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1 Introduction 

The human brain can seamlessly perceive diverse perceptual and semantic informa-
tion regarding the natural scene/image during a glance [21, 30, 58, 62]. The visual 
scene information perceived during/after a glance refers to the gist (a summary) of 
the scene/image. The gist includes all the visual information from the low-level (e.g., 
colors and contours) to the high-level (e.g., shapes and activation). Due to this reason, 
[55] suggested that the gist can be investigated at both the perceptual and conceptual 
levels. The structural representation of the image refers to the perceptual gist, and 
the semantic information of the image refers to the conceptual gist. However, the 
conceptual gist is more refined and modified than the perceptual gist [55]. Several 
works [4, 19, 20, 26, 57, 58, 65] in neuroscience have addressed the fundamental 
question, i.e.,“how does the human brain performs several visual tasks?” by investi-
gating through conceptual and perceptual gist. They conducted several experiments 
and proposed various theories to explain how modeling of the scene occurs in the 
human brain. However, there was no general principle that explains the functioning 
of the human brain. Even though there is a general principle, we expect that to be 
different from human-to-human. Depending on the situation and the environment, 
the human brain can seamlessly grasp the information by recognizing the objects 
and observing their structure. On the other hand, for a computer to do the same is 
the fundamental goal of the computer vision field. 

In recent years, deep learning methods have shown a significant improvement over 
traditional handcrafted techniques on several computer vision tasks. Though these 
deep neural networks (DNNs) achieved state-of-the-art performance in many cases, 
the one major drawback is the requirement of massive labeled data. The collection of 
a huge amount of labeled data is an expensive and time taking process. Even though 

V. S. S. A. Daliparthi (B) 
Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden 
e-mail: veda18@student.bth.se 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 
U. Mudenagudi et al. (eds.), Proceedings of the Satellite Workshops of ICVGIP 2021, 
Lecture Notes in Electrical Engineering 924, 
https://doi.org/10.1007/978-981-19-4136-8_12 

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4136-8_12&domain=pdf
http://orcid.org/0000-0001-6895-4503
veda18@student.bth.se
 854 56950 a 854 56950 a
 
mailto:veda18@student.bth.se
https://doi.org/10.1007/978-981-19-4136-8_12
 -2047 61833 a -2047
61833 a
 
https://doi.org/10.1007/978-981-19-4136-8_12


162 V. S. S. A. Daliparthi

these DNNs are said to be inspired by the functioning of the human brain, is this how 
the human brain learns to perform any visual task? NO. Because the human brain 
does not require massive labeled data to perform any visual task, and it can perform 
with few data samples. However, we cannot observe a similar phenomenon in the 
case of many DNNs. 

Semantic segmentation is the task of assigning a class label to every pixel in the 
given image, which has applications in various fields such as medical, autonomous 
driving, robotic navigation, localization, and scene understanding. The prominent 
work FCN [48] adopted the image-classification networks [35, 75, 81] for semantic 
segmentation. Later on, several works [2, 12, 67, 78, 83, 98, 100, 107] improved 
the FCN [48] architecture, and proven to be successful in diverse semantic segmen-
tation benchmarks [5, 15, 108]. However, these methods mainly focus on achieving 
state-of-the-art performance by using the entire and additional datasets [16] (for pre-
training). Due to this reason, even though various methods [12, 78] outperformed 
U-Net [67] in terms of accuracy and computational complexity, the U-Net [67] archi-
tecture is still exploited in several medical image segmentation methods due to its 
ability to perform with few data samples [74]. Although several few-shot semantic 
segmentation (FSS) methods are introduced to address this problem, they often use 
techniques such as meta-learning [18, 59, 64, 85, 93] and metric learning [73, 89, 
89, 90, 95, 101, 102, 106] on top of the existing architectures. 

UnlikeFSSmethods,wetackle theformerlymentioneddrawbackof theDNNs, i.e., 
the requirement of massive labeled data, from a neuroscience perspective. In this work, 
we propose a hypothesis of human scene understanding mechanism named Ikshana. 
The idea is that, “to understand the conceptual gist of a given image; humans look at the 
imagemultipletimesrecurrentlyatdifferentscales”.FollowingtheIkshanahypothesis, 
weproposeanovelneural-inspiredCNNarchitecturenamedIkshanaNet,amulti-scale 
architecture that learns representations at full image resolution. In contrast to the exist-
ing CNN architectures that pass the input image only to the initial layer (stem module), 
our method feeds the input image to every module in the network and to the best of our 
knowledge, this is the first work to propose the same. 

To evaluate the performance of IkshanaNet, we conduct extensive experiments 
on the entire and subsets of the Cityscapes and Camvid benchmarks. Moreover, we 
conduct multiple ablation studies to verify the effect of image scales in IkshanaNet. 
The empirical results illustrate that our method outperforms several baselines on the 
entire and few data samples. Furthermore, the ablation studies shows the importance 
of multi-scale information in achieving considerable performance. We hope that our 
hypothesis sparks future research in neural network architectures for vision tasks. 

2 Related Work 

In Neurological terms, all the low-level and high-level computer vision tasks come 
under a single term called human scene understanding. A scene is a view of a real-
world environment that contains multiple surfaces and objects organized in a mean-
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ingful way. In neuroscience, the perceptual gist is more investigated compared to 
the conceptual gist. The early works on the conceptual gist [30, 61] explained that 
a typical scene fixation of 275 to 300 ms is often sufficient to understand the gist of 
the image. Several works on the perceptual gist [4, 19, 20, 26, 56–58, 65, 72] pro-
vided insight into how the modelling of the scene occurs in the human brain through 
perceiving boundaries, blobs, scales, texture, contours, openness, depth, and so on. 
The information perceived through the perpetual gist is refined and extracted into 
the conceptual gist (the semantic meaning) during the cognitive process. Thus, the 
conceptual gist is highly dependent upon the perceptual gist. In many cases [15, 16, 
108], we do not explicitly encode the perceptual process in DNNs, and the CNN 
learns various representations regarding the image during the training process. Thus, 
our hypothesis focuses on the conceptual gist rather than the perceptual gist. 

Neural networks exist from a long time [50, 68, 70] and some prominent works 
[14, 16, 25, 35, 43, 75, 81, 82] made them popular during recent years. In our 
work, we use the convolutional neural network (CNN) architecture [36, 88] to learn 
representations from the images, which itself is inspired by [23, 29]. The architecture 
of IkshanaNet is inspired by [28, 75] and related to [27, 39]. 

The first seminal work on Semantic segmentation (SS) using deep learning is 
the fully convolutional networks (FCN) [48]. Later on, many semantic segmentation 
networks followed the FCN [48] architecture. The total prominent works on deep 
learning-based semantic segmentation methods can be roughly classified into five cat-
egories. They are (i) Encoder-decoder based methods (DeconvNet [54], SegNet [2], 
U-Net [67], RefineNet [41, 42], FC-DenseNet [33], and GFR-Net [1]), (ii) Regional 
proposal methods (MaskRCNN [24], FPN [44], and PANet [46]), (iii) Increased res-
olution of feature map methods (DeepLab series [8–10, 12], PSPNet [107], DenseA-
SPP [96], and HRNet [78]), (iv) Context information methods (ParseNet [47], ATS 
[11], DANet [22], OCNet [99], OCR [98], EncNet [104], Non-local [91], ZigZagNet 
[40], ACFNet [103], CoCurNet [105], GLAD [38], and HANet [13]) (v) Bound-
ary refinement methods ([3, 7, 17, 49], Gated-SCNN [83], and SegFix [100]). The 
IkshanaNet uses the dilated convolutions, interpolation of feature maps, and skip 
connections from different layers in the network. Therefore, our work is related to 
the formerly mentioned encoder-decoder and increased resolution of feature map 
methods. 

Few-shot segmentation (FSS) methods [6, 18, 45, 59, 64, 73, 85, 86, 89, 90, 
93, 95, 101, 102, 106] are introduced to handle limited training data. They use 
meta-learning (knowledge distillation), metric-learning (similarity learning), and a 
combination of both the techniques on top of FCN [48] based architectures, which 
often involve multistage training. The metric-learning techniques can be further clas-
sified into the prototypical feature learning [18, 37, 87, 90, 102, 106] and the affinity 
learning [89, 97, 101] techniques. Unlike general SS methods, FSS methods are eval-
uated on different benchmarks and handle novel class categories during testing. Since 
the IkshanaNet does not use any of the formerly mentioned FSS techniques and only 
handles the classes seen in the training data, our method is more closely related to 
the general SS methods than the FSS methods.
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3 Method  

3.1 Ikshana (the Eye) Hypothesis 

In her prominent work [61], professor Mary C. Potter found that an average human 
can understand the gist of the image between the time interval of 125 to 300 ms. 
Furthermore, through several works [19, 20, 26, 30, 57, 58, 65, 72] in neuroscience, 
it is evident that humans understand the gist of the image in a certain time interval. 
During that time interval, the Ikshana hypothesis approximates the functioning of 
the human brain. The Ikshana hypothesis states that “To understand the conceptual 
gist of a given image, humans look at the image multiple times recurrently, at 
different scales.” The word Ikshana is derived from the Sanskrit language, which 
has many synonyms such as the eye, sight, look, and so on. 

We present an example to explain the Ikshana hypothesis in Fig. 1, where there 
is an image (x) on the left side and the human brain mechanism on the right side. 
According to the Ikshana hypothesis, for a human to understand the conceptual gist 
of the given image, the following process occurs in the human brain: 

At a time step (t), during the first glance (Φ1), the brain learns the first represen-
tation ( f (x)) from the image (x) and stores that representation in the memory (M), 
as shown in the Eq. 1. 

f (x) = Φ1(x); M = f (x) (1) 

At a time step (t + 1), during the second glance (Φ2), the brain holds the first 
representation ( f (x)) in the memory and learns the second representation (g(x)) 
from the image and the first representation (x, f (x)). Then the brain stores the 
representation (g(x)) along with ( f (x)) in the memory (M), as shown in the 
Eq. 2. 

g(x) = Φ2(x, f (x)); M = f (x), g(x) (2) 

At a time step (t + 2), during the third glance (Φ3), the brain holds the first and the 
second representations ( f (x), g(x)) in the memory and learns the third representation 
(h(x)) from the image and the previous representations (x, f (x), g(x)). Then the 
brain stores the representation (h(x)) along with ( f (x), g(x)) in the memory (M), 
as shown in the Eq. 3. 

h(x) = Φ3(x, f (x), g(x)); M = f (x), g(x), h(x) (3) 

From Eqs. 1, 2, and 3, this kind of recurrent process occurs at (t + n) times 
at a single image scale. Depending upon the given task (T ), by combing all the 
information stored in the memory until the (t + n)th time step, the brain understands 
the conceptual gist (Y1) of the image at a single scale, as shown in the Eq. 4. 

Y1 = T ( f (x), g(x), h(x)...........n(x)) (4)
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Fig. 1 The Ikshana Hypothesis at single scale 

This process occurs at N different scales and generates N different outputs (Y1, 
Y2, Y3, ...., Yn). By considering all the outputs, the brain selects some of those rep-
resentations and forgets the remaining representations. In this way, the brain learns 
(Δ) the final output (Y ) of the given visual task (T ), as shown in the Eq. 5. 

Y = Δ(Y1, Y2, Y3, ....YN ) (5) 

From the Eqs. 1, 2, 3, 4, and 5, this is how Ikshana hypothesis approximates the 
functioning of the human brain, while human understands the conceptual gist of the 
image. The time required (or the number of glances required) by an average human 
to understand the gist of the image may depend upon several factors such as the given 
task, age, intelligence, memory, and so on. 
The existing CNN architectures such as VGG [75], Resnet [25], DenseNet [28], and 
so on learns a representation (say f (x)) with 32/64 filters from the input image and 
learns further representations on top of the f (x) until the network achieves adequate 
performance. In contrast, the network designed by following the Ikshana hypothesis 
learns representations from the input image and previous outputs at each glance/layer. 

3.2 IkshanaNet Architecture 

In this section, we introduce a novel neural-inspired encoder-decoder CNN archi-
tecture named IkshanaNet, designed by following the Ikshana hypothesis. Humans 
can look at the image and seamlessly learn various useful representations regarding 
it [21, 30, 58, 62]. On the other hand, for a computer to do the same, we use the 
convolutional neural network [23, 29, 36] architecture to learn representations. The 
IkshanaNet architecture uses three image scales and consists of 4M parameters. The 
entire architecture is made of three building blocks, and they are: (1) the glance



166 V. S. S. A. Daliparthi

Fig. 2 IkshanaNet-main architecture 

module, (2) the projection module, and (3) a 1  × 1 convolutional layer, as illustrated 
in Fig. 2. 

The glance module consists of three 3 × 3 convolutional layers (with the same 
dilation rates), and we use it to learn representations from the given image (or a feature 
map). The number of input filters passed into the glance module varies several times 
in the architecture; however, it always returns a feature map with 32 filters. The 
projection module consists of three 3 × 3 convolutional layers, and we use it to 
refine the representations learned from the glance modules. The input and output 
filters are always the same for the projection module. We use the 1 × 1 convolution 
layers to reduce the number of filters in a given future map. Except for the last 1 × 
1 convolutional layer that returns the final output, every convolutional layer in the



The Ikshana Hypothesis of Human Scene Understanding 167

architecture is followed by a batch normalization [31] and a ReLU [52] activation 
layer. 

In the encoder part, the IkshanaNet learns representations at three image scales. 
At scale 1, we pass the input image through a glance module with a dilation rate 
(d = 1), which returns a feature map with 32 filters. Then we concatenate the input 
image with the previously learned feature map (32 + 3 = 35). The concatenation 
of the input image with the feature map is essential to ensure that we are learning 
representations from the input image. Then we pass the feature map through another 
glance module with a dilation rate (d = 2) and concatenate the resulting feature map 
with the feature maps from the preceding layers (32 + 32 + 3 = 67). We pass the 
resulting feature map through another glance module with a dilation rate (d = 3), 
which takes in 67 filters and returns 32 filters. Again, we concatenate the resulting 
feature map with feature maps from the preceding layers (32 + 32 + 32 + 3 = 99). 
At this point, we remove the input image from the feature map through tensor slicing 
(99 − 3 = 96), and the resulting feature map consists of (32 + 32 + 32 = 96) filters 
learned from three glances modules. In this way, the network followed the Ikshana 
hypothesis had three glances recurrently at the full resolution. Then we pass the 
feature map through a projection module to refine the representations (96 = 96). 
Here, we pass the refined feature map through a 1 × 1 convolutional layer that 
reduces 96 filters into 20 filters and name it the side one output (Y1). Simultaneously, 
we pass the feature map through an average pooling layer, which reduces the size of 
the feature map by a factor of two. 

At scale 2, we down-sample the input image by a factor of two and concatenate 
with the pooled feature map from the scale 1 (96 + 3 = 99). We pass the resulting 
feature map with 99 filters through three glance modules with different dilation rates 
(d = 1, 2, 3) and concatenate all the outputs as follows (99 + 32 + 32 + 32 = 195). 
Then we remove the image from the feature map (195 − 3 = 192) and pass it through 
a projection module to refine the representations (192 = 192). Then we pass the 
refined feature map through a 1x1 convolutional layer that reduces 192 filters into 
20 filters and name it the side two output (Y2). Then, we pass the refined feature map 
through an average pooling layer that reduces the size by a factor of two. 

At scale 3, we down-sample the input image by a factor of four and concatenate 
with the pooled feature map from the scale 2 (192 + 3 = 195). Here, we follow the 
same process (195 + 32 + 32 + 32 = 291); (291 − 3 = 288); (288 == 288) as the 
scale 2 part, which returns a feature map with 20 filters, and name it the side three 
output (Y3). 

In the decoder part, we bi-linearly interpolate the outputs from two scales (Y2 
and Y3) to match with the output of scale 1 Y1, i.e., the input image size. Then 
we concatenate all the three outputs (20 + 20 + 20 = 60) and pass it through a 1x1 
convolutional layer, which returns a feature map with 20 filters, that is the final output 
of the network [Y = Δ(Y1, Y2, Y3)]. 

Depth Architectures: Here, we introduce three variants of the IkshanaNet named 
IkshanaNet-3G, IkshanaNet-6G, and IkshanaNet-12G. If we remove the projection 
layers in IkshanaNet-main, then it will remain with three scales and three glances at 
each scale; it is IkshanaNet-3G (which consists of 514 K parameters). If we increase
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the number of glances per scale, from three to six, then it is IkshanaNet-6G (which  
consists of 1.8M parameters), and from three to twelve, then it is IkshanaNet-12G 
(which consists of 6.5M parameters). 

Multi-scale Architectures: Here, we introduce three variants of IkshanaNet 
named IkshanaNet 1S-6G, 2S-3G, and 3S-2G. In IkshanaNet 1S-6G, there are no 
pooling layers and contain six glances at full-scale resolution (which consists of 
257K parameters). In IkshaNet 2S-3G, there are two scales and three glances at each 
scale (which consists of 259K parameters). In IkshanaNet 3S-2G, there are three 
scales and two glances at each scale (which consists of 260 K parameters). 

4 Experiments 

4.1 Experimental Setup 

GPU: 1 X NVIDIA Tesla T-4 (16 GB VRAM) 
Framework: PyTorch 1.8 [60] 
Epochs: 180 ; Batch Size: 2 
Criterion: Pixel-wise cross-entropy loss 
Learning Rate Scheduler: ReduceLROnPlateau (decrease factor = 0.5 and patience 
= 20 epochs) with an initial learning rate of 1e − 06. 
Optimizer: Stochastic gradient descent [66] with Nesterov momentum [53]1 

Random Seed: To ensure that data splits are reproducible, we set the random seed 
42 in the function torch.utils.data.random-split. 
Pre-Processing: We normalize all the images with mean and standard deviation val-
ues of ImageNet [16] dataset. We did not use any data augmentation techniques. 
Baselines: We use the open-source implementations for networks DeepLabV3+ 
(ResNet-101) [32], DeepLabV3 (DenseNet-161) [77], HRNet-V2 [79], and U-
Net [51]. We import DeeplabV3+ with encoder networks such as ResNet [25], 
MobileNet-V2 [71], ResNext [92], EfficientNet [84], and RegNet [63] from the  
segmentation models library [94]. 

4.2 Experiments on Cityscapes 

The Cityscapes [15] semantic segmentation dataset consists of 5, 000 finely annotated 
high-quality images, which are further divided into 2, 975/500/1, 525 images for 
training, validation, and testing. During the evaluation, only 19 classes are considered 

1 For all the baselines, we use the Nesterov momentum of 0.9 for the  SGD [66] optimizer by 
following [12, 25, 28, 63, 71, 84]. For the IkshanaNet and its variants, we use the Nesterov 
momentum of 0.7 for the  SGD [66] optimizer by tuning with several values such as 0.5, 0.6, 0.7, 0.8, 
and 0.9, i.e., the only hyper-parameter tuning step in this work. In our preliminary experiments, we 
observe that the training of IkshanaNet is unstable with 0.9 momentum. We hypothesize that this 
phenomenon is due to the small size of IkshanaNet compared to baseline networks.
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out of the 35 classes. Therefore, by using the cityscapes-scripts, we convert the 35 
classes into 20 classes (including background). We resize all the images from the 
resolution of 1024 × 2048 to 512 × 1024. 

4.2.1 Baseline Experiments 

Here, we use the networks DeeplabV3+ (ResNet-101 [25]), DeeplabV3 (DenseNet-
161 [28]), HRNet-V2 [80], and U-Net [67] as the baselines 2 to compare with 
IkshanaNet-main. 

We train all the networks on the entire dataset T2975 and provide the mean class IoU 
results evaluated on the validation-set in Table 1, where we observe the following: 

(i) U-Net [67] (49.3) shown top performance within the baseline networks followed 
by HRNet-V2 [80] (48.0). 

(ii) IkshanaNet outperformed U-Net by 5.2 % and HRNet-V2 [80] by  6.5 %. 
(iii) IkshanaNet outperformed baselines by a huge margin in classes such as fence, 

pole, traffic light, traffic sign, rider, bus, motorcycle, and bicycle. 
(iv) Even though U-Net [67] and IkshanaNet learn representations at full-scale res-

olution before reducing the spatial resolution, the IkshanaNet still outperforms 
U-Net [67] in the formerly mentioned classes. 

4.2.2 Data Ablation Study 

While trained on few data samples, the network size might strongly influence the 
performance. The networks ResNet-101 [25] (59.3 M), DenseNet-161 [28]) (43.2 
M), HRNet-V2 [80] (65.9), and U-Net [67] (31.0) consists more number of param-
eters compared to IkshanaNet-main (4 M). To make it a fair comparison, we include 
DeeplabV3+ [12] with several light-weight encoder networks (such as ResNet-18 
[25], MobileNet-V2 [71], EfficientNet-b1 [84], and RegNetY-08 [63]) along with 
the networks from the baseline experiments. 

Here, we conduct a data ablation study on five different subsets of the training 
data, T1487, T743, T371, T185, and T92 (suffix number represents the number of training 
samples in the subset) by using the same validation set (500 images). 

In Table 2, we provide the mean class IoU results evaluated on the validation set, 
the average M.IoU score, the number of parameters (in million)), and the GFLOPs 
[76] (calculated with an input resolution of 1x512x1024x3 ). 

From Table 2, we observe the following: 

2 For the baselines, ResNet-101 [25], DenseNet-161 [28], and HRNet-V2 [80], we use the ImageNet 
[16] pre-trained weights. Because in the existing literature, the architectures [12, 80, 98, 107] used 
an ImageNet pertained network as a feature extractor and reported the results by using pre-trained 
weights only. However, in the case of IkshanaNet and U-Net [67] no pre-training is done. Since this 
work addresses the requirement of massive data, this provides strong motivation against pre-training.
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Table 2 Cityscapes data ablation experiments evaluated on the validation set 

Backbone T1487 T743 T371 T185 T92 Tavg Param(M) GFLOPs 

ResNet-18 
[25] 

42.6 35.6 27.9 22.4 21.0 29.9 12.3 36.8 

MobileNet-V2 
[71] 

38.5 32.2 30.6 22.5 19.2 28.6 4.4 12.3 

EfficientNet-
b1 [84] 

37.8 32.5 26.9 24.6 19.8 28.3 7.4 4.6 

RegNetY-08 
[63] 

28.5 31.9 29.4 27.4 22.1 27.9 7.0 17.2 

ResNet-101 
[25] 

29.3 28.8 28.6 21.6 19.4 25.5 59.3 177.8 

DenseNet-161 
[28] 

33.3 30.1 26.0 24.9 20.8 27.0 43.2 129.4 

HRNet-V2 
[80] 

27.8 18.8 23.3 18.3 15.4 20.7 65.9 187.8 

U-Net[67] 42.8 34.2 30.2 27.8 25.0 32.0 31.0 387.1 

IkshanaNet-
Main 

43.4 40.2 31.7 29.9 25.8 34.2 4.0 413.3 

(i) U-Net [67] (Tavg–32.2) achieves top average performance within the baselines. 
(ii) Even though U-Net [67] consists of 31M parameters, it still managed to out-

perform its lightweight counterparts. 
(iii) IkshanaNet outperformed all other baselines in the M.IoU score and the average 

M.IoU score in all five subsets. 
(iv) IkshanaNet consists of fewer parameters, and EfficientNet-b1 [84] consists of 

fewer GFLOPs than other networks. 

4.2.3 Multi-scale Ablation Study 

In Sect. 3.1, the Ikshana hypothesis stated that “humans often require multi-scale 
information to understand the gist of an image”. Therefore, to verify the requirement 
of multi-scale information, we conduct a multi-scale ablation study. 

Here, we train three different variants of IkshanaNet, such as the 1S-6G, 2S-3G, 
and 3S-2G (explained in Sect. 3.2) on the five different subsets of the training data 
(same as Sect. 4.2.2). In Table 3, we provide the results of the multi-scale ablation 
study evaluated on the validation set. 

From Table 3, we observe that: 

(i) IkshanaNet-3S-2G network outperforms other networks in the M.IoU score, the 
average M.IoU score, and requires fewer GFLOPs, while requiring the same 
number of parameters.
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Table 3 Cityscapes multi-scale ablation experiments results 

Backbone T1487 T743 T371 T185 T92 Tavg Param(M) GFLOPs 

1S-
6Glances 

29.2 24.9 23.3 20.2 18.1 23.1 0.26 136.0 

2S-
3Glances 

37.3 34.9 33.2 25.7 24.0 31.0 0.26 70.0 

3S-
2Glances 

43.5 36.9 34.4 27.5 26.5 33.8 0.26 42.4 

(ii) The multi-scale information improved the performance and decreased the com-
putational complexity (GFLOPs) of the network and vice-versa. 

(iii) From Tables 2 and 3, we observe that IkshanaNet 3S-2G network (with only 260K 
parameters) outperforms all the baselines in the data ablation study by occupying 
approximately 10x few GFLOPs and 15x few parameters than IkshanaNet-main. 

The above observations suggest that, the multi-scale architectures can achieve 
superior performance than an isometric architecture. 

4.3 Experiments on Camvid 

The Cambridge-driving labeled video dataset [5] for semantic segmentation consists 
of 700 images, which are further divided into 367 training, 101 validation, and 
233 testing sets. We convert the 32 classes to 12 classes (including background) 
by following [2, 34] and resize the images from the resolution of 720 × 960 to 
368 × 480. 

4.3.1 Baseline Experiments 

Here, according to the size of the networks, we classify the total networks into three 
different sets. 

Set-1 consists of DeeplabV3+ [12] with the encoder networks such as Resnet-18 
[25], EfficientNet-b1 [84], RegNetY-08 [63], MobileNet-V2 [71], and IkshanaNet-
3G (see Sect. 3.2). 

Set-2 consists of DeeplabV3+ [12] with the encoder networks such as Resnet-50 
[25], EfficientNet-b4 [84], RegNetY-40 [63], and ResNext-50 [92], and IkshanaNet-
6G (see Sect. 3.2).
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Table 4 Camvid baseline experiments results 
Backbone T367 T183 T91 Tavg 

Val Test Val Test Val Test Val Test Param(M) GFLOPs 

ResNet-18 [25] 83.3 64.9 79.7 63.7 70.0 56.6 77.7 61.7 12.3 12.4 

EfficientNet-b1 
[84] 

84.4 68.4 75.0 61.3 77.0 58.8 78.8 62.8 7.4 1.5 

RegNetY-08 [63] 80.4 64.3 77.7 61.4 70.9 57.8 76.3 61.2 7.0 5.8 

MobileNet-V2 
[71] 

80.8 63.9 77.3 56.1 66.1 54.6 74.7 58.2 4.4 4.1 

IkshanaNet-3G 81.6 65.7 80.0 62.5 78.0 61.2 79.9 63.1 0.5 26.0 

ResNet-50 [25] 78.6 61.6 80.0 60.3 78.3 55.9 80.0 59.3 26.7 25.0 

EfficientNet-b4 
[84] 

82.7 64.1 77.7 62.2 75.6 60.5 78.7 62.3 18.6 1.7 

RegNetY-40 [63] 80.8 62.0 76.4 61.0 74.9 59.2 77.4 60.7 21.5 18.8 

ResNext-50 [92] 80.1 62.6 77.3 56.1 66.1 54.6 74.5 57.8 26.2 25.0 

IkshanaNet-6G 83.3 67.8 81.4 65.9 76.0 60.0 80.2 64.6 1.8 82.0 

ResNet-101 [25] 81.6 63.8 75.6 56.4 70.1 55.7 75.8 58.6 59.3 59.9 

EfficientNet-b6 
[84] 

80.6 65.0 80.3 57.8 77.4 60.4 79.4 61.0 42.0 1.9 

RegNetY-80 [63] 78.5 62.0 78.2 63.8 66.2 53.8 74.3 59.9 40.3 34.4 

DenseNet-161 
[28] 

77.8 58.6 75.7 57.8 73.0 53.8 75.5 56.7 43.2 43.6 

HRNet-V2 [80] 81.1 63.6 79.1 62.9 72.9 55.0 77.7 60.5 65.9 63.5 

U-Net [67] 83.0 69.5 78.0 62.8 76.8 61.6 79.3 64.6 31.0 130.0 

IkshanaNet-12G 83.9 70.0 83.3 67.1 76.5 60.6 81.2 65.9 6.5 285.0 

IkshanaNet-M 83.2 68.5 79.9 62.9 72.2 58.8 78.4 63.4 4.0 139.0 

Set-3 consists of DeeplabV3+ [12] with the encoder networks such as Resnet-
101 [25], EfficientNet-b6 [84], RegNetY-80 [63], DeepLabV3 ( DenseNet-161 [28]), 
HRNet-V2 [80], U-Net [67], and IkshanaNet-12G (see Sect. 3.2) 3. 

Additionally, we include IkshanaNet-main and did not compare it with other 
networks. By using the same validation, we train each network on three different 
subsets of the training data, T367, T183, and T91. 

In Table 4, we provide the mean IoU results evaluated on the validation set, the 
test set, the average M.IoU score of all the variants, the number of parameters (in 
Million), and the GFLOPs [76] (calculated the GFLOPs with an input resolution of 
1 × 368 × 480 × 3). From Table 4, we observe the following: 

In Set-1: (i) IkshanaNet-3G outperforms all other networks in the subsets T91, Tavg , 
and requires fewer parameters. (ii) EfficientNet-b1 [84] outperforms other networks 
in the T367 and requires fewer GFLOPs. 
In Set-2: (i) IkshanaNet-6G outperforms all other networks in the subsets T367, T183, 
Tavg , and requires fewer parameters. 

3 Same as Sect. 4.2.1, except for U-Net [67] and IkshanaNet-12G, we use the ImageNet [16] pre-
trained weights for all the networks in the Set-3.
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Table 5 Camvid multi-scale ablation experiments results 

Backbone T367 T183 T91 Tavg 

Val Test Val Test Val Test Val Test Param(M) GFLOPs 

1S-
6Glances 

79.2 60.0 77.8 58.8 66.7 50.9 74.6 56.6 0.26 45.6 

2S-
3Glances 

80.1 65.6 79.5 60.1 77.2 59.5 78.9 61.7 0.26 23.1 

3S-
2Glances 

82.9 66.5 80.9 62.8 77.5 60.8 80.4 63.4 0.26 14.0 

(ii) EfficientNet-b4 [84] outperforms all other networks in the subset T91 and requires 
fewer GFLOPs. 
In Set-3: (i) IkshanaNet-12G outperforms all other networks in the subsets T367, T183, 
Tavg , and requires fewer parameters. 
(ii) U-Net [67] outperformed other networks in the subset T91 and EfficientNet-b6 
[84] requires fewer GFLOPs than other networks. 

4.3.2 Multi-scale Ablation Study 

Same as Sect. 4.2.3, by using the same validation set, we train three different variants 
of IkshanaNet such as 1S-6G, 2S-3G, and 3S-2G (explained in Sect. 3.2) on three 
subsets of the training data (T367, T183, and T91). 

In Table 5, we provide the mean IoU results evaluated on the validation set, the test 
set, the average score of all variants, the parameters, and the GFLOPs. We calculate 
the GFLOPs with an input resolution of 1x368x480x3. 

From Table 5, we observe that, the IkshanaNet-3S-2G network outperforms all 
other networks in all the subsets (T367, T183, T91, Tavg), and requires fewer GFLOPs. 
The results are similar to the Sect. 4.2.3 (Table 3), demonstrating the importance of 
multi-scale information. 

5 Validity Threats 

(i) Most of the existing works [12, 98, 107] used a mini-batch size of 8 and SyncBN 
[69, 104] for training. However, due to the limited availability of the computing 
resources, we train all the networks with a mini-batch size of 2. Due to this 
reason, we cannot directly compare the performance of our method with the 
state-of-the-art methods. 

(ii) In this work, even though the training data splits are reproducible, the perfor-
mance of the networks trained on subsets of the training data might depend upon 
the fact that “how well the subset represents the whole dataset?”. If we use a
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different random seed to generate the splits, then the exact behavior may or may 
not be expected. 

(iii) In this work, through multi-scale ablation experiments, we observe that multi-
scale information is often necessary to improve the performance of the networks. 
By observing the images in Cityscapes, and CamVid datasets, it is evident that 
the images consist of multi-scale objects. However, this phenomenon might not 
be valid to other datasets, where there exist no multi-scale objects. 

6 Conclusion 

In this work, we attempt to bridge the gap between the current vision DNNs and the 
human visual system by proposing a novel hypothesis of human scene understand-
ing and a neural-inspired CNN architecture that learns representations at full-scale 
resolution. 

The empirical results illustrate the effectiveness of our method on entire and few 
data samples compared to the baselines. Also, through multi-scale ablation stud-
ies, we observe that using multi-scale information improves the performance of 
IkshanaNet by reducing the computational complexity. 

Moreover, we observe that our method is just an improvement over the baselines, 
and it is still dependent on the data. Hence, it is nowhere close to the human visual 
system. Therefore, a better-performing and computationally efficient architectures 
based on the Ikshana hypothesis will be studied in the future work. 

Furthermore, we hope that our hypothesis inspires future generation of neural 
inspired vision architectures. 

6.1 Code 

https://github.com/dvssajay/The-Ikshana-Hypothesis-of-Human-Scene-
Understanding. 
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