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Abstract. In this paper, a robust optimal tracking strategy is presented
for linear system with systems uncertainty and bounded disturbance.
Firstly, an integral sliding mode control policy is designed to guaran-
tee system trajectories tend to a defined sliding mode surface and the
influence of system uncertainty is eliminated. Then the robust tracking
control problem of original system is transformed into the H∞ control
problem of an auxiliary error system. Furthermore, an off-policy integral
reinforcement learning (IRL) algorithm based H∞ controller is designed,
where the optimal tracking performance is guaranteed under the adverse
effect of external disturbance. Finally, simulation test for near space vehi-
cle (NSV) attitude model is introduced to verify the effectiveness of the
proposed strategy.
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1 Introduction

Nowadays, the robust control method has received considerable attention from
industrial and academic areas [1]. As far as we know, there are many effec-
tive methods to deal with the uncertainty. Such as disturbance observer-based
(DO) control [2] and integral sliding mode control (ISMC) [3]. Compared to
DO method, ISMC method can deal with the system uncertainty which only
requires to be bounded. In [4], the authors investigated ISMC controller design
issue for fuzzy semi-Markov systems. In [5], a robust fault-tolerant controller
was designed for robot manipulators by using ISMC. In addition, for the pur-
posed of improving control performance, optimal control theory can be widely
used [6,7]. In [6], a novel tracking strategy using adaptive dynamic programming
(ADP) algorithm was proposed for linear system with unknown dynamics. In [7],
a novel value iteration based algorithm was proposed to solve the H∞ control
of linear system. The core mission of optimal control problem for linear system
is to solve the algebraic Riccati equation (ARE), and reinforcement learning
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(RL) technique can effectively handle this issue [8]. In [9], a novel RL scheme
based on incremental learning approach was proposed for continuous-time linear
system. In order to obviate the requirement of system dynamics, integral RL
(IRL) method was proposed [10]. For linear system with input delay, an IRL-
based model free optimal control method was proposed, and only the input and
output of system datas were used [11].

Inspired by the above content, in this paper, a composite H∞tracking control
scheme is designed for continuous-time linear system with system uncertainty
and bounded disturbance by using ISMC and off-policy IRL-based control meth-
ods. The sliding mode controller is designed to eliminate the effect of unknown
uncertainty. The developed IRL control method is used to obtain the optimal
tracking performance under the adverse effect of external disturbance. Further-
more, we introduce a NSV attitude model to show the effectiveness of the pro-
posed control scheme.

2 Problem Description

In this paper, we consider the following uncertain system:
{

ẋ (t) = Ax (t) + Bu (t) + E�(x) + Dς(t)
y (t) = Cx (t) (1)

where x(t) = [x1(t), · · · , xn(t)]T ∈ �n denotes the system state, y (t) ∈ �p,
�(x) ∈ �v and ς(t) ∈ �q represent system output, unknown system uncertainty
and external disturbance, respectively. A ∈ �n×n, B ∈ �n×m, C ∈ �p×n, E ∈
�n×v and D ∈ �n×q are known system matrices. The external disturbance is
assumed to belong to L2 [0,∞) . The system uncertain �(x) is bounded and
satisfies ‖�(x)‖ ≤ �m.

The desired reference trajectory is generated by
{

ẋr (t) = Arxr (t)
yr (t) = Crxr (t) (2)

where xr (t) ∈ �nr and yr (t) ∈ �p are system state and output of reference
trajectory system. Ar and Cr are constant matrices. Furthermore, the following
tracking error can be defined as e(t) = y(t) − yr(t)

Here, we introduce a new error variable as

z (t) = x (t) − Gxr (t) (3)

where z (t) ∈ �n, G ∈ �n×nr is the constant matrix satisfying AG+BH = GAr

and CG = Cr. H ∈ �m×nr is the constant matrix, which is employed to model
match. Furthermore, one can deduce that e(t) = Cz(t).

Then, combining (1), (2) and (3), we can obtain

ż (t) = Ax (t) + Bu (t) + E�(x) + Dς(t) − GArxr (t) (4)
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The control input is designed as u (t) = ua (t) + uo (t), where ua (t) is an
integral sliding mode control policy to eliminate the influence of the system
uncertainty, and uo (t) is an off-policy IRL-based H∞ control policy to guarantee
the optimal tracking performance.

3 Controller Design

In this section, we will present the porposed control method including ISMC and
of-policy IRL-based H∞ control design. Moreover, the structure of the proposed
control method is shown in Fig. 1.

Fig. 1. Estimation results of the unknown disturbance D

3.1 Integral Sliding Mode Control Design

In this paper, we select the following integral sliding mode surface

S (z, t) = Γ [z(t) − z(0) −
∫ t

0

(Az + Buo + Dς) dτ ] (5)

where Γ is a positive matrix to be designed, which satisfies ΓB is invertible.
Furthermore, the integral sliding mode control policy can be designed as

ua(t) = −Υ (ΓB)−1 Sgn (S) − B−1 (AGxr(t) − GArxr(t)) (6)

where Sgn (S) =
[
sgn (S1) . . . sgn (Sn)

]T , and sgn(·) is a sign function. Υ is
positive matrix to be designed.

Theorem 1. Considering system (4), the integral sliding mode surface and the
integral sliding mode control policy are designed as (5)–(6), respectively. Then,
integral sliding surface is uniformly asymptotically stable by selecting suitable Υ
and Γ .
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Proof. The Lyapunov function is selected as follows

V (t) =
1
2
ST S (7)

Taking derivative of V (t) with respect to t, one can obtain that

V̇ (t) = ST Γ [Ax(t) + Bua(t) + E�(x) − GArxr(t) − Az(t)]
= ST Γ [−ΥΓ−1Sgn(S) + E�(x)]
= −ΥST Sgn(S) + ST ΓE�(x)
≤ −λmin (Υ ) ‖S‖ + ΓE�m ‖S‖
≤ −(λmin (Υ ) − ΓE�m) ‖S‖ (8)

By selecting suitable matrixes Υ and Γ such that λmin (Υ ) > ΓE�m, then,
we have V̇ (t) < 0, which means that sliding mode surface is uniformly asymp-
totically stable.

3.2 Off-Policy IRL-Based H∞ Control Design

Consider the following auxiliary error system

ż (t) = Az (t) + Buo (t) + Dς (t) (9)

The corresponding infinite horizon performance index is

J (z, uo, ς) =
∫ ∞

0

(zT Qz + uT
o Ruo − ϕ2ςT ς)dτ (10)

where Q = QT ≥ 0, R = RT > 0 denote the state and control performance
weights, respectively. ϕ is a constant, which satisfies ϕ ≥ ϕ∗, ϕ∗ is the smallest
L2 gain. We consider ς (t) as opponent’s policy. The aim is to find a control
policy (u0, ς) to make system (9) is stable and meets a H∞ performance.

Furthermore, the H∞ control issue is equivalent to following zero-sum game
problem

V∗ (z) = min
uo

max
ς

J (z, uo, ς)

= min
u

max
ς

∫ ∞

0

(zT Qz + uT
o Ruo − ϕ2ςT ς)dτ (11)

where V∗ (z0) is the optimal value function. Control policy and disturbance pol-
icy are considered as two hostile players, where control policy desires to minimize
the performance index while disturbance policy aims to damage it. Furthermore,
we denote control policy uo(t) = −Kz(t) and disturbance policy ς(t) = Kwz(t),
respectively. Then, the value function can be expressed as

V (z) = zT (t)Pz(t) (12)
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Moreover, we can obtain the following algebraic Riccati equation

AT P ∗ + P ∗A + Q − P ∗BR−1BT P ∗ + ϕ−2P ∗DT DP ∗ = 0 (13)

the saddle point of zero-sum game is

u∗
o(t) = −Kz(t) = −R−1BT P ∗z(t)

ς∗(t) = Kwz(t) = ϕ−2DT P ∗z(t) (14)

Then, system (9) can be rewritten as

ż (t) = Ãz(t) + B (u0 (t) + Kz(t)) + D (ς (t) − Kwz(t)) (15)

where Ã = A − BK + DKw.
Furthermore, we can obtain that

zT (t + T )Piz(t + T ) − zT (t)Piz(t) = −
∫ t+T

t

zT Qizdτ

+ 2
∫ t+T

t

[(uo + Kiz(t))T RiKiz(t)]dτ

−2ϕ2

∫ t+T

t

[(Kwiz(t) − ς)T Kiz(t)]dτ (16)

Then, the left-hand of (9) can be rewritten as

zT (t+T )Piz(t+T )−zT (t)Piz(t) = P̃T
i [zT (t+T )⊗zT (t+T )−zT (t)⊗z(t)] (17)

where

P̃i = [Pi11, 2Pi12, · · · , 2Pi1n, Pi22, 2Pi23, · · · , Pinn]T

zT ⊗ zT =
[
z21 , z1z2, · · · , z1zn, z22 , z2z3, · · · , zn

]T

Similarly, we can deduce

zT Qz = (zT ⊗ zT )vec(Q)
(uo + Kiz)T RKiz = [(zT ⊗ zT )(In ⊗ KT

i R)
+(zT ⊗ uT )(In ⊗ R)]vec(Ki)

ϕ2(Kwiz(t) − ς)T Kiz(t) = [(zT ⊗ zT )(In ⊗ ϕ2KT
wi)

−(zT ⊗ ςT )
(
ϕ2I

)
]vec(Kwi) (18)

From (17) and (18), (16) can be represented as

Πi ×
⎡
⎣ P̃i

vec (Ki+1)
vec (Kwi+1)

⎤
⎦ = Ωi
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where Ωi = −γzzvec (Q) and

Πi =

⎡
⎣ £zz

−2[γzz(In ⊗ KT
i R) + πzu0(In ⊗ R)]

2[γzz(In ⊗ KT
wiϕ

2) + φzz(ϕ2In)]

⎤
⎦

T

£zz =
[
z̃ (t1) − z̃ (t0) z̃ (t2) − z̃ (t1) · · · z̃ (tl) − z̃ (tl−1)

]T

γzz =
[∫ t1

t0
z ⊗ zdτ

∫ t2
t1

z ⊗ zdτ · · · ∫ tl
tl−1

z ⊗ zdτ
]T

πzuo
=

[∫ t1
t0

z ⊗ uodτ
∫ t2

t1
z ⊗ uodτ · · · ∫ tl

tl−1
z ⊗ uodτ

]T

φzς =
[∫ t1

t0
z ⊗ ςdτ

∫ t2
t1

z ⊗ ςdτ · · · ∫ tl
tl−1

z ⊗ ςdτ
]T

Furthermore, we have
⎡
⎣ P̃i

vec (Ki+1)
vec (Kwi+1)

⎤
⎦ =

(
ΠT

i Πi

)−1
ΠT

i Ωi

Then, the online implementation of off-policy IRL-based H∞ control method
is presented in Algorithm 1. Moreover, the stability analysis of the system (9)
can be reference to [10].

Algorithm 1: Off-Policy IRL-Based Control Algorithm.
1 Input: Measure z (t) , uo (t) and ς (t)
2 Step I (Data collection): Collect data of z (t) , u0 (t) and ς (t) for sufficiently

large uniformly sampled time instants, and construct the following matrices.

3 where z̃ � zT ⊗ zT �
[
z2
1 z1z2 · · · z1zn z2

2 · · · z2
n

]T

4 Step II (Gain update): Solve K,Kw and P iteratively from the following
equality

⎡

⎣
£zz

−2[γzz(In ⊗ KT
i R) + πzu0(In ⊗ R)]

2[γzz(In ⊗ KT
wiϕ) + φzz(ϕ

2In)]

⎤

⎦

T

×
⎡

⎣
P̃i

vec (Ki+1)
vec (Kwi+1)

⎤

⎦

= −γzzvec (Qi)

where vev(·) is a vectorization map from a matrix into a column vector.
5 Step III (Computation terminated): Stop if ‖Pi+1 − Pi‖ ≤ ε, where ε is a

given constant. Otherwise, set Pi ← Pi+1, Ki ← Ki+1, Kwi ← Kwi+1 and
repeat Step II.

6 Step IV (Policy update): If K, Kw and P converge, apply control policy
uo = −Kz to the system.
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4 Simulation Results

In this section, simulation studies are employed to verified the effectiveness of
the proposed method. The nonlinear attitude mode of NSV is linearized at equi-
librium point x0 = [−0.0005, 0.0001, 0.2, 0,−0.1872, 0.0007]T , such the linear
attitude mode of NSV is obtained.

ẋ = Ax + Bu

where x = [α, β, μ, p, q, r]T is system state vector, which are attitude angles and
angle rates. u = [δe, δa, δr, δx, δy, δz]T denotes control input vector. The specific
information of NSV mode and matrices A, B can reference to [12]. And

D = E =
[
0.1 0.4 0.1 0.2 0.1 0.2

]T

�(x) = 0.01 sin(x1) + 0.05x2
2 cos(x3)ς(t) = 0.01e−0.1t sin(0.1t)
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(a) The parameters of matrix P .
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(b) The sliding surface function.

Fig. 2. Convergence of matrix P and sliding surface function.

The reference attitude angles are selected as

ẋr = 0, αr = 0, βr = −0.8, γr = 0.65

For algorithm 1, the parameters are chosen as follows: Q = 104I, R = I.
From t = 0 s to t = 2 s, the following exploration noise is employed as system
input

ē = 100
100∑
c=1

sin (wct)

where c = 1, ..., 100, and wc are selected from [−500, 500]. Moreover, the weight-
ing matrices are Π = I,Q = 104I, R = I, and ϕ = 1.5, Γ = 2.2, Υ = 0.01.
Furthermore, by using Algorithm 1, the control gain K can be obtained. The
convergence process of P matrix element and sliding surface function are shown



1024 R. Xia et al.

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5 10116

Fig. 3. The state responses of the open-closed system.
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Fig. 4. The responses of the attitude angles.

in Fig. 2. From Fig. 3, it can be observed that system is unstable without the con-
trol input. Then, it can be seen from Fig. 4 that actual angles can well track the
desired signals in a short time, which means that the proposed control method
is effective.

K= 102 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

3.7617 −0.4746−0.6895−0.7123 0.9036 −0.5118
5.1117 1.2282 1.2564 1.2707 2.5080 1.007

−2.5063−2.0072−2.7337−2.7688 −2.6176 −2.8739
−0.4758−0.5955−0.6830−0.6959 −0.5633 −0.5337
−0.0510−0.0437−0.0583−0.0592−0.054305−0.0584
1.1612 0.0907 0.0640 0.0627 0.4401 0.0545

⎤
⎥⎥⎥⎥⎥⎥⎦
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5 Conclusions

In this paper, a composite H∞tracking control scheme is designed for continuous-
time linear systems with system uncertainty and bounded disturbance. Firstly,
the integral sliding mode controller has been applied to deal with unknown
system uncertainty. In addition, an off-policy IRL has been provided for solving
the two-player zero-sum game problem of H∞ control. Finally, the simulation
results for NSV attitude control show the effectiveness of the proposed method.
In our future work, we will extend the results to nonzero-sum games for practical
system.
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