
A Fusion Method of 3D Object Detection
Graph Neural Network Based on Local

and Global Data Augmentation

Yi Zheng1(B), Xiaoyang Liu1,2, Kaizhi Ruan1,2, Wenhua Zhai1,2,
Yanbin Liu1,2, and Ningjing Gong2

1 Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China
zhengyi 1121@163.com

2 Shanghai Institute of Aerospace System Engineering, Shanghai 201109, China

Abstract. LiDAR-based 3D object detection is an important task for
autonomous driving because it provides the location information of
objects on the road. However, the existing methods perform poorly in the
detection of distant objects since they suffer from sparse and incomplete
point clouds. To overcome the problems caused by multi-scale and occu-
pancy, we propose a novel graph-based framework, i.e. named a fusion
method of 3D object detection graph neural network based on local and
global data augmentation (LGDA-GNN), for accurate 3D object detec-
tion from the point clouds. Firstly, we summarize seven characteristics
of point cloud data, and point out a new way to improve accuracy of this
task. Secondly, to select effective vertices of graph neural network and
to enhance local features and the proportion of point cloud at medium
and long distances, we propose methods including self-adaptive multi-
scale voxel downsampling and multi-step graph construction. Thirdly,
to improve the accuracy of difficult category, a fusion method of self-
attention module and visibility property is presented for global feature
reinforcement. Finally, we integrate our refinement modules into a graph-
based pipeline, and extensive experiments on the KITTI benchmark show
that we achieve a great performance on the difficult car object for the
bird eye view detection and 3D object detection task.

Keywords: Point cloud · Graph neural network · 3D object
detection · Data augmentation

1 Introduction

3D object detection in point clouds plays an important role in autonomous driv-
ing. LiDAR is the most common instrument to collect such data. The 2D data
does not provide depth information and the 3D data introduces a third dimen-
sion that contains more detailed object location and size information, and are
less sensitive to illumination. In addition, LiDAR has many advantages over
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Z. Ren et al. (Eds.): Proceedings of 2021 5th Chinese Conference on Swarm Intelligence
and Cooperative Control, LNEE 934, pp. 605–616, 2023.
https://doi.org/10.1007/978-981-19-3998-3_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3998-3_58&domain=pdf
https://doi.org/10.1007/978-981-19-3998-3_58


606 Y. Zheng et al.

cameras, for example LiDAR data is more stable at night and more robust. It
could rarely be affected by changing illumination.

However, 3D object detection still faces many challenges due to the charac-
teristics of the point cloud. For example, the farther away an object is from the
LiDAR, the fewer 3D points it occupies on the point cloud. And the low resolu-
tion of far-away point cloud (sparse point clouds) results in the poor detection
of the distant objects. It can be called multi-scale problem of point clouds. The
point clouds of LiDAR are randomly distributed and the order of the point
clouds should not have influence on the extracted features.

To solve the above problems, lots of methods have been proposed for 3D
object detection in recent years. In general, these approaches can be classi-
fied into two categories, i.e. voxel-based methods and point-based methods. The
voxel-based method is completely using the 2D methods on the 3D point cloud.
The 2D methods uses a 2D convolution neural network to detect the objects after
mapping the point clouds to the front view or bird-eye view. Therefore many 2D
methods for the multi-scale problems can be used, such as the classical image
pyramid, feature pyramid and convolution kernel pyramid, etc. The 3D methods
processing point cloud straightly like [1] uses a skip connection to concatenate
the low-level features to the high-level features, which can be summarized as
the point-based methods. Since PointNet independently processed point clouds
and did not get the local structural features, [2] proposed later used set abstrac-
tion operation to get the multi-scale features. However, the repeated grouping
and sampling on a large point clouds in the PointNet++ are computationally
expensive. Since this method allows direct operations on points, many similar
methods have been proposed, including the method based on Graph Neural Net-
work (GNN). Although GNN-based methods can acquire the local object features
much more than other solutions, there are still many problems. For example, the
background points account for a high proportion in point clouds, the asymmet-
rical density distribution problem and the low accuracy of the obscured objects.

To solve these problems, in this work, we firstly summarize seven character-
istics of point cloud data:structurelessness,randomness,irregularity,data-
heaviness,local-scale relevancy,global-scale relevancy,3D-illusion. Struc-
turelessness means that the point clouds do not have the stable structure like 2D
image. We have to give them structure to represent them. Randomness means the
input sequence should not affect the output. Irregularity means the local point
cloud may be arranged in an irregular sequence and the density may be different
in diverse regions. Data-heaviness means point clouds have tons of data to com-
pute. Local-scale relevancy means point clouds in a local region is relevant. Global-
scale relevancy means the point clouds of the same kind of objects are relevant
all around the space. 3D-illusion means the point clouds show different objects in
different angles of view. In order to solve structurelessness and randomness,
we use a graph-based network shown in Fig. 1 as a compact representation of a
point cloud. After that, we provide several methods to improve the effectiveness of
vertex selection and enhance the global features of vertices respectively. Firstly,
for the downsampling loss in the sparse area of the point clouds caused by the



LGDA-GNN 607

Fig. 1. The full architecture of our proposed method including multi-voxel sampling,
the graph neural network and fusion feature of self-attention and visibility.

fixed-voxel sampled method, a self-adaptive multi-scale voxel downsampling
method for graph construction is proposed and have dealt with data-heaviness
and irregularity by the way. Through the new downsampling method, the dis-
tribution of the vertices is redetermined. To make sure the selected vertices are
very precise, we propose multi-step graph construction to have some redundancy
in the process of picking vertices. This is how we strengthen the local features to
utilize local-scale relevancy. Secondly, considering the unevenness of the point
cloud, a global feature enhancement method based on self-attention mechanism
is proposed to make full use of global-scale relevancy. For the 3D-illusion of
point clouds, a global feature enhancement method based on visibility classifica-
tion is also proposed, which divides vertex voxels into different categories based on
occlusion and unocclusion.

In conclusion, the main contributions of our work are: (1)We innovatively
summarize seven characteristics of point cloud data and point out a new way to
improve accuracy of this task. (2)To accurately select the vertices and to raise
the proportion of point cloud at medium and long distances, a multi-step graph
construction is proposed. (3) To improve the accuracy of object detection on the
difficult task, we propose a vertex global-feature enhancement method incor-
porating visibility and self-attention modules. (4) We integrate our refinement
modules into a graph-based pipeline, and achieve great performance on the hard
category of KITTI dataset for the 3D object detection task.

2 Related Works

Point-Based Methods for 3D Object Detection: Although the best algo-
rithms in both categories are currently on the same level of accuracy and speed,
intuitively the Point-based method has more room for improvement. Point-based



608 Y. Zheng et al.

methods represent the points by itself rather than the voxel. With Multi-Layer
Perception (MLP), we can enlarge the size of features from three dimensions
to higher dimensions. [1] computes the global feature vector of point cloud by
stacking many MLP, and feeds it back to point-wise features by concatenating
the global feature with each of the point features. [2] proposes the set abstraction
operation that contained sampling and grouping, which enables flexible receptive
fields for point cloud feature learning. It is able to progressively capture features
at increasingly larger scales along a multi-resolution hierarchy. Then [3–5], and
many point-based methods are mostly based on the PointNet++ series. And
they all have the same problem as the Pointnet++ which takes too much time
on repeated grouping and sampling. After many Point-based approaches are pro-
posed, the way of point representation is generally accepted, but there is still
much disagreement about the data flow transfer process and the feature extrac-
tion process. The physical feature of a point is a column of vectors, and how
to deal with the combined vectors is a problem that many new methods are
exploring. Taking PV-RCNN [6] as an example, the article combines the advan-
tages of the methods of the Point and Voxel based methods to obtain 3D feature
bodies from 3D voxels, converting them into 2D eye view feature maps of bird,
and generate proposal boxes using the anchor-based method.[7] designs an aux-
iliary network improves positioning accuracy through deep mining of geometric
information of 3D objects.

Meanwhile, [8–10] revealed that it is suitable to use the graph neural net-
work to process the point clouds that are generated from non-Euclidean domains.
Then, [11] proposed a method that used point representation on key points and
sampling points, and used the data structure of the graph between key points
and sampling points. After that, GNN iteratively updates its vertex features
by aggregating features along the edges. The edge between two points allows
the information sharing along the edge. The point clouds would obtain a new
structure through this method. [12] introduced a point cloud completion module
to recover high-quality proposals of dense points and entire views with original
structures preserved based on a designed graph neural network module which
comprehensively captures relations among points through a local-global atten-
tion mechanism.

3 Proposed Method

In this paper, we propose the LGDA-GNN based on graph neural network, aim-
ing at solving the multi-scale 3D object detection problems through augmented
data in point clouds. The overall architecture of our method contains three com-
ponents: (a) self-adaptive multi-scale voxel downsampling mechanism; (b) multi-
step graph construction and GNN module; (c) feature fusion of self-attention and
visibility.



LGDA-GNN 609

3.1 Self-adaptive Multi-scale Voxel Downsampling Method

As we have known, if the object is far away from the LiDAR, its point cloud
density become lower. Therefore, the density of point clouds collected at different
distances is not uniform. What is more, existing methods usually use downsam-
pling method to extract the point cloud and reduce the number of point clouds,
especially the voxel downsampling method. If the voxel downsampling method
uses a fixed voxel to get the vertex, it will result in a bad situation that the
number of sampling vertices in the front area is larger than the number in the
back area. It aggravates the information loss especially the information loss of
the distant objects. Existing methods that use the voxel downsampling have
this shortcoming, but they are difficult to make some improvements. If the vox-
els of different sizes in different region were used, it will affect the regularity of
voxel grids. Furthermore, the regular convolution layer cannot be used for fea-
ture extraction. In other words, a fixed-size voxel is a prerequisite for ensuring
regularization of 3D data and the using of 3D convolution operation.

However, there is no limitation for graph-based methods, since the data reg-
ularization is not needed. Therefore, we design a self-adaptive multi-scale voxel
downsampling method for graph construction to solve the downsampling loss of
the sparse point-cloud area.

Multi-voxel Sampling Graph Generation Method. A graph network will
make predictions from the vertices of the point clouds. In contrast, the features
of a vertex are made up of a collection of points within a certain range around
it. Therefore, the distribution of vertices and the location of the vertices are
very important. Multi-voxel sampling graph generation method allows for some
adjustment of the vertex distribution.

It can gradually reduce the size of voxels, and effectively increase the num-
ber of sampled point clouds in sparse areas. By using a smaller voxel to sample
the point cloud in sparse area, the information loss will be alleviated. We mod-
ified the traditional point-cloud voxel downsampling method and proposed a
self-adaptive multi-scale voxel sampled method for graph construction. As the
formula shows, x represents the distance coordinate of the point and v represents
the sampling voxel size.

V = V0 − k0 ∗ mod(X/10) (1)

It can effectively alleviate the problem of sparse point clouds in the dis-
tance and does not miss sparse faraway objects. Since there is only one hyper-
parameter k0 in Eq. (1), we only have to set k0 to meet the required total
amounts of point clouds, and it is superior to the methods which have to set
many hyper-parameters that will decrease the stability of algorithm.

Invalid Altitude Suppression Method. Using Multi-voxel sampling method
alone also leads to the problem that as voxels become smaller, more points are
retained as vertices and a point-cloud map has more vertices to compute with,



610 Y. Zheng et al.

creating a significant computational burden. Furthermore, the vertices should
be selected to achieve the balance of positive and negative samples. To solve this
problem, we can restrict the sampling altitude area to a range.

Experimental comparisons show that positive samples are still easy to dis-
tinguish when the higher point cloud is removed. In the lower areas of the point
cloud, most of the point cloud is about roads and walls. These background points
account for a large proportion of the weight and we do not want the vertices
to be created from the background, so the lower-altitude points are removed as
well. After removing the noise of point cloud, we sort it by height from zl to zh.
A certain range of altitude of point cloud is restrained. The percentage of the
foreground points is greatly increased through this way.

3.2 Multi-step Graph Construction

Fig. 2. Schematic diagram of multi-step graph construction.

In order to solve the irregular structure of point cloud, we use graph
network to build a point-cloud representation. A point cloud with N points
P = {p1, p2, . . . , pN} is defined as a set, where each point pi = (xi, si) includes
its own coordinate position xi ∈ R3 and its own properties such as reflectivity
si ∈ Rk, and so on. The point cloud graph contains two elements, vertex P and
edge E. Therefore, given a point cloud set P , we describe the point cloud as a
vertex and connect it with other point clouds within the fixed radius r. Thus,
we create a graph G = (P,E). The simple construction of the edge is shown in
Eq. (2)

E =
{
(pi, pj)

∣
∣‖xi − xj‖2 < r

}
(2)

where pj denotes another point that is within the fixed radius r of the vertex
pi. This procedure is actually a nearest neighbor selective processing for a fixed
radius with the vertex we have established. However,we can not make sure if the
vertices we chose are really needed? And we have to make the process of choosing
vertices much more precisely. As shown in Fig. 2, we used to pick centroid points
in each voxel to be the vertex points, then we divide the procedure into two
steps. Each voxel is separated into the small voxels,and we rename the centroid
points in each small voxels to be the vertices of each respective voxel. The final



LGDA-GNN 611

vertex will be selected from the vertices of the minor voxels and replace the
center point of construction circle. And the new vertex usually obtains more
points as its edges and catches much more structural information which results
in a higher detection accuracy.

After the graph was constructed, we process the graph with GNN. A typical
graph neural network refines the vertex features by aggregating features along
the edges. In the (t + 1)th iteration, it updates each vertex feature as Eq. (3)
and (4), where et and vt are the edge and vertex features from the tth iteration.
The MLP f t(·) computes the edge feature etij between the vertex i and vertex j.
xi−xj denotes the relative distance of two vertices. Then p(·) aggregates the edge
features of one vertex. The MLP gt(·) get updated feature vt+1

i of the (t + 1)th

iterarion from the output of p(·) and the former feature vt
j . These processes will

be repeated in the next iteration.

etij = f t([xi − xj , v
t
j ]) (3)

vt+1
i = gt(p(etij |(i, j) ∈ E), vt

i) (4)

The GNN is used to update the vertex feature to include the local structure
information. After several iterations of the graph neural network, the vertex
features are used to predict both the category and the bounding box of the
object to which the vertex belongs.

3.3 Fusion of the Self-attention and Visibility Feature

The vertex features of the point-cloud graph contain local relationships between
points and edges, and the self-attentive mechanism and visibility classification
proposed in this paper are designed to enhance the vertex features so that they
contain global-scale relevancy

Vertex Self-attention Method. Taking the vertex data queue of the point
cloud as the input part of the self-attentive module, the corresponding output
will be the interaction and fusion result of the point cloud map as a whole, with
the features of other vertices fused in each vertex, just like [13] shows.

The input data of the self-attention module is a feature queue of vertices,
which is used for obtaining the weight corresponding to each vertex among all
vertices. This weight to some extent reflects the importance of the vertex in the
queue, which is similar to the rest of the vertices, and allows new vertex features
to be obtained. If a vertex represents a local region of the background in the
point cloud, it can be clearly distinguished from the foreground features through
the self-attention module. Else if a vertex represents a sparse foreground far away
in the point cloud, it will be closer to the foreground and the fused new features
will be closer to the clear foreground objects after the process of self-attention
module.

Suppose we have n vertices, each one with m columns of features. The Value
V ∈ Rm×1, Key K ∈ Rm×3 and Query Q ∈ Rm×3. With the self-attention
method proposed by [14], we can get the output in Eq. (5).



612 Y. Zheng et al.

outputj = concat(
m∑

i=1

eQj
TKi

√
3

m∑

i=1

Qj
TKi

Vi, ...)W0, j = 1, 2, ...,m (5)

Visibility Classification. With inspiration of [15], we conclude that 3D-
illusion is an important characteristics that should not be overlooked in the
3D detection task, and it is not a totally detrimental property. Point clouds
from LiDAR lack a lot of angular information about the target object, but also
contain beneficial information such as object occlusion, freespace, etc. We pro-
pose the method to make full use of visibility information, which means whether
a point-cloud region or an object is visible.

There is a conception of occupancy grid map in SLAM, which shows the
states of voxels should be divided into three catogories: freespace, unknown and
occupied.

Firstly, we voxelize the point clouds, ignore the effect of height and look at
all the vertex voxels in projection and initialise all the vertex grids to be seen as
unknown. Secondly, we start with a vertex voxel at random, connect its vertex
to the origin point, mark all the connected vertex voxels that the line passes
through as freespace, and mark the current vertex grids as occupied. Then start
again with the next vertex voxel until all the vertex voxels have been traversed
and there should be no unknown voxels. We finally add a visibility feature to
the vertex feature queue, and unify the vertex features in height (Fig. 3).

Fig. 3. Fusion process of the features of visibility and self-attention.

4 Experiments

We evaluate our method based the widely-used KITTI [16] object detection
benchmark. The KITTI benchmark evaluates the average precision (AP) of three
types of objects: Car, Pedestrian and Cyclist. Due to the scale difference, we
follow the common practice and train only one network for the Car to testify
our approaches. For training, we remove samples that do not contain objects of
interest.

Car: We treat a side-view car with θ2 = [−π/4, π/4] and a front-view car
θ2 = [π/4, 3π/4] as two different classes. Together with the Background class and



LGDA-GNN 613

DoNotCare class, 4 classes are predicted. We construct the graph with r2 = 0.5r1.
We set P as a downsampled point cloud by a maximum voxel size of 1 m in
training and k0 = 0.075 in multi-voxel sampling method.

4.1 Data Augmentation

To prevent overfitting, we perform data augmentation on the training data.
Unlike some methods in [4] that use sophisticated algorithms to create new
ground truth boxes, we choose a simple scheme with global rotation, global
flipping, box translation and vertex jitter. During training, we randomly rotate
the point cloud by yaw in the normal distribution N(0, π/8) and then flip the
x-axis by a probability of 0.5.

Observing the data, we found that the altitude of some point clouds ranges
from –15 m to +5 m but only very few points locate from +2 m to +5 m and –2 m
to –15 m. To prevent the influence of noise, we remove 0.5% of the total number
of points from the top and from the bottom. After that, We use a 10% larger
box to select the points to prevent cutting the object. During the translation,
we check and avoid collisions among boxes. During graph construction, we use
a random voxel downsampling to induce vertex jitter.

4.2 Implementation Details

Our framework is trained from scratch in an end-to-end manner with the ADAM
optimizer. We train the entire network with the batch size on 1 RTX 2080 Ti
GPU. Because the network is too deep, a small learning rate is required when
starting training. The detection accuracy is almost the same when the number
of iteration time T is 2 or 3, but the training time and testing time of the
network are increased by almost 50% when T is 3, so we finally choose T to
be 2. The common practice of point cloud sampling is to take 0.8 m as the
voxel size, but this is very likely to ignoring the distant objects. By observing
the characteristics of the object at about 70 m, we find that the point cloud of
the car body is mainly concentrated in one face, and is extremely sparse. For
acquiring the enough points of the distant objects, we choose the farthest voxel
size of 0.4 m. And we decide the nearest voxel size to be 1.0m since this can
almost retain the amount of key points.

4.3 Ablation Study

In this section, we conduct extensive ablation experiments to validate individual
components of our proposed method shown as the last column in Table 1. We
classify the Self-adaptive multi-scale voxel down-sampling method and Multi-
step graph construction into enhancement of local features and sort Fusion fea-
ture of self-attention and visibility into enhancement of global features. All mod-
els are trained on the train split and evaluated on the val split for the car class
of KITTI dataset. We focus on the detection of Car because of its dominant
presence in the dataset.



614 Y. Zheng et al.

Table 1. The Average Precision (AP) comparison between the local features and global
features of 3D object detection on the KITTI validation dataset

Method Car detection 3D AP Car detection AP

Easy Moderate Hard Easy Moderate Hard

Local features 90.04 80.86 76.78 96.79 93.45 91.66

Global features 90.25 80.55 77.03 96.75 93.55 91.34

OADA-GNN 90.89 82.28 77.78 96.85 95.48 93.00

Table 2. The Average Precision (AP) comparison of 3D object detection on the KITTI
validation dataset

Method Car detection 3D AP Car detection AP Car detection BEV AP

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars 82.58 74.31 68.99 94 91.19 88.17 90.07 86.56 82.81

TANet 84.39 75.94 68.82 93.67 90.67 85.31 91.58 86.54 81.19

STD 87.95 79.71 75.09 96.14 93.22 90.53 94.74 89.19 86.42

SA-SSD 88.75 79.79 74.16 97.92 95.16 90.15 95.03 91.03 85.96

3DSSD 88.36 79.57 74.55 97.69 95.1 92.18 92.66 89.02 85.86

Voxel R-CNN 90.9 81.62 77.06 96.49 95.11 92.45 94.85 88.83 86.13

Point-GNN 88.33 79.47 72.29 96.58 93.5 88.35 93.11 89.17 83.9

PV-RCNN++ 90.14 81.88 77.15 96.08 95.05 92.42 92.66 88.74 85.97

PC-RGNN 87.94 81.38 76.88 95.8 94.68 92.2 92.08 88.43 85.81

SE-SSD 91.49 82.54 77.15 96.69 95.6 90.53 95.68 91.84 86.72

Ours 90.89 82.28 77.78 96.85 95.48 93.00 93.39 89.55 87.01

4.4 Results

Experimentally, we found that about half of the vertex positions changed after
the multi-step graph construction, indicating that new local key points were
found.

We have submitted our results to the KITTI 3D object detection benchmark
and the Bird’s Eye View (BEV) object detection benchmark. In Table 2, we
compare our results with the existing SOTA 3D object detection method. All
results are evaluated by the mean average precision (mAP) with a rotated IoU
threshold 0.7 for cars. Since the KITTI website does not accept unpublished
methods, we split the training dataset into training and validation dataset and
test our result on the latter one. And the rusult shows that a great progress has
been made on the hard category.

In Fig. 4, we provide qualitative detection results on all categories. The results
on both the camera image and the point cloud can be visualized. It must be noted
that our approach uses only the point cloud data. The camera images are purely
used for visual inspection since the test dataset does not provide ground truth
labels



LGDA-GNN 615

Fig. 4. Qualitative results on the KITTI test dataset using LGDA-GNN. We show the
predicted 3D bounding box of Cars (green), Pedestrians (red) and Cyclists (blue) on
both the image and the point cloud. Best viewed in color.

5 Conclusion

In this paper, we proposed a LGDA-GNN framework to investigate the graph
neural networks (GNN) on 3D point-cloud object detection, improving the accu-
racy and precision of the vertex selection range, using the global-relevancy to
learn the distant and obscured objects. We have outlined seven characteristics
of point cloud data and designed different solutions according to the differ-
ent characteristics of point clouds to solve the problem of 3D object detection
and improve the effectiveness of detection algorithms. We have proposed local
enhancement method, including multi-voxel sampling graph generation method
which solves the problem of disproportion of point cloud, multi-step graph con-
struction which increases the foreground vertices and gives a certain amount of
tolerance to vertex selecting, and fusion feature of self-attention and visibility
which enlarges the importance of foreground vertices and promotes the role of
validate vertices. We operate an ablation study on all these methods and finally
it shows a great progress compared with Point-GNN.

All these methods based on graph neural network are flexible and transfer-
able. The way that GNN integrates sparse information of distant objects and
makes them recognizable is also effective for object detection on missles. Consid-
ering the different kinds of data of missile seekers are not always robust [17], the
graph neural network may play an important role on the future techniques of
missile object detection, and the guidance precision of weapons can be improved.



616 Y. Zheng et al.

References

1. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 652–660 (2017)

2. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learn-
ing on point sets in a metric space (2017). arXiv preprint, arXiv:1706.02413

3. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from RGB-D data. In: Proceedings of the IEEE Conference On Computer
Vision And Pattern Recognition, pp. 918–927 (2018)

4. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 770–779 (2019)

5. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: Std: sparse-to-dense 3d object detector
for point cloud. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1951–1960 (2019)

6. Shi, S., et al.: Pv-RCNN: point-voxel feature set abstraction for 3d object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10529–10538 (2020)

7. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3d
object detection from point cloud. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11873–11882 (2020)

8. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24
(2020)

9. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3d graph neural networks for RGBD
semantic segmentation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 5199–5208 (2017)

10. Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A.: A
survey on 3d object detection methods for autonomous driving applications. IEEE
Trans. Intell. Transp. Syst. 20(10), 3782–3795 (2019)

11. Shi, W., Rajkumar, R.: Point-GNN: graph neural network for 3d object detection
in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1711–1719 (2020)

12. Zhang, Y., Huang, D., Wang, Y.: PC-RGNN: point Cloud Completion and
Graph Neural Network for 3D Object Detection, December 2020. arXiv e-prints,
arXiv:2012.10412

13. Bhattacharyya, P., Huang, C., Czarnecki, K.: Self-attention based context-aware
3d object detection (2021). arXiv preprint, arXiv:2101.02672

14. Vaswani, A., et al.: Attention is all you need (2017). arXiv preprint,
arXiv:1706.03762

15. Hu, P., Ziglar, J., Held, D., Ramanan, D.: What you see is what you get: exploiting
visibility for 3d object detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11001–11009 (2020)

16. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti
dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

17. Qi, S., Zang, Y., Lyu, G., Du, M.: Research on air target image generation algo-
rithm based on generative adversarial networks. Air Space Defense 14(11), 67–73
(2021)

http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/2012.10412
http://arxiv.org/abs/2101.02672
http://arxiv.org/abs/1706.03762

	A Fusion Method of 3D Object Detection Graph Neural Network Based on Local and Global Data Augmentation
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Self-adaptive Multi-scale Voxel Downsampling Method
	3.2 Multi-step Graph Construction
	3.3 Fusion of the Self-attention and Visibility Feature

	4 Experiments
	4.1 Data Augmentation
	4.2 Implementation Details
	4.3 Ablation Study
	4.4 Results

	5 Conclusion
	References




