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Abstract. In order to study the problem of multi-target passive localization of
UAV clusters, this paper first uses the traditional pseudo-linear estimation (PLE)
method for target coarse positioning. Then for multi-target passive localization
scenarios, proposes a resource allocation method of UAV clusters based on the
greedy algorithm. Finally uses the improved weighted pseudo-linear estimation
(WPLE) method or improved maximum likelihood estimation (MLE) method
for target fine positioning. Besides, the influence of different passive localization
algorithms and related parameters on the positioning performance of the system is
analyzed through simulation. The experimental results show that the positioning
algorithm proposed in this paper achieves accurate positioning of multiple targets,
and has a higher positioning accuracy than the traditional PLE method, which
verifies the effectiveness and feasibility of the algorithm.
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1 Introduction

UAVs have been widely used in the field of military reconnaissance, and have shown a
development trend of miniaturization, clustering and intelligence. The UAV clusters can
not only make up for the shortcomings of a single UAV, but also broaden the mission
fields through the information fusion and resource complementation between multiple
drones.

In the field of single-target passive localization, the commonly used method is
pseudo-linear estimation (PLE) [1], which lumps the nonlinearity into the noise term,
and then obtains the target position estimate by least squares. After considering the sta-
tistical characteristics of the noise term in the PLE equation, the weighted pseudo-linear
estimation (WPLE) [2, 3] is proposed. But neither PLE nor WPLE can reduce the esti-
mation bias very well. A commonly used method to reduce bias is maximum likelihood
estimation (MLE) [4].

However, networked radar has been widely used due to its wider spatial coverage,
higher target detection probability and stronger anti-jamming ability. Scenarioswithmul-
tiple targets like networked radar that needed to be located are more common. Therefore,
single-target passive localization technology is difficult to meet actual needs, and it is
particularly important to research the problem of multi-target passive localization.
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Under the above background, this paper proposes an algorithm for passive localiza-
tion of multiple targets by UAV clusters. Firstly, the PLE algorithm is used to obtain the
coarse localization information of the targets, and then the UAV resources are allocated
to multiple targets based on greedy algorithm. Finally, the improved WPLE method or
MLE method is employed in the acquisition of accurate target information.

The main symbols used in the paper are listed as follows (Table 1):

Table 1. The definition of symbols

Symbols Definition

K The number of UAVs

N The number of targets

p = [x, y]T The position of the target

sk = [xk, yk]T The position of the kth UAV

θk The true bearing for the kth UAV

θ̃k The bearing measured by the kth UAV

σnk The standard deviation of bearing noise for the kth UAV

rk The real distance between the kth UAV and the target

A The independent variable matrix of the observation equation

b The dependent variable matrix of the observation equation

η The noise term of the observation equation

C The covariance matrix of the noise term

W The weighting matrix

Q The covariance matrix of the bearing noises

f
(
θ̃ |p

)
The likelihood function of the target bearings

f (p) The cost function of MLE

F The fisher matrix

p
∧ = [x∧, y

∧]T The estimation of target position

selectedk The target number assigned to the kth UAV

2 The Passive Localization Mechanism of a Single Target by a UAV
Cluster

2.1 Scene Model

The single target passive localizationmodel [9] based onUAV clusters is shown in Fig. 1.
K UAVs and one target are distributed in a two-dimensional plane space. The position
of the kth (k = 1,2…K) UAV sk = [xk, yk]T is known. θk ∈ [0, 2�) is the real azimuth
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angle from the target to the kth UAV. The goal of passive localization of a single target
is to obtain the unknown real position of the target p = [x, y]T. The real azimuth angle,
the position of the UAVS, and the position of the target have the following relationships:

sin θk = y−yk
rk

, cos θk = x−xk
rk

(1)

Among them, rk = ||sk − p|| is the real distance between the kth UAV and the target.
The model assumes that each UAV is affected by independent zero-mean Gaussian
additive noise while observing the target. Then the bearing measured by the kth UAV θ̃k
is composed of the true bearing and the bearing noise:

θ̃k = θk + nk, nk ∼ N (0, σnk
2) (2)

Fig. 1. Scene model

2.2 Principle of PLE Method

For the kth UAV, the following observation equation holds [2]:

akp = bk + ηk (3)

where ak =
[
sinθ̃k,−cosθ̃k

]
, bk =

[
sinθ̃k,−cosθ̃k

]
sk, ηk = rksin nk is the error term

caused by the bearing noise.
Combine the observation equations of K UAVs together and write them in the form

of a matrix:

Ap = b+ η (4)

where A = [
a1Ta2T . . . aKT

]T
, b = [

b1Tb2T . . . bKT
]T

and η = [
η1

Tη2
T . . . ηK

T
]T
.

The PLE of the target position p
∧

PLE can be obtained by the least squares method:

p
∧

PLE = (
ATA

)−1
ATb (5)
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2.3 Principle of WPLE Method

WPLE is based on the PLE method, using the inverse of the covariance matrix C of the
noise term η in (4) as the weighting matrixW (that is, trust those observations with low
bearing noise). Then weights the bearing information measured by each UAV to obtain
the estimate.

The covariance matrix of the noise term is as follows:

C = E
[
ηηT

]
(6)

when the bearing noise nk is small, ηk can be replaced by the following formula:

ηk = rksin nk ≈ rknk (7)

Therefore, the covariance matrix of the noise term η can be calculated:

C = diag
(
r12σn12, r22σn22, . . . , rk2σnk2

)
(8)

where diag is a function that converts a row vector into a diagonal matrix. The weighting
matrix can be obtained by:

W = C−1 (9)

The WPLE form is:

p
∧

WPLE = (
ATWA

)−1
ATWb (10)

It is worth noting that the distance between the drone and the target needs to be used
in (8). However, the target position is unknown so that the distance is also unknown.
The traditional WPLE method uses the localization result obtained by PLE to calculate
the target distance. The improvement method of this paper is: first use the covariance
matrix Q of the bearing noise as the initial value of the covariance matrix C:

C0 = Q = diag
(
σn1

2, σn2
2, . . . σnk

2
)

(11)

Then, the initial value of the target position is calculated by (10), and this initial value
is used to calculate the target distance. Then (8) is used to recalculate the covariance
matrix of the noise term η, and (10) is used to calculate the iterative value of the target
position. By repeating the above iterative process, the estimated value of WPLE can be
obtained.

2.4 Principle of MLE Method

The likelihood function of the target bearings (K observations) can be written as:

f
(
θ̃ |p

)
= 1

(2�)
K
2 |Q| 12

e
− 1

2

(
θ̃−θ(p)

)T
Q−1

(
θ̃−θ(p)

)
(12)
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where θ(p)= [θ1(p)θ2(p) . . . θK(p)]T, θ̃ =
[
θ̃1θ̃2 . . . θ̃K

]T
. The MLE method is to use

the position where the likelihood function is maximized as the estimated value of the
target position. Also, the ML problem can be written as:

min
p

f (p) =
(
θ̃ − θ(p)

)T
Q−1

(
θ̃ − θ(p)

)
(13)

Therefore, solving the problemofmaximum likelihood function is reduced to solving
the problem of minimum f(p). We can use this function as a cost function and use the
gradient descent method to iterate the estimated value of the target position. Derivation
from Eq. (1) can be obtained:

∂θ(p)
∂x =

[−�y1
r12

−�y2
r22

. . .
−�yK
rK2

]T
,

∂θ(p)
∂y =

[
�x1
r12

�x2
r22

. . . �xK
rK2

]T
(14)

where �xk = x − xk,�yk = y − yk. Combined with (13), the partial derivative of the
cost function with respect to the target position can be obtained by:

∂f (p)
∂x = 2

(
θ(p) − θ̃

)T
Q−1 ∂θ(p)

∂x ,
∂f (p)
∂y = 2

(
θ(p) − θ̃

)T
Q−1 ∂θ(p)

∂y
(15)

Therefore, the iterative formula is:

pnew = pold − r ∗
[

∂f (p)
∂x

∂f (p)
∂y

]T
(16)

where pnew is the position estimate after one iteration and r is the iteration rate. Both the
number of iterations and the iteration rate are hyperparameters and should be selected
reasonably according to the actual situation.

2.5 Cramer-Rao Lower Bound Calculation

In the unbiased estimation problem, Cramer-Rao lower bound (CRLB) [9] is usually
used to measure the validity of an estimate. If the Root Mean Square Error (RMSE) of
an estimated value is smaller and closer to the value obtained by CRLB, then the estimate
is said to be more effective. In order to calculate CRLB, we introduce the Fisher Matrix
(FIM):

F =
⎡
⎣ −E

[
∂2

∂x2
f
(
θ̃ |p

)]
−E

[
∂2

∂x∂y f
(
θ̃|p

)]

−E
[

∂2

∂y∂x f
(
θ̃ |p

)]
−E

[
∂2

∂y2
f
(
θ̃ |p

)]
⎤
⎦ (17)

According to the likelihood function expression of (12), the above formula can be
rewritten as:

F =
[

∂θ(p)
∂x

∂θ(p)
∂y

]T
Q−1

[
∂θ(p)
∂x

∂θ(p)
∂y

]
(18)

Combining the partial derivative of θ(p) in (14) with respect to the target position,
the further expression of Fisher matrix F can be obtained by:

F =
K∑

k=1

1
σnk2rk4

[
(�yK )2 −�xK�yK

−�xK�yK (�xK )2

]
(19)
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The Cramer-Rao lower bound matrix CRLB can be obtained by the Fisher matrix:

CRLB = F−1 (20)

p
∧ = [x∧, y

∧]T is the estimation of target position. The relationship between RMSE and
CRLB is:

RMSE =
√
E
[(
x − x

∧)2 + (
y − y

∧)2] ≥ √
CRLB(1, 1) + CRLB(2, 2) (21)

3 Resource Allocation Method Based on Greedy Algorithm

In this paper, the greedy algorithm is used to realize the resource allocation of the UAV
clusters to multiple targets. The principle of the greedy algorithm is to split a complex
problem into simple problems, and to obtain an optimal solution for each simple problem.

It can be seen from (3) that when the distance between the UAV and the target is
large, the error term ηk brought by the bearing noise will be correspondingly larger,
which is unfavorable for the estimation. It can be seen from (8) that when the distance
between the UAV and the target is far, the corresponding value in the covariance matrix
element of the noise term η will also be larger, so the bearing measured by the UAV
is not so credible. Therefore, the optimal solution for the resource allocation of a UAV
to multiple targets depends on the distance between the drone and the target. Then, the
mathematical model for the allocation of K UAVs to N target resources is:

selectedk = min
i

∣∣∣∣sk − pi
∣∣∣∣ (22)

where i = 1,2…N, selectedk is the target number assigned to the kth UAV, and pi is
the position coordinate of the i-th target. To prevent drones from being overallocated to
the same target, resulting in waste of resources, the constraint below should be satisfied
while allocating resources:

Ni ≤ K
N (23)

where Ni is the number of UAVs assigned to the i-th target.

4 Passive Localization Algorithm Flow of UAV Clusters
for Multi-target

In the above, we have discussed the passive localization mechanism of the UAV clusters
for a single target. The method of resource allocation is analyzed. Combining the two
can realize the passive localization of the UAV clusters for multiple targets.

But pay attention to (22), when using the greedy algorithm in resource allocation,
we need to use the target position before passive positioning, which is what needs to
be measured and estimated. Therefore, this paper proposes an algorithm and shows it
in Table 2. That is, the released UAV cluster first uses the PLE method to coarsely
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Table 2. Multi-target passive localization algorithm

Multi-target passive localization algorithm based on UAV clusters
Step1:  Target coarse positioning

Uses PLE to get the coarse position of each target.

Step2:  UAV resource allocation
Adopts greedy algorithm to allocate UAV resources.

Step3: Target fine positioning
Uses improved WPLE: Takes Q as the initial value of C and iteratively 

calculates the target position by (10).

Or uses improved MLE: Employs the PLE result as the start value of 

iteration. Iteratively gets the localization results according to (16). The initial rate 

is larger (to increase the convergence speed), and the rate will be reduced after a 

period of iteration (to reduce the risk of not being able to converge to the optimal 

point).

locate each target. The estimated values of the PLE method are used to replace the real
targets position. Then the greedy algorithm is adopted for UAVs resource allocation.
The improved WPLE or MLE method is used for fine positioning.

The PLE algorithm has low computational complexity and does not require iteration.
But its positioning accuracy is poor. Therefore, other passive positioning methods (such
as WPLE and MLE) need to be used to ensure the positioning accuracy. However, these
methods generally have high time complexity and space complexity. The reasonable
way for multi-target localization is: after resource allocation, the UAVs assigned to the
same target use these methods for positioning so that the accurate passive localization of
each target can be performed at the same time. The PLE method used in the algorithm
for coarse positioning is only to quickly obtain the approximate position coordinates of
the targets, and then the greedy algorithm can be used for resource allocation.

5 Simulation Result Analysis

5.1 System Performance Analysis

In the designed simulation experiment, K = 100, N = 4, that is, a cluster of 100 UAVs
passively locates 4 targets. The initially released UAVs and targets are uniformly and
randomly distributed in a two-dimensional plane (200x200), as shown in Fig. 2. The
standard deviation of the bearing noise for each UAV is 8�/180. According to the
algorithm flow, 100 UAVs first adopt PLE method for coarse positioning of 4 targets in
turn, and then adopt the greedy algorithm for resource allocation. The result of resource
allocation is shown in Fig. 3, and each target is allocated 25 UAVs equally according to
the constraint (23). Subsequently, the UAVs assigned to the same target use WPLE or
MLE to accurately locate the target.
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Fig. 2. Initial release of UAV cluster and targets

Fig. 3. UAV cluster and targets after resource allocation

The results of coarse positioning and fine positioning are shown in Table 3. The data
is the deviation between the estimated value and the true position coordinate. In order
to avoid the contingency of the experiment, both coarse positioning and fine positioning
were performed 1000 times, and the average value of 1000 estimated values is used as
the positioning result.
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The UAV cluster passively locates each target again after allocating resources. From
the data in Table 3, it can be seen that no matter whether the WPLE method or the MLE
method is used, although the observations of a single target is reduced (reduced from 100
to 25), its positioning accuracy is greatly improved compared to the initial positioning
accuracy of the PLE method for coarse positioning.

Noted from the calculation process, the time complexity ofWPLEandMLE is related
to the observation times. Due to the resource allocation, the number of observations is
reduced and the fine positioning of each target is carried out at the same time. Therefore,
the algorithm greatly reduces the time complexity in multi-target localization scenario.

Table 3. Coarse positioning and fine positioning results

Target1 Target2 Target3 Target4

Coarse positioning (PLE) 2.7985 4.8116 9.5662 2.1886

Fine positioning (WPLE) 0.1674 0.0385 1.6264 0.3552

Fine positioning (MLE) 0.1302 0.0090 0.3042 0.0297

5.2 Performance Comparison of Different Passive Localization Methods

In this part of the experiment, to compare the performance of different passive local-
ization methods, 25 UAVs locate a single target using PLE, WPLE and MLE. Among
them, it costs 0.000602 s using PLE method for a single run, while the WPLE method
takes 0.012833 s, and the MLE method takes 0.017344 s.

Fig. 4. RMSE and deviation under different bearing noise standard deviations

Figure 4 shows the RMSE and deviations of the three passive localization methods
under different bearing noise standard deviations. After fixing the bearing noise standard
deviation, three passive localization methods were used to estimate the position of the
target 1000 times to obtain the RMSE and deviation of the estimators. We noticed that
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as the standard deviation of the bearing noise increases, the estimation performance of
the three passive localization algorithms is decreasing (the RMSE and the deviation are
increasing). At the same time, it can be seen that the estimation performance of the
PLE algorithm is the worst, and both the RMSE and the deviation are the largest; the
RMSE of WPLE and MLE can approach CRLB, but the deviation of MLE is smaller
than WPLE. It can be concluded that the positioning performance of MLE is better than
the other two algorithms under the same scene conditions.

Figure 5 shows the effects of the three passive localization methods under different
numbers of UAVs. The standard deviation of the bearing noise is 8�/180, and the three
passive localization methods are all performed 1000 times to obtain the RMSE and
deviation of the estimators. We can find that RMSE gradually decreases as the number
of UAVs increases, but the deviation is almost unchanged. Therefore, the increase in
the number of UAVs can improve the estimation performance of the three positioning
methods to a certain extent due to the decrease in RMSE.

Fig. 5. RMSE and deviation under different numbers of UAVs

6 Conclusion

The main contribution of this paper is to propose a multi-target passive localization
algorithm based on UAV clusters and do theoretical and experimental analysis of the
algorithm. The proposed algorithm uses PLE for coarse positioning, then uses greedy
algorithm for resource allocation, and finally uses improvedWPLEor improvedMLE for
fine positioning. Experiment results shows that the proposed algorithm not only achieves
rapid multi-target localization, but also improves the positioning accuracy compared to
the traditional PLE method. Therefore, the algorithm is feasible and effective. At the
same time, among the three passive positioning methods used in the proposed algorithm,
MLE has the excellent estimation performance that both the RMSE and the deviation
are the smallest. Otherwise, the estimation performance of the three passive positioning
methods improves as the standard deviation of bearing noise decreases and the number
of UAVs increases.
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