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1 Introduction 

Image captioning task entails the interpretation of visual contents and its descrip-
tion in natural linguistic manner automatically [6, 13, 23, 24, 27]. In the past few 
years, the topic has gained popularity in the field of artificial intelligence due to the 
cross-modal interaction of vision and language modality and abundant research is 
still being conducted to explore the connectivity between vision-language modeling 
(e.g. dense captioning, visual question answering, video captioning, and cross-modal 
retrieval) [1, 9, 12, 25]. The image captioning task was fascinated by sequence learn-
ing and machine translation [2] and was primarily addressed by encoder-decoder 
frameworks. The encoder substantially extracts visual characteristics using variants 
of convolutional neural network (CNN) and the decoder faithfully constructs the cap-
tion using forms of recurrent neural networks (RNN). Further, the attention mech-
anism [16] was equipped with a CNN-RNN structure to attend to prominent visual 
regions while generating the word sequence. Despite these advances, the association 
of objects, attributes, and their intrinsic relationship to describe images remains the 
topic of intense research. 

In CNN-RNN-based structures, the pre-trained CNN methods for visual features 
were used to capture dominant visual attributes but were incompetent for capturing 
inherent visual knowledge for captioning. The long-short term memory (LSTM) 
[10] was commonly utilized as a form of RNN to have a long-term dependency on 
linguistic patterns and generates the next sample by operating on the hidden state of 
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the current time step. This regressive nature of LSTM does not allow to parallelize 
the training procedure. 

The novel Transformer [21] architecture has shown the significant potential in 
addressing the sequence modeling tasks like language generation and translation, as 
well as multi-modal sequential learning [8]. The standard Transformer is consist of 
an encoder-decoder model, where the encoder represents the stack of self-attention 
module followed by feed-forward network and the decoder represents the stack of self 
and cross attention module followed by feed-forward network. The autoregressive 
nature of Transformer extends its capability with the stack of attention modules 
and position-wise embedding of input sequences for parallelism. This motivates to 
investigate the utility of Transformer for describing the contents of a visual scene 
by extracting inherent scenery knowledge. Inspired by Cornia et al. [8], this work 
targets the investigation of memory vectors in a visual encoder to determine the 
correspondence between objects and attributes using CNN features. In this work, 
a novel Memory-guided Adaptive Transformer is proposed with a memory-guided 
encoder for preserving intrinsic visual information received from traditional CNN, 
while the decoder connects the visual and linguistic features by learning inter-modal 
association with an adaptive gating mechanism for image description. The overall 
contributions of the work are as follows: 

• Single layer of the memory-guided encoder in conjunction with conventional con-
volution network is presented for finding the inherent relationship (such as colors, 
positions, gender, and background) within objects and understand scene attributes 
by updating memory parameters. 

• Multiple layers of the decoder with adaptive multi-headed attention modules, co-
relate the visual and linguistic pattern by assigning adaptive weightage to spatial 
and language attention for predicting the future word sample. 

• A novel Memory-guided Adaptive Transformer for Image Captioning (MATIC) 
is proposed by incorporating a single memory-guided encoder layer with multiple 
adaptive attention decoder layers, and its performance is validated on Flickr8k 
[19] and Flickr30k [28] dataset. 

2 Related Work 

The image captioning task became one of the vital issues in artificial intelligence and 
has been widely addressed by numerous methodologies in the past few years with 
advancements in deep learning algorithms. In this section, based on the architectural 
design, the literature is divided into two subgroups as (i) CNN-RNN-based models 
and (ii) Transformer-based models.
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2.1 CNN-RNN Based Models 

In CNN-RNN-based encoder-decoder methods, CNNs were broadly employed as 
a visual encoder for spatial-regional characteristics and RNNs were adopted as 
decoders for the generation of word sequences. In earlier study [11, 13, 17, 23], 
various levels of CNN were used for spatial features and visual regions extraction 
and trained with a language model consisting of RNN layers to optimise the likelihood 
probability of word sequences given the image. The notion of attention in machine 
translation [2] was utilized in image captioning to attend to prominent visual fea-
tures aligned with each word in sequence [26]. Later, the purpose attention network 
was enhanced in [27] by combining attending on visual regions and visual semantic 
attributes with RNN for better caption prediction. To collect more fine-grained infor-
mation about visual scenes, channel and spatial-wise attention was introduced with 
CNN [6]. The adaptive mechanism was combined with attention network [16] for  
providing substantial weightage to visual and linguistic models in order to generate 
word sequences. 

2.2 Transformer Based Models 

The transformer model has advanced to the cutting-edge of several essential tasks in 
the artificial intelligence domain, including image captioning. In Yu et al. [29] CNN-
based regional encoder with self-attention has merged with Transformer decoder for 
transforming visual information into textual captions. The Transformer’s decoder 
section was updated in Zhang et al. [30] to describe the visual contents sequentially, 
by including an adaptive mechanism in the multi-head attention component leverag-
ing the query vector. Li et al. [14] presented a two-way encoder to process visual and 
semantic information with EnTangled Attention to generate captions by controlling 
the flow of visual and semantic knowledge simultaneously. A revolutionary cap-
tioning network was developed [8], in which memory vectors were incorporated in 
the visual encoding layer for acquiring co-relative prior information between image 
regions, and a mesh-like structure was followed to connect encoder and decoder 
layer outputs. The scene graphs were built and fused with decoder output using the 
attention module for sequence generation in Chen et al. [5] to grasp better visual 
semantics relationship.
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3 Methodology 

3.1 Overview 

This work presents the novel end-to-end attentive architecture of the Memory-guided 
Adaptive Transformer for Image Captioning (MATIC), which comprises of single-
layer encoder and a multi-layered decoder. Figure 1 depicts the overall framework, in 
which the encoder employs spatial information recovered from CNN and the decoder 
uses textual features based on FastText embedding to generate caption. The encoder 
learns inherent relationships within the objects using scenery knowledge of visual 
features, while the decoder adaptively controls the attentive visual and semantic 
information by conditioning memory-guided encoder output and embedded textual 
output. 

Fig. 1 Memory-guided adaptive transformer for image captioning
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3.2 Visual Encoder 

The strength of EfficientNet [20] by scaling compound parameters (depth, width and 
resolution) enhances the efficiency of classification as well as the transfer learning 
challenge, making it the preferred method for extracting higher-level spatial infor-
mation from the image. The last convolutional layer employs spatial information by 
providing the regional feature maps of the image in the form of Vs = V1, V2, .., VD , 
where Vi ∈ RH×W (Here, H, W, D represents Height, Width, and Depth of feature 
maps). Every feature map is flattened to convert the 3D representation into 2D repre-
sentation, which allows the visual encoder to determine the distinguish relationship 
within regional features. The 2D representation of spatial features can be rewrite as 
Vs ∈ RF×D , where F represents flatten dimension (H ∗ W ). These flattened spatial 
features are provided to the memory-guided encoder to acquire close relationships 
within various objects. 

3.2.1 Memory-Guided Multi-Head Attention 

Generally in Transformer, the multi-head attention (MHA) [21] computes the simi-
larity between query (Q) and key (K ) vectors and then maps them with value (V ) 
vector to correlate outputs by the parallel projection of the query, key, and value 
vectors into distinguish head components. It can be represented as follows: 

Attention(Q, K , V ) = Sof tmax

(
QK  T √

dk

)
V (1) 

Multi  Head(Q, K , V ) = Concat  (H1, H2, ..Hh)W O (2) 

Hi = Attention(W q i Q, W k i K , W v 
i V ) (3) 

where dk is the scaling factor, h represent the number of heads, and W O , W q , W k, and 
W v are projected weight parameters. 

To preserve complete depthwise regional information, spatial features (Vs) from 
feature maps with higher dimensionality are linearly projected to intermediate state 
dimensionality of Transformer model (dmodel  ) with ReLU activation. These linearly 
projected features are further inferred as multi-scale inputs viz. Query (Q), Key  (K ) 
and Value (V ) for memory-guided MHA, where Q, K , V ∈ RF×dmodel  . In order to 
acquire the inherent information within the image, the learnable memory elements 
(m) are appended to the key and value vector. The spatial input vectors (Q, K , V ) 
are linearly transformed with the projection parameter as: 

Q = W q dmodel  
Q, K = W k dmodel  

K , V = W v 
dmodel  

V (4)
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where Wdmodel represents the projection parameter of Q, K and V . The memory 
based key (Km) and value (Vm) vectors are updated by including memory slots (m) 
of dimension m ∈ Rm×dmodel  . Thus memory based key and value vectors becomes 
Km, Vm ∈ R(F+m)×dmodel  : 

Km = [K : W k mm], Vm = [V : W v 
mm] (5) 

Here, [:] defines vertical concatenation operation and memory matrix with (m) rows 
is generated for keys and values by xavier uniform initializer, which gets updated 
by trainable weight parameters (W k m) and (W v 

m) respectively. Analytically, Memory-
guided MHA is computed as given below with Mem_MH  A  ∈ RF×dmodel  : 

Mem_MH  A(Q, K , V ) = Multi  Head(Q, Km, Vm) (6) 

3.2.2 Full Encoder 

The output of Memory-guided MHA is passed to a position-wise feed-forward net-
work comprising two linear layers with ReLU activation and operates as: 

FF(x) = W1(max(0, W2x + b)) + c (7) 

where W1 and W2 are outer and internal weight parameters, while b and c are bias 
terms. 

The complete encoder combines Memory-guided MHA and Feed Forward mod-
ules by residual additive connection and normalization layer (Norm) for yielding 
encoded output (encout ) as follows: 

enc1 = Norm(Mem_MH  A(Q, K , V ) + Q) (8) 

encout = Norm(FF(enc1) + enc1) (9) 

3.3 Linguistic Decoder 

Following the standard Transformer, the proposed architecture also utilizes N iden-
tical layers of decoder, in which multi-modal MHA is modified by including a con-
ditional gating mechanism for weighting the attentive linguistic and spatial informa-
tion. To acquire the concrete numerical representation of word sequence, FastText [4] 
model is trained on captions and used to generate word embedding of respective cap-
tion (WE  ∈ RL×dmodel  ). Here, L and dmodel  are representing maximum caption length 
and dimensionality of embedding respectively. In order to access the relative position 
of the word sequence, positional embedding is added with word embedding output.
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The masked MHA sublayer allows the model to attend to all previous time step 
linguistic information to generate the current time step sample. 

3.3.1 Adaptive Multi Head Attention 

Inspired from the work [16], adaptive gating mechanism is incorporated with MHA 
sub-module of Transformer decoder for sequence modeling. The cross-MHA of 
decoder layer is updated with encoder’s output and attentive previous steps linguis-
tic output. From memory-guided visual encoder, output of feed forward network 
(encout ∈ RF×dmodel  ) is adopted for extracting inherent visual characteristics with 
relative object information as (V ) and (K ), while shifted attentive linguistic knowl-
edge from masked MHA of decoder (dec1 ∈ RL×dmdoel  ) is used as query matrix (Q). 
The Attention  in equation (1) is modified by introducing adaptive gating mechanism 
( β̂) as shown in Fig. 2 for conditioning spatial knowledge and linguistic pattern. The 
adaptive gating parameter ( β̂) works similarly as sentinel gate in Lu et al. [16]. 

Fig. 2 Adaptive gate
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Adp_Attention(Q, K , V ) = β̂ ∗ Q + (1 − β̂) ∗ Attention(Q, K , V ) (10) 

Here, (∗) represents element-wise multiplication and ( β̂) represents scaler value 
within range [0, 1], where 0 indicates flow of spatial information and 1 implies flow 
of linguistic knowledge. 

In order to co-relate linguistic and spatial information for generation of next word 
sample, β parameter is introduced, which is computed by projecting the query matrix 
(Q) linearly into single dimension (β ∈ RL×1) as follows: 

β = tanh(Wβ (Q)) (11) 

The dot-product (α) is used to obtained adaptive gate ( β̂) using  (β) parameter as 
follows: 

α = so f  tmax([ QK  T √
dk 

] :  β) (12) 

β̂ = α[:, −1] (13) 

Here, QK  T ∈ RL×F and dot-product produces matrix with dimensionality as 
α ∈ RL×(F+1), from which last column is extracted to retrieve adaptive gate ( β̂). The  
( β̂) exhibits the multinomial probability distribution of the query, thus signifying 
which elements from the query preserve essential linguistic information. Overall, 
( β̂) is trained to generate syntactically correct words (e.g. at, on, with, in, through, 
etc.) by weighting linguistic information, while generating contextual words (e.g. 
color, gender, position, shape, etc.) by weighting multilevel spatial information. 

3.3.2 Full Decoder 

The proposed decoder works similarly to a traditional Transformer decoder with 
autoregressive training properties. The decoder consists of two MHA sub-modules, 
first module attends on previous textual embedding by hiding future information to 
generate the current step word sample, while the second module co-relates visual 
and linguistic patterns. The feed-forward network and residual connections are incor-
porated to complete the decoder. The FastText embedding of the caption is fed as 
linguistic input to the decoder, while sinusoidal positional embedding from base 
transformer [21] is used to co-relate the absolute positioning of each word token. 
The complete decoder follows the given operations: 

decemb = FastT  extemb + Positionalemb (14) 

dec1 = Norm(Masked_MH  A(decemb, decemb, decemb) + decemb) (15)
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dec2 = Norm( Adp_Attention(dec1, encout , encout ) + dec1) (16) 

decout = Norm(FF(dec2) + dec2) (17) 

To generate the sequence of words (caption) for the image, the output of ‘N ’ 
layered-decoder module is linearly transformed to vocabulary size (vocab) for 
retrieving the probability distribution of the next word. 

P(w) = Sof tmax(Wvocabdecout ) (18) 

Here, Wvocab defines the trainable weight parameter for vocabulary size. 

3.4 Training 

The aim of proposed model is to minimize standard cross-entropy loss (LXE  ) of 
word sequence (y∗ 

1:T ) given spatial features (Vs) of target image as follows: 

LXE  = −  
L∑

t=1 

log(P(y∗ 
t |y∗ 

0:t−1; Vs; θ)) (19) 

Here, L is the maximum word length of the caption, while P defines the softmax 
probability of t-th word as given in Eq. (18) and θ defines model hyper-parameters. 

4 Experiments and Results 

4.1 Dataset 

To evaluate the performance of proposed model, Flickr8k [19] and Flickr30k [28] 
datasets are utilized, in which each image is associated with 5 human reference cap-
tions. Flickr8k is small-scale captioning dataset with 8000 image-caption pairs, while 
Flickr30k is a large scale captioning dataset with 31783 image-caption pairs. The dis-
tribution of training, validation, and test samples are given in Table 1. The maximum 
word length for captioning is set as 30 and 50 for Flickr8k and Flickr30k datasets 
respectively. All the captions are transformed to lower case and least occurred words 
are excluded (less than 3 occurrences for Flickr8k and less than 5 occurrence for 
Flickr30k) to build the final vocabulary (3427 for Flickr8k and 7037 for Flickr30K). 
All the images are resized to (300 × 300) and encoded by the EfficientNetB7 module.
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Table 1 Data distribution for Flickr8k and Flickr30K 

Dataset Train Validation Test 

Flickr8k 6000 1000 1000 

Flickr30k 29783 1000 1000 

4.2 Training Details 

To train the proposed model, the number of heads is set to 8, embedding and sub-
module dimensionality are selected as 512, while memory slots are varied from 10 
to 40 with steps of 10 in memory-guided MHA. The internal layer dimension of the 
feed forward network is set as 2048. The Adam optimizer with warmup strategy and 
batch size of 128 is utilized to train the model. The warmup step size and epochs 
are set as 8000 and 15 and 4000 and 20 for Flickr8K and Flickr30K datasets respec-
tively. Specifically, the proposed MATIC model is trained with a single encoder and 
four decoder layers (N = 4), which ensures better quantitative results. All proposed 
variants are implemented with TensorFlow 2.2 library on TITAN Xp GPU. 

4.3 Quantitative and Qualitative Results 

In this section, proposed method is compared with state-of-the-arts and respective 
quantitative results are summarized. To quantify generated captions, natural lan-
guage generation (NLG) metrics e.g. n-gram Bleu [18], Meteor [3], Rouge [15] and 
CIDEr [22] scores are computed from MSCOCO captioning API [7]. In order to gen-
erate the fine-level precise caption, heuristic beam search algorithm is employed with 
beam indexing upto 3. The best metrics outcome are extracted using various beam 
index and reported in the quantitative results. Table 2 and Table 3 represents the com-
paritive analysis of quantitative results for various methods and proposed MATIC 
with various memory units (m) on Flickr8k and Flickr30k dataset respectively. 

Certain experiments on decoder layers revealed that the proposed MATIC model 
works better with 4 decoder layers than 6 decoder layers, thus reducing the total 
trainable parameters and making it a lightweight model. Here, Base X R represents 
the re-implementation of standard Transformer [21] with a single encoder and four 
decoder layers. Tables 2 and 3 show the quantitative effectiveness of the proposed 
model for generating captions with 30 memory units for Flickr8k and 40 memory 
units for Flickr30k dataset. 

Table 4 summarises statistical analysis, which shows the amount of trainable 
parameters and average testing time required by the proposed architecture is approx-
imately equal to that of the Base Transformer. The average testing time is computed 
by generating captions for 20 test images. With a similar amount of hyper-parameters
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Table 2 Comparative analysis of NLG metrics for various methods and proposed MATIC on 
Flickr8k 

Methods Bleu 1 Bleu 2 Bleu 3 Bleu 4 Meteor Rouge CIDEr 

DeepVS [13] 57.9 38.3 24.5 16.0 – – – 

NIC [23] 63.0 41.0 27.0 – – – – 

Soft-Att [26] 67.0 44.8 29.9 19.5 18.5 – – 

Hard-Att [26] 67.0 45.7 31.4 21.3 20.3 – – 

g-LSTM [11] 64.7 45.9 31.8 21.2 20.6 – – 

SCA-
CNN [6] 

68.2 49.6 35.9 25.8 22.4 – – 

Base XR 66.4 47.2 33.1 22.8 21.1 54.2 47.1 

MATIC 
(m = 10) 

68.2 49.4 34.9 24.2 22.1 55.6 53.6 

MATIC 
(m = 20) 

68.3 49.4 35.1 24.4 22.1 55.4 53.3 

MATIC 
(m = 30) 

69.3 50.7 36.5 25.7 23.3 56.1 55.7 

MATIC 
(m = 40) 

67.7 48.7 34.3 23.7 22.9 55.3 51.7 

# XR represents Transformer 

Fig. 3 Generated captions on tricky images from Flickr30K dataset 

as of Base Transformer, the MATIC model exhibits a considerable improvement in 
captioning performance. 

To assess the effectiveness of the proposed MATIC model, five tricky test images 
were chosen from the Flickr30K dataset, and the corresponding generated cap-
tions are shown in Fig. 3. The proposed MATIC generates excellent captions for the 
first four test cases by expressing minute visual contents and relative color-objects-
attribute information but misleads in the fifth test instance by generating the incorrect 
action-based caption. The generated captions by the proposed method demonstrate 
the application of memory-guided encoder to capture the color, gender, and position 
of objects, while the adequacy of the adaptive decoder describes all minute details 
of the image in a semantically convenient manner.
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Table 3 Comparative analysis of NLG metrics for various methods and proposed MATIC on 
Flickr30k 

Methods Bleu 1 Bleu 2 Bleu 3 Bleu 4 Meteor Rouge CIDEr 

DeepVS [13] 57.3 36.9 24.0 15.7 – – 24.7 

NIC [23] 66.3 42.3 27.7 18.3 – – – 

mRNN [17] 60.3 41.0 28.0 19.0 – – – 

Soft-Att [26] 66.7 43.4 28.8 19.1 18.5 – – 

Hard-Att [26] 66.9 43.9 29.6 19.9 18.5 – – 

g-LSTM [11] 64.6 44.6 30.5 20.6 17.9 – – 

Sem-Att [27] 64.7 46.0 32.4 23.0 18.9 – – 

SCA-
CNN [6] 

66.2 46.8 32.5 22.3 19.5 – – 

Adapt-
Att [16] 

67.7 49.4 35.4 25.1 20.4 – 53.1 

Scene-Graph 
XR [5] 

66.9 49.4 35.4 24.8 20.3 – 53.3 

Adapt 
XR [30] 

67.0 49.6 35.5 25.2 20.4 – 53.0 

Base XR 66.5 47.5 33.3 23.2 20.8 53.9 48.9 

MATIC 
(m = 10) 

68.1 48.8 34.6 24.3 20.8 54.0 46.7 

MATIC 
(m = 20) 

67.2 48.6 35.0 25.0 20.7 54.0 47.6 

MATIC 
(m = 30) 

68.8 49.4 35.4 24.8 20.7 54.2 49.7 

MATIC 
(m = 40) 

69.5 50.7 36.5 26.0 20.9 54.9 51.7 

# XR represents Transformer 

Table 4 Statistical analysis of Base Transformer and proposed MATIC on both datasets 

Flickr8k Flickr30k 

Base XR MATIC Base XR MATIC 

No. of parameters 
(in Millions) 

24.78 25.35 28.48 29.05 

Avg. test time (in 
Seconds) 

3.59 3.68 4.63 4.67
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5 Conclusion 

In this work, a novel Memory-guided Adaptive Transformer for Image Captioning 
(MATIC) is demonstrated by merging a memory-guided encoder with an adaptive 
decoder, and its efficacy for generating natural captions is proven on Flickr8k and 
Flickr30k datasets. Memory-guided encoder is used in conjunction with a conven-
tional CNN network to acquire innate perceptual scenery knowledge, and an Adaptive 
decoder is employed to align vision-language modality by conditionally weighting 
visual and semantic information for the generation of word sequence as the caption. 
In comparison to a typical Transformer with six encoder and six decoder layers, the 
proposed MATIC has a single memory-based encoder and four adaptive-attention-
based decoder layers, which aids in the reduction of overall trainable parameters. 
As a result, it may be served as a lightweight model and embedded in a device 
for various captioning applications such as virtual aid, visually impaired individ-
ual assisting tools, scene interpretation, and many more. The proposed MATIC has 
outperformed state-of-the-arts in both quantitative and qualitative findings with 30 
memory units for Flickr8k and 40 memory units for the Flickr30K dataset. The pro-
posed MATIC demonstrates the effectiveness of a memory-guided encoder by under-
standing implicit scenery knowledge aligned with a multi-headed adaptive decoder 
to describe visual contents in a faithful linguistic manner. 
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