
Chapter 14
High-Performance Computing
Framework for Virtual Memory Using
CNN

K. Rameshwaraiah, S. Sree Hari Raju, and K. Ashok Kumar

Introduction

Machine learning has shown impressive results in numerous image processing appli-
cations identification, natural language processing, text analytics, and safety in recent
machine learning research [1–3]. With larger deep neural networks and also more
training information, highly accurate models are created. When the scale of the deep
learning models and also the number of training examples are multiplied, the quantity
of computing needed increases proportionally [4]. It takes time to train convolutional
neural networks on a computer due to the higher quantity of machine learning to
compute; therefore, dispersed and great-throughput computing structures & capa-
bilities were necessary for producing period machine techniques using great results
[5]. Remote computational intelligence systems have explored requirements specifi-
cations. Operators using decentralized deeper learning technologies construct deep
convolutional neural networks in a decentralized manner. Furthermore, participants
must share vast supervised neural variables themselves, which ultimately generate
significant communications latency, accounting significant fraction of the total time
spent on dispersed machine learning [6]. As a result, the idle period of processing
elements including the CPU and GPU increases, resulting in a decrease in computing
resource usage [7].

K. Rameshwaraiah (B) · S. Sree Hari Raju · K. Ashok Kumar
Nalla Narasimha Reddy Education Society’s Group of Institutions, Hyderabad, Telangana, India
e-mail: ramhyd20@gmail.com

S. Sree Hari Raju
e-mail: rvs2raju@gmail.com

K. Ashok Kumar
e-mail: ashok.kondra123@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Ch. Satyanarayana et al. (eds.), Proceedings of the International Conference
on Computer Vision, High Performance Computing, Smart Devices and Networks,
Advanced Technologies and Societal Change,
https://doi.org/10.1007/978-981-19-4044-6_15

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4044-6_15\&domain=pdf
mailto:ramhyd20@gmail.com
mailto:rvs2raju@gmail.com
mailto:ashok.kondra123@gmail.com
https://doi.org/10.1007/978-981-19-4044-6_15

148 K. Rameshwaraiah et al.

The significant communications cost is caused by network processing and also
the huge and dominant variable transmission [8]. Storage copying procedures are
performed during the calculation, and the associated outgoings also are incurred
when working using a multi-layer communication protocol. The number of variables
in a deeper learning model grows rapidly as its size grows. For quick and huge parallel
computing, ring interconnection connectivity is required. Humans offer a strategy
for effectively reducing the communication cost of huge, dispersed machine learning
[9].

Related Works

Our technique does this by allowing remote employees to quickly exchange super-
vised neural variation. The sharing process can be accomplished by creating a new
mind network environment and granting access to the system storage to all employees
[10]. The proposed global supervised neural main memory architecture could be
used in high-performance groups coupled using high-speed networking techniques
[11]. Moreover, the proposed architecture employs the RDMA technology, which
avoids data communication transfer procedures across implementation and kernel-
level memory buffers [12]. Finally, employing RDMA for reading/writing informa-
tion from remote node storage, the proposed scheme provides a methodology for
sharing supervised learning variables between dispersed employees.

Hogwild proved that machine learning activity using the same weights and sepa-
rate information shards may learn DNN using asynchronous SGDs in the main
storage structure without locked, which is among the globally computational intelli-
gence optimization techniques depending on Stochastic Gradient Descent (SGD). In
particular, the Dogwild architecture, which is a Hogwild modification, conducts DNN
learning by asynchronously swapping weight and biases between both the masters
and slave operations [13]. Whenever the master process gets varied from the slave
operations, it changes the world values and distributes the revised values to every
slave program at the same time. Every slave process of understanding the grades to
the masters after updating a most recently obtained weight with the gradient it has
discovered on its own. As a method of asynchronous SGD, the Dist Belief proposed
approach Downpour SGD, which enables a huge number of modeling replicates.
The Sandblaster batching optimization technique, which is a system that supports
diverse networked systems, is also developed. Inside an asynchronously SGD, every
DNN trained agent could acquire parameters at varying speeds without synchro-
nization cost, maximizing the use of CPU & internet connectivity. The capabilities
for a heterogeneous HPC method, which consists of CPUs & GPUs with varying
requirements (clock speed, number of units, so on), could be effectively utilized to
achieve optimum computing capacity.

14 High-Performance Computing Framework … 149

Proposed Method

The goal of parallel processing, machine learning is to use increased technology
nodes to train enormous data and huge DNN algorithms. The needed transmission
power grows quickly for the size of DNN & also a dimensionality (i.e. Resolution
in image information) for generating accuracy grows. As a result, low-bandwidth
systems like 1Gbps Ethernet are unable to cope using the fast-growing internode
supervised neural variable traffic. As a result, many businesses and research rely on
high-speed network interfaces, which are commonly found in powerful computers
and powerful computing platforms.

The HPC system proposed in the work comprises numerous processing elements
of multiple GPUs, a different storage node with enough storage space to offer distant
memory space, and also an Infiniband switching that combines those components.
SMU Librarian seems to be a consumer stationary framework that offers application
software for distributed software procedures and is statistically connected with the
procedures during program execution. The SMU Device Controller and Infiniband
Communication Layer were also kernel-level components that must be activated
before the recommended process can be executed. The storage space of the nodes is
provided by the SMU Servers by pooling it in preparation, or it could be provided
on-demand for customer applications. The provided storage sectors of customer
activities should indeed be identified in the hosting channel adaptor drivers to facil-
itate RDMA operations from the deeper active learning in the compute nodes. The
virtual to physical address translation data for the specified web page are enrolled
throughout the Signup process. Pooling storage approaches have often been favored
because of the longer registration time. The SMU Device Controller seems to be
a kernel-level device driver which translates a virtual address of the DNN learning
cycle to the actual memory space sectors that act as the caching for the distant sharing
program memory, as shown in Fig. 14.1.

Results and Discussions

The structure of the SMU Client, including its recollection pool management tech-
nique for providing the main memory buffering, can be seen in Fig. 14.2. The
SMU Server is used as a user program on Linux. The multi-threaded design of the
SMU Server allows it to spin to process requests from numerous SMU Peripheral
Devices at the same time. The messaging reception threading temporarily stores the
response message being sent by SMU Peripheral Devices in the messaging rings.
The messaging recipient process wakes all the demand processes in the memory pool
followed by information collection in the rings. Perhaps one of those, in a circular
queuing pattern, accepts one request message from the messaging rings, analyzes
it, and would then return to the ready queue whenever the messaging process is
complete. The SMU Server uses the buddy memory control method, which would be

150 K. Rameshwaraiah et al.

Fig. 14.1 System architecture

typically used for normal pages assignment in a Linux kernel, to handle given infor-
mation as a pool. With less than 4 KB & even a maximum level of 32 GB, a storage
block length could be customized, a maximum length can also be changed. Libib-
verbs have been used to build engaging lessons. The SMU provides the network with
the remote management keys needed to the SMU system Driver for readily accessing
main storage buffers during an address space creation stage.

The SMU has been used to allocate and deallocate memory space across
distributed machine learning employees, as seen in Fig. 14.3. Firstly, the master’s
deep learning person uses the SMU API to construct a main memory buffer on the
SMU Controller. The expert task distributes SHMKey for the storage space for the
workers establishing it. Additional workers which would like to be allotted a main
storage buffer produced by an expert employee need to have their channel of commu-
nication. The person who gets the SHMKey from the supervisory employee transmits
the SHMKey including a distributed memory allocation application. If the employee
asks for the same sized sharing memory data allocation and delivers the very same
SHMKey, the SMU Server uses the Encryption Key for the sharing buffer cache.
After the assignment operation has finished, the SMU User’s shared memory buffer
could be distributed across the dispersed deep learning workers.

Table 14.1 displays the variable sizes and computation times of six CNN models
that are assessed. Because batch length represents several images to be learned,
changing the batch size affects the computational effort. Caffe needs substantial
memory resources as the batch size grows, hence there seems to be a maximum

14 High-Performance Computing Framework … 151

Fig. 14.2 Architecture of the SMU server

Fig. 14.3 Observational research on sharing data storage

batch length at which Caffe could train every model in an execution. In terms of vari-
able length and computational cost, the proposed CNN models have a wide range
of values. The time it would take to compute a variable is never dependent on the
magnitude of the variable. The VGG16 contains the most parameters (140 million),
yet it takes less time to compute than the other four methods.

In the parallel situation, the connection times of MPI and SMU are compared in
Figs. 14.4 and 14.5. During every iterative process of DNN coaching, the sequences
situation does not consider data processing overfitting. As demonstrated in Fig. 14.4,

152 K. Rameshwaraiah et al.

Table 14.1 ML performance measures

Network
specification

CNN

Inception_v1 Inception_v3 Resnet_50 Inception_resnet_v2 Resnet_152 VGG16

Variable
(million)

13.5 24.6 31.9 57.2 66.6 139.1

Variable
size (Mb)

51.21 94.32 121.14 214.61 253.64 527.26

Compute
time (ms)

190 451 234 295 219 191

Batch size 51 33 19 7 8 65

as the model size & number for staff increased, an MPI product’s transmission rate
increased rapidly, whereas the SMU product’s transmission rate gradually increases.
Figure 14.4 depicts general trends, while Fig. 14.5 compares the MPI and SMU
techniques by adjusting the amount of machine learning workers for each of the six
deep learning techniques. In all scenarios, it has been shown that the SMU technique
is 1.1 to 4.2 times faster than the MPI approach.

For any dataset and any number of staff, the SMU work demonstrated the MPI
approach. The SMU technique has a transmission time of 0 ms up to 24 employees
in an Inception v1 using a very tiny design capacity, & 45 ms, even the number of
staff is increased to 32, which would be 7 times faster than the MPI approach. In the
instance of Inception v3, which has a shorter variable size and a longer computational
cost, the calculation time hides the entire calculation time of the SMU technique.
However, whenever the number of processes is increased to 32, the MPI product’s
transmission rate exceeds the computational effort by 2.3 times. The variation in

0

1000

2000

3000

4000

5000

np
=2

np

=4

np
=6

np

=8

np
=1

2

np
=1

8

np
=2

4

np
=3

2

np
=2

np
=4

np
=6

np
=8

np
=1

2

np
=1

8

np
=2

4

np
=3

2

Co
m

m
un

ic
ati

on
 T

im
e

MPI SMB

Inception_v1

Inception_v3

Resnet_50

Inception_resnet_v2

Resnet_152

VGG16

Fig. 14.4 Comparison of MPI-based and SMU

14 High-Performance Computing Framework … 153

Fig. 14.5 Comparison of
transmission times for each
type

(a)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

2 4 6 8 12 18 24 32

Co
m

m
un

ic
ati

on
 T

im
e

No. of Processes

Resent_50
MPI

SMB

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 12 18 24 32

Co
m

m
un

ic
ati

on
 T

im
e

No. of Processes

Inception_resent_v2
MPI

SMB

(b)

(c)

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 12 18 24 32

Co
m

m
un

ic
ati

on
 T

im
e

No. of Processes

Resent_152

MPI

SMB

154 K. Rameshwaraiah et al.

Fig. 14.5 (continued)

(d)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 6 8 12 18 24 32

Co
m

m
un

ic
ati

on
 T

im
e

No. of Processes

VGG16

MPI

SMB

the true communication gap between the MPI & SMU system reduces as a model
size rises, but in the particular instance of Resnet 50, 4.8% stronger in an Original
conception Resnet v2 framework, & 2.0 times higher in a Resnet 152 & VGG16
prototype, the SMU technique is 5.2 times faster than the MPI technique. The SMU-
based machine learning system’s average of 1 repetition number of training has
increased by 3.5 times.

Conclusion

The proposed SMU makes use of media transmission memory to transport variables
from the memory of the local computer to the memory of the remotely distributed
node, and interchange DNN variables by learning to write the remote distributed
memory buffer. Storage duplication and internetwork execution have a significant
influence on communication latency. The proposed SMU-based system was 2.1 times
quicker than the MPI-based system in a sequential situation for asynchronous SGD.
The communications with the SMU-based dispersed DNN training platform are two
to seven times more efficient than using an MPI-based system in a concurrent scenario
of asynchronous SGD, where computational resources overlapped. Only a minimal
predictive performance is validated because the results of these experiments are
achieved using a single SMU Server. The amount of SMU Server, on the other hand,
could be raised to boost efficiency, and also capacity could be calculated according
to the capacity of models & also the number of supervised neural employees. The
suggested SMU-based method lays the groundwork for expediting the networked
analysis of information DNN learning in a powerful computational environment
along with high speed and accuracy.

14 High-Performance Computing Framework … 155

References

1. Zhang, X., Zhang, T., Lu, J., Fu, X., Reveriano, F.: The effect of high-performance computer
on deep neural network. Eng. Sci. 15, 67–79 (2021)

2. Singh, A., Prakash, S., Kumar, A., Kumar, D.: A proficient approach for face detection
and recognition using machine learning and high-performance computing. Concurrency and
Comput.: Practice Exper. 34(3), e6582 (2022)

3. Haseeb, M., Saeed, F.: High-performance computing framework for tera-scale database search
of mass spectrometry data. Nature Computat. Sci. 1(8), 550–561 (2021)

4. Jin, S., Li, G., Song, S. L., Tao, D.: A novel memory-efficient deep learning training framework
via error-bounded lossy compression. In: Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, February, pp. 485–487. (2021)

5. Lima, A.L.D.C.D., Aranha, V.M., Carvalho, C.J.D.L., Nascimento, E.G.S.: Smart predictive
maintenance for high-performance computing systems: a literature review. J. Supercomput.
77(11), 13494–13513 (2021)

6. Deng, C., Sui, Y., Liao, S., Qian, X., Yuan, B.: GoSPA: an energy-efficient high-performance
globally optimized sparse convolutional neural network accelerator. In: 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (CA), June, pp. 1110–1123. IEEE
(2021)

7. Pandey, S., Nagwani, N.K., Verma, S.: Aspects of programming for the implementation of
convolutional neural networks on multisystem HPC architectures. J. Phys. : Conf. Series
2062(1), 012016 (2021). IOP Publishing

8. Patel, S., Liu, T., Guan, H.: free lunch: compression-based GPU memory management for
convolutional neural networks. In: 2021 IEEE/ACM Workshop on Memory Centric High-
Performance Computing (MCHPC), November, pp. 1–8. IEEE (2021)

9. Latchoumi, T.P., Parthiban, L.: Quasi oppositional dragonfly algorithm for load balancing in
cloud computing environment. Wireless Personal Commun. 1–18 (2021)

10. Yao, C., Liu, W., Tang, W., Hu, S.: EA: energy-aware adaptive scheduling for CNN inference
on high-performance GPUs. Future Generation Comput. Syst. (2022)

11. Balamurugan, K.: Metrological changes in surface profile, chip, and temperature on end milling
of M2HSS die steel. Int. J. Mach. Mach. Mater. 22(6), 443–453 (2020)

12. Chang, S.E., Li, Y., Sun, M., Shi, R., So, H.K.H., Qian, X., ..., Lin, X.: Mix and match: A
novel FPGA-centric deep neural network quantization framework. In: 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), February, pp. 208–220.
IEEE (2021)

13. More, N., Galphade, M., Nikam, V. B., Banerjee, B.: High-performance computing: a deep
learning perspective. In: Deep Learning and Edge Computing Solutions for High-Performance
Computing, pp. 247–268. Springer, Cham (2021)

	14 High-Performance Computing Framework for Virtual Memory Using CNN
	Introduction
	Related Works
	Proposed Method
	Results and Discussions
	Conclusion
	References

