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1 Introduction 

In this paper, we propose a novel training mechanism to mitigate problems such 
as data sparsity, high inter-class variance, and low intra-class variance which leads 
to poor clustering performance. Traditional clustering algorithms such as K-means, 
Gaussian mixture models (GMM) [3], and spectral clustering [8] rely largely on the 
notion of distance; for example, K-means [11] uses Euclidean distance to assign data 
points to clusters. Recent advances in deep learning have led to emergence of cluster-
ing techniques parameterized by deep neural networks [2, 13, 14, 17, 18] attempting 
to jointly learn representations, and perform clustering relying on tools like Stochas-
tic Gradient Descent and backpropagation with a clustering objective function. This 
introduces challenges in choosing an appropriate neural network architecture, and a 
right clustering objective function. Recent methods [5, 16], attempt to circumvent 
these problems, limited literature show investigations on the effect of data spar-
sity and high intra-class variance, usually found in crowdsourced cultural heritage 
datasets. The apparent architectural differences arise due to data acquisition meth-
ods and cultural similarities might lead to assignment of false clusters. In this paper, 
we empirically demonstrate the use of different transformations such as random— 
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scaling, rotation, and shearing as data augmentation techniques toward increasing 
the data density, yielding superior clustering performance. 

Crowd-sourcing facilitates desired data at scale and involves task owners relying 
on a large batch of supposedly anonymous human resources with varying expertise 
contributing a diversified amount of data. In our case, we are interested in obtaining 
a large image corpus of Indian Heritage Sites with the hindsight of large scale 3D 
reconstruction toward digital archival and preservation. An essential step in this 
pipeline is to formulate an efficient deep clustering method toward mitigate the 
issues outlined above. Toward this-

• We propose a novel training strategy to circumvent the problem of poor clustering 
performance by 

– introducing data augmentation as an auxiliary plug-in for deep embedded clus-
tering 

to densify data and facilitate better feature representation considering limited 
data. 
to address data with high intra-class and low inter-class variance. 
to augment data using affine transforms (rotation, scaling and shearing). 

– incorporating Consistency Constraint Loss (CCL) with Mean Squared Error 
(MSE) Loss to handle introduced transformations. 

• We demonstrate our proposed strategy on a crowdsourced Indian heritage dataset 
and show consistent improvements over existing works. 

In Sect. 2, we discuss contemporary works related to clustering. In Sect. 3, we  
propose a strategy to circumvent the problem of poor clustering performance. In 
Sect. 4, we discuss the experimental setup carried out on Indian Heritage Dataset. 
In Sect. 5, we demonstrate results through quantitative and qualitative metrics, and 
conclude in Sect. 6. 

2 Related Works 

In this section, we discuss contemporary works addressing clustering using deep 
features. Classical clustering techniques such as K-means [11], Gaussian Mixture 
Models (GMM) [3], and Spectral clustering [8] are limited by their distance metrics 
and perform poorly when the dimensionality is high. Toward this, recent techniques 
such as Deep Embedded Clustering (DEC) [16], Improved Deep Embedded Cluster-
ing [5] extract deep features toward categorization in lower dimension embedding 
space. 

Recent advances in deep neural networks have ushered in a strategy of parameter-
izing clustering algorithms with neural networks. Deep Embedded Clustering (DEC),
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proposed by authors in [16], pioneered the idea of using deep neural networks to learn 
representations and solve for cluster assignment jointly. The method involves using 
Stochastic Gradient Descent coupled with backpropagation to extract deep features 
while simultaneously learning the underlying representations. However, as authors 
in [5] point, the choice of clustering loss tends to distort the feature space, which 
consequently affects the overall clustering performance. To mitigate this, the authors 
propose an under-complete autoencoder to preserve the data structure, leading to 
improved clustering performance. Inspired by these works, we propose a method to 
improve Clustering performance by densifying the data distribution. We hypothesize 
that data distribution sparsity is a significant deterrent in clustering. The problem is 
further exacerbated when the data exhibits high intra-class variance. We empirically 
show that using data augmentation as an auxiliary plug-in helps in improving clus-
ter performance. Extensive experiments on cultural heritage dataset show consistent 
improvements over existing methods. 

3 Categorization of Crowdsourced Heritage Data 

The crowdsourced heritage data arrives in the incremental fashion, where the num-
ber of classes and number of images belonging to class are obscure. More likely, 
we observe that images belonging to a particular class may arrive in large number 
while very few samples may arrive for some other classes. This brings the problems 
of class imbalance and data sparsity. Due to data sparsity, deep learning techniques 
used for the feature representation of the images fail in their task, making the cluster-
ing performance poor. Deep learning architectures like Convolutional Autoencoders 
(CAE) are sensitive to these problems. Toward this, we attempt to mitigate the data 
sparsity issue via data augmentation (Fig. 1). 

We increase the density of the data, by performing three kinds of data transforma-
tions, i.e., random rotation, random shear, and random scaling on the original data, 
as this would generally make the model more robust in terms of learning. These 
techniques tend to provide more generic and genuine data. There are many other 
augmentation techniques as described in [1, 10, 12, 15] used to increase the data 
density and class imbalance [6, 19]. 

Convolutional Autoencoder (CAE) has proven to be effective in case of classifica-
tion, clustering, and object detection. We combine the augmented data with original 
data to train CAE to generate embeddings toward clustering. 

Considering xi , i ∈ {1, ..., m} as an image, the transformation t j , j ∈ {1, .., s} 
applied on xi generates transformed image xts i , represented as x

t 
i = T (xi ). The total 

number of images after augmentation are N , where N = s × m. 
The traditional objective function used for training the CAE is Mean Squared 

Error(MSE) between the input xi and decoder output x
'
i which is as 

MSE(x, x ‘ ) =
∑N 

i=1 (xi − x ‘ i )2 

N 
(1)



56 S. Veerappa Kudari et al.

Fig. 1 Categorization of crowdsourced heritage data 

The MSE loss for training CAE limits information about the relation between 
original data and the augmented data. To overcome this, we incorporate the Con-
sistency Constraints [9]. The Consistency Constraints are seen to be effective in 
the Semi Supervised Learning (SSL). A Consistency Constraint Loss (CCL) can 
be incorporated by enforcing the predictions of a data sample and its transformed 
counterpart (which can be obtained by randomly rotating, shearing, or scaling the 
images) to be minimal. The CCL Loss is defined as follows: 

LCC L  = 
1 

NK  

N∑

i=1 

K∑

k=1

|| p(k|i ) − pt (k|i ) || (2) 

where N represents the total number of data points and the K represents total number 
of clusters, p(k|i ) represents the probability of assignment of each image xi , and 
pt (k|i ) represents the probability of assignment of randomly transformed image 
xt i to cluster k. p(k|i) is parameterized by assuming they follow the Student’s T 
distribution as follows: 

p(k|i ) ∝ (1 + || zi + μk ||2 
α 

)−
α+1 
2 (3) 

Here zi is the feature representation of the image xi , μk represents the cluster 
center of cluster k. If  U represents the cluster centers then U = {μk, k = 1....K } 
which are initialized by K-means and tuned as the training progress. 
The overall objective function of CAE is now defined as 

Loss  = MSE(x, x ') + LCC L (4)
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We use K-means technique to quantify our results and depict how augmentation 
can improve the performance of the clustering. We show how data augmentation 
can improve the performance of the existing state of art methods Deep Embedded 
Clustering (DEC) and Improved Deep Embedded Clustering (IDEC), where CAE is 
used as the initial feature extractor. We provide the extensive ablation study of these 
methods over the combinations of different CAEs trained. 

4 Experiments 

4.1 Dataset 

We extensively experiment on crowdsourced Indian Digital Heritage (IDH) Dataset. 
The dataset is collected through a platform sourced by crowd. We consider 10 classes 
of this dataset with 150 images per class toward experimentation as these 10 classes 
consists of high intra-class and low inter-class variance. The considered dataset 
undergoes augmentation like random rotation, random shearing, and random scaling. 
Random rotation of images is performed over the range of 0–90◦, random shear is 
performed over 50◦ of transformation intensity and random scaling is performed over 
the scale of 0.5–1.0. We generate around 6000 images through these transformations. 
The same dataset is used throughout the experimentation to maintain the uniformity 
in comparison of results in different experiments in different environments. 

4.2 Training Setup 

• Runtime Environment: Nvidia GP107CL Quadro P620 
• Architecture: Autoencoder 

– Encoder: 

Contains 4 VGG Blocks 
VGG Block has 2 Convolution Layers followed by a maxpooling layer 
Batch normalization layer was used at the end of each layer before the acti-
vation function 
Activation Function: ReLU 

– Decoder: 

Decoder part of the model consists of convolution transpose layers with batch 
normalization layer at the end of each layer before the activation function 
Activation Function: ReLU, Sigmoid (Output Layer)
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• Batch Size: 16 
• Learning Rate: 0.001 
• Number of Epochs: 500 (CAE), 2000 (DEC and IDEC) 
• Optimizer: Adam 

4.3 Evaluation Metrics 

Toward evaluation of proposed strategy and comparison with state-of-the-art meth-
ods, we use Unsupervised Clustering Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), Adjusted Rand Index (ARI). 

4.3.1 Unsupervised Clustering Accuracy (ACC): 

It uses a mapping function m to find the best mapping between the cluster assignment 
output c of the algorithm with the ground truth y which can be defined as 

ACC = maxm

∑N 
i=1 1{yi = m(ci )} 

N 
(5) 

For the given image xi , let  ci be resolved cluster label and yi be the ground truth 
label, m is the delta function [7] that equals one if x = y and zero otherwise. m maps 
each cluster label ci to the equivalent label from the datasets. The best mapping can 
be found by using the Kuhn-Munkres algorithm [4]. 

4.3.2 Normalized Mutual Information (NMI) 

It measures the mutual information I (y, c) between the cluster assignmentsc and the 
ground truth labels y and is normalized by the average entropy of both ground labels 
H (y) and the cluster assignments H(c), and can be defined as 

NM  I  = I (y, c) 
1 
2 [H (y) + H (c)] (6) 

4.3.3 Adjusted Rand Index (ARI) 

It computes a similarity measure between two clusterings by considering all pairs of 
samples and counting pairs that are assigned in the same or different clusters in the 
predicted and true clusterings. It is defined as 

AR  I  = I ndex  − E xpected I ndex 
Max  I  ndex  − E xpected I ndex 

(7)
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5 Results and Discussions 

In this section, we discuss the results of the proposed strategy toward categorization 
of crowdsourced Indian Heritage (IDH) dataset and compare the results with state-
of-the-art methods. 

We measure the clustering performance by reporting the unsupervised clustering 
accuracy, NMI and ARI. From Table 1 we observe, CAE trained with data augmen-
tation yields better performance over CAE trained without augmentation. We see an 
improvement of 2.74% when trained with MSE loss and an improvement of 15.21% 
when trained with a combination of MSE and CCL, as CCL loss mainly depends 
on augmented data. This improvement is significant in the context of clustering data 
with high intra-class variance. 

To discern the effect of individual augmentation techniques (rotate, scale and 
shear), we choose samples in the combination of—{ori, rot}, {ori, sher} and {ori, 
scal}. The results are presented in Table 2. We observe, set {ori, rot} shows poor 
performance compared to augmentations consisting of {ori, sher} and {ori, scal}. 
We hypothesize that the performance drop for {ori, sher} can be attributed to the fact 
that, the CAE is not equipped with appropriate symmetry inductive bias that enables 
it to learn rotation-invariant features. 

Table 1 Performance of CAE trained with and without augmented data. CAE-WAug represents 
CAE model trained without augmented data and CAE-Aug represents CAE model trained with 
augmented data 

MSE MSE + CCL 

ACC NMI ARI ACC NMI ARI 

CAE-WAug 0.5424 0.4880 0.3377 0.4035 0.3752 0.1880 

CAE-Aug 0.5698 0.5327 0.4000 0.5566 0.4936 0.3336 

Table 2 Effect of augmentation on performance of the original data. Original, rotated, sheared, 
scaled data are represented as ori, rot, sher and scal, respectively 

CAE – MSE CAE – (MSE + CCL) 

ACC NMI ARI ACC NMI ARI 

ori + rot 0.4355 0.3168 0.2155 0.3491 0.2681 0.1493 

ori + sher 0.5189 0.4480 0.3144 0.4413 0.3574 0.2091 

ori + scal 0.5183 0.4168 0.2846 0.4346 0.3419 0.2151
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5.1 Ablation Study 

In this section, we perform ablation study using DEC [16] and IDEC [5] with and 
without considering augmentation. In Table 3, we provide the ablation study of DEC 
which is unsupervised clustering technique that jointly optimizes the cluster centers 
and the parameters of the CAE. KL-divergence between the auxiliary and target 
distribution optimizes the objective function. From Table 3, we infer that providing 
CAE with the augmented data followed by DEC considering original data increases 
the accuracy by 5.61%. While providing augmented data to DEC, with CAE being 
trained with original data hinders the performance. Hence, only CAE is trained with 
original and augmented data ensuring the objective is met. 

In Table 4 we provide the ablation study of the Improved Deep Embedded Clus-
tering (IDEC). IDEC is an improvement over IDEC, which not only jointly optimize 
the cluster centers and parameters of the CAE, but also preserve the local structure 
information. They use KL-divergence between the auxiliary and target distribution as 
their objective function along with the MSE loss of the CAE. From Table 4 it can be 
observed that providing CAE with augmented data with MSE+CCL loss, then pro-
viding the trained CAE to IDEC, where IDEC is trained on original data improves 
the performance by depicting the increase in accuracy by 7.43%. While training 
the IDEC with augmented data with CAE trained on original data only hinders the 
performance. 

From the experiments we observe, it is better to train the CAE with MSE+CCL 
as the integrity loss, with augmented data. The CAE trained in such an environment 
is incorporated for initial feature representation to the IDEC by providing original 
data, to perform better than other methods. 

Table 3 Comparing results of proposed methodology with DEC [16]. CAE-WAug and CAE-Aug 
refers to CAE trained without and with augmentation, respectively. DECWAug and DEC-Aug 
refers to DEC trained without and with augmentation respectively. We show how combination of 
augmentation applied to CAE and DEC may affect the clustering performance 

Loss → MSE MSE + CCL 

Method ↓, Metric  → ACC NMI ARI ACC NMI ARI 

DEC [16] 
CAE – 
WAug + 
DEC – 
WAug 

0.4113 0.3874 0.2271 0.3625 0.3625 0.8196 

CAE – 
WAug + 
DEC Aug 

0.3096 0.3013 0.1530 0.2927 0.2210 0.1201 

CAE – 
Aug + 
DEC 
WAug 

0.4674 0.4876 0.3076 0.4492 0.4665 0.2716
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Table 4 Comparing results of the proposed methodology with IDEC [5]. CAE-WAug and CAE-
Aug refers to CAE trained without and with augmentation respectively. IDECWAug and DEC-Aug 
refer to IDEC trained without and with augmentation, respectively. We show how the combination 
of augmentation applied to CAE and IDEC may affect the clustering performance 

Loss → MSE MSE + CCL 

Method ↓ , Metric  → ACC NMI ARI ACC NMI ARI 

IDEC [5] 
CAE – 
WAug + 
IDEC – 
WAug 

0.5098 0.4903 0.3020 0.3625 0.4340 0.2511 

CAE – 
WAug + 
IDEC Aug 

0.3611 0.3300 0.1703 0.3514 0.3335 0.1856 

CAE – 
Aug + 
IDEC 
WAug 

0.4983 0.4942 0.3130 0.5841 0.4340 0.3662 

6 Conclusions 

In this paper, we have defined data augmentation as an auxiliary plug-in for deep 
embedded clustering that densifies data helping in accurate clustering performance. 
We have demonstrated how data augmentation helps to increase the data density 
yielding superior clustering performance when the data is considerably less in 
amount. Extensive experimentation is done on setting up the right objective func-
tion. Our main objective is to cluster data with very less inter-class variance and very 
high intra-class variance. We have demonstrated our experiments on crowdsourced 
heritage dataset. We also show, how certain augmentation techniques uphold the 
clustering objectives (such as random shear and random scale), while some of them 
hinders the same (random rotation). We demonstrate our results on Indian Digi-
tal Heritage (IDH) dataset to show our methodology shows better performance to 
state-of-the-art clustering algorithms. Deploying clustering algorithms for critical 
applications warrants circumspection and is still a work in progress and we believe 
our work is a step in this direction. 
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