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Systematic Approach to Tuning a Deep 
CNN Classifying Bharatanatyam Mudras 

R. Jisha Raj , Smitha Dharan , and T. T. Sunil 

1 Introduction 

Dance and music are an inevitable part of human culture across the world, and it 
reflects the lives, beliefs and cultural traditions of people practising it. Archaeologists 
have excavated sculptures and paintings of dancers across India [3, 15, 21]. Sangeet 
Nataka Academy has identified eight different classical dances in India [16]. 

Bharatanatyam is a classical dance that originated in South India and is performed 
by both men and women [30]. The performers of Bharatanatyam dance use hand 
gestures (mudras), facial expressions and body movements that are very graceful 
[24]. They use these media to communicate to the audience the intended meaning 
of the verse or shloka being sung with the accompaniment of traditional musical 
instruments. 

According to Natyashastra, a classical text on Indian dance, there are 28 
Asamyukta Hastas (single hand gestures) and 23 Samyukta Hastas (Double hand 
gestures) [7, 9, 23] in Bharatanatyam. Computer vision techniques can be applied 
to Bharatanatyam mudras to obtain a better understanding and annotating a dance 
performance. Open datasets on Bharatanatyam hand gestures are not presently avail-
able. An exhaustive Bharatanatyam Mudra dataset consisting of 15,396 static single 
hand gesture images and 13,035 static double hand gesture images was proposed by 
the authors and is available in public domain now. The full dataset can be down-
loaded from https://github.com/jisharajr/Bharatanatyam-Mudra-Dataset.git. Using  
this dataset classification using conventional machine learning techniques, feature 
descriptors and visualisation was done and are being reported elsewhere. 
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In this paper, a deep convolutional neural network (CNN) is used for classifica-
tion of the Bharatanatyam hand gesture images. The hyperparameter tuning of this 
CNN is researched and discussed. Hyperparameters of a CNN are dataset dependent. 
Various hyperparameters such as number of epochs, batch size, dropout probability 
and learning rate are tuned to obtain a high accuracy CNN classifier. Performance 
variation with different optimisers and the effect of validation split are also explored. 

2 Literature Review 

In the context of Bharatanatyam mudras, studies based on very limited datasets were 
made by few authors. Mozarkar et al. [20] used 68 samples of 13 static double hand 
gestures of Bharatanatyam to develop a recognition system, and Sriparna Saha et 
al. [24] used 28 single hand gestures of Bharatanatyam to develop such a system. 
A rotation and scale invariant gesture recognition system that could be applied for 
Bharatanatyam dance mudra recognition was experimented upon by Divya et al. 
[12]. A CNN-based classifier for pose and hand gesture classification developed by 
Aparna Mohanty et al. [19] used 1400 samples of 10 single hand gestures and 840 
samples of 14 double hand gestures of Bharatanatyam. 

Hyperparameter tuning is very essential for training a CNN classifier. Many 
authors have researched on this area. Radiuk et al. studied the effect of batch size on 
CNN using MNIST and CIFAR-10 datasets [22]. Batch sizes of the power of 2 and 
also 50, 100, 150 and 200 were tested by him. Some authors have suggested batch 
size above 64 was optimal [28, 31]. Bengio et al. suggested that using batch size 
32 was a good choice [2]. This was one of his many recommendations for gradient-
based training. Masters et al., however, suggested using batch sizes between 2 and 
32 for robust deep neural networks [18]. 

The study of batch size and learning rate variation for Stochastic Gradient Descent 
(SGD) and Adam optimisers was made by Kandel et al. for histopathological dataset 
[14]. Tuning of learning rate, batch size, momentum and weight decay in a disciplined 
way was studied by Smith [26]. Adaptive learning rates in deep learning were studied 
by Chandra et al. [6]. An efficient dropout mechanism was explored by Cai et al. 
[5]. Effect of dropout and batch normalisation was studied by the authors in [8]. 
Controlled dropout, a different approach to dropout was explored by Ko et al. [17]. 
Shivam et al. have proposed a method to determine the optimum number of epochs 
needed to train the network [25]. 

3 Dataset Description 

In Bharatanatyam, there are 28 single hand gestures (Asamyukta Hastas) and 23 
double hand gestures (Samyukta Hastas) [7, 9, 23] . 15,396 single hand gesture 
images and 13,035 double hand gesture images were collected from 15 volunteers.
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Fig. 1 Six different views of a Mayura mudra, one of the single hand mudras b Kurma mudra, 
one of the double hand mudras 

All volunteers were trained in Bharatanatyam for more than 5 years. One of the 
single hand mudras, Samdamsam Mudra being dynamic was excluded. Katakamukha 
mudra has three variations, and each of them was taken as a separate class. Thus 29 
classes of static single hand mudras were included in the dataset. Utsanga Mudra 
and Dola Mudra were two double hand gesture images excluded from the dataset. 
Images of these two mudras included a large part of the dancer’s body. Thus double 
hand mudras in the dataset comprised of 21 different classes. Six different views of 
Mayura mudra, one of the single hand mudras and Kurma mudra, one of the double 
hand mudras are shown in Fig. 1a, b respectively. 

The images were captured in a studio environment using Apple iPhone 6S 12 
megapixel camera. The original images were in RGB format of size 3000× 4000. 
The camera was mounted on a tripod stand and kept at one metre distance from 
the screen. A green screen served as the permanent background. The data collection 
environment is shown in Fig. 2.
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Fig. 2 Data collection environment 

During preprocessing of the images, all images were resized to 100× 100 and 
grayscale converted. Each channel is assigned a weight according to the colour and 
the formula [4, 13] used to obtain the grayscale image is: 

R = G = B = 0.298R + 0.58G + 0.114B (1) 

Pixel values of each image were normalised by dividing them by 255. 

4 Methodology 

A deep CNN that provides accurate classification of hand gesture images of the 
Bharatanatyam Mudra dataset is proposed. Various hyperparamer tuning procedures 
that result in an accurate CNN classifier for the dataset are investigated. 

4.1 Convolutional Neural Network 

CNN is a structure that consists of convolutional layers, pooling layers and fully 
connected layers. The convolutional layers and pooling layers make up the feature 
extraction layers. The abstract high level features are extracted by these layers. The 
fully connected layers along with the softmax layer do the classification. 

Convolutional Layers The convolutional layer is used to extract features from the 
image. Many different filters are used in each layer for the purpose. Filters of 
specific sizes are used to slide over the image and perform a convolution operation.
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Convolution results in feature maps. These feature maps are fed to other layers for 
extracting more abstract features. 

As number of filters in each layer increases layer becomes wider. This leads 
to identification of more features in the image with the large number of parameters. 
Adding more layers can also make the network deeper and improve the generalisation 
capacity of the model. Deep neural networks become more powerful with greater 
depth and width [26]. 

Pooling Convolution operations are followed by pooling operations. Pooling is done 
by downsampling the feature maps. It lowers the computational burden by reducing 
the number of connections between convolutional layers [11]. Max pooling and 
average pooling are usually used. 

Fully connected layers The outputs from the convolutional layers are flattened and 
given to fully connected layers that are then connected to the softmax layer, which 
is the output layer. The softmax layer has nodes equal to the class number in the 
dataset. 

4.2 Hyperparameter Tuning 

Hyperparameters are those that are determined outside the learning algorithm [10]. 
They are not used for the calculation of loss function. The hyperparameters are 
tuned such that the network does not overfit or underfit. This paper explores effect 
of validation splits and performance of different optimisers along with the tuning of 
hyperparameters like batch size, learning rate, dropout probability and number of 
epochs. 

4.2.1 Optimisers 

We have explored the performance of various optimisers like Stochastic Gradient 
Descent (SGD) with and without momentum, Adam, RMSProp and AdaGrad. 

Stochastic Gradient Descent (SGD) In Stochastic Gradient Descent Algorithm, 
weight update occurs at every data point. In mini-batch SGD, the gradient is calcu-
lated for every B number of training instances that form a batch. In momentum-based 
Stochastic Gradient Descent Algorithm, an update rule is used for a mini-batch of m 
examples from the training set and the formula is [10]
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v ← αv − ∊∇θ {1/m 
m∑

i=0 

(L( f (x (i ); θ),  y(i) )} 

θ = θ + v 
(2) 

where α is the momentum parameter, ∊ is the learning rate, θ is initial parameter and 
v is initial update [10]. 

The learning rate and also the momentum parameter were varied. Learning rate 
of 0.01 with momentum of 0.9 gave the best results. 

AdaGrad It is an adaptive learning rate optimisation algorithm. In AdaGrad algo-
rithm, the parameters with the largest partial derivative of the loss have a corre-
spondingly rapid decrease in their learning rate, while parameters with small partial 
derivatives have a relatively small decrease in their learning rate [10]. The net effect is 
greater progress in the more gently sloped directions of parameter space. The update 
equation for AdaGrad is given as [10] 

g ← 1/m∇θ

∑

i 

(L( f (x (i); θ),  y(i ) ) 

r ← r + g ⊙ g

Δθ ← − ∊

δ + √
r

⊙ g 

θ = θ + Δθ 

(3) 

Here ∊ is learning rate, θ is the initial parameter, r is the accumulate square gradient, 
δ is of order 10−7 and m is the number of examples in mini-batch. 

For all learning rates except 0.001 the model was giving poor validation accuracy. 
Even for this learning rate, validation loss curves were not as required. 

RMSProp The RMSProp algorithm modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially weighted 
moving average [10]. AdaGrad is designed to converge rapidly when applied to a 
convex function [10, 29]. 

g ← 1/m∇θ

∑

i 

(L( f (x (i); θ),  y(i ) ) 

r ← ρr + (1 − ρ)g ⊙ g

Δθ ← − ∊

δ + √
r

⊙ g 

θ = θ + Δθ 

(4) 

Here, ∊ is the learning rate, θ is the initial parameter, δ is a small constant for 
numerical stabilisation (suggested value is 10−6), r is the squared gradient accumu-
lation variable.
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Learning rate was the only parameter that was varied. Learning rate of 0.001 gave 
validation loss curves that were not flat. 

Adam It is also an adaptive learning rate optimisation algorithm. The term Adam 
refers to ‘adaptive moments’ [10]. Here, the biased first and second moments 
have correction factors. Adam optimiser is fairly robust against haperparameter 
variations [10]. 

g ← 1/m∇θ

∑
i (L( f (x (i); θ),  y(i) ) 

t ← t + 1 
s ← ρ1s + (1 − ρ1)g 

r ← ρ2r + (1 − ρ2)g ⊙ g
ŝ ← s √

1+ρt 
1

r̂ ← r √
1+ρ t 

2

Δθ ← −∊ ŝ√
r̂+δ 

θ = θ + Δθ 

(5) 

Here, ∊ is the learning rate, θ is the initial parameter, δ is a small constant for 
numerical stabilisation (suggested value is 10−8), ρ1 and ρ2 are exponential decay 
rates for moment estimates(suggested values are 0.9 and 0.999 respectively) [10]. 

Adam with a learning rate 0.001 gave asymptotic validation loss curves with good 
accuracy. Higher values of learning rates like 0.01 and 0.1 gave very low validation 
accuracies. 

4.2.2 Batch Size 

Batch size is the hyperparameter of the gradient descent algorithm. It is the number 
of training instances the algorithm goes through before the model parameters are 
updated [2, 31]. 

1. For Batch Gradient Descent, batch size= training dataset 
2. For Stochastic gradient descent, batch size= 1 
3. For Mini-batch stochastic gradient descent, batch size= subset of training 

instances. 

Batch sizes are usually varied in powers of 2 [28]. Batch sizes of 16, 32, 64, 128, 
256 and 512 are usually used. 

4.2.3 Dropout 

It is a regularisation technique used to remove overfitting. Regularisation techniques 
are used to make the models behave with minimum validation error. The idea is to 
randomly drop units or nodes (along with their connections) from the neural network 
during training. This prevents units from co-adapting too much [27].
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4.2.4 Learning Rate 

The learning rate is a hyperparameter that controls the rate at which model weights 
are updated (in response to the estimated error) to minimise the loss function. Small 
learning rates converge slowly and get stuck in a local minimum [1] of the parametric 
subspace. This can cause the training to be longer and may get stuck. If the learning 
rate is large it may overshoot the global minimum [1]. Thus as the learning rate 
increases oscillations increase. 

Learning rate is tuned with different values on the log scale i.e. 0.00001, 0.0001, 
0.001, 0.01, 0.1, 1 etc. For a fixed dataset and architecture it is better to start tuning 
with a large learning rate [26]. Since the CNN architecture is 6-layer deep, Adam 
optimiser with an initial learning rate of 0.001 was used. 

4.2.5 Epochs 

It is one pass of the learning algorithm over the entire dataset. The number of epochs 
should be chosen such that it mitigates chances of overfitting. The network should 
be trained only upto the point when the validation accuracy starts falling or general-
isation error starts increasing. Thus epoch determination is based on a hit-and-trial 
basis [25]. 

4.2.6 Validation Split 

Percentage of validation split decides how many of the dataset images are reserved 
for training and how many for validation purposes. For initial trials, 30% validation 
split was used. But the model showed performed better with 40% validation split. 
Thus out of 15,396 single hand gesture images, 9238 were kept as training images 
and 6158 as validation images. Out of 13,035 double hand gesture images, 7821 
were training and 5214 were validation images. 

5 Results and Discussion 

5.1 Architecture 

Number of layers in a model is primarily decided by the size of the dataset. Since the 
dataset was of moderate size, an eight layer network was the initial model. It consisted 
of five convolution layers, two fully connected layers and an output layer. Through 
trials, it was observed that one of the convolution layer and one fully connected 
layer were redundant. They were ablated to obtain a more compact network. Trials 
made for deciding the number of convolution and fully connected layers are shown
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Fig. 3 The architecture of CNN used for classifying single hand gesture images 

Table 1 Trials done to ablate the redundant layers using single hand gesture images 

Number of convolution and fully connected layers Accuracy (%) 

Five Convolution and two fully connected layers 94 

Five Convolution and one fully connected layers 96 

Four Convolution and one fully connected layers 96.6 

in Table 1. Trials were done using batch size of 32, Adam optimiser and 40 epochs. 
A validation split of 30% was used for these trials. The filter sizes were kept as 
minimum or 3× 3. Max pooling was used with a 2× 2 stride of the window. Dropout 
of 50% was included after the fully connected layer. All experiments were done on 
a machine with a Core i9 processor, 32GB RAM and RTX 2080 GPU. The CNN 
model used for classifying 15,396 single hand gesture images of 29 classes is shown 
in Fig. 3. The same network with output layer (softmax layer) of 21 nodes was used 
for classifying 13,035 double hand gesture images of 21 classes. All images were 
resized to 100× 100 and grayscale converted. Pixel normalisation was also done. 

5.2 Batch Sizes 

Since the dataset is already fixed and architecture have been decided next step is 
tuning various hyperparameters. Different batch sizes like 32, 64, 128, 256 and 512 
were attempted keeping the dropout at 50% and number of epochs at 40 for single 
and 30 for double hand gesture images. Table 2 shows the details of the trials done 
on different batch sizes for single and double hand gesture images. Since validation 
loss curves are good indicators of a network’s convergence, these curves are used for 
studying the performance of the network [26]. The validation loss curves for different 
batch sizes on using single and double hand gesture images are shown in Fig. 4a, b 
respectively. It was observed that batch size of 32 provided the most accuracy of 
96.6% at the 36th epoch and a more asymptotic curve was obtained. For double hand
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Table 2 Trials done on batch sizes using (a) single hand gesture images (b) double hand gesture 
images 

Batch size 
Time for 
training in 40 
epochs 

Accuracy % 

32 4 min 96.6 
64 3 min 96 
128 2 min 30 sec 95.5 
256 1 min 30 sec 94.81 
512 1 min 94.3 

(a) 

Batch size 
Time for 
training in 30 
epochs 

Accuracy % 

32 3 min 99.25 
64 2 min 44 sec 98.79 
128 2 min 98.50 
256 1 min 20 sec 98.37 
512 55 sec 98.2 

(b) 

gesture images, the highest accuracy of 99.25% was obtained for batch size 32 at 
28th epoch and a flattened curve was obtained (Table 2). 

5.3 Dropout Probability 

After deciding on the batch size, the dropout was varied. Table 3 shows how the 
dropout variation influenced the accuracy when single and double hand gesture 
images are used. For a batch size of 32, a validation split of 30% was maintained 
and training was completed in 40 epochs for single and 30 epochs for double hand 
gesture images. It was observed that when the heavy dropout of 50% was used, the 
validation accuracy was slightly greater than training accuracy. With a dropout of 
10%, an asymptotic validation curve was obtained with validation accuracy lesser 
than training accuracy for both single and double hand gesture images. But at 10% 
dropout, the accuracy on using single hand gesture images dropped to 95.5%. Similar 
trials were also done for double hand gesture images, and it was found that accuracy 

Table 3 Shows how dropout influences accuracy of (a) single hand gesture images (b) double hand 
gesture images 

Dropout Accuracy % 
0.1 95.5 
0.2 95.8 
0.3 96 
0.4 96.3 
0.5 96.6 
0.6 96 

(a) 

Dropout Accuracy % 
0.1 97.8 
0.2 98.2 
0.3 98.6 
0.4 98.9 
0.5 99.1 
0.6 99 

(b)
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Fig. 4 Validation loss for a single hand gesture images b double hand gesture images for different 
batch sizes
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Fig. 5 Validation loss for a single hand gesture images b double hand gesture images for different 
dropout probabilities 

dropped to 97.8% at 10% dropout but a more flattened curve was obtained. The 
validation loss curves for different dropout probabilities on using single and double 
hand gesture images are shown in Fig. 5a, b respectively.
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5.4 Validation Split Percentage 

Validation split also plays an important role in making the validation curve more 
asymptotic. If the model is presented with more difficult validation data, accuracy 
may decrease slightly but the validation loss curve is more asymptotic. The validation 
loss curves for different validation split probabilities on using single and double 
hand gesture images are shown in Fig. 6a, b respectively. The validation loss curve 
has flattened more for validation split of 40%. Loss curves getting flattened and 
achieving this horizontal part is the main goal of hyperparameter tuning [26]. 

5.5 Optimisers and Learning Rate 

After having fixed the architecture, batch size, dropout probabilities, epochs and 
validation split different optimisers were attempted. For all the above attempts Adam 
optimiser with a learning rate 0.001 was used. Trials were made with other optimisers 
like SGD, RMSProp and AdaGrad to find whether a better alternative existed. The 
validation loss curves for different optimsers on using single and double hand gesture 
images are shown in Fig. 7a, b respectively. It is observed that Adam with a learning 
rate 0.001 and SGD (learning rate 0.01, momentum= 0.9) behaves similarly for both 
single and double hand gesture images. 

In search of possibilities for further improvement, validation loss curves of SGD at 
different learning rates keeping the momentum constant and vice versa were studied. 
Validation loss curves of SGD with momentum 0.9 and different learning rates is 
shown in Fig.  8a and loss curves of SGD for different momentum at a learning rate 
of 0.01 is shown in Fig. 8b. Best loss curves were obtained for SGD with a learning 
rate 0.01 and momentum 0.9. 

Adam with learning rate of 0.01 showed very poor performance. Performance of 
Adam at two different learning rates for double hand gesture images is shown in 
Fig. 9. Varying learning rates of RMSProp and AdaGrad from their initial learning 
rate of 0.001 also showed no further improvement. 

5.6 Summary 

After all the fine tuning of hyperparameters for the deep CNN architecture, validation 
and training loss and accuracy curves as shown in Figs. 10 and 11 are obtained. Flat 
asymptotic validation curves are obtained for the six-layered deep CNN for both 
single and double hand gesture images at validation accuracies of 95.5% and 97.8% 
respectively.
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Fig. 6 Validation loss for a single hand gesture images b double hand gesture images for different 
validation split percentages
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Fig. 7 Validation loss for a single hand gesture images b double hand gesture images for different 
optimisers
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Fig. 8 Validation loss of SGD optimiser for double hand gesture images a for different learning 
rates (momentum 0.9) b for different momentum (learning rate is 0.001)
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Fig. 9 Validation loss of Adam optimiser at different learning rates 

6 Conclusion 

In this paper, attempt was made to systematically tune a CNN classifier that could 
accurately classify the images in Bharatanatyam mudra dataset. The created dataset 
is open and consists 15,396 distinct single hand gesture images of 29 classes and 
13,035 distinct double hand gesture images of 21 classes. By using ablation studies, 
the architecture was decided as a six-layered deep CNN. Then systematic tuning 
of various parameters like batch size, dropout probability and learning rate was 
done. Role of validation split and the performance of different optimisers were also 
explored. 

The optimum performance was with a batch size of 32. The dropout probability 
of 10% and validation split of 40% gave optimum performance. Adam optimiser of 
learning rate 0.001 and SGD with learning rate 0.01 and momentum 0.9 gave similar 
performance. But Adam was chosen due to its adaptive learning rates and robustness 
to hyperparameter variations. Using all these tuned parameters, flat asymptotic vali-
dation loss curves were obtained for CNN classifier using single hand gesture images 
and double hand gesture images at accuracies of 95.5% and 97.8%, respectively.
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Fig. 10 a Training and validation loss b accuracy, for single hand gesture images using six layered 
deep CNN across 40 epochs
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Fig. 11 a Training and validation loss b accuracy, for double hand gesture images using six layered 
deep CNN across 30 epochs
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Comparative Analysis of Neural 
Architecture Search Methods for 
Classification of Cultural Heritage Sites 

Sunil V. Gurlahosur , S. M. Meena , Uday Kulkarni , Winston Dcosta , 
Vineet Lokur , Rohan V. Sirigeri , Sajal Porwal , S. P. Sammed  , 
and Uma Mudenagudi 

1 Introduction 

Machine learning (ML) has achieved considerable success in applications [1] like 
object detection, speech recognition, medical diagnosis, and weather forecasting. 
An ever-growing number of new disciplines like self-driving cars, recommendation 
systems, etc. also rely on ML algorithms for developing solutions. However, tradi-
tional approaches of ML are based on a trial-and-error process, and the efficiency of 
these ML-based solutions critically depends on data collection, preprocessing, fea-
ture engineering, and model optimization. Hence even the experts require substan-
tial resources and time to create efficient ML models. In ML, specifically, the Deep 
Learning (DL) algorithms have become more efficient in image processing: object 
detection, image classification, hyperspectral imaging [5], video analytics because 
of their ability to operate directly on raw data and learn higher-level representation. 
However, DL models are highly complex in design and computationally expensive 
during training and testing. As the complexity of these algorithms is often beyond 
non-ML-experts, and the rapid growth of DL applications has created a demand for 
off-the-shelf methods that can be used without the essentials of expert knowledge. 
The Automated Machine Learning (AutoML) has emerged [14] to reduce the devel-
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opment costs, demand for ML engineers, enable domain experts to automatically 
build ML applications without much requirement for statistical and ML knowledge 
that targets progressive [20] automation of ML. Construction of AutoML pipeline for 
Deep Learning-based applications involves automated construction of the pipeline on 
the limited computational budget by automating the time-consuming, iterative tasks 
of learning model development [12]. There is growing interest in employing AutoML 
[30] techniques that automate architecture engineering methods to build models with 
reasonable accuracy for a specified task. Researchers [12] have proposed various 
Neural Architecture Search (NAS) approaches that automatically search for a suit-
able and optimized neural network architecture. The proposed NAS methods have 
generated CNN architecture for image classification task on datasets like CIFAR, 
MNIST, ImageNet [11] and have shown promising efficiency [31] compared to their 
handcrafted counterparts. Since NAS methods [29] employ various enhancements 
(hyperparameter optimization methods), NAS methods have become challenging 
for researchers to compare and reproduce the same results. Hence a promising NAS 
method on one data set may disappoint to produce the same efficient networks when 
an attempt is made to transfer it to other datasets. Additionally, engineers attempt-
ing to use NAS often find it challenging to understand the implications of advertised 
advances because of a deluge of research claims, inability to fairly compare methods, 
fragmented codebases, customized hyperparameters, and training techniques. NAS 
method efficiency should be uniform across datasets; thus, a custom image data set 
based on Indian Heritage sites using crowdsource framework is proposed to study 
whether the NAS methods are generalizable across tasks rather than dataset-specific 
(standard datasets). The contributions of the proposed work are: 

1. Custom image data set comprising of Cultural Heritages sites in India. 
2. Comparative performance analysis of the NAS methods on the custom dataset. 
3. Propose a neural architecture model for the classification of Cultural Heritage 

sites with 88.625% accuracy. 

The paper is organized into the following sections. Section 2, focuses on the com-
ponents present in NAS. In Sect. 3, we discuss about the methodology followed for 
comparative analysis of NAS methods. In Sect. 4, results are discussed for image 
classification task on heritage sites using NAS methods. 

2 Background Study 

NAS is an algorithmic-based approach [38] for automating the process of building a 
neural network that aims to find the optimal network that outperforms hand-designed 
model in terms of accuracy, model size, latency, and power consumption [16]. NAS 
strives to learn a network topology that achieves the best performance on a particular 
task, and it goes with the principle “Better the design, Better the performance.” 
NAS consists of three components as shown in Fig. 1 (i) search space of neural



Comparative Analysis of Neural Architecture Search Methods … 27

Fig. 1 Components of neural architecture search method 

architecture, (ii) search strategy methods, and (iii) model evaluation methods. Search 
space defines a set of operations (e.g. convolution, fully-connected, pooling) and 
how these operations can be used to generate neural network architectures. Search 
strategy algorithm samples a population/child network architecture from the search 
space. Since search space can be extremely large, evaluation strategy estimates the 
sampled architecture performance to obtain the feedback for optimizing the search 
algorithm. 

Zoph and Le [38] were one of the first to propose NAS, where a recurrent network 
is trained by reinforcement learning to search for the best-performing architecture 
automatically. Since this method successfully discovered neural networks achieving 
comparable results for image recognition tasks to human-designed models, there has 
been an explosion of research interest in AutoML [32], especially in the area of NAS. 
The recent advancements in NAS methods have made it possible to build problem-
specific networks, which results in neural networks that are efficient in terms of 
latency, accuracy, and power consumption than their handcrafted counterparts. 

2.1 Search Space 

The NAS search space defines all possible architectures with the primary network 
operations like convolution, fully connected, max and avg pooling to build valid neu-
ral network architecture. The initial proposed NAS method [38] consists of sequential 
layer-wise operations where every operation has an association with different layer-
specific parameters. This method consumes substantial computational resources to 
cover the search space [3] because of its vast representational power. Hence, cell-
based representation [21] proposed for search space to address the issues of huge 
search space and the model size. The architecture obtained with a cell-based search 
method containing blocks (group of operations). These blocks, commonly referred 
to as cells, are classified into the normal cell if both input and output feature maps 
have the same size or reduction cell, if output feature maps are reduced by half. The 
number of cell repeats (motifs) can be altered to develop network architecture for the 
transfer of the solutions from one task to the other. The motifs generated by search 
space can be organized in a hierarchical [37] structure. A small set of operations 
(cell), including single operations of convolution and pooling, can be chosen in the 
earlier stage. Further, the small subgraphs (motifs) representing a set of operations are 
used in the later stages of the search space. The operations present in motifs of cell-
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based and hierarchical structure search space cannot be modified during search space 
design. The memory-bank type of representation [6] for feed-forward networks is 
proposed to overcome the issue. In this method, the neural network is visualized as a 
system with multiple memory blocks, which can be read and modified at every layer. 
This method also accelerated the architecture selection process defining network 
connectivity patterns thus generating network weights for highly variable network 
architectures. 

2.2 Search Strategy 

Once search space is defined, search strategy samples promising architectures for 
estimating performance and thus avoiding the overhead of testing bad architectures. 
Several approaches are used for finding efficient architectures, and the most renowned 
among them are Reinforcement learning, Gradient-based optimization, and Evolu-
tionary algorithms. The initially proposed NAS method [38] used Reinforcement 
learning, which focuses on maximizing the long-term rewards. It uses the Markov 
decision process to map a solution using a numerical approach and Recurrent Neural 
Network (RNN) to maximize the accuracy of training the generated/sampled archi-
tectures on a given data set. The RNN controller predicts the hyperparameter for 
one layer and repeats the same for several layers and terminates after the number of 
layers exceeds a certain (threshold) value. The controller in RNN further maximizes 
the expected reward for optimal architecture over the parameter θc represented as 
J (θc). 

J (θc) = E p(a1:T ;θc)[R] (1) 

The tokens predicted by the controller can be viewed as a list of actions a1:T to 
design an architecture for a child network. The accuracy R achieved is used as a 
reward signal and to train the controller. The Policy Gradient Method [34] is used to  
iteratively update parameters θc since reward function R is non-differentiable.

�θc J (θc) = 
T∑

t=1 

E p(a1:T ;θ c)[�θclog  P(at |a(t−1):1; θc)R] (2) 

Though the Reinforcement learning-based search algorithm does not require a 
large labeled dataset, it consumes a lot of time searching the architectures since the 
controller predicts hyper-parameters one at a time conditioned on previous predic-
tions. To overcome the non-differentiable reward function and large search time, a 
gradient-based search algorithm [22] is proposed, which achieves better gradients 
compared to discrete search space. This method reduces the high search cost of Rein-
forcement learning by optimizing the architecture parameters. It uses a continuous 
relaxation method for the search space, which helps in the reduction of the search
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cost of finding an architecture. The main drawback of this method is that it typically 
selects many skip connections that dominate over other types of operations, leading 
to degradation in performance when the number of search epochs increases [18]. 

The searched neural networks do not achieve multi-objective, like accuracy, model 
size, latency, FLOPSs, and power consumed by the hardware resources. Authors 
[33] proposed a search method for designing to solve multi-objective problems. The 
Neuro Evolution of Augmenting Topologies (NEAT) evolves connecting weights by 
gradient-based algorithms and neural network topologies with the genetic algorithms 
simultaneously. The evolutionary algorithm operates on the population that includes 
architectures produced using mutation and crossover techniques to search for the 
optimal architecture with multiple objectives. It has global search capabilities for 
searching of architectures. This method flaw is that appropriate genetic operations 
and population size majorly influence the architectureâŁ™s accuracy. In addition, 
there are other search strategies available such as random and grid search, which are 
computationally expensive and inefficient. In random search, since the parameters 
are selected randomly and no intelligence is used to sample the architectures, there 
is a higher chance of getting lower accuracy networks. The Grid search fails when 
the search space dimensions are large and the number of hyperparameters increases 
exponentially. 

2.3 Evaluation Strategy 

Since search space can be extremely large, an evaluation strategy should be defined to 
estimate the sampled architecture performance to obtain the feedback for optimizing 
the search algorithm. When a reference data set is trained over a predefined number 
of epochs followed by testing of the model, typically, the accuracy of a model archi-
tecture plays an important role in estimating the performance of the child model. 
Apart from the model accuracy as a performance measure, few more parameters 
like model size, FLOPS, latency, etc., are considered as the present applications of 
AI/DL algorithms are ported onto embedded platforms. The evaluation process is 
computationally expensive since it should be carried out for all the sampled architec-
ture. Hence the evaluation method should be chosen carefully and many promising 
evaluation methods are proposed for saving computation time. One of the earlier 
proposed NAS methods [38] followed the traditional approach of training the net-
work from scratch to evaluate the searched models. In this method, all the child 
models sampled by search algorithms are trained until they reach convergence. Later 
the models are evaluated based upon the validation accuracy. Though it is a suitable 
evaluation method, it is computationally costly since the training of each network is 
carried out separately. Hence, Pham et al. [28] proposed a parameter sharing method 
to reduce this extensive training time by creating a dependency between parameters 
and reusing the weights instead of training each child model independently. In this 
method, all the child models are represented as subgraphs of a larger supergraph and 
they are sharing the parameters/weights of this supergraph.
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Though the parameter sharing method helps to share the weights among all child 
models, training the models against a complete data set for a fixed number of epochs 
until convergence is inevitable and leads to an ample training time. Hence, a proxy 
method [8] is proposed for the evaluation of model where each child network uses 
a proxy task performance as the performance estimator. Researchers have proposed 
several proxy approaches, which are typically faster to calculate by training the 
model on the smaller data set or training the model for few epochs. It helps get a 
brief visualization of the model accuracy to decide training to a larger data set. Zoph 
et al. [39] proposed a method to first train and evaluate a network model which is 
down-scaled in the search stage and later change the filters and cell repeats in the 
model to further improve the model performance. Baker et al. [4] proposed a method 
to predict the learning curve. The validation accuracy is predicted by considering the 
hyperparameter’s accuracy per epoch and architecture parameters in this approach. 
Instead of training the child to obtain the weights, David et al. [13] proposed a method 
in which model weights predicted are directly related to the network architecture 
parameters. Hypernets are employed for generating and validating model weights, 
thus overcoming the effort of training every child. 

3 Methodology 

Current NAS methods [27] use various enhancements (hyperparameter optimization 
methods) [31], custom training techniques to improve the accuracy. Hence a promis-
ing NAS method on one data set may not produce the same efficient network when an 
attempt is made to transfer [27] it to other datasets. NAS method efficiency should be 
uniform across datasets; thus, we propose a custom image data set based on Indian 
Heritage sites to study whether the NAS methods are generalizable across tasks 
rather than dataset-specific (standard datasets). We used a web-based crowdsourced 
framework [15, 17] for the data collection process using intelligent workflow. The 
framework allows users to contribute data for the existing list of heritage sites or add 
a new heritage site/label and contribute data for the same site. The roles of the users 
are assigned based on privileges, contributions, and functionalities defined in the 
workflow. Images uploaded by crowd/contributors are stored in the data repository 
as shown in Fig. 2 for further validation by the validators. Validation is performed 
to verify whether uploaded images in the data repository belong to the heritage site 
selected by the contributor/crowd. After the successful validation, images will be 
inspected by the analyst and will be considered to store in the data repository for 
pre-processing. With a collective effort of both crowdsource platform and visiting 
the places manually, we collected 4,68,651 images for 110 heritage sites [26]. In the 
NAS methods, search algorithm needs to explore the search space to sample possible 
architectures. The evaluation strategy needs to evaluate the sampled architecture to 
optimize the search algorithm and help in designing the optimal Neural architecture 
for the given task. Various studies have shown that small datasets like CIFAR, MNIST 
take less time to search the architectures [18] as the search space comprises fewer
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Fig. 2 Web-based crowdsourced framework for collection cultural heritage sites images 

operations. In contrast, it consumes more time for larger datasets like ImageNet due 
to the larger search space. 

Since the number of classes, quality, shape of images, and data set size influence 
the NAS algorithm search time and efficiency, we decided to build the custom data set 
of 40 different heritage sites with each image of size 1920*1080 pixels. The size of 
portrait and landscape images in the data set suggested, only landscape images were 
suitable for resize operation since portrait images were getting stretched and losing 
information both qualitatively and quantitatively. Hence, we handpicked heritage 
sites/labels which contain the majority of landscape images compared to portrait 
images from the data set repository of 110 classes. In data preprocessing shown 
in Fig. 2, we removed the remaining portrait images and redundant images with a 
similarity score of 85%. Quantitative analysis is performed on the data set to remove 
the blur and occluded images. Since images are of different sizes, images are resized 
to 1920*1080 pixels for uniform size and reduce the complexity of the model search. 
After the resize operation, the data set resulted in a size of 17.4 GB with 20,000 
labeled images. The images are divided into 16,000 training images and 4000 test 
images (see Fig. 3). 

The NAS algorithm involves various techniques in each of its components (search 
space, search strategy and evaluation strategy) we considered ENAS [28], DARTS 
[22] and NSGA-Net [24] for image classification task, since they cover most of 
promising techniques in each of its components. To search the optimal architecture 
as shown in Fig. 4, the first phase is search space to represent a pool of all possi-
ble operations required for building a neural network. Search strategy represents a 
method to build an architecture through the set of operations available in the search 
space. In the evaluation phase, generated architectures are trained to find architectures 
that achieve high predictive performance on unseen data (test data).
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Fig. 3 Sample images of cultural heritage sites in structured data repository 

Fig. 4 Control flow in ENAS, DARTS, and NSGA-Net methods to search optimal neural network 
architecture 

ENAS method follows both sequential and cell-based methods for its search space, 
Reinforcement Learning (RL) method for search algorithm, and shared weights 
method for model evaluation. The Reinforcement Learning based meta-controller 
agent discovers neural network architectures by searching for an optimal subgraph 
within a large computational graph. It predicts network transformation [7] actions by 
learning from the current network architecture. The meta-controller is implemented 
as a recurrent bi-directional network to handle a variable-length architecture configu-
ration to grow the network for depth and width. Here network can grow incrementally 
in both directions, (i) layer will be replaced by a wider layer that will have more fil-
ters in convolution layer or more number of fully-connected layers by having the 
functionalities preserved, and (ii) new layer is inserted and it is initialized as adding 
an identity mapping between two layers to preserve the functionality. The weights
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of previously validated networks can be reused for further exploration since the net-
work is growing incrementally. With inherited weights, newly constructed networks 
only need light-weighted training. Training will be alternated between the shared 
model weights ω and the controller θ . The parameters of the controller LSTM θ are 
trained with the Monte-Carlo policy gradient method, where the reward R(m, ω)  is 
computed on the validation set. The shared parameters of the child models ω are 
trained with standard supervised learning loss function using Eq. 3 for determining 
the model performance.

�ω Em∼π(m;θ)[L(m; ω)] ≈  
1 

M 

M∑

i=1

�ω L(mi , ω), (3) 

The controller is trained with a policy gradient method to select a subgraph to 
maximize the expected reward on a validation set. Meanwhile, the model correspond-
ing to the selected subgraph is trained to minimize a canonical cross-entropy loss 
to get the parameters of the top-performing model. This method is encouraged by 
multi-task learning and the transfer learning parameters trained for different tasks 
and transferred to other tasks. It follows the three steps, namely design of networks 
for Recurrent cells, macro search space over entire convolutional networks and micro 
search space for convolutional cells. To create a recurrent cell, the controller RNN 
samples N blocks of decisions. The following Algorithm 1 illustrates the Generation 
of RNN cells in the ENAS via a recurrent cell with N = 4 computational nodes. 

Algorithm 1 ENAS mechanism through a recurrent cell 
1: The node receives the output from the previous step, input from the current step and generates 

an activation function 
2: N [1] =  tanh(pre∗W [I ] +  input∗weightinput) 
3: A new activation function is generated, 
4: N [2] =  relu(N [7]∗w[2][1]) 
5: A new activation function is generated, 
6: N [3] =  relu(N [2]∗w[3][2]) 
7: A new activation function is generated, 
8: N [4] =  tanh(N [1]∗w[4][1]) 
9: Algorithm takes average of all the nodes which are not part of input to any other nodes 
10: Hence, the final output = (N [3]+N [4]) 

2 

The macro-convnet design involves deciding computation operation (convolution, 
max pooling or average pooling) for design of layer in network. In total six operations 
[9] are available for the controller to decide: convolutional operation with filter size 
3×3 and 5×5, depth wise-separable convolutional operation with filter size 3× 3 
and 5×5, and max pooling and average pooling of kernel size 3 ×3. To generate the 
micro-convnet, multiple conv cells are replicated to make the final network. Here 5 
operations are available like identity, max pooling, average pooling, convolutional, 
and separable during the replication process.
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Fig. 5 RNN controller generating child model and layers in generated neural network architecture 

Fig. 5 shows the working of ENAS with the Reinforcement Learning algorithm. 
The controller generates a set of architectures through the search space, and the child 
model represents a sampled architecture. The Directed acyclic graph with 3 nodes 
where the nodes denote the layers in a convolutional neural network and the arrow 
denotes the path of computations. The generated architectures are evaluated during 
the evaluation stage. The accuracy obtained from the architectures is treated as a 
reward to update the controller’s parameters and generates a new set of architectures 
with better efficiency. 

DARTS uses a NASNet search space, gradient-based optimization algorithm to 
search the architecture and train from scratch approach to evaluate the searched 
architectures. In the DARTS method, the search space is represented in the form of a 
Directed acyclic graph, which comprises N nodes in the ordered sequence where each 
node xi represents a feature map in Convolution Neural Network [29]. The directed 
edges connect the nodes with weights where each edge represents [22] operation 
o(i, j ). The outputs from two previous layers of the convolution cells form the input 
to the current cell. Reduction operations are performed on every intermediate node 
to obtain output from the cell. The output of each cell is calculated by performing
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the reduction operation to intermediate nodes. All the intermediate nodes will be 
computed with Eq. 4 using its predecessor nodes, as 

x ( j) =
∑

i< j 

o(i, j) (x (i ) ) (4) 

A unique zero operator is included in the directed edges for indicating a lack of 
connectivity between two nodes. Now the task remaining is to learn the operations 
on the edges of the cell. Initially, the edges are not associated with each other as 
shown in Fig. 5. But later, each edge is associated with some mixed operation like 
convolution, max pooling, etc. The search space is made continuous by relaxing the 
categorical choice of each operation to a softmax for overall possible operations. 
As shown in Eq. 5, let O be a set of the candidate operations (like convolution, max 
pooling, zero) where each of the operations represents function in which will be 
applied for xi . 

o−(i, j) (x) =
∑

oεO 

exp(α (i, j ) o )
∑

o'εO exp(α (i, j) o' ) 
o(x) (5) 

where operation mixing weights for nodes in the pair which are parameterized by a 
vector α(i, j) with the dimension as |O|. After the search, the most likely operation 
o(i, j ) = argmax(oεO)α (i, j) o , where α is referred to as architecture, is replaced with 
each of the mixed operations o−(i, j) to obtain a discrete search space. Then the bilevel 
optimization [2] comes into consideration, where the lower-level variable is for the 
minimization [10] of the training loss Ltrain  as  shown in Eq.  7 for the associated 
weight and the upper-level variable is for the minimization [22] of the validation loss 
Lval as shown in Eq. 6 for the architecture search. 

αmin Lval (w
∗(α), α) (6) 

s.t w∗(α) = argminw Ltrain(w, α) (7) 

Fig. 6 illustrates DARTS algorithm with directed acyclic graph consisting of four 
nodes where each node represents a feature map in a convolutional network. Each 
operation is described in the form of blocks and is associated with some weights. 
The weights associated with the operations are optimized after each epoch with the 
help of a bilevel optimization problem. At the end of all the epochs, only the most 
likely or the optimized operations (dark lined blocks) are selected to determine the 
final architecture. 

NSGA-Net uses a population-based Evolutionary algorithm with crossover and 
mutation to search the architectures, and it also considers multiple objectives. The 
train from scratch approach followed in DARTS is employed to evaluate the searched 
architectures. In the NSGA-Net method, the first stage is encoding [23], where the
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Fig. 6 Continuous relaxation of DARTS search space describing feature map of Directed Acyclic 
Graph in a convolutional neural network 

architectures available from search space are converted to the binary-encoded string. 
Then Phenotype of architecture is built by the use of Genotype (Genotype is a series 
of rules for constructing neural networks and Phenotype is a neural network encoded 
by the Genotype). Later the complete information of a network is encoded by a 
gene and the network is represented in terms of stages. If the network consists of 
S stages where the sth stage contains Ks nodes, which is denoted by vs,ks , ks = 
1, 2, 3, ..., Ks . Each node that is ordered in each stage corresponds to convolution 
and batch normalization and ReLU, after summing up element-wise of all of its input 
nodes. The fully connected part of the network is not encoded. In every stage, the 
usage of the bits [24] for encoding the inter-node connections are 1 + 2 +  · · ·  +  
(Ks − 1) = 1 2 Ks(Ks − 1). 

The connections are represented as (vs,i , vs, j ) where i, j is bit representation. 
Fig. 7 illustrates the three-stage network, and the binary string represents the encoded 
version of each stage. The nodes present outside each stage represent the input and 
output nodes. A pooling layer is added after every stage. Each stage consists of several 
nodes, which represent the operations in a convolutional neural network. If there is 
an edge between the nodes, it is represented through 1 and if there is no edge, it is 
represented through 0. For obtaining efficient neural network architectures, Genetic 
operations like selection, mutation, and crossover are utilized. 

Initialization of search algorithm is done using N number of randomized indi-
viduals. For all the T generations initialized, genetic [23] operations were applied. 
A process named Russian roulette [25] is performed, which helps in determining 
[36] the survival of the individuals. Every individual of the next generation, i.e.,
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Fig. 7 A three-stage network and its encoded binary string 

Mt,n is independently determined by a non-uniform way of sampling over the set 
{Mt−1,n}N n=1. The probability [35] obtained by the sampling Mt−1,n is proportional to 
rt−1,n-rt−1,0 where rt−1,n is the recognition rate, which is defined by the fitness func-
tion assigned to all the individuals and rt−1,0 = minN 

n=1{rt−1,n} is a value obtained by 
minimum fitness function from the previous generation. The individual having the 
largest probability is selected by this process and the worst one is being eliminated. 
The method of crossover [23] involves simultaneously changing two individuals. It is 
better to form a stage that is a basic unit for crossover instead of individual bit, which 
is inflected by the need for retaining the local structures within each of the edges. 
The process of mutation involves flipping of each bit of the individual independently 
with the probability [35] of  qM . Generally, since the configured probability is very 
small (0.05), the mutation will likely not change an individual so much. This small 
probability [19] will also help retain the good properties of the individual and give 
the chance to try new possibilities. After the final set of architectures is obtained, it 
tries to find the architectures with better trade-off value by comparing the accuracy 
against the other parameters like model size, latency, and power consumption. 

4 Results and Discussion 

To generate a neural architecture model for the classification of Cultural Heritage 
sites, all the considered NAS algorithms are supplied with the same data set and 
configured to train on NVIDIA DGX-1, Tesla V100 GPUs. The ENAS [28] method 
is applied to search normal and reduction convolutional cells for micro search space. 
The algorithm is configured to search architecture for 150 epochs, batch size of 64 
with Adam optimizer and a learning rate of 0.00035 [28]. The method took 48 GPU 
hours to complete the architecture search. During each epoch, the ENAS [28] method 
did not optimize the produced architectures resulting in poor training accuracy of 
45.02% and test accuracy of 32.835%. After every epoch, based upon the accuracy 
of the produced architectures, the parameter of the RNN controller started getting 
updated instead of searching architectures that have better accuracy compared to 
present searched architectures. Hence, because of this issue, the accuracy after each 
epoch remained constant, and there was barely an increase in the accuracy at the 
end of 150 epochs. The DARTS [22] method is configured to search architecture
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for 150 epochs, batch size of 64. The search algorithm took approximately 26 h 
to search for the architectures. The evaluation method is configured to train the 
searched architectures for 150 epochs with a batch size of 64 on two GPUs. The 
DARTS method resulted in a training accuracy of 98.89% and a test accuracy of 
88.625%. In the DARTS method, instead of producing new architectures after each 
epoch, by searching in a continuous space, DARTS can optimize the architectures, 
which resulted in a better accuracy and reduced training time. 

The NSGA-Net [24] method is configured with a number of phases np = 3 and the 
number of nodes in each phase n0 = 6. The number of architectures to be produced 
in each generation is set to 40. The algorithm is trained to search architecture for 
150 epochs with batch size 64. The algorithm took approximately 5 h to produce 
one single architecture, so for 40 architectures, it took roughly a week (197 h). The 
searched model showed training accuracy of 91.625% and test accuracy of 69.92%. 
Due to the inclusion of genetic algorithms, the search space was widened since it 
resulted in many diverse architectures because the architectures were encoded to 
binary strings; even a flip in the single bit resulted in a new architecture. Hence, this 
method gave a better accuracy when compared to ENAS, since ENAS produces a 
new set of architectures after every epoch. 

The DARTS method that uses gradient-based optimization produced the archi-
tectures with the highest accuracy as shown in Table 1 with less time. ENAS and 
NSGA-Net did not give a better accuracy compared to DARTS and also took more 
time in searching the architectures. DARTS and NSGA-Net methods optimized the 
architecture after every epoch as shown in Fig. 8, whereas ENAS produces a new 
set of architectures after every epoch. Hence, the DARTS method is well suited if 
model with highest accuracy is the only criterion. If multi-objectives are involved 
in addition to accuracy such as model size, latency and power consumption then the 
NSGA-Net (evolutionary) method performs very well. 

Table 1 Performance analysis of ENAS, DARTS, and NSGA-Net methods for classification of 
cultural heritage site images 

NAS method Search method Test accuracy (%) Params (in 
millions) 

Search cost (GPU 
hours) 

ENAS Reinforcement 
learning 

32.83 4.25 48 

DARTS Gradient based 
optimization 

88.625 3.36 46 

NSGA-Net Evolutionary 
algorithm 

69.92 4.5144 192
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Fig. 8 ENAS, DARTS, and NSGA-Net methods comparison for accuracy versus epochs during 
architecture search 

5 Conclusion 

The engineers require substantial resources for the hand design of neural networks 
with reasonable performance, and it is always time-consuming, computationally 
expensive and error-prone method. NAS automates this process intending to find 
the optimal network that outperforms the hand-designed model. It is challenging to 
infer why NAS methods work well on standard datasets and perform poorly when 
attempt is made to transfer the same NAS method to real-time/custom datasets. In 
this work, we proposed a custom image data set based on Indian heritage sites using 
crowdsourced framework and performed a comparative performance analysis of three 
NAS algorithms, ENAS, DARTS, and NSGA-Net, for the image classification task. 
The DARTS method showed the highest accuracy of 88.625, and NSGA-Net is well 
suited if multi-objectives are considered for generating the neural architecture in 
addition to accuracy. 
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Heritage Representation of Kashi 
Vishweshwar Temple at Kalabgoor, 
Telangana with Augmented Reality 
Application Using Photogrammetry 

Tejas Pawar, Aman Sharma, and Shiva Ji 

1 Introduction 

Heritage interpretation is an educational activity that uses authentic materials, first-
hand experience, and illustrative media to reveal meanings and relationships rather 
than merely communicating factual information. Visual or firsthand interactions help 
people connect to information better than theory [8]. AR technology has become 
a well-accepted technology among the scientific community and public, which 
combines real and virtual objects and mixes them into the real environment. In 
virtual heritage, this technology is used for improving the visitor experience of a 
cultural heritage site. Heritage interpretations can have many forms, material work-
shops, heritage walks, conjectural models, Virtual Reality (VR) experiences, and AR 
applications. In the current scenario in India, we see workshops and heritage walks 
on a broader scale. VR and AR experiences are scarce and often seen in museums. 
High-quality experiences are achieved with high-quality and precise documenta-
tion. Today, superior methods are used to perform measurements and digital docu-
mentation. Photogrammetry is a popular tool in the Architecture, Engineering & 
Construction (AEC) sector [3]. 

In the field of cultural heritage, virtual modelling and 3D reconstruction are 
standard tools for recreating, analysing, and visualising large objects (for example, 
archaeological sites and architectural buildings) as well as small objects (for example, 
sculptures, ceramic tiles, silver, marble, and wooden artefacts) [6]. At this time, 
various technologies can be used to create accurate photo-realistic 3D models, and 
Photogrammetry is extensively used as it is effortless to use. Whereas, precise 
modelling of existing 3D data is typically complex and costly since “reality” is
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complicated in and of itself; the more complex the thing, the more complex the 
model. Photogrammetry models are frequently created to visualise the historical 
state of monuments and authentic real-life models. 

1.1 Photogrammetry 

Photogrammetry and Augmented Reality are tools that have become a keen interest of 
professionals in all sectors. Photogrammetry procures measurements of size, shape, 
position, and texture from high-resolution photographs. Photographs are captured 
from all angles of the structure with a high-resolution camera. These photos help 
create a 3D model with real-time texture. In its most basic form, a pair of overlap-
ping images are utilised to construct a three-dimensional model, which may then 
be quantified using proper instruments [9]. These proportions were traditionally 
depicted on maps and plans as elevations, facades, and/or contours. Photogram-
metry is the science of using photos to derive measurements of an object’s size, 
shape, location, and texture. In its most basic form, a pair of overlapping photos is 
utilised to generate a three-dimensional model, which may then be quantified using 
suitable equipment [2]. Photogrammetry has a long history of use as a tool to aid in 
the documentation of cultural assets and is well-established as a measuring science. 
The data sources begin with photogrammetric data, which includes terrestrial, aerial, 
and satellite pictures; second, spatial (GIS) data, which includes maps, vector files, 
and point event locations, as well as lines ( counter lines and roads) [2]. Scientific 
advancements have made the processes far more adaptable in their use, opening 
up new possibilities for portraying structures as diverse as aboriginal rock painted 
shelters, historically significant buildings, and Ruins. 

1.2 Augmented Reality 

AR is widely being used in many applications such as education, entertainment, 
virtual heritage, simulation and games. In virtual heritage, AR is used to enhance the 
overall experience of the visitor of a cultural heritage site. Furthermore, the interac-
tive, realistic and complex AR system can enhance, motivate and stimulate students’ 
understanding of certain events, especially for the traditional notion of instructional 
learning that has proven inappropriate or difficult [7]. Museums have been at the 
forefront of experimenting with how these new technologies may be utilised as 
educational aids, touting these breakthroughs as part of their democratisation goal. 
As a result, we may observe a shift from traditional audio guides to PDAs (Personal 
Digital Assistants) and eventually to mobile applications. The increasing use of 
mobile devices for various purposes has increased in the application-development 
sector. People can use this type of software to acquire critical information and 
communicate with others creatively [5]. Multiple virtualisations have influenced AR
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to be utilised quickly and pleasantly because of improved device capabilities, 3D 
sensor equipment, and graphics technologies, allowing it to reach a broader market 
[1]. When it comes to using this tool in educational settings, recent research has 
shown that AR has helped students better understand reality, examine elements from 
various perspectives, and construct scenarios that promote simulation or information 
contextualisation, to mention a few advantages [4]. 

In the field of heritage, certain qualities of AR can be beneficial, particularly 
in terms of acquisition, management, and distribution. There are three aspects of 
AR experience. First, due to the current scenario’s lack of modelling, it aids in the 
reduction of time and ultimate expenses associated with acquisition, modelling, and 
management. Second, it can create hybrid settings (real and virtual), combining past 
(non-existing portion, virtually modelled) and present (actual part, not modelled) 
scenarios to increase comprehension of heritage. Third, AR improves user immersion 
over VR systems since users can move around, see objects in their actual size, and 
explore them more naturally, allowing applications to be developed in real-time, 
on-site. 

1.3 Historical Background 

Kashi Vishweshwar temple, Kalabgoor, Telangana, is a masterpiece constructed 
solely out of black granite. The whole site is spread on an approximate 10,000 sq. ft. 
area. It is believed that temple was built by the Kakatiya dynasty of Telangana and 
was built in the eleventh century CE. Kashi Vishweshwar temple’s architecture is 
similar to Warangal’s Thousand Pillars Temple in Telangana state. The sculptures on 
these pillars are excellent examples of sculptural mastery, and Architectural Elements 
are also Exquisite in aesthetic features. 

2 Methodology 

In the AR application for heritage interpretation, augmentation was applied to a part 
of Kashi Vishweshwar Temple. The structure in focus was the Nandi Mandapa of 
Kashi Vishweshwar Temple. The Mandapa was chosen for its excellent condition and 
details, which covered up to 88. A high-resolution precision camera, Nikon D5600, 
was used to click photographs covering the maximum surface area of the Mandapa. 
Shadows in photos hamper the capturing of proper texture in pictures. A cloudy day 
was preferred to click the photographs to avoid significant shadows. The desired 
weather also provided precise detail of textures. The whole process was completed 
within one day. Figure 1 describes a sample of photos captured for this research. 
Camera properties for these photos are as follows:

Camera Model: Nikon D5600, Exposure Time: 1/400 s, ISO speed: ISO-200, 
Focal Length: 28 mm, Max aperture: 4.1
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Fig. 1 Nandi Mandapa of Kashi Vishweshwar Temple, Kalabgoor

Reality Capture software was used to rebuild the 3D model using the raw data 
acquired realistically as shown in Figs. 2 and 3. This software was used as it provides 
additional tools to enhance the texture. The software aligns the photos that are 
obtained. In the event of any discrepancies, the images were aligned manually using 
a reference point. 

The final product is available in two formats: basic and dense model. The dense 
model mesh comprises 72.5 million triangles, whereas the simple model mesh is

Fig. 2 Raw data (Textured) obtained after uploading to reality capture
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Fig. 3 Raw data (Mesh Model) obtained after uploading to reality capture

made up of 3 million triangles, as shown in Fig. 4. The simple model was chosen 
because of its smaller file size and ease of use. The high-resolution texturing on the 
preview model gave it a more realistic appearance. After unwrapping the model, 167 
textures with a resolution of 4096 × 4096 pixels were obtained, as shown in Fig. 5.

MeshLab software was used to access the file, which was exported in wavefront 
object format. Unwanted surfaces were modified in the mesh lab to improve the 
model. 

The final polished 3D model was then imported into the Unity Augmented Foun-
dation Android Platform. While importing the 3D model into Unity, the Pixels of the 
material image are enhanced and changed to 16,384 × 16,384 pixels, as shown in 
Fig. 6a. Also, the unlit texture is applied as material, as shown in Fig. 6b, to retain 
the same exposure value. An application on the android platform was created for 
accessing the final product. In Unity, both the possibilities of Floor based tracker 
and Image-based tracker were explored. In-Floor based tracking, this app detects the 
Floor and places the model. This model is provided with interactive features such as 
Pinch to scale, Drag to translate and Drag to Rotate on Axis. And in the Image-based 
tracker Plan of Nandi mandapa was drawn and was set as an Image tracker to show 
the AR model in Unity.

3 Results and Analysis 

Tests were conducted for augmented reality on the floor-based tracker and Image-
based tracker. The AR model was provided with interactive accessibilities like Pinch 
to scale, drag translate and drag-rotate on-axis. The application developed was for 
32-bit and 64-bit supported Android phones.
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Fig. 4 Settings used in Reality Capture for mesh modelling, unwrapping and texturing the model 

Fig. 5 167 Texture obtained 
from the data of photographs
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Fig. 6 Texture enhancement in unity
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Due to the high-resolution texture wrapped around the model, the object appeared 
to be more realistic. In Fig. 7a, the 3D virtual model reconstructed from Photogram-
metry is placed inside the natural environment, and in Fig. 7b Realistic appearance of 
the 3D model can be observed along with the original photograph in the background. 
Also, in Fig. 7c 3D virtual model is placed alongside the existing Nandi Mandapa. 

This research used Image in Fig. 8 as Image Tracker for the Augmented reality 
app. In this research, the possibility of distortion of the Image was checked. The 
hand-drawn plan of Nandi mandapa, as shown in Fig. 9, was tested on the app. 
Proportions were maintained while drawing this plan, and as a result, it was found 
that the Augmented reality app is able to detect Fig. 9 as an image tracker. However, 
input was given in Fig. 8.

Fig. 7 AR virtual model placed in real-world 
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Fig. 8 Image-based tracking 
with the plan of the Nandi 
Mandapa 

Fig. 9 Image-based tracking 
with the hand-drawn plan of 
the Nandi Mandapa was 
found successful with the 
generated application 

4 Conclusion 

In this study, it is observed that augmented reality can be used as a powerful tool 
in historical interpretation, and the end-user experience can be enhanced and can 
be more immersive. In addition, the possibility of making AR more interactive 
gives users the freedom to have better interaction with the model and improve the 
heritage interpretation. Photogrammetry based AR models of heritage structures can 
be explored by the user from micro-scale to macro scale. Photogrammetry gives the 
hyper-realistic appearance of a 3D model, which may also be used in the depiction of 
a conjecture of dilapidated sites or ruins. Also, another aspect of this study in which 
Image-based tracking was explored it is found that images with slight distortion but 
with the same proportions can be detected as image markers. This can help people 
to draw their own image tracker markers anywhere and get access to the model. 
These markers can be set as any iconography or pattern associated with the heritage 
structure so people can have better knowledge about it and can relate to it. 
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Augmented Data as an Auxiliary Plug-In 
Toward Categorization of Crowdsourced 
Heritage Data 

Shashidhar Veerappa Kudari, Akshaykumar Gunari, Adarsh Jamadandi, 
Ramesh Ashok Tabib, and Uma Mudenagudi 

1 Introduction 

In this paper, we propose a novel training mechanism to mitigate problems such 
as data sparsity, high inter-class variance, and low intra-class variance which leads 
to poor clustering performance. Traditional clustering algorithms such as K-means, 
Gaussian mixture models (GMM) [3], and spectral clustering [8] rely largely on the 
notion of distance; for example, K-means [11] uses Euclidean distance to assign data 
points to clusters. Recent advances in deep learning have led to emergence of cluster-
ing techniques parameterized by deep neural networks [2, 13, 14, 17, 18] attempting 
to jointly learn representations, and perform clustering relying on tools like Stochas-
tic Gradient Descent and backpropagation with a clustering objective function. This 
introduces challenges in choosing an appropriate neural network architecture, and a 
right clustering objective function. Recent methods [5, 16], attempt to circumvent 
these problems, limited literature show investigations on the effect of data spar-
sity and high intra-class variance, usually found in crowdsourced cultural heritage 
datasets. The apparent architectural differences arise due to data acquisition meth-
ods and cultural similarities might lead to assignment of false clusters. In this paper, 
we empirically demonstrate the use of different transformations such as random— 
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scaling, rotation, and shearing as data augmentation techniques toward increasing 
the data density, yielding superior clustering performance. 

Crowd-sourcing facilitates desired data at scale and involves task owners relying 
on a large batch of supposedly anonymous human resources with varying expertise 
contributing a diversified amount of data. In our case, we are interested in obtaining 
a large image corpus of Indian Heritage Sites with the hindsight of large scale 3D 
reconstruction toward digital archival and preservation. An essential step in this 
pipeline is to formulate an efficient deep clustering method toward mitigate the 
issues outlined above. Toward this-

• We propose a novel training strategy to circumvent the problem of poor clustering 
performance by 

– introducing data augmentation as an auxiliary plug-in for deep embedded clus-
tering 

to densify data and facilitate better feature representation considering limited 
data. 
to address data with high intra-class and low inter-class variance. 
to augment data using affine transforms (rotation, scaling and shearing). 

– incorporating Consistency Constraint Loss (CCL) with Mean Squared Error 
(MSE) Loss to handle introduced transformations. 

• We demonstrate our proposed strategy on a crowdsourced Indian heritage dataset 
and show consistent improvements over existing works. 

In Sect. 2, we discuss contemporary works related to clustering. In Sect. 3, we  
propose a strategy to circumvent the problem of poor clustering performance. In 
Sect. 4, we discuss the experimental setup carried out on Indian Heritage Dataset. 
In Sect. 5, we demonstrate results through quantitative and qualitative metrics, and 
conclude in Sect. 6. 

2 Related Works 

In this section, we discuss contemporary works addressing clustering using deep 
features. Classical clustering techniques such as K-means [11], Gaussian Mixture 
Models (GMM) [3], and Spectral clustering [8] are limited by their distance metrics 
and perform poorly when the dimensionality is high. Toward this, recent techniques 
such as Deep Embedded Clustering (DEC) [16], Improved Deep Embedded Cluster-
ing [5] extract deep features toward categorization in lower dimension embedding 
space. 

Recent advances in deep neural networks have ushered in a strategy of parameter-
izing clustering algorithms with neural networks. Deep Embedded Clustering (DEC),
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proposed by authors in [16], pioneered the idea of using deep neural networks to learn 
representations and solve for cluster assignment jointly. The method involves using 
Stochastic Gradient Descent coupled with backpropagation to extract deep features 
while simultaneously learning the underlying representations. However, as authors 
in [5] point, the choice of clustering loss tends to distort the feature space, which 
consequently affects the overall clustering performance. To mitigate this, the authors 
propose an under-complete autoencoder to preserve the data structure, leading to 
improved clustering performance. Inspired by these works, we propose a method to 
improve Clustering performance by densifying the data distribution. We hypothesize 
that data distribution sparsity is a significant deterrent in clustering. The problem is 
further exacerbated when the data exhibits high intra-class variance. We empirically 
show that using data augmentation as an auxiliary plug-in helps in improving clus-
ter performance. Extensive experiments on cultural heritage dataset show consistent 
improvements over existing methods. 

3 Categorization of Crowdsourced Heritage Data 

The crowdsourced heritage data arrives in the incremental fashion, where the num-
ber of classes and number of images belonging to class are obscure. More likely, 
we observe that images belonging to a particular class may arrive in large number 
while very few samples may arrive for some other classes. This brings the problems 
of class imbalance and data sparsity. Due to data sparsity, deep learning techniques 
used for the feature representation of the images fail in their task, making the cluster-
ing performance poor. Deep learning architectures like Convolutional Autoencoders 
(CAE) are sensitive to these problems. Toward this, we attempt to mitigate the data 
sparsity issue via data augmentation (Fig. 1). 

We increase the density of the data, by performing three kinds of data transforma-
tions, i.e., random rotation, random shear, and random scaling on the original data, 
as this would generally make the model more robust in terms of learning. These 
techniques tend to provide more generic and genuine data. There are many other 
augmentation techniques as described in [1, 10, 12, 15] used to increase the data 
density and class imbalance [6, 19]. 

Convolutional Autoencoder (CAE) has proven to be effective in case of classifica-
tion, clustering, and object detection. We combine the augmented data with original 
data to train CAE to generate embeddings toward clustering. 

Considering xi , i ∈ {1, ..., m} as an image, the transformation t j , j ∈ {1, .., s} 
applied on xi generates transformed image xts i , represented as x

t 
i = T (xi ). The total 

number of images after augmentation are N , where N = s × m. 
The traditional objective function used for training the CAE is Mean Squared 

Error(MSE) between the input xi and decoder output x
'
i which is as 

MSE(x, x ‘ ) =
∑N 

i=1 (xi − x ‘ i )2 

N 
(1)
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Fig. 1 Categorization of crowdsourced heritage data 

The MSE loss for training CAE limits information about the relation between 
original data and the augmented data. To overcome this, we incorporate the Con-
sistency Constraints [9]. The Consistency Constraints are seen to be effective in 
the Semi Supervised Learning (SSL). A Consistency Constraint Loss (CCL) can 
be incorporated by enforcing the predictions of a data sample and its transformed 
counterpart (which can be obtained by randomly rotating, shearing, or scaling the 
images) to be minimal. The CCL Loss is defined as follows: 

LCC L  = 
1 

NK  

N∑

i=1 

K∑

k=1

|| p(k|i ) − pt (k|i ) || (2) 

where N represents the total number of data points and the K represents total number 
of clusters, p(k|i ) represents the probability of assignment of each image xi , and 
pt (k|i ) represents the probability of assignment of randomly transformed image 
xt i to cluster k. p(k|i) is parameterized by assuming they follow the Student’s T 
distribution as follows: 

p(k|i ) ∝ (1 + || zi + μk ||2 
α 

)−
α+1 
2 (3) 

Here zi is the feature representation of the image xi , μk represents the cluster 
center of cluster k. If  U represents the cluster centers then U = {μk, k = 1....K } 
which are initialized by K-means and tuned as the training progress. 
The overall objective function of CAE is now defined as 

Loss  = MSE(x, x ') + LCC L (4)
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We use K-means technique to quantify our results and depict how augmentation 
can improve the performance of the clustering. We show how data augmentation 
can improve the performance of the existing state of art methods Deep Embedded 
Clustering (DEC) and Improved Deep Embedded Clustering (IDEC), where CAE is 
used as the initial feature extractor. We provide the extensive ablation study of these 
methods over the combinations of different CAEs trained. 

4 Experiments 

4.1 Dataset 

We extensively experiment on crowdsourced Indian Digital Heritage (IDH) Dataset. 
The dataset is collected through a platform sourced by crowd. We consider 10 classes 
of this dataset with 150 images per class toward experimentation as these 10 classes 
consists of high intra-class and low inter-class variance. The considered dataset 
undergoes augmentation like random rotation, random shearing, and random scaling. 
Random rotation of images is performed over the range of 0–90◦, random shear is 
performed over 50◦ of transformation intensity and random scaling is performed over 
the scale of 0.5–1.0. We generate around 6000 images through these transformations. 
The same dataset is used throughout the experimentation to maintain the uniformity 
in comparison of results in different experiments in different environments. 

4.2 Training Setup 

• Runtime Environment: Nvidia GP107CL Quadro P620 
• Architecture: Autoencoder 

– Encoder: 

Contains 4 VGG Blocks 
VGG Block has 2 Convolution Layers followed by a maxpooling layer 
Batch normalization layer was used at the end of each layer before the acti-
vation function 
Activation Function: ReLU 

– Decoder: 

Decoder part of the model consists of convolution transpose layers with batch 
normalization layer at the end of each layer before the activation function 
Activation Function: ReLU, Sigmoid (Output Layer)
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• Batch Size: 16 
• Learning Rate: 0.001 
• Number of Epochs: 500 (CAE), 2000 (DEC and IDEC) 
• Optimizer: Adam 

4.3 Evaluation Metrics 

Toward evaluation of proposed strategy and comparison with state-of-the-art meth-
ods, we use Unsupervised Clustering Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), Adjusted Rand Index (ARI). 

4.3.1 Unsupervised Clustering Accuracy (ACC): 

It uses a mapping function m to find the best mapping between the cluster assignment 
output c of the algorithm with the ground truth y which can be defined as 

ACC = maxm

∑N 
i=1 1{yi = m(ci )} 

N 
(5) 

For the given image xi , let  ci be resolved cluster label and yi be the ground truth 
label, m is the delta function [7] that equals one if x = y and zero otherwise. m maps 
each cluster label ci to the equivalent label from the datasets. The best mapping can 
be found by using the Kuhn-Munkres algorithm [4]. 

4.3.2 Normalized Mutual Information (NMI) 

It measures the mutual information I (y, c) between the cluster assignmentsc and the 
ground truth labels y and is normalized by the average entropy of both ground labels 
H (y) and the cluster assignments H(c), and can be defined as 

NM  I  = I (y, c) 
1 
2 [H (y) + H (c)] (6) 

4.3.3 Adjusted Rand Index (ARI) 

It computes a similarity measure between two clusterings by considering all pairs of 
samples and counting pairs that are assigned in the same or different clusters in the 
predicted and true clusterings. It is defined as 

AR  I  = I ndex  − E xpected I ndex 
Max  I  ndex  − E xpected I ndex 

(7)
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5 Results and Discussions 

In this section, we discuss the results of the proposed strategy toward categorization 
of crowdsourced Indian Heritage (IDH) dataset and compare the results with state-
of-the-art methods. 

We measure the clustering performance by reporting the unsupervised clustering 
accuracy, NMI and ARI. From Table 1 we observe, CAE trained with data augmen-
tation yields better performance over CAE trained without augmentation. We see an 
improvement of 2.74% when trained with MSE loss and an improvement of 15.21% 
when trained with a combination of MSE and CCL, as CCL loss mainly depends 
on augmented data. This improvement is significant in the context of clustering data 
with high intra-class variance. 

To discern the effect of individual augmentation techniques (rotate, scale and 
shear), we choose samples in the combination of—{ori, rot}, {ori, sher} and {ori, 
scal}. The results are presented in Table 2. We observe, set {ori, rot} shows poor 
performance compared to augmentations consisting of {ori, sher} and {ori, scal}. 
We hypothesize that the performance drop for {ori, sher} can be attributed to the fact 
that, the CAE is not equipped with appropriate symmetry inductive bias that enables 
it to learn rotation-invariant features. 

Table 1 Performance of CAE trained with and without augmented data. CAE-WAug represents 
CAE model trained without augmented data and CAE-Aug represents CAE model trained with 
augmented data 

MSE MSE + CCL 

ACC NMI ARI ACC NMI ARI 

CAE-WAug 0.5424 0.4880 0.3377 0.4035 0.3752 0.1880 

CAE-Aug 0.5698 0.5327 0.4000 0.5566 0.4936 0.3336 

Table 2 Effect of augmentation on performance of the original data. Original, rotated, sheared, 
scaled data are represented as ori, rot, sher and scal, respectively 

CAE – MSE CAE – (MSE + CCL) 

ACC NMI ARI ACC NMI ARI 

ori + rot 0.4355 0.3168 0.2155 0.3491 0.2681 0.1493 

ori + sher 0.5189 0.4480 0.3144 0.4413 0.3574 0.2091 

ori + scal 0.5183 0.4168 0.2846 0.4346 0.3419 0.2151
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5.1 Ablation Study 

In this section, we perform ablation study using DEC [16] and IDEC [5] with and 
without considering augmentation. In Table 3, we provide the ablation study of DEC 
which is unsupervised clustering technique that jointly optimizes the cluster centers 
and the parameters of the CAE. KL-divergence between the auxiliary and target 
distribution optimizes the objective function. From Table 3, we infer that providing 
CAE with the augmented data followed by DEC considering original data increases 
the accuracy by 5.61%. While providing augmented data to DEC, with CAE being 
trained with original data hinders the performance. Hence, only CAE is trained with 
original and augmented data ensuring the objective is met. 

In Table 4 we provide the ablation study of the Improved Deep Embedded Clus-
tering (IDEC). IDEC is an improvement over IDEC, which not only jointly optimize 
the cluster centers and parameters of the CAE, but also preserve the local structure 
information. They use KL-divergence between the auxiliary and target distribution as 
their objective function along with the MSE loss of the CAE. From Table 4 it can be 
observed that providing CAE with augmented data with MSE+CCL loss, then pro-
viding the trained CAE to IDEC, where IDEC is trained on original data improves 
the performance by depicting the increase in accuracy by 7.43%. While training 
the IDEC with augmented data with CAE trained on original data only hinders the 
performance. 

From the experiments we observe, it is better to train the CAE with MSE+CCL 
as the integrity loss, with augmented data. The CAE trained in such an environment 
is incorporated for initial feature representation to the IDEC by providing original 
data, to perform better than other methods. 

Table 3 Comparing results of proposed methodology with DEC [16]. CAE-WAug and CAE-Aug 
refers to CAE trained without and with augmentation, respectively. DECWAug and DEC-Aug 
refers to DEC trained without and with augmentation respectively. We show how combination of 
augmentation applied to CAE and DEC may affect the clustering performance 

Loss → MSE MSE + CCL 

Method ↓, Metric  → ACC NMI ARI ACC NMI ARI 

DEC [16] 
CAE – 
WAug + 
DEC – 
WAug 

0.4113 0.3874 0.2271 0.3625 0.3625 0.8196 

CAE – 
WAug + 
DEC Aug 

0.3096 0.3013 0.1530 0.2927 0.2210 0.1201 

CAE – 
Aug + 
DEC 
WAug 

0.4674 0.4876 0.3076 0.4492 0.4665 0.2716
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Table 4 Comparing results of the proposed methodology with IDEC [5]. CAE-WAug and CAE-
Aug refers to CAE trained without and with augmentation respectively. IDECWAug and DEC-Aug 
refer to IDEC trained without and with augmentation, respectively. We show how the combination 
of augmentation applied to CAE and IDEC may affect the clustering performance 

Loss → MSE MSE + CCL 

Method ↓ , Metric  → ACC NMI ARI ACC NMI ARI 

IDEC [5] 
CAE – 
WAug + 
IDEC – 
WAug 

0.5098 0.4903 0.3020 0.3625 0.4340 0.2511 

CAE – 
WAug + 
IDEC Aug 

0.3611 0.3300 0.1703 0.3514 0.3335 0.1856 

CAE – 
Aug + 
IDEC 
WAug 

0.4983 0.4942 0.3130 0.5841 0.4340 0.3662 

6 Conclusions 

In this paper, we have defined data augmentation as an auxiliary plug-in for deep 
embedded clustering that densifies data helping in accurate clustering performance. 
We have demonstrated how data augmentation helps to increase the data density 
yielding superior clustering performance when the data is considerably less in 
amount. Extensive experimentation is done on setting up the right objective func-
tion. Our main objective is to cluster data with very less inter-class variance and very 
high intra-class variance. We have demonstrated our experiments on crowdsourced 
heritage dataset. We also show, how certain augmentation techniques uphold the 
clustering objectives (such as random shear and random scale), while some of them 
hinders the same (random rotation). We demonstrate our results on Indian Digi-
tal Heritage (IDH) dataset to show our methodology shows better performance to 
state-of-the-art clustering algorithms. Deploying clustering algorithms for critical 
applications warrants circumspection and is still a work in progress and we believe 
our work is a step in this direction. 
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Evolution of Bagbazar Street Through 
Visibility Graph Analysis (1746–2020) 

Shilpi Chakraborty and Shiva Ji 

1 Introduction 

Cultural assimilation in the urban setting occurs through activities aimed at expand-
ing the accessibility of offerings associated with urban development and initiatives 
and practical performances aimed at enhancing communal interaction by the use 
of communal places. Space syntax provides a theoretical paradigm that engages 
in exchange throughout and within the urbanization, spatial analysis, and cultural 
engagement, with the ability to both stimulate and create analytical views to urban 
centers [16]. 

The quality of urban environments has worsened as the need for individual and 
commodity mobility has increased. As a consequence of the growth and expansion 
of digitization, transportation has transformed individuals’ lives, allowing them to go 
to distinct destinations in minimal time. Consequently, there has been a substantial 
transformation in the cultural and physical structure of the neighborhood, with more 
excellent utilization of vehicle sources of mobility, allowing for the expansion of 
productive activity in areas far from homes [25] 

Hillier and Hanson advocate for a particular architectural understanding of spa-
tial arrangement that allows for correlative assessment of structures and towns over 
period and area, avoiding the unintentional estimation of societal narratives onto 
built styles through numerous different by effective confrontation, less rhetorical 
viewpoints [11]. There are four prominent techniques for spatial background: First, 
and most importantly history as “backdrops”: study in this field typically offers 
historical material to establish the place(s) of a study case-secondly, chronology as 
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syntactic “developmental stages” in community patterns and architectural categoriza-
tions. Thirdly, there are “syntactic, morphological narratives,” which put the social 
aspects of geographical habitation layout and physical structure to the forefront, hav-
ing the primary goal of comprehending the current physical environment. Baker’s 
term spatial narratives is employed beyond qualifier to characterize the fourth type, 
focuses on how sociological situations arrange and emerge structured over time and 
space, and extends above morphology that describes specific socioeconomic with 
cultural elements of urban society. It’s worth noting that neither of these classifica-
tions is to be strict; therefore, there’s a lot of crossover across them. 

The development of livability in a community so that socioeconomic products do 
not endanger the presence of organic materials and assure their constant growth is 
a method. The linkage of the majority of the definition of the planning stage is to 
cognitive argumentation frameworks and natural phenomenon evaluation. Various 
rationalist and empirical techniques investigate the structure, form, and placement 
of cities related to urbanization. The consideration of structure and space in settle-
ments changes depending on social, economic, or geographical aspects. The broad 
geographical layout of a neighborhood’s social and financial activity, which con-
nects to urban morphology regarding economic elements is urban fabric [3, 26]. 
“Unit for Architectural Studies” created by Bill Hillier in the mid-1970s, was a sig-
nificant incentive. Besides from an exhilarating compendium of highly influential 
scientific publications from the 1970s, among the time of the facility’s inception [11, 
15], three books by Bill Hillier and Julienne Hanson: “The social logic of space” 
(Hillier and Hanson 1984), “Space is the machine” (Hillier 1996b), and “Decoding 
homes and houses” (Hillier 1996c) (Hanson 1998). The second volume, “Space is 
the Machine,” traces the development of space syntax from the 1980s to the earlier 
1990s, concentrating on the theory’s structural and practical aspects. 

The spatial syntax approach considers the significance of space as well as the con-
nections between space and movements. Based on writers, some of these approaches 
analyze space in terms of its essential qualities. Numerous people were debating the 
remote locations. It is this, instead of the interactions among towns and buildings, 
that space syntax is primarily [13]. 

2 Space Syntax Method 

Space syntax is distinct from traditional urban morphology in that it concentrates upon 
openareanetworkstoachieveakindofspatialdepiction.(Hiller,B,1996).Spacesyntax 
philosophersrefer tocollectionsofsimulatedinteractionsamongspacesas“visibility,” 
andtheutilizationof thesewordsis todescribesomethingtheybelievetobetheinherent 
features of space [7]. Turner claimed a connection among isovist and visibility graphs, 
with utilization in the analysis of spatial cognition, based on a significant amount of 
researchonthecomparabilityandcorrelationamongspatialsyntacticparadigm,spatial 
representation,andcognitivemap.Byequating thespacesyntaxassessmentand image 
map of various cities, Shokouhi [27] proposed that the cohesive framework constituted
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of the town’s crucial components, the natural institution of structures, and the consis-
tency among landmark graphic cross-functional is the critical component to urban per-
ception. In an attempt to analyze the spatial patterns of communities, Tao [28] merged 
the axis map and the visual map. Space syntax displays graphic spatial information, 
which is then utilized to explain environmental variables that influence users’ spatial 
behaviorpatternsandexperiences.Thesequantifiedinformationrevealtheconnections 
between urban roads, blocks, and buildings [32]. Syntactic metrics are often employed 
to quantify the compositional characteristics of urban and architectural contexts. Sev-
eraldemonstrationsare tocorrespondwithmotionanduseractivity inseveralcontexts, 
notably museums [29]. 

Koohsari [17] compared the conceptual framework and the space syntax frame-
work on the historical area of Taiping Street in Changsha, Hunan Province, and 
discovered it as the space syntax paradigm had a significant level of connection with 
the nodal and transportation system in the conceptual framework. Urban scholars 
whose concern in the link connecting the physical qualities of cities and the social 
interactions of cities takes them into conceptual and analytical territory that has yet 
to explore in the historical study [19, 23]. As a preliminary step, developing a better 
technique of defining urban space since it appears throughout historical cartographic 
materials would be beneficial, as it would aid in deciphering the historical documen-
tation of what individuals performed in these areas. 

Cartography is one of the few generally dependable tools for urban scholars to 
reach the past’s physical existence despite its inherent problematic characteristics as 
historically distorted realities. However, a requirement of vital equilibrium is com-
prehending the theological influences that create the physical reality with the psy-
chologist Gibson refers to as life’s physical “capabilities” [9]. According to Hillier 
and Hanson [14], the promise of space syntax for historians is in giving a begin-
ning for recognizing and, more significantly, defining the character of such spatial 
“capabilities. ” The attraction for space syntax scholars is to a preceding version 
of nineteenth-century city scholars and historical researchers who used cartography 
to illustrate survey data to try to investigate queries like the housing dispersion of 
immigrant communities and housing discrimination, as well as quite broadly to such 
academics interested in the town’s urban fabric as well as its depiction [6, 8, 20, 
24]. We concentrate on syntactic measurements that can be determined using “vis-
ible graphs” in this paper [22, 30]. A visibility graph is created by concatenating a 
grid on a top-down representation of a space (e.g., from a CAD drawing) utilizing 
space syntax software (DepthmapX). Topological techniques for assessing grid cell 
closeness and inter-visibility are to derive syntactic measurements for every grid cell. 

3 Kolkata: Bag Bazar Street 

Kolkata, India’s West Bengal state capital, is the world’s fourteenth biggest city 
and India’s first metropolitan unit (Fig. 1). The town runs north-south along the 
Hooghly (Ganga) River on the eastern edge of the famed river delta Bengal valley.
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Fig. 1 India map with West Bengal highlighted (left); Kolkata in West Bengal (Right) [31] 

A large portion of the area used to be a swamp, gradually restored to suit the area’s 
burgeoning population. The remnant undeveloped part of the East Kolkata Wetlands 
with classification as a “vitally significant wetland.” Kolkata’s history began in 1690, 
with the establishment of the East India Company to export. 

BagBazar street is one of Kolkata’s three significant arteries, also known as the 
grandmother road in ekanto poribar (joint family). Bagbazar, a suburb in North 
Kolkata, has long acted as a bastion for the Bengali aristocracy and adjacent Shyam-
bazar. Bagbazar has made essential contributions to Kolkata’s growth and develop-
ment. When Kalikata became populated, the English gradually abandoned Sutanuti 
as a residential place. Perin’s Garden, a recreational resort on the town’s northern 
outskirts, remained, where promised personnel of the British East India Company 
would generally join the spouses for an evening stroll and moonlight celebration. 
Nonetheless, it fell out of favor after 1746 and sold for Rs. 25,000 in 1752. Captain 
Perin was the lucky recipient of several ships. Colonel C.F. Scott began manufactur-
ing gunpowder on the property in 1754 (Fig. 2).
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Fig. 2 Bag Bazar Street in 1746 (Left) [18]; in 2020 (Right) [33] 

4 Methodology 

4.1 Data and Survey 

The utilization of primary and secondary questionnaires is to gather data for this 
research. Observations, conversations, statistics, and streets data are all part of the 
preliminary study’s objectives (Table 1). In this article, we deliver a quantitative ana-
lytic approach for various attributes of urban area of Bagbazar street based on analyses 
performed with our proposed spatial modeling method (Space Syntax Method). 

Table 1 Data analysis assessment methods 

Sl. no Goals Tools Findings 

1. Exploring the 
development of Bag 
Bazar Street in 
Kolkata 

Descriptive 
Qualitative Analysis 

Development of Bag 
Bazar Street, Kolkata 

2. Visibility Graph 
Analysis of Bag Bazar 
Street, Kolkata 

Space Syntax Analysis The Degree of 
development of Bag 
Bazar Street, Kolkata
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Qualitative analytic approaches will be employed for the first aim, while quantita-
tive analytical techniques for the second. The table below lists information analysis 
methodologies, study purposes, study tools, and expected research findings. 

4.2 Analysis Method 

Understanding the urban setting as a collection of structures linked by a space net-
work cycling between modules is the first element in establishing Space Syntax from 
the standpoint of urban scale. The system connects each set of road parts. The struc-
ture is the optimum consequence of all aspirations to general purposes within the 
geographical matrix. This is the power that connects all. It has a distinct morphology 
or connection arrangement. The cartographic maps help in understanding the growth 
of the Kolkata as shown in Fig. 3, 4 and 5. 

The geographical and geometrical matrices research helps analyze the context of 
urban settings and their potential impact on interpersonal behavior and commercial 
activity. Connectedness, integration, management, and choice are among the metrics 

Fig. 3 Calcutta in a 1746 (Left) [18], b 1785 (Right) [4]
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Fig. 4 Calcutta in a 1825 (Left) [18], b 1865 (Right) [4] 

Fig. 5 Kolkata in a 1931 (Left) [5], b 2020 (Right) [1]
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established by Space Syntax researchers to define conduct. The utilization of links 
between some of them to develop particular navigational layout features [2, 12]. 

Planners, on either hand, consider the region as a whole; nevertheless, they seldom 
pay attention to particular urban areas. On the other hand, metropolitan designers 
in our neighborhood, but they are scared to grow outside to the size of a whole 
metropolis. As a corollary, it has a lot of potential since an advising instrument in large 
metropolitan strategic planning, as it may help in zoning planning and determining 
the implications. 

5 Result and Discussion 

5.1 General Description 

Historical cartographic maps are being amassed (1746–2020) For assessment. These 
maps differed substantially and depicted the plan of a city in a specific year. The 
circumstances that evolved as a result of Bag Bazar Street’s planning are in Fig. 6. The  
authors reconstructed these maps and put them through DepthmapX for evaluation. 
The evolution of Bag Bazar street is into six stages (Fig. 7). Bag Bazar street has 
developed from a single street to an entire neighborhood as a result of urbanization. 

Fig. 6 The timeline of events led to evolution of Bagbazar street. (Source Author)
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Fig. 7 Planning evolution of Bag Bazar Street. (Source Author) 

It’s possible that following 1985, development slowed owing to a shortage of space 
and congestion. Hence the determination of the evolution of Bag Bazar street is by 
the amalgamation of information through timeline and cartographic maps. 

5.2 Axial Analysis 

Hillier differentiated external and internal aspects of space when it came to accuracy 
in respect to geographical components. Geometry, structure, roughness, solidity, and 
patterning of space are all fundamental characteristics of space. Since they are simple 
to notice, such qualities are straightforward to express using terms like “an open area” 
or “a short street.” External aspects of space, on the other hand, deal with unseen 
geographical connections. The size and shape of the items are irrelevant. Because it 
solely considers whether another space connecting to adjacent spaces by respecting 
lateral shifts and angular variation inside a complex system, space syntax exclusively 
operates for external characteristics [10]. 

Space syntax deals with the crucial components of the axial line using the rea-
soning of external spatial characteristics. In its simplest terms, the axial map, an 
axial line, is a targeting reticle that depicts mobility routes and shapes. The axial 
map, which considers the entire distance of a road, is a system connected to all the 
various avenues that intersect it. This enabled us to get beyond the restrictions of 
traditional transportation concepts, which defined a road network as a set of nodes 
in road junctions connected with sections of the road among them [21]. 

The extent to which space is connected When assessing the level of connection of 
a region, it is critical to look at the element of space consistency. The primary data 
in this study is in terms of an axial map. Axis lines show linkages that can occur in 
linked places such as highways and other open areas. Bag Bazar Street has a medium 
connectivity rating of with highest number of axial lines that is 304 from 1985 to 
the present (Table 2). DepthMap, a tool for visibility research of urban fabric, was 
utilized in this research as open-source software. Researchers can use many metrics 
for analysis with DepthMap, as shown in Table 3 and relation among them in Fig. 8.
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Table 2 Axial lines of Bag Bazar Street 

Year Axial lines 

1746 22 

1785 130 

1825 178 

1865 252 

1909–1931 184 

1985-Present 304 

Table 3 Attributes of visibility graph analysis 

Measures Metric Characteristics 

Size Connectivity The amount of near neighbors with whom a place is 
immediately correlated. This is a fixed local metric 

Global Harmonic Mean 
Depth 

The mathematical mean of the inverses of depths through one 
space to all the others 

Mean Depth The average depth measurement computed through one grid 
unit over the next 

Nomalized 
Depth 

Integration [HH] Hillier and Hanson’s method gives the fraction of any matrix 
cell’s visibility to the visibility of all grid points in the area. It 
also depicts an axial line’s topological closeness toward other 
lines 

Integration 
[P-Value] 

It aids in the resolution of the size issue when evaluating 
structures of varied sizes and matrix sizes 

Integration [tekl] Visibility Graph Analysis integration should be normalized, 
according to Teklenburg, in order to compare the integration 
produced from different analyses 

Choice An axial line’s distance covered across all axial lines. It denotes 
the amount of shortest routes that link one axial line to another. 
The shortest topographically computed path is the difference of 
two axiallines 

Intensity Calculates the amount of change of entropy compared to total 
depth to determine the compared asymmetrical geographical 
system 

Complexity Relavitized Entropy A computation of the anticipated depth value range 

Entropy The investigation of the depth parameters of a grid unit and its 
neighbors 

Control Control Identifying dominating regions visually 

Controllability Identifies locations that may be conveniently checked when 
walking 

The visibility graph analysis of space syntax method as shown in Figs. 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19 and 20 through the analysis in Table 4, the evolution 
bag bazaar street with the lowest transformation is in the year 1865 and the highest 
in 1985 present.



Evolution of Bagbazar Street Through Visibility … 73

Fig. 8 Space syntax: axial analysis and Visibility graph analysis 

Fig. 9 Degree of connectivity map of evolution of Bag Bazar Street. (Source Author) 

Fig. 10 Harmonic mean depth map of evolution of Bag Bazar Street. (Source Author) 

Fig. 11 Mean depth map of evolution of Bag Bazar Street. (Source Author)
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Fig. 12 Integration (HH) of evolution of Bag Bazar Street. (Source Author) 

Fig. 13 Integration (P-value) of evolution of Bag Bazar Street. (Source Author) 

Fig. 14 Integration (tekl) map of evolution of Bag Bazar Street. (Source Author) 

Fig. 15 Choice map of evolution of Bag Bazar Street. (Source Author) 

Fig. 16 Intensity map of evolution of Bag Bazar Street. (Source Author)
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Fig. 17 Relavitized entropy map of evolution of Bag Bazar Street. (Source Author) 

Fig. 18 Entropy map of evolution of Bag Bazar Street. (Source Author) 

Fig. 19 Control map of evolution of Bag Bazar Street. (Source Author) 

Fig. 20 Controllability map of evolution of Bag Bazar Street. (Source Author)
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Table 4 Visibility graph analysis 

Attributes Year 

1746 1785 1825 1865 1985–2020 

Connectivity High Medium Medium Low Medium 

Harmonic 
Mean Depth 

Low Medium Medium Low Medium 

Mean Depth Low Medium Low Low Low 

Integration 
[HH] 

Medium Medium Low Low Medium 

Integration 
[P-Value] 

Medium Low Low Low Medium 

Integration 
[tekl] 

Low Medium Medium High Medium 

Choice Low Low Low Low Low 

Intensity Medium Low Low High Medium 

Relavitized 
Entropy 

Low Medium Low Low Medium 

Entropy Low Low Medium Low Medium 

Control Medium Medium Medium Medium Medium 

Controllability High Medium Medium Medium Medium 

6 Conclusion 

It was feasible to focus on providing a unique viewpoint on urban procedures than 
those enhanced by conventional periodizations of historical context, which prefer to 
deliver the urban fabric as pretty stagnant, by putting the morphological background 
of sociocultural space at the forefront of the research approach and investigating how 
the situation faced of sociocultural provisions have altered. The study investigated 
axial analysis and visibility graph analysis through 12 attributes. The focus of this 
study is on the connection of Bag Bazar Street’s growth in Kolkata. There are six 
stages to evolution. To compare the links, amalgamation of a qualitative study with 
attributes derived by various spatial syntactic-based studies. The Space Syntax aids 
in the proper understanding of Bag Bazar street’s development while also generating 
any assumptions. Space Syntax analysis aims to provide a credible indicator for the 
evolution of space from a heritage city for digital archiving. Finally, the development 
of Bag Bazar Street’s attributes changes throughout time (1746–2020). From 1985 
to 2020, Bag Bazaar Street had the highest transformation rate.
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Mapping Archaeological Remains of 14th 
Century Fort of Jahanpanah Using 
Geospatial Analysis 

Gaurav Kumar Pal and M. B. Rajani 

1 Introduction 

Delhi has been the centre of political history for more than a thousand years. The 
present Delhi is an amalgamation of seven historical cities: Qila Rai Pithora (QPR) 
(extension of Lal Kot), Siri, Tughlaqabad, Jahanpanah, Firozabad, Dinpanah (Purana 
Qila), Shahjahanabad [1]. All the seven cities were fortified settlements; remains of 
many of them still exist. Few of the forts have lost their contours owing to the 
growth and rapid urbanization of Delhi after India gained independence. The fortifi-
cations like Tughlaqabad, Firozabad and Purana Qila have passed the test of time and 
stand resolutely under the protected eyes of ASI (Archaeological Survey of India) 
[2]. Whereas only parts of QPR, Siri, and Shahjahanabad are protected but large 
portions still exist as unprotected remains and encroached spaces and the contours 
of Jahanpanah’s fort are largely obscured. 

The present study is focused on the fourth historical city, Jahanpanah. It was built in 
1327 AD by Muhammad Bin Tughlaq of the Tughlaq Dynasty (1320–1413 AD), the 
successor of Ghiyasuddin Tughlaq who built Tughlaqabad. Muhammad Bin Tughlaq 
followed the Tughlaq dynasty architecture with the construction of Daulatabad Fort 
in Daulatabad, Maharashtra and Jahanpanah in Delhi. After the reign of Ghiyasuddin 
Tughlaq, Muhammad Tughlaq first shifted his capital to Daulatabad but later came 
back to Delhi and enclosed QPR and Siri Fort with two fortification walls [3] (see 
Figs. 1 and 2). This enclosure came to be known as Jahanpanah. Siri Fort is towards 
the north-east of Jahanapanah while QPR is at the south-west. Along the southern 
part of the fortification, an irrigation structure known as Satpula (a weir creating a 
reservoir directing water from the south into the fort boundary) was constructed at
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the same time in order to regulate water for agriculture [4]. The Satpula Bridge is 
still intact, but the same cannot be said for the entire fortification wall of Jahanpanah 
[5]. The remains of the wall lay in isolated patches in the urban sprawl of South 
Delhi covering the areas of IIT (Indian Institute of Technology), Khirki Village, 
Panchsheel Park, Malviya Nagar, and Adchini [6]. However, these references are not 
enough to discern the exact contours of the fortification wall and hence there is no 
clear evidence for the exact locations of the Jahanpanah walls. Jahanpanah remains 
had only one inscription in the ASI protected monuments list, the bastion, where a 
part of the Jahanpanah wall meets QPR’s [7] (see Fig.  2). 

This paper tries to identify the exact location of the walls of Jahanpanah and 
map the accessible remains using geospatial data and analysis. Remote Sensing (RS) 
and Geographical Information System (GIS) has been increasingly used now in the 
field of archaeology and for mapping heritage sites [8]. For this study, old maps 
of Delhi and Corona Satellite images of 1965 were used to analyse and identify

Fig. 1 Map, The seven cities (1867)
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Fig. 2 Overlay of georeferenced fort walls of south Delhi; see Table 1 for numbered locations

the exact location of where the fortifications would have been, and then through 
analysis of multi-date satellite images of recent years specific locations (unbuilt 
patch like green areas, parks) which potentially still may have some remains were 
selected. Subsequently, field visits to the selected location can be carried out for 
making ground observations and geotagging the feature found along the erstwhile 
fortification walls. 

2 Methodology 

The first step was to find reliable spatial information (location and shape) of the 
Jahanpanah fort. This was achieved through finding old maps from archival sources 
and digital libraries. The maps of the colonial period are prefered due to their accu-
racy in scale compared to earlier maps. A map of The Seven Cities (1867) [9] was  
found which marks the fortifications of the seven historical settlements of Delhi 
(Fig. 1). In addition Corona Satellite image of 1965 was accessed in order to identify 
remains of the Jahanpanah wall as this showed the view of the landscape before 
rapid urbanization occurred in Delhi [10]. Corona Satellites were used by the US 
Spy Intelligence (1960–1972), under the name Discoverer Program for the public. In 
1995, these images were declassified for global change research. Map of Seven Cities 
of Delhi and the Corona Satellite image were georeferenced with the present Google 
Earth image (5th June 2021) of Delhi. Georeferencing Corona images is relatively
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Table 1 Monuments inside Jahanpanah 

S. no (corresponding to Fig. 2) Monument Period 

1 Bijay mandal Early 14th c 

2 Begumpur mosque Mid. 14th c 

3 Serai shahi mahal Early 16th c. (not clear) 

4 Kharbuze ka gumbad Before 1397 

5 Lal gumbad 1397 

6 Khirki mosque Late 14th c 

7 Satpula bridge 1343 

easier than old maps as features are identifiable with current Google Earth Imagery. 
The shapes of road intersections are readily discernible as compared to maps before 
the nineteenth century. 

A total of 32 GCP points (Ground Control Points) were taken to georeference The 
Seven Cities (1867) in Thin Plate Spline resampling with a mean error of 0.0024. Thin 
Plate Spline transformation was preferred over different Polynomial transformations 
as it gives localised warping than complete image warping as in Polynomial methods. 
The distortions in the latter gave a mean error of more than 40, which doesn’t give 
an ideal accuracy for the features to be overlaid in the current Google map. After 
georeferencing, these maps were overlaid on the current Google Earth image in order 
to get the exact location of the Jahanpanah fort wall (Fig. 2). Monuments which lay 
inside the Jahanpanah fort have also been marked, where Bijay Mandal shows the 
possible citadel area of Jahanpanah during Mohammad Bin Tughlaq’s reign [11] 
(Table 1). Field work has to be carried out on the possible remains of the wall as seen 
on different timelines on Google Earth. 

Map features: The map, The Seven Cities (1867) was chosen as it contains the 
layout of all the seven cities which makes it easier to study Jahanpanah as it has 
multiple features that can be correlated. This map has fewer details as compared 
to other contemporary maps, which show other historical cities of Delhi in greater 
detail. However, this map had more details on the contours of the fortification of 
Jahanpanah. Old Delhi (Lal Kot and QPR area), Siri, Tughlaqabad and Jahanpanah are 
prominently marked whereas the City of Sher Shah and Ferozadabad are coincided 
by dashed outlines. Directional orientation of the map is marked indicating a North– 
South alignment with scale. The map demarcates the landscapes of Delhi showcasing 
Aravalli ridges on the north-west and west of Lal Kot and QPR and the River Yamuna 
on the east. Two medieval routes are marked from Shahjahanabad: one from Ajmeri 
Gate to Mehrauli via Jahanpanah and QPR; another from Delhi Gate to Mathura 
by the route passing through the City of Sher Shah and detours to Tughlakabad. 
Significant monuments, mosques, temples, tombs and places are labelled, many of 
which fall inside the boundaries of the seven walled cities, thereby adding to the 
heritage value of these cities. Drainage network of the city is seen on the map where 
one of the channels is going through Satpula Bridge and further to the north-east. It
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clearly marks the railway lines that were laid out in the colonial period. Although the 
map doesn’t feature any legends, the labels and symbols used are self-explanatory. 

2.1 Analyses of Geospatial Data 

Overlaying the georeferenced 1867 map of The Seven Cities on Google Earth showed 
exact locations of the possible remains of the fort wall. The wall on the eastern side 
goes through vegetative land via Jahanpanah City Forest and meets Siri Fort crossing 
the Chirag Delhi drainage channel which goes till Satpula Bridge. As evident around 
the southern fortwall, the Press Enclave Marg road has emerged with time retaining 
the shape of the past wall [12]. It also remains consistent and accurate where the wall 
of QPR meets Jahanpanah as recorded on ASI Bhuvan [2]. The western portion of 
the fort wall goes adjacent with the moat along the northern boundary of QRP. 

The findings made through overlaying georeferenced Corona Satellite images are 
worth noting. On close analysis, a circular shape of bastion can be observed where 
the eastern wall meets the southern wall of Jahanpanah. There are many semicircular 
shapes indicating bastions on the southern wall which can be observed in the Corona 
image (Fig. 3). There is a clear difference in the remains of the fort wall in the 
1965 image and the present Google Earth image of Delhi, testifying the fact that 
urbanization with little regard to heritage sites have engulfed many portions of the 
fort remains.

2.2 Geospatial Studies of Archaeological Sites 

The impact of such a geospatial database on archaeological sites and remains shows a 
clear picture of the past and present land use. Use of GIS studies adds to the historical 
data as the extent of the study can be analysed further, even where textual data suggests 
lesser information. The present example of Jahanpanah where its remains have further 
deteriorated can be seen both in Corona satellite images and current Google Earth 
images. However, such geospatial studies of fort extents and monuments of different 
regions can add to the heritage repository and open up new avenues for authorities 
to use this data in a way which can be added to the city development keeping ASI’s 
prescribed protection boundaries intact. Just like in the case of Jahanpanah, there 
are several sites which have gone missing due to construction activities, largely due 
to a lack of spatial data on the context of the site. One similar case study is that of 
Chikkajala Fort in Karnataka, where unprotected sites of the fort were demolished 
for the construction of NH-7, clearly seen in the Google Earth imagery from 2004– 
2018 [13].
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Fig. 3 Remains of Jahanpanah wall identified in corona satellite image (1965)

3 Conclusion 

The geospatial analysis of the Jahanpanah wall throws light on new avenues for 
discovery. Use of old maps (of Colonial period) in today’s spatial context offers 
new insight to the historical information. There are maps available which show 
drainage channels flowing south to north at Satpula Bridge, highlighting the emphasis 
on hydraulic structures for irrigation during Tughlaq and later periods [14]. Such 
channels have been in use in later dynasties as well, which can be further analysed 
using geospatial tools. This paper marks the fort line of Jahanpanah which is testified 
in the Corona image. It offers exact locations of Jahanpanah fort remains, which can 
be accessed for ground truthing on the field. The remains and mounds which can 
be found using this study will further add to the scholarship on the seven historical 
cities of Delhi. 
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Spatial Analysis and 3d Mapping Historic 
Landscapes—Implications of Adopting 
an Integrated Approach in Simulation 
and Visualization of Landscapes 

Mythrayi Harshavardhan 

1 Introduction 

With the advent of technology, digital platforms have expanded, and new tools have 
paved the way for cutting edge development in many fields, including heritage conser-
vation and management UNESCO emphasizes putting more efforts “to protect the 
world’s cultural and natural heritage”. This action plan comes in the wake of the 
Sustainable development goals (SDGs) for 2030 [1]. Cultural heritage has a socio-
economic and political impact, and it is crucial to preserve it. Both tangible and 
intangible heritage fortify cultural diversity, local identity and community values 
[2]. Rapid urbanization and industrialization have contributed to the destruction and 
loss of built heritage, thereby posing a big challenge to preserve them. It has become 
vital to document heritage sites using efficient methods like digitizing data. The 
importance of having a national database for Heritage sites has been demonstrated 
by [3]. 

This paper focuses on different tools and approaches used to create 3D visual-
ization of historical landscapes and architectural features embedded in them for a 
few heritage sites at Badami, Karnataka, India. GIS software like QGIS and ERDAS 
LPS Photogrammetry help in spatial analysis using multiple methods that include 
spatial interpolation, data exploration and overlay analysis which can be integrated 
with other modelling software for better results. The heritage sites explored in this 
paper are Yellamma Temple, Upper Arali Tirtha and an aqueduct in Badami. 

The documentation of these sites has been carried out using the following 
approaches: (1) 3D models of the landscape were created using stereoscopic satellite 
images, and (2) 3D architectural models were made using two methods: (a) measure
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drawings on AutoCAD and Google Sketch Up, and (b) processing digital photographs 
using Photogrammetric software like Agisoft Metashape. The methods adopted are 
both spatially (can be adopted anywhere and for any scale) and thematically (can 
be used for various types of built structures and forms) relevant. This study focuses 
on using specific digital platforms for different contexts to create a database of 3D 
landscapes, which can further be used by a variety of professionals in varied fields. 
The results from the present study find application in varied fields such as heritage 
conservation and management, urban planning, archaeology, and other related fields. 
There is a burgeoning literature on the subject. However, there is a dearth of informa-
tion on specific methods to document unique sites and landscapes. The availability 
of resources coupled with lacunae in the knowledge of appropriate technology for 
data acquisition for heritage and archaeological documentation is a major challenge 
to overcome. 

There is a huge potential for digitizing heritage structures and contributing to the 
database, which would lead to efficient information dissemination. However, there is 
still a paucity of information on the approach adopted for data acquisition, investiga-
tion, and documentation of heritage sites ad structures. Some issues that can crop up 
while using digital platforms for documentation are- limited availability, reliability, 
accessibility resources, and the technical know-how, which can often limit the output. 
There is also a need to utilize the appropriate tools and techniques to get accurate 
results and interoperability of the data with other platforms used by professionals 
working at the interplay of heritage management and digital technologies [2]. 

2 Digitizing Heritage—A Brief Overview 

Digital technology discussed in this paper implies the tools, devices, systems and 
resources used to collect, analyze and process spatial data. Digital technology helps in 
converting existing resources into a virtual analogue format. Spatial data discussed 
in this paper analyses location data attributes interrelated with geographical data. 
Spatial analysis can deliver more organized and suitable data to the end-user [4]. 
GIS is a platform to record, organize, retrieve and analyze spatial data. GIS tools 
have been vital in the spatial and temporal analysis of data by enabling the overlay 
of various attributes and helping cohesive analysis and visualization. Software like 
QGIS and ArcGIS has been a base platform to perform various image processing 
techniques and data interpretation to study archaeological and heritage sites. This 
section outlines a general approach adopted to analyze and visualize the data. This 
study explores three different sites to elucidate the different methods adopted for 
documenting these sites. 

Historical features on the landscape can be traced from remote sensing data and 
prove useful in exploring heritage sites [5]. The availability of satellite images, 
digital maps, and elevation models has equipped one with the toolkit to analyze 
and document historic landscapes. 3D simulation and visualization of landscapes 
help perceive the study areas in greater depth and provide multiple dimensions to the
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data layers. Digital terrain models prove useful in analyzing slope, relief, aspect ratio, 
etc. Yet another advantage with the virtual 3D models is the ability to visualize areas 
inaccessible on foot or require closer investigation when one is not on the field [6]. 

The case studies used in this paper adopt different integrated techniques for effec-
tive documentation of the heritage sites. Spatial data can be acquired by digitizing 
historic maps and other satellite imagery, collecting field survey points/Ground 
Control Points (GCPs), drone imagery, and generating Digital Elevation Models 
(DEMs). DEM can be obtained from processing spatial data and can enable 
users to visualize the terrain parameters such as slope, contours, aspect ratio and 
relief features. Furthermore, 3D simulation or reconstruction of landscapes using 
Photogrammetry can be done more accurately by adding finer details like monuments 
and other important built forms. 

3 Context 

3.1 Badami and Its Immediate Environs 

In ancient times, Badami, known as Vatapi, was a former capital of the Early 
Chalukyas (5th- 8th Century) and was established by Polekeshi I [7]. The settle-
ment of Badami is nestled amidst red sandstone cliffs in a horseshoe shape with a 
large reservoir called Agastya Tirtha on its eastern side (see Fig. 1). Badami exalted 
the status of a capital city till the reign of the Rashtrakutas [8]. However, the heritage 
structures found around the contemporary settlement of Badami are a testament to its 
glorious past. Badami invokes some popular images of the heritage structure strewn 
across the rocky landscape, which are the cave temples carved on the faces of the 
cliffs, the vestiges of the fortification that encloses some iconic temples and pavilion 
structures carved in stone. These well-known structures are- the Upper Sivalaya, the 
lower Sivalaya, Malegitti Sivalaya, Tipu’s battery, granaries, and a dargah. At the  
lower level, where the settlement is located. There are another group of temples that 
are of importance in this landscape. The Bhutanatha group of temples is located at 
the eastern edge of Agastya Tirtha and Yellamma Gudi1 on its western edge.

Some preliminary steps for analysis of Badami and its immediate environs 
involved using maps published by the Survey of India (SOI), which were used to 
identify some salient landscape features and built forms. Following are the maps 
used: (1) The 1932 map (Indexed 48 M/9) is a one-inch map or scaled to 1:63.360, 
first edition; (2) map surveyed in 1975 (Indexed 48 M/9), of 1:50,000 scale, first 
edition; (3) map updated in 2003–04, of 1:50,000 scale. Field surveys of identified 
locations, whose coordinates were obtained from geoportals (such as Google Earth 
and BHUVAN), and the SOI maps, at this stage of data collection. A few previously 
unknown and unclear sites were recorded using handheld GPS devices. These devices

1 Gudi is a temple in the local language, Kannada. 
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Fig. 1 Showing the location of Badami. Figures compiled by author

record the elevation, latitude and longitude, important to geotag locations. Terrain 
models were generated for hydrological analysis [9]. The present study extends the 
work by exploring methods to create digital architectural models and contextual-
izing and embedding them in landscape 3D models. This has been done for the three 
chosen heritage structures. The sites have slightly varying scales, and hence different 
methods have been applied to visualize the structures in the context of landscape on a 
digital platform. There is a multitude of sources available for satellite data. However, 
this paper discusses the historic imagery freely available on google earth and SOI 
maps, and the principal datasets used for this study were high-resolution images from 
CARTOSAT-1 (IRS-P5). 

Thematic maps have been generated from the existing base maps. The layers of 
information include adding vector data (points, lines and polygons) as geoTIFF, .shp, 
.kmz or .kml files. The GIS platform provides flexibility to work on the available data 
on multiple digital platforms like Google Earth, QGIS and ArcGIS. It enables the 
many layers of spatial and temporal data integration and analysis. Some basic image 
processing was performed to integrate the layers of raster data. Two or more images 
are brought to a common map projection [10] and can be pinned together digitally 
using Ground Control Points (GCPs) in both images that are spread out evenly. 
Map projections result from mathematical calculations performed for projecting
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the earth’s curvature onto a flat surface. The study uses multiple images, georef-
erenced to World Geodetic System (WGS) 84 datum2 and ellipsoid.3 The images 
are coordinated by geo-referencing them, locating the image on a map coordinate 
system by assigning latitude and longitude to each pixel. This process is done by 
adding Ground Control Points (GCP) (points for which geographical coordinates 
can be attributed) to the target image from sources such as Google Earth, Google 
Map and Bhuvan (sources from where corresponding coordinates can be acquired). 
Higher accuracy can be achieved with more GCPs that are evenly distributed. The 
images are then transformed by resampling techniques, where the size, orientation, 
and scale are modified accordingly. The transformation set used in this study is 
Nearest Neighbor, and the resampling techniques used are first-order and third-order 
polynomial transformations [5]. 

A Digital Elevation Model (DEM) is vital raster imagery to analyze the terrain and 
produce relief maps. Terrain parameters like slope, contours, and elevation can be 
studied. DEMs also prove useful in studying topography, geomorphological analysis, 
ortho-rectification of satellite imagery, and creating hydrology maps [12]. It has 
helped evaluate the unique terrain of Badami (see Fig. 2).

CARTOSAT- 1 produces stereoscopic imagery of the earth in the visible region of 
the electromagnetic spectrum. The stereoscopic images are black and white and were 
taken by two panchromatic cameras with a spatial resolution of 2.5 m and a swath of 
30 km. The two panchromatic cameras are mounted with a + 26° · (Fore)  −5°. (Aft) 
tilt, enabling the capture of two different images of the same area. The stereo pairs are 
acquired with a time difference of 50 s due to the cameras pointing in forwarding and 
backward directions. This feature of the satellite facilitates the generation of three-
dimensional maps, Digital Elevation Models (DEMs), and Digital Terrain Models 
(DTMs) that find application in various fields [7–14]. 

The CARTOSAT-1 stereo pairs have helped visualize the topography of Badami 
and its undulating terrain. With the CARTOSAT stereo pair images, it is possible to 
generate anaglyphs. Anaglyphs also help visualize the terrain but without the need 
to generate DEM. However, the anaglyph images must be viewed through a pair of 
anaglyph glasses with two different colours, one for each eye (see Fig. 3). The stereo 
images are superimposed to produce depth, where the left image is projected in red 
and the right image in cyan (green and blue), creating an RGB colour composite 
image. The anaglyph glasses enable viewing the stereoscopic images integrated 
without any glitch. In the anaglyphs generated from CARTOSAT-1 images, the 
north is rotated to the left as the images are captured by the satellite, which orbits 
in the north–south direction. An anaglyph image does not support viewing 3D from 
different angles, distances, and heights in an anaglyph image. The anaglyph image 
can be viewed in 3D only from the top-down nadir direction [12].

2 Datum of a location is a set of reference points i.e., latitude, longitude and height calculated for 
that particular location on the earth’s surface. There are local and regional datums used for certain 
regions [11]. 
3 The earth’s surface is not a perfect ellipisoid, hence mathematical calculations have been developed 
for different ellipsoids to find a fit that would help in establishing coordinate points for different 
locations [11]. 
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Fig. 2 3D simulation of the landscape of Badami and its immediate environs. Source figures 
compiled by author, and the image on the right is google earth imagery draped over DEM

Fig. 3 Anaglyph produced with CARTOSAT-1 stereo pair. Source author’s own
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This paper explores sites from a closer perspective, and the virtual reconstruc-
tion of the landscape has been accomplished primarily using the QGIS and ERDAS 
Imagine Photogrammetry. The architectural monuments and other built forms have 
been modelled using the Agisoft Metashape, Google SketchUp, and AutoCAD. The 
built structures have then been incorporated into the landscape model in the Virtual 
GIS module of ERDAS Imagine software for cohesive viewing of the historic land-
scape in its entirety. Other sophisticated methods have been adopted to generate 
accurate building models using Light Detection and Ranging (LIDAR), where data 
is recorded with the help of a pulsed laser and an airborne or ground-based system for 
generating precise three-dimensional models of sites [15]. However, in the absence 
of availability of LiDAR data, this study uses Photogrammetry techniques to generate 
3D models of built structures for visualization purposes. Sites 1 and 2 use similar 
methods for the documentation, but the typology of built forms and scales vary. 

ERDAS Imagine software allows the transformation of raw satellite data into 
usable digital formats for mapping, and raster data analysis, which can further be used 
in 3D visualization. The acquired raw geospatial data can be processed and analyzed 
using various processes such as analytical triangulation, terrain model generation, 
ortho-photo production and producing ortho-mosaics. The various workflows used 
on this platform are very flexible and help produce accurate results. It supports an 
interactive/dynamic platform for virtual fly-throughs and rendering of 3D models. 
This technology uses non-intrusive and secure methods from data acquisition to 
generation. 

This study uses Agisoft Metashape to document heritage structures and other 
built forms. The software generates highly detailed and photorealistic models by 
processing images into 3D spatial data in a dense point cloud, textured polygonal 
models, georeferenced ortho-mosaics and Digital Surface Models (DSM)/Digital 
Terrain Models (DTM). The linear workflow is intuitive and easily provides a user-
friendly platform to process models. Buildings can be visualized in their entirety or 
ruinous state; they can be reconstructed with exceptional details, and fly-throughs 
that enable virtual tours of heritage sites are possible. 

An aerial LiDAR covering the landscape and buildings would have collected 3D 
data of all elements from one source. However, since this study uses satellite data 
for landscape topography and photographs for capturing buildings, we found much 
disparity in spatial resolution, scaling and 3-axis orientation of data from the two 
sources. This provided an opportunity to explore the challenges and find optimal 
solutions that are discussed below. 

3.1.1 Site 1 

Beyond the Bhutanatha temple complex, a trail leads to a site located on the summit 
of the hill, called Arali Tirtha. This site is marked by two shrines- one small cubical 
shrine made of sandstone blocks and a larger shrine in the form of a natural cavern 
with a rock overhang on one side with a spring (perennial water source) in front of 
it. This cavern is adorned with sculptures and carvings of many Hindu deities [16].
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A few hundred meters uphill towards the east of this site is a cistern, the source of a 
stream that gathers water during a heavy spell of rain and flows to the edge of the cliff, 
splitting into two waterfalls called Akka-Thangi falls [9]. Further exploration of the 
site around the cistern led to finding a large temple complex (marked on the 1975 SOI 
map of the region- Indexed 48M9) with pillared mandapas in a ruinous state. Arali 
Tirtha has been extensively studied and documented by various scholars. However, 
the site uphill from Arali tirtha- Upper Arali Tirtha is lesser-known, and hence, this 
paper explores the methods used to document this site. Upper Arali Tirtha is located 
on a cliff summit that is difficult to access. Hence a digital model of landscape with 
the built form helped accurately capture and later analyse the setting (see Fig. 4). 

Fig. 4 Upper Arali Tirtha a Terrain model of the site with the built forms b 3D Models of the built 
forms c Field photograph of the structures. Source author’s own
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3.1.2 Site 2 

Yellama Temple on the western banks of Agastya Tirtha is located on a bund. 
Evidence indicates that this temple was established in 1139 during the Later 
Chalukyan period [17]. This temple was originally dedicated to Vishnu, but now it 
enshrines a popular female deity. The ornate temple is approached through a collon-
aded open mandapa that leads to the main sanctuary with a tall shikhara rising above 
it (see Fig. 5). This structure has an ornate facade with complex architectural details. 
It was possible to recreate this model on a digital platform, capturing the intricate 
details.

3.1.3 Site 3 

The former rulers located the former Chalukyan capital at a strategic locale due to the 
surrounding sandstone cliff’s geographic advantage that provides natural defenses 
[7]. The semi-arid climatic conditions and the region’s unique geology led to various 
types of water harvesting systems devised in the past to sustain the settlement [18, 19]. 

Harshavardhan and Suganya [20] establish the presence of an aqueduct that once 
connected a cistern in the north-eastern part of the fort and another cistern located a 
few hundred meters away in the same direction. The paper also dates the structure as 
possibly belonging to Vijayanagara Period and discusses the intricate water networks 
in the landscape, which were engineered in the past that formed a cascading system 
by connecting other water harvesting systems. A Badami map drafted in 1818 by 
John Jeffery O’Donnoghue, a British military engineer, marks the aqueduct and 
several tanks in the region [20, 13]. Figure 6 shows the location of this aqueduct 
with respect to the adaptation of the 1818 sketch of the Badami Fort and Pettah 
region marking important features (Image on the right). This 1818 map has some 
planimetric inaccuracies that may have occurred during the survey or reproduction 
of the map [8, 21].

4 3D Landscape Model Generation 

The sites were ground validated from the points available on 1930 and 1975 SOI 
maps. The SOI maps and Google Earth imagery were georeferenced and overlaid on 
QGIS to analyze the context. Field points were added to the base maps, and vector 
layers of polygons were added to demarcate the study areas. 

CARTOSAT-1 images were processed using a series of workflows that finally 
helped generate a DEM 3D simulation of the landscape. On the ERDAS IMAGINE 
Photogrammetry software, the image pairs are first placed together with tie points 
that can be automatically generated or with the help of Ground Control Points
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Fig. 5 Yellamma Temple a Field Photograph b 3D Model of the built form. Source author’s own

(GCPs) using the triangulation method.4 Once the images are triangulated, generating 
anaglyphs and DEMs with additional data processing is possible. Terrain editing, 
DTM extraction, and ortho-rectification of the processed images can also help achieve 
accurate results. Ortho-photos are created by minimising the distortion in the image 
pairs that can occur due to the topographic relief displacement, sensor orientation

4 A method by which a location of a point is determined by measuring angles formed between that 
point and the points on either side of a fixed baseline, at one end. 
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Fig. 6 Google imagery showing traces of aqueduct (left) and an adaptation of the 1818 map of 
Badami that marks the aqueduct (right) [13].5 Source figure’s compiled by author

or other technical errors. The resulting images are planimetrically correct, where the 
ground objects are represented in their true X and Y positions. The terrain model is 
draped with raster images like Google Earth or ortho-images to add more details and 
help better visualize the terrain. The multiple layers used in Virtual GIS need to be 
reprojected to ensure they have the same coordinate reference system (CRS). 

4.1 Building Model Generation of Sites 1 and 2 

The architectural models of Upper Arali Tirtha and Yellamma Temple were created 
using Metashape. The models were generated by importing a series of photographs 
(for this study, photographs were taken from smartphones) of the built forms on the 
software. With the help of a linear workflow, one can convert the photographs into 
point cloud data, which further renders a photorealistic model with accurate details 
and textures (see Figs. 4 and 5). These models are to scale, which, when imported onto 
the terrain model (with file extensions of 0.3ds and .dxf) on the ERDAS Imagine 
platform, requires the user to adjust various parameters like location, scale, and 
orientation (see Fig. 7). This must be done manually to situate the model correctly 
on the landscape. These parameters can be modified using the model attributes of 
Pitch (Lateral axis), Yaw (Vertical axis), and Roll (Longitudinal axis). Elevation

5 https://artsandculture.google.com/asset/badami-karnataka-john-jeffery-o-donnoghue/5gH1cg 
apvbvkzg?hl=en 

https://artsandculture.google.com/asset/badami-karnataka-john-jeffery-o-donnoghue/5gH1cgapvbvkzg?hl=en
https://artsandculture.google.com/asset/badami-karnataka-john-jeffery-o-donnoghue/5gH1cgapvbvkzg?hl=en


98 M. Harshavardhan

Fig. 7 Yellamma Temple a Aerial view showing the location of the built form on Google satellite 
image b Perspective View Badami landscape marking the location of the built form c Architectural 
model imported on terrain model in ERDAS Imagine platform before correction of 3-axis orientation 
parameters d Terrain model of the site with the built form. Source author’s own 

parameters of above ground level (AGL) and above sea level (ASL) should also be 
altered to locate the models correctly on the terrain model. Figure 7 illustrates the 
process with the Yellamma Temple model (site 2). 

4.2 Building Model Generation of Site 3: 

The method used to generate a 3D model of site 3 (a 900 m long and 600 mm wide 
linear structure) differs from sites 1 and 2 due to the different nature and scale of the 
site. The scale of this site 3 is relatively larger than the other two sites. Unlike the other 
two sites, it was not ideal to use Metashape to generate an entire aqueduct model as 
it is a linear structure spanning a few hundred meters. However, parts of the structure 
can be modelled using the software. Hence, the techniques used to document this site 
included DEM generation and developing a 3D model of the aqueduct using Google 
Sketchup and AutoCAD. 

The 1818 map was georeferenced and overlaid with a georeferenced historical 
google earth imagery of different periods on QGIS to compare and identify features 
on the two maps. This was done to factor in the seasonal changes, which revealed the 
presence of water bodies in some seasons. This process led to tracing the remains of 
the aqueduct, which subsequently led to ground validating the structure and recording 
a few field points and elevation at different points along the length of the aque-
duct. This data was essential in generating a profile of the aqueduct (see Fig. 8). A 
conjectural model of the aqueduct was drawn out in AutoCAD. The drawing was
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Fig. 8 Model of terrain and Aqueduct, Badami a Google earth map showing the location of the 
aqueduct Figures Compiled by the Author. Source of the base map- Google Earth b Simulation 
of the landscape showing the elevation of the aqueduct c A view of the remains of the aqueduct 
structure on the ground, photograph taken from the North Fort d Perspective views of the model of 
the aqueduct 

then imported into Google SketchUp (in the form of .dwg and .dxf files), where a 
schematic model of the aqueduct was generated. 

SRTM DEM (1 ARC Second) was acquired from the USGS Earth Explorer 
website. And this allows the users to download a DEM of 30 m resolution. From the 
DEM, it is possible to create contours, which can then be imported into SketchUp 
to create a contour model on which the aqueduct structure would be located (see 
Fig. 8). The resultant schematic model enables one to study the landscape, although 
this method is a more manual way of creating the terrain model and the built form. 

5 Concluding Remarks 

This study uses different approaches to create 3D models for simulation and visu-
alization of historical landscapes. Satellite imagery and remote sensing data have 
proven useful in generating terrain models for a region like Badami with dramatic
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landscapes and undulating topography. The methods used in this study have their 
advantages and drawbacks. The main advantage of the methods used in this is satel-
lite imagery can depict heritage and archaeological sites synoptically, giving a clearer 
understanding of the spatial extent of a region. The satellite images obtained are often 
for relatively larger areas where one can better analyze the site and its surroundings. 
Through the acquired satellite data, it is possible to analyze slope, aspect, contours, 
elevation, relief analysis, and drainage patterns. The tools are flexible, user-friendly 
and simplify complex processing functions. It can be combined or replaced with other 
techniques. The methods used to survey and document sites are non-intrusive and 
enable large data acquisition. A few drawbacks involve using high-end modelling 
software that is expensive for DEM generation and terrain modelling. However, 
there are a few alternative tools and freely available data to overcome this drawback. 
Limited resources and satellite imagery availability can have problems such as poor 
resolution or cloud cover that can inhibit clear viewing and can often prove to be a 
major challenge to overcome. Since this study discusses the reconstruction of terrain 
models and architectural models on separate modelling platforms of ERDAS Imagine 
and Agisoft Metashape, respectively, one might encounter are few difficulties, such as 
the location, scale, orientation, etc., while creating a consolidated model. Yet another 
disadvantage is the lack of technical knowledge and support to use appropriate 
methods for data acquisition and documentation of historic landscapes. A single 
method cannot help get the accuracy in the documentation of sites. It is imperative 
to combine different techniques for better results in digitizing heritage [22]. 

With heritage structures and historic landscapes undergoing tremendous stress 
because of various natural and anthropogenic factors, there is an urgent need for 
digital documentation. The application of digital technologies can help preserve and 
showcase heritage sites by creating a database that can be used in the future. This 
method of documentation is faster and more efficient than manual documentation 
techniques. 

Acknowledgements The research reported in this paper was conducted as part of a project funded 
by the Department of Science and Technology, Government of India, under the scheme Indian 
Heritage in Digital Space. I thank the Principal Investigator of the project Dr M.B. Rajani at the 
National Institute of Advanced Studies, for her valuable inputs and discussions on the paper. I thank 
Ms Kuili Suganya for her insights about the site. 

References 

1. UNESCO (1972) Convention concerning the protection of the world cultural and natural 
heritage. Last accessed http://whc.unesco.org/en/conventiontext/ 

2. Trillo C, Aburamadan R, Mubaideen S, Salameen D, Chikomborero B, Makore N (2020) 
Towards a systematic approach to digital technologies for heritage conservation. insights from 
jordan. Preserv Digit Technol Cult 49(4):121-138. Last accessed https://doi.org/10.1515/pdtc-
2020-0023

http://whc.unesco.org/en/conventiontext/
https://doi.org/10.1515/pdtc-2020-0023
https://doi.org/10.1515/pdtc-2020-0023


Spatial Analysis and 3d Mapping Historic Landscapes … 101

3. Gupta E, Das S, Suganya K, Balan C, Kumar V, Rajani MB (2017) The need for a national 
archaeological database. Curr Sci 113(10) 

4. Paramasivam CR, Venkatramanan S (2019) An introduction to various spatial analysis tech-
niques, chapter 3. In MV Venkatramanan S (Eds) GIS and geostatistical techniques for 
groundwater science pp. 23–30. Last accessed https://doi.org/10.1016/C2017-0-02667-8 

5. Gupta E, Rajani MB (2020) Geospatial analysis of historical cartographic data of kollam fort. 
J Indian Soc Remote Sens, 48: 1567–1581. https://doi.org/10.1007/s12524-020-01181-w 

6. Rajani MB (2007) Bangalore from above: an archaeological overview. Curr Sci 93(10):1352– 
1353 

7. Michell G (2011) Badami, Aihole, Pattadakal. Mumbai: JAICO Publishing House 
8. Menon SM (2013) Treasure trove of temple architecture: lesser-known monuments of Badami, 

Travel & flavors, pp 84–87 
9. Suganya K, Harshavardhan M, Rajani MB (2022) The significance of ancient water systems 

and the sacred groves in the landscape of badami, karnataka: a geospatial study. In: Dhyani 
MBS(Eds) Blue-Green infrastructure across asian countries, improving urban resilience and 
sustainability (p. (Chapter 17)). Springer Nature. Singapore 

10. Robinson AH, Morisson JL, Muehrcke PC, Kimerling AJ, Guptill SC (2004) Elements of 
cartography, Wiley, INC. Singapore 

11. Rajani MB (2020) Patterns in past settlements: geospatial analysis of imprints of cultural 
heritage on landscapes: Springer Nature 

12. Mandyam BR, Patra SK (2009) Space observation for generating 3D perspective views and its 
implication to the study of the archaeological site of Badami in India. J Cult Herit 10(1):e20-e26. 
https://doi.org/10.1016/j.culher.2009.08.003 

13. Nanda V, Johnson A (2015) Cosmology to cartography- a cultural journey of Indian maps: from 
the collections of kalakriti archives, Hyderabad and national museum. New Delhi, National 
museum 

14. National Remote Sensing Centre. https://www.nrsc.gov.in/ Last accessed https://www.nrsc. 
gov.in/ 

15. National ocean service. https://oceanservice.noaa.gov. Last access https://oceanservice.noaa. 
gov/facts/lidar.html 

16. Nuess J (1993) Aralikatti- A forgotten sculptured cave near Badami. Berliner indologische 
studien (BIS) 7:173–206 

17. Padigar SV (2012) Heritage series: badami. Department of archaeology, museums and heritage, 
Bangalore. (2012) 

18. Joshi RV (1955) Pleistocene studies in the malaprabha basin. Poona; Dharwar: deccan college 
postgraduate and research institute; Karnataka University. 

19. Agarwal A, Narain S (1997) Dying wisdom- rise fall and potential of india’s traditional water 
harvesting systems. New Delhi: centre for science and environment 

20. Harshavardhan M, Suganya K (2020) Water harvesting systems of the past- a case study of 
badami, India. National seminar on ‘recent advances in geospatial technology & applications’. 
Dehradun: Indian institute of remote sensing. pp. 170–175. Last accessed https://www.iirs.gov. 
in/national-seminar 

21. Davidson TE (1986) Computer correcting historical maps for archaeological use. Historical 
Archaeology, 20(2):27–37 

22. Kovacs F (2015) Documentation of cultural heritage; techniques, potentials, and constraints. 
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, XL-5/W7. https://doi.org/10.5194/isprsarchives-XL-5-W7-207-2015

https://doi.org/10.1016/C2017-0-02667-8
https://doi.org/10.1007/s12524-020-01181-w
https://doi.org/10.1016/j.culher.2009.08.003
https://www.nrsc.gov.in/
https://www.nrsc.gov.in/
https://www.nrsc.gov.in/
https://oceanservice.noaa.gov
https://oceanservice.noaa.gov/facts/lidar.html
https://oceanservice.noaa.gov/facts/lidar.html
https://www.iirs.gov.in/national-seminar
https://www.iirs.gov.in/national-seminar
https://doi.org/10.5194/isprsarchives-XL-5-W7-207-2015


102 M. Harshavardhan

23. Bhatawdekar S, Jaiswal RK (2018) Cartography (high-resolution) observing system. 
Comprehensive remote sensing, 1. https://www.sciencedirect.com/topics/earth-and-planetary-
sciences/cartosat 

24. European space agency, https://earth.esa.int. Last accessed https://earth.esa.int/eogateway/mis 
sions/irs-p5 

25. Satellite imaging corporation. https://www.satimagingcorp.com. Last access https://www.sat 
imagingcorp.com/satellite-sensors/other-satellite-sensors/cartosat-1/

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/cartosat
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/cartosat
https://earth.esa.int
https://earth.esa.int/eogateway/missions/irs-p5
https://earth.esa.int/eogateway/missions/irs-p5
https://www.satimagingcorp.com
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/cartosat-1/
https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/cartosat-1/


Medical Image Processing (MedImage)



HSADML: Hyper-Sphere Angular Deep 
Metric Based Learning for Brain Tumor 
Classification 

Aman Verma and Vibhav Prakash Singh 

1 Introduction 

Brain tumors are a malicious accumulation of anomalously growing cells in the brain 
parenchyma and the regions in the vicinity. Early-stage diagnosis of brain tumors 
helps medical experts to take timely medication. Along with the diagnosis, it is of 
utmost importance that the correct class of the tumor is also identified. The task 
of brain tumor classification can be categorized as a three-class detection problem 
wherein the classes are Meningioma, Glioma and Pituitary Tumor. Computer Aided 
Diagnosis (CAD) based approaches have become prevalent in classification and 
more recently machine intelligence-based solutions are being employed to augment 
CAD frameworks. To be specific, deep learning-based methods have established 
dominance in the domain owing to their robust performances [1]. These approaches 
utilize deep neural network architectures such as deep CNN to capture complex 
nonlinear decision boundaries. Multiple attempts have been done to enhance classi-
fication performances, in [2] authors used a 3-stage approach to classify the grade of 
the tumors, first the brain tumors were segmented, then from the segmented images, 
data augmentation was done after which a CNN was employed for feature extrac-
tion cum classification. Transfer Learning approaches involving ImageNet [3] pre-
trained models have been actively employed to achieve state-of-the-art performance 
[4]. To overcome overfitting GAN based brain MRI data augmentation was done
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(a) Meningioma (b) Glioma (c) Pituitary Tumor 

Fig. 1 MRI scan slices from each of the brain tumor types 

in [5] while approaches involving Capsule Networks have been recently proposed 
[6]. BrainMRNet [7] has been recently introduced, it uses Attention Mechanism [8] 
to bring robustness in features. Even though there has been significant progress so 
far, there is a wide scope for improvements. Firstly, there is a need to improve the 
generalizability of the models and secondly, extraction of more prominent features 
is also essential. High inter-class similarity along with high-intra-class variability 
degrades the performance. Foremost cause of the same is that the visual morphology 
and view-of-capture of the MRI-slices among the classes are quite similar. Figure 1 
depicts structural similarities between the three brain tumor types. Moreover, the 
major tumor-type differentiating information remains concealed with limited spatial 
space. Thus, this research attempts to overcome above mentioned problems and tries 
to improve feature discrimination to enhance the performance and generalization of 
brain tumor classification models. 

Deep metric learning has been a natural choice in multiple domains [9–11] to  
enforce inter-class separability and intra-class similarity. Usually, SoftMax based 
classifications are performed but it is to be noted that SoftMax loss maximizes 
class distances so as to have features before the last fully connected layer linearly 
separable as it is a softened version of the max operator. This enforces low-inter-
class separation which causes minimal intra-class similarity. Deep Metric Learning 
(DML) on the other hand metricizes the distance between training examples which 
makes examples belonging to the same class being clustered while the different ones 
moving towards respective class centers leading to inter-class separation. DML is 
applied via training deep learning models with distance aware losses. Triplet Loss 
[12] has been one of the most widely used DML loss, for any example(anchor) it 
samples a positive(same class) and negative(different-class) example, computes the 
distance between embedding of anchor and positive and anchor and negative, then 
it imposes a Euclidean margin between them to improve inter-class distances and 
intra-class closeness. Though it has been successful, selection of inadequate margin 
and sampling wrongly may lead to unstable training. Concepts of adaptive margins 
and hard-negative mining [13] have been introduced to alleviate the problems in prior 
but issue related sampling sustains. Other loss functions such as Center-Loss [14]
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supervise SoftMax loss through another term that minimizes intra-class variance, 
but in such losses SoftMax loss empirically dominates. An advancement of triplet 
loss has been the Quadruplet Loss [15] which samples another negative with a target 
to set minimum inter-class distance greater than maximum intra-class distance, but 
again negative sampling remains an issue of concern. Angular Loss [16] improvised  
over the previous works by enforcing angular margin and hence utilizing gradients 
from all negative, positive and anchor, this was lacking in Euclidean margin-based 
triplet loss strategies but negative mining must be done here also. 

To alleviate the shortcomings of this paper, proposed the HSADML framework— 
a hyper-sphere manifold metric-based learning for brain tumor classification. The 
proposed approach utilizes SphereFace Loss [17] which surpasses the tedious nature 
of triplet loss-based sampling and enforces angular separation using angular margin. 
To the best of knowledge this is the first work on brain tumor classification to utilize 
DML. Following is the summary of key contributions: 

• HSADML Framework to enhance the generalizability of brain tumor classification 
models. 

• HSADML framework uses SphereFace loss that alleviates the issue of triplet 
sampling but at the same time develops discriminative representation using 
angular margin -based Hyper-Spherical DML. 

• The proposed approach achieves state-of-the-art results on a benchmark dataset. 
Extensive experimentation done to verify the methodology suggests the same. 

This paper has been organized in four sections The current section gave an intro-
duction and literature review. Proposed framework is explained in the next section, 
while in the third section—Experiments, Results and Discussions, experimental anal-
ysis has been done. Finally, the paper is concluded in Sect. 4 with future research 
dimensions. 

2 Methodology 

HSADML Framework has two major components first being the SphereFace Loss 
Function and the second being the backbone network as diagrammatically illustrated 
in Fig. 2. In this study, MobileNet [18] has been utilized as the backbone network 
with the reason being the lightweight nature of the same. All the components of the 
HSADML framework have been explained in subsequent subsections.

2.1 SphereFace Loss 

It is visually challenging to identify the type of brain tumor mainly because of two 
reasons—(1) The affected region being quite small, at a large scale bears resemblance 
to all the three- classes. (2) Multi-view data appends morphological similarity which
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Fig. 2 HSADML framework has two phases—the training phase and the testing phase. In training 
phase, the deep learning model is trained via angular metric learning using SphereFace loss. While 
in testing phase k-NN (k = 1) based testing is done

further enforces inter-class compactness and intra-class discrepancy. SoftMax Loss 
function on the other hand when employed in classifiers generates linearly separable 
decision boundaries using the features of the last dense layer. Mathematically, the 
SoftMax Loss function is defined as follows: 

LSof tmax = −  
1 

N

∑N 

i=1 
log 

e
(
W T yi xi

)

e
(
W T yi xi

)

+ ∑
j !=i e

(
W T y j  xi

) (1) 

Here, xi ∈ Rd with d being the dimension of feature embedding. Let there be n 
classes −[y1, y2, · · ·  , yn] and the batch-size is N, W ∈ Rd∗N represents the weights 
while Wyi ∈ R1 Xd  is the weight column corresponding to class yi . For the sake of 
brevity, the bias term hasn’t been included. For SoftMax Loss linear-vector space 
is considered for classification where the class boundaries are bounded within a 
certain defined region, this restricts the generalizability of the model. Whereas, if 
the classification is done in angular some specific sector gets assigned to a particular 
class which makes the region of existence for that class unbounded within the sector. 
HSADML framework on the other hand utilizes SphereFace Loss Function to facili-
tate angular metric learning. SphereFace Loss projects the feature embeddings onto a 
hyper-sphere manifold by normalizing both weights and feature embeddings. Then,
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it metricizes the angular distance between class centers0 and the feature embed-
dings. By imposing an angular margin, it makes training harder but ensures intra-
class compactness and inter-class variance. W T y j  xi defines the dot product between 
Wyj and xi , thus SphereFace Loss formulates following Euclidean to Angular Space 
Transformation—||Wyj ||||xi||cosθy j i . Here, θy j i denotes the angle between Wyj and 
xi . The class center and the feature embeddings are L2 normalized which makes the 
transformation dependent only on θy j i . The normalization step projects the embed-
dings on a d dimensional hyper-sphere. Finally, angular margin m is introduced to 
make training tougher but this results in formation intra-class clustered and inter-class 
separated embeddings. Formally, SphereFace Loss can be defined as follows: 

LSpF = −  
1 

N

∑N 

i=1 
log 

e||s||Ψ(θyi i ) 

e||s||Ψ(θyi i ) + ∑
j !=i e

e
||s||cos(θy j i )

(2) 

Here,

Ψ
(
θyi i

) = (−1)k cos(mθyi i ) − 2k (3) 

||s|| is a scaling factor, k ∈ [0, m − 1], θy j i ∈
⎡
kπ 
m , 

(k+1)π 
m

⎤
θy j i ∈

⎡
kπ 
m , 

(k+1)π 
m

⎤
and 

m ≥ 4. Function Ψ(.) has been utilized to mitigate instability-intricacies during 
CNN training. 

Angular margin makes the training more challenging; by increasing the angular 
distance of feature embedding with its respective ground-truth class center by a 
factor of m. This results in model learning more robust embeddings that stand-
out in magnifying inter-class separation while minimizing intra-class separation. 
Due to classification now being done angularly on a hyper-spherical manifold, the 
generalization of the model is further enhanced. Furthermore, the loss function does 
not inculcate triplet/quadruplet sample mining. 

2.2 Backbone Architecture 

SphereFace Loss requires feature-rich embeddings to operate smoothly over the 
hyper-spherical deep metric learning. Thus, the HSADML framework incorporates 
the use of ImageNet pertained model of MobileNet. Specifically, MobileNet architec-
ture has been chosen for the base-network because of the low-computational burdens 
that it lifts. The depth wise separable and point-wise convolutions drastically reduce 
the number of parameters in MobileNet while supporting good performance. Accred-
ited to the same, the inference time of the MobileNet model is quite low. This all 
ensures that there is scalability in the approach for practical deployments in medical 
diagnosis.
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The enriched representation extracted out of the MobileNet model is fed to Output 
Network wherein the feature-maps are firstly average pooled globally (GAP Layer), 
then the pooled embeddings are passed through a series of dense layers and dropout 
layers. Finally, after the final dense layer which is He Instantiated [19] and linearly 
activated, a Batch Normalization layer [20] is applied which helps in making the 
training stable. These are the final embeddings which are passed onto the SphereFace 
Loss function. In this case dimensionality of the final embeddings was chosen to be 
(256,1). 

2.3 Classification and Testing 

After the model has been trained under SphereFace Loss, embeddings from the final 
dense layer are extracted. Then using cosine distance as a distance metric k-NN (k 
= 1) algorithm is employed so as to test the model. The extracted embeddings are 
L2 normalized, and instead of directly applying cosine distance metric, Euclidean 
metric over normalized embeddings was utilized. The normalization step ensures 
that there is proportionality between the respective Euclidean and Cosine distances. 
Mathematically, let there be two normalized embeddings xi1 and xi2, then 

cosdist(xi1, xi2) = 1 − xT i1xi2 (4) 

Similarly, 

eucdist(xi1, xi2) =
⎡
2 ∗ (1 − xT i1xi2)

⎤ 1 
2 (5) 

This makes, 

eucdist(xi1, xi2) ≡ cosdist(xi1, xi2) (6) 

Here, cosdist(.) represents the cosine distance and eucdist(.) the Euclidean 
distance. 

k-NN with the first nearest neighbor being a very basic classifier, HSADML 
based extracted embeddings are also classified using more sophisticated classifiers. 
Specifically, SVM with Gaussian and Polynomial kernel, Random Forest and k-NN 
(with best possible nearest neighbor combination considering up to 30 neighbors) 
have also been employed to facilitate robust classification of the extracted feature 
embeddings. For training all the classifiers, embeddings are extracted from both the 
training and testing set after which the classifier model is trained with the embeddings 
from the training set and for inference-evaluation testing set extracted embeddings 
are used.
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2.4 Implementation and Network Training 

The input to the model was 3-channel stacked MRI images with image dimensions 
being (224,224,3). Prior to inputting the images rescaling of pixel-intensities are 
rescaled to the range [0,1]. Data Augmentation strategies involving the use of random 
rotation, random brightness increment-decrement, random flipping and zooming-in 
are applied over the inputs. The augmented data is given to the MobileNet which 
produces 1024 feature-maps each having height and width as (7,7) respectively. In the 
Output Network, the first dense layer transforms the feature dimension from 1024 to 
256 and then a Dropout layer [11] is applied with the rate of 0.2. For the SphereFace 
Loss function, experimentation on margin is done and the empirically found optimal 
margin i.e., m = 5 is considered while the scaling factor was set to 30. Stabilization 
in model performance was seen with the application of BatchNormalization after the 
final dense layer. The model was trained with Adam Optimizer and for 275 epochs 
with a custom learning rate schedule. 

lr = 

⎧ 
⎪⎨ 

⎪⎩ 

1e − 4 i f  epoch  < 125 
1e − 5 i f  125 ≤ epoch < 175 
1e − 6 otherwise 

This schedule was designed so as to slower the learning rate when convergence 
has been attained. For the case of SphereFace Loss function, the model converged 
started from about 100 epochs but loss kept optimizing till the end and conse-
quently, the embeddings kept becoming better. Loss optimization for the proposed 
HSADML model has been illustrated in Fig. 3. The following curve suggests smooth 
convergence.

3 Experiments, Results and Discussions. 

3.1 Dataset and Experimental Protocol 

All the experimentation on the HSADML framework has been done using the Bench-
mark Dataset of Figshare [21]. It contains 3064 T1 weighted FLAIR images of Brain 
MRI with 708, 1426 and 930 belonging respectively to Meningioma, Glioma and 
Pituitary tumor classes. As suggested in [7] all the results were reported on 70–30% 
training–testing data-split, but to elucidate the robustness of the approach results over 
30–70% training–testing data-split is also presented. These experiments involved the 
usage of a hold-out evaluation strategy wherein the testing data of 70–30% data-split 
became the training data of 30–70% data-split; vice-versa is also true. Along with
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Fig. 3 Loss optimization during training of HSADML framework

analyzing the performance of the model over different data-settings, experimenta-
tion over the SphereFace Loss and different classifiers have been done but these 
experiments involved only the use of 70–30 data-split. 

3.2 Performance Metrics 

Models involved in this study are compared both graphically and numerically. For 
numeric performance evaluation following metrics have been used: 

• Accuracy: Both intra-class and overall accuracy of the models have been 
computed. Let True Positives, False Negatives, True Negatives and False positive 
be represented by TP, FN, TN, FP. Then 

Accuracy = T P  + T N  

T P  + FP  + T N  + FN  

• F1-Score: F1-Score represents the harmonic mean computed over both Precision 
( T P  
T P+FP  ) and Recall ( 

T P  
T P+FN  ). It is a good metric for data-imbalance and also 

finds its significance for the cases where FN and FP have different prominence. 
It has also been computed over per-class and overall. Mathematically. 

2 

F1 
= 1 

Precision  
+ 1 

Recall
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Table 1 Performance analysis of HSADML framework for different data-split 

Training 
dataset 
(in %) 

Testing 
dataset 
(in %) 

Accuracy (in %) F1-score MCC 

Me Gl Pt Avg Me Gl Pt Macro 
avg 

Micro 
avg 

70 30 95.85 99.76 99.28 98.69 0.9719 0.9964 0.9841 0.9841 0.9869 0.9796 

30 70 89.00 97.01 97.99 95.47 0.9104 0.9667 0.9687 0.9486 0.9547 0.9289 

• Matthews Correlation Coefficient (MCC): MCC takes into account entire 
confusion matrix and is a good evaluation measure for imbalanced-data. 

MCC = T P  ∗ T N  − FP  ∗ FN  

[(T P  + FP) ∗ (T P  + FN  ) ∗ (T N  + FP) ∗ (T N  + FN  )] 
1 
2 

• Area Under Curve (AUC): AUC value is the area under the ROC curve. Higher 
the AUC better the True Positive Rate and Lower the False Positive Rate. 

3.3 Experimental Analysis 

This section discusses on the results of various experiments and analysis over them. 
Firstly, the performance evaluation of the HSADML Framework over 70–30% and 
30–70% training–testing data-split has been done. The results have been tabulated 
in Table 1. For the sake of simplicity, we refer each class by an abbreviation i.e., 
Meningioma (Me), Glioma (Gl) and Pituitary Tumor (Pt). The proposed framework 
at 70–30% data setting achieves overall high accuracy of 98.69% while maintaining 
a decent. 

MCC score of 0.9762. The average accuracy of the model is significantly high 
for the classes Gl and Pt but a little less for Me which turns out to be the most 
challenging class. F1-Score on class as well as on an overall basis suggest significant 
performance. In the 30–70% data-split, training data is quite limited in amount. 
Although in this scarce training data experiment, performance is retained. Average 
accuracy achieved in this experiment is 95.47% while the MCC is 0.9289. Figure 4 
shows the Confusion Matrix of both the models trained under both the data-splits. 
From the matrix, high-end performance over the Gl and Pt class can be noted but 
there remains a gap of improvement for the Me class. More specifically, recall of the 
models for the Me class is comparatively lesser than the precision. It can be inferred 
that the base-network utilized in the study is MobileNet, and hence when some more 
advanced backbone network shall be used, further performance gain is expected.

To further explore the capabilities of the proposed model, advanced classifiers 
have been tested with 70–30% Data-Split’s model extracted embeddings. Specifi-
cally, SVM with Gaussian and Polynomial kernel, Random Forest and k-NN (k = 1) 
(k = 1 was the best possible nearest neighbor combination with considering up to 30 
neighbors) has also been employed. The results of the same have been tabulated in



114 A. Verma and V. P. Singh

(a) 70-30 % Data Split’s Confusion 
Matrix 

(b) 30-70 % Data Split’s Confusion
 Matrix 

Fig. 4 Confusion matrices of HSADML framework

Table 2. For both k-NN and SVM with gaussian kernel, the model gave the same clas-
sification. Random Forest classifier using 400 estimators each utilizing 32 features 
showed a sustainable performance while SVM with a polynomial kernel of order 
256 too obtained decent performance. The k-NN achieving the highest performance 
scores illustrates feature-level discriminability amongst various classes. SphereFace 
loss enjoyed greater stability in training than the SoftMax Loss model. It is clear from 
Table 3 that the proposed HSADML Framework facilitates comparatively higher 
performance than the other models. The obtained result further justifies on the use 
of angular margin. In terms of average accuracy, the proposed approach is superior 
than its counterparts of SoftMax Loss and Modified SoftMax Loss by 0.22% and 
0.33% respectively. In a similar manner, the performance of SphereFace Loss is also 
better than the Triplet Metric Loss, although the model trained with triplet loss has 
better performance for the Meningioma class. In Table 4, for each class Area Under 
Curve (AUC) value calculated via ROC curves has been tabulated. It is worthwhile 
mentioning that AUC of SphereFace Loss model is the highest on an overall basis as 
well as for class Gl, while the same is comparable to the best for Me and Pt classes. 
Further, potential in the approach can be concluded in Fig. 5 which shows t-SNE 
Comparison amongst different Loss functions; from the figure, intra-class compact-
ness and inter-class separability can be well spotted for the SphereFace Loss. For 
the case triplet loss, intra-class variation appears to be higher while accredited to 
angular metric, intra-class clustering is observed for the SphereFace Loss. Hence, it 
can also be concluded that with training in the hyper-spherical domain but without any 
angular margin, intra-class separation and inter-class discrepancy are not mitigated 
in comparison to SphereFace Loss.

For understanding the behavior of the angular margin, an ablation amongst 
different angular margins has been conducted. In this analysis m = {4, 5, 6}  has 
been considered. Empirically, the proposed model with m = 5 emerges out to be
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Table 2 Comparison of HSADML framework generated embeddings using different machine 
learning classifiers 

Classifier Accuracy (in %) F1-score MCC 

Me Gl Pt Avg Me Gl Pt Macro 
avg 

Micro 
avg 

k-NN (k = 
1) 

95.85 99.76 99.28 98.69 0.9719 0.9964 0.9841 0.9841 0.9869 0.9796 

Random 
forest 

94.93 99.76 99.28 98.47 0.9671 0.9941 0.9846 0.9817 0.9847 0.9762 

SVM 
(gaussian 
kernel) 

95.85 99.76 99.28 98.69 0.9719 0.9964 0.9841 0.9841 0.9869 0.9796 

SVM 
(polynomial 
kernel) 

96.77 98.81 98.57 98.26 0.9630 0.9940 0.9805 0.9792 0.9826 0.9729 

Table 3 Comparison of HSADML framework with various loss functions 

Loss Accuracy (in %) F1-score MCC 

Me Gl Pt Avg Me Gl Pt Macro 
avg 

Micro 
avg 

SoftMax 
loss 

95.39 99.05 100.00 98.47 0.9695 0.9940 0.9825 0.9820 0.9847 0.9763 

Modified 
softmax 
loss 

94.93 99.76 99.28 98.47 0.9671 0.9941 0.9846 0.9817 0.9847 0.9762 

Triplet 
loss 

96.31 99.28 99.28 98.58 0.9698 0.9952 0.9891 0.9830 0.9858 0.9797 

Sphere 
face loss 
(proposed) 

95.85 99.76 99.28 98.69 0.9719 0.9964 0.9841 0.9841 0.9869 0.9796 

Table 4 AUC based comparison of HSADML framework with various loss functions 

Loss Me Gl Pt Avg 

Softmax loss 0.9748 0.9942 0.9921 0.9870 

Modified softmax loss 0.9741 0.9964 0.9878 0.9861 

Triplet loss 0.9780 0.9954 0.9909 0.9880 

Sphere face loss (proposed) 0.9771 0.9968 0.9909 0.9882

better in balancing the trade-off between hard-training and margin-based separation, 
thereby achieving the best performance. Quantitative results are presented in Table 
5 while Fig. 6 graphically compares the SphereFace Loss variants using t-SNE plot. 
From the figure, a challenging competition lies between m = 4 and m = 5 models,



116 A. Verma and V. P. Singh

(a) SoftMax Loss (b) Modified SoftMax Loss 

(d) SphereFace Loss (Proposed)(c) Triplet Loss 

Fig. 5 t-SNE comparison of HSADML framework’s extracted embeddings with that of ones 
extracted with other loss functions. Blue color represents Meningioma Class, Orange Glioma and 
Green Pituitary Tumor

though m = 5 model attains higher inter-class separation. AUC based comparison 
of models trained with different angular margins has been shown in Table 6. The  
attained AUC value of the m = 5 curves are higher than the other variants. This 
trend can be identified specifically for the Gl and Me class, while for the Pt class the 
model trained with m = 4 attained slightly better result. From the following analysis 
over angular margins, it can be concluded that angular margin makes the training 
challenging which results in robust performance, but if the margin is not adequately 
tuned, then the model will converge sub-optimally. 

Table 5 Ablation study over angular margin 

Margin Accuracy (in %) F1-score MCC 

Me Gl Pt Avg Me Gl Pt Macro 
avg 

Micro 
avg 

m = 4 95.85 99.05 99.64 98.47 0.9674 0.9917 0.9876 0.9822 0.9847 0.9762 

m = 6 94.00 99.52 99.64 98.26 0.9622 0.9952 0.9790 0.9788 0.9826 0.9730 

m = 5 95.85 99.76 99.28 98.69 0.9719 0.9964 0.9841 0.9841 0.9869 0.9796
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(a)m=4 (b) m=5 

(c) m=6 

Fig. 6 t-SNE based graphical ablation over different angular margins. HSADML framework uses 
m = 5 as the angular margin. Blue color represents Meningioma Class, Orange Glioma and Green 
Pituitary Tumor 

Table 6 AUC based comparison between models trained under different angular margins 

Margin Me Gl Pt Avg 

m = 4 0.9757 0.9922 0.9935 0.9871 

m = 6 0.9679 0.9956 0.9896 0.9843 

m = 5 0.9771 0.9968 0.9909 0.9881 

Next part of the analysis is dedicated to the comparison of the HSADML frame-
work with the other state-of-the-art approaches. A bar graph depicting a comparative 
analysis of average accuracy between approaches [4, 5, 7, 22–25] has been plotted 
in Fig. 7. Since, most of the previous works [4, 7] consider evaluation on 70–30%, 
training–testing data-split, we compare our results using the same protocol. It is 
evident from the same that the proposed HSADML framework outperforms the 
other approaches while obtaining encouraging results. It is to be pointed out that 
the HSADML framework attains better performance for each class, this makes it 
highly generalized. Thus, basing learning on angular distances in a hyper-spherical 
manifold can help in optimizing intra-class compactness while increasing inter-class 
distances. This brings significant improvement in the performance.
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Fig. 7 Comparison of HSADML framework with state-of-the-art methods 

4 Conclusion and Future Aspect 

This paper proposed the HSADML framework for brain tumor classification. 
The proposed approach introduced the use of deep angular metric learning using 
SphereFace Loss for facilitating generalization and robustness in identification. The 
loss was instrumental in increasing intra-class separability and reducing intra-class 
variability; this resulted in achieving significant performance gains. This research 
didn’t emphasize much over the backbone network thus in future aspects of the 
work there is a gap for the introduction of some attention-based domain-specific 
network. Another aspect of the research shall explore on in-depth validation of 
approaches which has been hampered due to a single-dataset. Nevertheless, the high-
end performance and lightweight backbone of the HSADML framework motivates 
its scalability and extends application for other modalities as well. 
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Model Compression Based Lightweight 
Online Signature Verification Framework 

Chandra Sekhar Vorugunti, S. Balasubramanian, Pulabaigari Viswanath, 
and Avinash Gautam 

1 Introduction 

An online signature is considered as a legitimate means of verifying one’s identity. 
The rapid advances in digital technologies resulted in the wide usage of electronic 
gadgets like Graphic Tablets, Stylus Pens, etc., which are equipped with a pressure-
sensitive screen to capture the online signature. These devices apprehend both the 
geometric (x, y co-ordinates) and dynamic properties (pressure, inclination of pen, 
inclination of device etc.) of the writer signing trace by sensing the movements of 
the pen-tip. 

The recent advances in Deep Learning technologies resulted in Convolutional 
neural networks (CNNs), which demonstrated extraordinary outcomes in challenging 
computer vision problems like Image Segmentation, Object Detection etc. [1–4]. To 
develop CNN-based OSV frameworks to achieve improved classification accuracies, 
the main impediment is the increasing size of CNN models. This prevents OSV frame-
works from being widely used in devices with minimal computational resources, such 
as mobile/embedded devices. Real-time user authentication is in high demand since 
light weight devices are commonly employed for M-Commerce and banking appli-
cations. Hence, the deployment of OSV frameworks in these lightweight devices is 
a critical requirement.
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To address this issue, we are using an emerging topic of model pruning, which 
removes the filters and neurons which are less contributive and less important in 
learning. The model pruning results in fine-tuning the CNN-based frameworks 
to be deployable in mobile/embedded devices. In this work, we propose a light 
weight CNN-based online signature verification system and improve the classifica-
tion outcomes with CNN pruning. In line with this, we preview various CNN-based 
OSV frameworks proposed in the literature. 

2 Literature Survey 

In [5], the authors suggested a CNN-centric OSV framework that consists of a collec-
tion of depth-wise separable (DWS) convolution layers. The OSV framework based 
on DWS convolution results in a light weight model with fewer training parame-
ters and allows for few shot learning. In the Skilled-01 category of the MCYT-100 
dataset, the model earned a state-of-the-art EER of 13.42%. Following that, [6] 
introduced a deep convolutional Siamese network-based OSV framework (DCSN). 
Based on contrastive loss, the Siamese networks extract robust writer-specific feature 
descriptions, allowing the model to learn intra-writer variability (Genuine-Genuine) 
and inter-individual variability quickly (Genuine-Forgery). Another intriguing paper 
is [2], which creates a hybrid feature set by combining handcrafted features with 
Convolution Autoencoder high-level feature representations (CAE). The Depth-
wise Separable Convolutional Neural Network receives the hybrid feature set as 
an input (DWSCNN). In the skilled-01 category of the MCYT-100 dataset, the 
model earned a state-of-the-art EER of 13.38%. In [1], the authors have suggested a 
hybrid feature fusion-based OSV system in which the CAE’s deep representational 
features are fused with handcrafted features that reflect the cluster heads of writer-
specific feature vectors. The model achieved an EER of 13.26% in the Skilled-01 
category of the MCYT-100 dataset. To increase the speed and accuracy of online 
signature verification, Okawa et al. [7] suggested a unique single-template technique 
that employs mean templates based on Euclidean barycenter–based DTW barycenter 
averaging (EB-DBA) and local stability weighted dynamic time warping (LS-DTW). 
The framework has an EER of 0.72% in the MCYT dataset’s Skilled-5 category and 
2.08% in the SVC dataset’s Skilled-5 category. For training a 1D convolutional neural 
network model, Lai et al. [8] designed a novel learning-by-synthesis approach. In 
the Skilled-5 category of the SVC dataset, the model had an EER of 3.88%. 

Even though various OSV frameworks are proposed as discussed above, no work is 
proposed in the OSV landscape which discusses on analyzing the contribution of each 
filter and each neuron towards classification accuracy. The improved performance 
of CNN frameworks is often due to the improved model sizes with hundreds of 
layers and millions of trainable parameters. Hence, in this work, we are proposing a 
CNN model pruning-based on removing less important filters and neurons, which is 
memory efficient and facilitates real-time signature classification. 

The primary contributions of this paper are as follows:
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● We have presented a new OSV framework based on Depth-wise Separable CNN 
(DWSCNN), which reduces the amount of parameters and operations required by 
the framework significantly. 

● To prune the non-contributive filters of convolution layers and neurons of dense 
layers of CNN architecture, we suggested a unique CNN pruning technique. 

● Experiments on three commonly used datasets, namely MCYT-100, SVC, and 
SUSIG, were employed to thoroughly evaluate the proposed model. 

The rest of the paper is structured into four sections. Several phases of our 
suggested OSV model are presented in Sect. 3. The experimentation analysis, as well 
as the model’s outcome, are discussed in Sect. 4. The proposed model is compared to 
other recent state-of-the-art models in this paper. Conclusion is presented in Sect. 5. 

3 Proposed Online Signature Verification Model 

The proposed OSV framework is a collection of two modules, i.e., (a) a pruning 
technique, and (b) Depth–wise Separable Convolution based OSV framework which 
is depicted in Fig. 1. Each module of the framework is discussed in detail in the 
following sub-sections. 

3.1 The Proposed Pruning Technique 

Deep learning has gone a long way in recent years and has established itself as a key 
computer technology in the digital age. Image processing and computer vision are 
two representative application areas [1, 2, 9]. ResNet [10] and VGGNet [11] are  two  
well-known image categorization models. Although these new models attain high 
accuracy and quick inference times, they require a large number of parameters to 
be learned, which consumes a lot of memory and requires a lot of processing power 
[12, 13]. The fundamental disadvantage of CNN frameworks is that they are heavy 
weight. Redundancy between multiple filters and neurons is common in CNNs [12,

Fig. 1 Pictorial interpretation of step 6 and step 7 of algorithm-1 
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14]. This paper proposes a novel CNN pruning strategy to remove redundant CNN 
filters and dense layer neurons that do not contribute to model performance. 

The recent works on network pruning [4, 15], confirm that the trend is to prune 
redundant, non-informative weights in pre-trained CNN models, based on the magni-
tude of the weights themselves. Inspired by this, we perform pruning as shown in 
Algorithm–1. In steps 6 and 7 of the pruning algorithm, and as illustrated in Fig. 1, 
we first check if every element of every filter (of size 1*5) of each layer is greater than 
a predefined threshold τe. Even if one element is lesser than the predefined threshold, 
the filter is pruned. We eliminate similar filters by pruning the filters having a lesser 
element-wise distance to reduce the number of filters. In the case of dense layers, 
the weights that are lesser than the average weights are set to zero for each dense 
layer. Subsequent to the pruning of convolutional and dense layers, an inference is 
performed on the validation data (denoted by X_Val). If the accuracy drop is < = 
τ, again the same series of steps are executed. Finally, the pruned model is used for 
inference on the test data. As an ablation study, which is illustrated in Tables 1, 2 and 
3, we have experimented with nine types of pruned models including the baseline 
model.

---------------------------------------------------------
Algorithm-1: Neural Network Pruning
---------------------------------------------------------
1. Input: Basenet, reference data X_Val, training data X_Train, tolerable accuracy 

drop τ, element wise threshold τe, distance threshold τd 
2. while Accuracy_Drop <= Tolerable Range τ not reached do 
3. for each ConvLayer in Basenet do 
4. for each jth filter Fij in Layer i 
5. Obtain the array_of_weights convij which has all the weights of the 

filter Fij 

6. if each element of convij > τe 
7. djk = EuclideanDistanceBetweenFilters(Fij, Fik) 
8. if djk < τd 
9. prune filter Fik //  Computational Complexity = O(L.N2) 
10. else 
11. prune  Fij 
12. end for 
13. end for 
14. for each Dense_Layer in Basenet do 
15. Obtain the array_of_weights_densep representing the weights of the 

pth dense layer 
16. Replace the weights < avg(array_of_weights_densep) with 0 
17. end for 
18. end while 
19. // return the pruned
---------------------------------------------------------
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Table 2 The EER outcome by various proposed OSV models: SVC dataset 

S_01 S_05 S_10 S_15 R_01 R_05 R_10 R_15 

Model1: baseline model 6.55 2.57 0.65 0.00 7.47 1.94 0.04 0.07 

Model2: pruned model 3.65 1.77 0.45 0.00 3.72 0.24 0.00 0.00 

Model3: 3 times pruned 4.92 3.12 2.14 2.78 5.45 2.25 2.00 1.98 

Model4: 10 times pruned 6.39 5.48 4.28 2.13 5.13 2.12 2.16 2.10 

Model5: pruning: dense1 6.65 5.97 4.81 3.13 5.60 2.65 2.18 2.15 

Model6: pruning: dense2 6.78 6.12 5.13 3.56 5.64 2.70 2.43 2.31 

Model7: pruning: 
convolution layers 

6.10 6.58 6.23 3.23 6.33 3.15 3.11 2.87 

Model8: pruning: dense1 + 
convolution layer 

6.82 7.1 6.46 3.76 6.14 3.12 3.00 3.01 

Model9: pruning: dense2 + 
convolution layer 

6.19 6.92 6.11 3.33 6.38 3.16 3.14 3.12 

Table 3 The EER outcome by various proposed OSV models: SUSIG dataset 

S_01 S_05 S_10 S_15 R_01 R_05 R_10 R_15 

Model1: baseline model 17.93 13.65 8.07 6.6 11.13 2.37 1.44 0.85 

Model2: pruned model 12.39 4.45 1.47 1.1 9.13 2.84 1.38 0.12 

Model3: 3 times pruned 16.14 7.45 4.76 4.13 10.17 2.91 1.43 0.15 

Model4: 10 times pruned 17.67 8.34 5.34 5.67 10.87 2.72 1.41 0.14 

Model5: pruning: dense1 15.75 7.01 5.11 5.24 10.73 2.64 1.37 0.16 

Model6: pruning: dense2 15.64 6.70 4.87 4.29 10.11 2.75 1.43 0.19 

Model7: pruning: 
convolution layers 

15.64 6.70 4.87 4.29 10.11 2.75 1.43 0.19 

Model8: pruning: dense1 + 
convolution layer 

14.39 7.34 5.14 5.25 9.98 3.21 1.54 0.21 

Model9: pruning: dense2 + 
convolution layer 

14.76 7.23 5.65 5.97 10.16 3.13 1.51 0.20 

4 Ablation Study of Various Pruned Models 

4.1 Experimentation Setup 

To appraise the proposed pruning technique and OSV framework, we have evaluated 
the baseline and various pruned models by conducting experiments on the widely 
accepted MCYT-100, SVC and SUSIG datasets [1, 2, 9, 16]. We have mainly focused 
on few shot learning, i.e., S_01, S_05, S_10, S_15, S_20, R_01, R_05, R_10, R_15 
and R_20 categories, where “S” and “R” represents the Skilled and Random forgery 
experimentation categories.
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Fig. 2 Block diagram of the proposed online signature verification model 

4.2 Ablation Study 

We investigated eight types of pruning models in addition to the baseline model to 
provide a more in-depth analysis of the pruned model’s performance. As depicted 
in Tables 1, 2 and 3, we have considered nine models for experimentation. Model1 
representing the baseline model is an unpruned model, whose architecture is depicted 
in Fig. 2. Model2 is the pruned version of the baseline model using the proposed 
pruning algorithm. Model3 represents a pruned model in which the filters and weights 
are reduced or made zero by 1/3rd of the total weights of the baseline model. Model4 
represents the pruned model in which 1/10th of the filters and the weights of the 
baseline model are set to zero. Model5–Model9 represents the pruned models in 
which various combinations of convolution and dense layers are inactivated. The 
specifics are available in the tables. Tables 1, 2 and 3 summarize that a balance 
needs to be maintained while pruning the filters and weights of neurons. Random 
pruning of filters and weights of neurons does not result in optimal EER. The baseline 
model pruned with our proposed algorithm results in least EER in all categories of 
experimentation. The pruned model results in the state-of-the-art EER in Skilled-1 
category of MCYT-100 and SVC datasets by yielding an EER of 7.98 and 3.65%. It 
is clearly depicted in Tables 1, 2 and 3 that the other pruned models are not efficient in 
delivering lesser EER. The point to be noted is that, for optimal EER, the combination 
of convolution and dense layers are equally important. The pruning of either of the 
layers is not efficient to yield lesser EER. 

5 Comparative Study 

We compare and contrast the suggested framework with contemporary and state-
of-the-art frameworks in this part. The frameworks with the lowest EER values are 
highlighted with (*), while those with the next lowest EER are marked with (◆). In 
the context of MCYT-100, the suggested framework achieved state-of-the-art results 
in the S_01, S_10, S_15, S_20, R_01, R_05, R_10, R_15, R_20 categories. In the 
SVC dataset categories S_01, S_05, S_10, S_15, R_10, and R_15, the framework 
achieved exceptional EER. In the case of SUSIG, the framework achieved the highest
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EER in the categories S_15 and R_15. Tables 4, 5 and 6 show a comparison of EER 
values with state-of-the-art OSV frameworks, which are assessed on similar datasets 
to those used to evaluate our proposed framework. The (*) denotes that the model 
produced the best EER value, while the (◆) denotes that the model produced the 
second best EER value. In the MCYT-100 (DB1) category, our proposed framework 
achieves state-of-the-art performance in S_01 (one shot learning), S_05, S_10, S_15, 
S_20, R_10, R_15, and R_20.

With reference to SVC, the framework yields the outstanding EER in all Skilled 
categories of experimentation and R_10 and R_15 categories. In regard to SUSIG, 
the framework outcomes the best EER in the S_15 and R_15 categories. Even while 
alternative frameworks proposed in [2, 5, 7, 8, 10, 11, 17, 26, 27] yield lower EER 
values than the proposed framework, these models are not comprehensively examined 
with all possible categories of experimentation, i.e., Skilled 1,5,10,15,20 and Random 
1, 5, 10, 15, 20, as shown in Tables 4, 5, 6. The ability of OSV frameworks to deploy 
in real-time contexts is measured by greater classification accuracies with a small 
number of training samples and for all potential categories of experiments. As a 
result, we have thoroughly tested our proposed model in both skilled and random 
forgery categories using all feasible training situations (1, 5, 10, 15, 20), and the 
results are summarized in Tables 4, 5 and 6. Hence, we can summarize that the 
pruning mechanism should aim at compressing and accelerating the models without 
sacrificing much of predictive performance. 

6 Conclusion and Future Work 

In this paper, we offer an online signature verification method based on depth-wise 
separable convolutional neural networks. Similar filters and neurons with weights 
less than the average weights are removed using the pruning procedure. In the CNN 
and dense layers, we presented a pruning strategy to remove noncontributing filters 
and neurons. As a result, the model is simplified. In addition to the pruned model, 
we looked at models with weights that were 1/3rd and 1/10th of the baseline model’s 
weights, as well as the baseline model pruned with various combinations of convo-
lution layers and dense layers. To the best of our knowledge, this is the first time a 
pruning technique has been applied to the OSV framework. We thoroughly tested 
the model using all types of experimentation, including skilled 1, 2, 3, 4, 5, 10, 15, 
20, and random 1, 2, 3, 4, 5, 10, 15, 20. Furthermore, on most standard signature 
datasets, the suggested approach surpassed the state-of-the-art result, indicating that 
more study in this area is warranted.
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Table 5 Comparative analysis of the proposed model against SOTA models on SVC dataset 

Method S_01 S_05 S_10 S_15 R_01 R_05 R_10 R_15 

Proposed: baseline model 4.37◆ 2.57 0.65 0.00 7.47 1.94 0.04 0.07 

Proposed: pruned model 3.65* 1.77◆ 0.45◆ 0.00* 3.72 0.24 0.00* 0.00* 

Feature clustering + few 
shot learning [1] 

7.71 3.43 2.75 0.45 3.09 0.41 0.12 0.22 

Feature fusion + few 
shot learning [2] 

5.95 3.93 2.98 0.45 3.61 0.39 0.13 0.19 

Relief-1 [21] – – 8.10 – – – – – 

Stroke point warping [22] – – 1.00 – – – – – 

Fewshot learning [5] 5.83 0.87* 0.35* 0.2◆ 9.08 1.4 0.15 0.02◆ 
Target-wise [17] 18.63 – – – 0.50* – – – 

Stroke-wise [17] 18.25 – – – 1.90◆ – – – 

SynSig2Vec [8] 3.88 0.17 

Machine learning [23] 5.76 

Classifiers + machine 
learning [3] 

2.62 

Time-series averaging [7] 2.08 1.53 0.11 0.03◆ 

Table 6 Comparative analysis of the proposed model against SOTA models on SUSIG dataset 

Method S_01 S_05 S_10 S_15 R_01 R_05 R_10 R_15 

Proposed: baseline model 17.93 13.65 8.07 6.6◆ 11.13 2.37 1.44 0.85◆ 
Proposed: pruned model 12.39 4.45 1.47 1.1* 9.13 2.84 1.38 0.12* 

Clustering + few shot 
learning [1] 

15.84 4.95 1.68 – 1.70* 1.37 0.21* – 

Feature fusion + few shot 
learning [2] 

17.96 5.17 2.07 – 1.87◆ 1.53 0.30◆ – 

Pole-zero models [16] – 2.09 – – – – – – 

With all domain [24] – – 3.88 – – – – – 

Kinematic Theory based 
[25] 

7.87 – – – 3.61 – – – 

VSAr–DTW [26] – 3.09 – – – 0.78* – – 

Target-wise [17] 6.67* – – – 1.55 – – – 

Fewshot learning [5] 10.41 0.8* 0.63◆ – 8.7 2.5 1.26 – 

Stroke-wise [17] 7.74◆ – – – 2.23 – – – 

Information divergence 
[27] 

– 1.6◆ 2.13 – – – – – 

Curvature + Hausdorff 
distance[28] 

– 7.05 – – – 1.02 – – 

VSA–DTW [26] – 3.83 – – – 0.78* – –
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End-to-End Transformer-Based 
Architecture for Text Recognition from 
Document Images 

Dipankar Ganguly, Akkshita Trivedi, Bhupendra Kumar, Tushar Patnaik, 
and Santanu Chaudhury 

1 Introduction 

Towards development of robust Optical Character Recognition System (OCR) with 
high tolerance to image degradation as well as capacity to handle deprecated char-
acters, several challenges are faced. One of the reasons attributed to this is non-
availability of such noisy datasets to fine tune systems. Furthermore, the standard 
evaluation methods are comprised of high quality datasets. Thus, end-to-end real-
ization of OCRs with such capacity is seldom encountered even within the research 
community. 

Motivation of our work derives from the end goal of having an End-to-End book 
conversion pipeline, agile enough to suit the peculiarities of several books still possess 
strong recognition accuracies. Recurrent Neural Networks (RNNs) [7] or specifically 
the Bi-Directional Long Short-Term Memory Sequences (Bi-LSTMs) [18] in docu-
ment images have fairly established the state of the art in terms of End-to-End Mod-
elling. Nevertheless, the models are powerful and comprehend the learning of diverse 
scripts and language peculiarities. Considerable efforts have been made in sequence-
to-sequence modelling, particularly in language models and Machine Translation [4, 
6, 38], thus re-shaping the encoder-decoder architectures [26, 41]. More recently, the 
Transformer-based approaches have gained momentum [39], though the very limited 
application of the same is seen in text recognition. 
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The standard Recurrent networks, particularly LSTMs perform computation or 
tuning alongside the symbol positions from the input and output. This kind of sequen-
tial nature inhibits any parallelization of training, this has also been discussed by oth-
ers [26, 39]. Thus, training longer sequences impose extremely long training times. 
In terms of computational efficiency, various approaches have been proposed and 
significant work has been carried out [1]. However, inherent sequential nature of the 
problem still remains with all the approaches. 

On the other hand, Attention-based mechanisms have consistently secured their 
place in sequence-to-sequence modelling tasks [12]. The Attention mechanism essen-
tially enables the global dependencies between the input and output. However, 
Attention-based mechanisms are mostly combined with RNN architectures. Thus, 
the shortcoming of the existing architecture motivated design and experiment with 
our existing architecture particularly for historical document recognition. 

In this paper, we propose a Transformer-based OCR architecture fused with 
Masked BERT Language Model with attention layers for document image recog-
nition in addition to GAN and DBPN-based denoising and Super-Resolution (SR) 
[32] for state-of-the-art document image recognition. We shall share our experiences 
in designing the architecture particularly in relation to convergence of Transformer 
Network and the insights of our experiment. We empirically show that the archi-
tecture outperforms existing state of the art for Odiya document images from Odia 
Virtual Academy [29]. 

2 Background 

The standard process of text recognition for document images begins with denoising 
and Super-Resolution (SR) of document image [8, 14, 44]. Denoising becomes an 
essential component as high noise is observed in historical documents. Subsequently, 
SR the module intends to derive a high resolution (HR) output from a low resolution 
(LR) document image. The challenges like low resolution and the presence of skew 
are being handled within this layer. 

This is followed by Image Document segmentation which is intended to extract 
text segments comprising either a character or word or even a line. Essentially, text-
segmentation works by labelling a set of spatially adjusted features comprising of 
group of pixels with visual highlights. Broadly, segmentation is classified as line-
based, word based or character-based [2, 35]. 

The latest developments for recognition are centred around end-to-end memory 
networks, which are usually based on a recurrent attention mechanism, which are 
proven to be better in comparison with sequence-aligned recurrence across various 
tasks. This module finally takes the segmented sequences and generates correspond-
ing characters or words. In our proposed architecture, the segmented words are fed 
to our Transformer-based model architecture fused with a Masked BERT Language 
Model to recognize text. This has been coupled with Global and Normalized Atten-
tion Mechanisms, enabling transformers to support more parallelism with faster 
convergence and state-of-the-art accuracies.
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3 Related Work 

There are a handful of works on Transformer architecture-based Text Detection or 
Object Detection, such by Lyu et al. [27]. They proposed an architecture for Scene 
Text Detection using Attention and Transformer-based units to recognize texts. In 
another work [5] Carion et al. have used Transformers in Object Detection and have 
presented a novel framework. 

In direction of sophisticated SR, due to breakthrough advancement in the field 
of the deep neural networks, many new SR methods have been proposed [11, 20, 
21]. Similarly, Zhang et al. [43] presented a CNN-based Super resolution algorithm 
specific to the demands of OCR. However, the proposed methods are mostly feed-
forward in nature. Thereby having inability of mapping the relationship between LR 
and HR. Hence, in this paper, we try to integrate SR method proposed by Haris et 
al. [15], which proposes a projection network, feeding back the error predictions at 
each layer, collecting the self-correcting features for up-sampling at every stage to 
improve SR resolution. 

In terms of Segmentation, Long et al. [24] revolutionized the idea of semantic seg-
mentation by using ImageNet database [9]. They have up-sampled the images with 
deconvolutional layers and subsequently appending lower layers to improve predic-
tions. In other domains such as Scene text detection, in design of image segmentation, 
many deep learning-based algorithms have been developed with promising results 
[23, 25, 42]. In document image segmentation, Ronneberger et al. [33] introduced 
U-Net by proposing a U-shaped symmetric architecture between the contracting path 
to capture setting and expanding path that empowers exact restrictions, with a lower 
layer for each level. Also, Santos et al. [34] developed a multi-step handwritten text-
segmentation framework, utilizing Y and X histogram projections to eliminate false 
lines and words, respectively. 

Hochreiter and Schmidhuber [19] introduced Long Short-Term Memory in 1997, 
which has become de-facto standard in the Text Recognition. Graves et al. [13] 
proposed the use of Bi-Directional LSTM(Bi-LSTM) architecture which allowed 
bi-directional (forward and backward layers) longer range context. In this paper, we 
propose integrating the architecture introduced by Ray et al. [31] which combines 
Connectionist Temporal Classification(CTC) to learn the labelling unsegmented and 
unaligned sequence of data and a Bi-LSTM model for the advantages mentioned 
above. 

Developments of complete text recognition solutions, such as [28] proposed Ara-
bic handwritten document segmentation framework, utilizing a variant of U-net with 
residual blocks(RU-net) for text line segmentation; for word segmentation, BLSTM-
CTC (Bidirectional Long Short-Term Memory followed by a Connectionist Tempo-
ral Classification). In the similar line, CRAFT [3] proposed a text detector without 
character annotations by generating a pseudo character-level ground truths from an 
interim word-level datasets. Also, EAST [45] was designed for fast and accurate text 
detection with a single neural network and with appropriate loss function, rotated
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rectangular or quadrilateral text regions are generated. In another work by Liao et 
al. [22], a single layer neural network word-based text detector called TextBoxes, 
combined with a text recognition algorithm named Convolutional Recurrent Neural 
Network(CRNN) [36] produced significant results in terms of prediction. 

Significant accuracy in text-based detection is also discussed in [40] by introduc-
ing a deep learning-based super-resolution framework without additional computing 
cost. 

4 Proposed Framework 

Our proposed architecture comprises cascaded document image enhancement and 
recognition as depicted in Fig. 1. It broadly comprises of three modules, i.e. denoising 
and super-resolution module, U-net-Based Segmentation, and Transformer-based 
Recognition Combined with BERT Language Model as decoder which is jointly 
optimized. 

Initially, the document image is fed into the DBPN [15] and GAN module which 
achieves denoising and SR task by an iterative, multi-stage up (extracting features 
to upgrade to HR) and down (resizing the image as per LR configuration)-sampling 
operators, connected mutually to extract the non-linear relation between LR and HR, 
as shown in the Fig. 1. 

The U-net [33] architecture has been modified, which consists of 2 paths, the 
encoder or the contracting path catches the settings in the image. The encoder con-
sists of convolutional and max-pooling layers stacked together. The decoder or the 
expanding path empowers exact limitation utilizing transposed convolutions. Thus, 
an end-to-end FCN is generated, which can accept an input image of any size. Figure 1 
shows the U-Net architecture. 

Finally coming to recognition, the proposed transformer architecture consists of 
a Residual Network [16] (Res-Net) layer at first, particularly the pre-trained Res-Net 
18 is used with Transfer Learning approach [30]. The transfer learned Res-Net 18 
is followed by a fully connected layer that acts as an bridge to connect the encoder 
transformer units, which is a modified Multi-Head Attention [39] and is a multi-layer 
bi-directional transformer encoder. The layer is responsible to capture global depen-
dencies between the feature map and output, this works by aggregating information 
from the parts of the input. This layer is followed by a Normalized Attention Layer 
that acts as a separator to disconnect output with attention computation, thus enabling 
parallel and faster optimization and convergence. Finally a word-based decoder is 
fused with BERT Masked LM to decode corresponding words. 

Our approach is mostly script independent and would work for a wide variety of 
historical document images. We have performed our experiments on Odia Historical 
books from Odia Virtual Academy as such datasets are not popular and very difficult 
to curate.
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Fig. 1 The proposed Transformer Architecture with Masked BERT LM decoder
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5 Methodology 

In this section, we describe finer details about our proposed framework. 

5.1 Super Resolution and Segmentation 

Document image size of 64 × 64 is fed to the DBPN architecture at first, the image 
size is up-scaled to 512 × 512 and then, back-projected to 64 × 64, the residual 
between the reconstructed and the observed LR/HR maps is up/down-scaled accord-
ingly and added with the observed maps to enhance the extraction. The result is a 
SR image of output 512 × 512. The SR image picks up pre-trained weights from 
VGG16 model, such that we eliminate the possibility of weights being assigned ran-
domly, thus increasing our chances of accurate prediction. The pre-trained weights 
and SR image is now passed to U-Net. During encoding, the SR image under-
goes 2 un-padded convolutions recurrently, with each convolution followed by a 
leaky Rectified Linear Unit (ReLU) and max-pooling for down-sampling with a 
stride of 2. The number of feature channels doubles at every step of down-sampling 
(64 → 128 → 256 → 512). During decoding, the feature maps are up-sampled, fol-
lowed by halving the feature channels and adding with the corresponding down-
sampled features at the time of encoding, and 2 un-padded convolutions and leaky 
ReLU. The output from U-Net, i.e. the extracted words are then fed to the proposed 
transformer. The segmented words are then fed to the transformer. 

5.2 Global Attention 

In order to capture global dependencies, we have used a Global Attention mecha-
nism which is built with Multi-Head Attention units [39] which works to aggregate 
information from input. Instead of going linearly performing single attention, we 
perform this in parallel by projecting the queries, keys, and values of the transformer 
to different dimensions across each value. We apply global attention module to the 
flattened feature map generated by Res-Net followed by a convolutional layer, the 
feature sequence I with shape of k × c, which precisely in our case is 512 × 256. 
Corresponding to each feature vector we use Ii (i ∈ [1, k]),the position vector Ei 

is embedded with position index i. Subsequently, a feature vector F with position 
embedded information is available. We have incorporated many transformer lay-
ers into series to aggregate information from F. Within each transformer unit, the 
corresponding query, keys and values are obtained as [27]:
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Qi 
l =

{
Fi l = 1, 
Oi 

l−1 l > 1 
(1) 

K i l =
{
Fi l = 1, 
Oi 

l−1 l > 1 
(2) 

V i l =
{
Fi l = 1, 
Oi 

l−1 l > 1 
(3) 

In the Eq. 1, Qi 
l represents query vector for the i−th transformer unit in the lt h 

transformer layer. In same equation Oi 
l−1 represents the output from the previous 

transformer layer. Alongside Qi 
l , in Eq.  2 K i l & 3 V i l are corresponding key and 

value vectors for the same lt h layer of the transformer. 
With all necessary query, key and value vectors computed within each transformer 

unit, the overall transformer output is weighted summation of all the values. The 
weights sum of each layer is calculated with the formula : 

α
i j  
l = exp(W q l Q

i 
l .W k l Q

i j  
l )∑k 

j '=1 exp(W q l Q
i 
l .W k l Q

i j  
l ) 

(4) 

In the Eq. 4, W q l denotes the trainable weights across the layers. Finally, the output 
of each transformer is represented as 

Oi 
l = act_func( 

k∑
j=1 

α(W v l .V 
i j  
l ) (5) 

In the above Eq. 5, W v l is the learned weight and act_ f unc  is a non-linear acti-
vation which is can be referred from [10, 39]. The outputs of the last transformer is 
taken as the global attention layer output. 

5.3 Normalized Attention 

Normalized Attention is a sparse layers of transformer encoders to aid parallelism in 
attention and provide separation of Global Attention to Outputs. Residual connec-
tions are built to promote information exchange between the layers. 

The basic attention, as described in [37], is designed to work serially and are 
usually integrated with Recurrent Networks as 

αt = Attention(ht−1, αt−1, I) (6)
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In the above Eq. 6, ht−1 and αt−1 represents the weights of the hidden state 
and attention of the previous steps of RNN decoder, I is the encoded feature 
sequence. Therefore, computation of the step t is limited by previous steps, which is a 
bottleneck. 

To overcome this problem, we have devised a Normalized Attention, by modi-
fying the architecture proposed in [27]. In this layer, the dependency relationships 
are not fully dependent and can be optimized simultaneously. The normalization is 
dependent on the following function: 

αt = softmax(W2tanh(W1O
T )) (7) 

In the above equation W1 W2 represents learnable parameters on the global atten-
tion layer. 

Once the computation is completed only the normalized weights coefficients α, 
encoded within the feature sequence are obtained as output from the layer, which is 
given by the  Eq.  8, where indexes i & j represent the outputs node and feature vector 
index: 

Gi = 
k∑
j=1 

αi j  I j (8) 

This layer prevents the range of values in the other layers into changing too much, 
thus the model trains faster and has a better ability to generalize. 

All the available OCRs are compared with our proposed architecture and com-
pared to empirically show the best with Critical distance diagram. In Fig. 2 char-
acter recognition accuracies are compared whereas Fig. 3 showcases comparison 
with word recognition accuracies. The abbreviations are OCR EG—Classical Odia 
OCR based on cascaded rule-based architectures; DNN—Deep Bi-LSTM with CTC 
Recognition Engine; Tesseract OCR for Odia; DNN LM—Deep Bi-LSTM with 
CTC Recognition with Fraternal dropout-based Language Model; TOCR—Proposed 
Transformer-based OCR 

Fig. 2 Character Level Critical Distance
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Fig. 3 Word Level Critical Distance 

5.4 Decoder 

The transformer decoder is fused with a pre-trained Language model on Odia Corpus. 
We have 1 Million Odia sentences from Odia Virtual Academy Books and Web 
Crawl. Thereby, we have trained a Masked BERT LM [10]. The decoder of the 
transformer unit is combined with the Masked LM decoder and predicts output 
words with probability given by 

Pi = softmax(WGi + b) (9) 

Here, W and b are weights and biases learned during training. 
This amalgamation of Masked LM is essential as the Normalized Attention 

removes certain dependencies which are pivotal to the decoder and is compensated 
by the BERT LM. The entire transformer network is jointly optimized (Table 1). 

6 Experimental Results 

6.1 Dataset 

We have tested our approach on Odia script. We have 26 books from Odia Virtual 
Academy scanned at 300 dpi, of which 17 books are very old; published between 
1920 and 1980, and 9 books are relatively new (published after 1980). In total our 
dataset comprises 1700 pages with total 423 K words and 54 K unique words. Thus, 
the dataset has a good blend of very old, degraded, noisy documents along with 
newer printed documents. These together combine to put forth a plethora of document 
recognition challenges. Text graphics separation as well as segmentation is performed 
before the document is fed into the recognition pipeline. 

Our datasets are divided into Training (80%), Test (10%), and Validation (10%). 
The DBPN along with SR with DBPN and U-net is trained on 15K segmented noise 
resilient images along with corresponding original noise present in the image.
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Table 1 The Table compares the accuracy of our proposed framework with existing Odia OCR 

Validation 
data 

Proposed OCR DNN OCR + LM DNN OCR OCR engine(Consortia) Tesseract 

Word 
(%) 

Char 
(%) 

Word 
(%) 

Char(%) Word 
(%) 

Char 
(%) 

Word 
(%) 

Char (%) Word 
(%) 

Char 
(%) 

Test Set 1 92.12 94.03 90.60 93.80 89.00 93.50 68.84 86.78 85.70 93.52 

Pages: 89 

Words: 
23457 

Test Set 2 90.15 93.34 86.83 91.23 85.00 90.91 7.64 12.30 20.03 53.47 

Pages: 34 

Words: 8302 

Test Set 3 88.05 94.79 84.74 91.79 83.00 91.03 3.47 7.40 15.93 47.24 

Pages: 26 

Words: 6584 

Test Set 4 87.12 93.81 83.05 92.61 82.00 92.30 5.40 16.66 17.24 52.50 

Pages: 103 

Words: 
23893 

Test Set 5 89.78 92.05 83.47 91.32 82.35 91.18 70.63 87.13 83.22 93.65 

Pages: 94 

Words: 
25690 

6.2 Results 

We have performed intensive testing across different available OCRs for Odia and 
also carried out hypothesis testing using Autorank [17] for character and word-level 
accuracies as shown in Fig. 2. 
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A Hybrid Approach for Table Detection 
in Document Images 

Sunil Kumar Vengalil, Kevin Xavier, Konda Amith Sai, Sree Harsha, 
Ganesh Barma, and Neelam Sinha 

1 Introduction 

Detection of structural elements like tables, paragraphs, and headers in images of 
digital documents is one of the core problems in automatic document processing. 
The problem of table detection is almost as complex as object detection in natural 
images and hence traditional image processing and machine learning approaches 
do not perform well. Using image processing approaches, coming up with a perfect 
algorithm that works in all possible scenarios is infeasible as it requires tuning a 
number of parameters and thresholds [1]. Further these parameters highly depend 
on the type and quality of documents. The challenge in using Machine Learning 
(ML) approaches is coming up with the right set of features. Evidence from object 
detection [2, 3] tells us that deep learning approaches should perform better than 
algorithmic and ML approaches. However, the challenge here is the non-availability 
of a huge number of annotated samples for table detection similar to ImageNet [4] 
for object detection. Most of the publicly available datasets [5, 6] for table detection 
tasks are either (1) small in size typically of the order of a few thousands or even 
less or (2) restricted to certain types of documents [6]. However, one of the recent 
dataset, TableBank [7], has 417K images of word and latex documents taken from 
the Internet. 

One of the feature-based approaches [1] uses morphological operations in order 
to segment structures like text blocks and lines. Another popular image-processing-
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based approach uses the fact that spacing between columns will be larger than spacing 
between words [8]. Like any other image-processing-based algorithm, these methods 
also suffered from the drawback that the algorithm is difficult to generalize across 
document types. Due to non-generalizability of algorithmic approaches, Machine-
Learning-based techniques were introduced. Kasar et al. [9] utilizes SVM classifier 
with features like horizontal and vertical lines to segment tables in document images. 
Embley et al. [10] provide an excellent survey of various table detection approaches 
using image processing and Machine Learning. Anh et al. use graph neural networks 
[11] to segment tables in images of invoice documents. Azka Gilani et al. use faster-
RCNN [2] for segmenting tables in document images after separating out text and 
non-text regions [12]. 

Even though Deep-Learning-based approaches give better performance, they 
require large annotated data and suffer from lack of explainability. 

To circumvent the above issues, in this article, we propose a hybrid approach where 
we augment a recent deep learning model, TableNet [13], by adding additional input 
channels with word-level features. In particular, our major contributions in this study 
are as follows: 

1. We introduce a set of features based on alignment and spacing between words in 
order to detect tabular structures in document images. 

2. We further illustrate the significance of these features using multiple ML classi-
fiers Logistic Regression and SVM. 

3. We introduce a hybrid model where a recent deep learning model, TableNet [13], 
is augmented by providing an additional input image with words segmented. 

2 Proposed Method 

We perform table segmentation using the following three approaches: 

1. Classify each word as table word versus non-table word using binary classifiers, 
Logistic Regression, and SVM, with word alignment features mentioned in Sect. 
2.2 as the input to the classifier. 

2. Using a deep learning model TableNet [13] to segment the table boundaries. 
3. A hybrid approach by augmenting the TableNet with an additional input channel. 

A binary image with all words masked, as shown in Fig. 5, is fed at this input 
channel. 

In the case of SVM and logistic regression, we use 12 word-level features derived 
from the word patch segmentation output. SVM and logistic regression directly 
predict whether each word belongs to a table or not. Even though the word-level 
binary classifier does not give exact table boundaries, it is beneficial in two ways: (1) 
It gives a quantitative measure of how significant the features are for table detection. 
(2) It can be used to refine the prediction from other two approaches. We leave this 
work as a future work and in this work we just report the results of word-level binary
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Fig. 1 Pipeline of the proposed approaches 

classifier using the proposed features. For the DL-based approach, the images are 
directly provided as input. For the proposed hybrid approach, we use binary images 
with segmented words, see Fig. 5 as input. The DL and hybrid approaches generate 
pixel-level segmentation for table regions from which word-level classification is 
computed for comparing the approaches. The overall pipeline of the proposed method 
is illustrated in Fig. 1. 

2.1 Dataset 

We performed experiments on the marmot dataset. The dataset consists of images of 
2000 pages extracted from research article documents of which 1000 are for Chinese 
and 1000 are for English language. For each language, 500 documents are with, 
possibly multiple, tables and 500 documents are without any tables. For generating 
the training set, we used only 500 English document images which had at least one 
table present in it. A sample image from Marmot dataset is shown in Fig. 2a. 

2.2 Preprocessing and Feature Detection 

The preprocessing and feature detection pipeline is shown in Fig. 3. The document 
image is first converted to binary image by Otsu’s thresholding. After this preprocess-
ing stage, text lines in the image are segmented using the spacing between each line. 
The text lines are further segmented into words, again using the character spacing, 
and the top, bottom, left, and right coordinates of each word are obtained.
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Fig. 2 Sample image from Marmot dataset and corresponding output of word segmentation 

Image 

Table Level 
Groundtruth 

Marmot Dataset 

Word patch 
coordinates 

Convert to 
Binary 

Detect text 
lines 

Segment 
Words 

Compute 
Alignment 
Features 

Convert to 
Word 

Ground 
Truth 

Word 
Alignment 
Features 

Word Level 
Ground Truth 

Fig. 3 Feature detection pipeline 

2.2.1 Segmenting Text Lines and Word Patches 

Text and non-text regions in the document were separated out first using a DL model 
that was trained using synthetically generated images and labels. Each text block in 
the document was further broken down into individual text lines. This is done by 
counting the number of background pixels along each row. The count is normalized 
with respect to the width of the text block and if the normalized value is less than 
a threshold the entire row is labeled as blank row. All the consecutive blank rows 
are merged into a single region which corresponds to the spacing between two rows. 
Rectangular regions between line spacing are taken as the bounding box coordinates 
of text lines. 

Once each text line is segmented, a similar algorithm is used to segment the word 
patches in each text line. This time the number of background pixels along each 
column of a text line is found and normalized with respect to the height of the text 
line. If the normalized value is less than a threshold the column is marked as blank 
column and all consecutive blank columns are merged to get the spacing between 
two word patches. 

Since the abovementioned algorithm is based on thresholds which can vary from 
document to document, we obtained additional evidences for word patches using 
two more third-party tools:
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1. Tesseract—An Open-Source OCR library from Google that also gives bounding 
box coordinates of word patches. 

2. Google Cloud Vision—A cloud-based API that parses a document image and 
provides information like word patch bounding box and text inside each word 
patch image. 

We combined the word patch bounding box information from all three sources 
(our algorithm, Tesseract, and Google Cloud Vision) using a max voting scheme and 
generated the final word patch output. 

The entire document is represented by a collection of words W , where each w ∈ W 
is a 4-tuple (t, l, b, r ) representing the top, left, bottom, and right coordinates of the 
word patch image. See Fig. 2b for a sample image with boundaries marked. 

2.2.2 Word Alignment Features 

Using the word patch coordinates, we computed 12 derived features that capture left 
and right alignment between words and spacing between words. Features computed 
based on left alignment are given in Table 1. Similar features are computed for right 
and center alignment also. Each word is represented by a 12-dimensional feature 
vector. 

Finally, table ground-truth coordinates in the original Marmot dataset [5] were  
used to give a binary label, table versus non-table, to each word in the document. 
Table 2 summarizes the number of table and non-table words used in training and 
validation sets. 

Table 1 Sample features for left alignment. Similar features are added for right and center alignment 
also 

Feature name Description 

Top_left_aligned Number of words left aligned to the word lying 
above the word 

Continuous_top_left_aligned Number of words left aligned to the word lying 
immediately above the word contiguously 

Bottom_left_aligned Number of words left aligned to the word lying 
below the word 

Continuous_bottom_left_aligned Number of words left aligned to the word lying 
immediately below the word contiguously
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Table 2 Dataset used for training ML models. Features detected on word patches extracted from 
Marmot dataset are used for training and validation 

Table words Non-table words Total 

Training 39478 39478 78956 

Validation 16919 159625 176544 

Total 56397 199103 255500 

2.3 Classification of Words 

Figure 1 shows the architecture of the overall training and prediction system. 
Following three approaches were followed to train a model for classifying each 

word as table or non-table word: 

1. Binary Machine Learning classifiers trained using 12-dimensional feature vectors 
corresponding to each word. 

2. Using Deep learning model TableNet [13] to find the bounding box of each table. 
Each word lying inside the bounding box predicted by TableNet is classified as 
table words and all other words are marked as non-table words. 

3. A hybrid approach where the TableNet model is augmented with an additional 
input channel carrying information about boundaries of word segments. 

2.4 Machine Learning Approach 

Figure 4 shows the block diagram of ML training pipeline. The word-level features 
mentioned in Table 1 and the label, table versus non-table, are used to train binary 
classifiers Logistic Regression and SVM. 

Trained Model 
Train 

Binary 
Classifier 

Word 
Alignment 
Features 

Word Level 
Ground Truth 

Marmot Dataset 

Fig. 4 Block diagram of the machine learning training pipeline. We used Logistic Regression and 
SVM
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2.5 Deep Learning Approach 

We trained a TableNet [13] model using raw images normalized and resized to 
256 × 256. TableNet is an end-to-end deep learning model that leverages the inher-
ent interdependencies between table discovery and table structure identification. This 
model uses an initialized base network with pre-trained VGG19 functionality. Two 
decoder branches follow for (1) table area segmentation and (2) column segmenta-
tion within table area. Next, rule-based row extraction is used to extract data into 
individual table cells. The model is trained using a multi-task loss function which is a 
combination of table loss and column loss. The model takes a single input image and 
produces two output images labeled with different semantics for tables and columns. 
The models share the VGG19 coding layer for the table and column detectors, while 
the decoders for the two tasks are separate. The shared common level is trained 
repeatedly from the gradient received from the table and column detectors while the 
decoder is trained independently. Semantic information about the underlying data 
type is then used to further improve model performance. Using VGG19 as the core 
network, pre-trained over one million images from the ImageNet database. ImageNet 
datasets enable the exploitation of prior knowledge in the form of low-level features 
learned through training on ImageNet. 

2.6 Hybrid Approach 

We followed the same approach as in the DL approach, but instead of training the 
image using original images we used images with word patches masked as shown in 
Fig. 5. 

3 Results and Discussions 

In this section, we discuss the experimental results for table segmentation on Mar-
mot dataset using the three approaches discussed in Sect. 2.3. Table 3 provides a 
comparison of precision, recall, and F1-score at word-level classification using all 
three approaches. 

Among the ML classifiers, SVM with RBF kernel gave the best word-wise F1-
score of 83.1% on test images. Linear Regression resulted in lesser performance 
since they do not add any non-linear transformation which might be important for 
table detection task. This should also explain why SVM with linear kernel gave lesser 
performance compared to SVM with RBF kernel. 

Table segmentation using TableNet gave a precision, recall, and pixel-wise F1-
score of 99.9%, 90.08%, and 94.78%, respectively.



154 S. K. Vengalil et al.

Fig. 5 Sample image from Marmot dataset with segmented word patches used for hybrid approach
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Table 3 Comparison of different binary classifiers’ performance on classifying each word as table 
versus non-table 

Precision Recall F1-score 

Logistic Regression 85.2 67.8 75.5 

SVM Linear 84.2 66.9 74.6 

SVM RBF 91.4 76.2 83.1 

Hybrid 99.98 94.33 97.07 

The original TableNet model was trained with all three RGB channels of the 
image. However, document images are binary in nature and further the details of 
character shapes are immaterial for table task. We anticipate better results in binary 
images as the number of possible states for each pixel is reduced to two, whether the 
pixel is part of word patch or not. This prompted us to modify the input image with 
a binary mask image with word patches segmented resulting in a hybrid approach. 
Using this approach the pixel-wise recall increased by 0.7% which resulted in an 
increased F1-score of 95.2%. 

Figure 6 shows the sample prediction results using SVM. The words predicted as 
table words are marked in green and non-table words are marked in blue. Figure 7 
shows the table mask predicted by the hybrid deep learning model for a sample test 
image. Figure 8 shows the table masks predicted by the TableNet model. It is evident 
from Figs. 7 and 8 that the boundaries of the predicted table mask using hybrid model 
are more sharper and rectangular as compared to the prediction of TableNet model. 

It is observed that the proposed hybrid approach outperformed the vanilla TableNet 
model. The assumption of hybrid approach is that the gray values of pixels in a doc-
ument image are distributed bimodal. This hybrid approach can further be improved 
with the addition of additional word-level features. Apart from this CRF can also be 
experimented and is expected to outperform SVM-based classifiers as CRF models 
the correlation between labels of neighboring words. Though we have used Marmot 
data, further research can be done with TableBank [7] dataset which contains much 
larger number of document images with tables. 

4 Conclusion 

In this study, we propose new word-level features that can be used for detecting tabular 
structures in document images. We illustrate the significance of the proposed features 
by training binary classifier, Logistic Regression, and SVM, to predict whether each 
word belongs to a table or not. We get an F1-score of 83.1% for SVM with RBF 
kernel on Marmot dataset. We further propose a mechanism to augment a popular 
deep learning model, TableNet, by providing word segmentation information at the 
input. The proposed augmented model outperforms the original TableNet model with
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Fig. 6 Prediction results using SVM with RBF kernel. Table words are marked in green and non-
table words are marked in blue
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Fig. 7 Pixel-level prediction of table mask using hybrid model 

Fig. 8 Pixel-level prediction of table mask using TableNet model 

an increase in recall by 0.7%. This resulted in an increase in F1-score from 94.8% 
to 95.2%. The hybrid model can further be improved by adding more word-level 
features. 
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The Ikshana Hypothesis of Human Scene 
Understanding 

Venkata Satya Sai Ajay Daliparthi 

1 Introduction 

The human brain can seamlessly perceive diverse perceptual and semantic informa-
tion regarding the natural scene/image during a glance [21, 30, 58, 62]. The visual 
scene information perceived during/after a glance refers to the gist (a summary) of 
the scene/image. The gist includes all the visual information from the low-level (e.g., 
colors and contours) to the high-level (e.g., shapes and activation). Due to this reason, 
[55] suggested that the gist can be investigated at both the perceptual and conceptual 
levels. The structural representation of the image refers to the perceptual gist, and 
the semantic information of the image refers to the conceptual gist. However, the 
conceptual gist is more refined and modified than the perceptual gist [55]. Several 
works [4, 19, 20, 26, 57, 58, 65] in neuroscience have addressed the fundamental 
question, i.e.,“how does the human brain performs several visual tasks?” by investi-
gating through conceptual and perceptual gist. They conducted several experiments 
and proposed various theories to explain how modeling of the scene occurs in the 
human brain. However, there was no general principle that explains the functioning 
of the human brain. Even though there is a general principle, we expect that to be 
different from human-to-human. Depending on the situation and the environment, 
the human brain can seamlessly grasp the information by recognizing the objects 
and observing their structure. On the other hand, for a computer to do the same is 
the fundamental goal of the computer vision field. 

In recent years, deep learning methods have shown a significant improvement over 
traditional handcrafted techniques on several computer vision tasks. Though these 
deep neural networks (DNNs) achieved state-of-the-art performance in many cases, 
the one major drawback is the requirement of massive labeled data. The collection of 
a huge amount of labeled data is an expensive and time taking process. Even though 
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these DNNs are said to be inspired by the functioning of the human brain, is this how 
the human brain learns to perform any visual task? NO. Because the human brain 
does not require massive labeled data to perform any visual task, and it can perform 
with few data samples. However, we cannot observe a similar phenomenon in the 
case of many DNNs. 

Semantic segmentation is the task of assigning a class label to every pixel in the 
given image, which has applications in various fields such as medical, autonomous 
driving, robotic navigation, localization, and scene understanding. The prominent 
work FCN [48] adopted the image-classification networks [35, 75, 81] for semantic 
segmentation. Later on, several works [2, 12, 67, 78, 83, 98, 100, 107] improved 
the FCN [48] architecture, and proven to be successful in diverse semantic segmen-
tation benchmarks [5, 15, 108]. However, these methods mainly focus on achieving 
state-of-the-art performance by using the entire and additional datasets [16] (for pre-
training). Due to this reason, even though various methods [12, 78] outperformed 
U-Net [67] in terms of accuracy and computational complexity, the U-Net [67] archi-
tecture is still exploited in several medical image segmentation methods due to its 
ability to perform with few data samples [74]. Although several few-shot semantic 
segmentation (FSS) methods are introduced to address this problem, they often use 
techniques such as meta-learning [18, 59, 64, 85, 93] and metric learning [73, 89, 
89, 90, 95, 101, 102, 106] on top of the existing architectures. 

UnlikeFSSmethods,wetackle theformerlymentioneddrawbackof theDNNs, i.e., 
the requirement of massive labeled data, from a neuroscience perspective. In this work, 
we propose a hypothesis of human scene understanding mechanism named Ikshana. 
The idea is that, “to understand the conceptual gist of a given image; humans look at the 
imagemultipletimesrecurrentlyatdifferentscales”.FollowingtheIkshanahypothesis, 
weproposeanovelneural-inspiredCNNarchitecturenamedIkshanaNet,amulti-scale 
architecture that learns representations at full image resolution. In contrast to the exist-
ing CNN architectures that pass the input image only to the initial layer (stem module), 
our method feeds the input image to every module in the network and to the best of our 
knowledge, this is the first work to propose the same. 

To evaluate the performance of IkshanaNet, we conduct extensive experiments 
on the entire and subsets of the Cityscapes and Camvid benchmarks. Moreover, we 
conduct multiple ablation studies to verify the effect of image scales in IkshanaNet. 
The empirical results illustrate that our method outperforms several baselines on the 
entire and few data samples. Furthermore, the ablation studies shows the importance 
of multi-scale information in achieving considerable performance. We hope that our 
hypothesis sparks future research in neural network architectures for vision tasks. 

2 Related Work 

In Neurological terms, all the low-level and high-level computer vision tasks come 
under a single term called human scene understanding. A scene is a view of a real-
world environment that contains multiple surfaces and objects organized in a mean-
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ingful way. In neuroscience, the perceptual gist is more investigated compared to 
the conceptual gist. The early works on the conceptual gist [30, 61] explained that 
a typical scene fixation of 275 to 300 ms is often sufficient to understand the gist of 
the image. Several works on the perceptual gist [4, 19, 20, 26, 56–58, 65, 72] pro-
vided insight into how the modelling of the scene occurs in the human brain through 
perceiving boundaries, blobs, scales, texture, contours, openness, depth, and so on. 
The information perceived through the perpetual gist is refined and extracted into 
the conceptual gist (the semantic meaning) during the cognitive process. Thus, the 
conceptual gist is highly dependent upon the perceptual gist. In many cases [15, 16, 
108], we do not explicitly encode the perceptual process in DNNs, and the CNN 
learns various representations regarding the image during the training process. Thus, 
our hypothesis focuses on the conceptual gist rather than the perceptual gist. 

Neural networks exist from a long time [50, 68, 70] and some prominent works 
[14, 16, 25, 35, 43, 75, 81, 82] made them popular during recent years. In our 
work, we use the convolutional neural network (CNN) architecture [36, 88] to learn 
representations from the images, which itself is inspired by [23, 29]. The architecture 
of IkshanaNet is inspired by [28, 75] and related to [27, 39]. 

The first seminal work on Semantic segmentation (SS) using deep learning is 
the fully convolutional networks (FCN) [48]. Later on, many semantic segmentation 
networks followed the FCN [48] architecture. The total prominent works on deep 
learning-based semantic segmentation methods can be roughly classified into five cat-
egories. They are (i) Encoder-decoder based methods (DeconvNet [54], SegNet [2], 
U-Net [67], RefineNet [41, 42], FC-DenseNet [33], and GFR-Net [1]), (ii) Regional 
proposal methods (MaskRCNN [24], FPN [44], and PANet [46]), (iii) Increased res-
olution of feature map methods (DeepLab series [8–10, 12], PSPNet [107], DenseA-
SPP [96], and HRNet [78]), (iv) Context information methods (ParseNet [47], ATS 
[11], DANet [22], OCNet [99], OCR [98], EncNet [104], Non-local [91], ZigZagNet 
[40], ACFNet [103], CoCurNet [105], GLAD [38], and HANet [13]) (v) Bound-
ary refinement methods ([3, 7, 17, 49], Gated-SCNN [83], and SegFix [100]). The 
IkshanaNet uses the dilated convolutions, interpolation of feature maps, and skip 
connections from different layers in the network. Therefore, our work is related to 
the formerly mentioned encoder-decoder and increased resolution of feature map 
methods. 

Few-shot segmentation (FSS) methods [6, 18, 45, 59, 64, 73, 85, 86, 89, 90, 
93, 95, 101, 102, 106] are introduced to handle limited training data. They use 
meta-learning (knowledge distillation), metric-learning (similarity learning), and a 
combination of both the techniques on top of FCN [48] based architectures, which 
often involve multistage training. The metric-learning techniques can be further clas-
sified into the prototypical feature learning [18, 37, 87, 90, 102, 106] and the affinity 
learning [89, 97, 101] techniques. Unlike general SS methods, FSS methods are eval-
uated on different benchmarks and handle novel class categories during testing. Since 
the IkshanaNet does not use any of the formerly mentioned FSS techniques and only 
handles the classes seen in the training data, our method is more closely related to 
the general SS methods than the FSS methods.
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3 Method  

3.1 Ikshana (the Eye) Hypothesis 

In her prominent work [61], professor Mary C. Potter found that an average human 
can understand the gist of the image between the time interval of 125 to 300 ms. 
Furthermore, through several works [19, 20, 26, 30, 57, 58, 65, 72] in neuroscience, 
it is evident that humans understand the gist of the image in a certain time interval. 
During that time interval, the Ikshana hypothesis approximates the functioning of 
the human brain. The Ikshana hypothesis states that “To understand the conceptual 
gist of a given image, humans look at the image multiple times recurrently, at 
different scales.” The word Ikshana is derived from the Sanskrit language, which 
has many synonyms such as the eye, sight, look, and so on. 

We present an example to explain the Ikshana hypothesis in Fig. 1, where there 
is an image (x) on the left side and the human brain mechanism on the right side. 
According to the Ikshana hypothesis, for a human to understand the conceptual gist 
of the given image, the following process occurs in the human brain: 

At a time step (t), during the first glance (Φ1), the brain learns the first represen-
tation ( f (x)) from the image (x) and stores that representation in the memory (M), 
as shown in the Eq. 1. 

f (x) = Φ1(x); M = f (x) (1) 

At a time step (t + 1), during the second glance (Φ2), the brain holds the first 
representation ( f (x)) in the memory and learns the second representation (g(x)) 
from the image and the first representation (x, f (x)). Then the brain stores the 
representation (g(x)) along with ( f (x)) in the memory (M), as shown in the 
Eq. 2. 

g(x) = Φ2(x, f (x)); M = f (x), g(x) (2) 

At a time step (t + 2), during the third glance (Φ3), the brain holds the first and the 
second representations ( f (x), g(x)) in the memory and learns the third representation 
(h(x)) from the image and the previous representations (x, f (x), g(x)). Then the 
brain stores the representation (h(x)) along with ( f (x), g(x)) in the memory (M), 
as shown in the Eq. 3. 

h(x) = Φ3(x, f (x), g(x)); M = f (x), g(x), h(x) (3) 

From Eqs. 1, 2, and 3, this kind of recurrent process occurs at (t + n) times 
at a single image scale. Depending upon the given task (T ), by combing all the 
information stored in the memory until the (t + n)th time step, the brain understands 
the conceptual gist (Y1) of the image at a single scale, as shown in the Eq. 4. 

Y1 = T ( f (x), g(x), h(x)...........n(x)) (4)
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Fig. 1 The Ikshana Hypothesis at single scale 

This process occurs at N different scales and generates N different outputs (Y1, 
Y2, Y3, ...., Yn). By considering all the outputs, the brain selects some of those rep-
resentations and forgets the remaining representations. In this way, the brain learns 
(Δ) the final output (Y ) of the given visual task (T ), as shown in the Eq. 5. 

Y = Δ(Y1, Y2, Y3, ....YN ) (5) 

From the Eqs. 1, 2, 3, 4, and 5, this is how Ikshana hypothesis approximates the 
functioning of the human brain, while human understands the conceptual gist of the 
image. The time required (or the number of glances required) by an average human 
to understand the gist of the image may depend upon several factors such as the given 
task, age, intelligence, memory, and so on. 
The existing CNN architectures such as VGG [75], Resnet [25], DenseNet [28], and 
so on learns a representation (say f (x)) with 32/64 filters from the input image and 
learns further representations on top of the f (x) until the network achieves adequate 
performance. In contrast, the network designed by following the Ikshana hypothesis 
learns representations from the input image and previous outputs at each glance/layer. 

3.2 IkshanaNet Architecture 

In this section, we introduce a novel neural-inspired encoder-decoder CNN archi-
tecture named IkshanaNet, designed by following the Ikshana hypothesis. Humans 
can look at the image and seamlessly learn various useful representations regarding 
it [21, 30, 58, 62]. On the other hand, for a computer to do the same, we use the 
convolutional neural network [23, 29, 36] architecture to learn representations. The 
IkshanaNet architecture uses three image scales and consists of 4M parameters. The 
entire architecture is made of three building blocks, and they are: (1) the glance
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Fig. 2 IkshanaNet-main architecture 

module, (2) the projection module, and (3) a 1  × 1 convolutional layer, as illustrated 
in Fig. 2. 

The glance module consists of three 3 × 3 convolutional layers (with the same 
dilation rates), and we use it to learn representations from the given image (or a feature 
map). The number of input filters passed into the glance module varies several times 
in the architecture; however, it always returns a feature map with 32 filters. The 
projection module consists of three 3 × 3 convolutional layers, and we use it to 
refine the representations learned from the glance modules. The input and output 
filters are always the same for the projection module. We use the 1 × 1 convolution 
layers to reduce the number of filters in a given future map. Except for the last 1 × 
1 convolutional layer that returns the final output, every convolutional layer in the
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architecture is followed by a batch normalization [31] and a ReLU [52] activation 
layer. 

In the encoder part, the IkshanaNet learns representations at three image scales. 
At scale 1, we pass the input image through a glance module with a dilation rate 
(d = 1), which returns a feature map with 32 filters. Then we concatenate the input 
image with the previously learned feature map (32 + 3 = 35). The concatenation 
of the input image with the feature map is essential to ensure that we are learning 
representations from the input image. Then we pass the feature map through another 
glance module with a dilation rate (d = 2) and concatenate the resulting feature map 
with the feature maps from the preceding layers (32 + 32 + 3 = 67). We pass the 
resulting feature map through another glance module with a dilation rate (d = 3), 
which takes in 67 filters and returns 32 filters. Again, we concatenate the resulting 
feature map with feature maps from the preceding layers (32 + 32 + 32 + 3 = 99). 
At this point, we remove the input image from the feature map through tensor slicing 
(99 − 3 = 96), and the resulting feature map consists of (32 + 32 + 32 = 96) filters 
learned from three glances modules. In this way, the network followed the Ikshana 
hypothesis had three glances recurrently at the full resolution. Then we pass the 
feature map through a projection module to refine the representations (96 = 96). 
Here, we pass the refined feature map through a 1 × 1 convolutional layer that 
reduces 96 filters into 20 filters and name it the side one output (Y1). Simultaneously, 
we pass the feature map through an average pooling layer, which reduces the size of 
the feature map by a factor of two. 

At scale 2, we down-sample the input image by a factor of two and concatenate 
with the pooled feature map from the scale 1 (96 + 3 = 99). We pass the resulting 
feature map with 99 filters through three glance modules with different dilation rates 
(d = 1, 2, 3) and concatenate all the outputs as follows (99 + 32 + 32 + 32 = 195). 
Then we remove the image from the feature map (195 − 3 = 192) and pass it through 
a projection module to refine the representations (192 = 192). Then we pass the 
refined feature map through a 1x1 convolutional layer that reduces 192 filters into 
20 filters and name it the side two output (Y2). Then, we pass the refined feature map 
through an average pooling layer that reduces the size by a factor of two. 

At scale 3, we down-sample the input image by a factor of four and concatenate 
with the pooled feature map from the scale 2 (192 + 3 = 195). Here, we follow the 
same process (195 + 32 + 32 + 32 = 291); (291 − 3 = 288); (288 == 288) as the 
scale 2 part, which returns a feature map with 20 filters, and name it the side three 
output (Y3). 

In the decoder part, we bi-linearly interpolate the outputs from two scales (Y2 
and Y3) to match with the output of scale 1 Y1, i.e., the input image size. Then 
we concatenate all the three outputs (20 + 20 + 20 = 60) and pass it through a 1x1 
convolutional layer, which returns a feature map with 20 filters, that is the final output 
of the network [Y = Δ(Y1, Y2, Y3)]. 

Depth Architectures: Here, we introduce three variants of the IkshanaNet named 
IkshanaNet-3G, IkshanaNet-6G, and IkshanaNet-12G. If we remove the projection 
layers in IkshanaNet-main, then it will remain with three scales and three glances at 
each scale; it is IkshanaNet-3G (which consists of 514 K parameters). If we increase
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the number of glances per scale, from three to six, then it is IkshanaNet-6G (which  
consists of 1.8M parameters), and from three to twelve, then it is IkshanaNet-12G 
(which consists of 6.5M parameters). 

Multi-scale Architectures: Here, we introduce three variants of IkshanaNet 
named IkshanaNet 1S-6G, 2S-3G, and 3S-2G. In IkshanaNet 1S-6G, there are no 
pooling layers and contain six glances at full-scale resolution (which consists of 
257K parameters). In IkshaNet 2S-3G, there are two scales and three glances at each 
scale (which consists of 259K parameters). In IkshanaNet 3S-2G, there are three 
scales and two glances at each scale (which consists of 260 K parameters). 

4 Experiments 

4.1 Experimental Setup 

GPU: 1 X NVIDIA Tesla T-4 (16 GB VRAM) 
Framework: PyTorch 1.8 [60] 
Epochs: 180 ; Batch Size: 2 
Criterion: Pixel-wise cross-entropy loss 
Learning Rate Scheduler: ReduceLROnPlateau (decrease factor = 0.5 and patience 
= 20 epochs) with an initial learning rate of 1e − 06. 
Optimizer: Stochastic gradient descent [66] with Nesterov momentum [53]1 

Random Seed: To ensure that data splits are reproducible, we set the random seed 
42 in the function torch.utils.data.random-split. 
Pre-Processing: We normalize all the images with mean and standard deviation val-
ues of ImageNet [16] dataset. We did not use any data augmentation techniques. 
Baselines: We use the open-source implementations for networks DeepLabV3+ 
(ResNet-101) [32], DeepLabV3 (DenseNet-161) [77], HRNet-V2 [79], and U-
Net [51]. We import DeeplabV3+ with encoder networks such as ResNet [25], 
MobileNet-V2 [71], ResNext [92], EfficientNet [84], and RegNet [63] from the  
segmentation models library [94]. 

4.2 Experiments on Cityscapes 

The Cityscapes [15] semantic segmentation dataset consists of 5, 000 finely annotated 
high-quality images, which are further divided into 2, 975/500/1, 525 images for 
training, validation, and testing. During the evaluation, only 19 classes are considered 

1 For all the baselines, we use the Nesterov momentum of 0.9 for the  SGD [66] optimizer by 
following [12, 25, 28, 63, 71, 84]. For the IkshanaNet and its variants, we use the Nesterov 
momentum of 0.7 for the  SGD [66] optimizer by tuning with several values such as 0.5, 0.6, 0.7, 0.8, 
and 0.9, i.e., the only hyper-parameter tuning step in this work. In our preliminary experiments, we 
observe that the training of IkshanaNet is unstable with 0.9 momentum. We hypothesize that this 
phenomenon is due to the small size of IkshanaNet compared to baseline networks.
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out of the 35 classes. Therefore, by using the cityscapes-scripts, we convert the 35 
classes into 20 classes (including background). We resize all the images from the 
resolution of 1024 × 2048 to 512 × 1024. 

4.2.1 Baseline Experiments 

Here, we use the networks DeeplabV3+ (ResNet-101 [25]), DeeplabV3 (DenseNet-
161 [28]), HRNet-V2 [80], and U-Net [67] as the baselines 2 to compare with 
IkshanaNet-main. 

We train all the networks on the entire dataset T2975 and provide the mean class IoU 
results evaluated on the validation-set in Table 1, where we observe the following: 

(i) U-Net [67] (49.3) shown top performance within the baseline networks followed 
by HRNet-V2 [80] (48.0). 

(ii) IkshanaNet outperformed U-Net by 5.2 % and HRNet-V2 [80] by  6.5 %. 
(iii) IkshanaNet outperformed baselines by a huge margin in classes such as fence, 

pole, traffic light, traffic sign, rider, bus, motorcycle, and bicycle. 
(iv) Even though U-Net [67] and IkshanaNet learn representations at full-scale res-

olution before reducing the spatial resolution, the IkshanaNet still outperforms 
U-Net [67] in the formerly mentioned classes. 

4.2.2 Data Ablation Study 

While trained on few data samples, the network size might strongly influence the 
performance. The networks ResNet-101 [25] (59.3 M), DenseNet-161 [28]) (43.2 
M), HRNet-V2 [80] (65.9), and U-Net [67] (31.0) consists more number of param-
eters compared to IkshanaNet-main (4 M). To make it a fair comparison, we include 
DeeplabV3+ [12] with several light-weight encoder networks (such as ResNet-18 
[25], MobileNet-V2 [71], EfficientNet-b1 [84], and RegNetY-08 [63]) along with 
the networks from the baseline experiments. 

Here, we conduct a data ablation study on five different subsets of the training 
data, T1487, T743, T371, T185, and T92 (suffix number represents the number of training 
samples in the subset) by using the same validation set (500 images). 

In Table 2, we provide the mean class IoU results evaluated on the validation set, 
the average M.IoU score, the number of parameters (in million)), and the GFLOPs 
[76] (calculated with an input resolution of 1x512x1024x3 ). 

From Table 2, we observe the following: 

2 For the baselines, ResNet-101 [25], DenseNet-161 [28], and HRNet-V2 [80], we use the ImageNet 
[16] pre-trained weights. Because in the existing literature, the architectures [12, 80, 98, 107] used 
an ImageNet pertained network as a feature extractor and reported the results by using pre-trained 
weights only. However, in the case of IkshanaNet and U-Net [67] no pre-training is done. Since this 
work addresses the requirement of massive data, this provides strong motivation against pre-training.



170 V. S. S. A. Daliparthi

Ta
bl
e 
1 

C
la
ss
-w

is
e 
Io
U
 r
es
ul
ts
 o
f 
th
e 
C
ity

sc
ap
es
 b
as
el
in
e 
ex
pe
ri
m
en
ts
 

M
et
ho
d

R
oa
d

Si
de
w
al
k

B
ui
ld
in
g

W
al
l

Fe
nc
e

Po
le

T
ra
ffi
c 

lig
ht
 

T
ra
ffi
c 

si
gn
 

V
eg
et
at
io
n

Te
rr
ai
n

Sk
y

Pe
rs
on
 
R
id
er

C
ar

T
ru
ck

B
us

T
ra
in

M
ot
or
cy
cl
e

B
ic
yc
le

A
ve
ra
ge
 

R
es
N
et
10

1 
[2
5]
 

95
.0

66
.1

81
.9

15
.0

13
.5

26
.7

20
.7

29
.5

86
.7

55
.4

89
.3

48
.5

6.
3

85
.5

6.
8

26
.1

19
.0

9.
8

32
.0

42
.8
 

D
en
se
N
et
16

1 
[2
8]
 

94
.8

64
.5

81
.3

20
.1

13
.0

15
.8

15
.6

28
.7

84
.6

58
.7

86
.1

44
.1

0.
6

84
.7

17
.0

19
.7

23
.1

4.
3

31
.4

41
.5
 

H
R
N
et
-V

2 
[8
0]
 

94
.9

68
.6

84
.2

24
.0

24
.5

39
.0

23
.2

42
.3

86
.9

51
.5

90
.2

55
.6

15
.3

86
.1

19
.9

36
.1

21
.2

2.
2

46
.1

48
.0
 

U
-N

et
 [
67
]

94
.9

69
.4

85
.3

27
.3

28
.7

41
.0

32
.2

49
.0

88
.6

46
.3

90
.4

59
.1

14
.5

86
.5

12
.4

28
.4

15
.5

10
.9

55
.6

49
.3
 

Ik
sh
an
aN

et
-

M
ai
n 

95
.6

72
.8

85
.9

22
.6

35
.3

49
.6

47
.0

60
.7

89
.2

48
.9

91
.6

63
.3

28
.8

87
.1

18
.4

40
.3

21
.8

16
.5

60
.8

54
.5



The Ikshana Hypothesis of Human Scene Understanding 171

Table 2 Cityscapes data ablation experiments evaluated on the validation set 

Backbone T1487 T743 T371 T185 T92 Tavg Param(M) GFLOPs 

ResNet-18 
[25] 

42.6 35.6 27.9 22.4 21.0 29.9 12.3 36.8 

MobileNet-V2 
[71] 

38.5 32.2 30.6 22.5 19.2 28.6 4.4 12.3 

EfficientNet-
b1 [84] 

37.8 32.5 26.9 24.6 19.8 28.3 7.4 4.6 

RegNetY-08 
[63] 

28.5 31.9 29.4 27.4 22.1 27.9 7.0 17.2 

ResNet-101 
[25] 

29.3 28.8 28.6 21.6 19.4 25.5 59.3 177.8 

DenseNet-161 
[28] 

33.3 30.1 26.0 24.9 20.8 27.0 43.2 129.4 

HRNet-V2 
[80] 

27.8 18.8 23.3 18.3 15.4 20.7 65.9 187.8 

U-Net[67] 42.8 34.2 30.2 27.8 25.0 32.0 31.0 387.1 

IkshanaNet-
Main 

43.4 40.2 31.7 29.9 25.8 34.2 4.0 413.3 

(i) U-Net [67] (Tavg–32.2) achieves top average performance within the baselines. 
(ii) Even though U-Net [67] consists of 31M parameters, it still managed to out-

perform its lightweight counterparts. 
(iii) IkshanaNet outperformed all other baselines in the M.IoU score and the average 

M.IoU score in all five subsets. 
(iv) IkshanaNet consists of fewer parameters, and EfficientNet-b1 [84] consists of 

fewer GFLOPs than other networks. 

4.2.3 Multi-scale Ablation Study 

In Sect. 3.1, the Ikshana hypothesis stated that “humans often require multi-scale 
information to understand the gist of an image”. Therefore, to verify the requirement 
of multi-scale information, we conduct a multi-scale ablation study. 

Here, we train three different variants of IkshanaNet, such as the 1S-6G, 2S-3G, 
and 3S-2G (explained in Sect. 3.2) on the five different subsets of the training data 
(same as Sect. 4.2.2). In Table 3, we provide the results of the multi-scale ablation 
study evaluated on the validation set. 

From Table 3, we observe that: 

(i) IkshanaNet-3S-2G network outperforms other networks in the M.IoU score, the 
average M.IoU score, and requires fewer GFLOPs, while requiring the same 
number of parameters.
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Table 3 Cityscapes multi-scale ablation experiments results 

Backbone T1487 T743 T371 T185 T92 Tavg Param(M) GFLOPs 

1S-
6Glances 

29.2 24.9 23.3 20.2 18.1 23.1 0.26 136.0 

2S-
3Glances 

37.3 34.9 33.2 25.7 24.0 31.0 0.26 70.0 

3S-
2Glances 

43.5 36.9 34.4 27.5 26.5 33.8 0.26 42.4 

(ii) The multi-scale information improved the performance and decreased the com-
putational complexity (GFLOPs) of the network and vice-versa. 

(iii) From Tables 2 and 3, we observe that IkshanaNet 3S-2G network (with only 260K 
parameters) outperforms all the baselines in the data ablation study by occupying 
approximately 10x few GFLOPs and 15x few parameters than IkshanaNet-main. 

The above observations suggest that, the multi-scale architectures can achieve 
superior performance than an isometric architecture. 

4.3 Experiments on Camvid 

The Cambridge-driving labeled video dataset [5] for semantic segmentation consists 
of 700 images, which are further divided into 367 training, 101 validation, and 
233 testing sets. We convert the 32 classes to 12 classes (including background) 
by following [2, 34] and resize the images from the resolution of 720 × 960 to 
368 × 480. 

4.3.1 Baseline Experiments 

Here, according to the size of the networks, we classify the total networks into three 
different sets. 

Set-1 consists of DeeplabV3+ [12] with the encoder networks such as Resnet-18 
[25], EfficientNet-b1 [84], RegNetY-08 [63], MobileNet-V2 [71], and IkshanaNet-
3G (see Sect. 3.2). 

Set-2 consists of DeeplabV3+ [12] with the encoder networks such as Resnet-50 
[25], EfficientNet-b4 [84], RegNetY-40 [63], and ResNext-50 [92], and IkshanaNet-
6G (see Sect. 3.2).
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Table 4 Camvid baseline experiments results 
Backbone T367 T183 T91 Tavg 

Val Test Val Test Val Test Val Test Param(M) GFLOPs 

ResNet-18 [25] 83.3 64.9 79.7 63.7 70.0 56.6 77.7 61.7 12.3 12.4 

EfficientNet-b1 
[84] 

84.4 68.4 75.0 61.3 77.0 58.8 78.8 62.8 7.4 1.5 

RegNetY-08 [63] 80.4 64.3 77.7 61.4 70.9 57.8 76.3 61.2 7.0 5.8 

MobileNet-V2 
[71] 

80.8 63.9 77.3 56.1 66.1 54.6 74.7 58.2 4.4 4.1 

IkshanaNet-3G 81.6 65.7 80.0 62.5 78.0 61.2 79.9 63.1 0.5 26.0 

ResNet-50 [25] 78.6 61.6 80.0 60.3 78.3 55.9 80.0 59.3 26.7 25.0 

EfficientNet-b4 
[84] 

82.7 64.1 77.7 62.2 75.6 60.5 78.7 62.3 18.6 1.7 

RegNetY-40 [63] 80.8 62.0 76.4 61.0 74.9 59.2 77.4 60.7 21.5 18.8 

ResNext-50 [92] 80.1 62.6 77.3 56.1 66.1 54.6 74.5 57.8 26.2 25.0 

IkshanaNet-6G 83.3 67.8 81.4 65.9 76.0 60.0 80.2 64.6 1.8 82.0 

ResNet-101 [25] 81.6 63.8 75.6 56.4 70.1 55.7 75.8 58.6 59.3 59.9 

EfficientNet-b6 
[84] 

80.6 65.0 80.3 57.8 77.4 60.4 79.4 61.0 42.0 1.9 

RegNetY-80 [63] 78.5 62.0 78.2 63.8 66.2 53.8 74.3 59.9 40.3 34.4 

DenseNet-161 
[28] 

77.8 58.6 75.7 57.8 73.0 53.8 75.5 56.7 43.2 43.6 

HRNet-V2 [80] 81.1 63.6 79.1 62.9 72.9 55.0 77.7 60.5 65.9 63.5 

U-Net [67] 83.0 69.5 78.0 62.8 76.8 61.6 79.3 64.6 31.0 130.0 

IkshanaNet-12G 83.9 70.0 83.3 67.1 76.5 60.6 81.2 65.9 6.5 285.0 

IkshanaNet-M 83.2 68.5 79.9 62.9 72.2 58.8 78.4 63.4 4.0 139.0 

Set-3 consists of DeeplabV3+ [12] with the encoder networks such as Resnet-
101 [25], EfficientNet-b6 [84], RegNetY-80 [63], DeepLabV3 ( DenseNet-161 [28]), 
HRNet-V2 [80], U-Net [67], and IkshanaNet-12G (see Sect. 3.2) 3. 

Additionally, we include IkshanaNet-main and did not compare it with other 
networks. By using the same validation, we train each network on three different 
subsets of the training data, T367, T183, and T91. 

In Table 4, we provide the mean IoU results evaluated on the validation set, the 
test set, the average M.IoU score of all the variants, the number of parameters (in 
Million), and the GFLOPs [76] (calculated the GFLOPs with an input resolution of 
1 × 368 × 480 × 3). From Table 4, we observe the following: 

In Set-1: (i) IkshanaNet-3G outperforms all other networks in the subsets T91, Tavg , 
and requires fewer parameters. (ii) EfficientNet-b1 [84] outperforms other networks 
in the T367 and requires fewer GFLOPs. 
In Set-2: (i) IkshanaNet-6G outperforms all other networks in the subsets T367, T183, 
Tavg , and requires fewer parameters. 

3 Same as Sect. 4.2.1, except for U-Net [67] and IkshanaNet-12G, we use the ImageNet [16] pre-
trained weights for all the networks in the Set-3.



174 V. S. S. A. Daliparthi

Table 5 Camvid multi-scale ablation experiments results 

Backbone T367 T183 T91 Tavg 

Val Test Val Test Val Test Val Test Param(M) GFLOPs 

1S-
6Glances 

79.2 60.0 77.8 58.8 66.7 50.9 74.6 56.6 0.26 45.6 

2S-
3Glances 

80.1 65.6 79.5 60.1 77.2 59.5 78.9 61.7 0.26 23.1 

3S-
2Glances 

82.9 66.5 80.9 62.8 77.5 60.8 80.4 63.4 0.26 14.0 

(ii) EfficientNet-b4 [84] outperforms all other networks in the subset T91 and requires 
fewer GFLOPs. 
In Set-3: (i) IkshanaNet-12G outperforms all other networks in the subsets T367, T183, 
Tavg , and requires fewer parameters. 
(ii) U-Net [67] outperformed other networks in the subset T91 and EfficientNet-b6 
[84] requires fewer GFLOPs than other networks. 

4.3.2 Multi-scale Ablation Study 

Same as Sect. 4.2.3, by using the same validation set, we train three different variants 
of IkshanaNet such as 1S-6G, 2S-3G, and 3S-2G (explained in Sect. 3.2) on three 
subsets of the training data (T367, T183, and T91). 

In Table 5, we provide the mean IoU results evaluated on the validation set, the test 
set, the average score of all variants, the parameters, and the GFLOPs. We calculate 
the GFLOPs with an input resolution of 1x368x480x3. 

From Table 5, we observe that, the IkshanaNet-3S-2G network outperforms all 
other networks in all the subsets (T367, T183, T91, Tavg), and requires fewer GFLOPs. 
The results are similar to the Sect. 4.2.3 (Table 3), demonstrating the importance of 
multi-scale information. 

5 Validity Threats 

(i) Most of the existing works [12, 98, 107] used a mini-batch size of 8 and SyncBN 
[69, 104] for training. However, due to the limited availability of the computing 
resources, we train all the networks with a mini-batch size of 2. Due to this 
reason, we cannot directly compare the performance of our method with the 
state-of-the-art methods. 

(ii) In this work, even though the training data splits are reproducible, the perfor-
mance of the networks trained on subsets of the training data might depend upon 
the fact that “how well the subset represents the whole dataset?”. If we use a
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different random seed to generate the splits, then the exact behavior may or may 
not be expected. 

(iii) In this work, through multi-scale ablation experiments, we observe that multi-
scale information is often necessary to improve the performance of the networks. 
By observing the images in Cityscapes, and CamVid datasets, it is evident that 
the images consist of multi-scale objects. However, this phenomenon might not 
be valid to other datasets, where there exist no multi-scale objects. 

6 Conclusion 

In this work, we attempt to bridge the gap between the current vision DNNs and the 
human visual system by proposing a novel hypothesis of human scene understand-
ing and a neural-inspired CNN architecture that learns representations at full-scale 
resolution. 

The empirical results illustrate the effectiveness of our method on entire and few 
data samples compared to the baselines. Also, through multi-scale ablation stud-
ies, we observe that using multi-scale information improves the performance of 
IkshanaNet by reducing the computational complexity. 

Moreover, we observe that our method is just an improvement over the baselines, 
and it is still dependent on the data. Hence, it is nowhere close to the human visual 
system. Therefore, a better-performing and computationally efficient architectures 
based on the Ikshana hypothesis will be studied in the future work. 

Furthermore, we hope that our hypothesis inspires future generation of neural 
inspired vision architectures. 

6.1 Code 

https://github.com/dvssajay/The-Ikshana-Hypothesis-of-Human-Scene-
Understanding. 
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Worst-Case Adversarial Perturbation 
and Effect of Feature Normalization on 
Max-Margin Multi-label Classifiers 

Ritesh Kumar Gupta and Yashaswi Verma 

1 Introduction 

Text-based search and retrieval have gained popularity with modern search engines. 
Naturally, similar technologies can be applied to image search tasks if an image can be 
described using text by either assigning a few labels, a short caption, or a paragraph. 
Since it is not feasible to do manual annotation, automated computational methods 
have become necessary to perform such tasks. 

Associating images with texts started by addressing the task of classifying a single 
(prominent) object in an image. However, an image generally contains multiple 
objects, that too in some specific context and with some semantic meaning. This 
leads to the problem of multi-label image annotation, where an image is assigned 
multiple labels that describe its semantics. This can also be helpful in other related 
tasks such as object recognition, image retrieval, and image captioning. 

Image annotation can be considered as a multi-label classification problem. In 
multi-label classification, for a given query sample, we predict a subset of labels from 
a fixed vocabulary. For example, given an image with Indian actors, identify who of 
all the Indian actors are present in this picture. Several attempts have been made to 
address the problem of automatic image annotation. Initially, researchers targeted it 
by translating an image into a few keywords or by mapping the relevance between 
features of images and their labels [7, 12–14, 20, 25]. Recently, advancements in 
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deep learning have helped in improving the performance on the image annotation 
task [4–6, 29]. 

On the other hand, it is well-acknowledged that there is a fundamental difference 
between the human perception of an image and that of a machine. For a machine, an 
image is simply a chunk of numbers, which has led to the design of algorithms that can 
produce numeric illusions for machines called adversarial examples or adversarial 
samples. In [22], it was shown that many machine learning (specifically deep learn-
ing) models make mistakes on adversarial samples, which are produced intentionally 
to fool such models. An adversarial example is produced by a slight modification 
in the original sample. A machine learning model’s performance can be excellent 
on original samples but degrades on adversarial samples. Such attacks that are per-
formed using adversarial examples are known as adversarial attacks, and have led to 
an increase in security concerns for machine learning models. For instance, a self-
driving car can be forced to make wrong decisions and cause an accident if given an 
adversarial sample as input, or illegal content can be shared with minor modifications 
which can bypass a filter applied to prevent them. 

There are primarily two types of adversarial attacks. The first one is a targeted 
attack, and the second one is an untargeted attack. In targeted attacks, an attack is 
targeted on a model to make it misclassify an adversarial example to a target class. 
Here, the target model and target class are known/fixed in advance. In untargeted 
attacks, there is no targeted class. The only purpose is to make some target model 
misclassify an adversarial example, which means the output of an adversarial example 
can be anything other than the actual output. It has been found that targeted attacks 
are more likely to succeed on an adversarial example than untargeted attacks, but they 
also take more time [19]. In both of these two broad categories, adversarial attacks are 
based on one of the three models: black-box models, gray-box models, and white-
box models. These models are defined based on the knowledge that is available 
to the attacker. In black-box models, the attackers do not have knowledge about the 
model architecture to be attacked, however, they can predict outputs to specific inputs. 
These attacks are made possible based on the concept of transferability of adversarial 
examples, which means an adversarial example initially designed to attack some other 
model can attack the target model as well. In gray-box attacks, the attacker does have 
access to the model architecture but does not have knowledge of the parameters of 
the model. Here, the attacker can create a surrogate model of the same architecture 
as that of the target model to create adversarial samples. Additional knowledge of 
architecture helps gray-box attacks to be more powerful than black-box attacks. In 
white-box attacks, the attacker has full knowledge about the target model, which 
enables attackers to create adversarial examples directly using the target model. 

In parallel, the research community has also been working on defense against 
such attacks. In [9], Goodfellow et al. proposed adversarial training to defend against 
such attacks. It is a brute force approach which generates many adversarial examples 
which are then used to train robust models. Mandry et al. [16] used adversarial 
training to show that models trained on MNIST dataset were robust to white-box 
adversarial attacks. Tramr et al. [23] proposed ensemble adversarial training which
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transfers perturbations from other models to increase the robustness. In [15, 28], 
randomization techniques are used to defend against adversarial attacks. 

In this paper, we first propose an algorithm to generate adversarial perturbations. 
These perturbations do not require prior knowledge of training data or the model. The 
presented algorithm takes original features as input and generates worst-case pertur-
bation vector, under a given constraint on its norm. To generate adversarial samples, 
these worst-case perturbations are added to the original feature vector. While machine 
learning models have been shown to be robust against random perturbations in the 
past [15, 28], we show that systematically generated random perturbations can act 
as severe attackers. We also study, for the first time, a simple feature normalization 
technique using L2-norm as a tool to improve the robustness of algorithms against 
adversarial attacks. Experiments on two benchmark datasets (ESP Game [26] and 
IAPRTC-12 [11]) show that this simple feature normalization technique helps in 
improving the robustness of machine learning algorithms against worst-case adver-
sarial attacks, thus establishing feature normalization as a recommended practice to 
make machine learning algorithms more robust against adversarial samples. It also 
opens up a new direction for further analyzing the impact of simple techniques like 
normalization in developing robust machine learning models. Note that both our 
attack and defense strategies are data- as well as model-independent, and instead are 
based on the algebraic and distributional properties of vectors, thus making them 
generalizable. 

To summarize, the contributions of this paper are as follows: 

1. We present a data- as well as model-independent algorithm to generate adversarial 
samples using worst-case perturbations. 

2. We demonstrate feature normalization as a simple technique to increase the robust-
ness of machine learning models against adversarial attacks. 

3. We provide extensive experimental analyses under multiple setups using two 
state-of-the-art max-margin multi-label classifiers on two benchmark datasets to 
validate our ideas. 

2 Our Approach 

In this section, we first present our approach of generating adversarial samples, and 
then discuss the feature normalization technique to reduce the impact of such attacks. 

2.1 Generating Adversarial Samples 

We propose a data- and model-independent mechanism to generate adversarial sam-
ples by adding an adversarial perturbation vector to the original feature vector. These 
perturbation vectors correspond to the worst-case perturbations to produce adversar-
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ial samples. We also show how to control the amount of perturbations to be generated 
for samples by constraining the norm of the perturbation vector. 

For a given feature vector x, we consider a perturbation ṽ. The worst-case pertur-
bations correspond to the || · ||∞ norm, and it is given by ||ṽ||∞ = maxd ||ṽd | with 
a constraint on its magnitude. Here, it can be noted that when the input x is changed 
by small perturbation along each dimension by keeping the ||ṽ||∞ the same, the 
evaluation of a linear evaluation function changes significantly [2]. 

Algorithm 1 outlines the steps of this approach. The input to the algorithm is a (test) 
feature vector along with a constant max N orm which controls the amount (magni-
tude) of perturbation to be generated. With an increase in the value of max N orm , 
the perturbations become stronger. To generate the adversarial perturbations, we use 
uniformly distributed random numbers. 

Algorithm 1 Generation of Worst-Case Adversarial Sample 
1: Input: Original d-dimensional feature vector x, value of max N orm 
2: Output: Adversarial feature vector x̃ 
3: 
4: Steps: 
5: Sample a uniformly distributed random vector v in [−1, 1]d . 
6: m1 = Largest absolute value in v 
7: m2 = 
8: ṽ = Vector obtained after multiplying each element of v by m2. 
9: Generate adversarial feature vector: x̃ = x + ṽ 

max N orm 
m1 

After generating an adversarial sample corresponding to a given feature vector, 
we examine the impact of these adversarial samples on the accuracy of two state-of-
the-art linear max-margin multi-label prediction algorithms as discussed in Sect. 3.3. 

2.2 Feature Normalization to Safeguard Against Adversarial 
Attack 

Feature normalization is a well-practiced idea that is used as a de facto data pre-
processing technique in machine learning. In this paper, we study feature normaliza-
tion from a new perspective—as a defense mechanism to safeguard a model trained 
on clean (non-adversarial) data against adversarial attack. Specifically, we consider 
the well-known Euclidean norm (also called L2-norm) for feature normalization, 
which is given by

||x||2 =
√〈x, x〉 =

( d∑

i=1 

x2 i
)1/2 

(1)
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To normalize a feature vector using the Euclidean norm, we perform element-wise 
division of each element in the feature vector by ||x||2, which gives a normalized 
feature vector of unit norm. 

3 Experiments and Discussion 

In this section, we will discuss the datasets, evaluation metrics and multi-label clas-
sification methods used in our experiments, and the results of our analyses. 

3.1 Datasets 

In our experimentation, we have used two benchmark multi-label image annotation 
datasets, namely ESP Game [26] and IAPRTC-12 [11] as described below. 

ESP Game: This dataset was formed using an online game where two players are 
randomly given an image, and they need to assign some semantically relevant label(s) 
to that image. Each player does not know the labels being assigned by the other player 
until a common label is assigned by both of them, by which they score points. 

IAPRTC-12: It is a collection of still natural scene images, including pictures of dif-
ferent sports, actions, animals, landscapes, and many other aspects of contemporary 
life. A detailed textual description is associated in up to three different languages 
(English, German, and Spanish) to each image in this dataset. Makadia et al. [17, 
18] extracted nouns from the English language descriptions, which are treated as 
annotations to the images. 

The ESP Game dataset consists of 20770 images and 268 labels, while the 
IAPRTC-12 dataset contains 19627 images and 291 labels. Out of 19627 images 
in IAPRTC-12, 170 images in the training set and 5 images in the test set are dupli-
cated. After removing these images, we are left with 19452 images in IAPRTC-12. 

For each image in both the datasets, we use the feature representations provided 
by the authors of [27], in which a 4096-dimensional feature vector is extracted for 
each image using the VGG-F model [21]. After this, feature dimensionality has been 
reduced using PCA to explain 80% of the information. This yields 597-dimensional 
feature vectors for images in ESP Game and 536-dimensional feature vectors for 
images in IAPRTC-12. Statistics of these datasets are given in Table 1. 

3.2 Evaluation Metrics 

We use semantic versions of per-label precision, recall, and F1 score for evaluation 
following earlier papers [24, 27], and use the date provided by the authors of [27].
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Table 1 Statistics of the two datasets used in our experiments 

Dataset #Samples #Training 
samples 

#Test samples #Labels Labels/sample 

ESP Game 20770 18689 2081 268 4.7 

IAPRTC-12 19452 17495 1957 291 5.7 

While traditional precision, recall, and F1-score used in image annotation and multi-
label learning focus on the evaluation of predicted labels, they tend to ignore their 
semantics. Semantic metrics make use of semantic hierarchies of labels from Word-
Net [8] by extracting one or more directed paths from parent label to child label. 
This can be done for each label and gives information about semantic dependencies 
among them. For example, a “woman” is a “person”, a “lady” is a “woman”, and 
a “boy” is a “person”. To compute semantic metrics, we construct semantic paths 
for the ground-truth label-set and the predicted set of labels for a given image. After 
this, we assign a score (weight) to each semantic path from the ground-truth semantic 
paths. For every semantic path in the ground-truth semantic paths, we consider all 
those labels which are common in that semantic path and the predicted set of labels. 
Among the weights of such labels, the maximum weight is considered as the weight 
of that semantic path. After computing the weight corresponding to each seman-
tic path from the ground-truth semantic paths, we add all of them. Let s represent 
the cumulative weight. Now, we calculate semantic precision as Ps = s 

|P| , semantic 

recall as Rs = s 
|G| , and semantic F1 score as Fs 

1 = 2×Ps×Rs 

Ps+Rs , where |P| and |G| rep-
resent the number of semantic paths constructed for the predicted and ground-truth 
label-sets, respectively. 

3.3 Benchmark Max-Margin Multi-label Methods 

Multi-label classification is a fundamental task in machine learning, which is a gener-
alization of the (single-label) classification or multi-class classification task, and has a 
variety of applications. In the past, max-margin methods such as [1, 2, 10] have been 
shown to achieve state-of-the-art results on multi-label learning tasks, particularly 
when the number of samples and labels is large [3], and have thus been considered as 
benchmarks in studies focusing on diverse learning-based applications. Motivated by 
this, in this paper, we study the effect of the proposed adversarial attack and defense 
mechanisms on the image annotation task by empirically studying the performance 
of two state-of-the-art max-margin multi-label algorithms, namely ProXML [2] and 
DiSMEC [1], with various levels of adversarial attacks. Both these algorithms learn 
one classifier per label in a one-versus-rest manner, with the difference being in the 
regularization and loss terms used in their respective objective functions. For details 
on these algorithms, the reader may refer to the respective papers.
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3.4 Results and Discussion 

Now, we discuss the results obtained by experimenting on the above two datasets 
using the multi-label learning methods we discussed in Sect. 3.3, by evaluating the 
performance for the top 5, 7, and 9 predicted labels using semantic precision, semantic 
recall, and semantic F1-score. Specifically, we study the effect of adding the proposed 
perturbations to test features and evaluating the performance without (“After Attack”) 
and with normalization (“After Normalization”). The results of our experiments are 
shown in Tables 2, 3, and 4, which represent the results obtained for predicting 5, 
7, and 9 labels respectively on both the datasets. Here, the “Baseline” results denote 
the results of the evaluation on normalized original test features without having any 
perturbation added. In our experiments, we have generated three sets of adversarial 
test features using three different values of max N orm in Algorithm 1. Our results 
are divided into three setups depending on the value of max N orm, which we keep 
as 0.01, 0.1, and 1. 

The first setup in our experiments uses the max N orm value of 0.01. The per-
turbations generated by max N orm value of 0.01 are very weak and consequently 
we see that the results after the attack are almost similar to those with the original 
test features. This is because in the case of max N orm value of 0.01, the feature 
distribution does not change much to significantly affect the results in comparison 
to the baseline results. For the same reason as above, we do not see much effect of 
feature normalization on the results in this case. 

The second setup in our experiments uses a value of 0.1 for max N orm. Here, we 
have increased the max N orm value to 10× in comparison to the previous setup, and 
the results obtained on the adversarial features thus obtained demonstrate the effect 
of such an attack. We can observe that now the Fs 

1 score of ProXML on the ESP 
Game dataset has reduced by around 44% for 5, 7, and 9 labels. Similarly, the Fs 

1 
score of DiSMEC has reduced by around 40% for 5 labels and around 42% for 7 and 
9 labels. On the IAPRTC-12 dataset also, both the algorithms experience the effect 
of adversarial attack and demonstrate similar degradation in scores. In this case, the 
perturbations added to the test features change the feature distribution significantly, 
which results in a significant drop in the performance of both the algorithms. Next, 
unlike the previous case with max N orm = 0.01, now the effect of normalizing the 
adversarial features becomes visible and we observe improvements in performance 
in almost all the cases. For example, on the IAPRTC-12 dataset, ProXML achieves 
an improvement of 14.36, 17.71, and 22.26% in Fs 

1 score for 5, 7, and 9 labels 
respectively compared to the results without normalization. 

The third setup in our experiments uses a max N orm value of 1, which means 
now we are adding extreme perturbations to the test features. As we can observe, 
this leads to a substantial reduction in performance in all the cases. For example, the 
Fs 
1 score of ProXML on both the datasets drops down to the range of 1.68–2.87%, 

and that of DiSMEC now ranges from 3.95 to 6.13%. We can also observe that on 
increasing the magnitude of perturbations, the effect of normalization becomes more 
prevalent. In this case, normalizing the adversarial features leads to an improvement
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in all the metrics for both the methods on both datasets. For example, the Fs 
1 score 

of ProXML increases by 333.64% for 5 labels, 334.12% for 7 labels, and 316.38% 
for 9 labels on ESP Game, and on IAPRTC-12, ProXML achieves 427.98, 374.77, 
and 321.18% improvements in Fs 

1 scores for 5, 7, and 9 labels, respectively. 
In general, our algorithm for generating perturbations allows us to regulate the 

magnitude of the worst-case perturbations, and increasing the value of max N orm 
increases the intensity of the adversarial attack. Next, as we increase the intensity 
of the attack by increasing the value of max N orm, we see a clear advantage of 
normalization against the impact of such attacks. These results suggest that although 
normalization does not neutralize the effect of adversarial attacks completely, it does 
help in reducing the severity of such attacks. 

4 Summary and Conclusion 

In this paper, we have proposed a data- as well as model-independent adversarial 
perturbation generation mechanism to generate the worst-case perturbation vectors 
under the constraints on their norm. Adversarial samples are then generated by adding 
these perturbation vectors to original feature vectors without the need for the avail-
ability of training data and model, making the proposed attack mechanism highly 
generalizable. We have also studied the effect of feature normalization from a novel 
perspective of defense against adversarial attacks on max-margin multi-label classi-
fiers. Empirical studies on two benchmark datasets showed that feature normalization 
helps in reducing the adverse effect of adversarial attacks up to some extent. It does 
not neutralize the adversarial attacks completely, however it does reduce the severity 
of the impact of such attacks on empirical results. Further, the promise of feature nor-
malization in adversarial defense becomes more evident as the strength/magnitude of 
perturbations increase. These results demonstrate that feature normalization should 
be adopted as a standard practice to reduce the impact of adversarial attacks and 
increase the robustness of machine learning models against adversarial attacks in 
general. 
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Catch Me if You Can: A Novel Task 
for Detection of Covert Geo-Locations 
(CGL) 

Binoy Saha and Sukhendu Das 

1 Introduction 

The primary focus of the computer vision community has been on the understanding 
of visual scenes. To this end, many datasets and tasks have been proposed over 
the years to build AI systems that can perform specific scene understanding tasks 
like image classification [4, 10, 23, 25, 28, 30, 35], object detection [6, 7, 19, 
22, 31], image captioning [3, 16, 37, 45], visual question answering [1, 8, 16, 
37, 38], scene graph generation [18, 32, 33, 36], and many more. With the advent 
of deep convolutional networks [14, 15, 28, 30], one of the tasks where AI has 
evolved remarkably is object detection. Most successful object detection approaches 
are either based on two-stage region proposal methods [9, 26] or single-shot detection 
methods [20, 39]. These methods have become exceptionally good at recognizing 
and detecting objects. Thus, object detection can be used to instill knowledge about 
the distinguishing features of objects into machines. 

Although, most of the visual scene understanding tasks in the field of computer 
vision involve the identification of the objects present in the scene, non-object image 
regions like hideouts, corners, bends, turns, and other obscured regions of the scene 
also contain crucial information for a specific set of surveillance tasks. Thus, the 
next step for advancement toward the goal of scene understanding would be to detect 
such covert locations in a scene. 

Covert places for hiding behind any occluding objects (pillars, doors, and fur-
niture), are concealed locations that are not usually detectable from the viewpoint 
(camera). However, an intelligent agent can analyze the scene to foresee such poten-
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tial regions around the obscuring (occluding) objects, from where the threats loom 
large. These specific parts (image regions) around the boundaries of occluding objects 
are the targets for detection by the algorithm. These locations may either be: (i) poten-
tial zones of threat caused by an adversary hiding behind the object, or (ii) target 
zones for further investigation to detect any other unidentified concealed object. To 
advance toward the goal of identification of such regions, we propose a novel task 
termed Covert Geo-Location (CGL) Detection. CGL detection finds applications in 
military counter-insurgency operations and intelligent scene surveillance (for iden-
tification of target zones) with path planning for a robot. In this work, we provide an 
intelligent visual aid for the identification of such locations. 

We define the problem addressed in this paper as: Given an input RGB image, 
the goal is to identify all covert places (hideouts) in that image. We pose the CGL 
detection problem as that involving identification of regions encapsulating specific 
target boundary sub-segments of an obscuring item/object in a scene, which either 
poses threat or can act as target zones for further inspection of the scene. Since it is not 
possible to classify any region of an image as a hideout (CGL) without looking at its 
surroundings, CGL detection requires context-aware detection, and identification of 
CGLs in an image would require depth information of regions around the boundaries 
of obscuring items (like pillars, doors, furniture, wall endings, sofa, cot, etc.) and 
knowledge about the spatial position (in 3D) of the occluding object with respect to 
its background and neighboring objects in the scene. 

We also highlight the importance of extracting depth information for CGL detec-
tion, which the traditional (object) detection approaches often do not consider. Our 
proposed method successfully extracts relevant depth features from only a single 
RGB image as input and quantitatively yields significant improvement over exist-
ing object detection and segmentation models (when adapted and trained for CGL 
detection). 

In methods used for object detection, the classification of any region of interest 
(RoI) is solely dependent on the features of the RoI itself. Identifying and localizing 
covert locations will require additional knowledge about the RoI. For instance, to 
classify any object as an obstruction, the image region containing just the occlud-
ing object is not enough; knowledge about its position on the floor and the objects 
around it are equally important. As identification of covert locations requires knowl-
edge about neighboring and background objects as well as their relative positions, 
models should learn to perform context-aware detection capturing the 3D spatial 
relationships between objects (their boundaries) and their surroundings. 

For that purpose, we introduce a novel task termed Covert Geo-Location (CGL) 
Detection. Given an input RGB image, the goal is to identify and localize parts of 
boundaries of occluding objects, behind which lie potential hideouts (Covert Geo-
Locations) in the scene. The output of the algorithms must hence be bounding box 
templates overlaying specific sections of boundaries of the occluding objects (as 
shown in Fig. 1a). This task is challenging because the model needs to infer the 
spatial relationship of an occluding object with the floor (for support, space require-
ments, and reachability), characteristics of boundaries on the obscuring items, etc. 
Figure 1b, c show examples of both cases: CGL (green boxes) as well as locations
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CGL 
Detection 

Model 

Input Output 

(a) 

(c)(b) 

Fig. 1 a shows the input and the expected output for CGL detection. Blue bounding boxes indicate 
hand-annotated CGL Ground Truth. In b, c, green bounding boxes indicate valid CGL locations; 
while red ones indicate locations that appear similar to a CGL, but do not fall in that category 
(hideout or covert locations). In case of (b), no floor or platform exists at the base of the vertical 
zones (behind the pillar edges), indicated by red bounding boxes, for anything to be placed and 
obscured. In case of (c), the obscuring item (tabletop) cannot hide anything behind it 

that appear similar to a CGL but actually are not (red boxes) so. In case of (b), no 
floor or platform exists at the base of the vertical zones (behind the pillar edges), 
indicated by red bounding boxes, for anything to be placed and obscured. In case of 
(c), the obscuring item (tabletop) cannot hide anything behind it which rests on the 
floor. 

We also present a novel dataset for CGL detection containing real-world images 
depicting diverse environments captured in normal lighting conditions. Our dataset 
consists of images captured in indoor environments and building premises. On aver-
age, images contain around 8 to 9 CGLs, with the total number of hand-annotated 
CGLs being ≈15 K. We believe that this first-of-a-kind dataset along with its anal-
ysis presented in this paper will offer a new domain of work along the line of the 
aforementioned application. 

Humans identify hideouts by searching for areas in the scene where there is enough 
distance between the foreground and its background. Since a depth map captures the
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relative distance information, it can act as a good cue for CGL detection. As depth is 
independent of illumination, it provides a great complementary modality. However, 
effectively fusing information from RGB and depth modality is non-trivial, and it 
often requires additional computational power. Also, most of the existing datasets 
[5, 8, 13, 21] for vision-related tasks, including our CGL detection dataset, do not 
contain corresponding depth maps for input images. This leads us to the question, 
can we train models to jointly generate RGB and depth features, taking only RGB 
images as input? We address this question in this paper by proposing a novel method 
for CGL detection. 

We observe that object detection models fail to capture the spatial contextual 
information essential for CGL detection. To perform context-aware detection, we thus 
map CGL detection to a binary segmentation task and experiment with segmentation 
models. We propose a novel segmentation-based method that implicitly attempts 
to train the feature extractor to generate relevant depth features. Our method uses 
an additional decoder called Depth-aware Feature Learning Block (DFLB), which 
is trained to classify image regions that have depth patterns similar to CGLs, as 
one class (say “potential CGL”), and the rest of the image as another class. DFLB 
serves two purposes, it aids the CGL segmentation block (supervised using hand-
annotated ground truth) in attending to image regions having the necessary depth 
patterns appearing over CGL templates, and helps the common encoder to extract 
relevant depth features from the input RGB image. Subsequently, we propose two 
feature-level loss functions for the self-supervision of the common encoder, which 
further enhances the performance of our model. 

Our key contributions are summarized as follows: (1) We propose a novel 
CGL detection task, which requires context-aware location detection. (2) We present 
a CGL detection dataset depicting diverse and challenging environments. Images 
from our dataset contain naturally occurring glares and shadows. (3) We propose 
a method for jointly learning RGB and depth features taking only a single RGB 
image as input. We introduce the Depth-aware Feature Learning Block (DFLB), 
which steers the feature extractor toward the extraction of relevant depth features. 
(4) We propose two feature-level loss functions, namely Geometric Transformation 
Equivariance Loss (GTE loss) and Intraclass Variance Reduction loss (IVR loss) for 
self-supervision of the encoder. 

2 Related Work 

The ultimate goal of artificial intelligence is to mimic human intelligence. Throughout 
the history of artificial intelligence, the research community has tried to incrementally 
move toward this goal by designing tasks and curating datasets for incorporating 
various aspects of human intelligence into machines. In this work, we propose yet 
another task that can be used to instill a new type of knowledge into machines. In 
this section, we briefly describe some of the tasks that have been explored so far for 
visual scene understanding and contrast each one of them with our proposed task.
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Object Detection In object detection [9, 20, 26, 39], the task is to identify and 
localize all objects present in the scene. For the classification of RoIs (regions that 
potentially contain an object) in object detection, features of the ROIs alone are 
sufficient. Global (image-level) context also influences the detection in certain cases 
but the local spatial context (knowledge about the surroundings of the RoI) is never 
exploited in object detection. On the other hand, local spatial context with respect to 
other neighboring regions of the scene is of paramount importance for CGL detection. 

Semantic Segmentation The goal in semantic segmentation [29, 34, 46] is to  
generate a pixel-level classification map having a size of H × W , where each pixel 
is assigned to one of the K categories. Although CGL detection can be mapped to a 
binary semantic segmentation task, it is far more challenging to segment CGLs than 
the categories available in existing segmentation datasets [21, 43, 44]. 

Scene Recognition: In this task, given an input image, the model needs to classify 
the entire image into one of the “K” scene categories. As pointed out in [40–42], 
for an intelligent system to understand the environment thoroughly, it should be 
able to identify the place, and to do that, the system needs to understand what set 
of objects co-occur at what places and how the arrangement of objects depends 
upon the place. As CGL detection encourages context-aware location detection, CGL 
detection models can aid in identifying complex regions like corners, hideouts, bends, 
turns, and other obscuring regions of the scene, leading to better scene recognition. 

Other visual scene understanding tasks: Tasks like visual question answering 
VQA [1, 8, 38] (which involves answering natural language questions about an input 
image), scene graph generation SGG [13, 17, 32] (which involves detection of objects 
in the input image and generation of a graph depicting the relationships between 
the detected objects), and image captioning [3, 16, 21] (which involves producing 
natural language captions for an input image) also require complex understanding 
of the relationships between the objects present in the scene, but RoI classification 
in all the abovementioned tasks is still context agnostic. 

None of the datasets used for existing vision-related tasks has manually annotated 
regions in images identifying locations of hideout (regions for concealment) to be 
exploited for the problem addressed in this paper. CGLs can also be considered to 
be non-object locations (but in the vicinity of objects) around the edges of certain 
objects, having a distinct depth pattern. In surveillance scenarios, CGL detection 
can aid in the exploration of zones in an image, which are potential candidates for 
hazards and threats. 

3 Dataset Details 

3.1 Images 

Existing computer vision datasets do not contain CGL-centric real-world images, 
so we have curated a novel collection of images for CGL detection. Images of our
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Fig. 2 Some of the images from our proposed dataset are overlaid with ground 
truth CGL bounding boxes. CGL bounding boxes are indicated in blue. Few more 
image samples are included in the supplementary material. https://drive.google.com/file/d/ 
1_hu31vshulC8P2bTL9xouZQRJ0Btqe0u/view?usp=sharing Link to the gallery and dataset 

dataset were captured using a Nikon D7200 DSLR camera. We intentionally avoided 
any humans in the view, to make the images of our dataset realistic from the point 
of view of the application (counter-insurgency operations) and to avoid violation 
of ethical norms. Our dataset consists of 1400 real-world images depicting diverse 
environments. To build robust models that can handle varied lighting conditions, 
we have captured some of the images in broad daylight and some of the images 
during nighttime in normal lighting conditions. As will be the case with images 
encountered by the model in the real world, images in our dataset contain naturally 
occurring shadows and glares. Images were captured in corridors, residential houses, 
offices, labs, classrooms, large dining halls, seminar halls, etc. The majority of our 
images (sample images are shown in Fig. 2) depict indoor scenes and a few images 
depict building premises. Our images are of dimension 1080 × 1920 (H × W). 

We experimented with two train/test splits: split 1 and split 2, each containing non-
overlapping sets of image samples in train vs test partitions. In split 1, the images 
in the test set (offices, lobbies, etc) are chosen from scene conditions and locations 
different from those in the train set (classrooms, houses, etc). This ensures that the 
locations are unknown for the model at test time. In split 2, a few images (≈17%) 
in the test set are also from those conditions/locations appearing in the train set too. 
Split 1 is more challenging as compared to split 2 because the model trained on the 
training set of split 1 would not have seen test set locations, and thus the model would 
have to be robust enough not to overfit to any inconspicuous biases present in the 
dataset (train set), to generalize well on new locations. Both the training sets contain 
around 80% of the images and the test sets contain the rest of the images (≈20%).
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3.2 Annotations 

Annotation involved drawing bounding boxes around CGLs as in the case of object 
detection [5, 21]. For annotating our dataset, we used an online interactive annotation 
tool named Supervisely. Annotations were performed in two phases. In the first phase, 
bounding boxes were drawn around CGLs and in the second phase, every image was 
verified by at least three other annotators followed by a master annotator, and minor 
corrections/adjustments were made to the bounding boxes wherever required. 

To give a physical analogy from the real world: imagine the scenario of a hide-and-
seek game played indoors by children. As a child (player) enters a room and looks 
for potential places for hideout, he/she must identify zones around all such objects, 
each of which has the potential to obscure another object or a friend. All edges of 
an object are not important to explore. The child is knowledgeable enough with the 
experience to seek only noteworthy places to explore, based on scene analysis by 
the human brain. This scenario was described and explained to annotators at the 
beginning of their work, with examples. So the job of the annotators mainly involved 
the identification of specific sub-sections of boundaries of obscuring objects, which 
have either zones for concealment and are adjacent to zones needing further visual 
exploration for unearthing any occluded object/human. 

As discussed earlier, CGL locations in an image are specific boundaries of occlud-
ing objects which have the: (i) potential for imminent threats, or (ii) potential to pro-
vide scope for further exploration of the scene. Hence, CGLs in an image usually lie 
around the boundary/edges of items like furniture, pillars, doors, windows, staircase, 
packing boxes, etc. Image regions around specific edges of these items are treated as 
CGLs if they have the potential (3D space) to occlude and accommodate an object 
or person. Anyone (or any item) hiding behind any obscuring item may appear in 
the view from these CGL regions, making these regions locations of threat as well 
as of interest for further exploration of the environment. 

Although the targets for CGL are specific boundaries of occluding objects, it is 
hard for both the annotators to delineate them, as well as for detection algorithms 
to identify such sub-segments of edges and lines. Moreover, threats appearing from 
behind the occluding objects typically appear from around these boundaries. Hence, 
we decided to identify CGL as a rectangular template around the boundaries of 
occluding objects, with partial coverage of both the body of the object and its back-
ground layer. This made the task of both the annotator and the detection model 
easier. 

CGL bounding boxes have been annotated such that approximately 40% of the 
area inside the bounding box contains the obscuring item and the rest (60%) consists 
of background or neighboring objects. This 60–40 ratio is only notional and was given 
as advice to annotators. CGLs in our dataset are of two types: horizontal (wherein the 
height of the bounding box enclosing the CGL is less as compared to its width) and 
vertical (wherein the width of the bounding box is less as compared to its height). 

For the height of vertical CGLs, the average human’s height (as qualitatively 
perceived in the scene by an annotator) was used as a measure of maximum range to
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annotate. The width of a vertical CGL and the height of a horizontal CGL depends 
on the size of obscuring object, but we have tried to follow the convention of keeping 
these quantities close to 100 pixels. Our dataset contains 15K CGLs, out of which 
59% are vertical CGLs and 41% are horizontal CGLs. Annotations are stored in MS 
COCO JSON format [30]. The size of the anchor box is a crucial hyperparameter for 
any anchor-based detection model. So we have included distributions for the height 
and width of horizontal and vertical CGL bounding boxes in the supplementary 
material. More statistics on the number of horizontal and vertical bounding boxes 
(per image) are included in the supplementary material. 

CGL detection model should be able to detect CGLs irrespective of the obscur-
ing item. So, to support the training of deep models that can learn the underlying 
characteristics of CGL without overfitting to the obscuring items present in our CGL 
detection dataset, we have tried to incorporate a diverse set of obscuring items such 
as door, staircase, pillar, sofa, window, chairs, etc. Although furniture objects, pillars, 
and obstructions constitute the majority of the obscuring items in our dataset, their 
appearances do vary significantly across environments. 

4 Adaptation of Existing Models for CGL Detection 

As CGL detection involves the identification and localization of RoIs, we can either 
adapt models designed for object detection or we can use binary semantic segmenta-
tion by considering pixels inside CGL bounding boxes to be of one class (CGL) and 
the rest of the image to be of another class (non-CGL/background). In this section, we 
describe the object detection and segmentation models we have adapted and trained 
(from scratch) for CGL detection as part of our initial exploration. 

4.1 YOLOv3 

As YOLOv3 [6] is one of the standard models for most detection tasks, we adapt 
and train it for CGL detection. However, since CGL detection is much more chal-
lenging when compared with object detection, we observe that YOLOv3 (proposed 
for object detection) fails to capture the complex relationship between CGLs and the 
neighboring obscuring items. 

To classify any region of an input image as a CGL, spatial context is as important 
as the features of the concerned region. However, existing object detection models 
do not take into account the spatial context for the classification of RoIs. On the 
other hand, segmentation models can take into account the spatial context. Thus, we 
map CGL detection to a segmentation task and explore several existing segmentation 
models for CGL detection.
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4.2 MobileNetv2 

CGL detection could find direct application in the field of robotics. Hence, we con-
sider MobileNetv2 [11, 27] for CGL segmentation. MobileNetv2 provides an excel-
lent option if the model is to be deployed on a low-end device, as it uses depthwise 
separable convolutions to reduce the number of model parameters. It uses an inverted 
residual block where skip connections are used to connect linear bottleneck layers. 

4.3 HRNetv2 

Most of the CNN-based feature extractors gradually reduce the resolution of the 
feature map, but HRNetv2 [29] maintains high-resolution representation throughout 
the process. It employs parallel high-to-low resolution subnetworks, which exchange 
information at each layer to produce good high-resolution representation. HRNetv2 
has been shown to perform very well on segmentation tasks. Hence, we incorporate 
it for CGL segmentation. 

5 Proposed Method 

We propose a segmentation-based model for CGL detection (shown in Fig. 3). Most 
RGB segmentation models contain a single encoder and a single decoder. For our 
method, we propose an additional auxiliary decoder called Depth-aware Feature 
Learning Block (DFLB), which facilitates the joint learning of RGB and depth fea-
tures by the common RGB encoder and also guides the CGL Segmentation Block 
(CGLSB) in attending to regions having depth pattern suitable for CGL detection. 

Pseudo-GT (yDFLB) 

CGL GT (yCGL) 

Input (I) 

Depth-aware Feature Learning Block (DFLB) 

CGL Segmentation Block (CGLSB) 

LGTE 

Output (ŷCGL) LCE 

LCE 

Shared 
ŷDFLBF1 

DFLB 

F1 
CGL 

Fe 

Ft 
e 

Encoder 

Geometric 
Transformations 

Convolutional 
Decoder Layer 

Intermediate 
Feature Maps 

Element-wise 
Multiplication 

LGTE 

Geometric 
Transformation 
Equivariance Loss 

Fig. 3 The proposed architecture for CGL detection using binary semantic segmentation. The 
dashed red box (top) encloses the proposed Depth-aware Feature Learning Block (DFLB), which 
aids in learning depth-aware features. The dashed cyan box (bottom) encloses the CGL segmentation 
block (CGLSB)
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Hand Annotated GT (yCGL) 

PGT (yDFLB) 

Input Image (I) 

(a) (b) 

Logical OR operation+ 
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Depth Estimation 
Model 

Binary 
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Edge Detection 

Fig. 4 a Shows a part of depth map for the input image shown in (b). GT CGL bounding boxes 
have been overlaid on the depth map and some of the bounding boxes have been enlarged for better 
visualization of the depth pattern in a CGL. This depth pattern will henceforth be referred to as 
the “CGL depth pattern”. b shows the flowchart depicting the process of generation of Pseudo-GT 
(PGT). The green box over the depth map indicates the area that has been enlarged and shown in 
(a), to clearly exhibit some samples of “CGL depth pattern”. Yellow blobs in PGT represent regions 
having “CGL depth pattern” 

An illustration of CGL depth pattern is shown in Fig. 4a. Although our model resem-
bles multi-task learning networks [2, 24], our main novelty lies in learning relevant 
depth features using a multi-task learning setting. We also propose to use two novel 
feature-level loss functions for the self-supervision of the encoder (feature extractor). 
These loss functions are described in detail in Sects. 5.5 and 5.6. 

5.1 Notations 

Given an RGB input image I ∈ R3 × H × W , the goal of semantic segmentation is 
to generate a pixel-level classification map with size H × W , where each pixel 
is assigned to one of the K categories. Number of categories (K) is 2 (CGL and 
non-CGL/background) in case of CGL segmentation. Input image is first passed 
through the common encoder to get encoder feature map denoted by Fe, where Fe 
∈ Rd × H/4 × W/4. Encoder feature maps are passed to both DFLB and CGLSB that 
generate label maps ŷDF  L  B  and ŷCG  L , respectively, as output, where, ŷDF  L  B , ŷCG  L  

∈ R2 × H/4 × W/4. We denote the ground truth segmentation masks for DFLB and 
CGLSB by yDF  L  B  and yCG  L , respectively, where yDF  L  B ,yCG  L  ∈ RH/4 × W/4 (binary 
maps). Element-wise fusion is performed between the output of first layer of DFLB 
and that of CGL segmentation block. These intermediate outputs are represented by 
F1 
DF  L  B  and F

1 
CG  L  ∈ Rd/4 × H/4 × W/4, respectively.
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5.2 Encoder 

To extract rich high-resolution features from the RGB input image, we use HRNetv2 
as the encoder. However, in the quantitative results section, we show that our method 
works well irrespective of the encoder used. Encoder feature maps Fe are passed 
to both the decoder blocks, DFLB and CGLSB. The loss components from DFLB 
and the CGLSB together optimize the encoder weights such that the encoder feature 
maps capture necessary information for satisfying the objectives of both the decoder 
blocks simultaneously. 

5.3 Depth-Aware Feature Learning Block 
(DFLB)—Auxiliary Decoder 

Although the presence of CGL depth pattern alone does not make any region a 
CGL, we can infer from Fig. 4a that, depth information provides an excellent cue 
for CGL detection, since there is an abrupt change in depth values across the edges 
of obscuring items contained in CGLs. Thus, a good encoder should extract features 
that contain relevant depth information. 

To achieve this, we employ an additional auxiliary decoder branch that is trained 
to perform CGL depth pattern segmentation. As the name suggests, CGL depth 
pattern segmentation involves pixel-level segmentation of the input image into two 
classes (One of the classes represents pixels constituting a CGL depth pattern and the 
other class represents the rest of the pixels). As there is a high correlation between 
depth information and the desired output for CGL depth pattern segmentation, the 
segmentation loss for DFLB would compel the common encoder to extract depth-
aware features. Hence, the additional decoder has been named Depth-aware Feature 
Learning Block (DFLB). 

The first layer of DFLB is composed of one 2D convolutional layer followed 
by batch normalization and ReLU. For supervision of DFLB, we generate pseudo 
ground truth (PGT) as illustrated in Fig. 4b. PGT (yDF  L  B  ) is a binary map representing 
regions having depth pattern similar to that in a CGL by 1s and other regions of the 
image by 0s. PGT generation involves the following sequence of steps: (1) Pass 
RGB images to any depth estimation model [12] to get the depth maps (Idepth), (2) 
Smoothen the depth maps, (3) Apply Sobel filter (Canny edge detector does not give 
superior results) to the smoothened depth map to obtain regions having CGL depth 
pattern, and (4) Squash the gradient magnitudes using the sigmoid function. 

g = φ(G ∗ (Kavg ∗ Idepth)) (1)
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where * represents the 2D convolutional operation, φ is sigmoid function, G =⎡ 

⎣ 
−1 0  1  
−2 0 2  
−1 0  1  

⎤ 

⎦ and the smoothing kernel Kavg is a 11x11 averaging kernel. 

(5) Apply binary thresholding to the output of Step 4. 

b =
{
1, if g ≥ Th  (where, Th is a gradient threshold) 
0, otherwise 

(2) 

(6) Combine the output obtained in step 5 with the hand-annotated GT (yCG L  ) using  
logical OR operation (⊕), to retain all GT CGL locations in PGT (yDF  L  B  ), as 

yDF  L  B  = b ⊕ yCG L (3) 

The loss function used to train DFLB is given as 

LDF  L  B  = LCE  ( ̂yDF  L  B  , yDF  L  B  ) (4) 

where, LCE  represents cross-entropy loss. 

5.4 CGL Segmentation Block (CGLSB) 

Part of the proposed architecture (shown in Fig. 3) marked using a dashed cyan box 
indicates CGLSB. This block is responsible for performing CGL segmentation, with 
encoder feature maps (Fe) and output of the first layer of DFLB (F1 

DF  L  B) as input. 
CGLSB comprises the same sub-layers as DFLB but the weights are different for the 
two blocks, and they are supervised using different ground truth masks. CGLSB is 
supervised using hand-annotated CGL ground truths encoded as binary segmentation 
masks (yCG L  ). In yCG L  , pixels inside GT CGL bounding boxes are represented by 1s 
and other image pixels are represented by 0s. The output of the first layer of DFLB 
(F1 

DF  L  B) contains depth information about image regions as it is used for final class 
score estimation by the second layer of DFLB. It (F1 

DF  L  B) helps CGLSB to attend 
to regions containing CGL depth pattern. The output of this block is generated as 
given below 

ŷCG  L  = f (F1 
DF  L  B  ◦ F1 

CG  L  
) (5) 

where f represents the second layer in CGL segmentation block, which computes 
the final class scores. ◦ represents element-wise multiplication. 

Loss function used to train CGL segmentation block is given as 

LCG  L  = LCE  ( ̂yCG L  , yCG L  ) (6) 

where, LCE  again represents cross-entropy loss.
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5.5 Geometric Transformation Equivariance (GTE) Loss 

Any geometric transformations performed on the RGB image should get replicated 
in the feature space as well, i.e., if features for the input image I are Fe and features 
for the geometrically transformed image are Ft 

e , then if we perform the same trans-
formation on Fe, we should obtain Ft 

e . In this paper, we have used rotation (by 90
◦) 

as the geometric transformation because we want features for horizontally oriented 
CGLs to be similar to those for vertically oriented CGLs. The loss function is given 
as follows: 

LGT E = LMSE (F
t 
e , F

T 
e ) (7) 

where, FT 
e represents the rotated version of Fe. Rotation was performed with the 

channel dimension as the axis of rotation. 
This loss function helps in learning better representations of the input image in a 

self-supervised manner. 

5.6 Intraclass Variance Reduction (IVR) Loss 

We want the CGL detection model to focus more on the underlying characteristics 
of CGL (depth pattern and relationship with respect to neighboring regions of the 
image) and be robust enough to detect CGLs irrespective of whether the obscuring 
item was seen during training. So to ensure this, we impose a feature-level constraint 
using the following loss function: 

LIVR = 
K∑
i=1 

1 

D 

d∑
j=1 

var( ̂yCG L [i] ∗  Fe[ j]) (8) 

where K is the total number of classes (2 for CGL segmentation), and d represents 
the total number of channels in encoder feature map. 

This loss function tries to reduce the intraclass variance in feature space and 
thus forces the model to focus more on (or extract) features that are absolutely 
necessary for the task at hand. As a result, the CGL detection model starts to rely 
more on relevant depth features rather than the features describing the obscuring 
items. Predicted class probabilities are used to get class information for intraclass 
feature variance estimation. 

Total loss for our model is given as 

L⊔≀⊔ = α ∗ LCGL + β ∗ LDFLB + γ ∗ LGT E + δ ∗ LIVR (9) 

Where, α, β, γ , δ are hyperparameters.
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5.7 Testing 

The depth map is not required during testing as it is used just for the supervision of 
DFLB and the encoder. The output of the model is produced by the CGLSB. DFLB 
is not used during testing. 

6 Results and Experiments 

6.1 Evaluation Metric 

We use the standard mean Intersection-over-Union (mIoU) metric for the evalua-
tion and comparison of models. In order to compare object detection models with 
segmentation models, a common evaluation metric is required. So, we convert the 
output of object detection model into segmentation masks by assigning pixels inside 
predicted bounding boxes to CGL class (1s) and the rest of the pixels to non-CGL 
class (0s). 

On average, CGLs cover about 10% of the image. So the models usually have a 
good IoU score for the non-CGL (background) class, which boosts the mIoU score. 
For this reason, We also report IoU scores for CGL class separately, denoted as CGL 
IoU. 

6.2 Quantitative Results 

As evident from Table 1, segmentation models are better at CGL detection. Even 
though MobileNetv2 has a significantly less number of parameters, it outperforms 
YOLOv3 on split 2, supporting our hypothesis that segmentation models have an 
upper hand in CGL detection. mAP25 for YOLOv3 is 9.58 on split 1 and 14.5 

Table 1 Performance of existing object detection and segmentation models when used for CGL 
detection. All models were trained from scratch on the proposed CGL detection dataset. Architecture 
of the decoder (C1) is same as CGLSB 

Model Split 1 Split 2 

mIoU CGL IoU mIoU CGL IoU 

YOLOv3 [6] 52.71 19.28 56.77 26.99 

MobileNetv2 + 
C1 [27] 

51.24 15.03 76.72 60.42 

HRNetv2 + C1 
[29] 

55.31 23.36 81.95 69.75
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Table 2 Performance of the proposed CGL segmentation model, with different encoders 

Encoder Split 1 Split 2 

mIoU CGL IoU mIoU CGL IoU 

MobileNetv2 [27] 54.19 20.62 78.46 63.40 

HRNetv2 [29] 61.95 35.48 83.55 72.38 

Table 3 Ablation study using Split 1, showing the effect of each module in the architecture. 
HRNetv2 was used as the encoder for all these experiments. Table 1 shows the results obtained 
when all three additional loss components (DFLB, GTE_Loss, IVR_Loss) are absent 

DFLB GTE_Loss IVR_Loss mIoU CGL IoU 

✓ ✗ ✗ 57.76 27.64 

✗ ✓ ✗ 57.50 26.96 

✗ ✗ ✓ 57.97 27.94 

✓ ✓ ✗ 58.06 28.05 

✓ ✗ ✓ 58.45 28.91 

✗ ✓ ✓ 59.04 29.75 

✓ ✓ ✓ 61.95 35.48 

on split 2. mAP50 is 5.81 and 10.6, respectively. YOLOv5 yields similar results as 
YOLOv3. Base code for segmentation models was taken from [43, 44]. Our proposed 
method effectively extracts necessary depth information from only an RGB image as 
input and gives the best results on both data splits (evident from Table 2). However, 
there is still a lot of scope for performance improvement, providing evidence for 
the toughness of our dataset and the hardness of the problem we have attempted to 
solve. The performance is lower on split 1 for all models, as they are subjected to 
completely unseen environments at test time (in split 1). In split 2, partial overlap 
exists between train and test set environments. 

Table 3 shows how performance varies with the removal of different modules 
in our architecture. Overall, we observe that the proposed feature-level loss func-
tions complement the supervised segmentation loss, leading to a significant boost in 
performance. 

6.3 Qualitative Results 

Figure 5 shows qualitative results for existing as well as the proposed method on 
split 2. It can be seen that existing models fail to capture the depth pattern in CGLs 
and rely more on edges in the image to detect CGLs. Our proposed model gives
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Fig. 5 Qualitative results on split 1. To indicate CGL blobs predicted by segmentation models, we 
have overlaid those regions of the input image with translucent red-colored masks and enclosed them 
in green bounding boxes. The last column shows the output of our proposed model with HRNetv2 
as the encoder. The orange boxes enclose outputs with no detections. In (c), our model detects 
only certain portions of the CGL. Qualitative results on Split 2 are included in the supplementary 
material. [ *—existing models adapted and trained for CGL detection ] 

more importance to depth information and thus it successfully gets rid of the false 
detections (see example c) made by baseline models. Additionally, YOLOv3 also 
struggles to perform accurate localization for CGL detection. 

7 Conclusion and Discussion 

In this paper, we propose a new task termed Covert Geo-Location (CGL) Detection. 
Given an input image, the goal is to identify and localize Covert Geo-Locations 
(potential hideouts) in the image. We discuss the importance of this task in visual 
scene understanding and the AI capabilities required to accomplish this task. We 
provide a CGL detection dataset containing real-world images captured in diverse 
environments. We demonstrate the importance of depth information for CGL detec-
tion and propose a novel segmentation-based Depth-aware Feature Learning Block 
(DFLB) that facilitates the extraction of relevant depth features (from only an RGB 
image as input) required for the proposed task. We also propose two feature-level 
loss functions which further complement the supervised loss functions. We provide 
empirical evidence for the superiority of our model over existing object detection 
and segmentation models (in the absence of any prior work published in this problem 
domain). 

Lately, the effective fusion of RGB and depth information has been an active area 
of research. Although our task is different from the existing vision-related tasks, and
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the ground truth depth information is not available, the existing (or tailored for CGL 
detection) RGBD segmentation and detection models can also be explored using 
model-generated pseudo depth map as input along with the RGB image. 
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MATIC: Memory-Guided Adaptive 
Transformer for Image Captioning 

Gaurav O. Gajhiye and Abhijeet V. Nandedkar 

1 Introduction 

Image captioning task entails the interpretation of visual contents and its descrip-
tion in natural linguistic manner automatically [6, 13, 23, 24, 27]. In the past few 
years, the topic has gained popularity in the field of artificial intelligence due to the 
cross-modal interaction of vision and language modality and abundant research is 
still being conducted to explore the connectivity between vision-language modeling 
(e.g. dense captioning, visual question answering, video captioning, and cross-modal 
retrieval) [1, 9, 12, 25]. The image captioning task was fascinated by sequence learn-
ing and machine translation [2] and was primarily addressed by encoder-decoder 
frameworks. The encoder substantially extracts visual characteristics using variants 
of convolutional neural network (CNN) and the decoder faithfully constructs the cap-
tion using forms of recurrent neural networks (RNN). Further, the attention mech-
anism [16] was equipped with a CNN-RNN structure to attend to prominent visual 
regions while generating the word sequence. Despite these advances, the association 
of objects, attributes, and their intrinsic relationship to describe images remains the 
topic of intense research. 

In CNN-RNN-based structures, the pre-trained CNN methods for visual features 
were used to capture dominant visual attributes but were incompetent for capturing 
inherent visual knowledge for captioning. The long-short term memory (LSTM) 
[10] was commonly utilized as a form of RNN to have a long-term dependency on 
linguistic patterns and generates the next sample by operating on the hidden state of 
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the current time step. This regressive nature of LSTM does not allow to parallelize 
the training procedure. 

The novel Transformer [21] architecture has shown the significant potential in 
addressing the sequence modeling tasks like language generation and translation, as 
well as multi-modal sequential learning [8]. The standard Transformer is consist of 
an encoder-decoder model, where the encoder represents the stack of self-attention 
module followed by feed-forward network and the decoder represents the stack of self 
and cross attention module followed by feed-forward network. The autoregressive 
nature of Transformer extends its capability with the stack of attention modules 
and position-wise embedding of input sequences for parallelism. This motivates to 
investigate the utility of Transformer for describing the contents of a visual scene 
by extracting inherent scenery knowledge. Inspired by Cornia et al. [8], this work 
targets the investigation of memory vectors in a visual encoder to determine the 
correspondence between objects and attributes using CNN features. In this work, 
a novel Memory-guided Adaptive Transformer is proposed with a memory-guided 
encoder for preserving intrinsic visual information received from traditional CNN, 
while the decoder connects the visual and linguistic features by learning inter-modal 
association with an adaptive gating mechanism for image description. The overall 
contributions of the work are as follows: 

• Single layer of the memory-guided encoder in conjunction with conventional con-
volution network is presented for finding the inherent relationship (such as colors, 
positions, gender, and background) within objects and understand scene attributes 
by updating memory parameters. 

• Multiple layers of the decoder with adaptive multi-headed attention modules, co-
relate the visual and linguistic pattern by assigning adaptive weightage to spatial 
and language attention for predicting the future word sample. 

• A novel Memory-guided Adaptive Transformer for Image Captioning (MATIC) 
is proposed by incorporating a single memory-guided encoder layer with multiple 
adaptive attention decoder layers, and its performance is validated on Flickr8k 
[19] and Flickr30k [28] dataset. 

2 Related Work 

The image captioning task became one of the vital issues in artificial intelligence and 
has been widely addressed by numerous methodologies in the past few years with 
advancements in deep learning algorithms. In this section, based on the architectural 
design, the literature is divided into two subgroups as (i) CNN-RNN-based models 
and (ii) Transformer-based models.
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2.1 CNN-RNN Based Models 

In CNN-RNN-based encoder-decoder methods, CNNs were broadly employed as 
a visual encoder for spatial-regional characteristics and RNNs were adopted as 
decoders for the generation of word sequences. In earlier study [11, 13, 17, 23], 
various levels of CNN were used for spatial features and visual regions extraction 
and trained with a language model consisting of RNN layers to optimise the likelihood 
probability of word sequences given the image. The notion of attention in machine 
translation [2] was utilized in image captioning to attend to prominent visual fea-
tures aligned with each word in sequence [26]. Later, the purpose attention network 
was enhanced in [27] by combining attending on visual regions and visual semantic 
attributes with RNN for better caption prediction. To collect more fine-grained infor-
mation about visual scenes, channel and spatial-wise attention was introduced with 
CNN [6]. The adaptive mechanism was combined with attention network [16] for  
providing substantial weightage to visual and linguistic models in order to generate 
word sequences. 

2.2 Transformer Based Models 

The transformer model has advanced to the cutting-edge of several essential tasks in 
the artificial intelligence domain, including image captioning. In Yu et al. [29] CNN-
based regional encoder with self-attention has merged with Transformer decoder for 
transforming visual information into textual captions. The Transformer’s decoder 
section was updated in Zhang et al. [30] to describe the visual contents sequentially, 
by including an adaptive mechanism in the multi-head attention component leverag-
ing the query vector. Li et al. [14] presented a two-way encoder to process visual and 
semantic information with EnTangled Attention to generate captions by controlling 
the flow of visual and semantic knowledge simultaneously. A revolutionary cap-
tioning network was developed [8], in which memory vectors were incorporated in 
the visual encoding layer for acquiring co-relative prior information between image 
regions, and a mesh-like structure was followed to connect encoder and decoder 
layer outputs. The scene graphs were built and fused with decoder output using the 
attention module for sequence generation in Chen et al. [5] to grasp better visual 
semantics relationship.
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3 Methodology 

3.1 Overview 

This work presents the novel end-to-end attentive architecture of the Memory-guided 
Adaptive Transformer for Image Captioning (MATIC), which comprises of single-
layer encoder and a multi-layered decoder. Figure 1 depicts the overall framework, in 
which the encoder employs spatial information recovered from CNN and the decoder 
uses textual features based on FastText embedding to generate caption. The encoder 
learns inherent relationships within the objects using scenery knowledge of visual 
features, while the decoder adaptively controls the attentive visual and semantic 
information by conditioning memory-guided encoder output and embedded textual 
output. 

Fig. 1 Memory-guided adaptive transformer for image captioning
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3.2 Visual Encoder 

The strength of EfficientNet [20] by scaling compound parameters (depth, width and 
resolution) enhances the efficiency of classification as well as the transfer learning 
challenge, making it the preferred method for extracting higher-level spatial infor-
mation from the image. The last convolutional layer employs spatial information by 
providing the regional feature maps of the image in the form of Vs = V1, V2, .., VD , 
where Vi ∈ RH×W (Here, H, W, D represents Height, Width, and Depth of feature 
maps). Every feature map is flattened to convert the 3D representation into 2D repre-
sentation, which allows the visual encoder to determine the distinguish relationship 
within regional features. The 2D representation of spatial features can be rewrite as 
Vs ∈ RF×D , where F represents flatten dimension (H ∗ W ). These flattened spatial 
features are provided to the memory-guided encoder to acquire close relationships 
within various objects. 

3.2.1 Memory-Guided Multi-Head Attention 

Generally in Transformer, the multi-head attention (MHA) [21] computes the simi-
larity between query (Q) and key (K ) vectors and then maps them with value (V ) 
vector to correlate outputs by the parallel projection of the query, key, and value 
vectors into distinguish head components. It can be represented as follows: 

Attention(Q, K , V ) = Sof tmax

(
QK  T √

dk

)
V (1) 

Multi  Head(Q, K , V ) = Concat  (H1, H2, ..Hh)W O (2) 

Hi = Attention(W q i Q, W k i K , W v 
i V ) (3) 

where dk is the scaling factor, h represent the number of heads, and W O , W q , W k, and 
W v are projected weight parameters. 

To preserve complete depthwise regional information, spatial features (Vs) from 
feature maps with higher dimensionality are linearly projected to intermediate state 
dimensionality of Transformer model (dmodel  ) with ReLU activation. These linearly 
projected features are further inferred as multi-scale inputs viz. Query (Q), Key  (K ) 
and Value (V ) for memory-guided MHA, where Q, K , V ∈ RF×dmodel  . In order to 
acquire the inherent information within the image, the learnable memory elements 
(m) are appended to the key and value vector. The spatial input vectors (Q, K , V ) 
are linearly transformed with the projection parameter as: 

Q = W q dmodel  
Q, K = W k dmodel  

K , V = W v 
dmodel  

V (4)
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where Wdmodel represents the projection parameter of Q, K and V . The memory 
based key (Km) and value (Vm) vectors are updated by including memory slots (m) 
of dimension m ∈ Rm×dmodel  . Thus memory based key and value vectors becomes 
Km, Vm ∈ R(F+m)×dmodel  : 

Km = [K : W k mm], Vm = [V : W v 
mm] (5) 

Here, [:] defines vertical concatenation operation and memory matrix with (m) rows 
is generated for keys and values by xavier uniform initializer, which gets updated 
by trainable weight parameters (W k m) and (W v 

m) respectively. Analytically, Memory-
guided MHA is computed as given below with Mem_MH  A  ∈ RF×dmodel  : 

Mem_MH  A(Q, K , V ) = Multi  Head(Q, Km, Vm) (6) 

3.2.2 Full Encoder 

The output of Memory-guided MHA is passed to a position-wise feed-forward net-
work comprising two linear layers with ReLU activation and operates as: 

FF(x) = W1(max(0, W2x + b)) + c (7) 

where W1 and W2 are outer and internal weight parameters, while b and c are bias 
terms. 

The complete encoder combines Memory-guided MHA and Feed Forward mod-
ules by residual additive connection and normalization layer (Norm) for yielding 
encoded output (encout ) as follows: 

enc1 = Norm(Mem_MH  A(Q, K , V ) + Q) (8) 

encout = Norm(FF(enc1) + enc1) (9) 

3.3 Linguistic Decoder 

Following the standard Transformer, the proposed architecture also utilizes N iden-
tical layers of decoder, in which multi-modal MHA is modified by including a con-
ditional gating mechanism for weighting the attentive linguistic and spatial informa-
tion. To acquire the concrete numerical representation of word sequence, FastText [4] 
model is trained on captions and used to generate word embedding of respective cap-
tion (WE  ∈ RL×dmodel  ). Here, L and dmodel  are representing maximum caption length 
and dimensionality of embedding respectively. In order to access the relative position 
of the word sequence, positional embedding is added with word embedding output.
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The masked MHA sublayer allows the model to attend to all previous time step 
linguistic information to generate the current time step sample. 

3.3.1 Adaptive Multi Head Attention 

Inspired from the work [16], adaptive gating mechanism is incorporated with MHA 
sub-module of Transformer decoder for sequence modeling. The cross-MHA of 
decoder layer is updated with encoder’s output and attentive previous steps linguis-
tic output. From memory-guided visual encoder, output of feed forward network 
(encout ∈ RF×dmodel  ) is adopted for extracting inherent visual characteristics with 
relative object information as (V ) and (K ), while shifted attentive linguistic knowl-
edge from masked MHA of decoder (dec1 ∈ RL×dmdoel  ) is used as query matrix (Q). 
The Attention  in equation (1) is modified by introducing adaptive gating mechanism 
( β̂) as shown in Fig. 2 for conditioning spatial knowledge and linguistic pattern. The 
adaptive gating parameter ( β̂) works similarly as sentinel gate in Lu et al. [16]. 

Fig. 2 Adaptive gate
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Adp_Attention(Q, K , V ) = β̂ ∗ Q + (1 − β̂) ∗ Attention(Q, K , V ) (10) 

Here, (∗) represents element-wise multiplication and ( β̂) represents scaler value 
within range [0, 1], where 0 indicates flow of spatial information and 1 implies flow 
of linguistic knowledge. 

In order to co-relate linguistic and spatial information for generation of next word 
sample, β parameter is introduced, which is computed by projecting the query matrix 
(Q) linearly into single dimension (β ∈ RL×1) as follows: 

β = tanh(Wβ (Q)) (11) 

The dot-product (α) is used to obtained adaptive gate ( β̂) using  (β) parameter as 
follows: 

α = so f  tmax([ QK  T √
dk 

] :  β) (12) 

β̂ = α[:, −1] (13) 

Here, QK  T ∈ RL×F and dot-product produces matrix with dimensionality as 
α ∈ RL×(F+1), from which last column is extracted to retrieve adaptive gate ( β̂). The  
( β̂) exhibits the multinomial probability distribution of the query, thus signifying 
which elements from the query preserve essential linguistic information. Overall, 
( β̂) is trained to generate syntactically correct words (e.g. at, on, with, in, through, 
etc.) by weighting linguistic information, while generating contextual words (e.g. 
color, gender, position, shape, etc.) by weighting multilevel spatial information. 

3.3.2 Full Decoder 

The proposed decoder works similarly to a traditional Transformer decoder with 
autoregressive training properties. The decoder consists of two MHA sub-modules, 
first module attends on previous textual embedding by hiding future information to 
generate the current step word sample, while the second module co-relates visual 
and linguistic patterns. The feed-forward network and residual connections are incor-
porated to complete the decoder. The FastText embedding of the caption is fed as 
linguistic input to the decoder, while sinusoidal positional embedding from base 
transformer [21] is used to co-relate the absolute positioning of each word token. 
The complete decoder follows the given operations: 

decemb = FastT  extemb + Positionalemb (14) 

dec1 = Norm(Masked_MH  A(decemb, decemb, decemb) + decemb) (15)
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dec2 = Norm( Adp_Attention(dec1, encout , encout ) + dec1) (16) 

decout = Norm(FF(dec2) + dec2) (17) 

To generate the sequence of words (caption) for the image, the output of ‘N ’ 
layered-decoder module is linearly transformed to vocabulary size (vocab) for 
retrieving the probability distribution of the next word. 

P(w) = Sof tmax(Wvocabdecout ) (18) 

Here, Wvocab defines the trainable weight parameter for vocabulary size. 

3.4 Training 

The aim of proposed model is to minimize standard cross-entropy loss (LXE  ) of 
word sequence (y∗ 

1:T ) given spatial features (Vs) of target image as follows: 

LXE  = −  
L∑

t=1 

log(P(y∗ 
t |y∗ 

0:t−1; Vs; θ)) (19) 

Here, L is the maximum word length of the caption, while P defines the softmax 
probability of t-th word as given in Eq. (18) and θ defines model hyper-parameters. 

4 Experiments and Results 

4.1 Dataset 

To evaluate the performance of proposed model, Flickr8k [19] and Flickr30k [28] 
datasets are utilized, in which each image is associated with 5 human reference cap-
tions. Flickr8k is small-scale captioning dataset with 8000 image-caption pairs, while 
Flickr30k is a large scale captioning dataset with 31783 image-caption pairs. The dis-
tribution of training, validation, and test samples are given in Table 1. The maximum 
word length for captioning is set as 30 and 50 for Flickr8k and Flickr30k datasets 
respectively. All the captions are transformed to lower case and least occurred words 
are excluded (less than 3 occurrences for Flickr8k and less than 5 occurrence for 
Flickr30k) to build the final vocabulary (3427 for Flickr8k and 7037 for Flickr30K). 
All the images are resized to (300 × 300) and encoded by the EfficientNetB7 module.
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Table 1 Data distribution for Flickr8k and Flickr30K 

Dataset Train Validation Test 

Flickr8k 6000 1000 1000 

Flickr30k 29783 1000 1000 

4.2 Training Details 

To train the proposed model, the number of heads is set to 8, embedding and sub-
module dimensionality are selected as 512, while memory slots are varied from 10 
to 40 with steps of 10 in memory-guided MHA. The internal layer dimension of the 
feed forward network is set as 2048. The Adam optimizer with warmup strategy and 
batch size of 128 is utilized to train the model. The warmup step size and epochs 
are set as 8000 and 15 and 4000 and 20 for Flickr8K and Flickr30K datasets respec-
tively. Specifically, the proposed MATIC model is trained with a single encoder and 
four decoder layers (N = 4), which ensures better quantitative results. All proposed 
variants are implemented with TensorFlow 2.2 library on TITAN Xp GPU. 

4.3 Quantitative and Qualitative Results 

In this section, proposed method is compared with state-of-the-arts and respective 
quantitative results are summarized. To quantify generated captions, natural lan-
guage generation (NLG) metrics e.g. n-gram Bleu [18], Meteor [3], Rouge [15] and 
CIDEr [22] scores are computed from MSCOCO captioning API [7]. In order to gen-
erate the fine-level precise caption, heuristic beam search algorithm is employed with 
beam indexing upto 3. The best metrics outcome are extracted using various beam 
index and reported in the quantitative results. Table 2 and Table 3 represents the com-
paritive analysis of quantitative results for various methods and proposed MATIC 
with various memory units (m) on Flickr8k and Flickr30k dataset respectively. 

Certain experiments on decoder layers revealed that the proposed MATIC model 
works better with 4 decoder layers than 6 decoder layers, thus reducing the total 
trainable parameters and making it a lightweight model. Here, Base X R represents 
the re-implementation of standard Transformer [21] with a single encoder and four 
decoder layers. Tables 2 and 3 show the quantitative effectiveness of the proposed 
model for generating captions with 30 memory units for Flickr8k and 40 memory 
units for Flickr30k dataset. 

Table 4 summarises statistical analysis, which shows the amount of trainable 
parameters and average testing time required by the proposed architecture is approx-
imately equal to that of the Base Transformer. The average testing time is computed 
by generating captions for 20 test images. With a similar amount of hyper-parameters
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Table 2 Comparative analysis of NLG metrics for various methods and proposed MATIC on 
Flickr8k 

Methods Bleu 1 Bleu 2 Bleu 3 Bleu 4 Meteor Rouge CIDEr 

DeepVS [13] 57.9 38.3 24.5 16.0 – – – 

NIC [23] 63.0 41.0 27.0 – – – – 

Soft-Att [26] 67.0 44.8 29.9 19.5 18.5 – – 

Hard-Att [26] 67.0 45.7 31.4 21.3 20.3 – – 

g-LSTM [11] 64.7 45.9 31.8 21.2 20.6 – – 

SCA-
CNN [6] 

68.2 49.6 35.9 25.8 22.4 – – 

Base XR 66.4 47.2 33.1 22.8 21.1 54.2 47.1 

MATIC 
(m = 10) 

68.2 49.4 34.9 24.2 22.1 55.6 53.6 

MATIC 
(m = 20) 

68.3 49.4 35.1 24.4 22.1 55.4 53.3 

MATIC 
(m = 30) 

69.3 50.7 36.5 25.7 23.3 56.1 55.7 

MATIC 
(m = 40) 

67.7 48.7 34.3 23.7 22.9 55.3 51.7 

# XR represents Transformer 

Fig. 3 Generated captions on tricky images from Flickr30K dataset 

as of Base Transformer, the MATIC model exhibits a considerable improvement in 
captioning performance. 

To assess the effectiveness of the proposed MATIC model, five tricky test images 
were chosen from the Flickr30K dataset, and the corresponding generated cap-
tions are shown in Fig. 3. The proposed MATIC generates excellent captions for the 
first four test cases by expressing minute visual contents and relative color-objects-
attribute information but misleads in the fifth test instance by generating the incorrect 
action-based caption. The generated captions by the proposed method demonstrate 
the application of memory-guided encoder to capture the color, gender, and position 
of objects, while the adequacy of the adaptive decoder describes all minute details 
of the image in a semantically convenient manner.
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Table 3 Comparative analysis of NLG metrics for various methods and proposed MATIC on 
Flickr30k 

Methods Bleu 1 Bleu 2 Bleu 3 Bleu 4 Meteor Rouge CIDEr 

DeepVS [13] 57.3 36.9 24.0 15.7 – – 24.7 

NIC [23] 66.3 42.3 27.7 18.3 – – – 

mRNN [17] 60.3 41.0 28.0 19.0 – – – 

Soft-Att [26] 66.7 43.4 28.8 19.1 18.5 – – 

Hard-Att [26] 66.9 43.9 29.6 19.9 18.5 – – 

g-LSTM [11] 64.6 44.6 30.5 20.6 17.9 – – 

Sem-Att [27] 64.7 46.0 32.4 23.0 18.9 – – 

SCA-
CNN [6] 

66.2 46.8 32.5 22.3 19.5 – – 

Adapt-
Att [16] 

67.7 49.4 35.4 25.1 20.4 – 53.1 

Scene-Graph 
XR [5] 

66.9 49.4 35.4 24.8 20.3 – 53.3 

Adapt 
XR [30] 

67.0 49.6 35.5 25.2 20.4 – 53.0 

Base XR 66.5 47.5 33.3 23.2 20.8 53.9 48.9 

MATIC 
(m = 10) 

68.1 48.8 34.6 24.3 20.8 54.0 46.7 

MATIC 
(m = 20) 

67.2 48.6 35.0 25.0 20.7 54.0 47.6 

MATIC 
(m = 30) 

68.8 49.4 35.4 24.8 20.7 54.2 49.7 

MATIC 
(m = 40) 

69.5 50.7 36.5 26.0 20.9 54.9 51.7 

# XR represents Transformer 

Table 4 Statistical analysis of Base Transformer and proposed MATIC on both datasets 

Flickr8k Flickr30k 

Base XR MATIC Base XR MATIC 

No. of parameters 
(in Millions) 

24.78 25.35 28.48 29.05 

Avg. test time (in 
Seconds) 

3.59 3.68 4.63 4.67
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5 Conclusion 

In this work, a novel Memory-guided Adaptive Transformer for Image Captioning 
(MATIC) is demonstrated by merging a memory-guided encoder with an adaptive 
decoder, and its efficacy for generating natural captions is proven on Flickr8k and 
Flickr30k datasets. Memory-guided encoder is used in conjunction with a conven-
tional CNN network to acquire innate perceptual scenery knowledge, and an Adaptive 
decoder is employed to align vision-language modality by conditionally weighting 
visual and semantic information for the generation of word sequence as the caption. 
In comparison to a typical Transformer with six encoder and six decoder layers, the 
proposed MATIC has a single memory-based encoder and four adaptive-attention-
based decoder layers, which aids in the reduction of overall trainable parameters. 
As a result, it may be served as a lightweight model and embedded in a device 
for various captioning applications such as virtual aid, visually impaired individ-
ual assisting tools, scene interpretation, and many more. The proposed MATIC has 
outperformed state-of-the-arts in both quantitative and qualitative findings with 30 
memory units for Flickr8k and 40 memory units for the Flickr30K dataset. The pro-
posed MATIC demonstrates the effectiveness of a memory-guided encoder by under-
standing implicit scenery knowledge aligned with a multi-headed adaptive decoder 
to describe visual contents in a faithful linguistic manner. 
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Semantic Map Injected GAN Training 
for Image-to-Image Translation 

Balaram Singh Kshatriya, Shiv Ram Dubey, Himangshu Sarma, 
Kunal Chaudhary, Meva Ram Gurjar, Rahul Rai, and Sunny Manchanda 

1 Introduction 

Deep learning has shown very promising growth in the past decade [7, 18]. Convo-
lutional neural network (CNN) has led to huge progress in deep learning [16]. CNNs 
have been heavily used to deal with the image data for different applications such 
as image recognition [13, 16], face recognition [20, 29], medical analysis [4, 31], 
depth estimation [9, 27], and many more. 

A generative adversarial network (GAN) is introduced by Goodfellow et al. [10] 
for generating new samples for any given data distribution. GAN consists of two 
networks, namely generator and discriminator. The generator network generates the 
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samples from the random noise vector. The discriminator network facilitates the 
training of the generator network by classifying the real and generated samples. The 
training of both generator and discriminator networks is performed in a min-max 
optimization fashion. The generator network tries to generate realistic samples using 
the training distribution such that it can fool the discriminator network. However, the 
discriminator network tries not to get fooled by the generator network by classifying 
the generated sample into a fake category. GAN has been utilized for different appli-
cations such as data generation [11, 22], medical image synthesis [8, 12], minority 
class oversampling [24, 28], image hashing [5] among others. 

GAN has also shown very appealing performance for image to image translation 
[1–3, 14, 26, 35]. Broadly, it can be categorized into two parts, viz. paired and 
unpaired image-to-image translation. In the case of the paired scenario, the source 
and target images are paired. The Pix2Pix model [14] using conditional GAN relies 
on the paired data. The paired image-to-image translation requires the paired source 
and target domain images which is very laborious and infeasible to collect in many 
real applications. The CycleGAN model [35] is designed for unpaired image to image 
translation. Two generator and two discriminator networks are utilized by CycleGAN. 
The forward generator transforms from the source domain to the target while the 
backward generator transforms from the target domain to the source domain. Thus, 
an image is transformed from the source domain to the target domain using a forward 
generator and cycled back to the source domain using a backward generator. A cycle 
consistency loss is utilized between the original image and the cycled image. A cyclic 
synthesized loss is included in cyclic synthesized GAN (CSGAN) model [3] between 
the cycled image in a domain (A → B’ → A”) and synthesized image in the same 
domain (B →A’). The perceptual loss is used between the original image in a domain 
and the synthesized image in the same domain by the perceptual cyclic synthesized 
GAN (PCSGAN) model [1]. The mapping from the source domain to the target 
domain is constrained in both CSGAN and PCSGAN which is suitable for paired 
image translation. The CDGAN model [2] improves the CycleGAN framework for 
unpaired translation by adding the discriminator networks for cycled images. In 
order to synthesize the objects in a distinguishable fashion, contrastive learning is 
utilized in the contrastive unpaired translation (CUT) model [26]. The CUT model 
considers a patch in the generated image and finds the positive and negative pairs 
of patches from the source domain. It utilizes the contrastive loss on the features of 
positive and negative pairs to ensure that the patches should be distinguishable from 
the negative patches which inherently improves the visible quality of the synthesized 
images. Other GAN models for image to image translation includes DualGAN [33], 
AttentionGAN [23], CouncilGAN [25], Multi-Scale Gradient-based U-Net (MSG 
U-Net) [17], etc. The GAN based image to image translation has been also utilized 
for image colorization [19, 32, 34]. 

There have been many recent works in the image to image translation which utilize 
semantic images along with the source domain and the target domain in the trans-
lation. Sem-GAN [6] performs image-to-image translation by utilizing the semantic 
information with the help of the cycleGAN framework. SemGAN includes an addi-
tional loss named consistency constraints along with existing GAN loss and cycle
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consistency loss. Exemplar-guided unsupervised image-to-image translation with 
semantic consistency [21] uses feature masks to avoid semantic inconsistency. This 
allows us to transfer of style information of the target image. Segmentation-guided 
image-to-image translation with adversarial networks [15] is designed to impose 
semantic information on the generated images. An additional network named seg-
mentor is incorporated on the existing architecture which provides spatial guidance 
to the generator network. Example guided style consistent image synthesis from 
semantic learning [30] is constructed by including a consistency discriminator which 
functions along with the existing generator and discriminator network to enforce style 
consistency on the given source images. All these models perform image-to-image 
translation by including semantic images with the help of additional network(s) to 
utilize the semantic information. However, the proposed network utilizes semantic 
information in the training schedule without any additional network. 

The existing image-to-image translation methods using GAN are unable to take 
care of the semantic translation in terms of the structure and color of the object cate-
gories. Basically, it is often found that these GAN models of image-to-image trans-
lation overfit a particular color or object characteristic across the training dataset, 
resulting in incoherent translation of the given input image. Specifically, these net-
works learn the mapping from one domain to other but fail to learn about the regions 
of each category in the image, which may lead to poor generalization over the test 
data. It can be visualized in Fig. 1 which illustrates the generated images using Cycle-
GAN [35] in 2nd row and CUT [26] models in 3rd row for the sample input images 
shown in 1st row. It can be noticed that the green color is overfitted and also some 
portions of images are still in monochrome (i.e., car in example 2 and buildings in 
example 3). These examples clearly indicate the limitation of the existing models, 
which leads to improper image translation. 

Motivated by the limitations of the existing GAN models, we propose to utilize 
semantic map information while training. It can be seen in Fig. 2 that the semantic map 
can better provide the object specific information. Given the fact that the semantic 
maps might not be available at test time, the proposed approach uses the semantic 
map in the form of injected training such that it is not needed at the test time. We 
observe the improved performance of the proposed semantic injected GAN training 
approach. Following are the major contributions of this work: 

• The proposed approach utilizes the semantic map to learn better category-specific 
features. 

• The proposed approach injects the transformation of the input image to segmen-
tation map during the training of transformation of the input image to the target 
image. 

• The proposed semantic injection improves the generalization ability of image 
translation. 

• The use of semantic maps is required only at the training time not at the test time. 
• The performance of the proposed semantic injected training is tested using Cycle-
GAN and CUT models over two benchmark datasets for image-to-image transla-
tion shows improved performance.



238 B. S. Kshatriya et al.

Fig. 1 Outputs of image to image translation from monochrome to RGB. 1st row: the input images, 
2nd row: the generated images using CycleGAN model [35], and 3rd row: the generated images 
using CUT model [26] 

Remaining paper is organized as follows: Sect. 2 presents the proposed method; 
Sect. 3 summarizes the experimental settings, Sect. 4 illustrates the results and anal-
ysis; and Sect. 5 concludes the paper. 

2 Proposed Semantic Map Injected GAN Training 

The semantic map can be utilized for the training of the GAN models in multiple 
ways. One of the obvious ways is to simply concatenate the semantic image to the 
given input image and train the model. This type of training might be effective; 
however, it leads to the burden of having the semantic map also at the test time, 
which limits its uses in most real-world applications. Thus, in this paper, we propose 
a novel way of utilizing the semantic map information at the training time by injecting 
the semantic map training. Specifically, we alternate the training of GAN models on 
target images and given semantic images while keeping the same input images in the 
source domain. 

The visual representation of this procedure can be perceived in Fig. 3. Let  
us consider that the blue block represents the training of the GAN models for
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Fig. 2 Samples of semantic maps in the 2nd row corresponding to RGB images in 1st row 

Fig. 3 Representation of image to image translation from (left) input domain to target domain and 
(right) input domain to semantic domain 

Fig. 4 Representation of the ratio between the original training and semantic map training (i.e., 
Original: Semantic). In order (left to right): 90:10, 80:20, 70:30, and 60:40 

image-to-image translation from an input domain to the target domain and the red 
block represents the training of the GAN models for image-to-image translation 
from the input domain to semantic domain. We propose to inject the semantic train-
ing into original training in an interleaved fashion as described in Fig. 4. The injection 
of semantic training is carried out in the chunks of y number of epochs of training. 
Thus, based on the number of chunks of semantic training, the ratio between the num-
ber of epochs for original training and semantic training varies. If the total number 
of epochs for training is denoted by n and the number of semantic training injections 
is s, then the ratio between the number of epochs for original training and semantic 
training (original:semantic) can be given as follows:
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original : semantic = (n − s × y) : (s × y) (1) 

where (s × y) is the number of epochs of semantic training and (n − s × y) is the 
number of epochs of original training. The original:semantic training ratio is one 
of the hyperparameters in the proposed model. Note that as the semantic training 
is interleaved with original training, we consider five training models (with a total 
number of training epochs n = 100) with the different original:semantic training 
ratio. Figure 4 shows the training strategies with different values of original: semantic 
ratio. Following are the different training schedules used in this paper in terms of the 
sequence of a number of epochs of original and semantic training: 

– 100:0 model (100) 
– 90:10 model (45, 10, 45) 
– 80:20 model (30, 10, 20, 10, 30) 
– 70:30 model (20, 10, 15, 10, 15, 10, 20) 
– 60:40 model (15, 10, 10, 10, 10, 10, 10, 10, 15) 

where the epochs in blue color represent the number of training epochs for image 
translation to the target image and red color represents the number of training epochs 
for image translation to the semantic map. The 100:0 model is without semantic 
training and is considered for the comparison purpose to show the impact of semantic 
training injection. The number of semantic training epochs in each chunk (i.e., y) is  
10 in the experiments. The number of semantic training chunks (i.e., s) is 0, 1, 2, 3,  
and 4 in 100:0, 90:10, 80:20, 70:30, and 60:40 training settings, respectively. Note 
that these training schedules inject the semantic training into the training schedule 
in an interleaved manner to retain the symmetry and to avoid the biasness towards 
the semantic translation. Our hypothesis is that the injection of semantic training 
in this fashion does not deviate from the original training, but rather serves as a 
regularizer to avoid overfitting and leads to better performance. We also consider 
another hyperparameter (l) as the learning rate (LR) which is factor between the LR 
for translation to target image (LRo) and LR for translation to semantic map (LRs). 
Basically, LRs is given by 

LRs = 
LRo 

l 
. (2) 

In this paper, we consider the value of l as 1, 10, and 100 leading to LR Setting 
1, LR Setting 10, and LR Setting 100, respectively. The illustration of different LR 
Settings is shown in Fig. 5 for 80:20 training model. 

3 Experimental Setup 

Each model is trained for a total of 100 epochs with Learning rate 0.002 (2e−3) 
for a batch size of 2. The resolution of images is 256 × 256. The remaining part 
of this section contains the details of GAN models and datasets used for the
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Fig. 5 Representation of learning rate (LR) setting for 80:20 training model. LR Setting 1 (left): 
semantic training LR is same as original training LR, LR Setting 10 (middle): semantic training 
LR is one tenth of original training LR, and LR Setting 100 (right): semantic training LR is one 
hundredth of original training LR 

experiments along with the metrics used for evaluation. We use the same loss func-
tions for Semantic to RGB training as used for Monochrome to RGB translation. 

3.1 GAN Models Used 

In order to depict the impact of the proposed injected semantic training, we use the 
state-of-the-art GAN models in paired scenarios, including CycleGAN and CUT 
models. In the paired scenario, the images in different domains are registered. The 
details of these models are described in below: 

CycleGAN Model [35]: The CycleGAN model is used to translate the image from 
domain A to domain B in an unpaired manner. In order to constrain the mapping, 
CycleGAN uses two generators, i.e., a forward generator for transformation from 
domain A to domain B and a backward generator to transform from domain B to 
domain A. An illustration of CycleGAN is presented in Fig. 6 where an input image 

Fig. 6 The illustration of CycleGAN model [35]. The transformation from domain A to domain 
B is carried out using a generator (G A) and the transformation from domain B to domain A is 
carried out using a generator (G B ). Cycle consistency loss is used in both the domains to facilitate 
the training of CycleGAN model
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Fig. 7 The illustration of CUT model [26]. The contrastive loss between the positive and negative 
pairs of patches is used to increase the difference between the visual appearance of positive and 
negative patches. Note that F and G are Encoder and Decoder networks, respectively 

(a) in domain A is transformed into an image (B’) in domain B using generator G A. 
Further, the generated image (B’) is cycled back to the image (a’) in domain A. A 
cycle consistency loss is computed between the original image (a) and cycled image 
(a’) in domain A. Similarly, the image in domain B (b) is transformed to image (A’) 
in domain A using generator G B and cycled back to the image (b’) in domain B using 
generator G A. A cycle consistency loss between images b and b' is also computed. 
CycleGAN also uses two discriminators DA and DB in domain A and domain B, 
respectively. These discriminators distinguish between the generated samples and 
real samples in the corresponding domains. The final loss for the CycleGAN model 
includes the adversarial loss and cycle consistency loss in both domains. The adver-
sarial loss consists of generator and discriminator losses. The cycle consistency loss 
is computed as the reconstruction error. 

CUT Model [26]: The contrastive unpaired translation (CUT) model uses the con-
trastive loss along with the adversarial loss. Basically, it utilizes the similarity between 
the similar (i.e., positive) and dissimilar (i.e., negative) patches from domain A w.r.t. 
the patch in domain B. The patchwise contrastive loss is computed by utilizing the 
features of positive and negative pairs of patches. The features of patches are extracted 
by the encoder of the generator model. The objective of this loss is to make the syn-
thesized output patch closer to its corresponding input patch and apart from the other 
input patches. An illustration of the CUT model is presented in Fig. 7. Consider the 
constructed output patch as Q, the corresponding input patch as Q+, and the other 
random patches as Q1, Q2, and Q3. The final loss in the CUT model is the sum of 
Adversarial loss of GAN and Patchwise loss in both directions, i.e., from A (input 
domain) to B (output domain), and vice-versa.
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3.2 Datasets Used 

In order to demonstrate the image to image translation results, two benchmark 
datasets are used, namely CityScapes1 dataset and RGB-NIR2 Stereo dataset. The 
sample images of the datasets are depicted in Fig. 8. 

Fig. 8 Example images from CityScapes (1st subfigure) and RGB-NIR stereo (2nd subfigure) 
datasets. In both subfigures, the input images, target images, and semantic images are shown in left, 
middle, and right columns, respectively 

CityScapes Dataset: CityScapes is a benchmark suite and large-scale dataset used 
to train and test techniques for semantic characterization at the pixel and instance 
level. CityScapes contains a wide and varied collection of stereo video sequences 
shot in 50 cities’ streets. We consider a subset of the dataset containing a total of 2975 
training images and 500 test images in each domain. The dataset is a set of both paired 
and unpaired images of resolution 256 × 256. The actual dataset contains only RGB 
and semantic images. We perform the image colorization over this dataset through 
image-to-image translation. The source images are monochrome images which are 
extracted from the corresponding RGB images using openCV. Thus, the final dataset 
consists of monochrome images, corresponding RGB images, and corresponding 
semantic images. 
RGB-NIR Stereo Dataset: RGB-NIR stereo is a publicly available dataset, which 
was prepared by collecting 13.7 h of video data in a variety of places in and around a 
city using a vehicle-mounted RGB-NIR stereo system. The dataset contains materials 
such as lighting, glass, shiny surfaces, greenery, skin, clothing, and bags and was col-
lected in sunny, overcast, and dark situations on college roads, highways, downtown, 
parks, and residential areas. This dataset is also a set of both paired and unpaired 
images and the resolution of images is 582 × 429 and contains a total of 2100 train-
ing images and 900 test images. This dataset contains NIR-Images (monochrome) 
as the source, corresponding RGB images as the target and corresponding semantic 
images for the injection training. 

1 https://www.kaggle.com/dansbecker/cityscapes-image-pairs. 
2 http://www.cs.cmu.edu/~ILIM/projects/AA/RGBNIRStereo/.
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3.3 Metrics Used 

In order to evaluate the performance of different models quantitatively, we use the 
Structural Similarity Index Measure (SSIM), Fréchet Inception Distance (FID), and 
Kernel Inception Distance (KID) metrics. 
SSIM: SSIM measures image quality degradation. SSIM cannot judge the better 
image among the two, but measures the perceptual difference between the given 
images. SSIM values are in the range [0, 1], where 1 denotes completely similar 
images and 0 denotes dissimilar images. For evaluating the performance of the model, 
we calculate the average of all SSIM values across the test dataset and report in %. 
FID: FID stands for Fréchet Inception Distance, which measures the distance 
between feature vectors calculated for the original and synthetic (generated) images. 
The score reflects how comparable the two groups of images are in terms of statistics 
on computer vision aspects of raw pictures calculated with the inception v3 image 
classification model (inception v3 module represents the given image in a vector of 
size 2048). Lower scores imply that the two sets of images are more comparable with 
a perfect score of 0.0 for identical. 
KID: KID stands for Kernel Inception Distance, which is a metric similar to FID. 
KID also calculates the metrics using the inception v3 model representation of given 
images. FID measures the distance between representations, but KID measures skew-
ness mean and variance between the vector representations. KID uses a polynomial 
kernel to correct the distributions and has two metrics—KID Mean and KID Vari-
ance. Lower scores imply that given two sets of images are better comparable and a 
perfect score of 0.0 denotes that given images are identical. 

4 Experimental Results and Analysis 

By considering both the hyperparameters, i.e., original:semantic epochs ratio (i.e., 
4 different ratios) and semantic LR factors (i.e., 3 different LR settings), we test 12 
combinations. The results using CUT model are reported over CityScapes dataset in 
Table 1 in terms of the SSIM and FID and in Table 2 in terms of the KID Mean and KID 
Variance. The results using CUT model are reported over RGB-NIR stereo dataset 
in Table 3 in terms of the SSIM and FID and in Table 4 in terms of the KID Mean 
and KID Variance. In each table, the best result is highlighted in bold. In each Table, 
1st, 2nd, and 3rd row results correspond to LR settings 1, 10, and 100, respectively. 
Whereas, the results for different original:semantic training ratios are reported in 
the corresponding columns. It is observed from these results that the performance 
of the proposed semantic map injected training is better than the original training 
over CityScapes dataset in terms of the SSIM, FID, and KID measures. Moreover, 
an improved performance is also observed on the RGB-NIR dataset by the proposed 
training scheme in terms of the SSIM. The training schedule with ratios 80:20 and
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Table 1 The results in terms of the SSIM and FID scores using CUT model over CityScapes dataset 
for different original:semantic training ratio under different learning rate (LR) setting. Note that LR 
Setting l means the learning rate for semantic training is 1/ l of RGB training. The best results are 
highlighted in bold 

LR SSIM FID 

Setting 100:0 90:10 80:20 70:30 60:40 100:0 90:10 80:20 70:30 60:40 

1 93.78 91.91 94.35 94.53 93.88 32.50 36.43 36.59 38.50 36.30 

10 93.78 93.22 93.89 93.81 94.28 32.50 32.16 29.75 34.12 47.25 

100 93.78 94.06 94.14 94.28 94.49 32.50 29.76 33.36 34.51 38.16 

Table 2 The results in terms of the KID Mean (KIDm) and KID Variance (KIDv) scores using 
CUT model over CityScapes dataset for different original:semantic training ratio under different 
learning rate (LR) setting 

LR KID mean KID variance 

Setting 100:0 90:10 80:20 70:30 60:40 100:0 90:10 80:20 70:30 60:40 

1 0.0105 0.0111 0.0125 0.0169 0.0134 0.0006 0.0007 0.0007 0.0007 0.0005 

10 0.0105 0.0091 0.0059 0.0104 0.0292 0.0006 0.0006 0.0004 0.0005 0.0011 

100 0.0105 0.0060 0.0110 0.1285 0.0182 0.0006 0.0004 0.0007 0.0007 0.0006 

Table 3 The results in terms of the SSIM and FID scores using CUT model over RGB-NIR stereo 
dataset for different original:semantic training ratio under different learning rate (LR) setting 

LR SSIM FID 

Setting 100:0 90:10 80:20 70:30 60:40 100:0 90:10 80:20 70:30 60:40 

1 74.98 73.74 78.62 77.56 76.97 26.93 31.28 28.52 29.53 30.41 

10 74.98 77.40 75.50 77.27 75.82 26.93 29.54 29.37 29.03 34.32 

100 74.98 77.58 77.62 76.70 74.65 26.93 29.57 29.19 29.18 32.99 

Table 4 The results in terms of the KID Mean (KIDm) and KID Variance (KIDv) scores using CUT 
model over RGB-NIR stereo dataset for different original:semantic training ratio under different 
learning rate (LR) setting 

LR KID mean KID variance 

Setting 100:0 90:10 80:20 70:30 60:40 100:0 90:10 80:20 70:30 60:40 

1 0.0050 0.0093 0.0070 0.0069 0.0090 0.0005 0.0008 0.0005 0.0005 0.0006 

10 0.0050 0.0079 0.0078 0.0070 0.0129 0.0005 0.0005 0.0007 0.0005 0.0008 

100 0.0050 0.0073 0.0072 0.0074 0.0104 0.0005 0.0006 0.0007 0.0008 0.0008



246 B. S. Kshatriya et al.

Table 5 The results in terms of the SSIM, FID, KID Mean (KIDm) and KID Variance (KIDv) 
scores using CycleGAN model over CityScapes and RGB-NIR stereo datasets for different origi-
nal:semantic training ratio 

CityScapes dataset RGB-NIR dataset 

Metric 100:0 90:10 80:20 70:30 60:40 100:0 90:10 80:20 70:30 60:40 

SSIM 94.02 94.21 94.89 94.67 94.17 76.46 76.95 79.51 77.79 74.41 

FID 34.10 30.86 29.50 30.35 33.34 40.03 40.88 40.91 45.28 53.02 

KIDm 0.0088 0.0071 0.0061 0.0058 0.0068 0.0127 0.0131 0.0155 0.0181 0.0239 

KIDv 0.0005 0.0003 0.0003 0.0003 0.0003 0.0006 0.0008 0.0008 0.0007 0.0010 

70:30 shows better improvement than 100:0. LR setting 1 is better suited for SSIM, 
and LR setting 10 is better suited for other metrics. 

The results in terms of the SSIM, FID, and KID measures using the CycleGAN 
model over CityScapes, and RGB-NIR datasets are reported in Table 5 for different 
original:semantic training ratios. In this experiment the LR setting 1 is followed. A 
clear improvement is gained using the proposed semantic map injection training over 
the CityScapes dataset. However, the result over RGB-NIR is also improved in terms 
of the SSIM. 

The qualitative results in terms of the generated samples from the CityScapes 
dataset are illustrated in Fig. 9 using CUT and CycleGAN models for 100:0, 
70:30/80:20 training settings. The quality of the generated images is very appealing. 
It can be seen that semantic learning helps the model to learn the various regions in 
the given image. It can be also observed that the original model tends to overfit a 
particular color without accounting for the region of that particular object. Not only 
the visual results but also the metric values indicate that semantic learning helps the 
model to generalize better and produces better quality images. Note that the semantic 
map is not required at the test time. 

5 Conclusion 

In this paper, we have proposed a semantic map injected training of GAN models 
for image-to-image translation. The semantic map training injection is performed 
in an interleaved manner with the original training. The proposed method ensures 
that the semantic map is not required at test time. The proposed semantic map injec-
tion training improves the generalization of the model and reduces overfitting. This 
approach is tested over CityScapes and RGB-NIR stereo benchmark datasets using 
CycleGAN and CUT models. We found that 30 and 20% of semantic injection lead 
to better performance as compared to the vanilla training. Both quantitative and 
qualitative results point out that semantic map injection training helps the model 
to understand the different regions of objects, and thus results in better-translated
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Fig. 9 The qualitative results on CityScapes dataset. 1st column: Ground truth images, 2nd column: 
Generated images using CUT model without semantic training, 3rd column: Generated images 
using CUT model with proposed semantic training having 70:30 epochs for original:semantic, 4th 
column: Generated images using CycleGAN model without semantic training, and 5th column: 
Generated images using CycleGAN model with proposed semantic training having 80:20 epochs 
for original:semantic 

images. The limitation of the proposed model is the need of a semantic map at the 
training time. The future direction includes the extension of this work on videos and 
reduction of parameters leading to lightweight model for real-time applications. 
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TextGen3D: A Real-Time 3D-Mesh 
Generation with Intersecting Contours 
for Text 

Ankit Dhiman, Praveen Agrawal, Sourav Kumar Bose, 
and Basavaraja Shanthappa Vandrotti 

1 Introduction 

Humans, as far as we know, have been using signs to express themselves. These 
signs have evolved into different languages over the years. Also, humans learnt the 
way to preserve these signs in various forms. Early humans used walls, caves, trees, 
etc. to conserve their expressions. Later on, we expressed these signs using “paper” 
as a medium. With the advent of the Internet, digital mediums have become more 
popular to express one’s thoughts and feelings. In recent times, the 2D text on screen 
has evolved into 3D text, having its applications in banners, online advertisements, 
movies, etc. Hence, it’s only logical to extend this experience of visualizing or inter-
acting with the 3D text in Augmented Reality (AR). 

AR has been picking up popularity amongst users over the past few years. With 
AR, augmenting virtual objects into the real world has been achieved. In recent years, 
AR platforms like ARKit [8] and ARCore [9] have become popular, and doodling 
has emerged as a ubiquitous feature. This popularity has led to the need for 3D text 
in AR applications, although the 3D text exists as a standalone feature in other tools 
such as professional tools like Autocad, Blender, Adobe Photoshop, etc. The existing 
solutions use pre-loaded 3D mesh for language characters. Hence, these solutions 
can handle limited variations of font types and languages in the input text. Thus, 
real-time generation of 3D mesh for any input text is of paramount importance for 
enabling Text in AR space. 

This paper presents an end-to-end approach for generating 3D text. This paper 
also highlights the problems which arise due to handling different font types and 
languages. The major problems addressed by this paper are as follows: 
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1. How to reduce the number of points in an input contour while maintaining the 
curvature of the original curve? 

2. How to remove intersections which occur within a contour itself and with a neigh-
bouring contour? 

3. How to identify holes in the text contour? 
4. How to produce round edges in a mesh to improve the overall aesthetic? 

2 Literature Review 

There is a growing number of 3D fonts available on the Internet. Applications can 
use these 3D fonts to render 3D text. There exist over 7000 languages in the world. 
Hence, it is a mammoth task to create uniform font types for all the languages. An 
alternate method is to convert an input text into 2D contours and then generate 3D text 
from it. Slabaugh et al. [22] propose a method to create a 3D text on 3D triangulated 
surfaces from a text contour. This method back-projects the 2D vertices of the text 
contour on the 3D triangulated surface. It then produces a protruded 3D text label 
on the 3D surface. This work doesn’t discuss the intersection between two contours 
and rounded edges. 

With the advancement in deep learning approaches, generating a 3D model from 
a 2D sketch has seen a lot of improvement in methods like [11, 24, 26, 27]. Jin et 
al. [11] convert a 2D input contour to its 3D model representation. Jin et al. [11] use  
variational auto-encoders to encode contours into a latent vector and then into a 3D 
model. The method doesn’t show any results to generate 3D models for an extracted 
contour from an input text. 

There exist methods that correct invalid contours. Lai et al. [13] propose the 
forward locus tracing method (FLTM) for invalid contour removal. Lai et al. [13] 
eliminate degenerated segments by the Voronoi method. FLTM presents a 1D interval 
identification problem that works on a hypothesis that if the first interval has no 
interference with other objects, then the odd intervals group can form valid loops. 
Lin et al. [15] find a problem in Lai et al. [13] where the intersection removal can 
go wrong between two adjacent inner angles. Lin et al. [15] propose a tree analysis 
(TA) that removes all the invalid global loops in a contour. 

Two contours can intersect with each other. In computer graphics, clipping is a 
ubiquitous method that is present in some form or the other in different applications. 
Reference [2, 17, 21] are methods to clip a polygon against a rectangular or convex 
polygon. [6, 16, 20, 23] presents a more generalized algorithm that clips a polygon 
against concave polygons as well. Greiner et al. [6] presents a polygon clipping 
method that can handle self-intersections and is faster than Vatti’s [23] method. Liu 
et al. [16] propose a data structure that requires less memory and efficiently clips the 
polygon. 

Occasionally, there are self-intersections in a 3D mesh which leads to unaesthetic 
visualization. Wong et al. [25] remove these self-intersections by applying volume 
simulation to the 3D mesh. Professionals use methods like [12] to identify the self-
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intersections in a 3D mesh and then repair the identified regions by either merging 
or decimating such triangles in the 3D mesh. Attene et al. [3] propose a method to 
remove degenerate and intersecting elements in a 3D mesh by modifying the mesh 
locally within the neighbourhood of undesired configurations to produce a watertight 
triangle mesh. 

3 Algorithm 

The proposed pipeline has three stages: (1) Contour Generator, (2) Mesh generation 
and (3) Mesh Transformation, as shown in Fig. 1. 

3.1 Contour Generator 

Input to the proposed pipeline is a text which has variations in language, font, align-
ment and number of lines. To create a mesh for such input, it needs to be represented 
in the language that the mesh generation algorithm understands which is a set of 
points. This is achieved by a font -library which represents text as smooth contin-
uous curves. The contour-generator samples point from these 2D curves and yield 
closed 2D contours. 

This brings to the problem that is addressed in this section: Number of points versus 
Time Performance. High sampling rate ensures high mesh quality but increases the 
processing time which is a significant factor for real-time applications. To address 
this trade-off of quality and processing time, the pipeline uses a simple yet effective 
algorithm as explained in Algorithm 1 which decimates the point along a straight line 
and preserves points along a curvature. Figure 3b shows the results of the discussed 
dynamic sampling strategy 

3.2 Contour Processor 

After reducing points in the set of input contours from the previous stage, the pipeline 
needs to determine the relationship between contours in the input set. Additionally, 

Contour 
Gen-
erator 

Contour 
Processor 

Mesh 
Gen-
erator 

3D 

Mesh 

Input 

Text 

Fig. 1 Proposed pipeline 
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Algorithm 1: Reduce points in an input contour 
Output: ∅ 
for p ∊ Input Contour do 

p1 ← previous point to p; 
if Angle(p1,p) ≥ threshold then // Angle between two points 

Add p to Output 

the next stage in the pipeline, mesh triangulation, uses Delaunay’s triangulation [14], 
which assumes the input contours to have the following properties: 

1. A contour should not have a self-loop. 
2. Two holes inside another contour should not intersect with each other. 
3. Holes and their parent contour should not intersect with each other. 
4. Either parent contours should not intersect with each other as they will look 

fallacious. 

If the input contours fail these properties, this may lead to erroneous outputs from the 
triangulation pipeline. Our method alleviates this issue by dividing such scenarios 
into two categories: Self-intersecting contours (a contour which forms a self-loop) 
as shown in Fig. 3c; and contours which intersects with other contours as shown in 
Fig. 3d. 

A contour has self-loops when two line segments in a contour have an intersection 
with each other as shown in Fig. 2a and zoomed-in region of intersection as shown in 
Fig. 2b. As discussed in Algorithm 2, the method breaks the intersecting point into two 
new points lying on the angle bisector at the intersection point and outside the original 
contour. Figure 2d shows the corrected contour and Fig. 2e shows the zoomed-in 
region. Figure 2e demonstrates the result discussed in Algorithm 2. Figure 2c and f 
shows the triangulated mesh with the intersecting contour and the same contour after 
removing the intersection, respectively. 

To remove the intersections in overlapping contours, first, the pipeline needs to 
detect these intersections. Additionally, intersection points between two contours 
will always happen in a set of pairs, i.e. overlapping contours will have an even 
number of intersecting points. Algorithm 3 describes the algorithm to generate a 
relationship graph between contours and remove the overlap between two contours. 

Algorithm 2: Removes self-loop in a contour 
Input: Contour P (Set Of Points) 
for p ∈ P do 

for q ∈ P, q != p do 
if Line-segments (p,Next(p)) and (q,Next(q)) intersects then 

Generate two points m and n at the location of intersection Reverse order of 
points between p and q; 
Insert new nodes in the contour; 
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Fig. 2 a Contour with self-intersection, b Zoomed-in region marked in red in (a), c Result after 
mesh triangulation for (a), d Contour after removing self-intersection, e Zoomed-in region marked  
in red in (d) and  f Result after mesh triangulation for (d) 

This relationship graph is a DAG. From our observations, we found that if you 
traverse DAG nodes, nodes at even levels are hole contours. 

3.3 Mesh Generator 

The pipeline receives corrected contours from the previous stage. Also, the contour 
processor clusters polyline and their associated holes from the input contour set. 
Delaunay’s algorithm [14] triangulates the set of points in polyline and hole contours. 
For example, the English character “O” has two contours; the outer contour is a 
polyline contour and the inner contour is a hole for this primary contour. Thus, the 
triangulation process will only happen in the region between these two contours. 

The pipeline generates triangles for the front plane using the aforementioned 
process in anti-clockwise winding order [7]. For generating the back-plane mesh, the 
pipeline extrudes the front-plane triangles at a fixed offset and inverts the winding 
order as shown in Fig. 4a. This is an efficient way to generate mesh for the front 
plane and back plane of the input text. To complete the mesh, the next step is to 
create triangles for the side planes. 

The pipeline uses a rounded-edge generation algorithm to generate an aesthetically 
pleasing 3D mesh. The algorithm generates triangles along the side face of the mesh in 
a bevelled form such that it simulates a rounded look upon proper normal generation 
as shown in Fig. 4. This leads to issues like holes and overlapping triangles in the 
mesh. The concave outward sides lead to the creation of holes. This is resolved by 
generating additional triangles to fill the holes. The concave inward sides lead to 
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Algorithm 3: Generate a graph of connected contours() 
Procedure RemoveIntersection(quer  y,  base):

- Mark points in query which are inside base;
- Mark points in base which are inside query;
- Find the set of intersecting points ; 
if query outside base; 
then 

Remove points in query which are inside base; 
Remove edge between base and query in relationship graph; 

else 
Remove points in query which are outside base; 
Add full-weight edge between base and query in relationship graph;

- Generate new points along boundary of base contour; 

; 
Result: A Relationship Graph Between Contours 
Input: ω (Set Of contours) 
for c ∈ ω do 

for b ∈ ω, b !=  c  do 
if b outside c; 
then 

no connection in graph; 
else if b partially inside c; 
then 

ResolveIntersection(b,c); 
else if b inside c;  
then 

Add directed edge from c to b with full weight; 

overlapping side triangles. This is resolved by sharing the vertices generated for the 
bevel. 

Vertex-normal is a geometric normal of the mesh created in the previous stage. 
These normals are an integral attribute for shading on the 3D mesh. Generally, a 
normal for a vertex is computed by taking a normalized average of the surface normals 
of the faces containing this vertex. This will yield aberrated shading for the generated 
3D mesh because it has triangles of varying sizes, from small to large to very thin 
triangles. Thus, the pipeline requires an algorithm which handles such variations in 
the area of the generated triangles. The pipeline uses an algorithm proposed by [18] 
to estimate the vertex-normal to approximate a smooth surface, as a weighted sum 
of the vertex-normal to the facets surrounding the vertex. 

In the graphics pipeline, texture mapping (UV Mapping) is a process to map a 
2D image onto a 3D surface. Techniques that are used for texture mapping are listed 
as follows: (1) Spherical mapping, (2) Cylindrical Mapping and (3) designing the 
mapping by a designer [1]. The pipeline uses a cuboidal mapping to determine UV 
coordinates of the generated mesh as shown in (To do insert figure). As text-width 
can vary based on different inputs, the texture repeat rate is proportional to text-width
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Fig. 3 (Best viewed in colour) a Input 2D contours, b contour points after dynamic sampling, c 
zoomed-in region of self-intersection (region in marked red circle), d zoomed-in region of inter-
section with other contours (region in marked red rectangle) and e final output of the 3D 

in the x-direction and is constant in the y-direction. For back-plane vertices, an offset 
is added to the x-coordinate of corresponding front-plane vertices. 

4 Results 

In this section, we present results from the proposed pipeline. We discuss the results of 
the following modules: 1. Dynamic Sampling, 2. Intersection Removal and 3. Quality 
of the generated mesh. We implement the proposed pipeline on an embedded system 
with Qualcomm SM8250 Snapdragon chip (Octa-core: one 2.84 GHz, three 2.42 GHz 
and four 1.8 GHz processors) running Android 10 with Adreno 650 GPU(587 MHz).
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Fig. 4 a Front- and back-plane mesh, b Sides of the rounded edges and top view with vertex-normals 
and c Mesh with phong shading 

Fig. 5 Mesh generated of an excerpt from To Kill A Mockingbird in a English, b Simplified Chinese, 
c Hindi, d French, e Spanish and f Arabic. Snipped from a mesh visualization tool
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Fig. 6 Intersection removal between two contours 

OpenGL pipeline on embedded system renders the mesh. MeshLab [4] is used to  
visualize the 3D mesh. 

4.1 Dynamic Sampling 

As discussed in Sect. 1, the dynamic sampling strategy removes redundant points 
to improve the time performance. We choose an excerpt from the novel To Kill a 
Mockingbird and translated it into Hindi, simplified Chinese, French, Spanish and 
Arabic using Google translate utility [10] available on the web as shown in Fig. 5. 
Table 1 shows the improvement in time performance and reduction in the number 
of vertices in the generated mesh. The dynamic sampling strategy reduces the time 
performance significantly in English, Chinese, Hindi, Spanish and French languages 
where characters have less curvature compared to the Arabic language where the 
impact is less because of more curvatures. 

4.2 Intersection Removal 

The contour processor module resolves self-intersection in a contour and clips the 
intersection part of a contour with another contour. Figure 3c illustrates an example of 
self-intersection contour and it’s correction. As explained in Sect. 3.2, the proposed 
method splits the intersection point into two nearby points and preserves the orig-
inal shape of the contour. Figure 6 shows the results from the intersection removal 
between two contours. In Fig. 6a, the inner contour is majorly inside the bigger con-
tour compared to Fig. 6c where that same contour is majorly lying outside the bigger 
contour. As explained earlier, our algorithm clips the smaller contour differently in 
these scenarios. For case 1, the smaller contour will clip the outside portion compared 
to case 2 where an inner portion is clipped.
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Table 1 Comparison of uniform sampling versus dynamic sampling 

Text Number of 
characters 

Uniform sampling Dynamic sampling 

Number of 
vertices 

Time (in ms) Number of 
vertices 

Time (in ms) 

Mockingbird_English 185 58784 160.638 43924 108.134 

Mockingbird_Chinese 79 69464 222.621 45138 125.843 

Mockingbird_Hindi 202 76754 275.196 52214 153.484 

Mockingbird_Spanish 192 64660 164.609 50724 125.329 

Mockingbird_French 192 64608 169.222 48512 115.337 

Mockingbird_Arabic 177 50464 130.776 49284 123.024 

Table 2 Comparison of geometry from different tools 

Method No. of vertices No. of faces 

Blender [5] 4860 5816 

Our 2130 4120 

4.3 Mesh Quality 

We compare our results with a professional editing tool Blender [5], which supports 
3D text. As there is no direct metric to compare two meshes without a reference 
ground truth, we rely on quantitative metrics like the number of vertices to evaluate 
the geometry of two 3D meshes and qualitative comparison by comparing the two 
3D mesh side-by-side against each other. To generate a 3D text from Blender [5], 
we use the following settings: 3 Resolution Preview, 0.03m Extrusion, 1 Bevel Level 
and 0.01m Bevel depth. This 3D mesh is then exported as an OBJ file and visualized 
in Meshlab [4]. For comparison, we use ITCEDSCR font type and “Hello” text as 
input to both the methods. Table 2 shows a comparison between the geometries of 
meshes. Our method uses less number of vertices compared to Blender [5]. This 
result efficacies dynamic sampling approach in our method. 

Figure 9 compares mesh qualitatively from two methods. Figure 9a and b illus-
trates the shaded output from two methods. In Fig. 9c and d, we compare the zoomed-
in region of the top-left curve from both the meshes. We observe that the mesh output 
from [5] is jagged as compared to ours. In Fig. 9e and f, we compare the Gauss cur-
vature [19] from two meshes. 

The 3D mesh generated from Blender and the proposed method are compared 
against each other in Fig. 7. Figure 7a shows that Blender supports dynamic sam-
pling and chamfered edges. But Blender [5] repeats the vertices on side planes and 
chamfered plane as shown in Fig. 7b, whereas the proposed methods achieve similar 
quality by not repeating the vertices as shown in Fig. 7c and d. Thus, the quality
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Fig. 7 Triangulation and vertex normal comparison a Blender [5], b Normal from Blender’s output, 
c Our method and d Normal from our method 

Fig. 8 Generated mesh for character a Hindi “Ri” [5], b “Korean Gong” [5], c “Arabic character 
alif” [5], d Hindi “Ri” (Our method), e “Korean Gong” (Our method) and f Arabic character “alif” 
(Our method)



262 A. Dhiman et al.

Table 3 Comparison of character in Hindi, Korean and Arabic languages 

Blender [5] Our method 

Hindi “Ri” No. of vertices 1180 708 

No. of faces 1412 1384 

Koran “gong” No. of vertices 530 960 

No. of faces 628 1900 

Arabic “alif” No. of vertices 2340 990 

No. of faces 2792 1936 

of generated mesh from the proposed method is at par with professional tools like 
Blender [5]. 

Next, we compare characters from different languages in Table 3 and Fig. 8. 
We choose Hindi character “Ri”, Korean character “Gong” and Arabic charac-
ter “alif”. We use “NotoSansDevanagari”, “NotoSansCJKkr” and “NotoSansArabi” 
font, respectively. To generate results from Blender [5], we use aforementioned set-
tings. In Table 3, we observe that our method has less number of vertices and faces 
except for Korean character. But it’s very clear from Fig. 8b and e that our method’s 
mesh quality is superior to that of Blender [5]. Another observation is the final output 
for Arabic character that has come out wrong from Blender [5] as shown in Fig. 8c. 

5 Conclusion 

We present a novel pipeline for generating a 3D mesh for text which runs on an 
embedded system in real time. Our approach eliminates the need to create 3D fonts 
for different languages as it directly works on 2D contours from the text. Our inter-
section removal method eliminates the self-intersection in a contour with itself and 
intersections with neighbouring contours. The results prove high-quality mesh gen-
eration with rounded edges and mesh attributes like normals, tangents and texture 
coordinates. We have experimentally verified the generated 3D mesh with a popular 
professional tool to illustrate the efficacy of our approach. 

With the growing popularity of AR, we expect a need to generate 3D mesh for 
hand-written text. We also foresee a demand to apply the real-world texture to the 
generated mesh in the AR world. Apart from this, we expect a need for a deformable 
mesh model to enable animation and increase the user’s interactions with the 3D 
mesh. These improvements will count as a step forward in the development of a 
coherent and advanced AR ecosystem.
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Fig. 9 (Best viewed in colour) Qualitative comparison 3D mesh from a Blender [5], b Our method, 
c Zoomed-in region of mesh in (a), d Zoomed-in region of mesh in (b), e Blender output’s Gauss 
curvature and f Our output’s Gauss curvature 
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