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Abstract. In this paper, a distributed Model Predictive Control (MPC) method
based on modified Brain Storm Optimization (BSO) algorithm is proposed to
solve the control problem of multiple Unmanned Aerial Vehicles (UAVs). The
modified BSO algorithm considers all cluster centers, and the chaos mechanism
is introduced into the solution replacement mechanism. Based on the distributed
model predictive control framework, the cost functions and trigger mechanism are
designed for formation control. Simulation results show that the designed trigger
mechanism can reduce the amount of calculation, and verifies the feasibility and
effectiveness of the proposed method.
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1 Introduction

In an increasingly complex combat environment, a single small Unmanned Aerial Vehi-
cle (UAV) is gradually unable to meet mission requirements. UAV swarm has attracted
more attention. When performing complex tasks such as reconnaissance, offense, and
defense, different formation shapes such as horizontal, column, echelon, and V forma-
tion shape can be used. A reasonable formation can improve aerodynamic efficiency,
reduce energy consumption, and extend flight distance [1].

The typical control methods of formation control include leader-follower strategy,
behavior-based method, virtual structure, Model Predictive Control (MPC), consensus
theory, etc. SASKA [2] realized formation flyingwith the leader-follower controlmethod
based on the on-board visual perception equipment. Duan [3, 4] proposed an improved
multi-objective pigeon-inspired optimization algorithm to design a multi-UAV obstacle
avoidance control algorithm. Based on the back-stepping design, they proposed a con-
sensus control algorithm for multi-rotor formation control. Research on MPC includes
strategies to reduce the amount of calculation, nonlinear predictive control theory, and so
on. Compared with the centralized model predictive control to solve the multi-constraint
optimization problem as a whole, the distributed model predictive control can decom-
pose the complexity of the overall optimization. A trigger mechanism can be combined
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into the MPC scheme to decrease the update frequency of control inputs and reduce the
computational burden.

Brain Storming Optimization (BSO) algorithm is inspired by the brain storm con-
ference [5]. The algorithms for improving BSO can be divided into two types. One
is to change the cluster method and replace the k-means cluster with other clustering
methods. The other is to change the update formula of the solution. The predator and
prey mechanism can be introduced, and then perform a chaotic search on each updated
solution [6]. Chaotic theory can be used to change the random one-dimensional solution
in a randomly selected cluster. Multi-branch chaotic mutation can be used to generate a
chaotic mutation operator [7, 8]. These methods mainly focus on the cluster method and
the update method of the solution, and pay less attention to the replacement mechanism
of the solution and the generationmechanism of the auxiliary solution in BSO algorithm.

2 Modified BSO Based Distributed MPC Method

2.1 Model

Assuming that there is a UAV i in a certain height horizontal plane, it can regarded as a
mass point, and its state zi = [xi, yi, θi, vi]T is

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

v̇i = ai

i = 1, 2, ...,Nuav (1)

where the xi, yi is the position of UAV i, vi indicates the linear velocity and ai is the
acceleration. θi indicates the yaw angle and ωi is the angular velocity.

2.2 Distributed MPC

Comparedwith centralizedmodel predictive control, distributedmodel predictive control
has stronger ability to deal with multi-input andmulti-output systems with state and con-
trol constraints. It transforms the control problem into a group of control problems of sub-
systems, and constructs multiple distributed predictive platforms with information inter-
action to solve the optimization problem. Establish a distributedmodel predictive control
framework for the UAV formation system, the UAV system i ∈ V = {1, 2, ...,Nuav} can
be expressed as

żi(t) = fi(zi(t), ui(t)), t ≥ t0, zi(t0) = zi0 (2)

where zi(t) ∈ Rn is the state of UAV i at time t, and ui(t) ∈ Rm is the control input of
the UAV i. zi0 is the initial state, t0 is the initial time, and Nuav is the number of UAVs.

The neighbors of the UAV i in the set Ni can be expressed as

ż−i(t) = f−i(z−i(t), u−i(t)), t ≥ t0 (3)
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where u−i(t) = {uj(t)}, z−i(t) = {zj(t)}, j ∈ Ni. And the optimal predictive control
input and cost function of the UAV i are

u∗
i (s; tc) = arg min

u∗
i (s;tc)

Ji(zi(s; tc), z−i(s; tc), ui(s; tc)) (4)

Ji =
∫ tc+Tp

tc
Fi

(
zpi (s; tc), ẑ−i(s; tc), upi (s; tc)

)
ds (5)

where the prediction horizon Tp ∈ (0,∞) is a constant, and the control update period
δT ∈ (0,Tp] is selected based on requirements. The update time is defined as tc =
t0 + δT c, c ∈ {0, 1, 2, ...}. At each update instant, Ji is a distributed cost function, Fi is
a function determined by task requirements, zpi (s; tc) is the predictive state of the UAV i
and ẑ−i(s; tc) is the estimated state of its neighbors. The estimated state is composed of
two parts, the optimal prediction state z∗

j (s; tc−1) in s ∈ [tc, tc−1 + Tp) and the optimal
prediction state z∗j (tc−1 + Tp; tc−1) in s ∈ [tc−1 + Tp, tc + Tp].

2.3 Modified BSO

Firstly, an initial solution is randomly generated in the solution space, and each solution
can be expressed as Xi = {

X 1
i ,X 2

i , ...,XD
i

}
, i ∈ {1, 2, 3, ...,N },D is the dimension

of solution space, X 1
i ,X 2

i , ...,XD
i are coordinates of the solution in each dimension

of the solution space. The range of the solution is limited by the solution space Xi ∈
[Xmin,Xmax], where Xmin is the lower limit of the solution space and Xmax is the upper
limit of the solution space.

K-means cluster is used to divide N individuals into m clusters. In each cluster
Cj, j ∈ {1, 2, 3, ...,m}, individuals are sorted according to the value of cost function,
and the optimal individual is the cluster center XCj.

Replace the solution with probability pr , and randomly generate a random number
pr0 between [0, 1]. If pr0 < pr , select a cluster center XCjr randomly and replace it with
chaotic solution, where jr ∈ {1, 2, 3, ...,m} is the randomly selected. A D-dimension
vector cr(0) is randomly generated as the seed of the sequence. A chaotic map frmap
is selected for nr times mapping, and the chaotic sequence {cr(1), cr(2), ..., cr(nr)} is
generated by formula

cr(ir) = frmap(cr(ir − 1)), ir = 1, 2, ..., nr (6)

The corresponding chaotic solution sequence {cx(1), cx(2), ..., cx(nr)} is obtained
by formula

cx(ir) = cr(ir)(Xmax − Xmin) + Xmin (7)

The cost function value of each chaotic solution is calculated. The chaotic solution
cxbest with the optimal cost function value is to replace the selected cluster center XCjr =
cxbest .

Generate an auxiliary solution Xih for each solution Xi. In the generation of auxiliary
solution

{
XC1 ,XC2 , ...,XCm

}
all cluster centers are considered. A m-dimension vector
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ch(0) = [ch1(0), ch2(0), ..., chm(0)] is randomly generated as the seed of the sequence,
and a chaoticmap fhmap is selected for secondarymapping. The chaoticweight coefficient
sequence {ch(1), ch(2), ..., ch(nh)} is generated by

ch(ih) = fhmap(cr(ih − 1)), ih = 1, 2, ..., nh (8)

Use ch(nh) = [ch1(nh), ch2(nh), ..., chm(nh)] and cluster centers to generate
auxiliary solutions

Xih =
m∑

j=1

(chj(nh) × XCj ) (9)

A new solution Xinew is generated based on each auxiliary solution Xih. The update
formula is

Xinew = Xih + logsig((0.5 × Tmax − Tnow)
/
k) × Xrand × norm(0, 1,D) (10)

logsig() is the sigmoid function, and the output of it is between (0, 1). k is the param-
eter that affects the slope of the function. Tmax is the maximum number of iterations,
Tnow is the current number of iterations. norm(0, 1,D) generates a normal distribution
of random numbers to form a D-dimensional vector. If the value of cost function of Xinew

is better than that of Xi, update the solution Xi = Xinew.

Start

Set the max iteration times Tmax ,the solution number N ,
the range of solution space [Xmin Xmax], the number of 

clusters m, and the chaotic maps frmap , fhmap

Generate N initial solutions Xi,i=1,2...N in solution space

Divide N individuals into m clusters, and sorted 
individuals by the value of cost function. the optimal 

individual is regarded as the cluster center

Has it reached the max iteration times?

Generate the new solution Xinew with Xih and
update Xi by the value of cost function

Get the optimal solution

End

pr0<pr

Generate nr chaotic solutions by the chaotic map frmap

Replace the randomly selected cluster center with the 
optimal chaotic solution

Generate nh chaotic weight coefficients by the chaotic 
map  fhmap

Generate an auxiliary solution Xih for each solution Xi by
the chaotic weight coefficient nh and all cluster centers

Yes

Yes

No

No

Fig. 1. The flow chart of the modified BSO algorithm
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It is checked whether the maximum number of iterations is reached, and if reached,
the optimal solution is output as the optimization result, otherwise, iterative optimization
is performed until the maximum number of iterations is reached. The flow chart of the
modified BSO algorithm is shown in Fig. 1.

2.4 Cost Functions and Trigger Mechanism

Cost Functions
The cost function for multiple UAVs to maintain the desired formation according to the
desired trajectory are

Fi(zi(t), ui(t)) = widstFidst(zi(t), ui(t)) + witrjFitrj(zi(t), ui(t)) (11)

Fidst(zi(t), ui(t)) =
∑

j∈Ni

∥
∥
∥pij(t) − pdij(t)

∥
∥
∥
2

(12)

Fitrj(zi(t), ui(t)) =
∥
∥
∥pc(t) − pdc (t)

∥
∥
∥
2

(13)

where Fidst is the formation distance cost function of UAVs. pij is the distance between
UAV i, j, and pdij is the desired distance between UAV i, j. Fidst is the cost function of

tracking the reference trajectory. pc=∑

i∈V
pi

/

Nuav is the center position of the formation.

pi is the position of the drone, and pdc is the desired position of the formation center.
widst,witrj are the weight constants. The distributed cost function of UAV i in s ∈
[tc, tc + Tp] is

Fi
(
zpi (s; tc), ẑ−i(s; tc), upi (s; tc)

)

= widst

∑

j∈Ni

∥
∥
∥p

p
i (s; tc) − p̂j(s; tc−1) − pdij(s; tc)

∥
∥
∥
2

+witrj

∥
∥
∥
∥
∥
∥

1

Nuav

⎛

⎝ppi (s; tc) +
∑

j∈Ni

p̂j(s; tc−1)

⎞

⎠ − pdc (s; tc)
∥
∥
∥
∥
∥
∥

2

,

s ∈ [tc, tc + Tp]

(14)

where ppi (s; tc) is the predictive position of the UAV, and p̂j(s; tc−1) is the estimated
position of the UAV j. pdij(s; tc) represents the desired distance between the UAV i and

j,and pdc (s; tc) is the desired position of the formation center, determined by the reference
trajectory.

Trigger Mechanism
In order to reduce the burden of calculation, a trigger mechanism is introduced. The
control inputs are solved and updated when the trigger condition is met. The mechanism
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of triggering the solution and update is mainly determined by the error of formation
distance, the error of trajectory tracking, control input and prediction horizon.

�pij(tc)=
∥
∥
∥p

p
i (tc) − p̂j(tc−1) − pdij(tc)

∥
∥
∥ − εp, j ∈ Ni (15)

�pO(t) =
∥
∥
∥
∥
∥
∥

1

N

⎛

⎝ppi (t) +
∑

j∈Ni

p̂j(t)

⎞

⎠ − pdc (t)

∥
∥
∥
∥
∥
∥

− εO (16)

�ui(tc) = upi (tc) − ηumax, umax = [amax, ωmax]
T (17)

�Ti(tc) = tc − (titrg + Tp) (18)

where εp is the threshold of predictive formation distance error, and εO is the threshold
of formation tracking error. umax = [amax, ωmax]T is the limitation of the control input.
upi (tc) is the predictive control input of the UAV i, and the range of η is from 0 to 1. titrg
is the last update instant of the UAV i. �pij(tc) is the difference between the formation
distance error and the corresponding threshold.�pO(t) is the difference between the tra-
jectory tracking error and the corresponding threshold.�ui(tc) is the difference between
the control input and the corresponding threshold. �Ti(tc) is the difference between tc
and the prediction horizon titrg + Tp at the last update instant titrg . The update condition
can be described as

�pij(tc) ≥ 0
∥
∥�pO(t) ≥ 0‖�ui(tc) ≥ 0‖�Ti(tc) ≥ 0 (19)

When the condition is met, the solution is updated. otherwise the last optimal control
input is used. The flow chart of modified BSO based distributed MPC method is shown
in Fig. 2.

Update the optimal state
Calculate the predictive state

Get estimated states of neighbors

Calculate the distance error of formation
Calculate trajectory tracking error

Evaluate control inputs
Evaluate the prediction horizon constraint

Is the trigger condition met?

Solve optimal control input by modified brain storm 
optimization algorithm

Use last optimal 
control inputs

Update the optimal control inputs

Has it reached the end state?

Start

End

Yes

No

Yes

No

Fig. 2. The framework of modified BSO based distributed MPC method
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3 Numerical Simulations

In this section, numerical simulations are used to verify the performance of the designed
method. The formation control of three UAVs are considered in the simulation scenario.
The initial states of UAVs are shown in Table 1.

Table 1. Initial states of UAVs

UAV x (m) y (m) v (m/s) θ (°)

1 −7.08 −17.96 13.12 68.02

2 −18.48 −5.25 15.43 14.74

3 −15.46 11.29 16.83 −35.97

The prediction horizon is set as Tp = 4 s, and the update period is δT = 0.2 s.
The acceleration range is [−7m

/
s2,+7m

/
s2], and the angular velocity range is

[−0.25 rad
/
s,+0.25 rad

/
s]. The desired formation shape is an isosceles right triangle

and the length of its hypotenuse is 20m.
The numerical simulation is carried out without trigger mechanism. The trajectory

of formation is shown in Fig. 3. It can be seen that the UAV can form the desired
formation, and the formation center can track the reference trajectory. The states of each
UAV and the distances of formation are shown in Fig. 4. As the formation is formed,
the velocity and yaw angle of each UAV gradually converge, and the acceleration and
angular velocity also tend to be the same. The formation center moves to the reference
trajectory quickly in the early stage. The trajectory tracking error is greatly reduced, and
then fluctuated around 0. The maximum error is within 1.25 m. After the formation is
formed, the distance d31 between UAV 1 and UAV 3 is kept near 20 m, and the distance
d12, d23 are kept near 14.14 m. These errors are within 0.2 m.

Fig. 3. The trajectory of formation
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Fig. 4. States and distances of formation

The numerical simulation is carried out with trigger mechanism, and the thresholds
are set as εp = 2 m, εO = 2 m, η = 1. The trajectory of formation with trigger
mechanism is shown in Fig. 5. It can be seen that theUAVcan form the desired formation,
and the formation center can track the reference trajectory. The states of each UAV
and the distances of formation with trigger mechanism are shown in Fig. 6. As the
formation is formed, the velocity and yaw angle of each UAV gradually converge, and
the acceleration and angular velocity also tend to be the same. The formation center
moves to the reference trajectory quickly in the early stage. The trajectory tracking error
is greatly reduced, and then fluctuated around 0. The maximum error is within 1.4 m.
After the formation is formed, the distance is kept near 20 m, and the error is within
0.25 m. The distance d12, d23 are kept near 14.14 m. These errors are within 0.3 m.
The trigger instants of each UAV are shown in Fig. 7. It can be seen that the control
inputs of each UAV is solved asynchronously. When the formation shape has not been
formed in the early stage, the control inputs are solved and updated frequently, and then
the numbers of triggering times are reduced. There are 240 update instants, and UAV
1, UAV 2 and UAV 3 trigger 157, 155 and 160 rimes respectively, reducing the number
of solving the control problem by more than 33.3%, which lessens the computational
burden.

Fig. 5. The trajectory of formation with trigger mechanism
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Fig. 6. The states of each UAV and the distances of formation with trigger mechanism

Fig. 7. The trigger instants of each UAV

4 Conclusions

This paper proposes a modified BSO algorithm, which introduces the chaos theory to the
replacement mechanism of the solution and considers all cluster centers in the update
mechanism of the solution. Based on the distributed MPC, the cost function and trigger
mechanism are designed, and the proposed algorithm is used to solve the control inputs
of each UAV, forming a distributed MPC method based on the modified BSO. The cost
function and trigger mechanism are designed, and the proposed method is used to solve
the control problem of UAV formation. Numerical simulation results show the feasibility
and effectiveness of the method. The designed trigger mechanism reduces the number
of update times to less than two-thirds, and reduces the amount of calculation. Further
researchwill improve the triggermechanism and carry out simulation analysis on control
problems of distributed heterogeneous UAVs.
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