently confused land covers were ‘rubber’, ‘oil
palm’ and ‘forest’ as also found in previous studies (Mohd Najib et al. 2020). A
major source of commission errors for ‘forest’ and ‘oil palm’ were ‘oil palm’ or
‘rubber’ being classified as ‘forest’ and ‘rubber’ or ‘forest’ being classified as ‘oil
palm’. Other sources of error were ‘other agriculture’ being classified as ‘bare
ground’. The greatest source of omission was misclassification of land covers as
‘oil palm’, particularly misclassification of ‘rubber’, ‘other vegetation’ and ‘forest’.
While ‘oil palm’ and ‘forest’ maintained accuracy values all above 69%, ‘rubber’
had a poor producer’s accuracy at only 15%. This may be due to the difficulty
encountered during ground truthing as rubber was difficult to differentiate from
forest and oil palm, while being less common than either class.

The map classified using LandTrendr data is slightly more accurate than the one
using only Landsat and elevation data, although producer’s accuracy decreased
slightly. There was a large increase in overall accuracy for ‘rubber’ and ‘forest’
and a smaller increase for ‘oil palm’ and ‘urban’ but a decrease in overall accuracy
for ‘other vegetation’, ‘rice’, ‘other agriculture’ and ‘bare ground’. As LandTrendr
detects disturbance by analysing temporal change, the improvement in detection of
rubber and forest may be attributed to the ability to detect past clearance and
differentiate it from undisturbed forest. The decrease in accuracy of detecting bare
ground may be due to associating recent disturbance with a bare ground signal,
whereas vegetation in the tropics may recover rapidly, hiding the bare ground signal
in as little time as a year. Likewise, detection of rice may have been confounded by
temporary changes in spectral value due to seasonal flooding and harvest patterns
being interpreted as change by LandTrendr.

5.4 Limitations and Future Research

While the results indicate that LandTrendr is useful for helping to map land cover
and investigating historical land cover change, the accuracy of the land cover map is
still quite low and will require further research to potentially improve it. The results
might be improved by increasing the number and quality of training points (Kanniah
et al. 2015; Li et al. 2014; Shaharum et al. 2020). The ground truth data may not have
been labelled accurately, as some land covers are difficult to differentiate from
satellite imagery, and high-resolution imagery is not uniformly available for all
areas and time periods. The constraints in selecting more numerous, reliable training
points for this study were time and cost and difficulty of reliably interpreting
historical satellite imagery. As high-quality imagery over the complete time period
is scarce and land covers are difficult to differentiate, it requires an expert interpreter
with experience in the task and in the land cover patterns present in the target area.

The similarity of many common land covers in Malaysia is partly due to the
domination of the landscape by trees, including natural forest and oil palm and
rubber plantations, which share similar spectral appearances. These classes are
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difficult to differentiate visually or using random forests as they are spectrally
similar. We found from a small sample of points for bare land, forest, oil palm,
water and urban that the NDVI and NBR of forest, oil palm and bare land overlapped
with each other. The large study area and fine level of land cover classes used in the
analysis were also limiting as it increased the potential variability in land cover
patterns. To simplify the study, land covers were not differentiated into different
stages of growth, despite vast differences in appearance and spectral value between
newly planted and mature oil palm and between dry and flooded rice fields.

Other challenges encountered were due to the local climate. Located in the
equatorial region, Malaysia experiences high rainfall and cloud cover. The tropical
climate means that vegetation may change appearance rapidly after rainfall, espe-
cially after a dry period; and rapid vegetation regrowth may obscure disturbance
signals from being detected by LandTrendr, which operates at a temporal scale of
1 year.

One of the limitations of using LandTrendr is that disturbance data only applies to
a small proportion of the whole study area. Furthermore, we have not identified
which LandTrendr outputs are most important for identifying land cover. Further
research to investigate the significance of individual segment characteristics and
spectral bands or indices (Hudak et al. 2013), and the use of recovery information
and data from multiple disturbances (Kennedy et al. 2012) per pixel may help to
develop LandTrendr for land use and land cover change mapping for tropical
Southeast Asia.

6 Conclusion

This study is the first to use LandTrendr in Malaysia and the first use it for mapping
land cover classes in Southeast Asia. While the method demonstrated only small
improvements in overall accuracies, such an approach needs further research to
assess the capability for mapping land conversion to oil palm plantation, conducting
LUCA assessments and for conservation planning. We believe that a key challenge
for land cover mapping of oil palm can be solved through the application of temporal
information, providing extra information required for differentiating between woody
vegetation in the tropics than using spectral differences alone.
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Abstract

Mangroves are multifunctional ecosystems providing resource provisions and
various ecosystem services critical to the local livelihood and national economy.
The anthropogenic activities in the mangrove forest and the threat to these
ecosystems remain a daunting and challenging task to the ecologist, especially
in the management. This chapter attempted to present monitoring works
conducted for mangrove forests as geospatial analytics helps in the decision-
making and management. Geospatial technology offers a more accurate way of
measuring the mangrove forest ecosystem and a more efficient tool in mangrove
forest plan, management, and conservation. The application and discussion of this
chapter focus on the Malaysian mangrove forest.
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1 Introduction

Geospatial technology is essential technology of forestry research in this era.
Exploring gaps in forestry research, especially in managing and monitoring spatial-
and temporal-related problem-solving, can be evaluated by validating and qualifying
with the knowledge advancement in geospatial technology. Fundamentally, the
manager or the data analyser must be advancing the knowledge on geospatial data
analyses before existing work.

Works in mangrove forests are challenging due to their unique ecosystems
(Faridah-Hanum et al. 2019; Rhyma et al. 2015). The limitation of these challenges
has intensified the geospatial technology used in management and monitoring work.
Although Malaysia has limited satellite sensors and depends on other global
companies providing satellite images, the management and monitoring work is not
limiting for researchers and managers. The availability of sensors from low to high
resolutions gives options to researchers and managers to choose the best satellite
images applicable to their applications. Many freely available satellite images can be
used in forestry-related work and finding solutions to problems, even though the cost
is a barrier factor in geospatial technology-related work (Zulfa and Norizah 2018;
Rhyma and Norizah 2016). With advanced image processing and existing skills,
forestry-related issues and problems can be resolved quickly, without incurring high
costs—the reliability, validity, and quality of the problem-solving produced matters.

This chapter discusses the use of geospatial technology in Malaysian mangrove
forests. This chapter is organized as follows: The next section presents the
characteristics and figures of Malaysian mangrove forests, followed by a section
that discusses the application of geospatial technology. The discussion is designed
by systematic literature review (SLR) consisting of the methodology and the sum-
mary of findings. Later, the last section concludes the chapter with suggestion on
how to improve the quality and consistency of literature reviews.

2 Mangrove Forests in Malaysia

Mangrove forests are commonly found in the coastline and estuaries of tropical and
subtropical regions. These forests are most abundant in tropical Asia, Africa, and the
islands of the Southwest Pacific. Malaysia’s coastlines stretch at an estimate of
4810 km attributed from the West Coast Peninsular Malaysia with 1110 km, East
Coast of Peninsular Malaysia with 860 km, Sabah with 1800 km, and Sarawak with
1040 km.

Mangrove forests are characterized by unique ecosystems influence a diverse
range of tree species. Mangrove areas are difficult to access because of the extension
of dense root systems over a wide area, dense stands of mangrove species, and the
regular occurrence of high and low tides with deep mudflats. Most mangrove species
survive under high and low tides with special root system characteristics. Tomlinson
(1986) describes, within a tide-dominated shore, mangroves were zoned to four
parts, viz. (1) seaward zone, (2) mesozone, (3) landward zone, and (4) terrestrial
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Fig. 1 Mangrove zonation profile as suggested by Tomlinson

zone. He added mangrove species zonation often appears as a clear sequence of
species colonization with Avicennia on the seaward zone, followed by Rhizophora,
Bruguiera, and Ceriops in the mesozones (Fig. 1). Different areas influence a
mangrove; thus, zonation patterns may vary at both global and local scales. For
example, mangrove zonation in the South America region contradicts the Asia
region. Rhizophora mangle (red mangrove) is found at seaward zone, Avicennia
germinans (black mangrove), and Laguncularia racemosa (white mangrove) are
found in the landward zone in South America region. Meanwhile in Asia region,
Avicennian communities are found in the seaward zone, Rhizophora community
adaptable at soft, deep mud zone–middle zone, followed by the Bruguiera commu-
nity that is more adaptable at landward zone (Fig. 2). According to Feller and Sitnik
(1996), differences in species occurrence can be found across an estuary, which may
be influenced by the fresh and saltwater source at local scales.

Malaysia is endowed with approximately 630,000 ha of mangrove forests lying
on Malaysia’s East and West coasts. According to the annual report by the three
Forestry Department in Malaysia, Sabah occupies the most extensive mangrove
forest composition, about 234,700 ha, followed by Sarawak, 780,000 ha, and
Peninsular Malaysia, about 90,000 ha. The mangrove area reported by Hamdan
et al. (2020) was based on a 2017 satellite image, the most updated information of
mangroves available. The other work reported that mangrove forests experienced
deforestation 0.1% per year between 1990 and 2017 (Hamdan et al. 2018).

Since the threat to the mangrove forests is alarming, the management and
monitoring work for understanding the conservation and protection measures has
been widely conducted nationally. The following section discusses the spatial
analysis application in Malaysian mangrove forests.
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Fig. 2 Mangrove zonation profile in Malaysia

3 Mangrove and Geospatial Technology

3.1 Methodology

The discussion presented in this section was based on the SLR study (Mohamed
Shaffril et al. 2021). The keyword search is the first step in SLR. The search was
conducted on the selected database, Scopus, Science Direct, Google Scholars, and
Google engine search. The content of the search focus on “Malaysian mangrove,”
“geographic information system,” “remote sensing,” and “spatial analysis.” From
the preliminary search of the title and the abstract, there is no limitation on literature
and information type, as long as the content is related to mangrove forests in
Malaysia. Since researchers and managers have extensively used geospatial technol-
ogy as a precision forestry application in Malaysia since the 2000s; thus, the
literature search includes all information published from 2000. In addition, all
articles written in English and Malay are considered in the literature.

The comprehensive search obtained 9750 articles based on the title and the
abstract. After the information extraction and evaluation, 42 articles were discussed
in this chapter. Figure 3 shows the simplified methodological flowchart for this
chapter.
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Fig. 3 The flowchart for systematic literature review search

Johore (7) Kedah (6) Kelantan (1)

Malaysia (1) Pahang (4) Perak (12)

Peninsular Malaysia (4) Sabah (1) Selangor (3)

Terengganu (2) Melaka (1) Penang

Fig. 4 The area of interest for geospatial technology application in mangrove forest application
across Malaysia

3.2 Finding and Discussion

Figure 4 presents the distributions of mangrove forests and the geospatial technology
study area conducted in Malaysia based on the 42 literature searches.

Known as the best-managed mangrove forest globally (Rhyma et al. 2020; Zulfa
et al. 2021), Matang Mangrove Forest Reserve (MMFR), located at Perak, has
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become the focus of researchers from within and outside countries. About 28% of
the literature studies were conducted in this mangrove forest. The researchers’
second most attractive mangrove forest is Johore by 16%. Most of the research
was conducted at Southern Johore, covering Kukup and Sungai Pulai. Kilim and
Sungai Merbok mangrove forest in Kedah is the third most attractive research area
for geospatial application by 14%, followed by Pahang and Selangor by 10% and
7%, respectively. The other states in Peninsular are Terengganu by 5% and Kelantan,
Malacca, and Penang by 2%. Although Sabah is attributed to the most extensive
coastlines and mangrove forest cover, there is a lack of studies related to the
geospatial application with only 2%. While Sarawak, the second largest mangrove
forest cover, has no geospatial application studies reported from the literature search.
There are four studies focused on Peninsular Malaysia, and one focused on Malaysia
using geospatial technology. Most of these five studies monitor the changes in land
use and land cover of mangrove forests using temporal-spatial data.

The extraction and evaluation of literature search compiled several geospatial
applications. Mapping and monitoring are the most extensive application. This
includes land use and land cover changes (LULC) (1, 4, 7, 8, 9, 10, 13, 15, 19, 24,
26, 30, 37, 39, 40), vegetation mapping (3, 12, 14, 16, 20, 23, 25, 27, 28, 31, 33, 38,
41), monitoring the anthropogenic activities along the coastal mangrove areas
(6, 11), including riverbank erosion (2) and sea-level rise monitoring (5), and, last
but not least is carbon monitoring (22, 32, 35, 37). Three literature searches applied
geospatial technology in modelling the mangrove ecosystem in terms of environ-
mentally sensitive areas (18), environmental vulnerability (36), and mangrove qual-
ity index (34). In addition, there are three literature searches found to use geospatial
technology as a tool in finding the habitat suitability for Aedes (17), fish abundance
(21), migratory birds (29), and firefly (42).

LULC changes are at an alarming rate. This is also not exempted from the
mangrove forest. Most LULC studies found that the mangrove forest is decreasing,
highlighted by Hamzah et al. (2009), Shahbudin et al. (2012), Khuzaimah et al.
(2013), Kanniah et al. (2015), Nurul (2016), Hamdan et al. (2018), Ahmad et al.
(2019), Hashim et al. (2019), Hamzah et al. (2020), and Kanniah et al. (2021). The
study of LULC using the oldest temporal data is by Gopalakrishnan et al. (2021).
They used the historical hardcopy map from 1853 in Peninsular Malaysia. They
monitor the temporal changes of mangrove forests until 2018 and the available
satellite images only from 1988. Since they have used temporal data for several
years, the Google Earth Pro for Desktop software is an alternative to assess image
processing accuracy and classification by activating the history tab in the software.
The other LULC studies also used this method to measure the accuracy assessment
since collecting on-site data was not feasible within the study period (Hamzah et al.
2020; Rhyma et al. 2020; Zulfa et al. 2021). While temporal images from the past
years limit the confirmation of actual ground cover attributes, the available
geospatial related software provides the solution to the users.

The occurrence of LULC can be explained by the opening of mangrove forest
areas, particularly in the coastal areas. The development of coastal areas due to
anthropogenic activities including agriculture, aquaculture and urbanization are the
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significant causes of a mangrove forest opening. Due to these anthropogenic
activities, the impact of forest canopy opening to the coastal areas leads to erosion,
environmental problems, carbon offsets, and community services. Hamzah et al.
(2009), Ahmad et al. (2019), Mohamad (2019), Hamzah et al. (2020), Kanniah et al.
(2021) and Zakaria et al. (2021) used temporal-spatial data to detect the LULC,
including erosion occurrence and carbon offsets. While monitoring the environmen-
tal problems, including mangrove ecosystem health and sensitive areas, Leman et al.
(2016), Zulkifli et al. (2017), Yunus et al. (2018) and Faridah-Hanum et al. (2019)
used biotic and abiotic data acquired from the measurements conducted on the field.
These data were later combined with spatial data obtained from the satellite images
with relevant image processing and spatial analyses algorithm. Although geospatial
technology is an advanced application in helping decision-makers plan and solves
the problem, integrating the ground survey data is essential to ensure the survival and
sustainability of mangrove-associated biodiversity (Satyanarayana et al. 2011).
Meanwhile, Khuzaimah et al. (2013) integrate the social aspects with geospatial
technology application to understand socioeconomic impacts from the changes of
mangrove forests. Hashim et al. (2020) studied mangrove carbon stocks by
integrating the physical vegetation data with geospatial technology. Later, they
developed an equation to estimate mangrove carbon stocks.

The vegetation distributions also come into effect from the mangrove forest
opening and anthropogenic activities. A study by Zulfa et al. (2021) found that
mangrove zonation by vegetation is likely disappeared. Identifying individual man-
grove species is a challenging task to ensure the conservation of mangrove species
and the management of mangrove forests as a whole. The use of high spatial
resolution data conducted by Kanniah et al. (2007), Satyanarayana et al. (2011)
and Roslani et al. (2013) confirms the accuracy of species identification. However, a
recent study conducted by Zulfa et al. (2021) and Ibharim et al. (2015) show that
moderate spatial resolution data is useful in identifying individual mangrove species.
Acquisition of high spatial resolution data for mangrove forest mapping and moni-
toring is not compulsory at this day since there are lots of advanced processing
algorithms available for geospatial data.

Geospatial technology’s capability to examine the occurrence of biotic factors on
the mangrove forests is a benefit that researchers and managers need to explore. For
example, Jamizan and Chong (2017), Azimah and Tarmiji (2018), and Saffawati
et al. (2019) used geospatial technology through Geographic Information System
(GIS) software to identify the suitable areas for fish, migratory birds and Aedes in the
mangrove forest, respectively. The selection of several attributes, mostly the abiotic
factors that attract fish, migratory birds and Aedes to mangrove forests, is examined
before the geospatial analyses. The selection of appropriate spatial analysis was later
determined according to the objective. These geospatial modelling and decision-
making help ease the management and the conservation of mangrove forest that
benefits the mangrove ecosystem, including biotic and abiotic factors.

Kanniah et al. (2015) suggested promoting tourism-based activities in the man-
grove forest for conservation purposes. Aminu et al. (2013) has developed the
procedure to evaluate and plan to support tourism planning in mangrove forests by
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integrating the expert’s opinion with geospatial analyses. On the other hand, Mohd
Razali et al. (2020) conducted mangrove density mapping to examine the essential
conservation for mangrove forests. Ramsar site known as the unique wetlands and
having important biological diversity requires conservation is the study area
characteristics chosen by Aminu et al. (2013) and Mohd Razali et al. (2020). Such
effortless work to sustain the mangrove forest areas with biological diversity can be a
simple task by geospatial technology since the information provided by the satellite
images and the advanced processing algorithm can monitor mangrove changes over
a large spatial extent in a continuous manner. This includes mapping and monitoring
mangrove forest cover, anthropogenic activities, carbon, and impact on the
environments and community, which also changes following the changes of man-
grove forest areas (Zuhairi et al. 2019; Ahmad et al. 2019; Amran et al. 2020; Mohd
Razali et al. 2020; Rhyma et al. 2020; Otero et al. 2020; Kanniah et al. 2021).

Image processing is a significant step in monitoring temporal LULC changes,
examining the distribution of vegetation and mapping, and monitoring and assessing
the environments. Several procedures are available for image processing, such as
pixel-based classification, object-based classification, and vegetation indices; several
indices are available where the selection of indices algorithm is based on the study
objective. Satellite images of SPOT and Landsat images are the common medium
spatial resolution data source used in most geospatial technology applications in
Malaysia. While the high spatial resolution data commonly used are RapidEye,
Quickbird, and Pleiades images. The efficiency of using these images in mangrove
forest conservation and management has been proven and reported in the literature
search. On the other hand, Ruwaimana et al. (2018) describe the uses of unmanned
aerial vehicle (UAV) remote sensing equipped with red, green, blue (RGB) and
infra-red (IR) cameras is capable of doing the mapping and monitoring works in
mangrove forests. The use of hyperspectral data is also reported by Zulfa et al.
(2021) and Chung (2011) in identifying individual mangrove species by wavelength
separation. Since there are many available satellite images and processing algorithms
nowadays, geospatial technology is a must in managing mangrove forests at the
strategic, tactical and operational level and for monitoring and conservation
purposes.

4 Concluding Remarks

This chapter discusses geospatial technology applications for mangrove forests that
have been conducted with an SLR. This chapter aimed at summarising the benefits of
geospatial technology application to enable effortless plan, management and conser-
vation of mangrove forests providing information on mangrove status and changes
over a large spatial extent and in a continuous manner, study the impacts on the
environment, vegetation distribution, biotic and abiotic factors, carbon, the health of
the ecosystem and socials. Thus, this chapter draws the following conclusions and
recommendations:
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1. The inclusion and exclusion of titles and abstracts require a systematic evaluation
to separate research articles, proceedings, dissertations, and other publications.
From the SLR conducted in this chapter, different types of literature search give
different understandings, and the explanation of the research is also different. For
example, literature found from articles and dissertation is comprehensive in
explaining the problem statements, objective, and methodology, while the others
make a simpler explanation.

2. Limiting the selection of materials for SLR at specific periods or categorizing the
periods of study helps the author and readers understand the evolution or trend of
the geospatial technology applications in mangrove forests.
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Effect of Tidal Regime, Relative Sea Level
and Wind Intensity on Changes
of Mangrove Area Using Remote Sensing
Approach

Noorita Sahriman, Arnis Asmat, Fazlina Ahmat Ruslan,
Ismail Maarof, and Abd Manan Samad

Abstract

Mangroves are very well known for their contribution to wildlife, human and
ecosystem. Mangroves provide habitat, food, medicine and building material
make them so valuable and important. However, despite all the benefits they
offer, mangroves are being threatened all over the world. Mangrove loss and
deforestation have become a worldwide issue. The destruction and replacement
of mangrove forests spread widely for various reasons. This study focuses on
determining the effect of environmental parameters towards mangrove areas.
Three indicators were taken as a primary parameter in this study. Those
parameters were tidal regime, wind intensity and relative sea level. The three
information were obtained from Forest Research Institute Malaysia (FRIM),
Forestry Department Peninsular Malaysia (FDIM) and Malaysian Meteorological
Department (MMD) as well as from previous studies. The study area for this
research covered the east and west coast of Malaysia. For the east coast was
Chendering in Terengganu, whereas for the west coast was Kuala Perlis in Perlis.
The detection of mangrove areas was performed using Landsat 5 TM and Landsat
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8 OLI satellite imageries in PCI Geomatica 2013 software. The process of
determining the mangrove area was done using supervised classification with
maximum likelihood classifier and supported with site verification. The area
covered was 5 km × 5 km per image or 25 km2 with the range period of
10 years from 2005 to 2015, and the satellite images selected were in the years
of 2005, 2010 and 2015. The changes of mangrove areas were determined.
Chendering mangrove areas increased 3243 m2 during 2005–2015, while in
Kuala Perlis mangrove increased 1892 m2 during the same period. The
relationships between tidal regime, relative sea level and wind intensity were
analysed based on the results from mangrove area changes that was obtained
through supervised classification and correlation analysis. The final result shows
several responses that accomplished the objectives of this study. The classifica-
tion processing for the mangrove area was successfully acquired with more than
85% accuracy. The mangrove areas have shown some changes during the years of
2005, 2010 and 2015.

Keywords

Mangrove · Remote sensing · Supervised classification · Maximum likelihood

1 Introduction

Mangrove is known as a small tree or forest vegetation of salt-tolerant tropical
shrubs that can be found and grows in a particular area such as tidal marshes or
river estuaries that are covered by the sea at high tide existing along estuary or
coastline which are located between the land and the sea (Goh 2016). It connects the
terrestrial with sea and usually can be found in tropical and subtropical regions.
Usually they live within 0 and 5 m above mean sea level. Mangrove forests are
mostly abundant in tropical Asia, Africa and the islands of the Southwest Pacific.
Less than 0.1% of mangrove forest covers the Earth’s surface. Mangrove forests are
very complex however known for their multiple benefits to human, wildlife and
ecosystem (Lewis 2005; Ghosh et al. 2017; Kong and Chung 2019). It provides
building material, food, medicine, fuel, habitat and breeding location for variety of
species such as fish, birds, monkey and reptiles. Mangrove helps to protect the
ecosystem and stabilize the shorelines from any natural disasters such as hurricanes,
coastal erosion, tsunamis, trapping silt and wastes. They also offer a renewable
source of wood, carbon, nutrients, contaminants and accumulation sites for
sediments. During the tsunami back in 2004, mangroves gave major contribution
in reducing the impact along the Malaysia coastline area mostly in Perlis, Penang,
Kedah, Perak and Selangor (Ahmadun et al. 2020).

Despite various benefits that have been offered by mangroves, however they
cannot escape from deforestation and disappearance. Over the past century, man-
grove forests are facing a replacement and deforestation all over the world. Among
major factors include human interference, urbanization, development and natural
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processes. As a result, the number of mangroves globally declined significantly
(Goh, 2016; Ávila-Flores et al. 2020). In 2010, FAO in their report stated that the
global area of mangroves has decreased from around 16.1 million hectares in 1990 to
15.6 million hectares in 2010. The decrease was about 0.5 million hectares at the
annual rate of 25,000 ha per year. A parallel trend in Malaysian mangrove has been
identified (Omar and Hamzah 2012). Since 1990, there has been about 1282 ha or
about 1% mangrove loss in some major states in Peninsular Malaysia every year.
Therefore, it is important for action to be taken in order to protect the mangrove loss
from becoming worse. The first step is doing an early detection of mangrove forest
changes, analyse factors or parameters that are affecting the changes and try to
control the factors that threaten the mangroves (Ávila-Flores et al. 2020). The next
stages are to plan on how to replant and rehabilitate of mangroves. Previously,
several techniques and methods were applied to protect mangrove forest. This
include the building of costal structure such as detach breakwater to become a
protection measures for shore and coast area from by wave action, erosion and
sediment deposition (Hashim et al. 2009). By using detach breakwater, it may
contribute to mangrove restoration and protect them from the wave that might
destroy the seed or new tree (Kamali and Hashim 2011). The concept of mangrove
rehabilitation and conservation has already been implemented in Malaysia with the
aid of remote sensing technique.

In this study, the dynamism and relationship of mangrove and parameter were
studied as to see the changes of mangrove and which parameter affects the mangrove
ecosystem the most. According to the previous study by Gelfenbaum et al. (2009),
the dynamism of mangrove was associated with four factors. These include sediment
supply, tidal regime, relative sea level and wind intensity. The ecosystem productiv-
ity for mangrove and its surrounding area was ensured based on the balance between
these four factors. Factors that has been selected were tidal regime, relative sea level
and wind intensity. Data used in this study were Landsat 5 TM and Landsat 8 OLI
satellite imagery, relative sea level data from the Department of Survey and Mapping
Malaysia (DSMM), wind intensity data from the Malaysian Meteorological Depart-
ment (MMD) and mangrove information from Forestry Department Peninsular
Malaysia (FDPM) and Forest Research Institute Malaysia (FRIM). Image processing
was done in PCI Geomatica 2013 which involved supervised classification analysis.
The results from this study were shown as line chart, analysis and mangrove
vulnerable map.

The detection of mangrove changes has been frequently done by previous studies.
Researches in this area help in determining whether area of mangroves are increasing
or decreasing. Changes mangrove areas occurred due to monsoon, hurricanes,
storms, climate changes or anthropogenic changes (Hamzah et al. 2020; Jupiter
et al. 2007; Adams and Rajkaran, 2020; França et al. 2013). Another aspect that
contribute to the mangrove changes is the deforestation as a result from activities
such as firewood collection, clearing for agricultural purposes and extension of
shrimp farming area (Thu and Populus, 2007). Mangrove forest concession, shrimp
farming and tin mining are also lead to the degradation and ecological disturbances
as well (Sremongkontip et al. 2000). When human natural uncertainties disturbance
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occurs, it is a vital action to monitor the mangrove ecosystem closely (Nguyen et al.
2020; Uni et al. 2016; Upanoi et al. 2003; Nascimento et al. 2013; Sari and Rosalina
2016). The contributions and benefits of mangrove make it a compulsory to quantify
and record the mangrove changes especially consistent on different date intervals
(Upanoi and Tripathi 2012; Ibharim et al. 2015).

2 Study Area

The first study area was Chendering. It is located in east coastal side of Terengganu
state, Malaysia. This area was selected as one of the study areas because it covers
several criteria that were required in this study. Chendering coastal areas are covered
with diurnal tide. Diurnal tide is a tide that has one-time high tide and one-time low
tide in a day. The second reason was because Chendering is experiencing Northeast
Monsoon. This monsoon happens at the Chendering’s coastline from November
until March every year. As for the three parameters, the relative sea level data
represent the tide value, the diurnal tide represents the wave, and the Northeast
Monsoon represents the wind intensity.

The second study area was Kuala Perlis. It is located in Perlis west coastal side of
Perlis state, Malaysia. This area was selected as one of the study areas because it
covers several criteria that were required in this study. Kuala Perlis coastal area is
covered with semidiurnal tide. Semidiurnal tide is a tide that has two times high tide
and two times low tide in a day. The monsoon occurs at the Kuala Perlis’s coastline
from May until September every year. As for the three parameters, while the tide
represents the tide itself, the diurnal tide represents the wave and current, and the
Southwest Monsoon represents the wind intensity. The study areas were identified
based from the mangrove data which consists of location and distribution of man-
grove forests in Malaysia coastal area (Fig. 1).

3 Environmental Parameters

In detection for mangrove changes, guidelines or keys need to be set first to see
changes that happened before and after. In this study, there are three environmental
parameters that have been selected to correlate with the results that have been
gathered from mangrove area changes. In the previous study, Asbridge et al.
(2016) have applied rainfall, runoff and sea level to detect the changes of mangrove
area in Australia’s Gulf of Carpentaria. The response of mangrove towards several
parameters was also recorded by Soares (2009). The ecosystem of each mangrove is
not same from one region to another; therefore, the selected of parameters must be
suitable and available on the study area. In this study, three parameters which include
tidal regime, wind intensity and relative sea level rise were selected. Particular
information has been gathered from the Malaysia Meteorological Department
(MMD), Department of Survey and Mapping Malaysia (DSMM) and the Forestry
and Research Institute Malaysia (FRIM) in 3 years’ interval of 2005, 2010 and 2015.
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Fig. 1 Direction of Southwest Monsoon and Northeast Monsoon in Malaysia

4 Tidal Regime

Tidal regime occurs from the effect from the daily routine of tide movement
amplitude. The tide is a periodic rise and fall of a body of water resulting from
gravitational interactions between the Sun, Moon and Earth. It is also known as the
vertical component of the particulate motion of a tidal wave. Although the
accompanying horizontal movement of the water is part of the same phenomenon,
it is preferable to designate this motion as tidal current (Spring 2000). The daily
action of tide with the movement then produced a tidal wave. Tidal waves were
produced from the act of shallow water waves that were caused by the gravitational
interactions between the Sun, Moon and Earth. The high water is the crest of a tidal
wave and low water is the trough. Meanwhile, tidal current is the horizontal
component of the particulate motion, while tide is manifested by the vertical
component. The observed tide and tidal current can be considered the result of the
combination of several tidal waves, each of which may vary from nearly pure
progressive to nearly pure standing and with differing periods, heights, phase
relationships and direction.

The classification of tide is based on the characteristic forms of a tide curve.
Semidiurnal tide happens when the two high waters and two low waters of each tidal
day are approximately equal in height. It is also called two flood/maxima and two
ebb/minima periods each tidal day. Semidiurnal tide is known as the predominant
type of tide throughout the world. Mixed diurnal tide happens when there is a
relatively large diurnal inequality in the high or low waters or both, while diurnal
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tide happens when there is only one high water and one low water on each tidal day.
It is also called a single flood/maxima and single ebb/minima periods of a reversing
current in the tidal day. A rotary current is diurnal if it changes its direction through
all points of the compass once each tidal day (Spring 2000).

This every routine of tide phenomenon is called a tidal regime. Tidal regimes
consist of several important elements such as duration, timing, tidal amplitude and
frequency especially if the tide is experienced in different parts of the intertidal zone.
Each different tidal regime responds differently to various species of mangroves. A
study in the Indian part of the Sundarban shows that a mangrove stands that
experiences total diurnal inundation is dominated by Avicennia alba and Avicennia
marina while Acanthus ilicifolius, Ceriops dacandra and Excoecaria agallocha
dominate at sites that are not completely inundated (Hanum et al. 2016). For this
study, tidal regimes were presented as diurnal and semi-diurnal only, and they were
helped by the relative sea level data that carries the value of tide. The study area in
Chendering consists of diurnal tide, while Kuala Perlis consists of semi-diurnal tide.
Therefore, both study areas managed to cover both main tidal regimes in Malaysia.

5 Wind Intensity

One of the common features for marine environment is the existence of wind and
currents or waves. Current is generally known as a horizontal movement of water.
Currents were classified as tidal and also non-tidal (Spring 2000). Meanwhile, wind
plays an important role for mangrove propagule dispersal (Van Der Stocken et al.
2013). Wind influence the mangrove ecosystem by its action of dispersing mangrove
trees or seed. The current basically influences the integrated of wave parameters on
long-term ocean wave climate. When the currents are strong, they produced a wave
propagation. Once the waves are propagating towards an oncoming current, the
current will tend to upsurge the steepness of the waves by increase in wave height
and decrease in wavelength. The changing of wave energy might modify the surface
waves when the current causes an exchange of energy between wave and current.
Wave energy may gain or lost influenced by the movement of current (Sanil Kumar
and Ashok Kumar 2010). It can be concluded that both wind and currents are very
important for coastal and offshore engineering because both of them need these two
factors as for the interaction between them in several coastal aspects. In this study,
wind intensity covers the wind and current action. It was also represented by
monsoon. Chendering consists of Northeast Monsoon, while Kuala Perlis consists
of Southwest Monsoon.

6 Relative Sea Level

Relative sea level is the third environmental parameter that was selected in this
study. Relative sea level is the mean sea level related to the local reference land level,
mean sea level is the mean of everyday sea level in a month, while sea level rise
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happened when there are changes in the relative sea level and that may be due to the
global warming or the vertical motions of the land level (Gregory et al. 2019).
Relative sea level might change due to the effect of eustatic sea level rise and local
geomorphological changes in elevation. Tides are known as the regular and predict-
able change in the height of the ocean which is driven by gravitational and rotational
forces between the Earth, Moon and Sun, combined with centrifugal and inertial
forces. The experience of diurnal or semi-diurnal tides happens in every country’s
coastal areas which occur at different times in different locations around the Earth
(Lewis et al. 2011). Relative sea level most of the time gets affected through different
kinds of phenomena from marine ecosystem. These reasons could be from natural
factors, global climate change, global warming and man-made issue such as devel-
opment and sea reclamation. The changes on relative sea level might also give a
huge impact to the coastal ecosystem. According to Hensel et al. (2014), every
mangrove that have different criteria or types have different sensitivities, and this
includes the influence of relative sea level.

7 Methods and Techniques

7.1 Supervised Classification (Maximum Likelihood)

Multiple techniques and methodologies have been practised for mangrove study
since the 1970s. Several methods that usually have been applied in mangrove studies
are Random Forest Classifier, NDVI, REDD, visual interpretation and supervised
classification. In this study the supervised classification method with maximum
likelihood classifier was applied in satellite image processing by using PCI
Geomatica (2013) remote sensing software. The decision of using supervised classi-
fication is because the supervised classification methods are the most applied
methods of classification. The supervised classification method is a dependent
method that is controllable than the unsupervised classification method. This method
requires creating a signature based on the region of interest or on training sites. Then,
the classification process was run automatically in the software. Different
sub-classification methods can be applied in the supervised classification. Those
sub-classification methods are parallelepiped, minimum distance, mahalanobis dis-
tance, maximum likelihood and spectral angle mapper. However, the most com-
monly used technique is the maximum likelihood to natural nearby neighbour
algorithm (Nguyen et al. 2013; Ghebrezgabher et al. 2016).

The maximum likelihood classifier method has been the most applied among
high-resolution multi-spectral data sources by researchers and scholars to extract
ground objects and convenience to be apply in the early stage of extraction data
(Liao et al. 2020). This method offers simplicity and convenience in its application.
The theoretical basis of the maximum likelihood method is mainly BAYES which
means to describe the probability of an event, based on prior knowledge of
conditions that might be related to the event, theory and fusion classification of
prior knowledge of ground objects (Liao et al. 2020). This method also has been
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used to see the different results between several methods (Purnamasayangsukasih
et al. 2016). Maximum likelihood classifier has mostly been implemented alone or
along with the different techniques as to classify and analysed the land use and land
cover (Kamil et al. 2020; Ibharim et al. 2015; Sulong et al. 2002). Maximum
likelihood algorithm also was selected for running classification using a threshold
distance (Sremongkontip et al. 2000). The application of supervised maximum
likelihood classifier has been proven as the most effective and robust method for
classifying mangroves based on traditional satellite remote sensing data (Kuenzer
et al. 2011). Since it is applicable and at the same time included in PCI Geomatica
software, the supervised classification with maximum likelihood classifier method
was chosen.

The selection of classes in this study was based on the main and basic details that
have been found in the satellite imagery. Six main classes were selected which
include agriculture, water bodies, urban area, empty space, cloud and mangrove. The
quantification and investigation of the mangrove boundary changes in the year of
2005, 2010 and 2015 were proceed after the classification processes were completed.
It began with distinguishing the total area from the satellite image classes that have
been generated. In this stage, the analysis and mapping from the classification result
were done together followed by accuracy assessment. The image classification for
the mangrove area was successfully acquired with more than 85% accuracy. The
results show that changes in mangroves occurred during the years of 2005, 2010
and 2015.

7.2 Correlation Analysis

Correlation analysis was applied to study whether relationships exist between two or
more variables. This process is basically used to test relationships between quantita-
tive variables or categorical variables. It measures how both variables are related. In
this study, a correlation analysis was done between mangrove area and relative sea
level and wind intensity to study the relationships between them.

7.3 Relationship of Mangrove Area Changes and Environmental
Parameter

The result from supervised classification only is insufficient to prove the changes of
mangrove area. The information needs to be supported by some other related
information or variables to make it more solid and convincing. Therefore, three
other parameters were selected, combined and overlaid together through the correla-
tion analysis and the relationships between the parameters and mangrove changes
can be analysed.
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8 Results

8.1 Changes of Mangrove Boundary Area Quantification

The mangrove changes, whether it decreases or increases, will give some thoughts
and ideas about the condition situation of mangroves. In this study, the mangrove
area changes were obtained through the result of supervised classification. Mangrove
classes were distinguished based on the specific spectral reflectance value for
mangroves. This spectral signature was in the visible and near-infrared region into
four-band spectra which were in the blue (400–500 nm), green (500–600 nm), red
(600–700 nm) and near-infrared (700–800 nm) regions. Figure 2 shows the changes
of mangrove area for Chendering. From the result, it shows that in the Northeast
Monsoon which happens from November till March every year, the areas of
mangrove changes were from 683 m2 in 2005. The areas were increased to
4780 m2 in 2010. However, the areas were then decreased to 3926 m2 in 2015.

According to this result, there are a few possibilities and convincing factors that
are believed to contribute to these changes. Back in 2005, during that time, most of
the country’s coastline areas were in the middle of recovering from the tsunami event
that happened in December 2004 (Hashim et al. 2009). Tsunami that happened
carried a high wave and a very strong wind causing a lot of damage.

The mangrove area in Kuala Perlis in Fig. 3 that has been obtained is 1590 m2 in
2005. The value increased to 2574 m2 in 2010, while in 2015 it increased even more
to 3482 m2. During the tsunami event back in 2004, Kuala Perlis was more affected
than Chendering.

Fig. 2 Mangrove area changes for Chendering (10 years) in m2
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Fig. 3 Mangrove area changes for Kuala Perlis (10 years) in m2

Fig. 4 Mangrove response on relative sea level and wind intensity for Northeast Monsoon in
Chendering

8.2 Analyses of the Relationship Determination Between
Mangrove Area with Tidal Regime, Wind Intensity
and Relative Sea Level

The next stage was to see the response of mangrove on relative sea level and wind
intensity for both study areas. Figure 4 shows the response of mangrove on relative
sea level and wind for Chendering. Even though two monsoons highlighted in this
study were Northeast Monsoon and Southwest Monsoon, the result that is important
to be discussed is the monsoon that is related to the study area. Therefore,
Chendering focuses on the Northeast Monsoon, while Kuala Perlis focuses on the
Southwest Monsoon. From the result, the mangrove area was recorded at 683 m2 in
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Fig. 5 Mangrove response on relative sea level and wind intensity for Southwest Monsoon in
Kuala Perlis

2005 with the velocity of wind intensity at 8 m/s and the relative sea level value at
228 cm. In 2010, the mangrove area increased to 4780 m2 with the same wind
intensity at 8 m/s and the relative sea level value at 233 cm, while in 2015, mangrove
area decreased to 3926 m2 with wind intensity at 6 m/s and relative sea level value at
230 cm.

The response of mangrove on relative sea level and wind intensity for Southwest
Monsoon in Kuala Perlis is shown in Fig. 5. The result indicates that the value of
mangrove area at 1590 m2 in 2005 with the velocity of wind intensity at 7 m/s and
the relative sea level value at 213 cm. In 2010, the mangrove area increased to
2574 m2 with velocity of wind intensity at 6 m/s and the relative sea level value at
234 cm, while in 2015, the value of mangrove area increased to 3482 m2 with wind
intensity at 7 m/s and relative sea level value at 234 cm.

The result in Figs. 4 and 5 explained the relationships between mangrove areas
with all three environmental parameters. From this result, it shows that the mangrove
area along with the parameters plays their own role very well. The gradual process
and movement from the environmental parameters do give an impact to the man-
grove area. Even though the value of wind intensity and relative sea level might be
small and too obvious, the consistency activities that they bring on everyday routine
prove that it did gave impact to the mangrove ecosystem.

8.3 Correlation Analysis

Correlation analysis is essentially used to test the relationships between quantitative
or category variables. Pearson’s correlation coefficient (r) was used to indicate the
occurrence of significant linear relationship between two variables to the other
(Mohamad Hamzah et al. 2020). In this study, a correlation analysis was done for
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Table 1 Correlations between mangrove area, relative sea level rise and wind intensity in
Chendering

Environmental parameter r

Relative sea level rise 0.95

Wind intensity -0.32

Tidal regime 0

Table 2 Correlations between mangrove area, relative sea level rise and wind intensity in Kuala
Perlis

Environmental parameter r

Relative sea level rise 0.88

Wind intensity -0.02

Tidal regime 0

mangrove area with relative sea level, mangrove area with wind intensity and
mangrove area with tidal regime to see the relationship between these three variables
towards mangrove area.

The results in Tables 1 and 2 show positive relationships exist between mangrove
area and relative sea level. It explains the significance of relative sea level in
determining the total mangrove area through time. For wind intensity, it shows
that negative relationships exist with the mangrove area. It explains that the insig-
nificant of wind intensity in determining the total mangrove area through time.
However, there is no relationship between mangrove area and tidal regime (r = 0).

The correlation analysis for relative sea level shows a positive relationship, and it
proves significant towards the mangrove areas in both study areas. It also has been
stated by previous studies that relative sea level plays a huge role in influencing the
mangrove area (Mcivor et al. 2013; Mallinson et al. 2014; Soares 2009; Gilman et al.
2007). The wind intensity parameter shows a negative relationship and it is uniform
both study areas. Even though wind area is famously known for bringing an impact,
however, for mangrove area in this study, it explained that wind intensity does not
give impact towards the changes of mangrove area. It can happen due to the value of
wind data that this study collected which is quite consistent. Meanwhile, the tidal
regime or known as diurnal and semidiurnal has constant value for each of them. The
correlation analyses are unable to produce a specific result. Therefore, it can be
concluded that the relationship between the mangrove areas and the tidal regime is
constant.

8.4 Vulnerable Map Establishment

A map is known as a diagrammatic representation of an area of land or sea showing
physical features, cities, roads and other important details. There are several maps
that can be created based on the purpose of the study. By using maps, details of
things or information can be portrayed visually and seen. Map basically can make
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any layman understand the information a little further. It indicates the changes of the
mangrove area and at the same time shows the distribution of each class in the map.
The mangrove vulnerable maps were used as guidelines to explore further
possibilities that resulted in changes to the mangrove area.

8.4.1 Chendering
The vulnerable maps in Fig. 6 show the distribution of mangroves in Chendering in
2005, 2010 and 2015, respectively. The area for mangroves in Chendering has
increased from 683 m2 in 2005 to 4780 m2 in 2010 and increased again to
3926 m2 in 2015 with a total increment of 3243 m2. The maps show that the
distribution of mangrove along the coastline has increased in 2010 and 2015. The
increased distribution can be found along the coastline.

8.4.2 Kuala Perlis
The vulnerable map in Fig. 7 shows the distribution of mangroves in Kuala Perlis in
2005, 2010 and 2015, respectively. The area for mangrove in Kuala Perlis has
increased from 1590 m2 at 2005 to 2574 in 2010 and increased more to 3482 m2

in 2015 with the total increment of 1892 m2 in 2005. Not only focused on the
coastline, the increase in mangrove areas are scattered and concentrated in the
coastline and landward area.

9 Perspectives and Conclusion

The application of remote sensing helps in determining the changes in mangrove
areas in Chendering and Kuala Perlis. However, site verification is important to
confirm the study area condition in order to gain more accurate findings. In addition,

Fig. 6 Vulnerable map in Chendering for years 2005, 2010 and 2015
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Fig. 7 Vulnerable map in Kuala Perlis for years 2005, 2010 and 2015

the ground truthing data on both study areas will help this study to become more
reliable. The results show that the variables studied contributed a part in mangrove
areas changes. This may suggest that other environmental parameters that exist
surrounding mangrove areas may have impacts towards the changes in the
mangrove area.
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Mangrove plays an important role in mitigating the impact of climate change by
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land. However, mangroves have been reported to be threatened by land conver-
sion for other activities. The objectives of this chapter were: (1) to derive
Normalized Difference Vegetation Index (NDVI) in the study area and (2) to
map the status of the mangrove species distribution from year 2004 to 2019.
Matang Mangrove Forest Reserves (MMFR) at Kuala Sepetang, Perak, Malaysia
were determined using multi-temporal satellite imageries by Landsat TM and
Sentinel-2 from year 2004 to 2019. The classification of land use land cover
(LULC) was performed using the ISODATA Clustering method and Maximum
Likelihood Classifier (MCL) method along with vegetation index differencing
technique. The overall classification accuracy was 90% with Kappa statistic
accuracy of 0.89. The results indicated changes in area of the mangrove forest
to a cleared area occurred at 1340.01–1666.30 ha. (2004–2019). Combinations of
these approaches were useful for change detection and an indication of the nature
of these changes. The result also revealed that Rhizophora apiculata and
Avicennia sonneratia are still being preserved and estimated to be 70% of the
total species. Temporal changes of mangrove species for the 15–period showed
that the mangrove species of R. apiculata was 58%, A. sonneratia was 6%,
Bruguiera parviflora 8% and other mangrove species 28% in year 2019 as
compared to 2004 in which R. apiculata was 71%, A. Sonneratia 6%,
B. parviflora 10% and other mangrove species 14%. The findings indicated that
the status and loss of mangroves due to direct impacts from surrounding land
development activities.

Keywords

Spatiotemporal · Mangrove · LULC · Remote sensing

1 Introduction

Mangroves are trees that grow near the coast and protect the coastal land against the
destruction of tsunamis and storms in the tropics, subtropics and temperate coast
(Sheridan and Hays 2003). Mangroves are not only play important roles in ensuring
stability and sustainability of coastal ecosystems, but also in fulfilling important
socio-economic benefits to coastal communities (Suratman 2008). Mangroves are
also important to coastal ecosystems for the shoreline stabilization, ecosystem
biology coastal, water quality maintenance, habitat for various aquatic, bird
immigrants, recreation, tourism, fishing activities, a supply of forest products and
provides the carbon (C) storage in biomass and soil. According to the National
Oceanic and Atmospheric Administration (NOAA), mangroves can sequester car-
bon at the rate of two to four times greater than mature tropical forests. In addition,
the soil of mangrove forests stores a significant amount of carbon compared with
other types of forest given its high sediment concentration (Zhu et al. 2015). Thus,
there is a need to quantify the carbon (C) storage in different components of this
ecosystem. According to Azahar et al. (2003), the total area of mangrove forests was
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approximately 2% (645,852 ha) of the total land area in Malaysia in 1994. The
distribution of mangroves area in Malaysia from year 1990 to 2017 are mainly at the
west coast of Peninsular Malaysia (17%), east coast of Sabah (61%) and Sarawak
coastlines (22%) (Hamdan et al. 2018). The factors that mainly contributed to the
changes the biomass was direct conversion to other land uses in the form of
aquaculture, developments of infrastructure, industry, and settlements. Besides,
factors such as coastal erosion and pollution also affect the mangroves. To control
mangrove, the proper and timely diagnosis will facilitate appropriate treatments to
maintain a healthy forest of replanted mangrove trees (Ong et al. 2018). They are
about over 30 species of mangroves in Malaysia, but the major species are
Rhizophora apiculata (Bakau minyak), R. mucronata (Bakau kurap), and Bruguiera
parviflora (Lenggadai) (Hamdan et al. 2013).

Several remote sensing methods have been developed for tree species identifica-
tion such as using multispectral satellite images, hyperspectral images and airborne
LiDAR (Abd Latif et al. 2012; Mohd Zaki and Abd Latif 2017). In this chapter, the
Landsat TM and Sentinel-2 data were used in mapping the spatial patterns of
mangroves with different wavelengths to distinguish biomass estimation and carbon
stocks. Normalized Differential Vegetation Index (NDVI) is the most commonly
used proxy for biomass estimation. According to (Aziz 2014), NDVI is a valuable
tool to quantify vegetation biomass (Mohd Zaki et al. 2020). However, the use of
NDVI sometimes underestimate the biomass of some woody mangroves because it
represents only canopy properties (Hamdan et al. 2014). The use of remotely sensed
images, such as a satellite image, can be cost and time-efficient. Remote sensing
techniques and computer science made it possible to analyze mangrove biomass and
productivity at present to compare them with global maps obtained with the classical
technique (Ibrahim et al. 2015). The assessment of monitoring with satellite sensing
based on the monthly, weekly, or daily recording the NDVI in several wavelengths
which differ from day to day with the seasonal progress and development urban area.
For example, the land use/cover of Pulau Indah, in Selangor, Malaysia was found to
have changed dramatically over the year intervals of 1995, 1999, 2005 as detected by
Landsat TM satellite driven by an expansion of urban areas and built-up land for
West Port and cruise terminal development in the island (Suratman and Ahmad
2012).

2 Materials and Method

2.1 Study Area

The study area was located in the coast of Perak shoreline at Larut Matang, Kuala
Sepetang which covers an area of 40,711 ha and along a 52 km stretch of the
northern coast of Perak (Fig. 1). Kuala Sepetang consists of two zones namely
Kuala Sepetang (North) and Kuala Sepetang (South). The study was carried out in
North and South Kuala Sepetang. Kuala Sepetang consist of forest reserves namely
Pulau Gula, Cabai Malai, Pulau Kelumpang, Sungai Baharu, Sungai Sepetang, Pulau
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Fig. 1 Kuala Sepetang Mangrove Forest in study area (OpenStreetMap 2016)

Kecil, Pulau Selinsing, Jebong, Jebong (Tambahan), Pulau Sangga Besar, Pulau
Sangga Kecil, and Telok Kertang a part of Sungai Limau.

Firstly, the validation of data from Google Earth and Forest Type in MMFR, then
the second step from Sentinel-2 in 2019, Sentinel-2 in 2015, Landsat TM in 2009
and Landsat TM in 2004 satellite imagery data which was known as satellite
measured data. There are several steps involved for processing the satellite imagery.
First, the pre-processing was carried to the satellite image data. This is followed by
an extraction of the image to obtain reflectance data. Then, images were classified
using an Iterative Self-Organizing Data Analysis Techniques (ISODATA) algo-
rithm. An ISODATA algorithm requires the user to choose the initial estimates of
class means, and then each pixel was assigned to classes with a similar mean. The
unsupervised and supervised classification methods were used to differentiate the
land cover classes and reference map was used to determine the classification
accuracy. Lastly, the maps of the mangroves area were developed. The summary
of methodology work flow is shown in Fig. 2.

2.2 Data Processing

Satellite images of Sentinel-2 (2015 and 2019), Landsat TM (2004 and 2009) were
downloaded from the USGS website. Forest type maps in MMFR at Kuala Sepetang,
Perak were obtained for validation of the classification data. False color composite
image of Kuala Sepetang Mangrove Forest was generated with the band combina-
tion of 1, 4, 7 and 2, 3, 8 for Landsat TM and Sentinel-2 images, respectively.
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Fig. 2 Flowchart of the general methodology

2.3 Calibration and Validation Data

In order to analyze the spectral characteristics of typical land cover types in the study
area and assess the accuracy for mangrove forest classification, calibration
(or training) and validation (or reference) pixels for all land cover categories were
collected from the Landsat TM and Sentinel-2 images by validating data with visual
interpretation of Google Earth. Calibration pixels were selected using a visual
interpretation, prior knowledge of the study area and from the MMFR map.
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2.4 Land Use Land Cover Classification

ISODATA clustering and Maximum Likelihood were used to evaluate the perfor-
mance of the decision-tree (DT) algorithm for mapping mangrove forests. Unsuper-
vised (ISODATA) and supervised classifications (Maximum Likelihood) were made
after radiometric corrections were performed. Unsupervised classification is the
process which is computer determines the spectrally separable class and then defines
their information value. For supervised classification, analysts identify the informa-
tion classes of interest in the image. The result of this classification was five classes
with different pixel values. Then, these five classes were grouped as R. apiculata,
Bruguiera and Avicennia, Dryland and Unproductive area. The classification was
made with the reference of the Google Earth and map of MMFR.

2.5 Normalized Difference Vegetation Index (NDVI)

The NDVI was derived from the pre-processed satellites data:

NDVI=
ρNIR - ρR
ρR þ ρR

where ρR and ρNIR are the reflectance values for the red and NIR channels, respec-
tively. Mangrove is a part of vegetation that absorbs solar radiation in different
bands.

3 Results and Discussion

Figure 3 shows the NDVI images of the Kuala Sepetang mangrove forest in 2004,
2009, 2015, and 2019. The mangrove high vegetation is indicated in dark green with
a high value of NDVI meanwhile low vegetation is indicated in white with low value
of NDVI.

Figure 4 shows a graph of the crown density of mangroves area based on the
NDVI values in the year 2004 and 2019. The non-vegetation, lower dense, moderate
dense, dense and higher dense are increased in 15 years. The area of moderate dense
show an increasing area change of 72,341.15 ha compared to dense vegetation of
48,866.69 ha. Hence, this situation can conclude that the NDVI of mangrove areas is
increasing at a very high rate in Kuala Sepetang.

The mangrove area in the year 2004–2019 tend to be reduced, however the
cleared area tends to increase from 1340.01 to 1666.30 ha. These findings are in
line with the findings of Giri et al. (2011). Changes also occurred along the intertidal
zone due to erosion and occurred in between the mangrove forest due to changes in
species and tree harvesting rotation system. The overall change of area during the
15-year period indicated the loss mangrove area at 344.07 ha, while the cleared area
is increase at 326.29 ha. Therefore, mangrove forest has lost 34.41 per year ha during
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Fig. 3 NDVI map of Kuala Sepetang Mangrove Forest for years (a) 2004, (b) 2009, (c) 2015, and
(d) 2019

2004–2019 interval. The cleared area increased 32.63 ha per year ha during
2004–2019.

Distribution of mangrove species from the supervised classification from 2004,
2009, 2015 to 2019 are shown in Fig. 5. Results indicated that five major classes are
classified comprising of R. apiculata, Bruguiera-Parviflora, Avicennia sonneratia,
Dryland Forest, and Unproductive area.
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Table 1 shows the area of mangroves species from 2004 to 2019. R. apiculata is
the most dominant species for the years 2004, 2009, 2015 and 2019. B. parviflora is
the second-highest species which consist of 10% in 2004, 11% in 2009, 7% in 2015,
and 8% in 2019, respectively. Both R. apiculata and B. parviflora area decreased by
58% and 8% within 15 periods of year. It indicates that the total area of these the
dominant species has decreased to 23,465.09 ha in 2019 from 23,482.87 ha in 2004.
The Dryland forest had an increase of 21% in the year 2019 than 8% in the year
2004. Analysis of the 2004 Landsat TM image estimated the total mangrove area is
23,482.87 ha, in which the areas of. R. apiculata and B. parviflora were 16,767.7 ha
and 2252.79 ha respectively. Unproductive area covered area of 1340.01 ha, Dryland
Forest 1771.74 ha, and Avicennia-Sonneratia 1350.63 ha. For the analysis of the
2009 Landsat TM image, it is estimated that the total mangrove area is 24,102.26 ha,
in which the areas of R. apiculata was 15,727.4 ha, B. parviflora was 2568.06 ha,
Unproductive area was 1215.72 ha, Dryland Forest was 2337.12 ha and Avicennia-
Sonneratia was 2253.96 ha. Meanwhile, analysis of the 2015 Sentinel-2 image
indicated the mangrove area at 23,465.25 ha, with the highest proportion recorded
by R. apiculata at 15,730.5 ha, followed by B. parviflora, Unproductive area,
Dryland Forest, and Avicennia-Sonneratia at 1582.85 ha, 2002.79 ha, 2327.55 ha
and 1821.56 ha respectively. As for 2019s Sentinel-2, R. apiculata showed the value
at 13,706.7 ha, followed by B. parviflora, Unproductive area, Dryland Forest, and
Avicennia-Sonneratia at 1800.13 ha, 1666.3 ha, 4933.04 ha, and 1358.92 ha respec-
tively. Changes in the mangrove species forest types from 2004 to 2019 are indicated
in Table 1. Based on the table, 13% of loss in mangrove area is from Rhizophora
species during the 2004–2019 study period. Rhizophora forest area decreased by 4%
from 2004 to 2009, and was constantly decreasing in 2019. Generally, from 2004 to
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Fig. 5 Mangrove types distribution for years 2004, 2009, 2015, and 2019

2019, Rhizophora, B. parviflora had a loss of mangrove species at 3061 and
452.66 ha, while the Unproductive area, Dryland forest, and Avicennia-Sonneratia
area increased at approximately 326.29, 316.13, and 8.29 ha.

Figure 6 shows the percentage area changes of different land use category. The
spatial distribution of mangrove species classification at Kuala Sepetang indicated
that Rhizophora species dominated the study area image. In Kuala Sepetang,
Rhizophora forest is a major forest type that comprises about 71% of the total
forested area in the year 2019. Avicennia-Sonneratia recorded the lowest value at
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Table 1 Area of mangrove land use and percentage changes

2004–2009 2009–2015 2015–2019 2004–2019

Area change Area change Area change Area change

(ha) % (ha) % (ha) % (ha) %

Rhizophora forest -
1040.30

-
4

3.10 0 -
2023.80

-
9

-
3061.00

-
13

Bruguiera-Parviflora
forest

315.27 1 -
985.21

-
4

217.28 1 -
452.66

-2

Unproductive area -
124.29

-
1

787.07 3 -
336.490

-
1

326.29 1

Dryland forest 565.38 2 -9.57 0 2605.49 11 316.13 1

Avicennia-Sonneratia
forest

906.33 4 -
432.40

2 -
462.64

-
2

8.29 0

71%

10%
6% 8% 6%

65%

11%

5%
10% 9%
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Fig. 6 Percentage of species distribution

6% in the year 2004, 9% in the year 2009, 8% in the year 2015, and 6% in the year
2019.

Referring to Table 1, the area of mangrove changes that have occurred in
Rhizophora forest loss at 13% over the study period from 2004 to 2019. Rhizophora
forest area decreased by 4% from 2004 to 2009 and constantly decreasing to 2019.
Generally, from 2004 to 2019, Rhizophora, Bruguiera-Parviflora had a loss of
mangrove species at 3061 and 452.66 ha, while the Unproductive area, Dryland
forest, and Avicennia-Sonneratia area increased approximately 326.29, 316.13, and
8.29 ha.
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For the accuracy assessment in this study, simple random sampling was adopted.
A total of 37, 45, 38, and 41 random pixels were extracted from the classified images
of 2004, 2009, 2015, and 2019. The overall accuracies for 2004, 2009, 2015, and
2019 were 95%, 92%, 94%, and 94% respectively. Kappa statistics were 90%, 86%,
89%, and 90%. Kappa statistic was implemented to evaluate the accuracy of change
detection and classification maps by measuring the agreement between the two
images. User’s and producer’s accuracies of the individual class were relatively
high, ranging from 34% to 100% which indicated a good agreement between the
reference data and thematic maps generated from the images.

4 Conclusion

Understanding of spatial distribution of Kuala Sepetang Mangrove Forest helps to
determine the location of deforestation, transitional forest, and erosion for the next
future mangrove forest management. Hence, remote sensing application is a reliable
method to monitor deforestation by comparing the temporal data by daily, monthly,
yearly for large mangrove forest areas. In this study, mapping of mangrove area can
contribute to the effectiveness of the area management as a whole since the conven-
tional method of ground inventory for the mapping area is tremendously difficult,
time-consuming and costly. Continuous monitoring of mangrove status using mod-
erate resolution remote sensing imageries is essential for the large mangrove area for
protection and restrictive productive forest. Hence, remote sensing is the best
technique to estimate the changes of mangrove distribution. In conclusion, the
present information on the status and changes of mangrove forest area will be useful
for further studies and to monitor the mangrove ecosystem. It will help to formulate
the strategic plans and afforestation of mangroves in the study area.
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Determination of the Effect of Urban
Forests and Other Green Areas on Surface
Temperature in Antalya

Mehmet Cetin , Fatih Adiguzel , and ilknur Zeren Cetin

Abstract

Climate affects the entire life of humans such as physiological development and
characteristics, housing and house structures, food and cloth selections, and
distribution on land. It is projected that global climate change would cause
important changes in climate parameters in the near future and affect the lives
of all organisms on earth directly or indirectly. These changes would cause
significant changes in forest area zones. Additionally, global population is rapidly
increasing. Naturally, population density is also on the rise. Antalya, with its
surface area, witnessed intense population movements to it due to its critical
location between the West and East Mediterranean Sea. This situation has
changed the city and its land uses drastically. Therefore, urban living conditions
have become difficult in Antalya. In the cities, the temperatures are higher than
the rural areas due to the rapid population growth and the increase in construction.
The forest and other green areas in the city reduce the temperature relatively
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compared to the places where there is more construction. As a result of the rapid
increase in urbanization in the city of Antalya, urban heat islands are formed at
many points. The aim of our study is to determine the effect of urban forests and
other green areas on the temperature in the city of Antalya. In this context, land
use/cover, NDVI analysis, and surface temperature maps were produced with
QGIS and ArcGIS software using Landsat-8 OLI and Sentinel-2 satellite images.
Machine learning algorithms were used to detect land use/cover. As a result of the
research, it has been determined that the surface temperature is high in places
where buildings and asphalt surfaces are high, and an urban cold island is formed
in the urban forest and other green areas and the temperature is low. The
temperature differences were determined to be between 3 and -10 °C. The
economical use of natural resources, the preference of genotypes with lower
water needs in agriculture and forestry, the inclusion of foresights regarding the
process in forestry studies in the management plans, the reduction of hard ground
in urban areas, the increase of plant use, and the widespread use of roof and
terrace gardens are used as measures. Climate change should be considered
toward a healthy forest management plans and sustainability in forestry areas.

Keywords

Urban forest · Surface temperature · Urban heat island · Antalya · Green spaces

1 Introduction

Throughout the world, urbanization and the urban population show a rapid increase
due to various reasons, especially industrialization. As a matter of fact, the rate of
urban population in the world is now over 55% (Paul and Meyer 2001; Dye 2008;
Gómez-Baggethun and Barton 2013; Dinç and Adıgüzel 2021). The fact that more
than half of the world’s population has begun to live in urban areas brings along a
rapid construction in these areas and various problems can be encountered in these
built environments. At the beginning of these problems, there are some negative
effects of local or regional warming—which is specific to cities—on the population
living in cities. Indeed, the results of the cumulative effects of climatic events on
each other can adversely affect human health and the life of living things, especially
in the mid-latitude zone and tropical regions (Şimşek and Şengezer 2012; Tzenkova
et al. 2007; Cetin et al. 2010, 2018, 2019; Ataei and Hasheminasab 2012; Cetin
2015, 2016, 2020a, b; Monteiro et al. 2016; Deniz and Güngör 2020; Adiguzel et al.
2020, 2021; Kilicoglu et al. 2020, 2021; Gungor et al. 2021). While this is the case, it
is noteworthy that in recent years, studies on urban climate have gained weight
(Alkan et al. 2017).

Urban climate is defined by the World Meteorological Organization (WMO) and
Marsh (1991) as the local climate that differs as a result of the interactions between
the built areas and the regional climate (Adıgüzel 2018). Based on this definition, it
is understood that urban climate is an important concept used in separating the
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climate characteristics of cities from the climate characteristics of rural areas
(Santamouris et al. 2015). Urban climate emphasizes the profound changes created
by various climatic elements within the highly complex built environment of cities
(Taha 1997; Arnfield 1998, 2003; Kanda 2006; Tzenkova et al. 2007; Cetin et al.
2010, 2018, 2019; Ataei and Hasheminasab 2012; Cetin 2015, 2016, 2020a, b;
Monteiro et al. 2016; Deniz and Güngör 2020; Adiguzel et al. 2020, 2021; Kilicoglu
et al. 2020, 2021; Gungor et al. 2021). Thus, each climate element, together with the
components that make up the built environment of the cities, reveals some charac-
teristic features of the urban climate. As a matter of fact, it is seen that “wind speed is
lower, wind speed changes, temperature is higher, humidity is less, radiation is
prevented, precipitation is less, and clouding is more” in cities compared to rural
areas (Finke 1980).

As a result of the intense population growth in the cities, changes have also
occurred in the land cover. Natural landscape elements are being pushed further and
further away from the city center, leaving their place to hard floor coverings, and
more industrial, commercial, and transportation services are being developed to
serve the growing city (Tzenkova et al. 2007; Cetin et al. 2010, 2018, 2019; Ataei
and Hasheminasab 2012; Cetin 2015, 2016, 2020a, b; Monteiro et al. 2016; Deniz
and Güngör 2020; Adiguzel et al. 2020, 2021; Kilicoglu et al. 2020, 2021; Gungor
et al. 2021). Today, global climate change and environment in the intense industri-
alization and urbanization phenomenon problems have arisen. In addition to climate
change in the global sense, modern cities, which have developed in limited settle-
ment areas as a result of urbanization, are also experiencing microclimatic changes
(Tzenkova et al. 2007; Cetin et al. 2010, 2018, 2019; Ataei and Hasheminasab 2012;
Cetin 2015, 2016, 2020a, b; Monteiro et al. 2016; Deniz and Güngör 2020; Adiguzel
et al. 2020, 2021; Kilicoglu et al. 2020, 2021; Gungor et al. 2021; Zeren Cetin and
Sevik 2020; Zeren Cetin et al. 2020).

In cities where the greatest change in climatic factors is experienced on
temperatures, the increasing temperatures have become a worrying phenomenon
for millions of people living in cities (Oke 1982; Adıgüzel 2018). In urban areas, the
built environment generates or absorbs more heat. In areas with high building
density, the temperature level is higher than in open green areas, forest areas, and
rural areas (Schwarz et al. 2012; Topay 2012; Feyisa et al. 2014; Dursun and Yavas
2016; Lehoczky et al. 2017; Cetin et al. 2019). This temperature phenomenon, which
causes urban areas to be warmer than the surrounding rural areas and the natural
environment, is defined as the urban heat island (Oke 1982). In this respect, heat
island is the main product of the manifestation of urban climate and constitutes one
of the important environmental problems of the twenty-first century (Rizwan et al.
2008).

Urban open green spaces shape the city by revealing the physical structure of the
city. Urban open green spaces are among the most important formations that can
minimize the effects of climate change in cities. Because of urban open green spaces,
it creates the opportunity for shading and evaporation by reducing the urban heat
island effect in cities. It creates a breeze and coolness effect on vegetated surfaces on
hot days. It reduces carbon and pollutants that change their composition by filtering
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them. Green areas, which create positive effects in cities, decrease horizontally and
vertically. This negative situation affects people both psychologically and physio-
logically. It increases the longing for the natural environments in the city and people
move toward rural areas. It creates orientation. The planning of green areas in urban
is for decreasing for effecting of climate in urban areas, increasing impermeable
surfaces, infrastructure systems and urban planning criteria have started to gain
importance (Grassl 1976, 1979, 1981, 1989, 2006, 2011; Tzenkova et al. 2007;
Cetin et al. 2010, 2018, 2019; Ataei and Hasheminasab 2012; Cetin 2015, 2016,
2020a, b; Monteiro et al. 2016; Deniz and Güngör 2020; Adiguzel et al. 2020, 2021;
Kilicoglu et al. 2020, 2021; Gungor et al. 2021; Zeren Cetin and Sevik 2020; Zeren
Cetin et al. 2020).

Humidity is another climatic element that is as effective as temperature in the
formation of the urban heat island. In recent years, when the studies on the urban
climate are examined, it is seen that the changes in the humidity values as well as the
temperature have been drawn attention. As a matter of fact, the intense consumption
of fossil fuels and the widespread use of water in cooling towers and pools involve
the formation of moisture and therefore heat. In addition, other anthropogenic
activities such as irrigation of urban vegetation also provide important moisture
sources, especially in greener residential neighborhoods and urban parks (Richards
2005; Grassl 1976, 1979, 1981, 1989, 2006, 2011). The effects of moisture sources
on the built environment of cities manifest themselves in the form of differences in
evaporation levels. Evaporation is less in the city than in the environment, and this
difference is more pronounced in relative humidity. During summer, both relative
humidity and vapor pressure values are lower in cities. In winter, the differences due
to steam pressure are largely eliminated. This shows that the relative humidity
differences vary depending on the temperature (Kratzer 1968; Grassl 1976, 1979,
1981, 1989, 2006, 2011).

In addition to temperature and humidity, winds are one of the climate elements that
are very effective on the urban climate. The rougher surface structure in cities and the
changes in the radiation balance cause a change in wind speed and direction. Winds
have a significant impact on urban heat islands due to their ability to disperse the
clustered hot and dense air. In urban areas, human life can be adversely affected in
cases where the wind directions and speeds go beyond the required values (Oke 1979).
Some of these disadvantages can be avoided with adequate street width and building
design. Occasional street guidance can reduce difficulties, especially when certain
wind directions and speeds are expected to create adverse conditions (Wilmers 1975).

While climate elements such as temperature, precipitation, and wind are the
factors that directly affect the urban climate, the characteristics of the elements that
make up the built environment of the cities (such as the color of the surface coatings,
roughness, reflection properties) are also determinative in the urban climate. In this
case, it becomes clear how much climate elements are related to urban land use. The
relations of climate elements and especially temperature with floor coverings in
cities affect the quality of life and thermal comfort of people first of all. Therefore,
surface temperatures are of great importance in urban climate studies (Voogt and
Oke 2003). High temperatures created by floor coverings in urban areas cause
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unhealthy comfort areas. This situation affects people negatively in terms of health,
happiness, economy, and recreation; thermal stress cannot be controlled outdoors
(Patz et al. 2005; Feyisa et al. 2014; Alkan et al. 2017).

In cities, the temperature is observed to be higher than in rural areas and natural
landscape areas on the urban fringe. Building materials, roofing, asphalt, concrete,
and pavement roads absorb more energy from the sun than other natural surfaces. On
one hand, this energy spreads as warmth and the spread continues at night (Oke
1982). However, unlike the objects in question, urban open and green spaces
minimize the anthropogenic effect in climate regulation; it contributes to the creation
of healthier and more comfortable living spaces by reducing the heat island effect.
Tree plantations in the city increase thermal comfort by reducing the negative effect
of air temperature (Avissar 1996; Gómez et al. 2008; Topay 2012; Bozdogan and
Sogut 2015; Estoque et al. 2017; Atwa et al. 2020; Bozdogan Sert et al. 2021). As a
matter of fact, in many academic studies, it clearly reveals that urban forests and
other green areas play an important role in reducing heat islands. It has been shown
that as the area of green areas and tree communities is expanded, they are more
effective in controlling the temperature in the city (Alkan et al. 2017).

Cities have begun to experience changes in microclimatic conditions. As a result
of the intense population growth in the cities, changes have also occurred in the land
cover. Natural landscape elements are being pushed further and further away from
the city center, leaving their place to hard floor coverings in cities, and more
industrial, commercial, and transportation services are developed to serve the grow-
ing city. When evaluated in this context, the changes that occur in cities due to
climate change are stated in the study, and examples are given. Urban open green
spaces is planning of the suggestions to be taken for this current problem in the
design and planning stages are included.

In this study, the effect of urban forests and other green areas on the temperature
in Antalya, which is located in the Antalya part of the Mediterranean Region and is
the largest city of this part, was investigated. In the city of Antalya, which has been in
a rapid urbanization process for almost half a century as a result of industry and
tourism investments and has witnessed an intense construction, an urban heat island
has been formed at many points, especially in recent years. This has undoubtedly
increased the importance of open and green spaces in the city. The main motivation
of this study is to draw attention to the importance in question and to make
suggestions in terms of planning by identifying the heat islands in the city. In the
study, the importance of urban building designs and green space arrangements in
reducing urban warming is emphasized.

2 Materials and Methods

2.1 Study Area

Konyaaltı, Kepez, Muratpaşa, and Döşemealtı districts of Antalya province, located
in the west of the Mediterranean Region, were chosen as the study areas. The most
important reason for choosing it as a study area is that it is the place where
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Fig. 1 Location map of the study area

urbanization and population are the highest. The study area is located between 36°
150–36° 450 north latitudes and 30° 220–30° 580 east longitudes (Fig. 1).

The scrub plants, which are the vegetation of the Mediterranean climate, also
constitute the vegetation of Antalya. The climate of Antalya is Mediterranean
climate. The summers are hot and dry, and the winters are warm and rainy. The
average temperature in summer varies between 30–34 and 9–15 °C in winter.
Meteorological events such as snowfall and frost are almost never experienced in
the city. Average relative humidity per year is around 64%. It is cloudy and rainy
only 40–50 days of the year (Antalya Metropolitan Municipality 2022).

2.2 Method

Within the scope of this study, two types of data were used to determine the land use
of Antalya province Konyaaltı, Kepez, Muratpaşa, and Döşemealtı districts between
2021 and to determine the relationship between land use and surface temperature in
2021. First of these, Landsat 8 OLI satellite image data of August 2021 was used as
research material. As the second data, NDVI analysis was performed with Sentinel-
2 satellite images. Another type of data used in the study is the Landsat 8 OLI image
obtained to be used in the calculation of the ground surface temperature (Land
Surface Temperature-LST).
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Landsat OLI satellite image dated 23.08.2021 was used to calculate the surface
temperature of the study area. Sentinel-2 satellite image dated 29.08.2021 was used
to calculate the NDVI analysis.

Using formula for calculating of Sentinel-2 NDVI:

NDVI= float b8- b4ð Þ= b8þ b4ð Þð Þ
For Landsat OLI surface temperature:

1. TOA (Top of Atmospheric) = 0.0003342 * “band10” + 0.1
2. BT (Brightness Temperature) = (1321.08 / Ln((774.89 / “TOA”) + 1)) - 273.15
3. TM NDVI = (Band 5 - Band 4) / (Band 5 + Band 4)
4. PV = Square ((“NDVI” - NDVImin) / (NDVImax - NDVImin))
5. E= 0.004 * “PV” + 0.986 6) LST= “BT” / (1 + (10.8 * “BT” / 14388) * Ln(“e”))

(Avdan and Jovanovska 2016)

3 Results

The increase in the population living in cities and the rapid urbanization process lead
to global climate change. Climate change causes an increase in temperatures, the
formation of urban heat islands, and heat stress on people. The issue of climate
change and adaptation strategies comes to the fore more frequently, with high rates
of deaths as a result of both increasing temperatures and other climate change-related
disasters.

In a city like Antalya, where the air temperature and humidity are very high, and
urbanization is increasing day by day, especially as a result of touristic activities, it is
of great importance to reveal the features that will minimize the effects of climate
change. For this reason, in this study, urban forests and other green areas and their
impact capacities in the city of Antalya were examined together with urbanization.

In this study, the transformation of dense urban areas into urban heat islands and
the effect of urban forests and other green areas in reducing these urban heat islands
were examined. Landsat OLI 8, Sentinel-2 satellite images and Urban Atlas land use
data were used for this study. Thanks to these data, surface temperature relationships
between land use, urban forests/other green areas, and urban areas were determined
(Fig. 2). As a result of this relationship, the surface temperature of Antalya, one of
the largest cities in Turkey, was determined and the effect of green areas on the
surface temperature was determined (Fig. 3).

Since the summer months are the most prominent periods of the urban heat island,
the month of August was chosen in this study. When the surface temperature of
23.08.2021 is examined, it is seen that it changed between 20.8 and 46.64 °C. When
the map is examined, it is seen that the places where the surface temperature is the
lowest in the city are in the urban forests, parks, and other green areas. Urban forests
are located in the northwest of the city. The altitude of the north, northwest, and
northeast of the city is relatively higher compared to other places, and the rate of
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Fig. 2 Land use map of the study area

green space is higher. In addition, considering that the city has gained speed in
spreading to the north and west, we can see that agricultural areas have turned into
urban areas. Transportation networks have been the determining factor in urban
development. The increase in tourism pressure in coastal areas has also increased the
need for housing in these areas. Considering the distribution of the existing active
and passive green area cover throughout the city, it is convenient to create a green
infrastructure as it is connected with forest areas in the north, agricultural areas in the
east, forest and agricultural areas in the west, and the Mediterranean coastline in the
south. Surface temperatures in these regions are around 20.8–30 °C. In the districts
of Teomanpaşa, Konuksever, Şirinyalı, Hurma, and Yenigün, where the urbaniza-
tion is intense, the temperature values were found to be around 31–40 °C. The areas
with the highest surface temperature were measured in the agricultural areas around
the city. In these areas, the surface temperature values go up to 47 °C.

Areas devoid of green areas around cities heat up faster and more than urban
areas. Since the Landsat satellite image capture of the study area coincides with the
morning hours, agricultural lands and empty areas heat up faster than the city, and
the surface temperature values are higher. However, in the evening and at night, the
surface temperature of urban areas is higher than in agriculture and empty lands.

The normalized difference vegetation index (NDVI) is extremely important in
explaining surface temperature and its relationship. NDVI values take values
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Fig. 3 Surface temperature map of the study area

between (-1) - (+4). If it is covered with very healthy vegetation, it is greater than
the NDVI value of ->0.66. If it has a value between 0.33->066, it has a healthy
vegetation. If it is between 0->0-33 values, it has a bad vegetation. A value of <0
and below refers to objects such as water, dead plants, buildings, and roads. The
values obtained as a result of the NDVI analysis of the Sentinel-2 satellite image of
the study area are -0.51 to +078 (Figs. 4 and 5).

When the NDVI map of the study area dated 29.08.2021 is examined, the forest
cover in the north, northwest, and northeast and the NDVI values of the urban forests
found in the city are 0.4 and 0.78. This shows the areas where the vegetation is dense
and healthy. The NDVI values of the green areas in the dense construction are
between 0.35 and 0.60. In addition, it is seen that the surface temperature of the
settlements close to this vegetation is relatively lower than the other places (Figs. 4
and 5).

When the surface temperature and NDVI values are evaluated together, it is seen
that in the city of Antalya, the surface temperature of urban forests and other green
areas has a significant effect on the atmospheric temperature and bioclimatic comfort
naturally. It is seen that green areas create an urban cold island in summer
temperatures and create refreshing environments for urban residents.
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Fig. 4 NDVI map of the study area

Fig. 5 Correlation between NDVI and LST
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4 Discussions

In order to reduce the possible effects of climate change, ecological corridors and
reserve areas with spatial distribution are needed (Upmanis et al. 1998; Heidt and
Neef 2008; Yang et al. 2012; Vardoulakis et al. 2003). Green areas create an urban
cold island in summer temperatures and create refreshing environments for urban
residents (Alkan et al. 2017; Tzenkova et al. 2007; Cetin et al. 2010, 2018, 2019;
Ataei and Hasheminasab 2012; Cetin 2015, 2016, 2020a, b; Monteiro et al. 2016;
Deniz and Güngör 2020; Adiguzel et al. 2020, 2021; Kilicoglu et al. 2020, 2021;
Gungor et al. 2021; Zeren Cetin and Sevik 2020; Zeren Cetin et al. 2020).The
ecosystem, which exists spontaneously as a result of the interaction of different
branches of science in the historical process, becomes a reference in the fight against
climate change with its biological richness and climatic features. Recent disasters
reveal the necessity of urban green space planning, especially in the city center and
its surroundings, where urban fragility is high. The issue of climate change, which
should be handled interdisciplinary in the morphological approach, is evaluated in an
integrated manner in the context of ecological planning and urban morphology.
Thus, it is aimed to improve the urban ecosystem and to create resistance to climate
change.

Ecological urban green plans should be created by making use of urban green
areas that give an idea about the development direction of the city and ecological
heritage. Conservation development plans, landscaping, and urban design projects
should be made for the protection and improvement of green areas. Urban green
areas with residential and non-residential functions should play a role in the control
of the urban pattern by strengthening public uses. Any intervention to the city should
be handled in accordance with the characteristics of the place and the context in
which it is located, without ignoring the environmental connections (Grassl 1976,
1979, 1981, 1989, 2006, 2011; Tzenkova et al. 2007; Cetin et al. 2010, 2018, 2019;
Ataei and Hasheminasab 2012; Cetin 2015, 2016, 2020a, b; Monteiro et al. 2016;
Deniz and Güngör 2020; Adiguzel et al. 2020, 2021; Kilicoglu et al. 2020, 2021;
Gungor et al. 2021; Zeren Cetin and Sevik 2020; Zeren Cetin et al. 2020).

Ensuring harmony between geographical conditions and spatial structure
minimizes the damage caused by climate change. When green areas are evaluated
together with threshold lines sensitive to climate change (coastal areas, river beds,
valleys, mountains, etc.), a mutualistic relationship emerges. Green areas define a
protection zone around the threshold lines; threshold lines also prevent the areal
shrinkage of green areas and protect the ecological heritage. Urban green areas
constitute a habitat transition corridor with their rich biological diversity and eco-
logical values. Ecological networks defined between inner, middle, and outer green
areas increase the resistance against climate change and increase the comfort of
climate-friendly transportation circulations such as public transportation, bicycle,
and pedestrian (Oke 1984; Grassl 1976, 1979, 1981, 1989; 2006, 2011; Tzenkova
et al. 2007; Cetin et al. 2010, 2018, 2019; Ataei and Hasheminasab 2012; Cetin
2015, 2016, 2020a, b; Monteiro et al. 2016; Deniz and Güngör 2020; Adiguzel et al.
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2020, 2021; Kilicoglu et al. 2020, 2021; Gungor et al. 2021; Zeren Cetin and Sevik
2020; Zeren Cetin et al. 2020).

In this sense, in a study conducted in the city of Frankfurt in previous studies, it
has been determined that small-scale vegetative areas around the city reduce the air
temperature up to 3.5 °C (Georgii 1969). Similarly, it is seen that the temperature
difference between parks and built-up areas varies between 3 and 6 °C depending on
time for Mexico City (Oke et al. 1999; Spronken-Smith and Oke 1998). It has been
determined that open green areas cause a temperature decrease of 4 °C in the urban
climate and create a cooling effect between 2 and 8 °C for larger urban open green
spaces.

The effect of urban open green spaces on climate change varies according to the
structure of the area. It has been determined that factors such as the size of the area,
its surrounding texture, traffic density, and the climatic structure of the area have an
effect (Heidt and Neef 2008; Yang et al. 2012; Vardoulakis et al. 2003; Upmanis and
Chen 1999). According to Upmanis et al. (1998), large parks have more cooling
effects than smaller ones. In the same study conducted in Gothenburg, it
was determined that the difference between the park area and the built-up area was
5.9 °C in the summer period, and the cooling effect of the 156 ha park area was
observed up to 1100 m (Upmanis et al. 1998; Upmanis and Chen 1999). As a result
of climate change and rapid increase in urbanization, water resources are decreasing
and policies for life without water are being prepared. However, there is a strong
relationship between the organization of the urban fabric and the development of
urban water infrastructure systems. This existing relationship has become even more
important with the decrease of urban green spaces.

Land surface temperatures are considered as the most basic indicator of the urban
heat island phenomenon, as they are reflections of the surface temperatures. It is
known that the density or health of the vegetation also affects the surface tempera-
ture and urban heat island formation depending on evapotranspiration. For this
reason, it is of great importance to determine the relationship between land surface
temperatures and NDVI, to determine the regions where the urban heat island effect
is most intense and to take measures to reduce this effect.

It is widely accepted that reducing the urban heat island effect and increasing
vegetation cover is a simple and effective way to mitigate the adverse effects of
urban climate change. Therefore, significant research has been carried out recently to
increase awareness of the functionality provided by urban vegetation. For example, a
recent study found that a 10% increase in the amount of vegetation in urban areas in
Manchester, with current climate change models, could potentially lower
temperatures by as much as 4 °C (Gill et al. 2007, 2013; Skelhorn et al. 2016).
Another important benefit of urban vegetation in relation to climate change is the
reduction of the total energy consumption used for air conditioning, which will
reduce greenhouse gas emissions and related air pollution (Solecki et al. 2005;
Zhang et al. 2014; Santamouris et al. 2019; Santamouris 2020).

As a result, in Antalya province, when the land use and NDVI are evaluated
together, “Building surfaces” and “Open Areas with Little or No Vegetation” trigger
the formation of heat island in the summer months when the air temperature is the
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highest, while the plant surface, water, and wetlands reduce this effect detected.
When the land surface temperature values in the study area were examined spatially,
it was concluded that the plant surfaces in the urban settlement areas reduced the heat
island effect. Therefore, in order to reduce the heat island effect in urban areas, it is
necessary to increase the amount of median planting, road afforestation, and open
green space.

5 Conclusions

Climate change is the most important global threat today. Climate change negatively
affects the structure, composition, productivity, geographical distribution, and mor-
phology of many ecosystems. Changing climatic conditions also transform cities and
increase the importance of climate plans in line with sustainability. However,
ignoring the climatic areas that define morphological regions with unique
characteristics in the plans made, the search for new parcels in the city due to the
land values and increasing population leave the urban forest areas under the threat of
alienation. This situation negatively affects green space plans in terms of ecological
sustainability. Existing open green areas, which are scattered and in small pieces in
the city and do not show a unity, should be of a quality to meet the needs of the urban
people in terms of the aesthetic and functional properties of the structural plant
elements and equipment.

Master and application development plans should be planned and designed
rationally, aesthetically, and functionally according to the conditions of the day,
taking into account the ecological, social, economic, and cultural characteristics of
the city. For this purpose, not only city planners but also other related professional
disciplines (architect, landscape planner, forest engineer, sociologist, geologist,
ecologist) should be involved in the planning and implementation phase. The zoning
legislation should not only have an understanding of controlling the structure within
the parcel but also an understanding that controls the distribution and density of open
and green areas.

While implementing zoning plans, scientific and technical criteria should always
be prioritized, especially instead of political purposes and land renting tendencies. In
addition, the local administration has to provide planning, implementation and
supervision works in integrity.

Plant materials used in urban open green areas should be used aesthetically and
functionally in accordance with their intended use. For this purpose, it is beneficial to
increase the number of technical personnel such as landscape architect, forest
engineer, and agricultural engineer in municipality.

It is possible to plan, implement, and ensure its continuity by taking into account
the technical criteria. All open green spaces in the city should be integrated with the
plans that include the urban management decisions and should be created in a way
that provides continuity and flexibility for changes over time. In addition, Antalya
city people and non-governmental organizations must be more active in terms of
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influencing and directing the local government in creating conscious open green
space.

As a result, ecological planning and urban green generation planning should
support and complement each other. Urban green generation planning with the
climatic approach method will form the basis for ecological planning. Thanks to
the climatic green approach, which offers a different perspective against climate
change in city planning, climate comfort and urban ecological sustainability will be
ensured. Against climate change, it is necessary to define the jurisdictions in the city
planning discipline, to ensure the planning hierarchy and to make legal arrangements
for ecological values. In this context, it is recommended to include green generation
planning in climate change strategies and action plans that include mitigation and
adaptation strategies on a local, national, and global scale and to develop legal
regulations that will regulate the harmony and superiority between other plans
concerning the city and urban periphery plans. In this study, the effect of urban
green areas on climate change has been emphasized in the context of the climatic
green approach.

There is an inverse relationship between vegetation and ground surface tempera-
ture. The increase in the land surface temperature values indicates the regions where
the area covered by any land use green area and vegetation decreases or the
impermeable surfaces increase. Therefore, it is thought that it will guide planners,
designers, and decision-making mechanisms in landscape planning and design
studies on the development of proposals that can reduce the surface temperature
and heat island effect formation in these determined regions.

In this study, the province of Antalya has been selected and examined in order to
determine the factors with which the heat island effect, which has gained momentum
in recent years, has started to increase. Migration from rural areas to urban areas,
along with urbanization and industrialization, has led to rapid construction and
climatic changes. As a result of the intense constructions experienced, the increase
in vertical constructions in the city centers, uncontrolled energy consumption in the
buildings, the opening of the green areas for development, the destruction of natural
areas, and covering them with impermeable surface materials such as asphalt and
concrete have caused temperature changes in urban areas, and these changes have
caused climatic deterioration. As a result of the researches, the factors that cause the
urban heat island effect, which can be defined as the urban heat island effect, which
can be defined as the urban areas being warmer than the surrounding rural areas,
have been observed and the relationship between the urban forests and green areas,
which are effective in reducing the urban heat island effect of Antalya Province, with
this effect. In the study, when the surface temperature map of Antalya Province was
examined, it was determined that the temperature values were lower in areas with
more green areas, and the temperature was higher in areas with dense construction.
Green areas, which are one of the parameters of regulating and improving the
climate, serve the ecosystem by balancing the heating and absorption needs of the
buildings, acting as a source of moisture, making the ground surface less warm
during the day, and preventing cooling by reducing energy loss at night. For this
reason, it is very important to consider both the sustainable environment principle
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and human comfort conditions in strategic plans for urbanization, taking into
account the relationship between urban areas and people. In balancing the urban
climate, winds as well as temperature and humidity play an important role in
regulating the climate. Winds are an important factor that provides natural ventila-
tion. Because it provides the exchange of bad air in the environment with fresh air for
living life. Looking at the data of the International Energy Agency, it was seen that
the dense construction that occurred with urbanization could not benefit enough
from the natural wind effect, and the temperature and the amount of disturbing
humidity increased due to the positioning of the buildings in the city in such a way
that the winds could not interfere. For this reason, considering the wind factor,
attention should be paid to the height and location of the buildings that will prevent
the wind circulation in the city, and the wind inlets and outlets should be kept at an
optimum level. The lands of Antalya province have a very important place in
Turkey's agriculture. However, the natural opportunities of the city are decreasing
over time due to urbanization and intense construction. While three quarters of the
population made a living from agricultural activities in the 1970s, it was determined
that this rate was 49% in the 2000s. In addition, Bogazici University Climate Change
and Policy Research Manager Levent Kurnaz said “Antalya will be as hot as Cairo in
2100.” In line with this information, it can be clearly stated that the temperature in
the Mediterranean region has increased rapidly and will continue to increase.
Considering all these results, preserving the vegetation in the cities, paying attention
to the building forms that will provide air currents in the constructions, and choosing
the ground surfaces that will balance the heat and temperature from materials with
high albedo will affect the livability in urban areas.
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Forest Framework to Improve Local Climate
Condition: Geospatial Data Fusion
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Abstract

Rapid urbanisation has boosted demand for ecosystem goods and services,
accelerating land-use development. This is concerning because urban forest
acreage and biodiversity would be on the declining trend. With the heat island
effect, radiant heat, and soil moisture evaporation all on the rise, this “urban infill”
may place additional strain on existing trees and natural spaces while limiting
space for new trees. Due to the scarcity of urban land and soil resources, careful
planning is required to provide adequate greenery while balancing carbon
emissions. Continued global warming will have a negative impact on Malaysia’s
biodiversity. Our urban forest ecosystem is just one of many. In cities where air
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pollution and water management are issues, urban forests provide essential
ecosystem services such as air and water filtering, which are critical to human
health. Findings show that the collective efforts of individuals under a citizen-
driven urban forestry (CDUF) framework might have a substantial influence on
reducing high urban air temperatures, suggesting that the collective actions of
individual citizens to increase urban forest cover can produce a significant effect
on the mitigation of high air temperatures due to the urban heat island effect and
climate change. Leveraging the richness of satellite data archive, geospatial
technology, and several numerical simulation methods availability, the urban
forest’s vulnerability and adaptive capacity are sought to be quantified. Thus,
conceptualising and reviewing the existing approach and framework of CDUF
are critical, as they may aid in the conservation of urban forest biodiversity while
mitigating the impacts of climate change.

Keywords

Urban forest · Geospatial · Citizen-driven · SDG13 · Urban climate

1 Introduction

1.1 Trees Outside Forest

Large-scale tree plantings that achieve goals such as commercial timber and fibre
production, watershed protection, and habitat preservation are commonly referred to
as planted forests. Agroforestry systems and community woodlots, on the other
hand, plant trees at much smaller scales to provide a variety of products and services
to resident households, local communities, and regional cultures.

Home gardens, alley cropping, improved fallows, intercropped trees for shade
and fodder production, and trees planted in hedgerows and along fence lines are
examples of these systems in tropical countries. A diverse range of indigenous
practises and species mixtures can be found throughout the tropics, reflecting these
systems’ adaptations to meet localised needs and opportunities. While R&D
programmes have aided in the expansion and refinement of many of these systems
over the last two decades, land-tenure practises, population pressures that confine
agroforestry practises to degraded lands, subsistence needs that preclude extended
periods of tree growth, and an insufficient supply of technical information or
technology remain significant constraints on tree planting. However, it is possible
to conclude that incorporating green surfaces and parks into the urban environment
is the most effective measure for mitigating urban heat islands.

Community forests typically involve planting a few species in small woodlots
adjacent to farms, around villages, along roads, and as riparian buffers. While
species diversity is important in all agroforestry systems, community forests typi-
cally involve planting a few species in small woodlots adjacent to farms, around
villages, along roads, and as riparian buffers. The production of fuelwood for local
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consumption and other marketable tree products, as well as soil stabilisation,
reclamation, and improvement, and water quality protection are the primary
objectives of these forests. As in many other planted forests, the number of species
widely used in community forests has been limited, with the genera Eucalyptus,
Pinus, and Acacia accounting for the majority of species. The major issues with
these “planted forests” are product rights, responsibility for tree care once trees are
established, protection of trees until they reach the appropriate size for their
designated use, growing interest in using “native” species, and increased community
involvement in planning and management.

In many urban and peri-urban landscapes, trees planted alongside streets and
waterways, or as woodlots in parks and other public spaces, make up a significant
portion of the planted forest. In addition to many of the same environmental benefits
as agroforests and community forests, these urban plantings provide distinct aes-
thetic and recreational benefits. For a large portion of the world’s ever-growing
urban population, these may be the only tangible points of reference for understand-
ing planted forests.

2 Geospatial for Environmental Urban Solution

Open geospatial data and tools are becoming an increasingly important paradigm,
with the potential to promote democratisation of geographical information, transpar-
ency of governments and institutions, and social, economic, and environmental
opportunities. Over the last decade, there has been a significant improvement in
the development of open geospatial data and open-source geospatial software. Many
members of the scientific community genuinely think that integrating free and open
software, open data, and open standards results in the creation of a sustainable
ecosystem that accelerates new discoveries and aids in the resolution of global
cross-disciplinary societal challenges ranging from climate change mitigation to
sustainable cities. This thematic collection was inspired by the consistent pervasive-
ness of open-source geographic information systems (GIS) studies.

Geospatial technology has made it possible to use satellite and space techniques
to solve a variety of environmental issues. This includes research on urban sprawl
and slums, the threat of flooding and erosion, environmental degradation caused by
oil spills, crop health, and early warning signals. Urban changes have been tracked
using widely available remotely sensed imagery and aerial photographs with varying
spatiotemporal resolutions, which can be analysed using the appropriate software,
algorithms, and human capacity. The application of this technology improves data
capture and distribution methods. This could be done in real time, reducing the time
and energy required for data acquisition in order to solve environmental problems.

Urban forests are one-of-a-kind and highly valuable resources. However, due to
soil compaction, limited growing spaces, high temperatures, and exposure to air and
water pollution, trees in urban forests are frequently subjected to greater stress than
those in rural or undeveloped areas. Furthermore, conditions in urban areas change
faster than in rural and undeveloped areas. As a result, proactive management of
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urban forests can be difficult and necessitates the availability of current and compre-
hensive information. Geospatial tools such as GIS, global positioning systems
(GPS), and remote sensing work extremely well together for data collection, analy-
sis, and reporting. Many urban forest management issues could be addressed quickly
and effectively using geospatial methods and tools. Geospatial tools can provide
timely and comprehensive spatial data from which urban forest attributes like land
cover, forest structure, species composition and condition, heat island effects, and
carbon storage can be derived. Data fusion, virtual reality, three-dimensional
visualisation, Internet delivery, modelling, and emergency response are examples
of emerging geospatial tools that could be adapted for urban forest applications.

Social media georeferenced data can be considered as volunteered geographic
information (VGI), and social media can be considered VGI sources. Geotagged
Tweets from Twitter, geotagged photographs from Flickr and Instagram, and so on
are examples of these (See et al. 2017). Users have access to powerful tools for
creating maps and adding elements such as text, images, and video with open-source
GIS mapping software. Especially when combined with initiatives like
OpenStreetMap, HERE Map, and Google Map. Furthermore, a good urban forest
narration can be visualised using storymap GIS, as done by the NYC Parks Stew-
ardship Program—Our Urban Forest (arcgis.com).

Big data and analytics are two other emerging advances in geospatial technology.
It has been one of the most significant shifts in recent years for businesses.
Organisations across industries are constantly looking for ways to turn an ever-
increasing volume of data into a competitive advantage, and many have discovered
that GIST adds value to these efforts. Geospatial analytics uses geographic informa-
tion to enable better decision-making and problem-solving agility. Analytics
specialists can use GIS data to create visualisations, identify meaningful trends,
and make predictions, resulting in reports that provide valuable context for strategy.

3 Numerical Simulation for Urban Climate

In previous decades, increased urbanisation resulted in significant changes to local
microclimate conditions. Numerical simulations are an effective tool for determining
the relationship between urban climate and energy consumption. Climate change has
emerged as one of humanity’s most serious challenges as a result of the rapid
urbanisation of the world and the globalisation of the economy. The built environ-
ment has become a primary focus for researchers investigating ways to mitigate the
effects of urban climate change. On the other hand, researchers wishing to model the
performance of a large number of buildings are limited to using complex simulation
methods, which require a massive amount of computation when run in a standard
computer environment. A significant contribution would be to develop a more
straightforward, efficient modelling process.

In the early 2000s, Kikegawa et al. (2003) developed a simple building energy
model (BEM) capable of dynamically calculating energy demand and anthropogenic
heat due to air conditioning use. This model was combined with a multilayer UCM
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(CM-BEM) developed by Kondo et al. (2005) for weather and climate simulation.
This coupled model has been applied to a variety of studies examining urban climate
and energy demand. Kikegawa et al. (2014) combined the CM-BEM and the WRF
models (hereafter WRF-CM-BEM). It has been used to evaluate urban climate,
energy demand, the effects of heat islands on mitigation, and health effects
(Nakajima et al. 2021; Kikegawa et al. 2022). The number of scientific
configurations and expendables used in these numerical simulation models has
been steadily increasing in recent years. Numerous prior studies have validated the
WRF-SLUCM, which has been used to quantify the impacts of surface materials
used in cooling strategies, as well as historical climate simulations, future climate
projections, and urban climate mitigation strategies (Li and Liu 2021; Khan et al.
2022).

The need for passive cooling strategies on the exterior to mitigate the heat surge
generated by buildings and other man-made features is demonstrated by the
demands for electrical usage for cooling, which was primarily concentrated for
indoor purposes. To save energy, these urban dwellings should make use of cooling
strategies whenever possible. Passive cooling refers to solar and heat control, heat
modulation, and heat dissipation techniques that rely on naturally occurring phe-
nomena such as natural ventilation, radiative cooling, evaporative cooling, and
ground cooling, all of which are influenced by land use and land cover (Santamouris
and Kolokotsa 2013; Su et al. 2021; Gu and You 2022). Techniques for passive
cooling have been studied in a variety of climates. High nighttime ambient tempera-
ture, cloud cover, high humidity, and insufficient wind speeds are just a few of the
climatic factors that contribute to the inefficiency of various cooling approaches;
these conditions are common in hot-humid climates.

4 Benefits and Uses of Urban Forests and Trees

There are numerous economic, environmental, and health benefits associated with
urban forests. Urban forests are becoming increasingly popular. In order to reduce
the heat island effect and energy consumption, trees are planted to absorb and block
sunlight from reaching buildings and the ground. Shopping in commercial areas with
street trees has been shown to increase shoppers’willingness to spend more time and
money, as well as their ability to assign a higher overall desirability to the merchan-
dise being offered in studies. It has also been demonstrated that street trees increase
the value of a property as well as the amount of rent that can be charged.

Trees in urban settings play an important role in improving urban life by reducing
runoff, air pollution and energy use, and improving human health and emotional
well-being. The increasing size and proportion of the human population living in
towns and cities has also resulted in greater emphasis on the maintenance and
improvement of trees within these settings. An understanding of urban floristic
composition can help the municipal in managing their resources sustainably.
Biological diversity within populations is important in order to minimise plant
maintenance needs and disease tolerance of urban tree populations. Low species
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diversity may leave the tree population more vulnerable to the new stress
environments: both abiotic and biotic. Urban forestry literature generally
recommends that not more than 10% of the trees be from any one species and the
concern underlying this recommendation is with the possibility of a species-specific
pest or disease sweeping through the area damaging or destroying a large segment of
the trees.

Additionally, trees serve as a mediator for a variety of environmental pollutants,
including the removal of ozone and sulphur dioxide from the air, the sequestration
and storage of carbon, and the absorption and transformation of contaminants in soil.
Furthermore, by providing habitat for wildlife, urban forests contribute to the
conservation of biodiversity. When trees provide shade, they provide valuable
protection from the sun’s ultraviolet rays, and the benefits of improved air quality
provided by urban forests may result in a reduction in respiratory illnesses such as
asthma. Aside from that, trees absorb high-frequency noise and sound, which helps
to reduce environmental stressors while also improving overall quality of life.

Urban environment is very stressful to the physiology of street trees, especially
when the quality of air is very low due to high cases of pollution. Frequent pruning
especially in places that have telephone or power wires will weaken trees, due to the
fact less leaves after pruning resulted in lower rate of photosynthesis. Soil in urban
areas is mostly reclaimed lands with low water-retention capacity and nutrient
content (Webb et. al., 2000). Besides, soil compaction also interferes with the
tree’s access to water and nutrients.

5 Urban Biodiversity

Increasing urban greenness, vegetation, and urban tree canopy cover has become one
of the most critical considerations for strategic planning within state and local
government organisations. Urban trees and community green spaces have been
identified as an important tool that can be used by policymakers to mitigate the
many negative environmental effects of urbanisation.

Biodiversity had been considered as one of the key factors in the stability of the
wayside tree population. The disease and insect hazards call up for the need of high
species diversity to tolerate them, for example, the presence of colonies of aphids or
other pests or wilting of leaves due to Dutch elm disease. The Dutch elm disease that
wiped American native elms city was one good example of the catastrophic loss of
using a high number of a single species. Therefore, low diversity results due to the
practice of using a limited number of tree species that are more vulnerable to the
challenges of the uncertain future even environmental species attack by a virulent
pathogen. This practice would result in an increased maintenance cost in order to
remove and replace these unhealthy trees that are unable to survive and thrive.

Whether the value of the urban forest is defined by its socioeconomic benefits or
its monetary value, paramount to the understanding of the importance of trees within
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urban environments is a quantitative understanding of how many trees there are and
their spatial distribution throughout the community. City-wide assessments of urban
tree canopy cover have become common foundations for national and local
governments to measure, assess and increase the number of trees and green spaces
within their government areas.

Accurate benchmarks and ongoing assessments of tree canopy cover and green
spaces allow local government agencies to continuously review the performance of
ongoing greening initiatives as well as ensuring that future policies are not only
adequate but achievable. For a city-wide assessment of the urban forest to yield
actionable results, it is critical that it accurately accounts for trees on private as well
as public land, as private land can account for over 50% of both urban tree cover and
open space, thus, making a large contribution to the urban forest and its positive
benefits.

Trees require adequate space and light to develop, with different requirements
depending on the species. Planting periods should be scheduled to avoid being
stressed by harsh weather. Because trees and their roots might hinder infrastructure,
trees and urban forests should be sited and selected with existing electricity lines and
subterranean infrastructure utilities in mind. This issue can be avoided or lessened by
choosing the right location and trees.

6 Local Climate Change Impacts

Numerous studies have shown that urban trees provide socioeconomic value to
communities through a variety of positive effects on the urban environment, includ-
ing economic benefits (Elmqvist et al. 2015; Donovan et al. 2019), positive effects
on community health, well-being, and safety, improved air quality, and storm water
attenuation. It can be difficult to translate the socioeconomic benefits of the urban
forest into economic terms, which are frequently used in decision-making and policy
development. Despite this, quantifying the monetary value of trees can be beneficial
because it allows for a quantitative understanding of the balance of benefits and
drawbacks associated with green assets, which can help state and local governments
integrate economic assessments more effectively into decision-making processes.

Food and water shortages, heat stroke, air pollution, and increased energy
demand, as well as environmental consequences, are all caused by the concentration
of population in urban areas. If cities are not carefully planned in terms of spatial
arrangement, climate change is likely to exacerbate these issues. Increased energy
demand is one of the most serious social issues associated with urbanisation. Energy
demand in developing countries will skyrocket as a result of population growth,
urbanisation, and climate change.
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In general, urban climate, which is influenced by the urban heat island effect
(a local phenomenon) and climate change, is strongly related to energy demand,
including the use of air conditioning (AC) systems (global phenomenon). Because of
the increased use of air conditioning systems when urban temperatures rise due to the
heat island effect and climate change, energy demand rises. This process causes an
increase in anthropogenic heat transfer from indoor to outdoor locations during the
summer. The released anthropogenic heat exacerbates the heat island effect.

Stormwater flow is reduced because rainwater is intercepted on the leaves,
branches, and trunks of urban trees and forests. Some of the water that is intercepted
evaporates into the atmosphere, while others soak into the ground. This reduces the
amount of water that must be stored in containment facilities as well as the amount of
runoff that must be managed in urban areas.

7 Urban Forest Policy and Planning

Policy and planning for urban forests are critical to realising the vision of a resilient
and sustainable urban forest that supports a liveable city and natural environment
while also contributing to community well-being (Act Government 2021). This
aligns with the global 2030 Sustainable Development Goals (SDGs) agenda,
which focuses on Sustainable Cities and Communities (SDG 11), make cities and
human settlements inclusive, safe, resilient, and sustainable; Climate Action (SDG
13), take urgent action to combat climate change and its impacts; and Life on Land
(SDG 15), protect, restore, and promote sustainable use of terrestrial ecosystems,
sustainably manage forest, combat desertification, and halt climate change (United
Nations 2021).

In general, forest management policy creation aids governments in implementing
effective urban forest planning, decreasing climate change effects, providing green-
liveable living infrastructure, and conserving living ecosystems (Act Government
2021). For example, urban forest policies and legislation in the United Kingdom are
generated from statutes in a wide range of sectors, including planning, forestry,
nature conservation, plant health, transportation, services/utilities, and security
(Lawrence and Dandy 2012). While acknowledging the importance of integrating
relevant sectors and stakeholders in the effective implementation of policies and
plans, Van Der Jagt and Lawrence (2019) suggested that there should be more
emphasis on the correlation between understanding, assessment, and co-creation of
urban forest values. This will result in a systematic shift toward a new and generally
shared sense of duty for urban forest stewardship.

The urban forest strategies created in Australia, on the other hand, aim to protect
and sustain the current urban forest, increase canopy cover, improve urban forest
variety, and increase community knowledge and engagement. These plans follow
the principles of sustainable urban forest management, which include preserving
biodiversity, productivity, regeneration capacity, and the ability to perform impor-
tant ecological, economic, and societal functions (City of Sydney Urban Forest
Strategy 2013). Further, other countries can benefit from the Australian local
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government’s creative forest governance, known as nature-based solutions (NbS), to
maintain, manage, and enhance natural systems in order to address environmental,
biodiversity, and social concerns. In this context, strategic initiatives, plans, or
programmes aimed at preserving and improving urban forests are a visible and
often dominant aspect of NbS in cities.

7.1 Key Elements of Urban Forest Policies and Planning

Indeed, urban forests have helped to support a bigger ecology and a more sustainable
environment, as well as facilitating rapid urban development. There are numerous
critical components that governments and policymakers must emphasise when
formulating policies connected to urban forest in the context of policy and legislative
framework. The roles and duties of stakeholders in managing or administering urban
forest planning, including government agencies and policymakers, are the first
crucial element that must be focused on. According to Schwab (2009), three tiers
of duties and responsibilities should be considered when designing applicable
policies: (1) forestry and parks professionals, (2) associated professionals, and
(3) the general public, developers, and elected officials.

Aside from the roles and responsibilities of the stakeholders, funding is the next
important factor to consider while drafting applicable policies (Urban Sustainability
Exchange 2014; Vibrant Cities Lab 2021). Maximising financial allocation and
collaborating with partners such as corporations and the private sector will result
in a win-win situation for the government, society, community, and country. As a
result, programmes and activities resulting from policies established have positive
externalities for the ecosystem and structure of the environment. Finally, assets such
as facilities and infrastructure, as well as active support from federal, state, regional,
and local governmental jurisdictions, community, non-profits, the private sector, and
others, will allow the country’s capacity to be fully utilised to achieve success in
urban forest policy and planning. Regardless, other supporting components includ-
ing timeliness, transparency, compact and efficient planning, diversity,
sustainability, and resilience, as well as liveable and accessible planning, would
improve urban forest policy and planning (Urban Sustainability Exchange 2014;
Vibrant Cities Lab 2021; Australian Capital Territory 2021).

7.2 Implementation and Measuring Success of Urban Forest
Policy and Planning

The United Nations defines a forest as “somewhere that has at least 20% trees” in
order to obtain such a status of resilient and healthy urban forestry. Many countries,
including the United Kingdom (London) and Japan (Tokyo), have received global
recognition for their efforts to create sustainable and resilient urban environments.
For example, London has been named the world’s greatest urban forestry, with 21%
of the capital’s trees and woodlands functioning as a vital part of green infrastructure
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(Time Out England Limited 2022). The expression “not taken for granted” has come
to represent London’s continual efforts to preserve, manage, and improve the city’s
current urban forest. These are some of the indicators of successful urban forest
strategy and planning.

In addition, the London Urban Forest Partnership’s Urban Forest Plan (2020)
outlined six key indicators, including: (1) 21% canopy cover, (2) 700,000 trees
planted in London streets, (3) proportion of trees planted by borough (administrative
unit), (4) 25%of woods in good condition, (5) number of boroughs with local urban
forest plans, and (6) area of ancient woodland. All of these indicators are critical for
tracking actual progress toward completing the Urban Forest Plan’s actions. Further-
more, Barron et al. (2016) used the Delphi Technique to rank the important
indicators based on the consensus of a group of forestry professionals in a previous
study. The data found that two crucial measures, (1) urban tree diversity and
(2) physical access to nature, had a high mean. Furthermore, the author noticed
that the canopy cover that covers the city is a frequent indicator used in a few
researches. Scholars and practitioners identified these metrics to track the progress of
any state in the country toward resilient and healthy urban forestry (Barron et al.
2016).

7.3 Issues and Challenges

The lack of explicit legislation relating to urban forestry is among the popular issues
debated among academics and researchers (Sharma and Ghimire 2019). The authors
estimated that roughly 65% of Nepalese people are uninformed of urban forestry
since they have not been exposed to the problem. As a result, various environmental
effects, including pollution, have resulted as a result of this situation. Furthermore, a
lack of public awareness of the benefits provided by urban forests is another concern
that has to be addressed by the relevant authorities (Nowak and Dwyer 2007). Aside
from that, urban trees are typically viewed as a financial burden or a risk, despite the
fact that the benefits they provide are often overlooked by the general public and
decision-makers. One of the concerns and challenges in efficiently implementing
regulations and managing urban forests is a lack of resources for proper care
(Driscoll et al. 2015). As a result, these problems and obstacles must be addressed
in order to properly implement policies that maximise the benefits of urban forests
while ensuring their long-term viability.

8 Urban Forestry: Innovative Solutions and Future Potential

Because of the numerous economic, social, and creative opportunities that cities
provide, people continue to flock to them; large cities are more productive than rural
areas. Environments in urban areas magnify global threats such as climate change,
water and food security, as well as resource scarcity. The world’s fastest-growing
cities have experienced difficulties adjusting to growth and industrialisation,
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crushing under the weight of pollution, traffic congestion, and urban poverty, among
other things. However, as the digital revolution gained momentum, the concept of
the modern citizen emerged as a framework for addressing these issues. To be truly
effective, innovation in urban forestry must evolve and change over time. This is
especially true for optimising space and resources, developing minimal infrastruc-
ture with a large impact, and identifying the best way to do so, which may involve
mobilising citizens and following universal design principles that are applicable to
the people of all ages and abilities.

9 Remote Sensing and GIS Data Fusion for Urban Forest
Management and Research

Various governments around the world are currently attempting to address the issue
of climate change. However, there are some significant knowledge gaps that must be
addressed. One of the most important factors is the role of urban forestry. It has been
discovered that urban green spaces aid in mitigating the effects of climate change by
absorbing various pollutants, including greenhouse emissions, and thus serve as an
important carbon sink in the pursuit of a low-carbon society. Greenery and urban
forests have been shown to have numerous tangible and intangible benefits. Its
growth is one method of bridging the gap between people and nature. The carbon
cycle is disrupted as a result of urbanisation, as large areas of land are covered by
built-up areas.

The importance of urban forest ecosystem services and appropriate sustainable
management of urban forests in maintaining environmental health, improving urban
ecosystem resilience, and improving urban life quality is well understood. Success-
ful urban forest management necessitates timely and accurate information on the
status, trends, and information related to urban forests at various temporal and spatial
scales in order to provide a full spectrum of ecosystem services. Traditionally, such
data has been gathered through random field sampling and visual interpretation of
aerial photos, both of which are labour-intensive, time-consuming, and costly and do
not cover large areas of interest. Remote sensing, using the most advanced
techniques and sensors (e.g. light detection and ranging (LiDAR) technology,
hyperspectral imagery, and high spatial resolution satellite imagery), now provides
useful observational and analytical tools for assessing and quantifying urban forest
dynamics at various spatiotemporal scales. For example, remote sensing techniques
can detect, measure, map, inventory, classify, monitor, model, and evaluate the 3D
structural (tree height, volume and size of foliage and stems), compositional (species
richness and diversity), and functional (ecological processes) characteristics of an
individual tree, urban forest patch, or all urban forests in large areas. The use of
remote sensing in urban forestry has increased, particularly in terms of spatial and
spectral quantification of biophysical dimensions of urban forests and associated
ecosystem services.

Though it is obvious that trees play an important role in such dry environments,
urban planners and architects have largely ignored this fact. In an urban forest
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ecosystem, trees are the most important component. The use of satellite imagery to
monitor the health of city trees benefits urban ecosystems. It is possible to detect and
classify features even faster and more accurately by combining traditional methods
with other geospatial technologies, such as remote sensing, and artificial intelligence
to achieve “geoAI”. Satellite data has been proven to be useful in quantifying aspects
of vegetation productivity, health, and change, according to research. For a variety of
functions, spectral vegetation index (SVI) algorithms have been developed, all based
on specific mathematical expressions that combine visible light radiation, primarily
from the green spectra region (from vegetation), and non-visible spectra to obtain
proxy quantifications of vegetation health. A GIS in a city allows for spatial analysis
and modelling, which can help with a variety of important urban tasks. GIS is now
moving beyond image analysis and into image interpretation. We’re not only
receiving more data on a daily basis, but we’re also gaining the ability to extract a
lot more information from it. This level of real-time data collection and AI-based
interpretation is critical to meeting the needs of tomorrow's cities, and it is a
cornerstone of the IoN.

10 Community-Based Approach of Urban Forest

Citizen science’s fundamental concept—Citizen science has grown in popularity in
urban forestry over the last decade, with municipalities and non-profits enlisting
volunteers to collect tree data. Participatory research and civic ecology are two
examples of related forms of public engagement that have brought diverse
stakeholders into the fold of knowledge production and stewardship of urban
green spaces. While these various approaches have different methodological basis,
they all connect as a way of interacting as well as engaging the public in the study
and management of urban trees: what we call civic science in urban forestry. The
citizen-led effort is also making an appearance on the climate action initiative, where
their efforts are being projected to cool strategies, green materials, and even food
waste disposal. Some programmes’ initiatives went beyond tree planting to halt the
widespread and treatable destruction of our urban tree canopy.

The seven pillars of inclusion (access, attitude, choice, partnership, communica-
tion, policy, and opportunity) have brought together these committed citizens, along
with a slew of city government officials, to hear the science, practicality, and well-
reasoned sentiment behind the pressing need to stop tree loss, implement a
programme to manage our urban forest, and build a green infrastructure to combat
the local climate change effects. Several organisations have successfully instilled
this culture in the community. The following are some examples of successful
projects and community-based urban forests that are currently in operation:

Success story 1: The Citizen Forester programme provides an excellent opportunity
for individuals to learn how to plant, prune, and maintain trees in an urban setting.
It also gives interested individuals the opportunity to get involved with local
authority and county government entities and help their community care for its
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public trees. Since its inception in 2006, the programme has graduated over
300 volunteers who have dedicated their time to their communities. (Citizen
Forester | Cross Timbers Urban Forestry Council (ctufc.org)

Success story 2: Become a Citizen Forester through Participate Melbourne (Citizen
Forester Program). Since 2011, the City of Melbourne has collaborated with
residents to develop the Urban Forest Strategy and Urban Forest Precinct Plans
for each of the city’s ten precincts. This collaboration has sparked a lot of interest
and participation in making Melbourne greener. The Citizen Forester Program
was created to foster an insightful and greater sense of community in order to
grow and improve one of Melbourne’s urban forest. Citizen Forester | Cross
Timbers Urban Forestry Council (ctufc.org)(melbourne.vic.gov.au).

Success story 3: Community Greening is a collaborative initiative to promote the
environment for people and nature. They worked with the community to create
sustainable green spaces and a vibrant tree canopy in order to strengthen our
environment, economy, society, and health in an equitable manner. Transforming
Urban Green Spaces | Community Greening (Transforming Urban Green Spaces |
Community Greening|Transforming Urban Green Spaces | Community
Greening).

Success story 4: Communitree’s mission is to empower people to green degraded
spaces with locally indigenous vegetation, thereby contributing to
socioecological restoration. Communitree primarily works in public spaces,
training and guiding members of the local community to restore indigenous
vegetation in their own backyard (https://www.communitree-app.com).

Success story 5: Econinja, in collaboration with the Johor State Forestry Department
and the Malaysian Scout Federation, will implement the Malaysian Greening
Program 2021–2025. ECONINJA is a community-based social entrepreneurship
company that offers sustainable technology solutions through game-changing
revolutionary approaches, while leading the way for socially conscious
communities (Tree Planting – Econinja.my).

Another high-tech approach to community-based greening was the use of the
crowdsourcing principle. This has recently piqued the interest of many urban
foresters and urban planners as a solution for extracting data and information from
communities (Cui et al. 2021). Despite the fact that the technology has been around
for a while, the VGI is the use of tools to create, assemble, and disseminate
geographic data provided voluntarily by individuals (Goodchild 2007) and has
returned with more significant implications for the community. This exploratory
study has also shown that it is necessary to assess the potential advantages and
disadvantages of using VGI as a tool for cooperative urban planning, particularly the
accuracy and dependability of the data collected. This is due to the fact that the users
and volunteers may come from different backgrounds and may not have received
formal training in data collection. However, if the data collected are within the
reliability threshold, it will have a significant impact on the volume, scale and speed
of the data gathering process. Therefore, it is highly possible that the technology can
be expanded and used for the development of a comprehensive urban forests

http://ctufc.org/citizen-forester/
http://ctufc.org/citizen-forester/
http://ctufc.org/citizen-forester/
https://participate.melbourne.vic.gov.au/citizenforester
https://communitygreening.org/
https://communitygreening.org/
https://communitygreening.org/
https://communitygreening.org/
https://www.communitree-app.com
https://econinja.my/tree-planting/
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inventory. These results raise concerns about a potential digital divide in the use of
VGI tree mapping applications by indicating potential differences in digital citizen-
ship and literacy by neighbourhood type, which is in line with a recent call for
research on the implications of the democratisation of data gathering operations
through crowdsourcing.

11 The “Coming of Age” of Urban Forestry: The Citizen-Driven
of Urban Forest (CDUF)

VGI has been heralded as a potentially transformative new data source for urban
planning and policymaking. However, despite the promotion of VGI as a means of
increasing access to geographic knowledge production, there are concerns about
uneven levels of participation and spatial coverage. By georeferencing VGI data, the
spatial distribution and data richness of urban forest can be provided. Thus, with
such spatial data, detailed analyses can be conducted to ascertain sociodemographic
influences, environmental indicators, and other climatic dependencies of urban
forests. GIS analyses such as ordinary least squares (OLS), general linear models
(GLM), and spatial autoregressive models will aid urban foresters and policymakers
in making sound judgements.

Inclusion of the community in urban greening initiatives serves as a transforma-
tional initiative for a smart community. This strategy has quickly gained traction in
western countries as well as some Asian countries. As it turns out, community-based
urban greening is probably the simplest and least expensive way to improve the
liveability and sustainability of our cities. Over the last few decades, it has become
clear that incorporating green space into the planning, construction, and operation of
our cities is not only an extremely effective way to alleviate some of these challenges
but also generates a slew of economic, social, and environmental benefits, both for
individuals and the city as a whole.

While recent digital urban tree inventories offer significant opportunities for
collaborative data collection, innovative research, intelligence gathering, and
improved policymaking, data asymmetries in terms of quantity and quality may
seriously compromise the applications’ effectiveness. As a result, it is important to
formulate and implement a strategy for resolving these issues.

One establishment that can be referred, founded on the principles of inclusion and
collaboration, Mapping Green Dublin developed a just greening strategy for one
Dublin neighbourhood through a collaborative process. In order to empower local
communities to act on greening projects in their neighbourhoods, Mapping Green
Dublin’s mission is to inform more socially just urban greening policy and practise
and to demonstrate how community-based strategy development can make a signifi-
cant contribution to the achievement of climate action goals, liveability goals, and
well-being goals. As a result of their efforts, a new approach to developing greening
strategies has been developed that is grounded in community, collaborative efforts,
and a more comprehensive understanding of social and environmental justice. It
demonstrates how bottom-up greening strategies can be developed in response to
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and informed by grassroots concerns and aspirations and how these strategies can be
implemented in practise (Mapping Green Dublin 2021).

12 Conclusion/Summary

Heat, wildfires, and flooding are all climate-related disturbances that can be
mitigated by identifying and developing suitable habitat within specific ecological
communities. For urban foresters, fully recognising which characteristics are impor-
tant and where they should be used will be a continuous land management compo-
nent. In light of the uncertainties surrounding these effects, land managers will need
to continue to observe and document the effects of climate change on tree species, as
well as refine models and management strategies. Maintaining species diversity and
selecting appropriate species for projected changes in habitat suitability will become
more difficult tasks for everyone, from land managers to the nursery industry. Land
managers and other decision-makers will have more opportunities to engage with
their communities as a result of climate change challenges, develop new partnerships
and programmes, expand their volunteer base, and invest in more resilient
landscapes. The devaluation of science in modern civilisation, with the advent of
geospatial technology, is completely incomprehensible, especially when one
considers history and the role science played in developing humanity’s understand-
ing of its environment, health, and security, as well as how important science is in
everything, we take for granted today. Scientific breakthroughs that have been
nothing short of miraculous have shaped everything from procreation to the food
we eat, our lifespan, and the way we communicate. Although technology aids
decision-making, it also serves as a jumping-off point for considering the manage-
ment implications of climate change in an urban setting, as shown above. Initiatives
to address climate change and the urban tree canopy on a regional and state level, as
well as the creation of our own Citizen-Driven Urban Forest, are areas of potential
growth in order to address these challenges beyond municipal boundaries.
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Abstract

Managing forest resources in large landscape can be a highly time- and resource-
consuming task requiring significant amounts of data collection in the field.
Airborne Light Detection and Ranging (LiDAR) is one of the most effective
remote sensing technologies for data collection and is capable of providing quick
and accurate 3D point clouds from which vegetative cover and the ground
surfaces can be discerned. LiDAR-based 3D point clouds and derivative products
are used in a number of forestry activities including forest inventory and manage-
ment, forest operations, fire modeling and biomass and carbon storage
estimations. In particular, high-resolution digital elevation models (DEMs) pro-
duced from point clouds can assist forest engineers in performing harvesting
planning and forest road design. Also, LiDAR-produced tree lists can be mapped
on a DEM and can be used for planning of landing areas, skid roads, and cable
corridors. In this chapter, a comprehensive overview to the use of LiDAR
technology in the field of forest engineering is discussed by reviewing previously
conducted studies. Firstly, basic principles of operating LiDAR technology are
provided, and then the progress and opportunities of using LiDAR technology in
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various forest engineering applications are presented. These applications include
3D forest road design, road geomatics, road construction, earthwork allocation,
forest transportation, forest operation, sediment prediction, and logging impact
assessment. The results derived from these previous studies suggested that
LiDAR technology has the potential to offer highly reliable and accurate 3D
surface data when compared to the estimations of ground-based surveys. Thus,
airborne LiDAR is a rapidly developing technology which provides a great
potential for efficiently performing forest engineering activities quickly and
accurately over large landscape areas.

Keywords

Airborne LiDAR · 3D road design · Earthwork allocation · Transportation
network · Forest operation planning · Impact assessment

1 Introduction

In order to ensure multiple uses of forest resources while protecting the forest
ecosystems, the forests should be planned and managed by using modern methods
and cutting-edge technologies. In this context, using information technologies such
as remote sensing, Geographic Information Systems (GIS), and digital image analy-
sis has increased in variety of the forestry applications. Thus, the need for spatial data
with high accuracy and resolution about forest resources has increased accordingly.
Typically, spatial data used in the field of forestry were products derived from
satellite images, aerial photographs, and topographic maps.

In recent decades, airborne laser scanning (LiDAR, Light Detection and Ranging)
technology has been used quite effectively in forestry applications (Akay et al.
2014). Even though LiDAR technology is considered to be a cost-intensive method
due to the high initial setup cost, generation of spatial data with LiDAR technology
is a quick and less expensive method when compared to photogrammetric methods
and terrestrial measurements. Using LiDAR technology, a digital elevation model
(DEM) with high resolution and accuracy can be produced for open areas as well as
for sparse or dense forested areas. In addition, high-quality spatial data on the
structural properties of forest trees can be obtained with LiDAR technology
(Li et al. 2013). Laser-based high-resolution DEMs and structural data are used in
a number of forestry activities including taking forest inventory, developing forest
fire models, planning forest harvesting, and estimating biomass and carbon storage
(Akay et al. 2009). In this chapter, an overview of the state of the art studies related
to airborne LiDAR applications in the field of forest engineering was given under
three research lines including basic principles of LiDAR technology, 3D forest road
design and road geomatics, forest transportation and forest operations, and logging
impact assessment.
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2 Basic Principles of LiDAR Technology

LiDAR laser scanning technology has been applied in forested settings for several
decades with published studies beginning to appear with consistency in the early
2000s (Reutebuch et al. 2005). LiDAR sensors that are ground-based and mounted
on a tripod or other platform are referred to as terrestrial LiDAR systems. LiDAR
sensors mounted on moving ground-based vehicles are sometimes referred to as
mobile LiDAR systems (MLS). LiDAR sensors can also be mounted on manned or
unmanned aircraft systems (UAS). There are great differences in the cost and
functionality of each of these primary LiDAR platforms, but the operating principles
are the same regardless of platform.

LiDAR scanning involves directing discrete pulses of light toward landscapes
and structures in order to return feature positions and dimensions. LiDAR scanning
pulses are located in the near-infrared position of the electromagnetic spectrum.
LiDAR sensor pulses are emitted from a sensor and travel until reaching an object.
The structure and reflectivity of the object affect whether a light pulse, or some
portion of it, is reflected back to the sensor or continues to travel until reaching a
solid surface, such as the ground, and is reflected back. Up to five reflected values
can be returned from a single pulse with each representing a difference distance,
referred to as range, from the LiDAR sensor. By comparing the reflection return time
to the speed of light, the range to a feature can be calculated. Repeat return
combinations can be fused with other return pulses to create a LiDAR point cloud
that supports a three-dimensional visualization of landscape features from which
feature measurements can be taken.

Terrestrial LiDAR objectives are typically much more limited in scale in compar-
ison to airborne applications as the sensor is generally mounted on a fixed tripod or
on a moving vehicle that must follow a trail or road (Garms et al. 2020). Regardless
of mounting configuration, airborne applications will usually cover larger areas and
have the advantage of less constrained positioning.

With airborne LiDAR applications, the round-trip travel time of individual light
pulses is measured and stored by an airborne sensor that is coordinated with an
on-board global positioning system (GPS). The combination of pulse and GPS
measurements results in the geo-referencing of return pulses that allows coordinates
(longitude and latitude) and height (elevation) to be associated with each returned
pulse. In addition, an inertial navigation system (INS) mounted on the aircraft tracks
irregularities in flight path and attitude (yaw, pitch, and roll), and all measurement
data are stored on an on-board data storage. Up to 2,000,000 pulses per second can
be generated with modern aerial LiDAR systems (Leica 2022) with pulse rates for
the typically smaller LiDAR UAS-mounted sensors averaging around 300,000
pulses per second. Pulse rates at high frequencies can lead to LiDAR databases
that require hundreds of gigabytes for even modest sized areas (e.g., 2000 ha). A
variety of commercial and freely available image processing software can be used to
convert the millions or more of return pulses that are typical of LiDAR data projects
into two- and three-dimensional representations of landscape characteristics includ-
ing streams, roads, vegetation, and structures (Fig. 1).
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Fig. 1 LiDAR plane (URL-1 n.d.)

Costs vary substantially between manned and UAS LiDAR platforms with
manned systems costing substantially more. For manned aircraft, a minimum crew
of two is usually involved with a pilot and LiDAR operator. The aircraft itself will
cost at least approximately $300,000, and a very basic the LiDAR sensor will be at
least approximately $100,000. In addition, a survey-grade GPS and an INS will be
needed with costs beginning in the tens of thousands of dollars for each of these
devices. The strong benefit of manned LiDAR applications is that they will typically
be able to cover a much larger area than UAS.

UAS platforms for LiDAR sensors will vary between approximately $15,000 and
$60,000 depending in part at least on the quality of GPS and INS components.
LiDAR sensors with multiple pulse return capability will vary between approxi-
mately $12,000 and $40,000 depending on size and functionality. Ranges to objects
will be more constrained with UAS LiDAR sensors and will need to be within a
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Fig. 2 Velodyne HDL-32 LiDAR sensor (silver cylinder on bottom of aircraft) mounted on a DJI
s1000 quadcopter

range of approximately 100–200 m. Within the USA, only a single operator is
required to pilot a UAS, but this rule varies in other countries (Fig. 2).

Potential LiDAR products that are relevant to forest engineering include point
clouds, from which digital elevation models (DEMs) and digital surface models
(DSMs) can be produced. A point cloud is the combination of all LiDAR pulse
returns with each being stored as a point with latitude, longitude, and elevation
coordinates (Fig. 3). A DEM is the ground surface with aboveground objects such as
structures or trees not being considered. A DSM represents features above the
ground surface and can be used to create a canopy surface model (CSM) to represent
canopy heights. A variety of software packages and approaches are available to work
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Fig. 3 LiDAR point cloud on left and digital elevation model on right (URL-2 n.d.)

with point clouds and CSMs to create a tree list that represents the locations and
heights of individual trees (Edson and Wing 2011; Maturbongs et al. 2019).

In addition to calculating position and height measurements, the reflectance
intensity of each LiDAR pulse can be measured and geo-referenced. Researchers
have found that the strength of reflectance intensity values can be analyzed to
provide descriptive information about landscape features that goes beyond distances,
areas, and volumes. Reflectance intensity is quantified by comparing the strength of
the reflected pulse to that of the emitted pulse to create a ratio. Reflectance intensity
provides a spectral signature that can be used to determine the health or nature of
landscape objects and has been applied in previous studies related to forest engi-
neering topics. Wing et al. (2010) used intensity values to discriminate live from
mortally burned trees in a postfire landscape. Li et al. (2021) applied intensity values
to assist in road detection. Li et al. (2021) found that intensity values helped improve
tree species classification.

LiDAR has shown great potential in forest engineering applications in generating
high-resolution point clouds from which DEMs, DSMs, and tree lists can be created.
The cost of LiDAR per hectare is variable and depends on study area size with larger
areas providing stronger economies of scale than smaller areas. Although the cost of
acquiring LiDAR data may still be prohibitive for many organizations, larger areas
(>5000 ha) can likely be flown at a cost of approximately $2–5/ha with costs
expected to decrease in the future.
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3 Forest Road Design and Road Construction

Traditional forest road design methods employing topographic maps and aerial
photos are not capable of locating optimum road alignment. However, computer-
assisted forest road design models using high-resolution DEMs can provide opti-
mum alignment by systematically searching a large number of alternative paths
while considering economic, social, and environmental constraints. In recent years,
LiDAR-derived DEMs have been effectively used in forest road design models
(Akay et al. 2014).

The average-end area method and prismoidal method are traditionally used for
estimating earthwork, but the average-end area potentially overestimates the volume,
while the prismoidal method is more suitable for linear profiles. To overcome the
drawbacks of conventional methods, Dodson et al. (2001) developed a new
computer-based model to perform earthwork allocation by using a high-resolution
DEM generated based on airborne LiDAR data. In this model, road engineers only
need the series of center points along the road section to compute earthwork volume.
The earthwork volume is the difference between actual ground surface elevation and
the designed road surface elevation (Fig. 4). Dodson et al. (2001) reported that the
model using LiDAR-derived DEM could accurately and quickly estimate the earth-
work volume while spending less time for field measurements. In addition, the
model allowed road engineers to evaluate a large number of alternatives and to
select the optimum solution from among them.

Aruga et al. (2005) developed a road design model that simultaneously optimized
the horizontal and vertical alignment of a forest road. In the solution process, the
“Tabu Search” method was used to search for the optimum road alignment among
computer-generated alternative solutions. In the model, a DEM was generated based
on airborne LiDAR data taken from the Capitol State Forest in Western Washington
(USA). In the model, the vertical alignment was first optimized, and then the
horizontal and vertical alignments were optimized simultaneously. The results
suggested that the model using LiDAR-derived DEM would be an effective tool
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Fig. 4 Cross-section view of the road template (Dodson et al. 2001)
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for designing optimum forest road alignment while eliminating the time-consuming
process of road surveys.

Akay and Sessions (2005), using modern optimization methods and GIS
techniques, developed a 3D interactive forest road alignment optimization model
(TRACER) to help determine the forest road route with the minimum total road cost.
In this model, “simulated annealing,” a “heuristic” method, was used to determine
the vertical route with the least total road cost, while a linear program (DP) was used
to balance the cut and fill volumes, which also minimized the earthwork cost. The
starting route was developed by interactively locating intersection points on the
on-screen 3D image of the terrain generated based on LiDAR-derived high-resolu-
tion DEM. At the same time, the model presents information such as soil type,
distance to the nearest stream, road slope, length of road section, and deflection angle
in horizontal and vertical alignment for determination of curves to the user in real
time. Then, the model automatically places the horizontal and vertical path, taking
into account the geometric, environmental, and driver safety conditions.

Saito et al. (2008) conducted a study where forest road constructions based on a
topographic map-based DEM (with 10 m GSD) and LiDAR-based high-resolution
DEM (with 1 m GSD) were compared. The LiDAR data was taken by a helicopter
from the Funyu Experimental Forest in Japan. The results indicated that the
differences between actual road profiles of road constructed before the LiDAR
measurements and LiDAR-derived DEM-based road profile were less than that of
road profile generated based on the 10 m grid DEM. Saito et al. (2008) reported that
the ground surfaces produced by LiDAR data accurately represented actual ground
surfaces. Thus, using LiDAR-derived DEMs can assist road engineers to evaluate
number of alternative road alignments to determine the optimum one with minimum
construction costs.

Craven and Wing (2014) investigated the accuracy of airborne LiDAR data for
examining the condition of forest roads to make sure that a stinger-steered log truck
could be used for hauling. The field-based observation of forested road conditions
was compared to measurements of forest roads estimated based on LiDAR technol-
ogy which could detect the ground surface under tree canopies. The horizontal and
vertical accuracy of LiDAR to locate centerlines along existing forest roads was
considered within four stand structures including clear-cut, evenage, unevenage, and
mature. The capability of estimating road grade and horizontal curve radius using the
LiDAR-based approach was evaluated. The results indicated that airborne LiDAR
would be sufficient to evaluate specified road geometries such as road grade and
curve radius. In addition, the curves that are limiting can be defined by the LiDAR-
based approach and further field inspection could verify limiting conditions.

4 Forest Transportation and Forest Operations

LiDAR data obtained from forest lands can provide high-quality 3D data on stand
characteristics and terrain conditions. LiDAR-derived 3D data has been effectively
used in forestry applications such as planning forest transportation and operations in
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Fig. 5 The road profiles developed by using aerial LiDAR datasets compared to terrestrial dataset
(Beck et al. 2015)

that manner. Utilization of GIS techniques can assist forest managers to search for
the optimum timber extraction paths among a large number of alternatives and to
determine hauling routes for truck transportation from landing to the mills. Chung
et al. (2004) used a network-based heuristic algorithm to generate a solution for a
cable logging and forest transportation planning problem based on a high-resolution
DEM developed from airborne LiDAR. The results indicated that employing
LiDAR-derived DEM with high-resolution improved the capabilities of the model.

González et al. (2008) stated that LiDAR-derived data allowed the recognition of
ground morphology to assign with the accuracy of the forest harvesting machinery
allowing the delineation of harvest units for spatial forest planning in their study in
the eastern of the coast mountain of BioBio Region, Chile. González et al. (2008)
presented the evaluation of the LiDAR DTM data over a planted forest field in order
to use a forest harvest machinery assignment procedure in order to finally delineate
harvest units for spatial forest planning.

Beck et al. (2015) conducted a study where a model was developed to generate a
digital database for forest transportation planning using airborne LiDAR data. The
road extraction process was implemented based on LiDAR data from McDonald-
Dunn Research Forest located near the city of Corvallis, Oregon (USA). Two main
attributes including LiDAR intensity data and ground return density were utilized.
Figure 5 indicates the road profiles generated based on terrestrial and aerial LiDAR
datasets in the study. The results proved that this methodology is useful in evaluating
the accessibility of the hauling vehicles through extraction of the road geometry
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considering the whole forest road network. Based on road geometry data, hauling
vehicles with suitable sizes could be selected to transport large size forest products.

Waga et al. (2020) conducted a study to evaluate the forest road status by using
airborne LiDAR data obtained from a coastal forest in northern Vancouver Island in
Canada. Considering the vegetation existence, the road segments were classified in
four groups including no vegetation, minor vegetation, dense understory vegetation,
and dense overstory vegetation. The results obtained based on LiDAR data were
compared to the field observation data. It was found that LiDAR-based classification
was correct for about 75% of road segments when compared with the field
observations. The accurate identification of road conditions provided valuable infor-
mation for the road engineers to locate the road segments that might need repair or
maintenance. In addition, Waga et al. (2020) suggested that LiDAR-derived DEM
and canopy cover data could be effectively used for planning forest operations.

5 Logging Impact Assessment

Forest operations, particularly logging activities, may cause significant impact on
forest resources when they are nor planned or not implemented appropriately in the
field. In order to detect logging impact on forest ecosystems, stand properties and
forest ground conditions should be accurately measured. Capable of detecting both
the forest floor and canopy elements, airborne LiDAR can estimate forest structure
parameters with accuracy and precision. d’Oliveira et al. (2021) found the location
and magnitude of the stand disturbance as a result of logging activities based on
airborne LiDAR data and a RGB camera mounted on an unmanned aerial vehicles
(UAV). In the solution process, the loss of above-ground biomass (AGB) due to
logging was determined by using two methods including LiDAR-based method and
RGB-photogrammetry integrated with LiDAR. The study area was located in the
Antimary State forest within the border of Amazon Forests in Brazil. The results
demonstrated that once the terrain is represented accurately, the location of the
selective logging and its impact can be determined by using RGB-photogrammetry.

In a study conducted by Ellis et al. (2016), the impact of forestry operations
including hauling, skidding, and felling was measured during a selective harvesting
activity in a tropical forest. For this purpose, a model based on LiDAR-derived DEM
was used to generate the digital layers for skidding paths and truck transportation
road network in East Kalimantan in Indonesia, LiDAR-delineated skidding/felling
impact zones (blue), and hauling impact zones (orange) in the cutting block which
are shown in Fig. 6. According to the results, logging impacts can be effectively
measured using airborne LiDAR data.

Akay et al. (2014) used a road design model, TRACER (Akay and Sessions 2005)
developed based on an airborne LiDAR-derived high-resolution DEM, to estimate
the sediment reduction cost for the forest roads. In the study, LiDAR data was
obtained from the McDonald-Dunn Research Forest in Corvallis, Oregon (USA). In
the solution process, optimum road alignments were generated for two scenarios. In
the first scenario, TRACER searched for the optimum road alignment that
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Fig. 6 LiDAR-delineated skidding/felling impact zones (blue) and hauling impact zones (orange)
in the cutting block (Ellis et al. 2016)

minimized the minimum total cost, while the road alignment with minimum sedi-
ment yield delivered to stream was found in the second scenario. The average annual
volume of sediment delivered to a stream from road networks was estimated based
on a GIS-based sediment prediction model (SEDMODL). Then, additional cost of
minimizing sediment yield in the second scenario was computed by computing the
difference between the total road cost in both scenarios. The results indicated that the
cost of reducing sediment delivery to the streams was about $10,702/ton.
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6 Conclusion

LiDAR capabilities continue to mature in terms of sensors and options for mounting
sensors. This maturation also includes prices that tend to decrease over time for
LiDAR data capture and processing. Forest engineering operations have benefited
greatly from LiDAR data with the ability to discern, map, and measure individual
features such as trees and roads. DEMs and DSMs can be derived from point clouds
with both commercial and freely available software. The combination of these three
databases can provide one of the most fundamental needs for forest engineers: a tree
list containing the coordinates and height of all trees in a landscape. Tree lists will, at
least currently, not be 100% accurate, but LiDAR has the ability to produce very
reliable tree lists that are suitable for planning forest operations and for estimating
forest inventory. It is likely that LiDAR will continue to improve with enhanced
sensors and with greater flexibility in how sensors can be brought to the forest.
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Restoration of Damaged Forest and Roles
of Remote Sensing
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Abstract

Ecological damage refers to the reduction in the value of the environment due to
human activities and natural disasters such as climate change and biological
disease. The area where ecological damage mainly occurs is the forest, and
restoration and management of damage are more important than other
ecosystems. If a damaged forest is left unattended, secondary damage such as
landslides is highly likely, so it should be restored prior to other ecosystems. The
intensity of forest damage is worsening worldwide, and the importance of forest
restoration projects at the national level is increasing. However, it is difficult to
proceed forest restoration owing to lack of data on location and features of
damaged forestry or vegetation species. In the absence of data on damaged forest,
policy decision such as restoration prioritization and planning becomes difficult.
In this chapter, we provide an overview of the current state of research to detect
damaged forest using remote sensing and of the main findings and methodologi-
cal challenges therein. In addition, the use and role of remote sensing to establish
legally appropriate ecological restoration including forest at the national level will
be introduced. The results will suggest the importance of remote sensing for the
identification and appropriate restoration approaches for damaged forests.
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1 Introduction

Forest ecosystems are an integral part of many terrestrial ecosystems, providing a
wide range of ecological, economic, social, and cultural services (Chen et al. 2015).
In addition, many more depend on forests for other critical ecosystem services, such
as climate regulation, carbon storage, human health, and the genetic resources
underpin wood products (Wingfield et al. 2015). However, both natural and man-
aged forests are more profoundly threatened than before. Forest degradation is
generally recognized as disturbance caused by human actions in a forested landscape
and is usually defined by FAO as a reduction of the capacity of the forest to provide
goods and services (FAO 2010). Various environmental change caused by anthro-
pogenic activities or natural phenomena has increased forest vulnerability to a range
of natural disturbances including diseases and insects (Boyd et al. 2013; Reed et al.
2007). Natural disasters such as forest fires and landslides are mainly human-caused
damage, so it is difficult to restore them. In particular, forest fires threaten not only
forest vegetation and habitats but also the underlying environment for restoration
through changes in physical and chemical properties of soil due to oxidation and
incineration of soil seeds. Large-scale damage to forest ecosystems causes not only
ecological damage to forest resources and wildlife but also natural disasters such as
landslides and global carbon emissions.

The social demand for restoration of damaged forest is increasing, as is the
importance of the role of policy for restoration projects. However, in the absence
of information of the damaged forests such as location, area, and damaged type,
difficulties in policy decisions for restoration inevitably arise. Monitoring deforesta-
tion for restoration requires an estimate of the area clearly, and characteristics for
restoration such as average carbon content for each hectare of a given forest type
should also be measured (Goetz et al. 2015). In this regard, the role of remote sensing
in restoration planning and monitoring has increased, especially in the last decade,
owing to improved sensor technology and data availability (Nagendra et al. 2013).
Remote sensing tools and technologies have been used to track land-cover change
around various areas including forest (Reif and Theel 2017; Scharsich et al. 2017).
Its main advantages involve its capacities to provide extensive information on land
cover and areas of damaged forest as well as analyze natural biophysical
characteristics for restoration (Lu et al. 2004).

In this chapter, we present an overview of remote sensing research, focusing on
meta-studies, case study research that detect damaged or changed forests using
various methods including artificial intelligence technology and implications for
restoration. This chapter is organized into four sections: Sect. 2 an introduction to
the research on remote sensing applications in forestry, Sect. 3 a review of the



Restoration of Damaged Forest and Roles of Remote Sensing 373

findings of these studies on the trends of remote sensing in forest monitoring, and
Sects. 4 and 5 classifications of approaches for ecological restoration and the role of
remote sensing techniques in forest restoration.

2 Remote Sensing Application in Forestry

Historically, the most import change in land use which is done by people has been
destroying forests and converting forests into agricultural lands and habitats (Lausch
and Herzog 2002). So, assessment of forest degradation is one of the main targets of
monitoring land-cover changes over the past decade (Miettinen et al. 2014).
Foresters and researchers have relied on aerial photography, aerial sketch mapping,
and ground sampling techniques to check this forest degradation and renew forest
inventory records (Heller et al. 1959; Nelson 1983). However, inventory techniques
like ground surveys are useful and possible to detect accurately but burdensome, and
catastrophic disasters such as forest fire can quickly change the quantity and quality
of the forest (Nelson 1983). For example, leaf area index (LAI) is one of the most
significant indicators in forestry studies. It is an indicator of forest ecological
processes such as rate of photosynthesis, transpiration, and net primary production,
and it can predict and analyze the state of the forest (Pierce and Running 1988;
Meyers 1987). Around 1980, before the use of remote sensing was activated in
forestry, most research on LAI estimation used ground-based data and methods,
which were exceedingly time-consuming and difficult to acquire the large-scale
spatial and temporal variability (Lagomasino et al. 2014; Wang et al. 2019; Weaver
et al. 1986).

Remote sensing methods are suited for early-stage detection and evaluations
when accessibility for ground surveys is difficult or still not possible, as the area
needs to be cleared to provide access and security (Mokroš et al. 2017). Since the late
1970s after Landsat 1 was launched in 1972, remote sensing instruments such as
multispectral scanner (MSS) and thematic mapper (TM) on Landsat satellite have
been recognized for offering a synoptic view data acquiring from an altitude of
705 km (Rock et al. 1986). A single Landsat scene produced an image of a ground
area measuring 185 km on a side which make researchers design damage assessment
surveys, but traditional aerial photography was not able to provide this information
(Heller 1978). In addition, TM’s spectral coverage extends out into the reflected
infrared that was being used for vegetation biomass and physiological status moni-
toring (Tucker 1979). Due to these reasons, researchers have suggested that satellite
images might best be utilized as the first stage in a multistage sampling design, for
various areas including forest and researchers have begun to perform analysis using
satellite images (Heller 1978; Robinove et al. 1981). Unlike traditional aerial
photography for monitoring, satellite images such as Landsat are provided as
bands separated by spectral values over a wide area. Temporal Landsat data have
been useful for monitoring noteworthy levels of forest canopy alteration, as only
change versus unaltered areas need to be described, and once change areas are
identified, ground observations would to be proceed more easily to provide the
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details necessary for making management decisions. Therefore, the researchers tried
to study various approaches to detect, identify, and quantify forest decline symptoms
through using of this multispectral and multitemporal data sets (Heller 1978; Max-
well 1976; Rock et al. 1986; Rouse Jr et al. 1973; Tucker 1979).

Forest change detection approaches using digital satellite data could be distin-
guished by (1) the data transformation procedure and (2) the analysis techniques
used to delineate areas of significant modifications (Nelson 1983). Representative
methods of the data transform procedure approach include simple visual
differencing, rationing, and vegetation index differencing. The ratio transformation
is a mathematical operand on the same data sets. Todd (1977) made temporal
overlays combining Landsat band 5 data from October 1972 and 1974 using General
Electric Image 100 system for rationing. The 1972 data were divided by the 1974
data, and low ratios indicate areas where land cover had changed. The vegetative
index difference means to monitor vegetation biomass and physiological status by
using the difference and combination of spectral reflectance for each band (Maxwell
1976). Many researchers tried to derive the vegetation indices by calculating the
bands of Landsat images in various ways such as perpendicular vegetation index
(PVI), soil brightness index (SBI), and green vegetation index (GVI) (Kauth and
Thomas 1976; Richardson and Wiegand 1977). Banner and Lynham (1981) suggest
that the sensitivity of the near infrared (NIR) wavelengths to the vegetation within
the clear-cut boundaries resulted in their research. The normalized difference vege-
tation index (NDVI) calculated by using of NIR and red linear combination is one of
the most used indices by researchers for vegetation monitoring (Borowik et al. 2013;
Tucker 1979). NDVI also has been having correlation to different vegetation
attributes such as net primary production (NPP), percentage of photosynthetically
active radiation (PAR), LAI, and quantitative biomass such as crop productivity
(Broge et al. 1997; Persson et al. 1993; Sellers et al. 1992). In addition, recent studies
have suggested more various NDVI applications in animal ecology, confirming the
suitability of NDVI as a proxy for linking vegetation status with animal diversity,
distribution, and dynamics (Ryan et al. 2012; Wiegand et al. 2008; Wu et al. 2021).

If the data transformation procedure simply uses multispectral bands, the analysis
techniques are methods to improve the accuracy and applicability of forest change
detection. A wide variety of forest change detection algorithms have been analyzed
over the last two decades. The algorithms can be roughly divided into (1) spectral
change detection and (2) post-classification change detection methods (Singh 1989).
In post-classification change detection, two images from different dates are sepa-
rately classified and labelled. And then the changed area is extracted through the
direct comparison of the classification results (Howarth and Wickware 1981). The
benefit of post-classification change detection is that it bypasses the problems in
forest change detection associated with the analysis of images acquired at different
sensors or by different times of year, but this method has the high sensitivity to the
individual classification accuracies (Deng et al. 2008). Spectral change detection
techniques depend on the principle that surface changes result in permanent changes
in the spectral signature of the affected forest. These techniques include the transfor-
mation of two original images to a new single-band or multiband image in which the
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changed forest is highlighted (Coppin and Bauer 1996). The benefit of the spectral
change detection technique is that they are based on the detection of physical
changes between image dates so most of the forest change detection techniques
are in the spectral change detection category (Lunetta and Elvidge 1998). One of the
most important algorithms for spectral change detection that have been used since
the 1980s is the principal component analysis (PCA). PCA is a method of analyzing
correlated multidimensional data which can be used to facilitate the visual interpre-
tation of a mass of data having uniform a priori significance, by reducing redun-
dancy, correlation between channels (Byrne et al. 1980). Richards (1984) applied a
PCA algorithm to two-date MSS imagery to monitor brush-fire damage and vegeta-
tion regrowth over extensive areas in Australia confirming that areas of localized
change were enhanced in the lower components. Multivariate alteration detection
(MAD) is also an important method of spectral change detection. MAD is an
extension of the traditional canonical correlations analysis and is invariant to linear
scaling of the input data, but it has been less implemented (Nielsen et al. 1998).
Change vector analysis (CVA) is a multivariate change detection technique that
processes the full dimensionality (spectral + temporal) of the image data and
produces two outputs: change magnitude and direction (Coppin et al. 2002). Johnson
and Kasischke (1998) showed the capability of CVA to be an effective technique to
capture all changes and not just a priori defined change events. In addition to these
algorithms, a mathematical regression model which describes the fit between two
multi-date images of the same area or various machine learning algorithms also
exists.

The study of forestry change detection has become principally comprehensive,
not only because forestry are the most extensive land-cover types in the world but
also because they have significant impacts on the provision of a wide range of
services and on the environment. At the same time, remote sensing data analyses
become more difficult and more expensive with smaller spatial units. More detailed
spatial units increase mapping efforts and decrease forest change detection accuracy.
Recently, for the quantification of the greenhouse gas (GHG) and reducing
emissions from deforestation and forest degradation (REDD+) project, the role of
remote sensing in the forestry field is being emphasized more (Achard et al. 2014).
Whatever change detection algorithm and classification routine is applied, it is
evident that a broad range of alternatives exist and that all have varying degrees of
flexibility and availability. In this sense, although Landsat imagery has become the
standard relied upon by many forest ecologists and other researchers who use
remotely sensed data, remote sensing data sets depends on the objectives and
requirements of projects and research (Cohen and Goward 2004; Deng et al. 2008).

Considering the different objectives and questions addressed, Goetz et al. (2015)
identified some functions of remote sensing for forestry management in the context
of REDD+ needs:

• Monitoring deforestation: Deforestation is defined as the conversion of forest to a
non-forest land use and remotely sensed data such as Landsat images enable
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mapping and monitoring of forest cover and change over large areas at regular
intervals, providing information on where and how changes area taking place.

• Monitoring forest degradation: Forest degradation is defined as the loss of
aboveground biomass within forested land but without a change in the designated
type of land use. Imagery with high resolution can be used to map local losses of
tree cover that result from various types of degradation.

• Monitoring the ‘plus’ from regrowth: Monitoring of tree cover gain requires the
tracking of regrowth over time before a determination of recovery to a forested
state can be established. Regrowth in forest areas can be measured with a
combination of field and LiDAR data.

• Distinguishing forest trait diversity with remote sensing: Characterizing the tree
species diversity of forests, understood here as the number and distribution of
individual species or assemblages of species, was considered beyond the capabil-
ity of remote sensing technologies until recently. Technologies to measure and
monitor forest biodiversity in forest ecosystems have developed rapidly because
of the advancement of new sensor classes including LiDAR and hyperspectral
remote sensing.

Based on these functions of remote sensing, we present an overview of the
findings of 15 studies on recent remote sensing for forest monitoring trends with
various algorithms and data sets and points for forest restoration in the next section
(see Table 1).

3 Trends in Remote Sensing Techniques for Forest
Monitoring

A recent large-scale analysis of detecting ecologically damaged areas including
forest undertaken by Lee et al. (2020) serves as a proper starting point to introduce
this section and the direction of the chapter. In this study, as a post-classification
change detection method study, ecologically damaged areas for restoration in South
Korea were detected using remote sensing and field surveys. For post-classification
change detection, land-cover maps constructed nationally for South Korea at differ-
ent times were used as a main analysis tool. In addition, by using land use zoning
map, environmental impact assessment (EIA) data, and Google Earth data, illegally
damaged ecological areas were derived along with specific areas in m2. Results of
this study showed ecologically damaged areas distributed in South Korea and 62%
of the ecological damage occurred in forest ecosystems (Figs. 1 and 2; Lee et al.
2020). The damaged areas were mostly smaller than 50,000 m2, and through field
surveys, the cause and type of damaged areas were investigated, and the direction of
restoration was suggested (Lee et al. 2020).

Goetz et al. (2015) emphasize the synergistic role of integrating field inventories
with remote sensing for best practices in monitoring, reporting, and verification.
However, it is not easy for researchers to directly perform field measurements
because it is time-consuming and comparatively expensive. So, some studies
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Table 1 Studies synthesized in this chapter

Major contribution to remote sensing
research for forest restoration

Chen et al.
(2015)

Airborne images and pre-established
field measurement data/spectral
change detection (object-based image
analysis)

Assessed postfire burn severity in
forests affected by three different
stages of pre-fire mortality. Indicated
that PCA and MNF are promising for
balancing computation efficiency and
the performance of burn severity
models

Šimić Milas
et al. (2015)

Landsat images (OLI)/change
detection using vegetation indices

Suggested the total damaged area
covers 45,265.32 ha of forests in five
Croatian counties. Indicate that
proposed index NDVI approach
performs sufficiently well in
detecting the forest damages for
restoration

Fassnacht et al.
(2016)

Review Provided an overview of current
research practices in focusing on tree
species classification and local scale
approaches have been presented for
several sensor suggesting a concrete
hypothesis or a targeted application

Einzmann
et al. (2017)

RapidEye scenes/spectral change
detection (random forest classifier)

Identified windthrow areas and the
large-scale mean shift algorithm were
chosen for image segmentation and
identified over 90% of the windthrow
areas. Helps monitor forest
disturbances due to storms and select
restoration sites

Mokroš et al.
(2017)

UAS and ALS imagery/spectral
change detection (semiautomatic
approach)

Estimated the forest areas affected
after windthrow and the volume of
salvage logging using combination of
UAS/ALS imagery. The windthrow
areas were successfully identified
within the forest land of the study site
showing potential for application to
early-stage surveys of damaged forest

Jahanifar et al.
(2018)

Landsat images (TM and ETM+)/
spectral change detection (linear
multiple regression)

Detection satellite images showed
that during the studied period, there
was found a reduction of forest areas
up to approximately 257,331 ha for
agricultural purposes. The results can
be used as an efficient tool to manage
and improve forests regarding
physiographical and human
characteristics

Puletti et al.
2018

Sentinel-2 images/spectral difference
detection (random forest
classification)

Suggested multitemporal Sentinel-
2 images collected at different
phenological periods are required for
to discriminate forest categories and

(continued)
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Table 1 (continued)

Major contribution to remote sensing
research for forest restoration

types. The best configuration yielded
an accuracy >83% in all considered
forest types

Wessel et al.
(2018)

Sentinel-2 images/spectral difference
detection (support vector machines
and random forest)

Indicated a high potential of Sentinel-
2 data for forest classification using a
hierarchical semiautomatic
algorithms achieving overall
classification accuracies of 88%

Hamdi et al.
(2019)

Aerial orthophotos/spectral change
detection (convolutional neural
networks)

The algorithm achieved an accuracy
of 92%, and the sum of the
non-detected damaged areas
amounted to 0.1 km2, which
represented 13% of the manually
delineated damaged area. Provided
the potential of deep learning on
high-resolution imagery and for fast
and efficient post-disaster damage
assessment as a first step of disaster
management on forest

Hościło and
Lewandowska
(2019)

Sentinel-2 images/spectral difference
detection (random forest
classification)

The overall accuracy for the forest/
non-forest cover reached 98.3% and
94.8% for the classification of the
forest type. The accuracy of eight tree
species classification improved from
75.6% to 81.7% with the
multitemporal Sentinel-2 data at the
regional scale

Lee et al.
(2020)

Land use land-cover maps and
Google Earth image/post-
classification change detection and
field survey

Legally damaged areas were derived
through remote sensing using
national standardized vector data sets
and satellite images and verified
through field surveys. It is necessary
to establish an effective restoration
plan by related ministries and
regional local governments

Axelsson et al.
(2021)

Sentinel-2 images/spectral difference
detection (maximum likelihood with
Bayesian inference)

An overall accuracy of 87% was
obtained for four tree species classes:
Betula spp., Picea abies, Pinus
sylvestris, and Quercus robur
suggesting that Bayesian inference is
a practical way to provide a high
classification accuracy

Onishi and Ise
(2021)

UAV images/spectral difference
detection (convolutional neural
networks)

The algorithm succeeded in
classifying seven tree classes,
including several tree species with
more than 90% accuracy showing
that the CNN classified trees

(continued)
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Table 1 (continued)

Major contribution to remote sensing
research for forest restoration

according to their shapes and leaf
contrasts

Tarazona et al.
(2021)

Landsat images (TM and OLI) and
SAR images/spectral change
detection (machine learning
algorithms)

Showed the benefits of combining
optical and SAR data for detecting
deforestation compared to using only
optical data. The calibration of the
machine learning algorithms revealed
that all classifiers had overall
accuracy of more than 90%

Yu et al.
(2021)

UAV images/spectral difference
detection (Faster R-CNN and
YOLOv4)

The accuracy of Faster R-CNN
(60.98–66.7%) was higher than that
of YOLOv4 (57.07–63.55%) for
detecting pine wilt disease (PWD).
The accuracy of early detection of
PWD infection showed an increase of
3.72–4.29%, from 42.36–44.59% to
46.08–48.88%, when broad-leaved
trees were considered

apply pre-established field data rather than directly performing field measurement.
As an example, Chen et al. (2015) examined the three stages of impacts of fire and
exotic disease on forests by applying Geographic Object-Based Image Analysis
(GEOBIA) to MASTER (MODIS/ASTER) airborne images that were acquired
immediately following the forest fire for assessment and contained both high spatial
(4 m) and high spectral (50 bands) resolutions. Chen et al. (2015) also assessed two
widely used band reduction algorithms, PCA (principal component analysis), and
MNF (minimum noise fraction) to increase computation efficiency (Fig. 3; Chen
et al. 2015). They suggested that the spectral variation removed by PCA and MNF
was essential for distinguishing between the spectral reflectance from disease-
induced dried crowns (still retaining high structural complexity) and fire ash.

Since forest damage mostly occurs over a large area, most research tried to study
algorithms to improve the accuracy of change detection by using various imagery
acquired from satellite system or a digital aerial survey camera system. Jahanifar
et al. (2018) used Landsat TM (Thematic Mapper) data of 1995 and Landsat ETM+
(Enhanced Thematic Mapper Plus) data of 2015 for classification and investigated
the changes in the forest area using linear multiple regression. The results of
regression analysis indicated that the linear combination of income per capita, rain,
and temperature with determined coefficient 0.4 as independent variables could
estimate the reduction of forest area. Hamdi et al. (2019) implemented an algorithm
based on convolutional neural network (CNN) for automatic detection and mapping
of damaged areas using aerial orthophotos of 109 km2 forest acquired with for
spectral bands (blue, green, red, near infrared). Šimić Milas et al. (2015) evaluated
the capability of Landsat-8 optical data and vegetation indices such as NDVI, LAI,
and fraction of photosynthetically active radiation (fPAR) for mapping forest
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Fig. 1 Distribution status of damaged areas in South Korea derived through remote sensing.
(Source: Lee et al. (2020))

damage in Croatia. Tarazona et al. (2021) fused Landsat images (TM & Operational
Land Imager (OLI)) and synthetic aperture radar (SAR) images using PCA algo-
rithm and used machine learning classification such as support vector machine
(SVM) to detect deforestation in tropical forest of Peru. Einzmann et al. (2017)
suggested forest change detection approach using RapidEye scenes before and after
the storm damage on the forest areas in Bavaria, Germany. Einzmann et al. (2017)
used a supervised random forest (RF) algorithm for an object-based bitemporal
change analysis to identify windthrow areas, and the large-scale mean shift algo-
rithm was chosen for image segmentation and identified over 90% of the windthrow
areas as a result (Fig. 4; Einzmann et al. 2017).
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Fig. 2 Distribution status of damaged areas in South Korea by ecosystem. (a) Distribution of
damaged areas by ecosystem for each regional local government and (b) total distribution of
damaged areas by ecosystem in South Korea. (Source: Lee et al. (2020))

(a) (b) (c) (d) (e) 0 100 m

Fig. 3 Sample objects (with white polygon boundaries) derived from five band-reduction
scenarios: (a) no band reduction (i.e., 50 bands), (b) 5 PCA components, (c) 10 PCA components,
(d) 5 MNF components, and (e) 10 MNF components, overlaid on images with RGB composites of
(a) bands 5, 3, and 1, and (b)–(e) components 1, 2, and 3. The backdrop of (a) is a true color
composite using MASTER bands 5, 3, and 1, where light tones represent ash, brown colors indicate
moderate burns in forest stands, and a small portion of green trees reveal low level of fire damage.
The backdrops of (b) and (c) are the color composites using the first three PCA components, while
the backdrops of (d) and (e) are the color composites using the first three MNF components. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.) Source Chen et al. (2015)

Plant functional groups are assemblages of species showing similar responses to
the environment and similar effects on ecosystem processes and can be a useful tool
in selecting optimal species for restoration (Dı  az and Cabido 2001). However, the
selection of native species for ecological restoration is complex and challenging, and
researchers have tried to perform tree species classification using various remote
sensing techniques (Stanturf et al. 2014). In the case of studies on tree species
classification, it was found that Sentinel-2 (S2) mission imagery was commonly
used. S2 mission carries a multispectral sensor with 13 bands and can combine high
spatial resolution, wide coverage, and quick revisit time (about 5 days). Axelsson
et al. (2021) investigated the utility of applying a Bayesian inference method to S2
data for tree species classification in the boreo-nemoral forest landscape of southern



382 K. Lee et al.

11°20’0”E 11°30’0”E 11°40’0”E 11°50’0”E

11°20’0”E 11°30’0”E 11°40’0”E 11°50’0”E

0 5 10
km

N

47
°5

4’
0”

N
48

°0
’0

”N
48

°6
’0

”N

47
°5

4’
0”

N
48

°0
’0

”N
48

°6
’0

”N

Windthrow areas ≥ 0.5 ha

Fig. 4 Occurrence of windthrow areas ≥0.5 ha (green areas) in the Munich South study area. As
background is the false color composite (band combination: near infrared-red-green) post-storm
RapidEye scene depicted. (Source: Einzmann et al. (2017))

Sweden. Axelsson et al. (2021) acquired an overall accuracy of 87% for four tree
species classes: Betula spp., Picea abies, Pinus sylvestris, and Quercus robur as a
result. Puletti et al. (2018) used three Sentinel-2 images from spring, summer, and
autumn in a random forest classification to classify between coniferous, broad-
leaved, and mixed forest and achieved a maximum overall accuracy of 86.2%
using a separate validation data set. Wessel et al. (2018) also used available S2
data and forest inventory data to evaluate machine learning approaches (SVM and
RF) to classify tree species in two forest regions in Bavaria, Germany. Hościło and
Lewandowska (2019) used S2 data in combination with topographic information to
classify types of land, forest, and eight tree species (beech, oak, alder, birch, spruce,
pine, fir, and larch) using RF algorithm. The overall accuracy for the forest/non-
forest cover reached 98.3% and declined slightly to 94.8% for the classification of
the forest type, and the classification of eight tree species improved from 75.6% to
81.7%.

Recently, unmanned aerial vehicle (UAV) has been supposed to be an easy-to-
use, cost-effective tool and high-resolution images for monitoring forests. Yu et al.
(2021) collected multispectral imagery by UAV with a real-time kinematic (RTK)
module and used two target detection algorithms including faster region-based CNN
and two machine learning algorithms based on feature extraction (random forest and
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support vector machine) to detect early infected pine trees. Onishi and Ise (2021)
used a commercially available UAV and deep learning algorithm to construct a
machine vision system for the automatic classification of trees. They segmented a
UAV photography image of forest into individual tree crowns and carried out object-
based deep learning, and the system was able to classify seven tree types at overall
89.0% accuracy (Fig. 5; Onishi and Ise 2021). Mokroš et al. (2017) also used a fixed-
wing type of unmanned aircraft system (UAS) with a compact digital camera to
identify damaged forest. They used semiautomatic approach based on the UAS
imagery and on the combination of UAS imagery with airborne laser scanning
(ALS). The results from the UAS and the combined UAS/ALS methods were
statistically significant with the reference data measured by global navigation satel-
lite system (GNSS) devices.

Summing up, for forest change detection using remote sensing, selection of
appropriate data according to spatial scale is becoming more important.
UAV-based remote sensing is efficient and flexible in efficient and flexible in
small and middle scale, and the device can be equipped with various remote sensors
that generate high-resolution images (Tang and Shao 2015). However, when the
spatial scale to check change detection is large, the time and cost for image acquisi-
tion could increase exponentially. In addition, it seems important to use an appro-
priate analysis method according to the data. Even if the same data and similar
algorithm are used, it can be confirmed that the accuracy can vary greatly depending
on the phenomenon to be detected and the difference in the algorithm process
(Tarazona et al. 2021).

4 Approaches for Ecological Restoration

Ecological restoration projects or programs include one or more targets that identify
the native ecosystem to be restored (as informed by the reference model) and project
goals that establish the level of recovery sought (Gann et al. 2019). The restoring
forest is especially dynamic ecosystem, with changing species composition and
forest structure, but interventions and management steer the forest toward a desired
climax or pre-disturbance community structure (Aerts and Honnay 2011). Therefore,
for successful forest restoration, it is important to appropriately select the restoration
approaches according to the restoration method, volume, and other goals considering
different ecosystem. Ministry of Environment (MOE) in South Korea proposed
some major approaches to restoration of damaged ecosystem including forest envi-
ronment: conceptual approach (e.g., restoration, rehabilitation, replacement,
enhancement), policy approach (e.g., department in charge, restoration space), and
technical approach (e.g., physical and chemical restoration, biological restoration,
management) (MOE 2011). It is important to notice that for the restoration of a
specific ecological environment, all approaches must be combined to determine one
restoration model. Here, we describe definitions and examples for each approach.
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Fig. 5 Orthomosaic photos and classification maps obtained with the CNN classifier. The topmost
images each gives an overall view of one area, and the lower images in each column show the
respective enlarged area. The tree classes found in the images are identified in the legend at the
bottom of the figure. (This figure was created using ArcGIS Desktop v10.6 software (https://www.
esri.com, Environmental Systems Research Institute, Inc., Redlands, United States). Source: Onishi
and Ise (2021))

https://www.esri.com
https://www.esri.com
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5 Conceptual Approach

Over the many years, ecologists working on the arboretum restoration projects
learned much about the structure and function of ecological systems through trial
and error (Covington et al. 1999). The United Nations documented ecosystem
restoration as a central concern in the Rio Declaration on Environment and Devel-
opment in Principle 7 which declares, “States shall cooperate in a spirit of global
partnership to conserve, protect and restore the health and integrity of the Earth’s
ecosystems.” The concept of natural environment restoration has undergone changes
and development along with this history of restoration. In this chapter, the concep-
tual approaches of restoration were divided into four categories (restoration, rehabil-
itation, reclamation, enhancement).

The dictionary definition of “restoration” is the act of bringing back to an original
or unimpaired condition. Thus, ecological restoration has had as its goal the restora-
tion of degraded ecosystems to emulate more closely, although not necessarily
duplicate, conditions which prevailed before disruption of natural structures and
processes (Covington et al. 1999). However, returning the damaged area to the
original ecosystem consumes a lot of time and costly and is very difficult to put
into practice. On the other hand, rehabilitation of an ecosystem means to repair and
replace the essential or primary ecosystem structures and functions which have been
altered or eliminated by disturbance (Cooke 2005). Rehabilitation of ecosystems
could be an alternative view of the problem that could be more appropriate and
attainable than restoration. In the study of Martin et al. (2002), they used different
types of species: industrially produced, native, and wild cultivated species for
rehabilitation. Comparing to restoration, this method integrates the benefits of
using available low-costing seeds that are already used on large-scale projects with
better adapted species, issued form the cultivation of native species and seed
production for their use on smaller scale and more costly but more effective results
(Martin et al. 2002). In the case of the restoration definition proposed in the recent
convention on biological diversity (CBD), it seems to be mixing rehabilitation rather
than the relatively strict definition of restoration in the past. The definition is as
follows: the process of managing or assisting the recovery of an ecosystem that has
been degraded, damaged, or destroyed as a means of sustaining ecosystem resilience
and conserving biodiversity (CBD 2016).

Ecological reclamation means the creation of an original ecosystem elsewhere to
improve the current condition, and although structurally simple, it is often highly
effective in terms of productivity, and replacement usually applies to severely
degraded land generally devoid of vegetation (Stanturf et al. 2014). Ecological
enhancement focuses on improving the functional aspects of an ecosystem and
aims to develop the ecosystem in terms of quality, importance, and attractiveness
beyond the current ecosystem.
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6 Policy Approach

Ecological restoration policy and practice are value-laden, involving multiple
interests and actors, each prioritizing different project objectives and types of action
(Baker and Eckerberg 2016). Ecological restoration projects for damaged
ecosystems are being carried out sporadically by department, space, and medium.
For more effective restoration of the natural environment, policy directions for each
department, space, and media should be approached to induce an integrated
restoration.
• Department: Most countries have several departments responsible for various

restoration activities (Douglas 2002). Therefore, restoration projects often overlap
because the restoration target, purpose, and approach are different for each
department. For this reason, if the restoration space overlaps or it is difficult to
clearly distinguish between the restoration projects by department, conflicts
between departments such as project promotion entities and responsible
workshops are concerned. To solve this problem, there is a way to first form an
organization in charge of restoration projects for the entire country beyond
ministries or a council organization. In addition, even within one department,
the fields are divided according to the spatial scope, so a general organization is
needed to systematically lead the restoration projects promoted by each
department.

• Space: The restoration project aims at the circulation of ecosystems in areas and
regions damaged by development, restoration of original ecological services, and
restoration of appearance. Therefore, restoration at the watershed level should be
considered in consideration of the linkage of the ecosystem. In general, restora-
tion at the watershed level has been regarded as important in the river ecosystem,
but it is desirable to apply it to the entire ecosystem due to the nature of the
ecosystem that affects each other. The need for an approach at the watershed level
has been raised by experts, and recent studies and guidelines related to domestic
and foreign restoration have also applied the watershed level approach as impor-
tant. Steiner et al. (2000) described that the watershed level approach emphasizes
interrelationships to clarify the relationship between biophysical and sociocul-
tural processes, and watershed-based planning is the most appropriate method for
ecological planning for limitedly sensitive areas.

• Components: Ecological components such as vegetation, soil, water, and atmo-
sphere composing an ecosystem influence each other and cycle. The concept of
the cycle of this ecosystem should be applied equally to the restoration project, so
that the integrated restoration between the components should be done. Most of
the budget for restoration projects is supported by the collection fee imposed on
development activities or the national treasury, and these budgets are often used
redundantly for similar restoration projects by departments. Therefore, for an
efficient restoration project, it is necessary to present a standard for restoration
priority by type of ecosystem. In addition, for efficient budget execution, an
integrated restoration system is needed, such as sequential restoration projects
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or simultaneous implementation of restoration projects for the same space
through a cooperative system between related ministries.

7 Technical Approach

Based on the damaged state and the properties of the ecosystem, the technical
approaches for restoration could be largely divided into the state requiring restora-
tion of the ecological infrastructure, restoration of the ecological environment, and
management.

• Physical and chemical restoration: The field that requires physical and chemical
restoration is the ecological-based environment field, which includes nonliving
fields such as topography, hydrology, hydrology and water quality, and soil and
geology. This kind of restoration could prevent ongoing deterioration, remediate
substrates, some level of native biota present (Gann et al. 2019). As a representa-
tive example, when the contaminants are removed through soil construction
suitable for the original topography by restoring the physical structure of the
topography and an environment in which microorganisms in the soil can inhabit
is secured, nutrients are accumulated through decomposers and other soil
organisms are actively activated (MOE 2011). As this ultimately contributes to
the restoration of the ecological environment such as forests, the restoration of the
ecological base environment becomes the basis for the restoration of the ecologi-
cal environment.

• Biological restoration: Ecological environment is a field for biological and
ecological restoration and restoration (including introduction) of species and
ecosystem components such as flora and vegetation restoration including habitat
and biotope restoration and fauna. Biological restoration is the restoration of lost
ecosystem components, such as species and habitats where species can inhabit.
This includes the combination and dispersal of species, predation relationship,
interaction, disturbance, and succession model, and it can be said to be the stage
of attracting wild animals through restoration of plant species. Reforestation is
kind of biological restoration.

• Management: Ecosystem management is principally focused on large, relatively
natural, and autonomous landscapes (Aplet 1998). The ecological level of the
restored space is determined depending on which management technique is
applied in the process of returning to the original ecosystem through physical
and chemical restoration and biological restoration. A restored space maintained
under high management intensity can represent an externally excellent natural
environment, but in terms of energy and material circulation, the space is operated
by human activities such as continuous monitoring, irrigation, use of fertilizer,
and spraying of pesticides. This can be judged as an ecosystem with low
autogenesis, and such restored ecosystem can be easily culled when management
is neglected or stopped, and the effect or result of restoration can be lost.
Therefore, the improved management technique should induce the restored
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ecosystem to maintain its own ecosystem and develop without excessive external
help, based on the principle of adaptive management (MOE 2011).

8 Roles of Remote Sensing for Forest Restoration

The first thing to be done in the forest restoration is to identify the exact cause and
area of the damaged forest. Through this, the purpose of restoration, approach
direction, and restoration technique that can remove or reduce the cause of damage
is determined according to the degree and condition of forest damage. Using field
methods to monitor the success of reforestation is also a complicated task involving
considerable temporal and financial resources. In this regard, remote sensing
methods are especially suited for early-stage detection, and it can help cope with
the widespread lack of timely, long-term, homogeneous, and reliable ground infor-
mation for restoration and monitoring management (Meroni et al. 2017). Here, we
use our review to summaries the major contributions and derive key opportunities to
make advancements in remote sensing application for forest restoration:

• Analysis of damaged forest: Examples of causes of damage are anthropogenic
pollution, climate change, and silvicultural activities. Other damaging agents are
biotic, e.g., insects and fungi; their effects on trees and forest ecosystems depend
on interactions between them, the trees and ecosystem processes, which may be
synergistic or antagonistic (Lovett et al. 2006). Physical damage like deforesta-
tion can be detected by monitoring through remote sensing data such as Landsat
since the late 1970s. Nowadays, airborne laser scanning (ALS) and radar images
are widely used in forestry because they provide accurate information about
canopy height and structure and the underlying terrain (Hyyppä et al. 2012).
Many studies related to forestry also use quantitative statistical method and
indices such as the leaf area index to assess change in the forest phenology and
structure (Fang et al. 2019). In addition, it is possible to acquire high-resolution
remote sensing data by using UAV and detect forest change caused by biological
damage such as PWD using deep learning algorithms (Yu et al. 2021).

• Selection of damaged forest for restoration: To establish an effective restora-
tion plan by related ministries and methods, the data base for the damaged forest
that was built in advance is needed. Most of the previous studies related to remote
sensing for forest restoration have been carried out to detect changes targeting the
area where the damage may have occurred. However, change detection alone is
not sufficient data for restoration projects. Based on the results of Lee et al.
(2020), by applying national standardized vector data sets institutionally used for
change detection worldwide, such as LULC maps and EIA maps, it can be
confirmed that it is possible to judge whether the detected forest damage is illegal
or not. In addition, if a data base for damaged forest is primarily established
through remote sensing analysis, the information necessary for the restoration
project was collected through field surveys with relatively less time and cost.
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• Management after forest restoration: The concept of forest management refers
to the process of planning and executing practices for the administration and use
of forests with the objective of meeting specific environmental, economic, social,
and cultural objectives (Abad-Segura et al. 2020). Remote sensing has been used
in a diverse range of forest management applications from mapping invasive
species to monitoring land-cover changes after restoration (Lechner et al. 2020).
For sustainable forest management, systematic monitoring and maintenance are
necessary. In addition, monitoring data can be helpful in planning new forest
restoration projects in the future by enabling the establishment of a direction
adjustment, improvement, and supplementation plan through detection when
unexpected problems occur after forest restoration.

9 Conclusion

Huge areas of the world’s forests are being degraded, and these changes are affecting
substantial losses of biodiversity. Destruction of forest ecosystems makes it impos-
sible for large mammals or highly mobile wild animals that require a wide habitat to
live, which may eventually become extinct or cause friction with humans by
invading into residential spaces. Therefore, forest restoration is an important practice
that would increase levels of biodiversity and human well-being. The economic
circumstances may determine the level of resources available and approaches for
restoration. Especially, monitoring is recognized as a costly and time-consuming
operation, and it is often not performed before and after a restoration project.
However, if monitoring is not performed, the evaluation of damage and restoration
recovery trajectories becomes impossible.

We have presented an overview of the current state and capabilities of remote
sensing in forestry. Remotely sensed data enable large area mapping and monitoring
of forest cover and change at regular intervals, providing various information. In
addition, remote sensing techniques to restore and monitor forest have advanced
remarkably in recent years. In parallel with the advance in sensor technology and
platforms, the processing and classification of remote sensing imagery are advancing
significantly. Techniques from computer vision, along with the use of artificial
intelligence algorithms including deep learning, are being applied to remote sensing,
and we are likely to see a transformation in the algorithms being applied, especially
for specific types of applications, such change detection, and species classification.
In addition, a mix of remote sensing and field measurements is necessary for
restoration projects and purposes. The technique of forest monitoring using both
remote sensing and field survey would increase the data quality compared to a
simple remote sensing monitoring, while reducing the cost compared to a simple
filed survey for forest restoration.

Lastly, it should be noted that various research on remote sensing applied in the
forestry to optimize forest restoration and management shows an upward trend.
However, in most laws or guidelines, there are no regulations for monitoring and
follow-up management using remote sensing, so it is difficult to link to actual
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restoration projects. It is necessary to prepare a plan for the use of remote sensing in
terms of institutional and policy aspects.
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Structure-from-Motion Photogrammetry
for Aboveground Biomass and Carbon
Storage Estimations in Forestry
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Abstract

Due to economical, ecological, and social changes over the last decade, managers
and researchers in nature-based disciplines intend to use both traditional and
innovative remote sensing (RS) technologies for best management practices. RS,
which has grown interest in forestry, offers rapid and reliable assessment tool to
monitoring and observing. Several successful studies in literature have indicated
that the RS use in forestry is light the way of the most effective evaluating various
forest ecosystems. Recent developing unmanned aerial platforms play as a
low-cost and inexperienced user-based multi-image processing by using com-
puter vision techniques for forestry studies. Forests, where are essential natural
resources for the future, are the pool of biomass and carbon storage, and they need
periodical monitoring to sustain. A sustainable management of carbon balance
and biomass in mountainous forests includes exhausting effort in field-based
studies. However, the RS as a tool for study on biomass and carbon storage can
be received as the most effective prediction and nondestructive method in com-
bination with structure-from-motion techniques. Considering recent opportunities
in data science and unmanned aerial vehicles (UAVs), RS and photogrammetry in
forestry have still played an indispensable role in the evolution of forests. This
chapter aims to review the recent advanced knowledge on the progress of the use
of UAV technologies in accordance with advanced photogrammetry-related
applications in the quantification of forest aboveground biomass and carbon
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storage. A comprehensive literature search has been performed on the use of
UAV-based SfM photogrammetry for UAV-based forest biomass and carbon
storage studies.

Keywords

UAV-SfM · Digital aerial photogrammetry · Remote sensing · Stand parameters ·
Timber volume · Carbon stock

1 Introduction

Studies on forest biomass estimation can provide important results for determining
the distribution and flow of materials in ecosystems and are necessary to understand
the dynamics of the forest ecosystem (Andersson 1971). Estimation of forest woody
biomass plays an important role in forestry for several reasons. Firstly, the planning
of forest woody assortments production, for main commercial roundwood assort-
ment and for assortments like “waste wood” or “recovered wood” as a potential for
energy purposes (firewood, wood bricks, wood pellets, etc.). Secondly, the estima-
tion of different parts of forest woody biomass as bole, branches, and foliage can be
used to better manage forest resources. Thirdly, forest woody biomass estimations
are useful to evaluate and understand (a) the stocks and fluxes of several biogeo-
chemical elements and (b) the amount of net primary energy production from forests
as a cleaner alternative to fossil fuels. In addition, forest biomass is an essential
variable mostly used in several ecological and ecophysiological models (Brown
1997; Chave et al. 2005; Návar 2009a, b; Richardson et al. 2002). Finally, in last two
decades, forest biomass estimation studies have received much attention due to its
importance in the evaluation of carbon sequestration and the carbon balance capacity
of forest ecosystems. It is well-known that forest ecosystems, being the most
important carbon sink, are a good tool to reduce the carbon content of the atmo-
sphere. Estimating the amount of carbon stored by forests is essential to support
climate change mitigation and promote the transition to a low-carbon emission
economy.

It is well-known by researchers, authorities, and publics that forests are major
terrestrial C sinks and sequester large amounts of atmospheric carbon dioxide (CO2).
Forest ecosystems contain large amounts of C in above- and below-ground biomass,
dead organic matter, and soil and contribute to significant annual C exchanges with
the atmosphere. All these components may play an important role in the carbon
storage and cycling of forest ecosystems. Article 2.1 of The Kyoto Protocol
addresses issues related to global warming and holds signatories accountable to
protect sinks and reservoirs of greenhouse gases, increase afforestation and refores-
tation, and promote sustainable forest management (Yavaşli 2012). Thus, in the last
few decades, many local, regional, and national studies have been carried out to
quantify the biomass of forest ecosystems and its potential carbon fixation. Those
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studies have reported that both forest plants and soils can sequester 60–80% of the
global terrestrial carbon (Perruchoud and Fischlin 1995).

Most studies have focused on precise assessment of CO2 emissions due to land-
use changes, forest fire, degradation, and other anthropogenic activities in order to
understand global carbon cycle and hence to make policies. So, biomass estimation
studies of forest ecosystems all over the world have received much attention to
reduce the uncertainties related to carbon cycle and emissions and find out the
sources and sinks of carbon (C) as a result of forest to degraded land and vice
versa as well as their temporal variations (Yavaşli 2012).

In many studies, the standard methodology for the estimation of tree, plot, and
regional aboveground biomass has been mostly allometric equations (Brown 1997;
Lingner et al. 2018). Dry weight measurements conducted on harvested trees, fresh
and dry weights of biomass components, and recording independent tree variables
are required to construct allometric equations at the species, stands, or tree commu-
nity levels. However, measuring forest biomass through field survey at a large spatial
scale is time-consuming and cost-expensive and thus is difficult to popularize
(Hermosilla et al. 2014; Van Leeuwen and Nieuwenhuis 2010; Dittmann et al.
2017). In addition to the large forest areas with the structural and geographical
complexity and heterogeneity of forests and the conflicts in methods for forest
measurements, precise mensuration of tree attributes with sufficient spatial and
temporal resolution is also time-consuming and cost-intensive, especially in natural
forest lands. Consequentially, the quantity, the frequency, and the parameter richness
of in situ forest measurements reveal the constraints in accordance with the budget
and the accessibility in forests.

The use of unmanned aerial vehicles (UAVs) both for small- and large-scale
forest management inventories has become quite widespread and also produce
accurate results (Wallace et al. 2012; Tuominen et al. 2015; Puliti et al. 2017,
2018b). The UAVs have high capacity to capture high- and ultrafine resolution
information on the forest canopy and also their versatility and availability increase
their uses for estimating forest management inventories. UAV systems represent a
low-cost, agile, and autonomous opportunity and thus make them an alternative
platform to satellites and aircrafts for forest inventory (Dandois et al. 2015; Sankey
et al. 2017; Puliti et al. 2019). Considering recent applications of UAVs, demands on
the usage of UAV-assisted surveys have increased suddenly in the last decade due to
the technological advancements on various fronts such as structure-from-motion
(SfM), machine learning, and robotics. The SfM photogrammetry provides surveys
with little cost and low technical expertise. Therefore, the potential of using UAVs
and consumer-grade cameras for terrestrial SfM-based surveys in forestry should be
considered in measuring for large-scale forest inventories.

Within the scope of this study, researchers conducted on aboveground biomass
and carbon storage in forest areas (coniferous or deciduous trees) were evaluated.
Particularly studies in which UAV-SfM techniques are used in biomass and carbon
measurements, which are the most important indicators for the reduction of pressures
in forest areas, especially climate change, and the management of forests and the
continuation of ecosystem services in a sustainable way have been reviewed.
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Advanced research option under web of science search engines was used to identify
the most up-to-date applications and researches. In the web of science core collec-
tion, the research area was chosen as “forestry.” A total of 15 recent publications
related to aboveground biomass (AGB) and carbon storage estimations with
UAV-SfM techniques were identified in the literature search made in the web of
science database. In the review process, AGB and carbon estimation publications
produced by manned flight, other than tree species, were excluded from the
evaluation.

2 A Very Brief Historical UAV Technology

Considering the history of remotely controlled unmanned aerial vehicles, hot-air
balloons can be seen on the development of the first attempts for UAV before 1800s.
The main technological development concepts of different type of UAV and
mounted equipment or payloads (human, sensors, or weapons) have been used in
the military and civilian purposes since early 1900s. In emerged unmanned flight
platforms from past to today, inventors, manufacturers, and beneficiaries have used
different terms, namely, “remote controlled aerial vehicles,” “remote controlled
aircraft,” “remotely piloted aerial systems,” “unmanned air platform,” “unmanned
aircraft,” “unmanned aerial systems,” “unmanned aerial vehicle” “drone,”
“hexacopter,” “octocopter,” “quadcopter,” “delta-wing,” as well as other specific
names such as “special purpose aircraft” and “unmanned combat aerial vehicle.” All
mentioned terms have still been use in the history of continued UAV development in
accordance with the technical usage function and the features of vehicles (Newcome
2004; Gupta et al. 2013; Keane and Carr 2013).

With the development of technology, there are many types of UAVs used for
civilian purposes today. This type of vehicle uses inertial measurement unit (IMU),
Global Navigation Satellite System (GNSS) receivers, sensors (different type of
camera, radar, and laser detection systems), digital memory cards for recording, and
telemetry system that transmits a data back to ground control station (González-
Jorge et al. 2017). Remotely controlled aerial platforms with many different features,
produced for fully automatic or semiautomatic hobby purposes, have become
widespread.

UAVs (capable of short-term flight with vertical or horizontal take-off feature),
which are used for nonmilitary purposes, are widely used today in different studies in
the field of science or social sciences, with the use of commercial or open source
software or self-programming. There are multipurpose vehicles that are almost the
size of a mobile phone and can be loaded with photogrammetric flight plans thanks
to the microprocessors inside. In addition, even amateur users have appeared as
“robots” with artificial intelligence that can safely return and land after the flight,
without experiencing an accident, by overcoming obstacles.
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3 UAV Photogrammetry in Forestry

UAV usage techniques and terms have increased rapidly in forestry, which has
become very popular in recent years. UAV-based SfM photogrammetry studies,
which are considered new in terms of forestry, have been used in various countries in
America, Europe, and Asia. With the widespread use of deep learning methods in
photogrammetry (metric photography), its usage area has increased rapidly. The
terms “close-range photogrammetry,” “digital aerial photogrammetry,” and “drone/
UAV photogrammetry” are used for UAV photogrammetry, which does not comply
with the definition of classical aerial photogrammetry classes. The term remote
sensing has started to be used with the use of satellites and the development of
technology. Similar methods can be applied for image processing and evaluation
stages in digital photogrammetry, which is currently used.

The use of UAV platforms and their sensors is increasing rapidly due to the
safety/security, cost, and time savings they provide in forested areas with difficult
terrain conditions (Banu et al. 2016). Within the scope of forestry studies, preferred
sensor combination expresses the use of both active and passive sensors. According
to the intensity of use, visible range (RGB), multispectral, and LiDAR sensors are
used in forestry (Dainelli et al. 2021). UAV-based forestry studies are carried out not
only to collect data from hard-to-reach forest areas but also to use remote sensing
techniques in all terrain conditions (Fig. 1).

As a result of recent advances and developments in UAV technology, the use of
UAVs, especially for photogrammetry, is becoming even more common in forestry.
In fact, the use of UAV photogrammetry has paved the way for the development of
numerous methods, applications, research, and strategies by enabling to look at the
problems that need to be solved in forestry from different perspectives. The diversity
of data obtained from the scientific studies using UAV photogrammetry (observa-
tion, cartography, and 3D modeling) has carried the forestry research to whole new
dimensions.

With various sensors mounted on UAV platforms, they have been used as spatial
data production tools in many scientific researches and variety of applications in the
field of forestry (Nex and Remondino 2014; Pajares 2015; Guimarães et al. 2020). In
forestry, cameras in the RGB (R = Red, G = Green, and B = Blue) and NIR (Near
infrared) spectral ranges are mostly preferred within the scope of UAV-assisted
photogrammetry studies. Then, hyperspectral cameras and LiDAR sensors are
preferred in the second place due to the cost constraints in applications. Currently,
LiDAR sensor or hyperspectral camera and data processing costs are still higher than
RGB and NIR band cameras (Torresan et al. 2017; Stone et al. 2016).

Aerial photography and satellite imagery, which have been used traditionally in
forestry for many years, use of deep learning techniques (i.e., random forest, support
vector machine, and convolutional neural networks) and UAV-imagery based pho-
togrammetry, which can be evaluated within the scope of digital aerial photogram-
metry, is structure-from-motion (SfM), paired with multi-view stereo algorithms
provide significant advantages for forest practitioners and researchers (Iglhaut et al.
2019). The SfM technique, which includes traditional photogrammetric foundations,
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Fig. 1 Photogrammetric flight mission with drone

has led to an increase in measurement studies within the scope of close-range
photogrammetry.

Through technological developments such as the development of more user-
friendly photo processing algorithms and the production of various cost-effective
sensors that can obtain various forestry-related data attract the attention of
researchers in utilizing advanced remote sensing technologies in the field of forestry
(Tang and Shao 2015). In the coming years, UAV photogrammetry use in forestry
will increase its popularity especially in estimating individual tree parameters (used
in tree recognition or disease detection in forests) with the decrease in the cost of
camera and image processing programs in hyperspectral bands (Dainelli et al. 2021).
For this reason, with UAV-SfM photogrammetry use in forestry, the next section
focuses on studies using consumer-grade cameras in the visible range RGB and NIR.
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4 UAV-SfM Photogrammetry Use in Forestry

Structure from motion (SfM) paired with multi-view stereo (MVS), namely, SfM, is
a technique that converts stereopairs taken with a UAV from a 2D plane to a 3D
point cloud. UAV-mounted consumer-grade RGB cameras or NIR cameras have
been use in to generation of image-based 2D or 3D models using various software
(i.e., Photoscan, Pix4D, MicMac, ReCap, VisualSFM, etc.), which effectively run
SfM-based algorithm (Lisein et al. 2013). To generate self-calibrated image-derived
products, UAV-SfM pipeline involve four basic steps: (1) image acquisition,
(2) sparse dense cloud producing, (3) georeferencing, and (4) 3D dense cloud
producing. Then, the generation of high-resolution models (orthophoto, mesh,
texture, and digital elevation models) can be derived by using 3D dense point clouds
(Fig. 2) (Remondino et al. 2014; Smith et al. 2015).

There is no standard for the values of the image processing quality that must be
entered by the user in the image processing steps with SfM. UAV-SfM imagery-
based derivation of 3D point clouds, which are LiDAR-like point clouds, can be
prepared for further processing in forest stand parameters (i.e., individual tree
detection, canopy cover, or canopy height model). To obtain stand-specific
estimations, image-derived point clouds can be processed by using local maxima,
marker-controlled watershed algorithm, template matching, valley following, scale-
space theory, and Markov random fields (Wallace et al. 2016; Mohan et al. 2021).

Cost-effectiveness, temporal resolution, and flexibility in working within the
scope of forestry increase the use of UAV-SfM method. Estimation of individual
tree parameters (i.e., tree height and crown widths) with UAV-SfM photogrammetry
has promising accuracy. Many variables are being investigated to increase the
quality of 3D point cloud. For example, closure, species, species compositions,
topographic structure, and other factors affecting locality can be taken into consid-
eration. The carrier platform and system features used in photogrammetric flights,
photogrammetric flight plan (such as flight altitude, flight speed, overlapping rates,
camera calibration), environmental conditions during flight (such as stand feature
and meteorological birds), image processing methods, and parameters are still being

Fig. 2 Simplified workflow of UAV-SfM
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investigated (Gülci 2019; Yurtseven et al. 2019; Kameyama and Sugiura 2020; Eker
et al. 2020; Nasiri et al. 2021; Swayze et al. 2021). Studies on the variables and
conditions that affect the prediction success of the UAV-SfM technique continue to
increase. Therefore, the success of estimation of stand parameters has been increas-
ing gradually.

The SfM techniques are effectively used in following subjects in forestry:
(1) individual tree detection and inventory parameters; (2) aboveground volume
estimations; (3) pest and disease detection; (4) species recognition and invasive plant
detection; (5) conservation, restoration, and fire monitoring; and (6) setting and
accuracy of imagery products (Dainelli et al. 2021). Among these subjects, the
most popular research topics are individual tree detection and inventory parameters
such as basal area, number of trees, diameter, and volume, which are crucial in
decision making process, and followed by the pest and disease detection.

There are recent examples of UAV-SfM-based forestry-related researches, which
mostly involve visible and NIR bands photogrammetry derived 3D point clouds.
These researches were conducted on forest uniformity (Michez et al. 2016; Hentz
et al. 2018); the characterization of vertical and horizontal variations of the forest
canopy (Jayathunga et al. 2020); an assessment of the estimation success in tree
height; tree crown cover and tree count for young stone pine stand and comparison
of SfM processing quality (Gülci 2019); tree crown parameter estimations by using
object-based image classification (Yurtseven et al. 2019); the mapping and classifi-
cation of forest tree species comparing field- and UAV-SfM-based timber volume
estimations by using allometric formulas (Gülci et al. 2021); mapping forests at the
species level (Grybas and Congalton 2021); monitoring health status in priority
riparian forests and detection of infects (Woellner and Wagner 2019; Guerra-
Hernández et al. 2021; Miraki et al. 2021); tree-stump detection, segmentation,
classification, and measurement (Puliti et al. 2018a); and forest road construction
and earthwork (Bugday 2018; Akgul et al. 2018).

Based on the results derived from the previous studies, the success in estimated
tree parameters of UAV imagery has great potential to use in forestry. For example,
biomass estimations of tree parameters determined by UAV-SfM have been carried
out with the help of allometric formulas for more than a decade (Dandois and Ellis
2010). On the other hand, UAV-SfM-derived orthophotos with high resolution
provide as a basis of image classification techniques (i.e., unsupervised or
supervised) for land cover analysis.

5 UAV-SfM Studies in Aboveground Biomass and Carbon
Estimation

Precise measurement of a tree biomass includes felling, weighing, and costly and
difficult stages. This cost will increase exponentially in forested areas depending on
the rough conditions of the land structure. In addition, ecological bases may not be
appropriate in many studies, depending on the amount of sample tree use. For this
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reason, more cost-effective biomass and carbon measurement techniques, which can
be alternatives in tree mass measurement, are used (Dittmann et al. 2017).

The techniques generally used in biomass estimations include (1) allometric
equations (field- and laboratory-based equations), (2) optical images (aircraft- and
satellite-based passive sensors), (3) radar (aircraft- and satellite-based active
sensors), (4) LiDAR (aircraft-and satellite-active sensor), and (5) SfM
(UAV-based passive sensors) techniques.

Alonzo et al. (2018) carried out inventory studies in coniferous and broad-leaved
forest areas. Tree density, basal area, and AGB estimates were made for white
spruce, black spruce, birch, and aspen species in the study, which was carried out
for a total of five different lands. In the study carried out with UAV-SfM photo-
grammetry, oblique and vertical photogrammetric image acquisitions were
performed with a DJI Phantom 4 Pro quadcopter with a 20 megapixel camera. In
oblique acquisitions, the nadir angle is set to 90° at a 90% overlapping rate at 100 m
flight altitude. In their vertical flights, they flew with the camera at a narrow angle
(20° off nadir) from a height of 70 m. The total duration of single grid flights for
100 m and double grid flights for 70 m was 12 min. They have established a total of
five ground control points (GCPs). In the study, firstly, with the RGB point cloud
from UAV-SfM, it was investigated how accurately boreal forest tree species could
be classified at the crown scale. Five basic steps have been followed to achieve
this goal: (1) identifying the crown areas from the point cloud; (2) estimating
structural and spectral variables for each segment; (3) classifying each segment as
birch, aspen, white spruce, black spruce, or shrub; (4) calculating crowns at USDA
FIA subplot level to estimate tree density (TD), basal area (BA), and AGB; and
(5) comparing the TD, BA, and AGB model without segmentation at the subplot
level. In the study application, Pix4D software was used for digital photogrammetric
processes. They preferred watershed segmentation and then mean-shift segmentation
methods in generating canopy height model (CHM) from point clouds. Except for
one of the trial areas, the height errors were calculated to be below 1 m.With the help
of allometric formulas, estimations were made for conifers by using tree height
values (R2= 0.75, RMSE= 2.5 cm). On the other hand, the diameter at breast height
(DBH) estimates based on crown width was lower (r2 = 0.35, RMSE = 5 cm).
Segment volumes substantially improved modeled AGB compared to subplot-level
height metrics (R2 = 0.92, RMSE = 13.5 Mg ha-1, %RMSE = 27.1) in their study,
where they stated that the TD values calculated on a single tree basis and on a trial
area basis varied.

Otero et al. (2018) obtained CHM from the point cloud produced by the
UAV-SfM technique. Biomass estimations of Rhizophora apiculata Blume and
R. mucronata Lamk species were performed. They produced orthomosaic and digital
surface model (DSM) with Photoscan software. Tree height information was
estimated with CHM, in which Gaussian filter was applied. The package program
“rLidar” (Silva et al. 2015) in R was used to process the CHM. CHMs have been
introduced with the local maximum function with a fixed window size application.
According to forest inventory, different values for Gaussian filter and a window size
were compared for the best thresholds. A quadratic formula (R2= 0.75) that explains
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the relationship between height and AGB by making use of allometric formulas was
used in the calculations of AGB (Mg ha-1) (Eq. 1):

AGB= 23:5- 6:5×Heightþ 0:8×Height2 ð1Þ
Fernandes et al. (2020) used a combined field and multispectral imagery approach

to assess C stock of three dominant species (i.e., Acacia dealbata Link, Alnus
glutinosa (L.) Gaertner, and Salix salviifolia Brot.), understory, and soil biomass
in the Mediterranean riparian. Object-based image analysis (OBIA) was performed
for species classification and segmentation from unmanned aerial vehicle (UAV)-
based images. UAV SenseFly eBee platform is used as an aerial platform with RGB
camera and Sequoia Parrot (multispectral camera). The photogrammetric flight
height was 120 m with 80% of forwarding and side overlaps for RGB and 100 m
for multispectral images. In the data acquisition, a total of 12 GCPs were used.
Working with SfM logic, Pix4DMapper was used to process block images. Then, the
aboveground biomass was calculated based on the allometric formula. A simple
nonlinear model (R2 = 0.94, MSE = 4.5) was developed for Salix salviifolia, an
endemic species (Eq. 2). A coefficient of 0.5 (tC ha-1) was used as the carbon
conversion factor:

AGB= 0:1758×DBH2:1314 ð2Þ
In their study, based on image classification, it was concluded that multiband

UAV image data directly supports the conservative ability to classify in-forest
waterfront species and indirectly predict tree AGB. No metrics are specified for
the estimated carbon content and AGB prediction accuracy.

Wang and Lin (2020) performed photogrammetric flight with a RGB sensor
platform mounted on a fixed-wing type UAV and performed biomass estimations.
DSM, DEM, and CHM were obtained by processing the 3D point clouds produced
with SfM in an area with sparse coniferous species. Tree crown widths were
determined using the OBIA technique on the orthorectified map. Tree heights
were estimated using CHM. Photogrammetric flight plans used SONY ILCE-5100
brand camera from 400 m height with 60% side and 80% front overlap. In the
processing of photo blocks, point cloud and orthorectified map were obtained with
Acute3d context capture. They have established 24 GCPs in the field. TerraScan
software with the gradual encryption algorithm was used to generate CHM from
point cloud. They used new height estimates using a linear regression model
between tree height measurements and estimates. In tree height estimations,
R2 = 92 and RMSE value was calculated as 1.08 m.

Castellanos-Galindo et al. (2021) studied comparison of ground-based,
UAV-based, and radar-based measurements in estimation of stand characteristics.
They performed a photogrammetric flight from 100 m using the DJI Phantom Mavic
Pro and the Drone Deploy app. GCPs could not be established in the mangrove
forest, which is very densely closed. Point cloud and orthomosaic were produced
from block images taken at nadir angles with Agisoft Metashape. Tree diameter



Recent Advances in UAV-Based Structure-from-Motion Photogrammetry. . . 405

Fig. 3 The most frequently used words and abbreviations in AGB and carbon studies of UAV-SfM
photogrammetry

(DBH) and height measurements were performed in the field. The digital surface
model was correlated from the heights that could be measured in the field, and the
tree heights could be estimated as a result. They used allometric formulas for AGB
calculations. They used the pantropical tree allometric model to estimate the biomass
of trees (Eq. 3) (Chave et al. 2014). In the formula DBH in cm, height represents tree
height in meters, and p represents wood specific gravity in g cm-3. The mean value
of the wood specific gravity values ( p) was used for Rhizophora spp. by authors:

AGB= 0:0673× pDBH2 ×Height
� �0:976 ð3Þ

Based on the researches reviewed in the study, the following important points
emerged for the future studies on aboveground biomass and carbon storage estima-
tion using UAV-SfM method. First of all, the most widely used UAV platforms
would be those that can take off vertically and have short flight distances. UAV-SfM
biomass and carbon estimation researches will be among the promising studies in
medium- and small-scale forestry studies. Combining it with LiDAR or field
measurements (ground photogrammetry and GNSS surveys) in forest areas with
high stand cover will increase the success of AGB and carbon estimation. The
100 most highlighted word clouds in the results, discussions, and conclusions of
the forest biomass and carbon studies examined are shown in Fig. 3.

Log mass calculation can be made with the help of allometric formulas produced
on the basis of individual trees. For biomass and carbon calculations, improvements
are needed in the biomass estimations of allometric formulas obtained as a result of
terrestrial measurements in forestry. As a result of the development of allometric
formulas that have a relationship between crown width and tree height for tree
species, it is expected that the success of the prediction of the aboveground biomass
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(Gülci et al. 2021) and thus the carbon amount will increase. In addition, since even
the same species may show different morphological characteristics in different forest
ecosystems, it is necessary to develop site-specific formulas by classifying them
(Tiwari and Singh 1984).

There are difficulties in performing biomass estimations with UAV-SfM due to
the presence of trees of different closures, ages, and types in protected areas:

• Detection of errors caused by point cloud estimations due to tree crown forms.
• Preferring UAV platforms with sensitive GNSS modules (such as D-RTK or

RTK) in difficult conditions where GCPs cannot be obtained.
• Reducing the losses incurred when processing images.
• SfM-based programs should be designed in an easier and more understandable

way, as it can be complex for people who are not experienced in processing point
cloud.

6 Conclusion

AGB and carbon storage in forestlands cannot be directly measured by using
UAV-SfM; however, some of biophysical attributes can be obtain by using
UAV-mounted optical sensors considering SfM technique. Our findings show
UAV-SfM photogrammetry can provide individual tree attributes such as tree height
and canopy cover area via processing 3D point clouds. On the other hand,
SfM-based generated orthomosaics can be classified by using supervised or unsu-
pervised classification techniques. To improve image classification accuracies, dif-
ferent vegetation indexes, which can be derived from multispectral camera, can
improve AGB estimations in forests with high canopy cover or riparian zones.
Furthermore, research on carbon storage will be increased in forestry when the
cost of hyperspectral camera and LiDAR sensor reduce by time. UAV-SfM-based
AGB estimation, which is a nondestructive method, will be increased with the help
of developed computer vision technology as well as experts.
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Hyperspectral Identification of Selected
Dipterocarp Montane at the Species Level

Nisfariza Mohd Noor

Abstract

The ecosystems of rainforests in Peninsular Malaysia are complex. The assess-
ment and monitoring using the traditional land-based survey methods for these
ecosystems are costly and time-consuming. It is an advantage for remote surveil-
lance, especially when dealing with inaccessible areas. Remote sensing for forests
mapping, species distribution, aboveground biomass, and carbon stocks alloca-
tion is emerging at this very moment. The technology enables regular monitoring
of difficult forest areas and data captured from remote sensors analysed for the
deduction and information gathering of the local and world forest cover. Each
object reflects unique electromagnetic radiation, which is the foundation behind
spectral identification. Vegetation covers such as agricultural plots, urban for-
estry, or urban landscape are simple due to the accessibility of the and limited
numbers of species. However, remote sensing of tropical forests is a big challenge
due to the hilly surface and the abundant species. Remote sensors are developed
using different utility types of sensing approaches for observing the earth
surfaces, namely, the optical sensors (multispectral and hyperspectral),
RADAR, and LiDAR. Hyperspectral can harvest the minute disparity or changes
of the reflectance of a vegetation cover. The use of hyperspectral for vegetation
spans from vegetation species identification, pest and disease detection, and many
more. This chapter presents the use of spectroscopy sensors and analytics to
discriminate the several species of dipterocarp in forest areas of Semangkok,
Selangor, and their spectral library and general distribution of the forest species
with their biophysical properties in the montane strata.
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1 Introduction

Research on remote sensing vegetation is one of the main interests of many
researchers; vegetation covers such as agricultural plots, urban forestry, or urban
landscape are easier to study due to the accessibility to the study area and minute
numbers of species. However, remote sensing of forests especially in the tropics is
quite a challenge due to the enormous numbers of species and hilly surfaces. This
chapter presents the species identification of selected dipterocarp trees in montane
structures of Semangkok Forest Reserve. Remote sensing technology is not a
replacement for field surveys, but a complementary tool for supporting the research
and analytics and should be conducted simultaneously until a significant correlation
or model between ground assessment and remote sensing is developed. During the
data collection campaign, wemanage to obtain spectral datasets of 16 dipterocarp spe-
cies in the montane forest of Semangkok. However, only four dipterocarp species
were presented. The spectral analysis of selected dipterocarp species is focusing on
identifying the spectral curve of floral biodiversity using the hyperspectral remote
sensing technique in the Semangkok forest.

2 General Introduction of Tropical Rainforests

The tropical rainforest (in Malaysia is called Hutan Hujan Tropika) is one of the
utmost miscellaneous ecosystems on this planet (Denslow 1987; Myers et al. 2000;
Kettle 2010). Salinas et al. (2021) generally referred to as the tropical montane forest
(TMF) and are found on most of Earth’s continents along variable elevation ranges,
the area covered by tropical and subtropical montane forests is around 305 million
hectares, and about 13% of the area covered by tropical and subtropical forests. Trop-
ical rainforests cover less than 7% of the planet’s land mass, which is about half of
the forest in this planet (Wilson 1988; Bierregaard et al. 1992). Amazingly, these
ecosystems are habitat to half to two thirds of the species of flora and fauna on the
earth (Newman 2002). The eco-region of the Malaysian rainforest is categorised into
the Tropical and Subtropical Moist Broadleaf Forests in the Indo-Malaya biogeo-
graphic realms (Olson et al. 2001). Approximately about 40–75% of all living
creatures on this planet originated from this type of forest (Denslow 1987), and for
this reason, the tropical rainforest is also called a jewel of the earth and the “world’s
largest pharmacy” due to over one-quarter of natural antidote (mostly derived from
vegetation) that has been discovered within this forest (Maiti and Maiti 2011).

Tropical rainforests can be found in three major geographical zones between the
latitudes of 22.5° north and 22.55° south of the equator which is in the regions of
Central America (in the Amazon River basin), Africa (Zaire basin, with all small
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zone in West Africa and eastern Madagascar), and Indo-Malaya (west coast of India,
Assam, Southeast Asia, New Guinea, and Queensland, Australia) (Denslow 1987;
Olson et al. 2001). Unfortunately, it was approximated that at least 70 million ha of
forest are depleted and extensively logged in Southeast Asia (SEA) (Adjers et al.
1996; Myers et al. 2000). The biodiversity of tropical montane in Southeast Asian
forests are solemnly in danger (Sodhi et al. 2010; Chechina 2015) due to the high
deforestation rate and threat to loss the biodiversity in 2100 (Sodhi et al. 2010).

Characterisation of spatial distribution of global forest in terms of extent, loss,
and gain are reported by Hansen et al. (2013). Globally 2.3 million km2 were lost,
and 0.8 million km2 were gained from replanting program in 12 years. The topics
exhibit greatest losses and gains.

Recently, Feng et al. (2021) reveals increasing mountain forest loss across
Southeast Asia using high-resolution satellite and indication and quantification of
carbon loss from forest clearance. Encroachment of forest at higher altitudes
influenced the roles tropical forests play in the context of global climate mitigation,
biodiversity conservation, and global carbon cycling. The acceleration in forest loss
also affects biodiversity conservation in the region because a substantial number of
endemic species are found in the mountains of SEA (Sodhi et al. 2010).

Peninsular Malaysia encompasses an area of 13.2 million ha. This region is
situated between latitudes 1°20′ and 6°45′ N and 100° and 104°30′ E. A mountain
range runs along peninsula region with peaks more than 2000 m, more than 60% of
the region is undulating lowland surface, less than 300 m above sea level about 35%
is hilly with elevations of 300–1300 m, and the remainder peninsula surface is
extremely mountainous (FAO 1981; Brown et al. 1994).

The lowland dipterocarp forests of Peninsular Malaysia were cut for agriculture
purposes before 1966. Thus, Peninsular Malaysian forests have been placed on
Conservation International’s list “hot spot” due to its megadiversity which plays
especially key role in maintaining present and future diversity of the world. The
tropical rainforests can be responsible to numerous ecosystem services including
freshwater management, carbon storage, and soil protection (Myers et al. 2000).

3 Introduction on Dipterocarp Species

Dipterocarps are tropical evergreen rain forest trees, biologically suitable for warm
and uniform moist conditions. Climatic variations contribute to the distribution of
the dipterocaTanirps at altitude lower than 1200 meters. The dipterocarp forest is
divided into low dipterocarp forest and hill dipterocarp forest. It is the predominant
family of timber trees in the tropical evergreen rainforest of Malay Peninsula (now
Peninsular of Malaysia) and are closely related ecologically and floristically to
Borneo and Sundae Shelf. Several Malayan genera can be found in India, Ceylon,
the Philippines, and New Guinea (Symington 1974). Dipterocarpaceae (or “two-
winged fruit”) is a tree family of 17 genera (Maury-Lechon and Curtet 1998), and
13 genera are restricted to Asia (Bawa and Seidler 2008; Myers et al. 2000). In
addition, around 695 dipterocarp species managed to be identified all over the world
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(Bawa 1998). Studies have shown that up to 90% of the dipterocarp species are
restricted to Asia (Myers et al. 2000) and, surprisingly, 10 genera and 99 species are
exclusively only can be found in South Asia (FAO 1985). Numerous numbers of
dipterocarp trees can be found in the Philippines (65 spp.), Sumatra (106 spp.), the
Malay Peninsula (155 spp.), and Borneo (267 spp.) (Chechina 2015; Corlett and
Primack 2005; Myers et al. 2000). According to Symington (2004), Shorea (196 spe-
cies), Hopea (104 species), Dipterocarpus (70 species), and Vatica (65 species) are
top four of the biggest genera in Dipterocarpaceae family. Corlett and Primack
(2005) stated that it is a common thing to find 25 or more species of Shorea and
6 or more species of the other tree (Hopea, Dipterocarpus and Vatica) genera in any
one forest in Sumatra, Borneo, or Malay Peninsula.

Symington (2004) stated that the greatest diversity of Dipterocarpaceae occurs in
Borneo. Most of the Malaysian pristine tropical rainforest is commonly featured by
the dominance existence of trees from Dipterocarpaceae family (Symington 2004),
and this tree family typically forms high portion (nearly 30%) of the floristic
composition in the emergent and canopy strata (Schulte and Schöne 1996; Whitmore
and Burnham 1975). In addition, Appanah and Turnbull (1998) and Chechina (2015)
stated that dipterocarp trees generally inhabit mature stages of primary forest, and
sometimes they also seem able to colonise secondary forest.

4 Hyperspectral Remote Sensing of Forest

Remote sensing has been shown to play an important role in providing more
continuous and detail monitoring data in many fields such as forestry (Berry and
Ripple 1996; Dalponte et al. 2011) even at the most isolated and unreachable areas
(Kalacska and Sánchez-Azofeifa 2008). The study of vegetation spectra is one of the
most important remote sensing applications since vegetation covers a large area of
the earth and plays important role in assuring its sustainability. Hyperspectral remote
sensing refers to a lot of wavelengths measured by the hyperspectral sensor. This
means that hyperspectral remote sensing provides ample spectral information to
identify and distinguish spectrally unique materials, thus providing the potential for
more accurate and detailed information extraction than other types of remotely
sensed data. The spectral library is a key to exploring the hyperspectral imaging
detection and mapping of dipterocarp species on airborne or UAVs (Jusoff 2007).
Hyperspectral remote sensing is divided into imaging and non-imaging systems. The
non-imaging usually refers to as spectroscopy or spectroradiometry. Hyperspectral
data have details and accuracy that allow phenomena and concepts to be extended
beyond traditional remote sensing. Thus, provide opportunities to precisely identify
earth surface phenomena than is normally possible with broadband sensors
(Campbell and Wynne 2011).

Energy interactions between objects are often specific. Specificity is the key to
distinguishing objects for ascertaining certain characteristics. Spectral reflectance is
a function of wavelength and of the properties of the object. This means that the
spectral reflectance of different objects almost equal at certain wavelengths but
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different at other wavelengths. The image of vegetation from an aerial viewpoint
integrates the effects of leaves, stems and branches, flowers, and other elements of
the plants with the background soil; it is called the spectral signature.

The spectral signatures of vegetation are modified by leaf type and morphology
(Sims and Gamon 2002), leaf physiology, and chlorophyll content (Blackburn
1998). Spectral analysis or spectrum analysis is analysis in terms of a spectrum of
electromagnet frequencies or related quantities such as energies. In specific areas it
may refer to spectroscopy in chemistry and physics, a method of analysing the
properties of matter from their electromagnetic interactions.

According to Roberts et al., most narrowband or hyperspectral systems are able to
accumulate a big capacity of data in wavelengths that are extremely correlated from
one another. One of the advantages of the hyperspectral data is the sample data can
be utilised for statistical analysis during the discrimination of tree species utilising
reflectance spectra. Different tree species have different spectral signatures due to
different plant materials, nitrogen content, amount of pigment, carbon content, water
content and other plant properties (Asner 1998). Hyperspectral remote sensing is
believed to be more practicable compare to other remote sensing systems due to its
special features like possessing high spatial resolution with contiguous and narrow
bandwidths that permit this spectral technology to be examined earth surface
topographies more clearly and precisely. Compared to multispectral imagery;
hyperspectral imagery can be utilized to map tree species within forested areas
(Mohd Azahari et al. 2011). Biodiversity mapping have been attempted by several
researchers using airborne hyperspectral systems in Afizzul et al. (2021), Kishore
et al. (2020), Vaglio Laurin et al. (2014), Mohd Azahari et al. (2011), Mohamad
Hasmadi et al. (2010), Jusoff (2006), Jusoff (2009), Jusoff (2013).

5 Study Area

The Semangkok Forest Reserve is located in Ulu Selangor, Selangor, Malaysia (3°
37′ N, 101° 44′ E) . The estimated terrain elevation of Semangkok forest is
approximately 950 MSL. The Semangkok Forest Reserve is a 28-ha virgin jungle
reserve surrounded by secondary forests that were selectively logged in the 1980s
(Niiyama et al. 2016, Nakaya and Tani 2016) the dipterocarps trees are undergoing
fast disappearing mostly due to the influence of human interference such as logging.
This has bad impacts on economic growth and eventually on the Mother Nature as a
whole. These consequences have then drawn considerable attention to forest man-
agement in order to conserve and preserve this unique dipterocarps forest ecosys-
tem. During the random sampling of the Semangkok Forest Reserve, we observed
several plots with plot markings, and the dipterocarp trees were also tagged. The
Semangkok Forest Reserve has been studied comprehensively under the joint
research between the Forest Research Institute of Malaysia and the Japanese Inter-
national Research Center for Agricultural Sciences (JIRCAS) for research develop-
ment and monitoring of forest regeneration (Tani et al. 2015). It is a challenging task
to track down, categorize, and map dipterocarps trees, especially in highly mixed
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heterogeneous and hilly tropical rainforests like in the Semangkok Forest Reserve.
The average annual rainfalls are 2,414 mm, and the average annual minimum and
maximum temperatures are 21.9 °C and 33.0 °C, respectively (Saifuddin et al.
1991). The periphery of Fraser’s Hill and Semangkok is marked on the state border
in between Selangor and Pahang in the road entrancing Fraser’s Hill near the gap.
Thus, this chapter eventually acquaints Frasers’ Hill as a geographical or common
reference on the location of the study area.

6 Biodiversity Profile and Biophysical of Selected
Dipterocarp Species in Semangkok Forest

Studies of floristic composition of hill and montane forest in Semangkok Forest are
not well diverse as compared to Fraser’s Hill. Most of the studies were correlated
with the montane forest structure, floristic variation, and physiognomic criteria
consistently with altitudinal vegetation zones, forest regeneration, and sustainable
forest management. (3° 37′ N, 101° 44′ E) The Semangkok Forest shown a well
dynamic of floristic composition and vegetation changes along altitudinal gradient
will be well explained according to variation of microhabitats and microclimate. The
average annual rainfalls are 2,414 mm, and the average annual minimum and
maximum temperatures are 21.9 °C and 33.0 °C, respectively (Saifuddin et al.
1991). Fraser’s Hill and Semangkok Mountain (including Semangkok Forest
Reserve) are in the undulating environment and on transboundary forest system, that
is a sensitive with and fragile ecosystem and that holds a key area for highland
biodiversity.

The condition of Semangkok Forest is good and stands as a reserved forest. The
presence of various types of vegetation like liana, rattan, and palm species and
various types of fauna makes a good indicator a virgin forest. Figure 1 exhibits
Semangkok Forest with a variety of floristic and physiognomic criteria.

This chapter only focusses on Dipterocarpaceae due to its economical and
ecological importance within Semangkok Reserve Forest region. The tree family
Dipterocarpaceae plays a major role in both the economic and environmental values
(Appanah and Turnbull 1998) such as providing many ecological services and goods
to a rising population (Kettle 2010). According to Ghazoul (2016), there are about
157 dipterocarp species which can be found in Peninsular Malaysia and 30 diptero-
carp species are endemic to Peninsular Malaysia. Besides playing a vital role as a
supplier for excellent quality timber species, the member of this family also provides
us with valuable secondary products (products that come out of a production process
in addition to the main product) or non-timber products such as essential oils,
balsam, and resin (Appanah and Turnbull 1998; Ghazoul 2016).
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Fig. 1 Various of floristic and physiognomic criteria in Semangkok forest

7 Methodology

The methodology adopted in this chapter is presented in Fig. 2.
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Fig. 2 Flowchart of the methodology adopted in the study

7.1 Random Sampling and Selection of Dipterocarp Species

The data collection was done in a primary hill dipterocarp forest in the Semangkok
Forest Reserve. The field campaign was carried out from 2017 to 2018. Fresh leaves
from randomly selected dipterocarp trees were collected within 6 ha of Semangkok
Forest Reserve plot areas. The sampled tree stand was tagged using a metal tag, and
the coordinate was recorded for mapping purposes using Trimble Juno 3D. In
occasions trees were randomly sampled with tags from previous researcher’s cam-
paign. Random sampling was established for selection of the dipterocarp trees due to
the random distribution of the species, challenging topography, and no previous
census data.

The dipterocarp tree selection and leaf samples were collected with the help of
indigenous people (Orang Asli Temuan) from nearby indigenous settlement in
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Fig. 3 Field data collection

Kampung Pertak and experienced forester. Leaf samples were collected from crown
of individual study trees manually using slingshot. Efforts and extra care were also
taken to only collect healthy green, mature, and homogenous in colour (without
anthocyanin pigmentation) as well as perfect (without visible symptoms of rot or
disease). The tree species were identified later reconfirmed with herbarium records.
The forest stand data acquisition was collected during the sampling; DBHDiameter
at breast height (DBH) (diameter at breast heightDiameter at breast height (DBH)),
height, and altitude of each tree stand sampled were recorded accordingly using 20m
DBHDiameter at breast height (DBH) tape and height using a rangefinder. Six to
eight leaves were plucked using the sling shot slingshot for each tree samples. The
leaves were kept in a transparent ziplock bag recorded, numbered, and kept in a cool
box to maintain their freshness for spectral data collection. Figure 3 exhibits the data
collection campaign.

A total of 320 leaves from 40 tree crowns were sampled. Ten individual trees
for each dipterocarp species. In this campaign, we obtained pure spectral reflec-
tance of twenty dipterocarp species. However, due to random sampling, challeng-
ing topography and rare occasion of the existence of certain species, spectral
information on several species has yet to be completed for significant band
selection. Only species with complete number of sample (ten trees per species)
were analysed statistically.
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7.2 Biophysical Information

Four species have been selected for this research which are Dipterocarpus
grandiflorus (Keruing belimbing), Shorea acuminata (Meranti rambai daun),
Hopea dryobalanoides (Merawan mata kucing hitam), and Shorea macroptera
(Meranti melantai). Table 1 shows the details about data collection of four selected
dipterocarp species.

7.3 Mapping of the Study Area

The restricted topography map with the scale of 1:50,000, Series L7030, Sheet
No. 3759 and 3859 (Tanjong Malim and Raub) published by the Department of
Survey and Mapping Malaysia (JUPEM) in 1993 was scanned, georectified to
WGS1984, UTM Zone N47 and EPSG:32647 and digitised as the base map for
reference on the spatial distribution of the dipterocarp species sampled.
The geotagged coordinate of each tree stand were added into the base map of the
study area. Figure 4 shows the study area with the distribution of dipterocarp sample
in Semangkok Forest, Ulu Selangor.

During the campaign, samples were recorded on the following dipterocarp
species: Shorea maxwelliana (Balau kumus hitam), Shorea hopeifolia (Damar
hitam siput jantan), Shorea ovalis (Meranti kepong), Anisoptera curtisii (Mersawa
kuning), Shorea leprosula (Meranti tembaga), Anisoptera laevis (Mersawa durian),
Shorea pauciflora (Meranti nemesu), Shorea parvifolia (Meranti sarang punai), and
Shorea bracteolata (Meranti pa’ang). All measurements of biophysical and spectral
were observed, but the total number of samples is not up for the statistical analysis.
Figure 5 shows the species of dipterocarp and their locations in the Semangkok
Forest Reserve.

Table 1 Biophysical information on the selected dipterocarp species

Status (IUCN/
Malaysia Plant Red
List

Size,
DBH
(cm)

Height
(m)

Altitude
(m)

Dipterocarpus grandiflorus
(Keruing belimbing)

Endangered/least
concern

7.4–35.4 13.0–30.0 545–559

Shorea macroptera (Meranti
melantai)

Least concern 13.0–88.0 15.0–37.0 500–550

Shorea acuminata (Meranti
rambai daun)

Least concern 9.0–72.0 7.0–32.0 494–541

Hopea dryobalanoides
(Merawan mata kucing hitam)

Least concern 6.7–63.0 10.0–27.5 308–540
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Fig. 4 GIS map exhibiting the sampling area and the highland topography and river streams of the
sampling area

7.4 Spectral Reflectance of Selected Dipterocarp Species

Spectral information and plant canopy functional traits and biodiversity have been
developed in the Spectranomics approach, to provide time-varying and scalable
methods for remote sensing of forest biodiversity (Martin 2020). Spectral
measurements of the leaves were taken using the GER 1500 field handheld
spectroradiometer manufactured by Spectra Vista Corporation, New York, USA.
The spectroradiometer covers the wavelength range from 350 to 1050 nm with
514 spectral bands separated at 1.5nm. The GER 1500 was attached to a leaf
probe with light source to record the spectral signature of each dipterocarp species.
Dipterocarps leaves were sampled from the upper portion of tree crowns to avoid
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Fig. 5 The distribution of Dipterocarp samples in Semangkok Forest Reserve

sample variability caused by the light environment. Leaf samples that are exposed to
sunlight are more applicable for the remote sensing context of this study owing to at
the top of a tree canopy they powerfully affect remote spectral measurements
(Rivard et al. 2008). Six best leaves from each individual dipterocarp tree were
chosen and wiped with a paper towel to remove any water and other substance.
The spectroradiometer was set to reference mode by obtaining the reflectance of a
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Fig. 6 The first derivative spectra of the (a)Dipterocarpus gandiflorous, (b) Shorea acuminata, (c)
Hopea dyrobalanoides, and (d) Shorea macroptera

white reference. A black cloth with high absorbing material was used in the
GER1500 equipment set-up to remove any background signal and increase spectral
purity during the spectral measurement. The spectroscopy measurement for spectral
reflectance is also known as non-imaging hyperspectral technique. Hyperspectral
can pick up the minute difference or changes of the reflectance of the vegetation
cover. A massive ground samples are required to develop dipterocarp spectral
signatures with ancillary data (tree height, DBH, biomass, biophysical information)
at the same time of spectral data sampling.

A number of 320 leaf samples were plucked/slingshot from 40 trees that represent
the dipterocarp species; Fig. 6 portrays reflectance curve or spectral signature of four
dipterocarp species, namely, (a) Dipterocarpus grandiflorus (Keruing belimbing)
(b) Shorea acuminata (Meranti rambai daun), (c) Hopea dryobalanoides (Merawan
mata kucing hitam), and (d) Shorea macroptera (Meranti melantai).

Figure 7 shows the spectral reflectance for (a) Dipterocarpus grandiflorus
(Keruing belimbing), (b) Shorea acuminata (Meranti rambai daun), (c) Hopea
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Fig. 7 First derivative analysis (without smoothing) of Dipterocarpus gandiflorous, Shorea
acuminata, Hopea dyrobalanoides, and Shorea macroptera

dryobalanoides (Merawan mata kucing hitam), and (d) Shorea macroptera (Meranti
melantai).

8 Spectral Analysis of Dipterocarp Species

8.1 Derivative Analysis

First derivative analysis of spectra is the most common and simple analysis in
spectroscopy to analyse contiguous spectra through reflectance measurements
(Demetriades-Shah et al. 1990; Dawson and Curran 1998; Zarco-Tejada et al.
2003; Nisfariza 2012). It involves the calculation of the slope or rate of change of
reflectance with wavelength. Derivatives are useful to reduce the effect of multiple
scattering of radiation due to sample geometry and surface roughness and for
locating the positions of absorption features and inflection points in the spectra.

The derivative analysis of spectra reflectance was used primarily to locate the
position and height of the inflection point of the red edge. The first difference
transformation of the reflectance spectrum was obtained from the polynomial fit
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by calculating the first derivative. In this case, the red-edge peak in the derivative
spectra was composed of the peak maximum usually between 680 and 750 nm and
calculated by the XLSTAT. The first derivative was calculated using a first differ-
ence transformation of the reflectance spectrum (Dawson and Curran 1998).

Data and manipulation for the raw data were carried out in XLSTAT; the spectral
reflectance features of each dipterocarp trees species and the average reflectance
were calculated for each distinct species of tree leaves. Each of the individual spectra
is plotted as a spectral curve graph and examined to make sure no incorrect values to
be amalgamated into the subsequent analysis as well as to determine tree species
curves for dipterocarp trees.

The first derivative reflectance (FDR) of all four species are shown in Fig. 7 from
average of all leaf samples of each dipterocarp species, while Fig. 6 shows a set of
reflectance spectra of based on every sample taken on Dipterocarpus grandiflorus,
Shorea acuminata, Hopea dryobalanoides, and Shorea macroptera. From the set of
spectral reflectance of each sample, the derivative analysis has been made through all
the reflectance of leaf samples. The result of derivative analysis of reflectance for
each species is shown in Fig. 7a–d.

8.2 Ratio of Derivative Peak

The reflectance spectra for each group of four selected dipterocarp species were all
plotted together. Figure 8 illustrates that the most intense difference in terms of
shapes and amplitude observed from derivative spectra lies in between wavelength
711.16 and 714.29 nm; the highest peak is at 718.99 nm, and the amplitude change
can be also observed at wavelength 723.68 nm. These peaks can be further analysed
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Fig. 8 The reflectance spectra for each group of four selected dipterocarp species plotted together
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for the ratio of derivative peaks to evaluate for the performance in explaining the
variation of greenness and vigorousness of the dipterocarp trees.

9 Results and Discussion

9.1 Statistical Analysis and Significance Tests

The results of spectral reflectance were analysed using derivative analysis as
variables of ANOVA test to determine the separability of four dipterocarp species.
The statistical analyses were based on averaged values of leaf samples on 40 trees of
Dipterocarpus grandiflorus, Shorea acuminata, Hopea dryobalanoides, and Shorea
macroptera. The analysis of variance (ANOVA) test was used to determine whether
the measured variable differed among the classification groups based on the species.
The null hypothesis was stated as follows: there is no difference between the
variance of the compared group of derivative spectral reflectance. The test was run
on six pairs of DP, Dipterocarpus grandiflorus; SA, Shorea acuminata; HD, Hopea
dryobalanoides; and SM, Shorea macroptera – HD versus SA, HD versus SM, HD
versus DG, DG versus SA, DG versus SM, and SM versus SA. The idea of stating
the null hypothesis is to analyse or demonstrate whether the null hypothesis can be
rejected, and we can accept the alternative hypothesis. The statement of hypothesis
can be written as:

Ho: The difference of variance between the derivatives of spectral reflectance four
dipterocarp species is equal to 0.

Ha: The difference of variance between the derivatives of spectral reflectance four
dipterocarp species is different from 0.

The comparison of the significance was analysed using the ANOVA test, the null
hypothesis had no effect or significance difference between the derivatives of
spectral reflectance based on same wavelength in the paired classification. If the
computed p-value is the lower than significance level (α) = 0.05 or 95% confidence
level, we should reject the null hypothesisHo. In other words, the decision is to reject
the null hypothesis of equality of the variance, and the difference between the
variance is significant. In the following tables, the p-values are of significance levels.

9.2 ANOVA on First Derivative Spectra of Four Dipterocarp
Species

The first derivative spectra for each group of dipterocarp species were all plotted and
compared. Changes in slope and location of inflection points were characterised. The
significance of differences of the variance of the first derivative spectra was analysed
per wavelength to evaluate the chain of significant wavelengths in separating groups
of spectral reflectance of dipterocarp species. The visual appearance examination of
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Table 2 Significant wavelengths of the first derivative spectra for all interaction of four diptero-
carp species

Species ANOVA test

HD vs
SA

HD vs
SM

HD vs
DG

DG vs
SA

DG vs
SM

SM vs
SA

Key wavelengths
(nm)

412–413
427
440–442
493–495
501–521
555–571
633–644
673–709
717–765
793

412
423
493
501–506
509–516
558
633–641
678–698
709–761
764
770

501
509–529
561–579
585
595
601
609
682–715
723–753
756

525–542
550
558
574–580
655–684
711–722
757

521–540
566–601
604
609–628
649
700–729

512–522
558–571
676
693–726
898

the first derivative spectra often gives a straightforward perspective on the chloro-
phyll contents of the dipterocarp tree leaves.

Independent ANOVA test results of the first derivative spectra of four selected
species with six interactions between four species tabulated in Table 2. As ANOVA
test showed, it is observed that there are several significant wavelengths were found
when comparing the four dipterocarp species.

This is a series of significant wavelengths when comparing DG, Dipterocarpus
grandiflorus (Keruing belimbing); SA, Shorea acuminata (Meranti rambai daun);
HD, Hopea dryobalanoides (Merawan mata kucing hitam); and SM, Shorea
macroptera (Meranti melantai): HD versus SA, HD versus SM, HD versus DG,
DG versus SA, DG versus SM and SM versus SA.

There are six interactions of each type of dipterocarp species which have been
made to look the significant different between species for identifying the classifica-
tion of the four species on specific wavelength.

This study has shown that hyperspectral remote sensing through spectral reflec-
tance of the dipterocarp species is feasible by testing first derivative spectra by using
ANOVA. Hence, the detection of dipterocarp species was all plotted and compared
to classify them. The significance of differences of the variance of the first derivative
spectra was analysed per wavelength to evaluate the chain of significant wavelengths
in separating groups of spectral reflectance of dipterocarp species.

It shows a positive result on several runs of significant wavelengths found when
comparing the species. However, there are few recommendations to strengthen this
study:

• The number of leaf sample of each tree’s species must be standardised for an
equal average of spectral reflectance of each species.

• The location of sample taken should be more specifically instead of randomly to
make sure the relationship between the samples is stronger.
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• The species identification should be clearer by using vegetation indices for
display the classification of the study area.

• To get more reliable result, variance analysis is suggested as a comparison to
ANOVA.

10 Discussion and Conclusion

In this chapter it was found that it is possible to detect and characterise the
dipterocarp species using hyperspectral remote sensing using several hyperspectral
techniques. At this stage it is not possible to identify a generic technique identifying
dipterocarp species, due to differences of leaf structure, thickness, and leaf chloro-
phyll content as well as spatial and spectral resolution of the sensors. These findings
suggest that reflectance spectra of dipterocarp species are able to be identified using
spectral analysis. However, the spectral matching or classification of species is
highly dependent on the spectral reflectance of each species. With the advancement
of current remote sensing technology, the aerial detection of forest is possible.

In-depth analysis of vegetation indices as well as continuum removal will be done
to comprehensively denote the series of key wavelengths for each species. It will be a
continuous effort by stakeholders and researchers to develop and add to this spectral
library for Malaysian dipterocarp species. This spectral signature will be useful in the
future whereby the utilisation and readiness of UAV hyperspectral systems with
availability of durable batteries increase BVLOS (beyond line of sight) capabilities.
The upscaling from leaf to canopy/airborne will be established using the spectral
match analysis to produce a classification map accordingly. The classification map is
then used as the base information in the GIS system. Finally, linkage between the
datasets with the spatial information is accomplished.
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Tree Biophysical Parameter Retrieval from
Multi-source Remote Sensing Data Fusion

Nafisah Khalid, Noraain Mohamed Saraf, Juazer Rizal Abdul Hamid,
and Zulkiflee Abd. Latif

Abstract

Malaysian tropical forest consists of marketed tree species such as Hopea,
Neobalanocarpus and Shorea. According to the International Union for Conser-
vation of Nature and Natural Resources (IUCN) Red list 2021, 160 tree species
from the genus of Shorea are threatened. From this list, Shorea resinosa, Shorea
exelliptica and Shorea macrantha are categorized as critically endangered spe-
cies. Due to the current list, mapping and monitoring the tropical trees are deemed
necessary. The recent remote sensing technology that allows for accurate opera-
tional and managerial inventories in a cost-effective and timely manner is con-
stantly in demand. Multispectral remote sensing imagery such as WorldView-2,
WorldView-3, GeoEye-1, Pleiades and SPOT 7 is extensively used in extracting
the tree crown and classifying the tree species. Besides, airborne LiDAR is
utilized mainly for accurate estimation of individual tree height. The fusion of
multispectral imagery with airborne LiDAR data is believed to improve the
estimation of tree biophysical parameters with the additional information. There-
fore, this chapter provides an overview and analysis focused on Shorea spp.
biophysical parameter retrieval from the fusion of multispectral and airborne
LiDAR data using object-based image analysis (OBIA). The information
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provided should help readers to understand the characteristics, scale parameters,
accuracy and limitations in retrieving the Shorea spp. in the tropical forest area.

Keywords

Airborne LiDAR · Remote sensing · Tropical forest · Object-based classification ·
Shorea

1 Introduction

Forests play an important role in the global carbon cycle, economic development and
climate moderation. The diversity of forest ecosystems is generally classified
according to its altitude, climate, location and soil suitability (FAO 2018). Tropical
forests located in Southeast Asia are recognized to be the oldest forests and richer in
biodiversity and have been known as the most productive forests and more effective
in carbon sequestration. Major types of tropical forests recognized in Malaysia are
lowland dipterocarp forest, hill dipterocarp forest, upper hill dipterocarp forest, peat-
swamp forest, coastal forest and mangrove forest. Each forest type has different tree
species such as lowland dipterocarp forest consists of commercial tree species from a
family of Dipterocarpaceae including from the genera of Hopea, Neobalanocarpus
and Shorea.

Based on FAO (2016), the net loss of seven million hectares per year of tropical
forest in 2000–2010 was similar to the increase in agricultural area (six million
hectares per year). Most of this deforestation is due to the conversion of tropical
forest to agriculture occurred in South America, sub-Saharan Africa and South and
Southeast Asia. Thus, the loss of forest area affected the extinction of some of the
tree species.

Managing and conserving tropical forests are challenging due to the rareness and
little knowledge of tree species. The tree parameters and species information are
deemed necessary for aboveground biomass estimation and forest management daily
activities. However, uncertainty in tropical forest inventory remains high due to the
fact that measuring the tree biophysical parameters is too costly and laborious. Thus,
recent and powerful approaches for improving the efficiency and accuracy of forest
inventories, especially in remote locations, are in constant demand.

Advancement in remote sensing technology allows for accurate operational and
managerial inventories in a cost-effective and timely manner till the compartment
level over larger forest areas. Dating back to 1972, the first earth resource satellite
Landsat was developed to provide optical remotely sensed data with coarse spatial
resolution followed by a series of Landsat and SPOT satellites that gradually
improved the spatial resolution of each product. From there, remote sensing has
become an ever-increasing popular geospatial data acquisition method, and since
1999, commercial satellites such as IKONOS, QuickBird and most recently the
Digital Globe’s family of sensors, WorldView-2 to WorldView-4, provide high
spatial resolution imagery of 1 m or less as well as increased radiometric resolutions.
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Despite that, there are also active remotely sensed data in the likes of airborne
laser scanning or Light Detection and Ranging (LiDAR), which could provide
vertical information and complement the sub-metre spatial resolution data (Zhen
et al. 2016). It has been proven that LiDAR remote sensing is capable of retrieving
the tree information by focusing on utilizing tree height. Therefore, detailed and
accurate information of individual tree parameters could be extracted from the
synergism of the finer spatial resolution imagery with LiDAR data, through curtains
of image processing techniques.

2 Genus of Shorea

Dipterocarp forest also known as an inland forest is an evergreen forest with mean
annual rainfall exceeding 1000 mm (Appanah 1998). The preservation of lowland
dipterocarp forests (LDF) is made through the implementation of forest reserve.
There are beautiful and relatively undisturbed LDF in Malaysia which are Taman
Negara in Peninsular Malaysia, Lambir Hills National Park in Sarawak, and Sepilok
Forest Reserve and Danum Valley in Sabah. Unfortunately, lowland forests reserved
near urban centres such as the Sungei Buloh Reserve, Kanching Forest Reserve and
Ampang Forest Reserve are under intense pressure from development.

The dipterocarp forests in Malaysia are mostly dominated by trees from the
Dipterocarpaceae family. Generally, Dipterocarpaceae are a family of 17 genera
and approximately 500 species such as from genera of Shorea, Hopea,
Dipterocarpus, Neobalanocarpus, and Vatica. Specifically, in Peninsular Malaysia,
the family Dipterocarpaceae comprises 157 species (Guan and Yen 1999). Trees
from this family often emerge from forest canopy and typically reach heights of
40–70 m tall, some even over 80 m.

Shorea spp. (Meranti, Balau, Damar Hitam) is commonly known as dominant
and emergent trees. A study carried out by Fangliang and James (1997) in Pasoh
Reserve Forest found that the emergent tree species are Dipterocarpus cornutus
(Keruing gombang), Shorea maxwelliana (Balau kumus) and Neobalanocarpus
heimii (Chengal) and the upper canopy is dominated by red meranti. Based on
Khalid et al. (2013), there is a good correlation between tree height and crown
diameter for Shorea spp. with an r2 for linear model which is 0.738. The good
correlation could reveal significant contributions in various studies. Thus, it is
important to extract tree biophysical parameters, and remote sensing technology
could be utilized especially for large forest areas.

3 Extracting Tree Biophysical Parameters Using Remote
Sensing Data Sets

Remote sensing technology can be divided into two categories which are passive and
active sensors. Passive or optical sensors record the reflected or emitted natural
energy from the earth surface. Optical sensors are characterized into low spatial
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resolution (MODIS, AVHRR), medium spatial resolution (Landsat, SPOT) and high
spatial resolution imagery (WorldView-3, IKONOS) which are used globally in
forest studies and land-cover mapping. Very high resolution of optical remote
sensing data is providing new opportunities for exploring and enumerating the forest
structure at both the stand and individual tree level.

In contrast, active sensors such as RADAR and LiDAR use their own energy
source for illumination to map the earth surface. This technology promises to
increase the accuracy of tree structural measurements and provide the accurate
three-dimensional distribution of tree crowns. The RADAR data is capable of
detecting and delineating the tree crown over forest area, and LiDAR data has
been extensively used in the forest study. LiDAR is one of the active sensors that
provide data that is possible to detect and isolate individual trees. It has been proven
that LiDAR remote sensing is capable of retrieving the tree information by focusing
on utilizing tree height.

4 High-Resolution Remote Sensing Images

Remote sensing sensors evolve from coarse to fine spatial resolution with new
additional spectral bands. This evolution offers foresters an additional source of
data for forest inventory purposes. The ability to directly estimate the individual trees
from high spatial resolution data may improve other parameters estimation such as
crown areas and volume and subsequently improve estimation of aboveground
biomass. High spatial resolution remote sensing provides a potential for trees to be
visible in the imagery unlike medium resolution satellite images. Characterization of
remote sensing imagery is based on the spatial, spectral, radiometric and temporal
resolutions. Spatial resolution refers to the ability of a sensor to detect the smallest
possible size of the features. The earth features appear clearly in the high spatial
resolution imagery, while features appear blurry in low spatial resolution imagery
which gives difficulty to interpret the imagery.

The spectral resolution refers to the ability of a sensor to identify fine wavelength
intervals. Different remote sensing systems have different capability in recording the
wavelength intervals. The sensors that only define one band refer to the panchro-
matic sensors. Commonly the sensors have the ability to define three to eight bands
which are known as multispectral sensors, while the sensors that have ability to
detect hundreds of narrow spectral bands are known as hyperspectral sensors.

Numerous studies incorporate high spatial resolution with multispectral imagery
to improve the classification accuracy. Gebreslasie et al. (2011) used IKONOS
imagery which has four bands to detect the individual tree with 85% overall
accuracy. In addition, Whiteside and Ahmad (2008) found that the tree detection
and delineation accuracy is acceptable with 79.5%, and Song et al. (2010) found that
IKONOS and QuickBird produce an identical result in estimating the tree
crown size.

Several researchers have been applied WorldView-2 and Worldview-3 imageries
for individual tree crown detection and delineation (Heumann 2011; Ozdemir and
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Karnieli 2011; Immitzer et al. 2012; Latif et al. 2012; Mora et al. 2013; Jakubowski
et al. 2013; Varin et al. 2020; Tong et al. 2021). Based on Immitzer et al. (2012),
WorldView-2 imagery has good capability in discriminating tree species with the
overall classification accuracy more than 82%.

Heumann (2011) has compared the result of tree species classification in man-
grove forest between QuickBird and WorldView-2 imagery using object-based
image analysis (OBIA) and concluded that WorldView-2 sensor produces high
classification accuracy with more than 94%. Heumann (2011) also mentioned that
the WorldView-2 imagery has better spectral separability between vegetation classes
than the QuickBird imagery which leads to the better classification result.

According to Latif et al. (2012), the infrared band in WorldView-2 imagery is
very useful for vegetation studies due to its sensitivity towards the chemical compo-
sition of vegetation thus making them useful to be differentiated and identified.
However, the classification on the tropical forest trees can be a bit low in accuracy.
Trees in the tropical forest are randomly distributed and are located too close to each
other making it hard to be differentiated.

5 Extracting Tree Parameters from Airborne LiDAR

LiDAR is an active remote sensing system that uses laser pulses to capture the earth
surface. LiDAR provides an excellent amount of vertical and textural information
about the forest structure complement to passive remote sensing images. LiDAR
records the time interval of laser pulses traveling from the laser scanner to hit the
objects and return laser pulses which are backscattered from an object with a known
constant velocity. The return of LiDAR pulses generates a 3D representation of the
earth surface in which each point is characterized by X, Y and Z coordinates.

Full waveform sensor or discrete return sensor could be used to record the return
pulses. Full waveform sensor records the amount of energy returned to the sensor in
the continuous signal form (Hancock et al. 2015). Conversely, a discrete return
sensor allows for one (single-return systems) or more returns (multiple-return
systems) to be recorded for each pulse during flight. Both sensors are typically
used in combination with Global Positioning System (GPS) receivers and inertial
navigation systems (INS). A GPS receiver is used to obtain the position of the
platform, while the INS is used to measure the roll, pitch and yaw of the LiDAR
sensor. In addition, the GPS on the ground base station is also necessary for
differential GPS (DGPS) to improve the positional accuracy given from LiDAR
sensor.

Discrete return sensor has the advantage of providing data over a large area but is
restricted by the laser pulse return density as points/m2 ratio. In contrast, the problem
in discrete return sensor particularly in biomass studies can be solved with full
waveform sensor where this technology records the amplitude of the return signal
at fixed time intervals by digitizing the waveform.

In forestry application, the first returned laser pulses are the most significant
return as it will be associated with the highest feature in the forest landscape like a
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treetop. The conversion of the emitted point cloud from first return to a raster model
is called Digital Surface Model (DSM). The last return usually hits the ground
surface. Conversely, in the dense forest area, the last return may always hit the
understory vegetation. The conversion of these pulses to raster models is called
digital terrain model (DTM). Then the Digital Canopy Height Model (DCHM) was
created by subtracting the DTM from the Digital Surface Model (DSM).

The accuracy obtained for detection of individual trees using airborne LiDAR
depends on the structure of the forest, quality of images and density of laser point
clouds and applied processing technique. Trees usually can be recognized only in the
dominant tree layer, and LiDAR data has a tendency to underestimate tree height in
dense forests. Previous studies advocate that LiDAR tends to underestimate the tree
height. The underestimation increased with the decrease of the sampling density due
to a large probability of missing treetops. Zahidi et al. (2015) stated that the
recommended pulses per square metre (ppsm) for vegetation analysis is at least
4, and yet they mentioned that 1.4 ppsm is sufficient for DEM creation in delineating
the tropical trees.

6 Synergism of Satellite Images and LiDAR Data in Forestry

The synergism of high spatial resolution imagery with LiDAR data has been widely
used and believed to improve the derivation accuracy of tree structural parameters.
Based on Machala (2014), the synergism of both data sets provides extra valuable
information complementing the sub-metre spatial resolution imagery for estimating
other structural elements of the tree canopy.

Several studies have synergized high spatial resolution imagery and LiDAR data
set. The integration of both data sets can significantly improve classification accu-
racy at individual tree level. The fusion of both data sets could generate highest
classification accuracy and give an accurate positional value for each feature, and
apart from that, various tree attributes could be acquired from this operation such as
species classification, tree height, crown area and finally estimating accurate above-
ground biomass from the acquired parameters.

However, few studies have been found that fused the high spatial resolution
imagery with LiDAR data particularly in evaluating the tropical forest. This might be
due to the complexity of the tropical forest. As stated by Jakubowski et al. (2013),
the accuracy of individual tree detection decreased in the dense forest areas, and they
suggested that better accuracy would be yielded if the LiDAR and high spatial
resolution data were collected simultaneously.
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7 Object-Based Image Analysis (OBIA) for Shorea
Classification

Robust object-based image analysis (OBIA) is an intrinsically multi-scalar and
hierarchical approach developed to overcome high variation in high-resolution
satellite imagery. The OBIA primarily consists of two steps which are image
segmentation and classification. The attributes gathered from image segmentation
make a knowledge-based for the sample objects, which can be called upon in the
classification process. This method involves segmenting an image into objects
through the use of spectral and spatial context. Tree biophysical parameters that
could be extracted from OBIA are crown area and tree species. The knowledge about
tree species should be supported with the spectral signature from in situ
measurement.

8 Multi-resolution Image Segmentation

Image segmentation is a basic operation in computer vision and pattern recognition.
The goal of segmentation is to subdivide the image to find the semantic regions. One
of the image segmentation methods is multi-resolution. Multi-resolution image
segmentation algorithm is used to produce an image object for a further classification
process. Two main components of multi-resolution segmentation are decision
heuristics to determine the image objects that will merge at each step and the
homogeneity of image objects to pair with the merge of image objects (Dekavalla
and Argialas 2018).

This segmentation process defines the size and shape of desired objects by
defining the object homogeneity and calculating the heterogeneity between adjacent
pixels. The other parameters used to define homogeneity of image objects are the
shape factor and compactness.

The image is divided into homogeneous regions based on several user-defined
parameters which affect the size, spectral and spatial homogeneity of the resulting
image objects. The proper selection of setting parameters is critical to evade the
under-segmentation or over-segmentation of features.

The scale parameter is one of the segmentation criteria that are used to control the
average image object size. The evaluation of the scale parameter for the entire area is
difficult and requires further analysis. Table 1 shows the close-up view for individual
tree crowns delineation. Crown A represents a tree crown with less distinct bright-
ness value with adjacent features, and crown B represents a tree crown with distinct
brightness with adjacent features.

The crown delineation accuracy can be evaluated by using the goodness measures
of segmentation (Phua et al. 2014). Based on the illustration in Table 1, the 10-scale
parameter for both crowns is over-segmented, and the 20-scale parameter generates
slightly under-segmentation of the crown. In addition, 30 and 40 scales generate
relatively poor segmentation for crown A while producing good segmentation for
crown B. The segmentation result produced using 30 and 40 scale parameters
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Table 1 Selected crown segmentation using different scale parameter

Scale parameter Crown A Crown B

10

20

30

40
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Table 2 Selected crown segmentation using different shape parameter

Shape Crown A Crown B

0.1

0.2

0.3

0.4

merges with the adjacent features that have less distinct brightness value with the
selected crowns and produce one object rather than several objects.
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Table 3 Selected crown segmentation using different compactness value

Compactness Crown A Crown B

0.5

0.6

0.7

0.8
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Tables 2 and 3 show the segmentation results for different shape and compactness
parameters, respectively. The segmentation results for 0.2 and 0.3 of shape
parameters show the improvement in the shape of the object. However, the
highlighted object in the image object A cannot be separated from the adjacent
object. The final selection of shape parameters is 0.4. This parameter generates a
well-defined shape of selected crowns with the best closeness index. The higher
selection of the shape criterion value (more than 0.9) could affect the spectral
information of the image because the users are indirectly defining the colour criteria
by modifying the shape criterion.

Compactness defines the weight of compactness of the image objects. The setting
of compactness starts from 0.5 value because no significant finding is identified
using compactness below this value. The closeness index for both selected crowns
using different settings is good, but the best index generates from 0.8 of compactness
value. Different features require different selection of parameters. Thus, it is impor-
tant to identify the optimum parameters before proceeding with other processing
stages.

9 Classification of Forest Structure

Image classification is the process of assigning groups of identical pixels into
classes. Image classification is an adopted method used in order to obtain land-
cover information from satellite images. In forest application, classification and
mapping of forests over large spatial scales are generally used to substitute tedious
traditional classification methods. Several image classification algorithms have been
proven to produce good classification accuracy in the forest application.

A rule-based and support vector machine (SVM) are well-known image
classifiers that are commonly being used to classify the tree species. Rule-based is
a sequence of processes executed in the defined order. It is representing the code of
rule ware assembling a set of functions based on the Definiens Cognition Network
Language (DCNL). Each single process executes in the rule-based selected algo-
rithm providing a solution to a specific image analysis problem.

SVM is a machine learning algorithm that separates classes by defining an
optimal hyperplane between classes based on support vectors. The support vectors
are defined by training data. This feature is very valuable specifically for object-
based image analysis, where only small training sample size is used than in pixel-
based approaches. The studies that compared the object-based and pixel-based
classification techniques found that the overall accuracy of the object-based was
better than pixel-based classification (Jakubowski et al. 2013; Machala 2014).

In addition, Zahidi et al. (2015) compared the performance of supervised SVM
and rule-based techniques in classifying the tropical trees in floodplain areas, and
they found that the overall accuracy for rule-based classification is 8% higher than
SVM technique. Finally, a supervised nearest neighbour (NN) classification also is
widely applied in detailed classification of the forest areas where the overall
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accuracy using NN classification is comparable with other approaches with 90%
(Machala 2014).

10 Spectral Range for Shorea Tree

The classification can be improved by analysing the spectral range according to the
mean layer value for each feature as shown in Figs. 1, 2, and 3. Figures 1 and
2 compare the spectral range between gaps from Shorea and mixed tree species.
There is clear range for gaps, mixed tree species and Shorea trees. However, the
classification among tree species is a challenging process as there are no distinct
characteristics between species. As shown in Fig. 3, the range for Shorea and mixed
species is overlapping in each layer value except in the mean layer value 3 or
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Fig. 1 Spectral range comparison between gaps and mixed species
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Fig. 2 Spectral range comparison between gaps and Shorea spp.
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Fig. 3 Spectral range comparison between mixed species and Shorea spp.

near-infrared-2 (NIR2) band. Based on the spectral range, band NIR2 is suitable for
species classification as there is no overlapping range for each feature and can be
used to differentiate the features accurately.

11 Spectral Signature for Selected Tree Species

Spectral signature is the reflectance or emittance of a target over a variety of
wavelengths that can be represented in a spectral plot. An understanding of spectral
signatures is essential in the understanding and interpretation of a remote sensing
image. The spectral reflectance of radiation is distinctive for different features.
Similar features also have different spectral signatures because the reflectance
pattern is very sensitive to the chemical contents in specific features. The classifica-
tion between tree species can be analysed using a spectral reflectance curve. The site
investigation using a field spectrometer is essential for accurate image generation
and verification of image endmembers. A field spectrometer measuring the trees or
other features over the range of 400–1050 nm would detect more detail of spectral
information as compared to information given by WorldView-2 multispectral imag-
ery. The selected species are Shorea spp. (Meranti and Balau), Syzygium spp.
(Kelat), Neobalanocarpus heimii (Chengal) and Palaquium spp. (Nyatuh). For
genus of Shorea, the spectral signature was obtained from four different species
which are Shorea maxwelliana (Balau), Shorea parvifolia (Meranti sarang punai),
Shorea leprosula (Meranti tembaga), and Shorea ovalis (Meranti kepong). Figure 4
shows the mean of spectral signatures of each species. The spectral range for each
species is suitable to be analysed further in the near-infrared region.

In WorldView-2 imagery, Band 7 is known as near-infrared 1 (NIR1) covers a
region from 770 to 895 nm. This band is very valuable for moisture content and plant
biomass estimation. This band is also effective to separate the water bodies from
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Fig. 4 Spectral signature of selected species

vegetation and useful to identify the tree species. Based on Lillesand et al. (2015), in
the NIR portion of the spectrum at about 700–1050 nm, a plant leaf reflects about
50% of the energy incident upon it. Most of the remaining energy is transmitted,
since absorption in this spectral region is minimal. Range from 700 to 1050 nm also
can be used to detect the vegetation stress.

Near-infrared 2 (NIR2) covers a wavelength interval from 860 to1045 nm. This
band is effective for the broad analysis of tree species and valuable for biomass
studies. Common vegetation reflectance peaks around 900–940 nm, and the absorp-
tion occurs at the 940 nm where 940–1010 nm is the moisture-sensitive region. The
wavelength interval from 925 to 955 nm illustrates the distinct curves between tree
species.

Each tree species has unique curves at this interval which provide researchers a
broad region for tree species identification and analysis. At this interval, the
Neobalanocarpus heimii (Chengal) and Palaquium spp. (Nyatuh) have very steep
V-shaped valley while, Shorea spp. (Meranti and Balau) and Syzygium spp. (Kelat)
have W-shaped valley. Based on Fig. 4, Meranti tree species has another valley
similar signature with Balau at wavelength 950 nm. The unique signature of each
species could improve the classification between tree species.

12 Distribution Map of Shorea Trees

The distribution of Shorea trees derived from rule-set and SVM classifiers are shown
in Figs. 5 and 6, respectively. The overall classification accuracy generated from
rule-set and SVM is above 80% (Khalid et al. 2018). However, the producer’s and
user’s accuracy for Shorea tree species and mixed species is less than 80%. The good
classification accuracy indicates that the object-based image classification based on
selected threshold conditions and parameters has the high capability of achieving a
good result. The generated accuracy assessment proved that rule-set and SVM
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Classification Map of Ampang Forest Reserve

Based on Rule-set Method
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Fig. 5 Classification map based on rule-set method

classifiers have a high capability in mapping the Shorea tree species in the dense
forest area.

13 Vertical Accuracy for LiDAR Data

ASPRS (2014) defined the horizontal and vertical accuracy in terms of the root mean
square error (RMSE). The RMSE for horizontal accuracy for LiDAR data should not
be less than 30 cm, and the vertical accuracy should be less than 15 cm. The vertical
accuracy for LiDAR data with less than 1.4 ppsm could be higher than tolerance.
Khalid et al. (2018) stated that the RMSE for the non-vegetated area with the
undulating area is ±0.479 m and the RMSEz for the vegetated area with the hilly
area is ±1.635 m. The results are classified in class VIII.

Tropical forest is occupied with the understory trees, bushes and trees with DBH
less than 15 cm. It is demonstrated that the LiDAR observation has limitations in the
dense forest area. The results indicate that the DTM given by LiDAR data does not
really represent the ground in the dense forest area. This is consistent with the
statement from ASPRS (2013) where most of the LiDAR pulses are reflected before
reaching the forest floor. Therefore, a higher density data is needed to improve the
vertical accuracy in the vegetated area.
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Classification Map of Ampang Forest Reserve

Based on Support Vector Machine Method
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Fig. 6 Classification map based on SVM method

14 Conclusion

This chapter covers the theoretical review about forest heterogeneity and
characteristics of Shorea spp. Tree biophysical parameters extracted from multi-
source remote sensing data are presented and analysed in this chapter with the
synergism of WorldView-2 imagery and LiDAR. The extraction results depend on
the selection of the segmentation parameters, threshold conditions, training samples
for classification and also the availability of the data set. This chapter also revealed
the potential of LiDAR data in retrieving tree height and crown areas in the
heterogeneous forest environment.
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