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Abstract. This paper considers a distributed Nash equilibrium (NE)
seeking problem with limited communication capacity. A fully dis-
tributed NE seeking algorithm is proposed with quantized information,
including projected pseudo-gradient dynamics, distributed decision esti-
mation and adaptive quantization. Based on a proposed encoder-decoder
scheme, the algorithm is able to converge to the theoretical NE without
any errors caused by quantization. Finally, a numerical simulation is
provided to validate the effectiveness of our algorithm.
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1 Introduction

In recent years, a noncooperative game problem has been a hot issue due to
its widespread applications, including but not limited to the modelling of some
engineering, economic, and social problems [1,2]. In a game, each player can be
considered as a selfish decision maker that only aims optimizing its individual
but inter-dependent payoff function. Nash equilibrium (NE) computation is one
key issue of the noncooperative game. Note that most of traditional NE seeking
algorithms depend on a central node, which broadcasts information to all players
involved in a game, however, such a node could not exist in practice. Thus,
distributed algorithms have been proposed, which make it possible to calculate
NE only through communication with neighbors. With the popularization of
large-scale networks, the distributed NE seeking problem has become a new
thriving research topic [3–11].

In a non-cooperative game, the objective function of each player not just
depends on its own decision, but also other players’ decisions, some of which
may be not directly obtained. In order to make up for the necessary decisions,
each player estimates the decisions of other players by exchanging information
with neighbors. This implies that communication plays an increasingly vital role
in distributed algorithms. The increase in number of players leads to a great deal
of information generated that needs to be transmitted through the network. Note
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that the network bandwidth is limited in practice and may not be capable of
transiting such much information [12–15]. As such, data quantization is hardly
avoided, and becomes one of the mostly investigated network-induced effects.

In general, the quantization effects are likely to degrade the algorithm per-
formance since the quantization inevitably brings some errors to the design and
implementation of NE algorithms [16]. In this case, how to guarantee the con-
vergence of NE becomes rather challenging. As we know, there have been some
initial works on distributed optimization with quantized information [17–21].
Unfortunately, to the best of the authors’ knowledge, distributed NE seeking
problem for noncooperative games subject to quantization has not gained ade-
quate research attention yet. The recent work [22] has discussed impacts of quan-
tization on discrete-time gradient-based Nash equilibrium seeking algorithm,
where each player is assumed to have capacity of broadcasting its quantized
information to all the other players in the game. Such an algorithm could not
be appropriate for large-scale games, which motivates us to further study dis-
tributed NE seeking with quantized information.

In this paper, we concentrate on a distributed NE seeking problem with lim-
ited bandwidth constraints, where each player exchanges quantized information
with its neighbors. A encoder-decoder scheme is well-designed for each player,
and a effective NE seeking algorithm is designed with quantized information.
The proposed distributed algorithm is proved to guarantee the convergence of
NE without any errors caused by quantization.

The rest of the paper is organized as follows: the formulation of the problem
is presented in Sect. 2. In Sect. 3, we design an adaptive uniform quantizer, and
the distributed NE seeking strategy with quantization is proposed. Simulation
results are performed in Sect. 4 to demonstrate the effectiveness of the proposed
algorithm and conclusions of the paper are provided in Sect. 5.

Notation. The notation used here is fairly standard except where otherwise
stated. N denotes the set of natural numbers containing 0. R and R

n are the
set of real numbers and n dimensional Euclidean space, respectively; 0n and
1n respectively represent n-dimension vectors with all elements being 0 and 1;
In the n-dimension identity matrix, and the subscripts could be omitted if no
ambiguity. Given m vectors x1, · · · , xm, N = {1, 2, · · · ,m}, x := col

(
(xi)i∈N

)
=

[
x�
1 . . . x�

m

]� and x−i = col
(
(xj)j∈N\{i}

)
=

[
x�
1 , · · · , x�

i−1, x
�
i+1, · · · , x�

m

]�.
The Euclidean vector norm is represented by ‖ · ‖. For a given positive num-
ber a ∈ R, �a� stands for the smallest integer greater than or equal to a. Given
a matrix A ∈ R

m×n, [A]i,j stands for its (i, j) and A� represents its trans-
pose, the second superscript will be omitted when n = 1. Let σ(A) denote
its singular, and ‖A‖ = σmax(A) stand for its 2-induced matrix norm, where
σmax (A) represent its maximum singular value. For a square matrix A ∈ R

n×n,
let A > 0 denote that it is a symmetric positive definite matrix. For a symmetric
matrix A ∈ R

n×n, λ = {λ1, · · · , λm} denotes the set of eigenvalues of matrix A,
and as the subscript increases, the corresponding eigenvalues also increase, i.e.,
λmin(A) = λ1(A), λmax(A) = λm(A). Let diag (A1, . . . , AN ) denote the block
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diagonal matrix with A1, . . . , AN on the main diagonal. Given matrices A and
B, A ⊗ B stands for the Kronecker product.

For a differentiable function f : R
m → R, its gradient is represented by

∇xf(x). Given a mapping F : R
n → R

m, it is called θ-Lipschitz continuous, if
and only if, for some θ > 0, ‖F(x) − F(y)‖ ≤ θ‖x − y‖, for any x, y ∈ R

n, and
it is called (μ-strongly) monotone if(for some μ > 0), (F(x) − F(y))�(x − y) ≥
0
(≥ μ‖x − y‖2), for any x, y ∈ R

n. Let projS : R
n → Ω denote the Euclidean

projection onto a closed convex set Ω, i.e., projΩ (x) := argminy∈Ω ‖y − x‖.

2 Problem State

Consider the noncooperative game G = {V,J , x}, where V := {1, · · · , N}
represents players involved in the game. Let J := (J1, J2, · · · , JN ), where Ji

denotes the local payoff differentiable function of each player i ∈ V. Denote
x = col (xi) ∈ Ω ⊆ R

n as the decision profile, i.e. the agents’ decisions, where
for ∀i ∈ V, xi ∈ Ωi ⊆ R

ni is its decision, Ωi represents its local feasible decision
set, n =

∑N
i=1 ni and Ω = Ω1 × Ω2 × · · · × ΩN denotes the overall action space.

In the setup of the noncooperative game, the local payoff function Ji can be
written as Ji (xi, x−i), where x−i = col

(
(xj)j∈V\{i}

)
∈ R

n−ni stands for the
decision profile of all other players’ decisions.

Then the game is represented by the inter-dependent optimization problems:

∀i ∈ V : argmin
yi∈Ωi

Ji (yi, x−i) (1)

Definition 1. A set of strategies x∗ = col
(
(x∗

i )i∈N
) ∈ Ω is a Nash equilibrium,

if and only if, for all i ∈ V :

Ji

(
x∗

i , x
∗
−i

) ≤ inf
yi∈Ωi

Ji

(
yi, x

∗
−i

)

In this paper, we consider a partial-decision information scenario, where each
agent i has no access to all other players information and computes only by
locally exchanging data with their neighbors over a directed communication
network G (V, E). If agent i can send information to agent j, then (i, j) ∈ E and
agent j belongs to agent i’s out-neighbor set N i = {j | (i, j) ∈ E}. Similarly,
we can define agent i’s in-neighbor set Ni = {j | (j, i) ∈ E}. Let W ∈ R

N×N

denote the weighted adjacency matrix of G and wi,j := [W ]i,j , with wi,j > 0 if
(i, j) ∈ E , wi,j = 0 otherwise.

Our target is to propose a distributed algorithm with quantization scheme
that allows players to find a NE limited by finite communication capacity
between players.

To start with, we propose some common but significant regularity assump-
tions to facilitate the analysis of convergence.

Assumption 1 (Regularity and convexity): For each player i ∈ V, the set Ωi is
non-empty compact and convex; given x−i, Ji (xi, x−i) is continuously differen-
tial and convex.



596 X. Rao and W. Xu

Under Assumption 1, a NE of game (1) is defined as x∗ ∈ Ω solution of the
following variational inequality VI (F, Ω) [17, Prop. 1.4.2].

〈F (x∗) , x − x∗〉 ≥ 0,∀x ∈ Ω. (2)

where F is the pseudo-gradient of the game defined as:

F (x) := col
(
(∇xi

Ji (xi, x−i))i∈V
)

(3)

or, equivalently, for any α > 0 [17, Prop. 1.5.8],

x∗ = projΩ (x∗ − αF (x∗)) (4)

Assumption 2. The pseudo-gradient mapping F is μ-strongly monotone and
�0-Lipschitz continuous.

In the projected-gradient algorithm with a fixed step-size, strong monotonic-
ity of F is a standard assumption to guarantee the convergence of the algo-
rithm [9,10]. Under Assumption 1 and 2, there exists a unique solution x∗ of
the VI (F,Ω), due to that the strong monotonicity of the pseudo-gradient F is
guaranteed [23]. Thus the game (1) has an unique NE.

Assumption 3. The graph G is strongly connected, and for it, the following
hold:

(i) Self-loops: wi,i > 0 for all i ∈ V;
(ii) Double stochasticity: W1N = 1N ,1�

NW = 1�
N .

In practice, for connected undirected graphs, Assumption 3 is easily to meet.
In our setting that considers a directed graph, which is strongly connected, we
can use an iterative distributed strategy [24] to compute a weight assignment to
make the obtained adjacency matrix with self-loops doubly stochastic.

Under Assumption 3, we can figure out σN−1 (W ) < 1, where σN−1 (W )
stands for the second largest singular value of W . What’s more, for any x ∈ R

N ,

‖W (x − 1N x̄)‖ ≤ σN−1 (W ) ‖x − 1N x̄‖ (5)

where x̄ = 1
N 1�

Nx is the average of x. In order to simplify the notation, we use
σ̄ to represent σN−1 (W ), and obviously σ̄ ∈ (0, 1).

3 Algorithm Design

In this section, we propose a encoder-decoder scheme and based on it, we design
a quantized pseudo-gradient fully distributed algorithm to seek a NE of the game
(1). To handle the problems brought by partial-decision information, an auxiliary
variable xi is endowed with each player to provide an estimate of all other agents’
decisions. Let xi = col

(
(xi,j)j∈V

)
∈ R

n, where xi,i := xi and xi,j denotes agent

i ’s estimate of agent j ’s decision, for all j �= i; xi,−i = col
(
(xi,l)l∈V\{i}

)
is

agent i’s estimates of decisions made by all agents except himself. Also, let xQ
ij ∈

R
n denotes agent j ’s estimate of xi, for all j �= i.
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3.1 Quantization Scheme Design

To satisfy the data-rate constraint, each i, i ∈ V transmits the quantified data of
xi to and also receives the quantified data of xj from its in-neighbor j, j ∈ Ni. A
standard uniform quantizer Q [γ] is defined for a vector γ =

(
γ1, · · · , γm

)T ∈ R
m

with 2K + 1 quantization levels as follows:

Q[γ] =
(
q
[
γ1

]
, . . . , q [γm]

)�

where

q
[
γi

]
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 − 1
2 ≤ γi ≤ 1

2

j 2j−1
2 < γi ≤ 2j+1

2 , j = 1, . . . ,K − 1
K 2K−1

2 < γi

−q
[−γi

]
γi < − 1

2

(6)

As we can see, the quantization bin width of Q[γ] is 1. When ‖γ‖∞ ≤ K + 1
2 ,

it is called unsaturated and then the quantization error could be bounded, i.e.,

‖γ − Q[γ]‖∞ ≤ 1
2

(7)

Remark 1. The quantization of (6) could be expressed as �log2(2K + 1)�
bits, so through a (2K + 1)-level quantizer Q[ · ], we only need to trans-
fer �m log2(2K + 1)�-bit data if we want to transmit an m-dimensional vector
γ ∈ R

m.

To achieve the consensus with quantization error and with the enlightenment
of the adaptive quantization ideas to solve the problem of quantized average
consensus problem in [17,25,26], we put forward an encoder-decoder proposal.
A global scaling function s(k) is introduced to control the quantization error,
which decreases to 0 as k → ∞. For each i ∈ V and j ∈ N i, agent i generates
the quantized data zi through the encoder Fi→j and sends it to agent j ∈ N i.
Then, agent j decodes what received from agent i through the decoder �j→i,
and then obtains the estimation of agent i ’s decision xQ

ij .
Correspondingly, the dynamic encoder Fi for agent i is given as follows:

{
zi(k) = Q

[
1

s(k) (xi(k) − ξi(k − 1))
]

ξi(k) = s(k)zi(k) + ξi(k − 1), ξi(−1) = 0
(8)

And the decoder �j→i is designed for agent j to handle the data received from
agent i and obtain an estimation of xi

xQ
ij(k) = s(k)zi(k) + xQ

ij(k − 1), xQ
ij(−1) = 0 (9)
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Remark 2. Note that xQ
ij(k) and ξi(k) have the same dynamics with the same

initial value, which implies that

ξi(k) = xQ
ij(k),∀j ∈ N i k = −1, 0, 1, · · · (10)

In this case, agent i is able to know the value of agent j’s estimation of its
decision, i.e., xQ

ij. Such a point is important for eliminating quantization errors
in our algorithm design.

Assumption 4. There exists positive constant M0 and M∗ such that for i ∈ V
‖xi(0)‖∞ ≤ M0, ‖x∗‖∞ ≤ M∗. (11)

Assumption 4 ensures the quantizer is not saturated at the initial moment
t = 0. It has been widely used in the research of quantitative cooperative control
of multi-agent system [17,18].

3.2 Distributed and Quantized Algorithm Design

Algorithm 1. Distributed quantized algorithm for agent i

Initialize: for all i ∈ V, set xi,i (0) ∈ Ωi, xi,−i (0) ∈ R
n−ni , ξi (−1) = 0

for k ∈ N do
for all i = 1, 2, · · · , N do

agent i sends zi (k) to j ∈ Ni

for all j ∈ Ni do
xQ

ij (k) = s (k) zi (k) + xQ
ij (k − 1),

xQ
ij (−1) = 0

end for
x̂i (k) =

∑N
j=1j �=i wj,ix

Q
ji (k) + wi,iξi (k)

xi,i (k + 1) = projΩi
(x̂i,i (k) − α∇xiJi (x̂i (k)))

xi,−i (k + 1) = x̂i,−i (k)

zi(k + 1) = Q
[

1
s(k+1)

(xi(k + 1) − ξi(k))
]

ξi(k + 1) = s(k + 1)zi(k + 1) + ξi(k)
end for

end for

Next, Algorithm 1 is written in compact form. Let, x = col (xi)i∈V ∈ R
Nn, and

from (10), for all i ∈ V, we can use ξi to represent its out-neighbors’ estimates
of its decision, i.e., xQ

ij , j ∈ N i. Then we can define xQ = col (ξi)i∈V ∈ R
Nn.

And, for all i ∈ V
Ri :=

[
0ni×n<i

Ini
0ni×n>i

] ∈ R
ni×n (12)

where n<i :=
∑

j<i,j∈V nj , n>i :=
∑

j>i,j∈V nj . Then we can use Ri to select
the i th component from an n-dimensional vector, i.e., Rixi = xi,i = xi. With
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Rixi = xi,i = xi, x can be written as x = Rx, where R := diag
(
(Ri)i∈V

) ∈
R

n×Nn. The extended pseudo-gradient mapping F is defined as:

F (x) := col
(
(∇xi

Ji (xi,xi,−i))i∈V
)

(13)

With above notations, Algorithm 1 reads in compact form as:

x (k + 1) = projΩ
(
WxQ (k) − αR�F

(
WxQ (k)

))
(14)

where Ω :=
{
x ∈ R

Nn | Rx ∈ Ω
}

and W := W ⊗ In.

Lemma 1. ([21, Lemma 3]): Let Assumption 2 hold. Then there exists some
μ ≤ � ≤ �0, the extended pseudo-gradient mapping F is �-Lipschitz continuous.

Lemma 2. Suppose Assumption 1–4 hold and let

Mα =

⎡

⎣
1 − 2αμ

N + α2�20
N

(
α(�+�0)+α2�0�√

N

)
σ̄

(
α(�+�0)+α2�0�√

N

)
σ̄

(
1 + 2α� + α2�2

)
σ̄2

⎤

⎦ (15)

If the step size α > 0 and

α < min

{
σ̄

3�0
,
2μ

�20

}

0 < 2μ
(
1 − σ̄2

) − α
(
σ̄2

(
2�0� + �2 + 4μ� + 2�20

) − �20
)

(16)

− α2
(
�0�

2 + μ�2 + 2�20�
)
2σ̄2 − α32�20�

2σ̄2

then

ρα := λmax (Mα) = ‖Mα‖ < 1. (17)

In order to guarantee that the quantizer will never be saturated, i.e.

∀k, ‖ 1
s(k)

(xi(k) − ξi(k − 1)) ‖∞ ≤ K +
1
2

(18)

we select the quantizer’s parameters as follows,
(a) Design the scaling function s(k) as:

s (k) = M
(
1 − ρ1/4

α

)
ρ(k−1)/4

α (19)

where M := M0 + M∗.
(b) Choose K:

K = �ρ
1/2
α + ρ

1/4
α + 2ρ

−1/4
α

2
(
1 − ρ

1/4
α

) − 1
2
� (20)

Theorem 1. Suppose Assumption 1–4 hold, make sure that positive number
α meet (16), and the quantizer’s parameters are chosen according to (19) and
(20). Then the sequence (x (k))k∈N

generated by Algorithm 1 will converge to
x∗ = 1N ⊗ x∗, where x∗ is the NE of the game in (1), with

‖x(k + 1) − x∗‖ ≤ M(
√

ρα)k+1 (21)
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4 Simulation

For the simulation purpose, we consider a quadratic model from classical eco-
nomic in [3]. There are a total of N manufacturers producing homogeneous
products commodity. Its decision xi is the vector of firm i’s production quantity,
for i = 1, · · · , N . ui stands for firm i’s cost function of producing the commod-
ity and f denotes the demand price, and they’re functions of xi and

∑N
i=1 x2

i ,
respectively. Each firm i intends to maximize its profits, i.e., minimize its total
cost function Ji (xi, x−i) = ui (xi) − xif

(∑N
i=1 x2

i

)
.

In the following we verify our fully distributed quantized NE seeking algo-
rithm via a numerical simulation. The setup we considered consists of five com-
panies (N = 5), each has a production cost function with the form ui (xi) = cixi

where ci = 100 + 50(i − 1), for i = 1, · · · , 5. The form of the demand price
function is f

(∑5
i=1 x2

i

)
= 600 − ∑5

i=1 x2
i . The communication graph G is as

in [1, Fig. 1]. We compare our quantized algorithm with algorithm 1 in [3] and
verify the correctness of our quantized algorithm through this example over
Xi = [0, 100] for all i ∈ {1, · · · , 5}. Figure 1 demonstrates the convergence
of the quantities produced by companies to the theoretical Nash equilibrium(
x∗ = [10.35, 9.06, 7.56, 5.67, 2.67]T

)
with no quantization errors. The relative

error evolution of all agents’ decisions denoted as ‖x−x∗‖
x∗ is shown in Fig. 2.
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5 Conclusions

This paper has considered distributed NE seeking with finite communication
bandwidth constraints over a directed graph. Based on a proposed encoder-
decoder scheme, we proposed a quantized fully distributed NE seeking algo-
rithm. Both theoretical proof and numerical simulation verified that our algo-
rithm would exponentially converge to the real NE.
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6 Appendix

Proof of Theorem 1
Let E := {y ∈ R

Nn | y = 1N ⊗ y, y ∈ R
n
}

denote the estimate consensus sub-

space, E⊥ :=
{

y ∈ R
Nn | (1N ⊗ In)�

y = 0n

}
stand for its orthogonal com-

plement with R
Nn = E ⊕ E⊥. Any vector x ∈ R

Nn has a decomposition as
x = x‖ + x⊥, with x‖ = projE (x),x⊥ = projE ⊥(x) = 1

N

(
1N1�

N ⊗ In

)
x, and

x�
‖ x⊥ = 0. Meanwhile, for the sake of simplicity, we use Fx and Fx in place of

F (x) and F (x). Then the iteration in (14) can be written as

x (k + 1) = projΩ
(
ξ̂ (k) − αR�F ξ̂ (k)

)
, ξ̂ (k) = Wξ (k) (22)

Let x∗ denote the unique NE of the game in (1), and x∗ := 1N ⊗ x∗. Recalling
that x∗ = projΩ (x∗ − αFx∗) by (4), then x∗ = projΩ

(
x∗ − αR�FWx∗) .

Owing to the fact that, Wx∗ = (W ⊗ In) (1N ⊗ x∗) = 1N ⊗ x∗ = x∗; hence
x∗ is a fixed point for (22). Let ξ (k) = ξ ∈ R

Nn and ξ̂ = Wξ = ξ̂‖ + ξ̂⊥ =
1N ⊗ ξ̂‖ + ξ̂⊥ ∈ R

Nn. Thereby, it holds that

‖x (k + 1) − x∗‖2

=
∥
∥
∥projΩ

(
ξ̂ − αR�F ξ̂

)
− projΩ

(
x∗ − αR�Fx∗)

∥
∥
∥
2

≤
∥
∥
∥
(
ξ̂ − αR�F ξ̂

)
− (

x∗ − αR�Fx∗)
∥
∥
∥
2

=
∥
∥
∥ξ̂‖ + ξ̂⊥ − x∗ + αR�

(
−F ξ̂ + Fx∗ + F ξ̂‖ − F ξ̂‖

)∥
∥
∥
2

=
∥
∥
∥ξ̂‖ − x∗

∥
∥
∥
2

+
∥
∥
∥ξ̂⊥

∥
∥
∥
2

+ α2
∥
∥
∥R�

(
F ξ̂ − F ξ̂‖ + F ξ̂‖ − Fx∗

)∥
∥
∥
2

− 2α
(
ξ̂‖ − x∗

)�
R�

(
F ξ̂ − F ξ̂‖

)
− 2α

(
ξ̂‖ − x∗

)�
R�

(
F ξ̂‖ − Fx∗

)

− 2αξ̂⊥R�
(
F ξ̂ − F ξ̂‖

)
− 2αξ̂

�
⊥R�

(
F ξ̂‖ − Fx∗

)

≤
∥
∥
∥ξ̂‖ − x∗

∥
∥
∥
2

+
∥
∥
∥ξ̂⊥

∥
∥
∥
2

+ α2

(
�2

∥
∥
∥ξ̂⊥

∥
∥
∥
2

+
�20
N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥
2

+
2�0�√

N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥

∥
∥
∥ξ̂⊥

∥
∥
∥
)

+
2α�√

N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥

∥
∥
∥ξ̂⊥

∥
∥
∥

− 2αμ

N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥
2

+ 2α�
∥
∥
∥ξ̂⊥

∥
∥
∥
2

+
2α�0

∥
∥
∥ξ̂⊥

∥
∥
∥

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥

√
N

where the first inequality follows by nonexpansiveness of the projection [22, Prop.
4.16], and to bound the addends in penultimate equation we used, in the order:

• 3rd term:‖R‖ = 1, Lipschitz continuity of F , and ‖F ξ̂‖− Fx∗‖ = ‖F ξ̂‖ −
Fx∗ ‖≤ �0‖ ξ̂‖ − x∗

∥
∥
∥= �0√

N

∥
∥
∥ ξ̂‖ − x∗‖;
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• 4th term:∥
∥
∥R

(
1 ⊗

(
ξ̂‖ − x∗

))∥
∥
∥ =

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥ = 1√

N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥;

• 5th term:(
ξ̂‖ − x∗

)�
R�

(
F ξ̂‖ − Fx∗

)
=

(
ξ̂‖ − x∗

)� (
F ξ̂‖− Fx∗) ≥ μ

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥
2

=

1
N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥
2

;

• 6th term:Lipschitz continuity of F ;
• 7th term:

∥
∥
∥F ξ̂‖ − Fx∗

∥
∥
∥ ≤ �0√

N

∥
∥
∥ξ̂‖ − x∗

∥
∥
∥ as above.

Besides, for every ξ = ξ‖ + ξ⊥ ∈ R
Nn and for all k ∈ N, it holds that ξ̂ =

Wξ = ξ‖ + Wξ⊥, where Wξ⊥ ∈ E⊥, by doubly stochasticity of W , and
‖x̂⊥‖ = ‖W kξ⊥‖ ≤ σ̄ ‖ξ⊥‖ by (5), properties of the Kronecker product and
the unsaturation by (18). Thus, we can finally write, for all k ∈ N, for all
x (k + 1) ∈ R

Nn,

‖x (k + 1) − x∗‖2 ≤
[∥

∥
∥ξ‖ (k) − x∗

∥
∥
∥

‖ξ⊥ (k)‖

]�
Mα

[∥
∥
∥ξ‖ (k) − x∗

∥
∥
∥

‖ξ⊥ (k)‖

]

≤ ρα

(∥
∥
∥ξ‖ (k) − x∗

∥
∥
∥
2

+ ‖ξ⊥ (k)‖2
)

= (
√

ρα(‖ξ(k) − x∗‖)2

≤ (
√

ρα(‖x(k) − x∗‖ +
s(k)
2

))2

· · ·
≤ 1

2
[(

√
ρα)k+1s(0) + (

√
ρα)ks(1) + · · · + (

√
ρα)s(k)])2

+ ((
√

ρα)k+1 ‖x(0) − x∗‖∞

= ((
√

ρα)k+1 ‖x(0) − x∗‖∞ +
Mρ

k+1
2

α (1 − ρ
− k+1

4
α )

2ρ
1
4
α

)2

From (11), and (17), we obtain

‖x(0) − x∗‖∞ ≤ M

and
Mρ

k+1
2

α (1 − ρ
− k+1

4
α )

2ρ
1
4
α

< 0

Then,
‖x(k + 1) − x∗‖∞ ≤ M(

√
ρα)k+1 (23)

Finally, when k → ∞, M(
√

ρα)k+1 decrease to 0. Hence, Algorithm 1 converges.
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