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Abstract. This paper investigates optimal scheduling for hybrid attacks
on remote state estimation in the sense of maximizing system average
error with energy constraint. Hybrid attacks considered are composed
of DoS (Denial-of-Service) attack and stealthy attack. After analyzing
average error under several particular types of strategies, optimal hybrid
attacks scheduling is determined theoretically. The numerical results are
presented to verify our theoretical results.
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1 Introduction

Cyber-Physical System (CPS) is a practical but complex system integrating
networking, computing, sensors and physical environment. Application scenarios
of CPS have broad prospects, such as smart grid, intelligent transportation,
healthcare system, industrial process, etc. However, in CPS, sensors and wireless
channels are vulnerable to malicious attacks. CPS security problem has become
a hot research topic in recent years [1–5].

Generally, common malicious attacks include DoS attacks and stealthy
attacks. DoS attacks degrade system performance by blocking packets in wire-
less transmission channels. In [6], security estimation subject to DoS attack was
considered in CPS. To mitigate the impact of DoS attack for cyber-physical sys-
tem, a resilient model predictive control (MPC) framework was provided in [7].
In [8,9], authors were concerned with information fusion of the remote estimator
under DoS attack.

On the other hand, stealthy attacks degrade system estimation performance
by tampering with packets. In [10], the optimal deception attack was investi-
gated. The Kullback-Leibler divergence is adopted to detect system abnormali-
ties and a linear attack plan was considered in [11]. Further, an encryption-based
counter-measure against stealthy attack was proposed in [12].
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In practice, malicious attackers have only limited energy, which will affect
their attack policies. Authors in [13,14] studied the optimal DoS attack schedules
in the case of energy constraints. In [15], the optimal stealthy attack schedule
was also considered. However, as far as we know, the existing literature did not
consider hybrid attacks to evaluate the optimal attack schedule, which mainly
motivates this paper. The main contributions are summarized as follows:

(1) The impacts of different scheduling of hybrid attacks on system performance
are analyzed.

(2) Based on the detailed analysis for several scheduling of stealthy attacks and
DoS attacks, we give the optimal hybrid attacks scheduling theoretically.

The remainder of this paper is organized as follows: Sect. 2 introduces
the system model and attack strategies. Section 3 derives the optimal hybrid
attacks scheduling. Section 4 presents simulations to verify the effectiveness of
the derived results. Finally, conclusions are drawn in Sect. 5.

2 Problem Formulation

2.1 System Model

Consider a discrete-time linear time-invariant (LTI) process

xk+1 = Axk + wk (1)
yk = Cxk + vk (2)

where k ∈ N is the time index, xk ∈ R
nx is the vector of system state, yk ∈ R

ny

represents sensor measurement, wk ∈ R
nx and vk ∈ R

ny are zero-mean i.i.d
Gaussian noises with covariances E[wiw

T
j ] = δijQ ≥ 0, E[viv

T
j ] = δijR > 0 and

E[wiv
T
j ] = 0 for ∀i, j, respectively. The initial state x0 is zero-mean Gaussian

with covariance matrix Π0 ≥ 0, and is independent of wk and vk for all k ≥ 0.
Besides, the pair (A,C) is detectable and (A,

√
Q) is stabilizable.

2.2 Attack Strategy

Two common attack types, DoS attacks and stealthy attacks, are considered
respectively.

Type 1 (Stealthy Attack): The smart sensor provides computation function
in CPS, which has the ability to process the measurement yk at each time step
and sends its innovation term to the remote state estimator via a wireless net-
work. In order to accurately estimate the actual state of the system, a standard
Kalman filter equipped at the remote estimator to estimate system state, the
specific form is as follows
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x̂−
k = Ax̂k−1

P−
k = APk−1A

T + Q
Kk = P−

k CT (CP−
k CT + R)−1

x̂k = x̂−
k + Kkzk

Pk = (I − KkC)P−
k

(3)

where x̂−
k and x̂k represent a priori and a posterior estimations of the real system

state, respectively. P−
k and Pk are the corresponding error covariances for x̂−

k

and x̂k, respectively. The recursion starts from x̂−
0 and P−

0 = Ω0 ≥ 0. The
innovation term zk is expressed as

zk = yk − Cx̂−
k (4)

For notation brevity, define the Lyapubov and Riccati operators h, g̃: Sn
+ →

S
n
+ as

h(X) Δ=AXAT + Q (5)

g̃(X) Δ=X − XCT (CXCT + R)−1CX (6)

As we all know, the convergence rate of the Kalman filter is exponential
under any initial conditions. Since the steady-state error covariance is defined
as

P̄= lim
k→+∞

P−
k (7)

where P̄ is the unique positive semi-definite solution of h ◦ g̃(X) = X. For
convenience, we assume that Kalman filter starts from a steady state, i.e., Ω0 =
P̄ , which results in a steady-state Kalman filter with fixed gain

K = P̄CT (CP̄CT + R)−1 (8)

At every time step k, the general attack strategy can be expressed as

z̃k = fk(zk) (9)

where zk ∈ R
ny is the real innovation term in the current system, z̃k ∈ R

ny is the
innovation term modified by the attacker, and fk : Rny −→ R

ny is an arbitrary
function designed by the attacker for specific attack aims. However, for any
nonlinear function fk, it is hard for us to analyze the statistical characteristics
of z̃k, so it is complicated for the attacker to keep the attack signals stealthy.
Hence, we focus on linear stealthy attack scenario, i.e., z̃k = Tkzk + bk.

To facilitate the subsequent analysis, the following lemmas are first given.

Lemma 1 ([10]). If the considered system (1) and (2) under the linear stealthy
attack, the optimal stealthy attack strategy is Tk = −I and bk = 0 at every time
instant k, which yields the largest estimated error covariance.
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Lemma 1 illustrates how to design linear attacks that can evade detectors
while maximizing the estimated performance of the system.

Lemma 2 ([15]). When the attacker did not launch a stealthy attack, i.e., z̃k =
zk, the error covariance has the following recursive form

Pk = APk−1A
′ + Q − Θ (10)

Otherwise, i.e., z̃k = −zk, the corresponding error covariance follows the recur-
sion as

Pk = APk−1A
′ + Q + 3Θ (11)

where Θ = P̄C ′(CP̄C ′ + R)−1CP̄ .

From Lemma 2, we can obtain the recursive rules for estimated error covari-
ance with or without stealthy attacks.

Type 2 (DoS Attack): Consider the existence of DoS attacks in wireless
networks, attackers obtain and intercept the innovation term zk. Denote Dd

k as
the DoS attacker’s decision at time k, i.e.,

Dd
k =

{
1, system is attacked by the DoS attack at time k
0, otherwise

At the same time, variable θk = 1 or 0 is defined to indicate whether the
remote estimator receives the innovation term successfully or not at every time
instant k. It is well known that θk only depends on whether the DoS attack
occur at the current time since we assume θk satisfies an independent Bernoulli
process with

E[θk = 1|Dd
k = 1] = 1 − α ,E[θk = 1|Dd

k = 0] = 1 (12)

where α ∈ [0, 1]. For simplicity, it is assumed that as long as the DoS attack is
launched, the innovation term zk must be intercepted, i.e., E[θk = 0|Dd

k = 1] = 1.

Remark 1. In some existing literatures, a posteriori estimation is sent from the
smart sensor to the remote estimator, and it is easy to model error covariance at
the remote estimator as MDP. However, in this work, the smart sensor only sends
the innovation term zk, and remote estimator needs to do both the Kalman filter
prediction step and the correction step. Therefore, the MDP method commonly
used in existing literature is not applicable to this paper.

2.3 Problems of Interest

Consider the optimal hybrid attacks scheduling in a finite horizon T , which
aim to degrade the remote estimator’s estimated performance. Denote D

Δ=
[D1,D2, · · · ,DT ] as the attacker’s decision schedule, that is,

Dk =

{
1, attacker decides to launch a DoS attack or stealthy attack at time k
0, otherwise
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Obviously, if there is no energy limit, the attacker can choose to attack the
system all the time, thereby reducing the estimated performance of the system.
Whereas, in a real attack environment, the attacker only has limited energy
due to various factors, such as computing power, battery power, etc. Then, the
attacker has to choose the optimal scheduling to attack the system under limited
energy. Therefore, we assume that stealthy attacks and DoS attacks have the
same attacks times n.

Next, for a given attack schedule D , average error is introduced to reflect
system performance, i.e.,

Ja(D) =
1
T

T∑
k=1

Pk(D) (13)

where Pk(D) represents the estimated error covariance of the remote state esti-
mator at every time k under a given stealthy attack strategy D .

From the perspective of the attacker, due to the limitation of its own energy,
attacker has to design optimal hybrid attacks scheduling in the sense that it
yields the largest estimated error covariance, which could be formulated as the
following optimization problem.

Problem 1
max
D∈D

Tr[Ja(D)]

s.t.

⎧⎪⎪⎨
⎪⎪⎩

T∑
k=1

Dk = 2n

T∑
k=1

Ds
k =

T∑
k=1

Dd
k = n

where binary variable Ds
k denotes whether the attacker launch a stealthy

attack at time k and D is the set of all possible attack schedules, i.e., D =
{0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

T times

.

3 Optimal Hybrid Attacks Schedules Analysis

In this section, the optimal hybrid attacks scheduling for maximizing the trace
of the average error is explored.

3.1 Preliminaries

Firstly, some useful lemmas are given for the subsequent analysis.

Lemma 3. For any initial error covariance P s and the total attack interval
length M, assume that the number of stealthy attack and DoS attack are M1 and
M2 respectively, where M1 + M2 = M and M1 = M2. Then, performing stealthy
attacks first and then DoS attacks will result in a larger average error.
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Proof. Assume that the initial time T0 and corresponding error covariance is P s.
The following two cases will be analyzed.

Case 1): When T0 < k ≤ T0 + M1, the attacker launchs stealthy attacks.
When T0 + M1 < k ≤ T0 + M1 + M2, the attacker launchs DoS attacks.

Case 2): When T0 < k ≤ T0 + M2, the attacker launchs DoS attacks. When
T0 + M2 < k ≤ T0 + M1 + M2, the attacker launchs stealthy attacks.

For case 1, when T0 < k ≤ T0 + M1, the error covariance at time k is

Pk = Ak−T0P s(A′)k−T0 +
k−T0−1∑

i=0

AiQ(A′)i + 3
k−T0−1∑

i=0

AiΘ(A′)i (14)

When T0 + M1 < k ≤ T0 + M1 + M2, the error covariance at time k is

Pk = Ak−T0−M1PT0+M1(A
′)k−T0−M1 +

k−T0−M1−1∑
i=0

AiQ(A′)i (15)

where PT0+M1 = AM1P s(A′)M1 +
M1−1∑
i=0

AiQ(A′)i + 3
M1−1∑
i=0

AiΘ(A′)i.

For case 2, when T0 < k ≤ T0 + M2, the error covariance at time instant k
is

Pk = Ak−T0P s(A′)k−T0 +
k−T0−1∑

i=0

AiQ(A′)i (16)

when T0 +M2 < k ≤ T0 +M1 +M2, the error covariance at time instant k is

Pk = Ak−T0−M2PT0+M2(A
′)k−T0−M2 +

p∑
i=0

AiQ(A′)i + 3
p∑

i=0

AiΘ(A′)i (17)

where p = k − T0 − M2 − 1, PT0+M2 = AM2P s(A′)M2 +
M2−1∑
i=0

AiQ(A′)i.

According to the conditions of Lemma 3,

PT0+M1 − PT0+M2 = 3
M1−1∑
i=0

AiΘ(A′)i

Hence, we have

Ja(case1) − Ja(case2) = 1
M [

M2∑
i=1

Ai(PT0+M1 − P s)(A′)i

+
M1∑
i=1

Ai(P s − PT0+M2)(A
′)i]

= 1
M

M1∑
i=1

Ai(PT0+M1 − PT0+M2)(A
′)i

(18)

Note that Θ = P̄C ′(CP̄C ′ + R)−1CP̄ ≥ 0 and PT0+M1 − PT0+M2 ≥ 0, then
we get Ja(case1) − Ja(case2) ≥ 0. The proof is thus completed.
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Next, we consider the characteristics of the following attack strategies
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ = (Fd,Aks
1 ,Fd1 ,Aks

2 , ...,Aks
s ,Fds).

φ0 = (Fd,Aks
1+1,Fd1 ,Aks

2−1, ...,Aks
s ,Fds).

φ1 = (Fd−1,Aks
1 ,Fd1+1,Aks

2 , ...,Aks
s ,Fds).

φ2 = (Fd,Akd
1+1,Fd1 ,Akd

2−1, ...,Akd
s ,Fds).

φ3 = (Fd−1,Akd
1 ,Fd1+1,Akd

2 , ...,Akd
s ,Fds).

(19)

where Aks
i is the ith continuous stealthy attacks sequence of length ks

i > 0,
i = 1, 2, · · · , s, Akd

i is the ith continuous DoS attacks sequence of length kd
i > 0,

i = 1, 2, · · · , s. Fd and Fdj , respectively, denote the first and the (j + 1)th
consecutive sequence, in which no attack of length dj is launched, where dj ≥
1, j = 1, 2, ..., s − 1, d ≥ 0 and ds ≥ 0.

Lemma 4 [15]. For the definition Ja in (13), and the definition φ, φ0, φ1 in
(19), we can obtain

(1) Ja(φ) ≤ Ja(φ0); (2) Ja(φ) ≤ Ja(φ1)

Lemma 5. For the definition Ja in (13), and the definition φ, φ2, φ3 in (19),
we can obtain

(1) Ja(φ) ≤ Ja(φ2); (2) Ja(φ) ≤ Ja(φ3)

Proof. Similar to the proof of Lemma 3, omitted.

3.2 Optimal Hybrid Attacks Scheduling

An attack scheme with 2n launched DoS and stealthy attacks, can be denoted
by

(Fd,Aks
1 ,Akd

1 ,Fd1 ,Aks
2 ,Akd

2 , · · · ,Aks
s ,Akd

s ,Fds) (20)

where
∑s

i=1 (ks
i ) =

∑s
i=1 (kd

i ) = n, ks
i = kd

i and d+
∑s

j=1 dj = T −2n. Obviously,
when d1 = 0, a continuous attack sequence of length k1 + k2 can be obtained.
Hence, dj ≥ 1, j = 1, 2, .., s − 1 are needed, i.e.

(0, · · · , 0︸ ︷︷ ︸
d times

, 1, · · · , 1︸ ︷︷ ︸
ks
1 times

, 1, · · · , 1︸ ︷︷ ︸
kd
1 times

, 0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
ks
s times

, 1, · · · , 1︸ ︷︷ ︸
kd
s times

, 0, · · · , 0︸ ︷︷ ︸
ds times

),

For Problem 1, We constructed three special types of attack strategies as⎧⎪⎨
⎪⎩

π = (Fd,Aks
1 ,Akd

1 ,Fd1 ,Aks
2 ,Akd

2 , · · · ,Aks
s ,Akd

s ,Fds)
π1 = (Fd,Aks

1+1,Akd
1+1,Fd1 ,Aks

2−1,Akd
2−1, · · · ,Aks

s ,Akd
s ,Fds)

π2 = (Fd−1,Aks
1 ,Akd

1 ,Fd1+1,Aks
2 ,Akd

2 , · · · ,Aks
s ,Akd

s ,Fds)
(21)

Then, Theorem 1 is given to compare average error Ja under different attack
strategies π, π1 and π2.
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Theorem 1. For the definition Ja in (13), and the definition π, π1, π2 in (21),
we can obtain

(1) Ja(π) ≤ Ja(π1)
(2) Ja(π) ≤ Ja(π2)

Proof. A direct result from Lemma 3, Lemma 4 and Lemma 5.

In Theorem 2, optimal hybrid attacks scheduling is provided.

Theorem 2. The optimal hybrid attacks scheduling in the sense of maximizing
average error, i.e., the solution to Problem 1, is

D∗ = ( 1, 1, · · · 1︸ ︷︷ ︸
n times stealthy attacks

, 1, 1, · · · 1︸ ︷︷ ︸
n times Dos attacks

, 0, 0, · · · 0︸ ︷︷ ︸
T−2n times

) (22)

Proof. For any attack strategy, which can be expressed by (20), where d, ks
i , kd

i ,
di, i = 1, 2, · · · , s are determined by D . By (1) of Theorem 1, we have

Ja(D)
≤ Ja(Fd,Aks

1+1,Akd
1+1,Fd1 ,Aks

2−1,Akd
2−1, · · · ,Aks

s ,Akd
s ,Fds)

≤ Ja(Fd,Aks
1+2,Akd

1+2,Fd1 ,Aks
2−2,Akd

2−2, · · · ,Aks
s ,Akd

s ,Fds)
≤ · · ·
≤ Ja(Fd,Aks

1+ks
2 ,Akd

1+kd
2 ,Fd1+d2 , · · · ,Aks

s ,Akd
s ,Fds)

≤ · · ·
≤ Ja(Fd,Aks

1+ks
2+ks

3 ,Akd
1+kd

2+kd
3 ,Fd1+d2+d3 , · · · ,Aks

s ,Akd
s ,Fds)

≤ · · ·
≤ Ja(Fd,A

∑s
i=1 ks

i ,A
∑s

i=1 kd
i ,F

∑s
i=1 di)

(23)

Next, according to (2) of Theorem 1, we can further obtain

Ja(Fd,A
∑s

i=1 ks
i ,A

∑s
i=1 kd

i ,F
∑s

i=1 di)
≤ Ja(Fd−1,A

∑s
i=1 ks

i ,A
∑s

i=1 kd
i ,F

∑s
i=1 di+1)

≤ · · ·
≤ Ja(A

∑s
i=1 ks

i ,A
∑s

i=1 kd
i ,F

∑s
i=1 di+d) = Ja(D∗)

(24)

Combining (23) and (24) yields that

Ja(D) ≤ Ja(Fd,A
∑s

i=1 ks
i ,A

∑s
i=1 kd

i ,F
∑s

i=1 di)
≤ Ja(A

∑s
i=1 ks

i ,A
∑s

i=1 kd
i ,F

∑s
i=1 di+d)

(25)

Therefore, D∗ defined in (22) is the optimal hybrid attacks scheduling maximizes
the system error covariance. The proof of Theorem 2 is completed.
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4 Simulations

In this section, the theoretical results of this paper are verified through some
examples.

Consider system (1) and (2) and set system parameters as: A = 0.8, C =
1.2, Q = R = 0.8. Set the finite time horizon T = 100, and stealthy attacks and
DoS attacks times n = 15. Then, the steady error covariance can be obtained
as P̄ = 1.0311. From Theorem 2, the optimal hybrid attacks scheduling to max-
imize average error defined (13) is (A15

s ,A15
d ,F70). We simulate average error

under different hybrid attack strategies and compare average error in Table 1.
According to Table 1, it can be observed that the optimal attacks scheduling
proposed in this work achieves the maximum attack effect.

To illustrate the impact of our proposed optimal hybrid attacks scheduling
on the system, we simulate the remote state estimate for following scenarios:
1) The optimal hybrid attacks scheduling; 2) The standard Kalman filter; and
depict them in Fig. 1. From Fig. 1, we see that when the attack occurs, the state
estimate quickly diverges and deviates from the system state, and when the
attack ends, it can converge to the true value in a short time. Besides, we also

Table 1. Comparison of average error under different schedules

Attack schedules Average error

(A15
s ,A15

d ,F70) 316.0735

(A15
d ,A15

s ,F70) 109.3482

(A15
s ,F70,A15

d ) 184.6129

(A10
s ,A10

d ,F30,A5
s,A5

d,F50) 19.3039

Fig. 1. Remote state estimate
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Fig. 2. Remote estimated error covariance

simulate the estimated error covariance under above two cases in Fig. 2. From
Fig. 2, it can be seen that error covariance without attack will keep the steady
error covariance. However, error covariance under the optimal hybrid attacks
schedules will deviate from the steady error covariance at the attack period and
then it will keep convergence.

5 Conclusion

In this paper, we have investigated optimal DoS attack and stealthy attack
scheduling with energy constraint. Firstly, the attack order of stealthy attacks
and DoS attacks with same attacks times have been derived. Then, the main
results reveal the interesting fact that the optimal hybrid attacks scheduling for
average error is the strategy where stealthy attacks launched at the beginning of
system running until energy exhaustion and then launchs DoS attacks. Finally,
simulations have been presented to verify the derived results. Future works will
include the investigations of optimal attack scheduling for terminal errors, or the
related explorations for multiple transmission channels.
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