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Abstract. For the decision-making of on-orbit service with multiple
geosynchronous earth orbit targets, an offline and online combined intel-
ligent decision-making method is proposed based on reinforcement learn-
ing. Firstly, the decision-making problem is given and formulated. Then,
considering the computational complexity of online decision-making, this
work proposed an offline and online combined intelligent decision-making
framework. A cost function related to the fuel consumption and ren-
dezvous time is constructed offline for one spacecraft serving one target.
And a RBF neural network-based method is proposed to approximate
and fit the offline calculated data. For the on-orbit real-time decision-
making problem, a multi-target decision-making cost function is con-
structed, and a low-complexity and intelligent decision-making method
is proposed based on reinforcement learning to allocate the proper space-
crafts to serve the multiple targets. Simulation results show that the pro-
posed method can achieve fast and accurate online decision-making for
the service of geosynchronous earth orbit targets.
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1 Introduction

With the rapid development of space technology, on-orbit service mission has
attracted more and more attention in recent years [1,2]. As there are many high-
value satellites in the geosynchronous earth orbit (GEO), the on-orbit service of
GEO targets is strategic and important [3,4]. In order to raise the efficiency of
serving multiple GEO targets, selecting and employing several on-onbit service
spacecrafts (servers for brevity) to simultaneously carry out the service tasks is
an effective way. The decision-making problem of on-orbit service with multiple
GEO targets is how to select enough and proper servers, which is a task allocation
problem considering the orbit dynamics.

Existing task allocation methods usually establish a comprehensive optimiza-
tion goal by considering a variety of factors. In order to solve the established
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optimization problem, some methods have been proposed, e.g., the bundle algo-
rithm [5,6], particle swarm optimization (PSO)-based method [7], genetic algo-
rithm (GA)-based method [8,9]. The bundle algorithm mainly deals with the
“one-to-many” decision-making problems and is not suitable for the “many-to-
many” problem in this work. Have shortcomings in computational efficiency and
global optimality, the PSO- and GA-based methods have difficulties in real-time
decision-making problem.

Motivated by the foregoing analyses, this work proposes an offline and online
combined intelligent decision-making method. The decision-making problem is
given and formulated in Sect. 2. The cost function of “one-to-one” service is con-
structed offline in Sect. 3, and a RBF neural network (RBFNN)-based method
is proposed to fit the offline calculated data. A reinforcement learning-based
method for online decision-making is proposed in Sect. 4. The proposed method
is verified by simulations in Sect. 5. Some conclusions are finally drawn in Sect. 6.

2 Problem Formulation

In order to serve the passive GEO targets in time, assume that the servers
initially move on an equatorial circular orbit with different phase angles. Suppose
there exist m servers, then the orbit dynamics of the m servers is given as [10]

{
ṙSi = vSi

v̇Si = − μ
‖rSi‖3 rSi + uSi

, i = 1, · · · ,m (1)

where rSi and vSi are the position and velocity vectors of the i-th server in earth
centered inertial frame, uSi is the control input, and μ is the earth gravitational
coefficient.

The orbit dynamics of the n GEO targets is given as
{
ṙTj = vTj

v̇Tj = − μ
‖rTj‖3 rTj

, j = 1, · · · , n (2)

where rTj and vTj are the position and velocity vectors of the j-th targets.
An assumption has been made that m > n to ensure that there are enough

servers to be selected to simultaneously serve the GEO targets. Then the
decision-making problem can be stated that how to select n servers and plan
their trajectories so that all the GEO targets can be served.

3 Offline Orbit Optimization and Fitting Based
on RBFNN

There are countless different transfer orbits for one server to rendezvous with the
specific GEO target. The fuel consumption and rendezvous time are also differ-
ent. From Eqs. (1) and (2), it can be seen that a lot of calculations are required
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to find the optimal path for a server to rendezvous with the target. If the ren-
dezvous trajectory is planned online, the decision-making process may not be
finished in time. For this problem, this work proposes an offline and online com-
bined decision-making method to solve the multi-target decision-making prob-
lem. The time-consuming orbit optimization design process for “one-to-one” on-
orbit service is carried out offline, and an efficient intelligent method based on
reinforcement learning is proposed for online decision-making.

3.1 Transfer Orbit Designed by Solving Lambert Problem

The most fuel-efficient transfer orbit between coplanar circles is the Hohmann
orbit, but the transfer time is always long. In order to improve the rendezvous
efficiency, a series of two-pulse transfer orbits are considered by solving the Lam-
bert problem.

Define the initial and rendezvous time for server i to target j as tij1 and tij2,
respectively, then a transfer orbit for server i is expected to reach the target j
when time t = tij2. Based on Eqs. (1) and (2), the initial and final states of
server i are rSi(tij1), vSi(tij1) and rTj(tij2), vTj(tij2). The rendezvous time can
be calculated as Δtij = (tij2−tij1). For a specific rendezvous time Δtij ∈ (t0, tf )
with tf > t0 > 0, the transfer orbit can be designed by solving the Lambert
problem [10], and the control vectors uSij(tij1) and uSij(tij2) are then obtained.

3.2 Transfer Orbit Optimization

There are many two-pulse transfer orbits by solving the Lambert problem when
Δtij ∈ (t0, tf ). In order to find the optimal transfer orbit for a specific mission, a
cost function is expected by considering different performance indicators. In this
work, the energy and time consumption are considered. Notice that the servers
and targets are moving on a same plane, therefore the energy consumption uij

for the server i to target j can be defined as

uij = ‖uSij(tij1)‖ + ‖uSij(tij2)‖ , (3)

is only related to the relative phrase angle Δθij and rendezvous time Δtij . As a
result, a transfer orbit optimization problem has been established by considering
uij and Δtij , that is

J∗
ij = min

Δtij
Jij = CJu,ij + (1 − C)Jt,ij (4)

where Jij is the cost function, J∗
ij is the optimal cost function, C ∈ [0, 1] is the

proportional coefficient which reflects the relative importance of energy and time
consumption, Ju,ij and Jt,ij are defined as

Ju,ij = (uij − umin) / (umax − umin) (5)

Jt,ij = (Δtij − t0) / (tf − t0) (6)

wherein umin and umax are constants for normalization.
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For a specific relative phrase angle Δθij and any Δtij ∈ [t0, tf ], the cost
function Jij (Δtij) can be obtained by Eqs. (3)–(6). In order to obtain the mini-
mum value J∗

ij , enough different Δtij are sampled within interval [t0, tf ] and the
cubic spline curve is used to fit the discrete Δtij . As the cubic spline curve is
analytical, the optimal cost function J∗

ij and the optimal rendezvous time Δtij
∗

are obtained by analytically calculating the minimum point of the cubic spline
curve.

3.3 Optimal Transfer Orbit Fitting by RBFNN

The optimal transfer orbit for a specific relative phrase angle Δθij has been
obtained in Sect. 3.2. Actually, any Δθij ∈ [0, 360]◦ may appear in practical
missions. In order to cover all conditions, enough different Δθij are sampled and
the corresponding optimal cost functions are calculated offline. To avoid storing
too many data in the servers, a RBFNN is constructed to approximate and fit
the discrete data due to its excellent nonlinear approximation capability.

The input data of the RBFNN are designed as the normalized values of Δθij ,
which is defined as ΔθNij = Δθij/360. The output data of the RBFNN are set
as the corresponding optimal cost functions J∗

ij and J∗
t,ij . The employed RBFNN

is a forward-type network composed of three layers. The state of the first layer,
that is the input layer, is x = ΔθNij ∈ [0, 1]. The second layer is the hidden
layer, whose state h (x) = [h1 (x) , · · · , hp (x)]T is defined as

hk (x) = exp

(
−|x − ck|2

2b2k

)
, k = 1, · · · , p (7)

where ck, bk are the Gaussian function center and width, respectively, of the
k-th node. The state of the output layer y = [y1, y2]

T is defined as

yl =
p∑

k=1

wplhp (x), l = 1, 2 (8)

where wpl is the weights to be trained. By using the input data ΔθNij and the
output data J∗

ij and J∗
t,ij , the employed RBFNN is trained to fit the data with

an adjustable admissible error.

4 Intelligent Online Decision-Making Based
on Reinforcement Learning

With the trained RBFNN in Sect. 3, the optimal cost function J∗
ij and rendezvous

time Δtij
∗ can be easily obtained online for any server i and target j. In this

section, an online cost function for the decision-making of multiple-target task
allocation is established and solved by reinforcement learning.
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4.1 Online Decision-Making Problem Formulation

In order to clearly describe the online decision-making problem multiple-target
task allocation, αij is defined as

αij =
{

1, if server i serves target j
0, otherwise (9)

Then the online decision-making optimization problem is formulated as

J∗ (αij) = min
αij

J (αij) = min
αij

m∑
i=1

n∑
j=1

αijJij (10)

where J (αij) is the online decision-making cost function. The state variables in
optimization problem (10) should satisfy that

⎧⎪⎪⎨
⎪⎪⎩

m∑
i=1

αij = 1, j = 1, ..., n

n∑
j=1

αij ≤ 1, i = 1, ....m
(11)

The physical meaning of the constraints in Eq. (11) is that each GEO target
should be served with one service spacecraft, and each service spacecraft serves
one target at most.

4.2 Online Decision-Making Optimization Based on Q-learning

The online decision-making optimization equation in Eq. (10) is nonlinear, which
is difficult to be analytically solved. In this work, a reinforcement learning-based
method is proposed to achieve the multi-target online decision-making. Rein-
forcement learning is an iterative optimization method, including value iteration
and strategy iteration [11]. Wherein, Q-learning is the most commonly used
value function iterative update algorithm for reinforcement learning [12].

For the online decision-making optimization problem in this work, a Q-
Learning algorithm-based method is proposed. After acquiring relative phrase
angles and calculating the optimal “one-to-one” cost function by RBFNN, the
online decision-making process is implemented through the steps shown in Fig. 1.
Firstly, build a q1×q2 Q table, where q1 is the number of states, q2 is the number
of the actions, and initialize the elements in table to zero. Then calculate the
cost function of the current allocation matrix (Q value) and judge whether the
Q value is the optimal solution. If not, a new action is selected by combining
the current Q value and the ε-greedy learning strategy [13]. By calculating the
cost function to carry out the decision, Q table is updated by the Q-learning
algorithm as

Q(s, a) ← Q(s, a) + μ [R + γ max Q(s′, a) − Q(s, a)] (12)
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Fig. 1. Q-learning algorithm-based intelligent decision-making method

where μ ∈ (0, 1) is the learning rate, γ ∈ (0, 1) is the discount coefficient, R is the
reward by performing the current action a, which will be designed afterwards, s
and s′ are the current and next states, respectively. After repeated iterations to
update the Q table, a good decision is learned to solve the optimization problem.

The core steps in the Q-learning algorithm-based decision-making method is
presented as follows.

Action Space Design. Each element in Q table is corresponding to a allocation
matrix, which is called a action. The allocation matrix A is m × n matrix and
the i-th row and j-th column element of A is αij .

State Space Design. The state space in this problem is designed as a group
of the online cost function corresponding to the allocation matrices. By defining
the online cost function of the l-th allocation matrix as Jl, the upper and lower
bound of the state space can be defined as max Jl and minJl (l = 1, · · · q2). The
state space is then obtained by uniformly discretizing the space [minJl,max Jl].
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Reward Function Design. The quantified reward function is the core to judge
the performance of one action. Reward function in this work is designed as

R =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−10,
m∑

i=1

αij �= 1, j = 1, ..., n

−10,
n∑

j=1

αij > 1, i = 1, ...,m

−J, otherwise

(13)

When a certain action satisfies all the constraints in Eq. (11), the reward function
is the actual online cost function. Otherwise, a negative reward −10 is applied.

5 Simulation Analyse

5.1 Offline Orbit Optimization and Fitting

In Sect. 3, a RBFNN is constructed and trained to approximate and fit the
discrete optimal cost functions. The input and output data of the RBFNN are
ΔθNij and J∗

ij , J∗
t,ij . The original data and the fitting curves are presented in

Figs. 2 and 3. From the figures we can see that the employed RBFNN is capable
of accurately fitting the original data.
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Fig. 2. Fitting curve of J∗
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Fig. 3. Fitting curve of J∗
t,ij

5.2 Online Intelligent Decision-Making

A numerical simulation is designed to verify the effective of the proposed online
intelligent decision-making method based on reinforcement learning. Suppose
there are three targets moving on GEO with the true anomaly as 86.1◦, 179.0◦,
306.5◦, respectively. The service spacecrafts are moving on a circular orbit in
the same plane. The altitude of the servers is 6007 km, and suppose there are
four servers with the true anomaly as 8◦, 128◦, 199.9◦, 272.3◦, respectively. The
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offline cost functions J∗
ij and J∗

t,ij for every server i to target j can be directly
obtained by the constructed RBFNN in Sect. 5.1 and given in Table 1.

Table 1. Optimal cost functions J∗
ij and J∗

t,ij for every server i to target j

Target 1 Target 2 Target 3

Server 1 0.1303&0.4611 0.2730&0.5296 0.6082&0.2220

Server 2 0.5555&0.7516 0.1768&0.4118 0.2891&0.5187

Server 3 0.4492&0.3591 0.4617&0.5689 0.1453&0.5281

Server 4 0.2793&0.5255 05085&0.3010 0.2280&0.4041

Set the proportional coefficient in Eq. (6) as C = 0.7. For the proposed
reinforcement learning-based method, discount factor γ = 0.9, learning rate
μ = 0.1. Based on the proposed reinforcement learning method, the decision has
been made and the optimal allocation matrix is given as

A =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ (14)

From Eq. (14) one can obtain that servers 1 to 3 are assigned to carry out the
service mission for GEO targets. Based on the rendezvous trajectory planning
method in Sec. 3, the rendezvous process is presented in Fig. 4. The three GEO
targets are all served by the offline and online combined decision-making method.

Fig. 4. Rendezvous process for 4 servers serving 3 targets
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6 Conclusion

This paper investigates the problem of the on-orbit service with multiple GEO
targets by multiple servers. An offline and online combined intelligent decision-
making method is proposed based on reinforcement learning. The optimization
problem for one server to serve one target is formalized and solved offline and
fitted by a RBFNN. And a multi-target decision-making optimization problem
is constructed online and solved by the reinforcement learning-based decision-
making method. Simulation results verify that the effectiveness of the proposed
method.
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