
Chapter 4
Woody Biomass Change Monitoring
in Temperate Montane Forests by Airborne
LiDAR Analysis

Yoshio Awaya

Abstract Airborne laser scanners by light detection and ranging (LiDAR) measure
the elevation of ground objects, and canopy height (DCHM) can be estimated as the
difference between the canopy surface and ground elevation. A forest area was
selected in the east of Takayama city (Gifu Prefecture, Japan) in the cool temperate
forest zone. Airborne LiDAR observation was executed in 2005 and 2011. Total dry
woody biomass (TDB) was mapped using the two LiDAR data using statistical
biomass estimation models, one for evergreen coniferous forests and the other for
deciduous broadleaved forests using DCHMs. Changes in TDB were mapped, and
man-made evergreen coniferous forests surrounding a village in the west showed
greatest TDB and growth in the study area due to human forestry activity. On the
other hand, forests in the east were young with less TDB and growth. Hence, forests
in the east were younger, and TDB and growth were less, than those in the west.
Deciduous broadleaved forests, which were used as fuel woods until the 1960s,
generally had smaller TDB and growth. Human forestry activity resulted in TDB and
growth differences, and TDB maps showed impacts of the forestry activity in
this area.

Keywords Total dry biomass (TDB) · Biomass growth · Airborne LiDAR · Cool
temperate forest · Forestry activity

4.1 Introduction

A forest ecosystem provides various ecosystem services, including carbon stock and
fixation, timber and fuel supply, water purification, and wildlife habitat. It is essential
to identify the forest distribution including forest type, height, and biomass to
understand the contribution of a forest to the human community through its ecosys-
tem services. For example, different (e.g. by species, height, density, and age) forest
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types support different animals, and geographical forest information is probably
necessary and important for animal conservation.
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Forest resource information is mandatory for forestry. Stock volume information
(both amount and distribution) is important for timber production, and dry biomass
information is necessary when calculating the woody fuel supply. Since timber is a
renewable resource, it is important to use biomass wisely in order to reduce carbon
emissions. Recently, biomass and carbon fixation information from each forest is
required for global warming mitigation as well.

The concentration of atmospheric carbon dioxide (CO2), one of the greenhouse
gasses causing climate change, is increasing steadily. Moreover, global mean air
temperature seems to have increased greatly since the 1910s in conjunction with the
increasing greenhouse gas concentration (Houghton et al. 2001). Internationally
there is much interest in the estimation of carbon storage and evaluation of carbon
balance in terrestrial ecosystems in order to understand the potential value of
ecosystems for carbon reduction.

Net primary productivity (NPP), which is the amount of carbon absorbed by
vegetation, may increase under increasing global air temperature in ecosystems
where plants can extend the growing period. On the other hand, decreased precip-
itation may cause NPP reduction in ecosystems due to water stress (Houghton et al.
2001). Estimation of NPP is essential for evaluating the carbon balance, and for
understanding the effects of climate change on vegetation.

Biomass is an important variable for forestry as a resource as well as a CO2 source
for carbon balance studies. The biomass and carbon stocks in forests are important
indicators of their productive capacity, energy potential, and capacity to sequester
carbon (FAO 2016). Biomass is a pool of atmospheric carbon fixed by plants and
ranges widely based on tree size in large areas. The difference between biomass and
litter falls during a period (usually a year) is the NPP. On the other hand, it is well
known that forest disturbances in the tropics release carbon to the atmosphere as
CO2. In addition, tree plantations and silvicultural treatments in some countries such
as China result in significant tree growth and support carbon fixation from the
atmosphere to trees (FAO 2016). Therefore understanding forest change as the
potential carbon sink in a large area is essential for understanding carbon balance
on a regional, national, continental, or global scale. However, precise assessment of
forest biomass distribution by field survey is a difficult task when the area is large.

Remote sensing provides information concerning landcover by detecting signals
such as reflected solar energy from the land surface and analyzing characteristics of
signals. For example, optical sensors provide multispectral surface information as
digital images (pictures) of a certain mesh size between sub-meter and some
kilometers. Optical sensors separate reflected solar energy into some different
wavelengths, which is spectra. Obtained images cover areas from about 100 km2

to 300,000 km2 as wall-to-wall pixel data and are used for forestry applications.
Thus optical images can be used to estimate spatial coverage of forest informa-

tion, such as forest types and biomass (Franklin 2001). Providing information in
large areas is the greatest advantage of remote sensing, and this technology surpasses
the field survey method. On the other hand, the greatest problem of optical sensors is



that they observe not only biophysical parameter directly but also the spectra (color)
of trees. Therefore forest information such as biomass is evaluated indirectly (indi-
rect estimation) by identifying any relationship between intensity of spectral reflec-
tance and biophysical parameters such as biomass. Relationships between
reflectance and biophysical parameters are not strong and change according to the
images. Since observed reflectance values change according to different specifica-
tions of the sensors, observation conditions such as atmosphere, solar direction, and
topographic shadow. Although removing influence or ‘noise’ using these factors is
mandatory, removing noise is a very hard task. As a result, it is difficult to derive
consistent and accurate estimation of biophysical parameters because of the indirect
estimation affected by numerous noise sources.
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Although optical remote sensing has been used to estimate forest biomass
distribution (Peng et al. 2019; Spanner et al. 1990; Peterson et al. 1987), it is very
difficult to derive accurate and consistent estimation from optical images due to not
only atmospheric and topographic effects but also seasonal changes of tree spectra.
Reflectance is saturated in stands with high biomass and the estimation accuracy is
low in dense forests with high biomass (Foody et al. 2003). Optical images have
been also used for estimation of NPP distribution and for their inter-annual moni-
toring with environment information such as climate (e.g. air temperature and
precipitation) (Awaya et al. 2004; Potter et al. 1993).

The normalized difference vegetation index (NDVI) is linear to the fraction of
absorbed photosynthetically active radiation, and NDVI can be used to estimation
the amount of solar energy which is used photosynthesis by plants. It is essential to
achieve very accurate atmospheric correction, topographic correction, and reduction
of effects of bidirectional reflectance distribution function (BRDF) of vegetation
species-by-species for precise optical image processing to derive biophysical param-
eters including biomass and NPP. However accurate high resolution atmospheric
information maps for atmospheric correction are not available and BRDF of ground
surface at each pixel for accurate BRDF and topographic correction is unknown.
Above all, reflectance of visible and infrared wavelengths saturate in dense vegeta-
tion. These problems affect accurate biomass and NPP estimation using optical
images.

On the other hand, light detection and ranging (LiDAR) technology provides
accurate canopy height information (Maltamo et al. 2014), which is one of the
biophysical parameters. Although laser scanning emit laser pulses discretely, current
laser scanner can emit more than 10 laser pulses per square meter to the ground from
the air. Dense laser pulses provide pseudo wall-to-wall height information and can
supply accurate canopy height of trees in a large area.

Laser scanning based on LiDAR from the air was introduced for forest measure-
ments in the early 1980s, and a laser profiler revealed that tree canopy height was
measurable from the air in a large area (Arp et al. 1982; Aldred and Bonner 1985).
Airborne laser scanners emit laser pulses from the air to the ground and receive
reflected pulses from objects on the ground. The geographical location of the ground
object is determined from the time lag between the emission and receiving of the
laser pulse (distance) and the direction from the scanner on airplane geographical



location (Beraldin et al. 2010). Most pulses reflect at the canopy surface (first return)
and few pulses reach to the ground (last return). Surface returns show surface
elevation of objects and ground returns show the ground elevation. First returns
are used to produce a digital surface model (DSM), and ground surface is estimated
as a digital terrain model (DTM) using ground returns and numerical interpolation,
such as triangulated irregular network (TIN, Maas 2010). The difference between
DSM and DTM is the digital canopy height model (DCHM, Fig. 4.1). DCHM is
accurate canopy information of not only height but also horizontal and vertical
structure. Laser pulses also provide information on foliage.
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Fig. 4.1 Schematic view of
laser scanning
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Various research in this field has been carried out (Leeuwen and Nieuwenhuis
2010; Wulder et al. 2012). For example, stem volume or biomass estimation is the
most popular and important research topic for forestry, forest ecology, and carbon
circulation studies (Awaya and Takahashi 2017; Breidenbach et al. 2016; Takahashi
et al. 2005a, 2010; Maltamo et al. 2004; Holmgren et al. 2003; Næsset 1997; Peng
et al. 2019; Cao et al. 2014; Kankare et al. 2013; Mora et al. 2013; He et al. 2012;
Rosette et al. 2012; Yao et al. 2011; Zhao et al. 2009; Foody et al. 2003; Lefsky et al.
1999a, b; Nelson et al. 1988).

Forest type or tree species classification using airborne LiDAR data is advanta-
geous in precise canopy detection and species identification using the reflected laser
pulse intensity or canopy attributes that are derived from the pulses (Hovi et al.



2016). Airborne LiDAR data provide canopy structure information such as vertical
canopy cover (Korhonen et al. 2011) and vertical structure (Morsdorf et al. 2009).
Forest gaps, which are open canopy areas in closed forest, can be detected (Zhang
2008) and monitored using time serial LiDAR data (Vepakomma et al. 2008, 2012;
Araki and Awaya 2021). Gaps are important for undergrowth plants as they can get
more sunlight; therefore, monitoring gaps and undergrowth plants give us prediction
of tree regeneration. Scientists commonly use leaf area index (LAI) estimation.
Optical images have been commonly used for LAI mapping (Melnikova et al.
2018; Biudes et al. 2014; Sprintsin et al. 2007; Knyazikhin et al. 1998; Spanner
et al. 1990; Peterson et al. 1987) despite some difficulties with signal saturation,
atmospheric effects, and topographic effects. Although atmospheric and topographic
effects were able to be greatly reduced and seasonal and inter-annual LAI monitoring
is possible, saturation was still a serious problem (Melnikova et al. 2018).
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As for LAI prediction using LiDAR, its data provide better estimates compared to
those by optical sensor data and even three-dimensional leaf distribution has been
mapped (Sumnall et al. 2021; Almeida et al. 2019; Kamoskea et al. 2019; Hopkinson
et al. 2013; Morsdorf et al. 2006). Thus, LiDAR data are useful not only for mapping
of forest status but also for monitoring its changes, and the results are useful for
forest management.

Among these applications, biomass estimation is the most important among
carbon studies for understanding the capacity of a forest as a sink and pool of
carbon. If airborne LiDAR data are captured twice within some years over the
same forest, then tree growth such as height or biomass can be analyzed accurately
over a wide area. The estimation provides growth potential information of trees in
the coverage of LiDAR data.

Large-area forest inventory is a time-consuming task; however, biomass estima-
tion using LiDAR point data has become popular for creating wall-to-wall invento-
ries. LiDAR-based inventories are essential now in providing more accurate
estimates of biophysical properties than conventional methods. Although airborne
laser observation and data processing is costly, it provides forest resource informa-
tion over large areas with wall-to-wall coverage. Indeed, the use of laser data for
forest inventories supply promising results and improved accuracy (Næsset 2014).
Various studies revealed the performance of airborne laser sensors for predicting
forest variables, such as stem volume and above-ground biomass (AGB) of pine
(Nelson et al. 1988), AGB of deciduous broadleaved and evergreen coniferous
(Lefsky et al. 1999a, b) forests, and stem volume of evergreen coniferous forests,
such as pine forests (Næsset 1997). The advanced LiDAR technology in pulse
density and accurate positioning (Næsset 2014) brings accurate small-footprint
laser data, which results in precise biomass mapping (Means et al. 2000; Holmgren
et al. 2003).

Stem volume is proportional to the space between the canopy surface and the
ground (hereafter, canopy space) (Tsuzuki et al. 2006). The average canopy height is
determined by the canopy space divided by the stand area. Thus, the canopy space
and average canopy height are identical and the average canopy height is useful for
stem volume estimation. However, individual tree analysis has become popular for



variables, such as tree height (Kwak et al. 2007), AGB, and stem volume. Double-
logarithmic relationships have been applied for single tree analysis between AGB or
stem volume and variables from LiDAR data, including the average canopy height
(Næsset and Økland 2002; Takahashi et al. 2005a, b; Kankare et al. 2013). Areal-
based analysis produced much better results than individual tree-based analysis for
stem volume and AGB (Kankare et al. 2013). Since most of numerous studies were
stand-level studies, it is important to evaluate the causes of the estimate variation in
the stand-level analysis prior to operational use (Breidenbach et al. 2016).
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As described above, LiDAR data provide accurate biomass distribution maps,
and if two biomass maps in a period are compared, the distribution of biomass
changes become clear (Næsset and Gobakken 2005). As for LAI (leaf biomass),
accurate estimation seems to be still difficult due to saturation of LAI against a
number of return pulses. However, accurate woody biomass estimation is possible
(Awaya and Takahashi 2017; Takahashi et al. 2010; Maltamo et al. 2004).

Therefore, woody biomass change can be mapped accurately in a large area using
airborne LiDAR data (Næsset and Gobakken 2005). I herein introduce the useful-
ness of airborne LiDAR data for TDB and growth (TDB change) mapping in
mountain forests in the middle of the main (Honshu) island of Japan.

4.2 The Study Site, Data and Method

The Japanese archipelago spreads between 20�N and 45�N between the subtropical
and boreal zones. Therefore, various forest types (sub-tropical evergreen deciduous
forest, temperate evergreen broadleaved forest, cool temperate deciduous
broadleaved forest, and boreal evergreen coniferous forest) exist in the Japanese
archipelago. About two-thirds of land in Japan is covered by forest; about 60% of the
forest is naturally regenerated forest and the remainder is plantation forest containing
coniferous trees such as Japanese cedar or sugi (Cryptomeria japonica D. Don),
hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.), Japanese larch (Lalix
leptolepis Gordon), Todo fir (Abies sachalinensis Masters), and Ezo spruce (Picea
jezoensis Carr.).

Part of a small river basin was selected as the study area (36.146�N, 137.386�E).
The study site was part of the Namai river basin, which is located near Takayama
city in Gifu Prefecture. The elevation ranges between 800 and 1600 m above sea
level (ASL) in the west and east, respectively, with a steep topography and an
average slope angle of 30 degrees. The area is located in the cool temperate zone
with natural deciduous broad-leaved forests and artificial coniferous forests, which
are the most common forests in Honshu Island. According to local information, most
of the river basin was completely logged about 60–70 years ago (after World War 2)
and therefore the forests in the study site are relatively young. Plantation forests of
evergreen conifers, including Japanese cedar and hinoki cypress, are dominant in the
area below approximately 1000 m ASL. Planting of Japanese cedar seedlings was
common in the 1950s and 1960s because Japanese cedar is a fast-growing species



¼

Forest type Stage TDB (Mg ha�1)

used for timber production including the rebuilding of destroyed houses after World
War 2.
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Table 4.1 Summary of plot surveys between 2009 and 2013 (Awaya and Takahashi 2017)

No of
plots

Average DBH
(cm)

Average tree
Height (m)

Japanese cedara Young 4 1.1 – 9.4 1.8 – 5.8 2.6 – 86.1

mature 8 22.6 – 41.2 18.8 – 29.1 325.7 – 467.1

Hinoki cypressa Young-
mature

21 14.6 – 34.3 9.6 – 21.4 110.4 – 444.9

Deciduous
broadleaved

55 1.1 – 25.7 1.7 – 21.3 7.2 – 317.6

a Cedar, cypress and then cedar were planted in conifer plantations after World War II. Area of
young cedar plantation is small

Hinoki cypress was introduced to Japan between the 1970s and 1990s because of
its valuable commercial quality (Forestry Agency of Japan 2014). Japanese cedar
has also been planted recently. Therefore the ages of Japanese cedar and hinoki
cypress stands are clearly different in the study area. Natural deciduous broadleaved
forests dominate in areas above 1000 m ASL, and planted Japanese larch forests
exist in areas above 1200 m ASL. The most dominant deciduous broadleaved
species in this region are deciduous oak (Quercus mongoloca var. grosseseratta
Rehder et Wilson), Japanese white birch (Betula platyphylla var. japonica Hara), and
Erman’s birch (Betula ermanii Cham.).

Cherry spp. such as Japanese bird cherry (Prunus grayana Maxim.), maple spp.
such as Redvein maple (Acer rufinerve Siebold & Zucc.), and Japanese umbrella tree
(Magnolia obovate Thunb.) are common and vary with elevation and successional
stages of stands. Japanese larch was planted around the 1950s for a short period, and
the tree size is similar among larch stands.

Table 4.1 shows the summary of forest field data for biomass mapping. As shown
in Fig. 4.2a, coniferous plantations (dark green) cover the lower part of slopes. Cedar
has a rounder canopy than cypress (Fig. 4.2b) and it appears darker green than
cypress in the areal photo, however, it was difficult to identify these species in the
aerial photo (Fig. 4.2d). Deciduous broadleaved trees change in autumn to different
leaf colors by species (Fig. 4.2c) and appear in dark brown in Fig. 4.2d.

There are two forest flux measurement sites within this study site (Fig. 4.2d): one
at a deciduous broadleaved forest (TKY Takayama deciduous broadleaf forest site
http://asiaflux.net/index.php?page_id¼112) and the other at an evergreen coniferous
forest (TKC Takayama evergreen coniferous forest site http://asiaflux.net/index.
php?page_id 111). They have been operated since 1993 and 2005, respectively.

The main objective of the flux measurement sites is to measure atmospheric CO2

flux, estimate its exchange between ecosystem and atmosphere, then understand the
biological mechanisms. Numerous carbon flux (e.g. Saitoh et al. 2012), biological
(e.g. Muraoka et al. 2012), and ecological (e.g. Ohtsuka 2012) studies have been
executed in the flux measurement sites. Linking biological and ecological findings to

http://asiaflux.net/index.php?page_id=112
http://asiaflux.net/index.php?page_id=112
http://asiaflux.net/index.php?page_id=111
http://asiaflux.net/index.php?page_id=111
http://asiaflux.net/index.php?page_id=111


satellite remote sensing is one of primary objectives of the flux measurement sites
(Muraoka et al. 2012).
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Fig. 4.2 Forest views in the study site and an aerial ortho-photo map. (a) A view of forest in this
area. Topography is mountainous and steep. Dark green and brighter green parts are evergreen
coniferous and deciduous broadleaved forest, respectively. UAV photos over (b) evergreen conif-
erous stands and (c) a deciduous broadleaved stand under autumnal coloring. (d) The orthophoto
which were acquired in autumn, 2012 covers the entire study site. Deciduous trees had dropped
leaves at the time of photo acquisition and appear in brown. The coordinate system of the
orthophoto is Japan Plane Rectangular Coordinate System VII

Fig. 4.3 Forest type map of the mapping area (Awaya and Takahashi 2017)

4.2.1 Remote Sensing Data and Forest Type Map

Three airborne LiDAR datasets of the study area were obtained in October 2003,
July 2005, and August 2011. The footprint sizes of the three LiDAR datasets were



between 0.2 and ca. 0.4 m, and the point densities were 0.7, 1.8, and 1.0 pulses m�2

for the 2003, 2005, and 2011 LiDAR data, respectively (Table 4.2).
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LiADR data in 2003 was used to identify forest and non-forest area in the forest
type classification with two QuickBird images in April 12, 2007 and May 23, 2007
(Fukuda et al. 2012) using a decision-tree classification procedure. A digital canopy
height model (DCHM), comprising the difference between the digital surface model
(DSM) and the digital terrain model (DTM), was produced using the LiDAR data of
2003 and used to separate forest and other land covers. Two QuickBird images were
used for forest type classification to identify deciduous forest by phenological
changes using the maximum likelihood classifier, and separated from evergreen
coniferous forest. The forest-type map (Fig. 4.3) was used as a reference to check
forest type distribution, and for selection of biomass prediction models by the forest
type at each pixel.

Forests were classified into three types in the map: evergreen coniferous forests
(Japanese cedar and hinoki cypress), deciduous broadleaved forests, and larch
forests. Coniferous plantations seemed prevalent in areas where there was easy
access for people (Fig. 4.3). A prefectural road extending from west to east is the
main road in the study area. The road appeared in black on DCHM (Fig. 4.4b). Some
forest roads extend from this prefecture road to forest plantations. Elevation was
higher in the eastern part where deciduous broadleaved forest was common. The
acreages of evergreen coniferous forest and deciduous broadleaved forest are almost
the same in this area.

The Namai river flows from a mountain peak in the north-east (top of Fig. 4.4a)
and then flows alongside flat land. Other parts are mountainous and steep. Tall trees
exist mostly in the west along the Namai river, and trees are small in the east, as
described previously (Fig. 4.4b).

4.2.2 Biomass Estimation Model

It was pointed out that there was a linear relationship between average canopy height
and stem volume or biomass (Tsuzuki et al. 2006). Average canopy height and
various canopy parameters are computed from LiADR point cloud data. The LiDAR
parameter with highest correlation against TDB was different according to forest
type (Awaya and Takahashi 2017); however, there were some parameters that had
significant correlation with TDB.

TDB prediction models for evergreen coniferous and deciduous broadleaved
forests were produced by a linear regression analysis using parameters with the
highest correlation coefficients with TDB among LiDAR parameters. Average
canopy height and a half height of canopies were selected as the independent
variables for evergreen coniferous and broadleaved deciduous forest, respectively,
as shown in Fig. 4.5 (Awaya and Takahashi 2017). The model for deciduous
broadleaved forests was used for larch forests.

Evergreen coniferous forest:
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Fig. 4.4 Airborne LiDAR data over the study site. (a) A digital surface model (DSM): objects with
higher elevation appear brighter. Elevation is lower in the western part which is connecting to the
Takayama city area. (b) A digital canopy height model (DCHM), which was obtained in August,
2011: black areas are open areas such as roads, crop fields, open recreation areas, and ski slopes
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Fig. 4.5 Relationship canopy parameters, which were computed using DCHM in 2011 and field-
measured the total (above and below) woody dry biomass. (a) Evergreen coniferous forest, and (b)
deciduous broadleaved forest

TDB ¼ 18:3� AHavr � 1:3 ð4:1Þ

Deciduous broadleaved forest:

TDB ¼ 12:0� Hd5 � 21:1 ð4:2Þ

There is a strong correlation between the independent variables and TDB for the two
forest types. The validation results showed the usefulness and weakness of DCHM



derived variables. Predicted TDB tended to be slightly underestimated as the regres-
sion lines, with slopes of 0.959 and 0.928 between field measurements (X-axis) and
the predictions (Y-axis) in Fig. 4.5. The size variation would be a function of age
and, thus, canopy height. Therefore, LiDAR height variables probably correlated
with variation in biomass among stands. Reducing standard error is the greatest task
in improving the accuracy of TDB estimates, and adding the second height variable
may be effective.
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Fig. 4.6 Validation results of TDB prediction based on the comparison of predicted and field TDB.
Models (a) for evergreen coniferous forests, and (b) for deciduous broadleaved forests (Awaya and
Takahashi 2017)

The models for coniferous forests might underestimate the Japanese cedar field
TDB and overestimate the hinoki cypress field TDB. Japanese cedar trees had a
multilayer structure because of intraspecies competition under unthinned conditions.
The overstory canopies covered understory trees that were invisible from the air.
Therefore the estimated TDB was relatively low, because the understory was not
evaluated in the overall estimation using the DCHMs and prediction model.

On the other hand, hinoki cypress stands had an uniform one-layer canopy and
relatively low TDB in this area, resulting in an overestimate using the DCHMs and
prediction model. Thus, canopy structure influences the biomass estimates (Rosette
et al. 2012). The standard errors (SEs) for TDB validation (Fig. 4.6) were 32.3 and
35.8 Mg ha�1 for evergreen coniferous forest and deciduous broadleaved forest,
respectively. Estimates were sensitive to the tree density or canopy structure. Dense
stands tended to result in underestimations with high SEs.

4.3 Biomass Distribution

TDB maps were produced using raster LiDAR parameter files, the forest type map
(Fig. 4.3), and selected models (Fig. 4.5). A frequency histogram of the 2011 TDB
map (not shown) had a symmetrical frequency distribution peaking at around



230 Mg ha�1 (Awaya and Takahashi 2017), while the average was 239.4 Mg ha�1.
There was no clear deviation of biomass frequency when all forests were considered.
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Fig. 4.7 Distribution of TDB 2005 predicted using Eqs. (4.1) and (4.2). (a) All forest, (b)
evergreen coniferous forest, and (c) deciduous broadleaved forest

TDB maps show forest status regarding woody biomass distribution well. TDB
was greater in the western half than that in the eastern half of the study area, both in
2005 (Fig. 4.7a) and 2011 (Fig. 4.8a). TDB was especially great around the open
area in the west where local farmers’ houses existed. As described previously,
Japanese cedar was planted after the World War 2 before the planting of hinoki
cypress, therefore it had the highest TDB in the western part in Figs. 4.7a and 4.8a.

A small village was located at the west and forest farmers planted evergreen
coniferous trees in their surroundings. Deciduous broadleaved trees were used as
fuel wood until about 1960 before the energy revolution, and most broadleaved
forest seemed to have been left undisturbed and thus regenerated naturally. Hence,
areas with high TDB in the west mainly included mature Japanese cedar forests. On
the other hand, there was no residential area in the eastern two-thirds, and planting
trees started later than the western area near the village. As a result, broadleaved and



young coniferous forests with small TDB dominated in the eastern two-thirds of the
mapping area.
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Fig. 4.8 Distribution of TDB 2011 predicted using Eqs. (4.2) and (4.8). (a) All forest, (b)
evergreen coniferous forest, and (c) deciduous broadleaved forest (Awaya and Takahashi 2017)

TDB of evergreen coniferous forest exceeded 300 Mg ha�1 in 2005 (Fig. 4.7b)
and became greater in 2011 (Fig. 4.8b) in the west. On the other hand, TDB of
evergreen coniferous forest was mostly less than 200 Mg ha�1 with the same level of
deciduous broadleaved forest in the eastern one-third in 2005 (Fig. 4.7c), and the
trend was the same in 2011 (Fig. 4.8c), although TDB increased up to about
300 Mg ha�1. Thus harvesting and planting history influenced on the biomass
distribution in the study site and the TDB maps shows the forestry history activity
indirectly. Thus, historical human activity reflected the distribution of forest types
and biomass in this area.
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4.4 Interannual Biomass Change

Logging was rare between 2005 and 2011 because stands were in the pre-mature
stage and mostly less than 50 years old, which is the standard time to harvest cedar
and cypress trees in this area. Therefore biomass increased everywhere (Fig. 4.9). On
the other hand, biomass decreased in only 2.6% of the forest area. The area in which
biomass decreased more than 100 Mg ha�1 was only 0.8% of the forest where trees
would be logged. The TDB change map shows that TDB increased greater in
evergreen coniferous forest than in deciduous broadleaved forest. Japanese cedar
grows fast among tree species in Japan so this would be the greatest reason of this
difference.

The annual TDB growth of the Japanese cedar almost reaches greatest in about
50 years old, and the stand age of most cedar forests was about 40 to 50 years in the
study site. These are probably the reasons of greater TDB increase in the coniferous
forests than broadleaved forests, and TDB increase was more than 5 Mg ha�1 year�1

in large parts of the coniferous forests. On the other hand, TDB increased mostly

Fig. 4.9 Secular TDB change between 2005 and 2011. (a) All forest, (b) evergreen coniferous
forest, and (c) deciduous broadleaved forest



around 5 Mg ha�1 year�1, and the area with increase less than 5 Mg ha�1 year�1

covered about a half of the map (Fig. 4.9).
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Table 4.3 shows TDB in 2005 and 2011 along with its change. The average TDB
of evergreen coniferous forest was about 1.4 times greater than that of deciduous
broadleaved forest, both in 2005 and 2011. Annual TDB changes were 6.6 and
3.6 Mg ha�1 year�1 for these forest types, respectively, and 5.0 Mg ha�1 year�1 for
all forest.

Thus evergreen coniferous forest had greater TBD and growth rate than decidu-
ous broadleaved forest. Since the forest age is probably similar due to a common
harvesting and planting history of trees for the two forest types in this area, the
difference would be caused by difference rates of growth between the tree species
rather than different stand ages between the two forest types. Since the coverage area
of these forest types was similar in this area, TDB of evergreen coniferous forests
was about 1.3 times that of broadleaved forests in 2005 and 2011; the ratio was
almost same as the ratio of average TDB. Total TDB change or woody biomass
growth was 7213 MgDW ha�1 year�1 or 3607 MgC ha�1 year�1, including larch.

Our results showed TDB distribution including above ground and underground
woody parts of trees. Average annual change of TDB (growth) of deciduous
broadleaved forest was about 3.6 MgDW ha�1 over the broadleaved forest and
2.38 MgDW ha�1 in TKY. An average annual woody biomass growth of
2.56 MgDW ha�1 was recorded between 1999 and 2009 in TKY (Ohtsuka 2012),
which was quite close to the prediction by TDB difference. Ohtsuka (2012) also
reported that the average annual leaf biomass was 3.66 MgDW ha�1. Therefore the
sum of woody biomass growth and leaf biomass, which is NPP, would be nearly
twice of our TDB growth estimation in deciduous broadleaved forests.

4.5 Conclusions

As airborne laser scanners provide the most accurate canopy height information in a
large area, researchers are keen to validate its accuracy for various forest applications
using predicted biomass (stem, woody part, leaf) canopy structure. This article
introduced an application of TDB and growth mapping regarding usages of airborne
LiDAR data in forestry and carbon circulation.

High coefficients of determination appeared in the TDB prediction models of
coniferous forest as well as in the broadleaved forest using canopy height parameters
which were computed using airborne LiDAR data in 2011. The TDB prediction
models were suitable for TDB mapping in a forested area comprising part of the
Namai river basin.

Although field plot surveys provide biomass or carbon amount information,
spatial distribution mapping is difficult due to hardiness of numerous plot surveys.
The Forestry Agency of Japan has executed national forest inventory for more than
20 years; however, plots are located at 4 km lattice points. Thus spatial distribution
of biomass cannot be mapped by plot surveys. Above all, repeating large scale



4 Woody Biomass Change Monitoring in Temperate Montane Forests by. . . 97

T
ab

le
4.
3

S
um

m
ar
y
of

T
D
B
an
d
its

ch
an
ge

by
ea
ch

fo
re
st
ty
pe

F
or
es
t
ty
pe

A
re
a

(h
a)

R
at
e
pe
r
w
ho

le
ar
ea

(%
)

R
at
e
pe
r

fo
re
st
(%

)

A
ve
ra
ge

T
D
B
(M

g
ha

-1
)

T
ot
al
T
D
B
(M

g)
R
at
e
of

T
D
B
(%

)

20
05

20
11

C
ha
ng

e
pe
r

ye
ar

20
05

20
11

C
ha
ng

e
pe
r

ye
ar

20
05

20
11

C
ha
ng

e

E
ve
rg
re
en

C
on

if
.

66
4.
4

40
.0

46
.1

25
3.
0

29
2.
5

6.
6

16
8,
06

3
19

4,
35

3
43

84
53

.9
54

.7
60

.5

D
ec
id
uo

us
D
R
D

70
8.
6

42
.7

49
.2

18
4.
4

20
5.
9

3.
6

13
0,
69

5
14

5,
88

8
25

59
41

.9
41

.1
35

.3

L
ar
ch

68
.4

4.
1

4.
7

19
3.
9

22
0.
1

4.
4

13
,2
61

15
,0
59

29
9

4.
3

4.
2

4.
1

S
ub

to
ta
l
or

m
ea
n

14
41

.4
86

.8
10

0.
0

21
6.
5

24
6.
5

5.
0

31
2,
01

9
35

5,
30

0
72

42
10

0.
0

10
0.
0

10
0.
0

N
on

e
fo
re
st

21
8.
6

13
.2

T
ot
al

16
60

.0
10

0.
0



Almeida DRA, Stark SC, Shao G, Schietti J, Nelson BW, Bruce W, Silva CA, Gorgens EB,
Valbuena R, Papa DA, Brancalion PHS (2019) Optimizing the remote detection of tropical

precise survey is costly. Airborne laser observations are also costly; however, point
clouds height data provide accurate biomass maps and are stored for further analysis.
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As shown in this article, biomass (TDB) maps using repetitive observation data
resulted in a biomass change (TDB growth or NPP) map which showed carbon
fixation by forest plants. Unlike carbon flux measurements, it is impossible to map
carbon fixation by forested lands (Net Ecosystem Production, NEP) using airborne
LiDAR alone. If soil respiration is estimated using remote sensing data (including
climate), carbon fixation can be mapped and would be advantageous. However, a
comparison of NPP between LiDAR estimates and field survey in TKY showed a
close agreement. Although NEP mapping using LiDAR data is difficult, NPP
mapping is quite accurate and LiDAR remote sensing can provide spatial distribu-
tion of biomass growth or carbon fixation by trees.

Our results are transferrable to forests of the same species with a similar structure.
Unfortunately, our results will not be universal among various forests, however, as
pointed out by other studies (Næsset 2014; Rosette et al. 2012). Forest structure
varies greatly and is impacted, for example, by planting rates or thinning practices.
Estimation errors would be great after thinning which changes stand structure. This
can result in changes in the relationship between biomass and LiDAR variables
(Rosette et al. 2012). The difference in stand structure, including canopy height and
variation, is especially influenced by thinning and must, therefore, have great
influence on TDB prediction which was derived using canopy height parameters.

It was necessary to reduce effects by stand density and slope angle, which
reduced the accuracy of DCHM using probably very dense point cloud data.
LiDAR technology has advanced greatly and precise forest biomass mapping is
promising using future airborne LiDAR data.
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