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Introduction 

Biomedical Image Processing is the now becoming an emerging field in health 
monitoring, diagnosis and to treat different kinds of internal organ abnormalities 
or diseases for scientific study or treatment [1]. 

Medical Imaging [2] is an in vivo imaging process and it involves visualisation 
of internal organs within the body of humans or animals using non-invasive imaging 
modalities such as X-Ray, CT, MRI, PET Scans, etc. with the help of computer 
aids. Computer Aided Diagnosis (CAD) helps the medical expert to acquire better 
anatomical structures and to study the Region of Interest (ROI) within the tissue. 

CAD tools involve the expert to automate the process [3], to get the results fast and 
accurately even for large number of cases without fatigue or data overload at minimal 
cost. They support remote accessing using information technologies through faster 
communication in case of emergency. 

Imaging Modalities and Their Contrast Media 

There are many imaging modalities [4] are used in biomedical engineering. They 
are Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound 
(US) Imaging, Digital Mammography, Positron Emission Tomography (PET) and
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Thermal Imaging and so on. Each and every modality has its own strengths and 
weaknesses but they are application specific. For example, X-Ray Imaging is mainly 
used to visualise hard tissues such as bones within the body whereas CT and MRI 
imaging modalities are used to observe soft tissues or both. These processes include 
Ionisation and electromagnetic interferences at microscopic level, respectively. 

CT: Computed Tomography (CT) as the name indicates that the computer creates 
the images sequence by taking the inputs from X-Rays at all possible angles around 
the object in the form of slices called Tomograms. CTs produce the pictorial informa-
tion of the object using ionising radiation. It can visualise brightly the high-density 
matters such as bones, calcium and high densities and darkly the low-density matters 
such as liquids fats, etc. The Hounsfield units are used to represent the different densi-
ties measured. For example, Water typically having 0 HU may be varying between 
−7 to  +7 HU, bones have higher densities greater than 500 HU, soft tissues within 
the range 10–60 HU and fats with low density between −25 HU to −250 [5]. 

Modern CT scanners are advantageous that they can scan the abdomen and pelvis 
very quickly at a slice thickness of less than 1 mm within the span of 6–7 s per view. 
This is better suitable for the case of children without giving anaesthesia. Detailed 
information about any tissue is also obtained by other projections such as Sagittal 
and Coronal. CT scanners can also produce 3D scans [5]. 

CT scanners produce high-resolution images with minimal noise but are unable 
to detect inflammation defects. 

MRI: MRI  [6] is a non-ionising modality in radio imaging and it is extensively 
used for imaging soft tissues, organs, bone and other internal structures because 
it offers much greater contrast between the diverse soft tissues of the body. It is 
mostly used in radiology to diagnose or monitor treatment for abnormal conditions 
or staging the disease within the chest, abdomen and pelvis. MRIs produce very good 
contrast images of soft tissues compared to CTs. The human body naturally consists of 
hydrogen atoms within the body. MRI consists of a powerful rotating magnet, electric 
field gradients [7] (induction coils) and a digital computer to form images. The 
protons within the hydrogen atoms of water molecules are having magnetic properties 
such that all protons are aligned parallel to the main magnetic field. In MRI, a 
strong magnetic field is applied to line up the nuclear magnetisation of hydrogen 
atoms of the observing part of the body. An RF signal from the induction coils is 
applied subsequently in the form of RF pulses to alter the alignment of the protons 
and reversed to get relaxation energy from the protons. This relaxation energy is 
detected by MRI scanners to construct the image using K-space [8]. By changing the 
parameters of this RF pulse sequence, different contrasts may be generated between 
tissues based on the relaxation properties of the hydrogen atoms there in the tissues. 

Depending on relaxation times and dynamic contrast variations [9], the intensi-
ties within the image are correlating with the tissue characteristics. It can produce 
morphological and functional information about the tissue without any ionising 
radiation. 

PET: Positron Emission Tomography (PET) [10] is a functional imaging tech-
nique used to obtain the information about the changes in metabolic process, oxygen
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through the blood flow and tissues or organs’ working conditions. It is the combina-
tion of nuclear medicine and biochemical interactions with the body of observation. 
PET scans are mostly used for monitoring the functioning of brain disorders, heart 
problems and cancer cells within the body. PETs employ radioactive tracers that 
were swallowed as gas or injected into the body parts being examined. These tracers 
chemically react differently with the different parts of the body. These differential 
changes will be collected by the PET scanners as bright spots if they were infected. 
PET scanners can able to measure the oxygen [11] and sugar levels of the body and 
early stages of defects which are not possible by other scanners at cellular level. In 
PETs, gamma cameras are used to produce and to collect gamma rays as similar to 
X-rays. High chemical reaction of tracers will be shown as hot spots with greater 
intensity and less chemical reactions as cold spots with light intensities. Cancer cells 
[12] have high metabolic rate viewed as hot spots than non-cancer cells. Healthy 
tissues have more tracer absorption than the diseased one. Thus the level of heart 
problems was detected based the degree of interaction and colour differentiation. 
PET scanners are also used for detecting problems through the interaction of tracer 
with the glucose such as Alzheimer’s disease [13], depression, epilepsy, head and 
Parkinson’s disease in central nervous system. PETs also used with CT/MRI to get 
more information about disease. 

PET scans are less accurate in case of small-sized tumours and at high blood sugar 
levels. 

Microscopy [14] and PA imaging techniques [15] with contrasts are useful to 
detect defects from the defected organs due to deeper penetration. 

According to our findings [16], ultrasonography examination could be used as 
a preliminary assessment for stratifying patients based on their risk of ADPKD 
progression. Because of the low accuracy and reproducibility of ultrasound, this 
estimate should only be used for patients with kidney volumes that are close to normal. 
A first magnetic resonance imaging (MRI) scan is recommended for dimensional 
increases in kidney size. 

Contrast Materials: To improve medical imaging, various types of contrast media 
have been utilised. These contrast materials can be injected into veins or arteries, 
spinal discs or fluid spaces and other bodily cavities. Contrast materials come in a 
variety of forms:

1. X-ray and computed tomography (CT) imaging exams use iodine-based and 
barium-sulfate chemicals. The most often used contrast substance is barium-
sulfate, which is administered orally. It is also administered rectally and comes 
in a variety of forms. Iodine-based and barium-sulfate contrast materials block 
or limit the ability of X-rays to pass through a specific area of the body. As a 
result, blood vessels, organs and other bodily tissue containing iodine-based or 
barium compounds on X-Ray or CT pictures change appearance. 

2. Gadolinium is a key component of the most used magnetic resonance (MR) 
contrast material. When this chemical is present in the body, it changes the 
magnetic properties of adjacent water molecules, improving the quality of 
magnetic resonance imaging (MRI) images. Thus, internal soft organs, such
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(a) MRI Image without Contrast (b)MRI Image without Contrast 

Fig. 9.1 Illustration example for non-contrast and Gd Contrast MRI images. Source https://home. 
physics.wisc.edu/gilbert/wp-content/uploads/sites/3/2017/08/mri.gif 

as the heart, lungs, liver, adrenal glands, kidneys, pancreas, gall bladder, spleen, 
uterus and bladder are monitored.

3. In imaging studies, saline (salt water) and gas (such as air) are also employed 
as contrast materials. Ultrasound imaging exams, particularly those of the 
heart, have used microbubbles and microspheres. Blood perfusion in organs 
is assessed using contrast-enhanced ultrasonography with microbubbles [17], 
thrombosis, such as in myocardial infarction, cardiac anomalies, liver and kidney 
tumours, inflammatory activity in inflammatory bowel illness and reaction to 
chemotherapy treatment (Fig. 9.1). 

Proposed Methodology 

In this paper, the proposed block diagram as shown in Fig. 9.2 is a new combina-
tion of denoising algorithms used to improve the image quality and to enhance the 
image contrast before segmenting the MRI Image. The image quality is improved 
by reducing the noise present within the image using Adaptive NLM Algorithm and 
contrast is enhanced using CLAHE algorithm. The Region of Interest (ROI) to be 
segmented in contrast-enhanced image is compared with the same in contrast image 
obtained from the subject injecting the contrast agent. The segmentation performance 
is compared in terms of its characteristics such as Sensitivity or Recall, Specificity, 
DICE and Jaccardian Coefficients.

https://home.physics.wisc.edu/gilbert/wp-content/uploads/sites/3/2017/08/mri.gif
https://home.physics.wisc.edu/gilbert/wp-content/uploads/sites/3/2017/08/mri.gif
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Fig. 9.2 Block diagram of the proposed methodology 

Preprocessing of MRI Images 

There are several image denoising techniques available, then Non-local filters are 
widely used in the area of MR imaging [18, 19]. 

Advantages of NLM Algorithms 

• The NLM noise reduction algorithm, in particular, was devised to minimise the 
loss of underlying image information while selectively removing only the noise. 

• After setting areas with the same sized mask positioned around the region of 
interest, this technique assesses the similarity of the intensity and edge information 
in a picture (ROI). 

• Furthermore, the higher the allocated weight employed during picture processing, 
the higher the degree of similarity. 

In terms of PSNR, MSE and SSIM, experimental results shown in [20] on standard 
images indicate that the adaptive NLM algorithm outperforms the traditional NLM 
algorithm.
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Contrast Limited Adaptive Histogram Equalisation (CLAHE) 

A CLAHE algorithm [21] limit the amplification by clipping the histogram. It has 
two key parameters: Block Size (BS) and Clip Limit (CL). These two parameters 
improve the brightness and contrast of the image, respectively. 

The CLAHE method to enhance the original image consists of the following steps: 
Step 1: initially the input Image is dividing into non-overlapping contextual 

regions equal to M × N. 
Step 2: Histogram is calculated for each contextual region. 
Step 3: Calculate the Clip Limit (CL) for each region as given below 

Navg = 
Nr (x)Nr (y) 

Ngray 
(9.1) 

where Navg is the average number of pixels, Ngray is the number of gray levels in the 
contextual region, Nr (x) and Nr (y) are the numbers of pixels in the X dimension 
and Y dimension of the contextual region. Then the actual CL is 

NCL = Nclip Navg (9.2) 

where Nclip is the normalised CL in the range of [0, 1]. If the number of pixels 
is greater than NCL , the pixels will be clipped. The total number of clipped pixels 
is defined as N∑

clip then the average of the remain pixels to distribute to each gray 
level is 

Navggray = 
N∑

clip 

Ngray 
(9.3) 

The histogram clipping rule is given by the following statements 

If Hregion(i ) > NCL then Hregion_ clip(i ) = NCL (9.4) 

Else if Hregion(i ) + Navggray > NCL then Hregion_ clip(i ) = NCL (9.5) 

Else Hregion_ clip(i ) = Hregion(i ) + NCL (9.6) 

where Hregion(i ) and Hregion_ clip(i ) are original histogram and clipped histogram 
of each region at i-th gray level. 

Step 4: Redistribute the remaining pixels until the remaining pixels have been all 
distributed. The step of redistribution of pixels is given by 

Step = Ngray 

Nremaining 
(9.7)
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where Nremaining is the remaining number of clipped pixels. Step is positive integer 
at least 1. 

Step 5: Then intensity values are distributed according to Rayleigh distribution 
to enhance the contrast and re-scaled using linear contrast stretching. 

Step 6: To eliminate artefacts in the image, new gray level is calculated and 
assigned to the pixels in contextual region using bilinear interpolation. 

Selection and Segmentation of ROI 

The Region of Interest to be segmented within the MRI Image is selected manually 
and Chan-Vese Active Contours [22] was applied to get the object of the image. 
Manually the Mask will be drawn surrounding the ROI of the object for both CLAHE-
enhanced and Contrast-enhanced images. Then efficiency of algorithm is estimated 
in terms of image characteristics. 

Popular Segmentation Algorithms 

Here we have taken the threshold-based and clustering algorithms which are useful 
for Medical Image segmentation applications. They are simple and popular algo-
rithms, such as Otsu Algorithm [23], Active Contours without edges, Level sets 
[24], K-Means Segmentation [25] and Fuzzy C-Means Segmentation Algorithm 
[26]. They all are familiar and very simple to understand. Each algorithm has its 
own advantages and they are application specific. 

Performance Metrics 

This paper taken spatial overlap-based metrics [27] into account to evaluate the 
segmentation performance of each algorithm. These are derived from the cardinalities 
of confusion matrix such as namely the true positives (TP), the false positives (FP), 
the true negatives (TN) and the false negatives (FN). Then the derives metrics from 
these cardinalities are mostly used for segmentation evaluation are given by 

Recall = Sensitivity = 
TP 

FN + TP 
(9.8) 

This is also called True Positive Rate (TPR). Similarly, the True Negative Rate 
(TNR) is given by
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Specificity = TNR = TN 

FP + TN 
(9.9) 

Then 

DICE Coefficient = 2 ∗ TP 
2 ∗ TP + FP + FN 

(9.10) 

This is called Overlap Index mostly used for validating Medical volume Segmen-
tations. For the generalised segmentation with multiple labels, Jaccardian Index is 
considered. 

Jaccard Index = DICE Coefficient 

2 − DICE Coefficient 
(9.11) 

In this analysis, we have considered the above-mentioned four parameters to 
concise evaluation of segmentation. 

Results and Discussions 

The datasets were collected from publicly available TCIA database [28] browsing  
on the preferences as Imaging Modality: MR, Anatomical site: Kidney and Brain 
and Species: Homo sapiens excluding Phantoms. Totally there are 1043 subjects that 
were browsed. There are 82 categories of collections of kidney volumes in different 
projections and 961 categories of collections of Brain structures were obtained 
from different MRI machines such as GE MEDICAL SYSTEMS, SIEMENS, 
TOSHIBA_MEC and Philips Medical Systems with different subject IDs. We are 
mainly concentrate on Axial and coronal projections and selected 32 volumes with 
sizes 512 × 512 and 256 × 256, thicknesses of 4 mm, 5 mm,6 mm,7 mm, 8 mm and 
corresponding the spacing of 1.5 mm,2 mm,2.5 mm,3 mm,6 mm and 8 mm, respec-
tively with and without Contrast media. From image volume sequence the slice with 
maximum tissue area was obtained from different series and then converted those 
into jpeg format. Each image used in this paper is mentioned with its ID, sequence 
number and slice number. The sequence/series number differentiates the projection 
series.
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The kidney image shown in Fig. 9.3a is extracted for male subjects at an age 
of 41 years using GE MEDICAL SYSTEMS, COR KIDNEY1 PRE sequence with 
slice number 11 out of 20. It was obtained at a magnetic field strength of 1.5 T and 
Coronal 90 degrees flip angle projection with repetition time 160 s and echo time 
1.344 s. The slice is with 256 × 256 size and the thickness of each slice is 5 mm with 
spacing 6 mm between them. This image is a non-contrasted image shown in Fig. 9.3i, 
it is preprocessed through Adaptive denoising algorithm to remove unwanted noise 
shown inFig.  9.3ii, then contrast is enhanced and gray levels are distributed uniformly 
using CLAHE algorithm shown in Fig. 9.3iii. A Chan-Vese Active contour Algorithm 
is used to select the ROI manually and the proposed algorithms are employed for 
segmentation for both contrast and non contrast images.

Similarly, the kidney image shown in Fig. 9.4a is extracted for male subjects at 
an age of 45 years using SEIMENS MEDICAL SYSTEMS, COR KIDNEY1 PRE 
sequence with slice number 30 out of 34.

It was obtained at a magnetic field strength of 1.5 T and Axial 90° flip angle 
projection with repetition time 120 s and echo time 1.156 s. The slice is with 256 × 
256 sizes and the thickness of each slice is 5 mm with spacing 6 mm between them. 

Conclusions 

The proposed methodology is a new combination of Adaptive NLM Algorithm to 
reduce the noise in MRI images and CLAHE Algorithm is used to enhance the 
image contrast before segmenting the MRI Image. The Region of Interest (ROI) to be 
segmented in contrast-enhanced image is compared with the same in contrast image 
obtained from the subject injecting the contrast agent. The segmentation performance 
is compared in terms of its characteristics such as Sensitivity or Recall, Specificity, 
DICE and Jaccardian Coefficients as shown in Table 9.1 and their graphical evaluation 
is shown in Figs. 9.5 and 9.6.

The execution time in Fig. 9.6a shows that Otsu, K-Means and Fuzzy C-Means 
Algorithms are faster for both Non Contrast and Contrast MRI Images compared 
to the remaining algorithms. The sensitivity is less for Fuzzy C-Means due to soft 
computing and it is high for Otsu algorithms as shown in Fig. 9.6b. The specificity 
is more for contrast images in case of Fuzzy C-Means and it is less for Non Contrast 
image in case of Level set Segmentation. Finally, the DICE Coefficient and Jaccardian 
Indexes are similar for both Non Contrast and Contrast MRI Images and they are 
high for segmentation using Otsu Algorithm.
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i. Input Image 

(a) Non Contrast Image (b) Contrast Image 

ii.Denosing 

Image Using 

Adaptive NLM 

Algorithm 

(a) Non Contrast Image (a) Non Contrast Image 

iii.Output of 

CLAHE 

Algorithm 

(a) Non Contrast Image (a) Non Contrast Image 

iv.Mask used 

for Region Of 

Interest(ROI) 

(a) Non Contrast Image (a) Non Contrast Image 

Fig. 9.3 Segmentation process for both non contrast and contrast MRI images-coronal direction
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v. Segmen-

tation using 

Otsu algorithm 

vi. Segmen-

tation using 

Level sets 

vii. Segmen-

tation using K-

Means Algo-

rithm 

viii. Seg-

mentation 

using Fuzzy C-

Means Algo-

rithm 

Fig. 9.3 (continued)
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i. Input Image 

ii. Denoising 

Image Using 

Adaptive NLM 

Algorithm 

iii. Output of 

CLAHE Algo-

rithm 

iv. Mask used 

for Region Of 

Interest(ROI) 

Fig. 9.4 Segmentation process for both non contrast and contrast MRI images-axial mode
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v. Segmenta-

tion using Active 

Contours with-

out Edges 

vi. Segmenta-

tion using Otsu 

algorithm 

vii. Segmen-

tation using 

Level sets 

viii. Segmen-

tation using K-

Means Algo-

rithm 

ix. Segmenta-

tion using Fuzzy 

C-Means Algo-

rithm 

Fig. 9.4 (continued)
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Table 9.1 Performance metrics comparison of non contrast and contrast MRI images (for Figs. 9.3 
and 9.4) 

Input MRI Image Perf. 
metric 

AC w/o 
Edges 

Level sets Otsu K-Means Fuzzy 
C-Means 

Kidney 
4807–11-11-WOC.jpg 
(Coronal Direction -
without Contrast) 

Time(in 
sec) 

12.039859 24.186131 0.230866 0.25253 1.960667 

Sensitivity 0.9831 0.9482 0.9841 0.925 0.661 

Specificity 0.9975 0.992 0.9987 1 1 

DICE 0.9635 0.8904 0.9776 0.9605 0.7959 

Jaccard 
Index 

0.9296 0.8024 0.9562 0.924 0.661 

Kidney 
4807-14-11-WC.jpg 
(Coronal Direction -
with Contrast) 

Time(in 
sec) 

9.937055 22.565294 0.047243 0.286961 1.417538 

Sensitivity 0.9828 0.9386 0.9863 0.9016 0.8047 

Specificity 0.9991 0.9946 0.9993 1 1 

DICE 0.9815 0.9114 0.9859 0.9483 0.8918 

Jaccard 
Index 

0.9637 0.8372 0.9722 0.9016 0.8047 

Kidney 
4989-13-45-WOC.jpg 
(Axial Direction -
without Contrast) 

Time(in 
sec) 

9.411271 21.725564 0.02935 0.176253 1.816574 

Sensitivity 0.9885 0.9387 0.9933 0.9788 0.8949 

Specificity 0.9992 0.9976 0.9992 0.9997 1 

DICE 0.969 0.8987 0.9739 0.9807 0.944 

Jaccard 
Index 

0.9399 0.816 0.9491 0.9621 0.894 

Kidney 
4989-14-45-WC.jpg 
(Axial Direction - with 
Contrast) 

Time(in 
sec) 

9.554764 21.924253 0.045166 0.199537 1.476591 

Sensitivity 0.976 0.9388 0.984 0.9547 0.8715 

Specificity 0.9996 0.9967 0.9997 1 1 

DICE 0.9769 0.8828 0.9832 0.9755 0.9313 

Jaccard 
Index 

0.9549 0.7901 0.9669 0.9522 0.8715
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Fig. 9.5 Graphical representation of segmentation performance metrics 

Fig. 9.6 Graphical representation of individual segmentation performance metrics for non contrast 
and contrast images
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