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Abstract. This paper investigates the prescribed-time multi-target
tracking problem for second-order multi-agent systems (MASs). By
employing a time-relevant function as the control gain, a novel con-
trol algorithm is proposed to achieve multi-target tracking, where the
convergence time is regardless of the changing of the initial condition.
Especially, the multi-target tracking control can be achieved based on
the assumption that the interaction directed graph has a spanning tree
with acyclic partition. The sufficient conditions are established accord-
ing to Lyapunov stability theory and mathematical induction. Finally,
some simulation experiments are proposed to substantiate the presented
algorithm.

Keywords: Multi-target tracking · Prescribed-time control ·
Second-order multi-agent systems (MASs)

1 Introduction

Collaboration control of multi-agent systems is one of the hottest topics in the
control field due to the broadly satisfactory applications in formation control
[1,2], containment control [3,4], and target tracking [5]. Target-tracking is an
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active research area, which aims to activate multiple follower agents to track the
target’s trajectory and accomplish the assigned tasks simultaneously.

Specifically, according to the quantity of the tracking target, target-tracking
can be divided into single-target tracking and multi-target tracking. Under a
leader-follower framework, several single-target tracking problems of MASs have
been addressed successfully [2,6]. The results focused on the single-target track-
ing can not handle with the multi-target tracking problem directly, which moti-
vates researchers to achieve the control objective of multi-target tracking [7].
Different from the single-target tracking, multi-target tracking means that all
the followers are divided into several groups and track the trajectories of the
multiple targets respectively in complex operation environments. Besides, the
difficulties of multi-target tracking lie in the complexity of the construct of the
Lyapunov function. Therefore, a significative consideration of coordinated con-
trol for MASs lies in multi-target tracking.

It is worth mentioning that the existing research on multi-target tracking
control can only be achieved in the asymptotic or finite-time manner. How-
ever, the convergence rate is also highly considered when evaluates the designed
algorithms [7,8]. Early years, the control methods mainly contain the asymptotic
control, finite-time control and fixed-time control [9,10]. None of them can obtain
a precise settling time. Then, to make the settling time certainty, the prescribed-
time control methods have been provided [11–13]. The prescribed-time stability
has been highly considered on account of the performance of the user-defined set-
tling time and the independent of initial conditions. Therefore, the combination
of the prescribed-time stability and multi-target tracking becomes a significant
but challenging problem.

Inspired by the aforementioned discussions, we propose a prescribed-time
multi-target tracking algorithm for second-order MASs under a directed graph.
The main contributions can be listed as follows.

1. Unlike the prescribed-time control of single-target tracking [14], the proposed
algorithm is designed to achieve multi-target tracking under a leader-follower
framework. The tracking targets are time-varying and unknown to the fol-
lowers.

2. Unlike the existing references on achieving multi-target tracking in the asymp-
totic or finite-time manner, this is the first work on solving the prescribed-
time multi-target tracking problem. The settling time can be prescribed and
is unrelated to the initial condition.

2 Problem Formulation and Preliminaries

2.1 Graph Theory

A directed graph G = {V,E,A} is introduced to depict the interaction of MASs,
where V = {1, 2, . . . , N}, E ∈ V × V . The weighted adjacent matrix is defined
as A = [aij ] ∈ RN×N , and aij > 0 if (i, j) ∈ E, aij = 0 otherwise. The neighbor
set of the ith agent is Ni = {j ∈ V |(i, j) ∈ E}. The Laplacian matrix is
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L= [lij ] ∈ RN×N , in which lii =
∑N

j=1 aij , i = j and lij= −aij , i �= j. Moreover,
B = diag(b1, . . . , bN ) is the pining matrix, and bi > 0 if there is a directed path
between the ith agent and its leader, bi = 0 otherwise.

Consider the graph can be divided into k subgraphs {G1, G2, . . . , Gk}, in
which {V1, V2, . . . , Vk} are the corresponding sets of nodes. V1 = {1, 2, . . . , o1},
V2 = {o1 + 1, o1 + 2, . . . , o2},. . . , Vk = {ok−1 + 1, ok−1 + 2, . . . , ok}, ok = N and
the number of the agents in each subgroup is defined as nl, ∀l ∈ {1, 2, . . . , k}.

Assumption 1. For each subgraph, there is a spanning tree rooted in a leader
node.

Assumption 2. The sets {V1, V2, . . . , Vk} are acyclic partition in directed graph
G.

Under Assumption 2, the Laplacian matrix can be redefined into the following
form [16]

L =

⎡

⎢
⎢
⎢
⎣

L11 0 . . . 0
L21 L22 . . . 0
...

...
. . .

...
Lk1 Lk2 . . . Lkk

⎤

⎥
⎥
⎥
⎦

,

where Ll is the Laplacian matrix of Gl, and Lml denotes the interaction between
Gm and Gl, ∀l,m ∈ {1, 2, . . . , k}.

2.2 Problem Formulation

The considered system is molded as second-order integrator,
{

ẋi = vi,
v̇i = ui,

(1)

where i = 1, 2, . . . , N , xi ∈ Rr is the position, vi ∈ Rr is the velocity, and
ui ∈ Rr is the control input to be designed.

The sub-leaders can be described as ẋl,0 = vl,0 and v̇l,0 = al,0, where
xl,0, vl,0, al,0 ∈ Rr is position, velocity and acceleration, ∀l ∈ {1, 2, . . . , k}.

The prescribed-time multi-target tracking for (1) will be achieved if there
exists a ui for followers such that the agents can track the sub-leaders’ trajecto-
ries in a prescribed time respectively.

2.3 Preliminaries

Lemma 1. [15] Under Assumption 1, there exists a positive-definite matrix
Pl = diag(ξi) = diag(yi/xi) such that Ql = PlHll + HT

ll Pl, in which Hll =
Ll + Bl, x = [x1, x2, . . . xN ]T = H−1

ll 1N , y = [y1, y2, . . . yN ]T = H−T
ll 1N ,

∀l ∈ {1, 2, . . . , k}.
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Before moving on, a time-relevant function η(t) is proposed as

η(t) =
(

Tu

t0 + Tu − t

)ρ

,

where ρ > 1 is a positive constant, t0 and Tu are initial time and the prescribed
time.

Lemma 2. [11] For system (1), if there exists a Lyapunov function V (y) such
that V̇ (y) ≤ −bV (y) − cϕ(t)V (y), where b ≥ 0, c > 0, ϕ(t) is given as

ϕ(t) =

{
η̇(t)
η(t) , t0 ≤ t < t0 + Tu,
ρ

Tu
, t ≥ t0 + Tu.

(2)

Then, (1) is said to be prescribed-time stability in the prescribed time Tu. Further,
it has V (y) ≤ η−c(t)exp−b(t−t0)V (t0) on t ∈ [t0, t0 + Tu), and V (y) = 0 on
t ∈ [t0 + Tu,∞).

Lemma 3. For any vectors x, y, there exists σ > 0, then

‖x‖ ‖y‖ ≤ σ‖x‖2 +
1
4σ

‖y‖2. (3)

3 Main Results

In this section, we propose an algorithm to force followers to track their lead-
ers’ trajectory in the prescribed time over the directed graph. Further, we
demonstrate the prescribed-time stability of system (1) under the control of
the designed algorithm.

3.1 Prescribed-Time Multi-target Tracking Control Algorithm

For the prescribed-time multi-target tracking problem, we propose a novel algo-
rithm for (1), namely,

ui = al,0 − α1ϕ
2(t)(

∑

j∈Ni

aij(xi − xj) + bi(xi − xl,0))

−α2ϕ(t)(
∑

j∈Ni

aij(vi − vj) + bi(vi − vl,0)), (4)

where α1, α2 are positive parameters, ϕ(t) is defined in (2).
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3.2 Analysis for Prescribed-Time Multi-target Tracking

Theorem 1. Under Assumptions 1-2, the prescribed-time multi-target tracking
of (1) is achieved under the control algorithm (4) with the following limitation.

2 + α1ρ − α2 + bTu + cρ − α2ρ
λmax(Ql)
λmax(Pl)

≤ 0,

ρα1 − α2 ≤ 0,
(5)

and the prescribed time is T = k(t0 + Tu), ∀l ∈ {1, 2, . . . , k}.
Proof. The tracking errors are x̄i = xi − xl,0 and v̄i = vi − vl,0. The related
compact form are x̄ = col(x̄1, x̄2, . . . , x̄N ) and v̄ = col(v̄1, v̄2, . . . , v̄N ).

Define the following auxiliary variables

x̃ = (H ⊗ Ir)ϕ(t)x̄,

ṽ = (H ⊗ Ir)v̄, (6)

where

H = L + B =

⎡

⎢
⎢
⎢
⎣

h11 0 . . . 0
h21 h22 . . . 0
...

...
. . . 0

hk1 hk2 . . . hkk

⎤

⎥
⎥
⎥
⎦

,

and hll = Ll + Bl. Similarly, the compact forms are x̃ = col(x̃1, x̃2, . . . , x̃N ) and
ṽ = col(ṽ1, ṽ2, . . . , ṽN ).

Combining (6) with (4), it obtains the following newly closed-loop system
{ ˙̃x = ϕ̄(t)x̃ + ϕ(t)ṽ,

˙̃v = −ϕ(t)(H ⊗ Ir)(α1x̃ + α2ṽ),

where

ϕ̄(t) =
ϕ̇(t)
ϕ(t)

=

{
ϕ(t)

ρ , t0 ≤ t ≤ t0 + Tu,

0, t ≥ t0 + Tu.

Let z = α1x̃ + α2ṽ. Differentiating z yields that

ż = −α2ϕ(t)(H ⊗ Ir)z + α1ϕ̄(t)x̃ + α1ϕ(t)ṽ.

Specifically, it follows that

ż1 = −α2ϕ(t)(h11 ⊗ Ir)z1 + α1ϕ̄(t)x̃1 + α1ϕ(t)ṽ1,
ż2 = −α2ϕ(t)(h21 ⊗ Ir)z1 − α2ϕ(t)(h22 ⊗ Ir)z2

+α1ϕ̄(t)x̃2 + α1ϕ(t)ṽ2,
...

żk = −α2ϕ(t)
k−1∑

l=1

(hkl ⊗ Ir)zl − α2ϕ(t)(hkk ⊗ Ir)zk

+α1ϕ̄(t)x̃k + α1ϕ(t)ṽk, (7)
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where zl, x̃l, ṽl,∀l ∈ {1, 2, . . . , k} are associated with the lth subgroup.
The Lyapunov function candidate is given as

Vl =
1
2
zT
l (Pl ⊗ Inl

)zl, l ∈ {1, 2, . . . , k}.

The remaining proof is based on mathematical induction and the Lyapunov
argument.

Step 1: Suppose that l = 1, it follows

V1 =
1
2
zT
1 (P1 ⊗ In1)z1. (8)

For t ∈ [t0, t0 + Tu), taking the derivative of V1 yields that

V̇1 = −1
2
α2ϕ(t)zT

1 (Q1 ⊗ In1)z1 + ϕ̄(t)zT
1 (P1 ⊗ In1)(z1 − α2ṽ1)

+α1ϕ(t)zT
1 (P1 ⊗ In1)ṽ1. (9)

According to Lemma 3, we have

λmin(Ql)x̃T x̃ ≤ x̃T (Ql ⊗ In1)x̃ ≤ λmax(Ql)x̃T x̃,

z̃T
1 (Pl ⊗ In1)ṽ =

∑N

i=1
ξiz̃

T
1iṽi

≤ λmax(Pl)(σz̃T
1 z̃1 +

1
4σ

ṽT ṽ). (10)

Let R(t) = V̇1 + (b + cϕ(t))V1. Then we can obtain that

R(t) ≤ 1
2
ϕ(t)λmax(P1 ⊗ In1)

[
2
ρ

+ α1 − α2

ρ
+

b

ϕ(t)
+ 2c

]

zT
1 z1

−1
2
ϕ(t)α2λmax(Q1 ⊗ In1)z

T
1 z1

+
1
2
ϕ(t)λmax(P1 ⊗ In1)(α1 − α2

ρ
)ṽT

1 ṽ1,

It can be concluded that R(t) ≤ 0 if (5) holds.
Based on (2), it provides that

‖x̃‖2 + ‖ṽ‖2 = H2(ϕ2(t)‖x̄‖2 + ‖v̄‖2)
≥ ε1(‖x̄‖2 + ‖v̄‖2), (11)

where ε1 = min
{
ρ2/Tu

2, 1
}
.

In addition, it follows that

‖x̃‖2 + ‖ṽ‖2 ≤ 1
ε2

η−c(t)exp−b(t−t0)V1 (t0) , (12)

where 1
ε2

= 1
2λmax(P1)min(α2

1, α
2
2).
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Combining (11) with (12), it follows

‖x̄‖2 + ‖v̄‖2 ≤ 1
ε1ε2

η−c(t)exp−b(t−t0)V1 (t0) .

Based on Lemma 2, it concludes that limt→t0+Tu
η−c(t) = 0. Then, it follows

that limt→t0+Tu
‖x̄‖ = 0 and limt→t0+Tu

‖v̄‖ = 0.
Similarly, for t ≥ t0 + Tu, if (5) holds, we can easily obtain that

V̇1 ≤ −bV1 − cϕ(t)V1

= − (b + cρ/Tu) V1

≤ 0.
(13)

Hence, it yields that limt→t0+Tu
‖x̄‖ = 0 and limt→t0+Tu

‖v̄‖ = 0 for t ≥ t0 + T ,
∀i ∈ V1.

Step 2: Suppose that l = 2. When t ≥ t0 + Tu, it follows that z1 = 0. Then
ż2 can be rewritten as

ż2 = −α2ϕ(t)(h22 ⊗ Ir)z2 + α1ϕ̄(t)x̃2 + α1ϕ(t)ṽ2.

By employing the similar manipulation as presented in (8)-(13), it can be
obtained that x̄i and v̄i converge to zero as t ≥ 2(t0 + Tu), ∀i ∈ V2.

Step 3: For l = k, when t ≥ (k − 1)(t0 + Tu), it can be concluded that

żk = −α2ϕ(t)(hkk ⊗ Ir)zk + α1ϕ̄(t)x̃k + α1ϕ(t)ṽk.

Similarly, the prescribed-time convergence of x̄i, v̄i will be achieved in k(t0+Tu),
∀i ∈ V .

Based on the mathematical induction, it obtains that x̄i, v̄i approach zero
within the prescribed time k(t0 + Tu). This ends the proof.

4 Simulation Results

In this section, the effectiveness of the proposed algorithm is proved through
simulation experiments.

The studied MASs contain thirteen agents, including three sub-leaders and ten
followers. The interaction network is shown in Fig ??, in which nodes L1, L2, etc
are the sub-leaders, and nodes 1−5, 6−9, 10−13 are the corresponding followers.
Specifically, the pinning matrix is B = diag(0, 1, 1, 0, 0, 0, 0, 5, 0, 6, 0, 4, 0). The
trajectories of sub-leaders are selected as
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⎧
⎨

⎩

x1,0 = [2 + cos(0.2t),−1 + sin(0.2t)]T ,
v1,0 = [−0.2 sin(0.2t), 0.2 cos(0.2t)]T ,
a1,0 = [−0.04 cos(0.2t),−0.04 sin(0.2t)]T ,

⎧
⎨

⎩

x2,0 = [0.3 + cos(0.3t), 0.5 + sin(0.3t)]T ,
v2,0 = [−0.3 sin(0.3t), 0.3 cos(0.3t)]T ,
a2,0 = [−0.09 cos(0.3t),−0.09 sin(0.3t)]T ,

⎧
⎨

⎩

x3,0 = [2 sin(t),−2 cos(t)]T ,
v3,0 = [2 cos(t), 2 sin(t)]T ,
a3,0 = [−2 sin(t), 2 cos(t)]T .

The control parameters of (4) are set as follows. To satisfy the conditions
(5), let α1 = α2 = 5, ρ = 7, t0 = 0.1, Tu = 4, and then the prescribed time
is T = 12.3s. The simulation results are shown in Figs. ??. For more details, it
can be easily observed from Fig. ?? that all the followers are divided into three
subgroups and track the corresponding trajectories of the sub-leaders in the
prescribed time T .

5 Conclusion

In this paper, by employing a time-relevant function, the prescribed-time multi-
target tracking problem of second-order MASs has been solved successfully under
the directed graph. The proposed algorithm has been demonstrated that the
error states between the follower agents and the corresponding leaders converge
to zero within a prescribed time. Further, combining the Lyapunov stability the-
ory with the mathematical induction, the necessary conditions for the achieve-
ment of the designed protocol are obtained. Moreover, the simulation results
have been presented to verify the prescribed-time performance and multi-target
tracking ability of the proposed method. Future works will be concentrated on
solving the prescribed-time multi-target tracking for nonlinear physical models
that agree with industrial machining practice.
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