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Abstract. The robust formation control problems for a group of aerial
robotic vehicles (ARVs) with external time-varying disturbances are
investigated. Unlike previous analysis methods, the formation control
of multiple ARVs in this paper is transformed into the synchronous con-
trol problem. Firstly, the synchronous control objective of multiple ARVs
is constructed using the cross-coupling synchronization control (CCSC)
strategy and formation constraint. Then, to better deal with external
time-varying disturbances, minimize the chatter from the controller and
implement the synchronization control goal of multi-ARV systems, a
robust synchronization controller for multi-ARV systems is developed,
which combines high-order sliding mode control (HOSMC) and CCSC.
Moreover, the stability of the developed HOSMC-based CCSC scheme
is proved by Lyapunov stability theory. Finally, an example is given to
verify the validity of the developed HOSMC-based CCSC scheme.

Keywords: Aerial robotic vehicles · Synchronous control · High-order
sliding mode control

1 Introduction

Since the outbreak of COVID-19, the application of aerial robotic vehicles
(ARVs) in logistics distribution has attracted attention in the context of the
soaring pressure of supplies transportation and the outbreak of demand for con-
tactless delivery. However, single ARV has many constraints, such as limited
payload capabilities and lower delivery efficiency in complex environments [1,2].
The formation transportation of multiple ARVs is a very meaningful study that
can be a solution to these problems.
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In the past decades, some formation methods which involve leader-follower,
virtual structure, and behavior-based ones [3–5], have been applied in the field
of robotics. Nonetheless, Ref. [6] points out that these methods have obvious
shortcomings. Recently, consensus-based approach has been widely used in multi-
robot systems and many results have been obtained [6–9]. However, the forma-
tion control problem of multi-robot systems with complex disturbances was not
studied. To our knowledge, it is hard to investigate the formation control of
multi-ARV systems with complex disturbances only using consensus-based app-
roach.

The synchronization control (SC) strategy [10–12], such as cross-coupling
SC (CCSC), can be used to research the formation control problem of multi-
ple ARVs with complex disturbances. Using this strategy, each robot interacts
with adjacent robots. When one or more robots change due to complex distur-
bances, other robots can quickly respond to such changes. Hence, this strategy
has certain robustness. Moreover, to obtain high-precision formation control of
multi-robots, robust synchronization controllers need to be developed. Sliding
mode control (SMC) has strong robustness in dealing with complex disturbances,
but traditional SMC often produces chattering phenomenon. High-order SMC
(HOSMC) [13,14] can be introduced to alleviate the chattering and ensure the
formation control accuracy.

Inspired by these discussions, the robust formation control problem for multi-
ARV systems with time-varying disturbances by using HOSMC-based CCSC
scheme is investigated in the paper. This paper has the following three contri-
butions:

1) The formation control problem is converted to the SC problem of multi-ARV
systems. When the formation system suffers from time-varying disturbances,
in order to improve the synchronization behavior of multiple ARVs, the CCSC
is designed.

2) To better cope with external time-varying disturbances, SMC-based CCSC
scheme for multi-ARV systems is presented.

3) A novel HOSMC-based CCSC scheme for multi-ARV systems is presented to
alleviate the chattering effect and improve the formation control accuracy.

2 Problem Formulation

2.1 Dynamics of ARV

There is a multi-ARV system with N ARVs. The dynamics of ARV i is given as
follows

ṗi(t) = vi(t) (1)
v̇i(t) = ge3 + Ti(t) + fd,i(pi(t), vi(t), t) (2)

where pi(t), vi(t), Ti(t) are the position, velocity and control input of ARV i,
respectively. g is the acceleration of gravity. fd,i(pi(t), vi(t), t) denotes the exter-
nal time-varying disturbances and e3 = [0 0 1]T . Here, ‖fd,i(pi(t), vi(t), t)‖ < fd,∗
is assumed and fd,∗ is a given constant.
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2.2 Formation Constraint

Definition 1. The desired formation can be represented by �(�, t), where �

denotes the time-varying or time-invariant position vector. The desired position
pdi (t) of ARV i must be located on the boundary curve ∂�(�, t) = 0 [15].

The boundary curve of the desired formation can be given as follows [16]:

∂�(�, t) = 0 : (pi(t) = Ai(t)B(t) + Ci(t)) (3)

where Ai(t) is the parameter constraint matrix of the ith ARV. B(t) denotes a
common vector. Ci(t) is an offset of ARV i.

Assumption 1. We assume that the designed boundary curve ∂�(�, t) = 0 is
reasonable, which makes sure that the inverse of parameter constraint matrix
exists.

Thus, the formation constraint is described as

A−1
i (t)(pi(t) − Ci(t)) = B(t). (4)

According to Definition 1, we have

A−1
i (t)(pdi (t) − Ci(t)) = B(t). (5)

So, one has

α1(t)ν1(t) = α2(t)ν2(t) = · · · = αN (t)νN (t) (6)

where νi(t) = pi(t) − pdi (t) represents the position tracking error vector of ARV
i and αi(t) = A−1

i (t).

2.3 CCSC Strategy

Assumption 2. Assume that there are only two ARVs adjacent to each one.

With Assumption 2, the CCSC strategy is adopted to obtain the position
synchronization error of ARV i, which is shown as follows

ςi,i+1(t) = αi(t)νi(t) − αi+1(t)νi+1(t) (7)

ςi,i−1(t) = αi(t)νi(t) − αi−1(t)νi−1(t) (8)

ςi(t) = ςi,i+1(t) + ςi,i−1(t)
= 2αi(t)νi(t) − αi−1(t)νi−1(t) − αi+1(t)νi+1(t).

(9)

Then, a coupled position error can be defined as

ηi(t) = νi(t) + χiςi(t) (10)
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where χi =diag(χi1, χi2, χi3) and χij(j = 1, 2, 3) is a very small positive con-
stant.

The coupled error is rewritten as

η(t) = ν(t) + χς(t) = (I3N + χM)ν(t) (11)

where η(t) = [η1(t), η2(t), · · · , ηN (t)]T , ν(t) = [ν1(t), ν2(t), · · · , νN (t)]T . I3N
denotes the identity matrix with dimension 3N . χ =diag(χ1, χ2, · · · , χN ), ς(t) =

Mν(t), ς(t) = [ς1(t), ς2(t), · · · , ςN (t)]T and M =

⎡
⎢⎢⎢⎣

2α1(t) −α2(t) · · · −αN (t)
−α1(t) 2α2(t) · · · 0

...
...

. . .
...

−α1(t) 0 · · · 2αN (t)

⎤
⎥⎥⎥⎦.

Since χij is small enough, and then I3N + χM is a positive definite matrix.
Hence, when lim

t→∞ ‖η(t)‖ = 0, one has lim
t→∞ ‖ν(t)‖ = 0 and lim

t→∞ ‖ς(t)‖ = 0.
The control target of this article is to develop a robust synchronization con-

troller for multi-ARV systems in the presence of time-varying complex distur-
bances such that the coupled position error ‖η(t)‖ to 0, so as to ensure that the
position tracking error ‖ν(t)‖ and synchronous error ‖ς(t)‖ converge to 0, when
t → ∞.

3 Main Results

The robust formation control of multiple ARVs with time-varying disturbances
is studied by combining HOSMC and CCSC scheme, and the stability analysis
of the formation system is testified via Lyapunov stability theory in this part.

Using the coupled error (11), the tradition sliding surface is considered as

κi(t) = liηi(t) + η̇i(t) (12)

where li =diag(li1, li2, li3) is a positive definite matrix.
Taking the derivative of (12) and using (10), one can obtain

κ̇i(t) =(2liχiα̇i(t) + 2χiα̈i(t))νi(t) − (liχiα̇i−1(t) + χiα̈i−1(t))νi−1(t)
− (liχiα̇i+1(t) + χiα̈i+1(t))νi+1(t) + (li + 2liχiαi(t) + 4χiα̇i(t))ν̇i(t)
− (liχiαi−1(t) + 2χiα̇i−1(t))ν̇i−1(t) − (liχiαi+1(t) + 2χiα̇i+1(t))ν̇i+1(t)
+ (2χiαi(t) + I3)ν̈i(t) − χiαi−1(t)ν̈i−1(t) − χiαi+1(t)ν̈i+1(t).

(13)
The high-order sliding surface with (12) and (13) can be designed as

κho(i)(t) = κi(t) + κ̇i(t) = liηi(t) + (I3 + li)η̇i(t) + η̈i(t). (14)

The third derivative of coupled error is expressed as
...
η i(t) =2χi

...
α i(t)νi(t) − χi

...
α i−1(t)νi−1(t) − χi

...
α i+1(t)νi+1(t)

+ 6χiα̈i(t)ν̇i(t) − 3χiα̈i−1(t)ν̇i−1(t) − 3χiα̈i+1(t)ν̇i+1(t)
+ 6χiα̇i(t)ν̈i(t) − 3χiα̇i−1(t)ν̈i−1(t) − 3χiα̇i+1(t)ν̈i+1(t)
+ (2χiαi(t) + I3)

...
ν i(t) − χiαi−1(t)

...
ν i−1(t) − χiαi+1(t)

...
ν i+1(t)

(15)
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Now, taking the derivative of (14) and using (15), one obtains

κ̇ho(i)(t) =(2liχiα̇i(t) + 2χiα̈i(t)(I3 + li) + 2χi
...
α i(t))νi(t)

− (liχiα̇i−1(t) + χiα̈i−1(t)(I3 + li) + χi
...
α i−1(t))νi−1(t)

− (liχiα̇i+1(t) + χiα̈i+1(t)(I3 + li) + χi
...
α i+1(t))νi+1(t)

+ ((2liχiαi(t) + li) + 4χiα̇i(t)(I3 + li) + 6χiα̈i(t))ν̇i(t)
− (liχiαi−1(t) + 2χiα̇i−1(t)(I3 + li) + 3χiα̈i−1(t))ν̇i−1(t)
− (liχiαi+1(t) + 2χiα̇i+1(t)(I3 + li) + 3χiα̈i+1(t))ν̇i+1(t)

+ (2χiαi(t) + I3)(I3 + li)(ge3 + fd,i(pi(t), vi(t), t) − p̈di (t))

+ 6χiα̇i(t)(ge3 + fd,i(pi(t), vi(t), t) − p̈di (t))

− χiαi−1(t)(I3 + li)(ge3 + fd,i−1(pi−1(t), vi−1(t), t) − p̈di−1(t))

− 3χiα̇i−1(t)(ge3 + fd,i−1(pi−1(t), vi−1(t), t) − p̈di−1(t))

− χiαi+1(t)(I3 + li)(ge3 + fd,i+1(pi+1(t), vi+1(t), t) − p̈di+1(t))

− 3χiα̇i+1(t)(ge3 + fd,i+1(pi+1(t), vi+1(t), t) − p̈di+1(t))
+ (2χiαi(t) + I3)

...
ν i(t) − χiαi−1(t)

...
ν i−1(t)

− χiαi+1(t)
...
ν i+1(t) + Thoc(i)(t).

(16)

Using (16), we design the HOSMC-based CCSC law for multi-ARV systems
as follows

Thoc(i)(t) = Thoc(i1)(t) + Thoc(i2)(t) (17)

Thoc(i1)(t) = − (2liχiα̇i(t) + 2χiα̈i(t)(I3 + li) + 2χi
...
α i(t))νi(t)

+ (liχiα̇i−1(t) + χiα̈i−1(t)(I3 + li) + χi
...
α i−1(t))νi−1(t)

+ (liχiα̇i+1(t) + χiα̈i+1(t)(I3 + li) + χi
...
α i+1(t))νi+1(t)

− ((2liχiαi(t) + li) + 4χiα̇i(t)(I3 + li) + 6χiα̈i(t))ν̇i(t)
+ (liχiαi−1(t) + 2χiα̇i−1(t)(I3 + li) + 3χiα̈i−1(t))ν̇i−1(t)
+ (liχiαi+1(t) + 2χiα̇i+1(t)(I3 + li) + 3χiα̈i+1(t))ν̇i+1(t)

− ((2χiαi(t) + I3)(I3 + li) + 6χiα̇i(t))(ge3 − p̈di (t))

+ (χiαi−1(t)(I3 + li) + 3χiα̇i−1(t))(ge3 − p̈di−1(t))

+ (χiαi+1(t)(I3 + li) + 3χiα̇i+1(t))(ge3 − p̈di+1(t))
− (2χiαi(t) + I3)

...
ν i(t) + χiαi−1(t)

...
ν i−1(t)

+ χiαi+1(t)
...
ν i+1(t)

(18)

Thoc(i2)(t) = −μhoc(i)(t)sign(κho(i)(t)) − kiκho(i)(t) (19)

where μhoc(i) =diag(μhoc(i1), μhoc(i2), μhoc(i3)) and μhoc(ij)(j = 1, 2, 3) is a posi-
tive constant. ki =diag(ki1, ki2, ki3) is a diagonal positive definite matrix.

Theorem 1. With the designed controller (17)-(19), the formation control sys-
tem of multiple ARVs is asymptotically stable, on condition that the designed
parameters meet the following conditions.

‖fd,i(pi(t), vi(t), t)‖ < fd,∗ (20)
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∥∥μhoc(i)

∥∥
fd,∗

≥‖(2χiαi(t) + I3)(I3 + li)‖ + ‖6χiα̇i(t)‖ + ‖χiαi−1(t)(I3 + li)‖

+ ‖3χiα̇i−1(t)‖ + ‖χiαi+1(t)(I3 + li)‖ + ‖3χiα̇i+1(t)‖ .
(21)

Proof. To testify that the coupled position error is convergent, we define a Lya-
punov function

V (t) =
1
2

N∑
i=1

κT
ho(i)(t)κho(i)(t) (22)

Taking the derivative of (22), using (16) and (17), one obtains that

V̇ (t) ≤
N∑
i=1

‖(2χiαi(t) + I3)(I3 + li)‖ ‖fd,i(pi(t), vi(t), t)‖
∥∥κho(i)(t)

∥∥

+
N∑
i=1

‖6χiα̇i(t)‖ ‖fd,i(pi(t), vi(t), t)‖
∥∥κho(i)(t)

∥∥

+
N∑
i=1

‖χiαi−1(t)(I3 + li)‖ ‖fd,i−1(pi−1(t), vi−1(t), t)‖
∥∥κho(i)(t)

∥∥

+
N∑
i=1

‖3χiα̇i−1(t)‖ ‖fd,i−1(pi−1(t), vi−1(t), t)‖
∥∥κho(i)(t)

∥∥

+
N∑
i=1

‖χiαi+1(t)(I3 + li)‖ ‖fd,i+1(pi+1(t), vi+1(t), t)‖
∥∥κho(i)(t)

∥∥

+
N∑
i=1

‖3χiα̇i+1(t)‖ ‖fd,i+1(pi+1(t), vi+1(t), t)‖
∥∥κho(i)(t)

∥∥

−
N∑
i=1

∥∥μhoc(i)

∥∥ ∥∥κho(i)(t)
∥∥ −

N∑
i=1

κT
ho(i)(t)kiκho(i)(t)

(23)

According to (20) and (21), we have

V̇ (t) <
N∑
i=1

(‖(2χiαi(t) + I3)(I3 + li)‖ + ‖6χiα̇i(t)‖)
∥∥κho(i)(t)

∥∥ fd,∗

+
N∑
i=1

(‖χiαi−1(t)(I3 + li)‖ + ‖3χiα̇i−1(t)‖)
∥∥κho(i)(t)

∥∥ fd,∗

+
N∑
i=1

(‖χiαi+1(t)(I3 + li)‖ + ‖3χiα̇i+1(t)‖)
∥∥κho(i)(t)

∥∥

−
N∑
i=1

∥∥μhoc(i)

∥∥∥∥κho(i)(t)
∥∥ −

N∑
i=1

κT
ho(i)(t)kiκho(i)(t) ≤ 0

(24)
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Hence, it can be obtained that the coupled position error ‖η(t)‖ asymptoti-
cally converges to zero as time t → ∞, that is

lim
t→∞ ‖η(t)‖ = 0 (25)

Here, the proof is done. ��

4 Numerical Simulation

In this part, an example is given to testify the effectiveness of the designed SC
scheme, where four ARVs are required to move a rectangle cargo. The weight
of each ARV is about 0.26 kg. Time-varying disturbances act on the multi-ARV
systems when t =15 s, which are shown in Table 1. The initial states of four
ARVs are given as p10(t) = [6, 4, 0]T , p20(t) = [4, 6, 0]T , p30(t) = [2, 4, 0]T and
p40(t) = [4, 2, 0]T , respectively. The expected trajectory of ARV i is denoted by
(2) with Ai(t) = diag(Ai(11)(t), Ai(22)(t), t), B(t) = [2 2 0.5]T , Ci(t) = [0.2t 0 0]T ,
Ai(11)(t) = 2+cos(0.2t+(i−1)π/2) and Ai(22)(t) = 2+sin(0.2t+(i−1)π/2), i =
1, 2, 3, 4.

Table 1. Time-varying disturbances of multi-ARV systems (15 ≤ t ≤ 30 s)

NO Time-varying disturbances

ARV1 fd,1(p1(t), v1(t), t) = [0.05 sin(2t), 0.05 sin(0.5t), 0.05 sin(4t)]T

ARV2 fd,2(p2(t), v2(t), t) = [0.05 sin(0.5t), 0.05 sin(4t), 0.05 sin(2t)]T

ARV3 fd,3(p3(t), v3(t), t) = [0.04 sin(4t), 0.05 sin(2t), 0.05 sin(0.5t)]T

ARV4 fd,4(p4(t), v4(t), t) = [0.03 sin(6t), 0.05 sin(3t), 0.05 sin(0.5t)]T

In addition, for the purpose of comparison, the SMC-based CCSC law is
designed, which is given as follows

Tc(i)(t) = Tc(i1)(t) + Tc(i2)(t) (26)

Tc(i1)(t) = − (2liχiα̇i(t) + 2χiα̈i(t))νi(t) + liχiα̇i−1(t)νi−1(t)
+ χiα̈i−1(t)νi−1(t) + (liχiα̇i+1(t) + χiα̈i+1(t))νi+1(t)
− (li + 2liχiαi(t) + 4χiα̇i(t))ν̇i(t) + liχiαi−1(t)ν̇i−1(t)
+ 2χiα̇i−1(t)ν̇i−1(t) + (liχiαi+1(t) + 2χiα̇i+1(t))ν̇i+1(t)

− (2χiαi(t) + I3)(ge3 − p̈di (t)) + χiαi−1(t)(ge3 − p̈di−1(t))

+ χiαi+1(t)(ge3 − p̈di+1(t))

(27)

Tc(i2)(t) = −μc(i)sign(κi(t)) − kiκi(t) (28)

where μc(i) =diag(μc(i1), μc(i2), μc(i3)) and μc(ij)(j = 1, 2, 3) is a positive con-
stant. χij = 0.01 and kij = 0.1 are adopted for position synchronous controllers.
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Fig. 1. Simulation results of multi-ARV systems with SMC-based CCSC
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Fig. 2. Simulation results of multi-ARV systems with HOSMC-based CCSC
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The parameters of SMC-based CCSC law and HOSMC-based CCSC law are
selected as lij = 1, μhoc(ij) = 10 and lij = 1, μc(ij) = 12, respectively.

The comparison results, which are shown in Fig. 1 and Fig. 2, include moving
trajectory of multiple ARVs, the coupled errors ηx and ηy, and the control efforts
Tx and Ty. In order to quantify the comparison results, the RMSEs of the coupled
errors of four ARV systems are given, which are shown in Table 2.

Table 2. RMSEs of coupled errors (×10−2 m)

Parameters SMC-based CCSC HOSMC-based CCSC

ηx 1.41 1.12

ηy 2.32 0.95

Figure 1 shows the simulation curves of four ARVs moving a rectangle cargo
with SMC-based CCSC strategy. Figure 2 shows the simulation results of multi-
ARV systems with HOSMC-based CCSC strategy. It can be observed that both
schemes can stably transport the rectangular goods. But, the moving trajectory
of four ARVs with HOSMC-based CCSC is smoother than SMC-based CCSC
and the coupled errors are smaller. When the time varying disturbances are
added to multi-ARV systems at t = 15 s, chattering phenomenon appears in the
control input based on HOSMC-based CCSC scheme, but it is very small, which
indicates that the designed SC scheme has high robustness in anti-disturbance.

Table 2 shows the RMSEs of coupled errors of four ARV systems. One can
see that the synchronous control accuracy of multiple ARVs with HOSMC-based
CCSC strategy is much higher than SMC-based CCSC one despite external
complex disturbances. Thus, it can be concluded that HOSMC-based CCSC
scheme has better control effect.

5 Conclusions

The robust formation control problems for multiple ARVs with time-varying dis-
turbances are studied. In this article, the formation control of multiple ARVs
is converted to the SC problem. The synchronization control goal of multiple
ARVs is constructed based on the CCSC strategy and formation constraint. In
order to accomplish the anti-disturbance control of multi-ARV systems, mini-
mize the chatter from the controller and implement the synchronization control
goal, a robust synchronization controller for multi-ARV systems is developed,
which combines HOSMC and CCSC. And then the stability of the developed
HOSMC-based CCSC scheme is proven by using Lyapunov stability theory. The
future research direction involves extending the designed SC scheme to investi-
gate robust formation control of nonlinear multiagent systems.
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