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Abstract. Granger causality is a causality based on prediction, which exists
among various events in complex systems. It is an important and challenging
task to predict the causality of various combat events on the battlefield. In this
paper, aiming at the combat events generated by each agent on the battlefield, the
causality network between sequential combat events is constructed.With causality
network, we can locate the fundamental events and conduct powerful countermea-
sures. In order to solve the problem caused by topological relations between agents
in discovering event causality, we use Topology Hawkes ProcessMethod (THPM)
algorithm to construct causality network. We use simulate annealing algorithm to
improve the performance of THPM. Compared with the traditional PCMCI algo-
rithm, experiments show that the THPM algorithm based on simulated annealing
algorithmhas better ability to search the optimal causal graph andhigher prediction
accuracy.

Keywords: Granger causality · Battlefield events sequences · Topology hawkes
process

1 Introduction

Learning Granger causality from the sequence of events is an important task in real life.
Sociologists are concerned with causality between social events [1], network mainte-
nance specialists focus on the causality among network alarms to find the root alarm,
economists are interested in causality between economic activities for proposing policies
conducive to economic development. In an adversarial situation, commanders analyze
causality among combat events in order to make decisions that determine the situation.

Learning Granger causality is an important task of multi-dimensional point process
[2]. From the perspective of graphmodel, learningGranger causality is to infer a directed
acyclic graph from historical event data. In the directed acyclic graph, it can be inferred
that event ej is caused by event ei when node ei has one edge pointing to node ej. Various
methods have been proposed by researchers in the study of Granger causality of event
sequence. These methods can be classified into two categories. One line is to construct
model based on constraint, which mainly studies the independence between various
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events. The typical method is PCICM which consists of two stages [3]: PC condition
selection (PC) and the momentary conditional independence (MCI). Another line is
the model-based Hawkes point process [4], which focuses on the process of generating
event. The typicalmethod is ProximalGraphical EventModels (PGEMs)whose learning
process is entirely data driven and without the need for additional inputs.

The above methods assume that the event sequence is independent and identically
distributed, and the occurrence of the event sequence is not affected by the network
topology in the system. In the real complex system, especially in the battlefield situation,
the generation of an agent’s combat event is not only related to the historical events of it,
but also affected by the topology network between agent group it belongs to. Topological
Hawkes Processes Method [5] (THPM) is an algorithm that takes topology relations of
nodes in the network as knowledge to learn Granger causality. The graph convolution
in time domain is applied to deal with topology relations in network. And Expectation-
Maximum (EM) is used to optimize the parameters of the maximum likelihood function
to obtain the correct causality graph.

2 Preliminary and Problem Formalization

In this section, we mainly model and analyze the causality of combat events occurred
in agents in the battlefield situation, and illustrate the relevant contents involved in the
model.

2.1 Hawkes Process

Multivariate point process is a random process which can be expressed by ε = {vi, ti}mi=1,
where vi ∈ V indicates the type of event and ti ∈ T indicates occurrence moment of
the i-th event, m is the number of events in an event sequence [6]. This point process
can also be represented equivalently as C = {Cv(t)|t ∈ T , v ∈ V }, where Cv(t) ∈ R
denotes the occurrence number of event whose type is v. Hawkes process is a typical
multivariate point process, which mainly describes the influence of historical events on
future events in a complex event sequence. A special intensity is proposed to measure
the excitation or inhabitation degree that past events transferred to present event. The
intensity function is shown in the formula (1).

λv(t) = μv +
∑

v′∈V

∫

t′∈Tt−
φv′,v

(
t − t′

)
dCv′

(
t′
)

(1)

In formula (1), Tt− = {t′ ∈ T , t′ < t} denotes the set of times less than t. This
intensity function consists of two parts. The first part μv is the basic intensity that the
event of type v occurs in time t. The second part is the excitation intensity collected
from past events where φv′,v(t) is an impact function characterizing the time-decay of
the casual influence.
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2.2 Graph Convolution

There are topological relations among combat agents on the battlefield. An undirected
graph gN = (N ,EN ) can be used for this topology, whereN is the set of nodes, EN is the
set of edges between nodes in the graph [7]. Normalized Laplacian matrix of graph gN
is represented as L = I −D− 1

2AD− 1
2 , where I is the identity matrix whose dimension is

number of nodes in the graph and D is the degree matrix of graph gN . The convolution
operation on the graph gN is generally represented as formula (2).

Hl+1 = σ
(
LHlW l

)
(2)

In formula (2), σ(∗) denotes activate function,Wl is weight matrix of the l-th layer
and H 0 = X . X represents the matrix consisted of values of nodes in topology. The
difference between ordinary convolution on the image and graph convolution operation
is shown as Fig. 1.

Fig. 1. Ordinary convolution and graph convolution

2.3 Problem Formalization

In order to accurately express theGranger causality between combat events,we formalize
this problem as a topological Hawkes process. The undirected graph gN = (N ,EN )

represents the topological relations among agents on the battlefield, while the directed
acyclic graph gV = (V ,EV ) represents the causality structure among various combat
events. Adding topological relations to theHawkes process, the traditional representation
of a sequence of events ε = {vi, ti}mi=1 transform to {ni, vi, ti}mi=1 where ni means that
the event whose type is vi occurs in the agent whose id is ni. The problem of learning
causality of combat events can be described as: to find the causality graph of events in the
event set V , given a set of observed sequence of combat events ε = {ni, vi, ti}mi=1, ni ∈
N , vi ∈ V , ti ∈ T and topology graph gN which abstracted from agents.

The intensity function in Hawkes process is essentially a convolution operation
in time domain. In order to tackle topology relations, graph convolution operation is
introduced into the intensity function. To simplify the problem, the continuous time is
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discretized as T = {0,�t, 2�t, . . . ,T }. The differential part in the intensity function
can be discretized as a set of observed data X = {Xn,v,t |n ∈ N , v ∈ V , t ∈ T }. By
convolution operation and time discretization processing, we can estimate the intensity
function which includes various kinds of parameters. The intensity function including
various kinds of parameters is represented as λv(n, t,�). In order to better fit the data set,
we adopt the logmaximum likelihood function as the objective function of optimization.
The parameters to be optimized are gV and the set of parameters � of the intensity
function. The log maximum likelihood function is shown as formula (3).

L(gV ,�;X , gN ) =
∑

v∈ V

∑

t∈ T

∑

n∈ N

[−λ(n, t)�t + Xn,v,t log(λv(n, t))
]

(3)

Using maximum likelihood function as objective function will generate redundant
edges in causal graph gV . In order to suppress over-fitting, Bayesian Information Crite-
rion penalty is added to objective function, which plays a similar role to l0 regularization,
whose purpose is to keep the sparsity of the learned parameters.

3 Experiments

3.1 Datasets

The dataset used in the experiments is sampled from the simulation environment, in
which V combat events with causality relation are defined, a group composed of N
agents with a certain topological relation is initialized, and a set of rules for generating
combat events is defined. At a fixed time, the operational agent group continuously
generates combat events according to established rules.When a combat event is detected,
to record the type of the current event, the occurrence moment of the event and the agent
that generated the event. The format of the generated dataset is shown in Table 1.

To generate several datasets, multiple simulation experiments were conducted. In
every simulated experiment, the number of agent was conducted as N , the number of
combat event was conducted as N .

Table 1. Format of dataset

Event_id Agent_id Start_time

9 28 33

6 37 41

4 17 43

4 25 48

… … …

3.2 Flowchart of Prediction Experiment

The flowchart of the prediction experiment is shown as Fig. 2.
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Fig. 2. Flowchart of learning causality

In this part, the simulated annealing algorithm is applied to the iterative optimization
of THPM algorithm. In the process of iteration, poor gV is accepted with a certain
probability. Compared to traditional THPM, improved method has better results.

3.3 Experiment Results

In this part, we mainly compare with the traditional PCMCI algorithm. The main com-
parison indexes include precision, recall and F1. The confusion matrix is as shown in
Table 2.

The formula of precision is as show in formula (4).

precision = TP

TP + FP
(4)

The formula of recall is as show in formula (5).

recall = TP

TP + FN
(5)
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Table 2. Confusion matrix

True Prediction

Positive Negative

Positive TP (True positive) FN (False negative)

Negative FP (False positive) TN (True negative)

The formula of F1 is as show in formula (5).

F1 = 2 × precision × recall

precision + recall
(6)

On the same data set, the results of the two algorithms are shown as Table 3. and
Figs. 3, 4, 5 and 6.

Table 3. Comparison of results predicted by two algorithms

Datasets Algorithms Recall Precision F1

N = 38
V = 10
m = 21768

PCMCI 1.0 0.8462 0.9167

THPM 1.0 1.0 1.0

N = 39
V = 11
n = 92845

PCMCI 1.0 0.9 0.9474

THPM 1.0 1.0 1.0

N = 28
V = 12
n = 2297

PCMCI 0.8 0.8 0.8

THPM 1.0 0.833 0.9091

N = 38
V = 13
m = 93329

PCMCI 1.0 1.0 1.0

THPM 1.0 0.9524 0.9756

In the comparison diagram, the element bits with black markings indicate a causal
relationship between two combat events. It can be seen that THPM algorithm can find
the causal relationship between events more accurately.
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Fig. 3. Dataset with N = 38,V = 10,m = 21768

Fig. 4. Dataset with N = 39,V = 11,m = 92845

Fig. 5. Dataset with N = 28,V = 12,m = 2297

Fig. 6. Dataset with N = 38,V = 13,m = 93329
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4 Conclusion

In this paper, we use simulated annealing to improve the topological Hawkes method to
solve the problem of causality discovery of battlefield event sequences. When tested on
several different data sets, the improvedmethod achieves high accuracy. In future studies,
we plan to extend our work to the problem of causality in the sequence of operational
events in which clear topological relationships of operational units cannot be obtained.
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