
Spark Partition Strategy Based on Genetic
Mutation Algorithm

Shuo Wang(B)

Beijing University of Posts and Telecommunications, Beijing 100089, China
goumang25@163.com

Abstract. Spark is a general computing engine in the big data field. The shuffle
phase is an important part of ensuring Spark’s operation. However, when the
default partitioning strategy is used for partitioning in this phase, tasks with a large
amount of data will cause data skew and cause calculation delays. Aiming at the
problem of data skew, this paper proposes a partitioning strategy based on genetic
mutation algorithm (GAPartition), sampling and predicting the data volume of
each Task, and then using genetic mutation algorithm to map tasks and partitions
into mathematical models, re-partitioning, and finally constructing the evaluation
model of the degree of cluster tilt. Through experiments, the calculation time of
Spark’s default HashPartition and RangePartition partitions at different degrees of
tilt is compared. The experimental results show that GAPartition can effectively
solve the problem of data tilt and shorten the execution time of tasks in the cluster.

Keywords: Spark · Data skew · Load balancing · Partition strategy

1 Introduction

In recent years, the Internet has entered an era of explosive data growth. The scale of data
grows exponentially at any time. Big data computing engines represented byMapreduce,
Spark, and Flink have emerged. Spark continues the design idea of MapReduce divide
and conquer, but is based on memory computing. And other features, so that the cal-
culation speed is 100 times faster than MapReduce. Compared with Flink, it has richer
SQL support and a more active community. So Spark is currently the most popular big
data computing engine.

Data skew is a common phenomenon in data processing. In the SparkShuffle stage,
the same Key on each node should be pulled to the same task for processing. At this
time, the Key and Value may be unbalanced. If the amount of data processed by a task
far exceeds other tasks, it wills Data skew occurs, and data skew will cause calculation
delays and reduce the calculation efficiency of Spark.

In response to the problem of data skew in the Spark Shuffle stage, in the industry,
solutions such as increasing the number of partitions of Shuffle, filtering the skewed
keys, and two-stage aggregation are often used to deal with the problem, but the above
methods are not modified from the perspective of partitions, and the default Hash is used.
Partitions may still cause great tilt. In academia, Liu et al. [1]. Proposed a partitioning

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Pei et al. (Eds.): IC 2022, LNEE 935, pp. 300–311, 2022.
https://doi.org/10.1007/978-981-19-4132-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4132-0_36&domain=pdf
https://doi.org/10.1007/978-981-19-4132-0_36

Spark Partition Strategy Based on Genetic Mutation Algorithm 301

algorithm for data skew in the Reduce stage of data flow. These data are regarded as
candidate samples. Predict the characteristics of the intermediate data based on the
sampled samples to generate a reference table to guide the distribution of the next batch
of data evenly. YANYi-fei et al. [2] pre-partitioned items based on themost adaptive hash
algorithm, and finally partitioned the full amount of data according to the pre-partition
table, which effectively solved the problem of key skew and value skew. Zeyu He et al.
[4] proposed a dynamic execution optimizationmethod to balance the workload between
tasks. During the aggregation process, tasks in smaller partitions can steal and process
data from tasks in larger partitions, avoiding sampling and reallocation overhead.

This paper proposes a new partitioning method. Firstly, the data size corresponding
to each key is predicted by the pool sampling algorithm, and then the load balancing
problem is mapped to the mathematical model of the genetic algorithm, and the allo-
cation of keys to partitions is abstracted as a gene, and a feasible solution The abstract
is a chromosome, and its fitness matrix is constructed. The roulette algorithm retains
good genes. Through the processes of crossover, duplication, and mutation, the optimal
chromosome is the optimal solution to the problem [3].

2 Data Skew in the Shuffle Phase

There is a dependency between Spark RDDs, and the dependency chain will be broken at
the wide dependency, and the RDD will be divided into multiple stages. The connection
between the stages is Shuffle. Operator operations such as ReduceByKey, GroupByKey,
Join, etc. all produce Shuffle. Spark continues the idea ofMapreduce divide and conquer.
In the Shuffle stage, there are also Map and Reduce ends. Shuffle connects the two ends
to partition the data on the Map. As in the above several operator operations, all values
corresponding to each key need to be aggregated into for a total value, the same key
should be put into the same partition and passed to Reduce for aggregation during
Shuffle.

Fig. 1. The cube built by the practical instance

The partitioning process depends on the partitioning strategy. Themain function is to
determine the number of Reducers in the Shuffle process and to which Reducer the data

302 S. Wang

on theMapper side should be allocated [5]. Spark’s partitioner is usuallyHashPartitioner,
which is based onhash implementation. For eachKey, divide itsHashCode by the number
of partitions to take the remainder. The remainder is the partition ID corresponding to this
key, which ensures that the same Key is in the same partition.. However, when there are
a large number of different keys with the same remainder, the data in this partition will
be much larger than other partitions. As shown in Fig. 1, in extreme cases, after the Key
modulus, the keys with large data volume such as e and c may have the same modulus
andwill be divided into the same partition, while the keys with small data volume such as
a and b will be divided To the same partition, although the same key is guaranteed to be
in the same partition, it leads to data skew. The execution time of ReduceTack incoming
from this partition will increase sharply, and even OOM will occur, and the execution
time of Spark jobs is the longest. Long task decision, so data skew will seriously reduce
the computing efficiency of Spark.

3 Algorithm Description

3.1 Data Sampling

The pool sampling algorithm is used to predict the proportion of different keys in the
overall data. When the total amount of data is unknown, the algorithm only traverses the
data (O(N)) to complete the equal probability sampling, and the key proportion of the
sample is the whole The key proportion of the data [6]. As shown in Algorithm 1.

Algorithm 1 pool samplingsampling
Input: Sampling capacity k; Data Key collection Data
Output: map of the proportion of each key
map=Map(key,num)
i <- 0
for i = 0 -> Data.length-1 do
 if i ≤ k then
 map(Data[i]) + 1 //key corresponding value+1
 else
 a = rand(0,i) //Random number between 0 to i
 if a < k then
 map(Data[a]) - 1 //key corresponding value-1
 map(Data[i]) + 1
 end if
 end if
end for
for each value in map
 value <- value/Data.length
end for

After sampling, the sample proportion information and total space can be obtained.
With this information, the characteristics of the overall data can be approximated. In
order to carry out the subsequent partition strategy.

Spark Partition Strategy Based on Genetic Mutation Algorithm 303

3.2 Genetic Mutation Algorithm

Before using the genetic algorithm, we must first clarify the problem to be solved. What
we are facing is to allocate N Tasks to M partitions for processing. The data volume of
each task is known and the number of partitions is known. We need to use an allocation
method to make the data volume of all partitions tend to be even.

The genetic mutation algorithm obtains the optimal solution of the problem through
the process of crossover, mutation, and replication of multiple bands. Simulates the
thought of survival of the fittest in nature. First, we must map the problem into a
mathematical model of genetic algorithm.

Concept 1: Genes and chromosomes
As shown in the figure below, a solution to the problem is called a “chromosome”.
Multiple elements constitute a chromosome, then the elements are called “genes” on
the chromosome. In the above question, the chromosome is expressed as assigning task
t to partition p for processing. For example, {2,1,1,0,2} means that Task-0 is assigned
to Partition-2, and Task-1 is assigned to Partition-1, Task-2 is assigned to Partition-1…
(Fig. 2)

Fig. 2. Genes and chromosomes

Concept 2: Task size matrix
Indicates the amount of data added by task t to partition p

taksMatix[t]
[
p
] = task[t]t ∈ (0,N), p ∈ (0,M)

Concept 3: Fitness function
Fitness is used to evaluate the pros and cons of a chromosome. High-quality chromo-
somes will be retained in the next iteration, and inferior ones will be eliminated. In this
problem, the fitness is the largest amount of data in each partition. Expressed as:

Fitnessi = max(chromosomesi[t])t ∈ (0,N), i ∈ (0, chronum)

Chronum is the number of chromosomes.

Concept 4: Cross
There will be multiple iterations in a genetic algorithm, and one iteration becomes an
evolution. In each evolution, the two chromosomes of the parent (one is called the parent
chromosome and the other is called the mother chromosome) “cross” to produce the new
generation of chromosomes (Fig. 3).

304 S. Wang

Fig. 3. Cross

As shown in the figure, the cross will select a random position,cut off the two chro-
mosomes of the parent at that position, and splice them together to generate a new
chromosome. This new chromosome is a fusion of parental chromosomal genes.

In order to retain the excellent genes of the previous generation, the best quality
chromosomes must be selected as parents for each evolution [7]. The higher the fitness,
the better the quality, and the chromosomes with higher fitness probability are easier to
be selected. It is generally implemented through the roulette algorithm.

selectionProbabilityi = Fitnessi/
chronum∑

k=0

(
n
k

)
Fitnessk ∈ (0, chronum)

Algorithm 2 Roulette Algorithm
Input: chromosome fitness
Output: Selected chromosome
j <- 0;
r <-Random(0,1);
for selected = 0 -> chronum-1 do
 j = j + selectionProbability[selected]
 if(r<=j)
 return chromosome[selected]
 end if
end for

Concept 5: Variation
Although the cross can retain good genes, the genes of the new generation are still the
parent genes. This can only ensure that after N times of evolution, the calculation result
is closer to the local optimal solution, and the global optimal solution will never be
obtained. Randomly select several genes on the new chromosome, and then randomly
modify the value of the gene to introduce new genes into the existing chromosomes,
which is called mutation.

Spark Partition Strategy Based on Genetic Mutation Algorithm 305

Algorithm 3 mutation
Input: chromosome matrix newChromosomeMatrix
Output: The chromosome matrix of the new generation after mutation
variation(newChromosomeMatrix) {
// Randomly find a chromosome
 chromosomeIndex = random(0, chromosomeNum-1);
 // Randomly find a task
 taskIndex = random(0, taskNum-1);
 // Randomly find a node
 nodeIndex = random(0, nodeNum-1);
 newChromosomeMatrix[chromosomeIndex][taskIndex] = nodeIndex;
 return newChromosomeMatrix;
}

Concept 6: Copy
In each evolution, the most adaptable chromosomes in the previous generation need to
be directly copied to the next generation intact.

Assuming that there are N chromosomes in each evolution, and M chromosomes are
directly copied, then N-M chromosomes come from cross.

Algorithm 4 Copy
Input: the parent chromosome matrix chromosomeMatrix and adaptability, the

new chromosome matrix newChromosomeMatrix, and the number of copies reserved
Output: The new generation chromosome matrix after copying.
copy(chromosomeMatrix, newChromosomeMatrix) {
 chrIndexs = maxN(adaptability, l); //Select the index of the l chromosome with

the highest fitness
 for i = 0 ->chrIndexs.length
 var chromosome = chromosomeMatrix[chrIndexs[i]];
 newChromosomeMatrix.push(chromosome);
 end for
 return newChromosomeMatrix;
}

The overall flow chart of the genetic mutation algorithm is as follows (Fig. 4)

306 S. Wang

Fig. 4. The overall flow

3.3 GAPartition

GAPartition occurs in the partitioning stage of Spark’s Groupbykey and Reducebykey.
The algorithm is divided into four parts as a whole. As shown in Algorithm 3, the
distribution of the keys of the computing task Data is first predicted by pool sampling.
Each key corresponds to a task, and then Task and user-defined partition number M are
used as input parameters to execute genetic mutation algorithm [8]. Finally, according to
the partition numbermarked by the geneticmutation algorithm, by rewriting the partition
method of Spark, GAPartition is realized to partition the tasks. End the Shuffle phase of
Spark.

Spark Partition Strategy Based on Genetic Mutation Algorithm 307

Algorithm 5 GAPartition
Input: partition number M, calculation task Data
Output: partition result of each task
Task(key,num)=PondSampling(Data,k)//Pool sampling algorithm,where k is the

sampling amount
for t = 0 -> Task.size-1 do
 for p = 0 -> M do
 taskMatix[t][p] <- Task[t]//Task t assigned to p, the value is the sampling size

of the task
 end for
end for
chromosomeMatrix = init();//Initialize the first generation of chromosomes
// Iterative propagation
for itIndex=1 -> iteratorNum do
 Time(chromosomeMatrix);// Calculate the task processing time of the current

chromosome
calAdaptability(chromosomeMatrix);
newChromosomeMatrix = cross(chromosomeMatrix);// cross
newChromosomeMatrix = variation(newChromosomeMatrix);// mutation
newChromosomeMatrix = copy(chromosomeMatrix, newChromosomeMatrix);//

copy
end for
After the iteration, select the chromosome with the highest fitness in the last

generation chromosomeMatrix[best] as result.
for t = 0 -> chromosomeMatrix[best].size-1 do
 Task[chromosomeMatrix[best][t]] partition number is t
end for

4 Comparative Experiment

The experimental environment is a Spark cluster built up with 5 virtual machines, and
the configuration of each node is shown in Table 1. By default, a Slave node corresponds
to a partition, and there are five partitions in total.

Table 1. Cluster configuration table

Node type Number CPU Memory System

Master 1 2core 2. 6GHz 8G Hadoop2.7,Spark2.3,Centos7

Slave 5 1core 2. 6GHz 4G

308 S. Wang

In this experiment, the dispersion coefficient is used to calculate the degree of data
dispersion, which can evaluate the overall tilt of the job after partition. P is the number
of partitions, and S is the amount of data. It can be calculated that the average capacity
of each partition is

Smean = Stotle/P

The total size of each partition is O, and b is the Taskid assigned to the partition.

Oj =
b∑

i=1

Taski

The dispersion coefficient D is

D =
√∑p

j=1

(
Oj − Smean

)2

Smean

When D is smaller, it means that the amount of data stored in each partition is more
similar, and the data slope is smaller; otherwise, it means that the amount of data in each
bucket is unbalanced.

The wordcount task is used to evaluate the performance of the partitioning scheme
at different degrees of tilt, and four sets of data with key tilts of 0.2, 0.4, 0.6, and 0.8
are generated for experiments by comparing Spark’s default partitioning method Hash
partition.

4.1 Sampling Ratio Selection Experiment

Since GApartition involves sampling, we use separate sampling rates of 5%, 10%, and
20% for sampling. The most suitable sampling ratio is selected by comparing with the
real ratio with a key slope of 0.7. The final sampling result is as shown in the figure
below. It can be seen that when the sampling ratio is 20%, it is the closest to the true
proportion, so we choose the sampling ratio of 20% for the next experiment (Fig. 5).

Spark Partition Strategy Based on Genetic Mutation Algorithm 309

Fig. 5. The result of sampling ratio selection experiment

4.2 Execution Time Comparison Experiment

The figure shows the execution time of the Wordcount task under Hashpartition and
GApartition in the case of a 20% sampling ratio, different Key slopes, and the same
amount of data.When the slope of the key is 0.2, the speed of Hashpartition is higher than
that of GApartition, because GApartition has one more sampling step, which increases
the execution time. However, as the slope increases, the time consumption of sampling
is negligible compared with the time of task calculation. At a slope of 0.8, the execution
time is shortened by 12% compared to Hashpartition. It can be seen that compared to
Hashpartition, GApartition can effectively deal with the task delay caused by key tilt
(Fig. 6).

310 S. Wang

Fig. 6. The result of execution time

4.3 Partition Tilt Comparison Experiment

Using the dispersion coefficient D as an indicator, comparing the overall tilt of GAparti-
tion and Hashpartition, the data set sizes are 0.5G, 1G, 1.5G, 2G, and 2.5G, respectively,
and their Key tilts are the same (Fig. 7).

Fig. 7. The result of Partition tilt comparison experiment

The experimental results are shown in the figure.When the amount of data is less than
1G, the dispersion coefficient D of GApartition and Hashpartition is not much different;
when the amount of data exceeds 1G, the D of GApartition rises more slowly, which
has obvious advantages compared with Hashpartition. It shows that GApartition can
effectively alleviate the data skew of the partition. Meet the expectations of designing
GApartition.

Spark Partition Strategy Based on Genetic Mutation Algorithm 311

5 Conclusion

Aiming at the problemof data skewcaused by the defaultHashpartition in the SparkShuf-
fle stage, the article proposes a new partitioning strategy GApartition, which is based
on the genetic mutation algorithm, according to the defined fitness function, through
sampling, crossover, mutation, copy and other operations to get the task to Optimal allo-
cation of partitions. Finally, according to the dispersion coefficient of the data tilt, the
comparison experiment can verify that GApartition is universal and efficient, and it can
reduce the data tilt and the task delay caused by it to a limited extent [9].

References

1. Yan, Y., Wang, Z., Qiu, X., Wang, J.: A shuffle partition optimization scheme based on data
skew model in spark. J. Beijing Univ. Posts Telecommun. 43(02), 116–121 (2020)

2. Liu, G., Zhu, X., Wang, J., Guo, D., Bao, W., Guo, H.: SP-partitioner: a novel partition method
to handle intermediate data skew in spark streaming. Future Gener. Comput. Syst. 86 (2018)

3. Gu, H., Li, X., Lu, Z.: Scheduling spark tasks with data skew and deadline constraints. IEEE
Access

4. He, Z., Huang, Q., Li, Z., Weng, C.: Handling data skew for aggregation in spark SQL using
task stealing. Int. J. Parallel Prog. 48(6), 941–956 (2020). https://doi.org/10.1007/s10766-020-
00657-z

5. Tang, Z., Zhang, X., Li, K., Li, K.: An intermediate data placement algorithm for load balancing
in spark computing environment. Future Gener. Comput. Syst. 78 (2018)

6. Tang, Z., Zeng, A., Zhang, X., Yang, L., Li, K.: Dynamic memory-aware scheduling in spark
computing environment. J. Parallel Distrib. Comput. 141 (2020)

7. Zvara, Z., et al.: System-aware dynamic partitioning for batch and streaming workloads (2021)
8. O’Driscoll, A., Daugelaite, J., Sleator , R.D.: ‘Big data’, Hadoop and cloud computing in

genomics J. Biomed. Inform. 46(5) (2013)
9. Cao, S., Haihong, E., Song, M., Zhang, K.: Optimization of data distribution strategy in theta-

join process based on spark. Algorithms, Computing and Systems (2018)

https://doi.org/10.1007/s10766-020-00657-z

	Spark Partition Strategy Based on Genetic Mutation Algorithm
	1 Introduction
	2 Data Skew in the Shuffle Phase
	3 Algorithm Description
	3.1 Data Sampling
	3.2 Genetic Mutation Algorithm
	3.3 GAPartition

	4 Comparative Experiment
	4.1 Sampling Ratio Selection Experiment
	4.2 Execution Time Comparison Experiment
	4.3 Partition Tilt Comparison Experiment

	5 Conclusion
	References

