
An Improved Distributed Optimization
Algorithm over Unbalanced Directed

Graph

Zhenteng Gao and Lipo Mo(B)

School of Mathematics and Statistics, Beijing Technology and Business University,
Beijing 100048, China

beihangmlp@126.com, molipo@th.btbu.edu.cn

Abstract. This paper mainly discusses the common distributed opti-
mization problem over unbalanced directed graph. Assumed that the
local objective function of each agent is strongly convex and has a Lips-
chitz continuous gradient. An improved distributed algorithm is proposed
by introducing a momentum term and different local step lengths. Then
we prove that all agents would find the optimal value under our algorithm
when the maximum step length and the momentum parameter satisfy a
certain range and are positive. At last, we illustrate the effectiveness of
the obtained results by a numerical experiment.
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1 Introduction

Recently, distributed optimization problems have received extensive attention,
and it is very helpful to solve this problem by the distributed consensus algorithm.
We improved the consensus algorithm to solve the distributed optimization prob-
lem in this paper, where each agent can access to one cost function fi : IRm → IR,

and all agents collaboratively minimize the entire function 1
n

n∑

i=1

fi(x) through the

exchange of information between agents. This paper focuses on the situation of
unbalanced directed graph. Early works about distributed optimization problems
mainly included distributed gradient descent [1] and distributed dual averaging
[2] over undirected graphs. It was proved that the optimal value could be found
at a linear rate of O( lnk√

k
) for any convex function, and the rate of O( lnk

k )for any
strongly convex function, where k is the number of iterations. Under the conditions
of strong convexity and Lipschitz continuous gradient, algorithms were improved
with faster convergence speed. For example, the algorithm with a constant step
size geometrically converged to an error ball around the optimal solution, there
was another method that requires symmetric weights to achieve global geometric
convergence. In [4–6], the imprecise gradient method and the gradient estimation
method were introduced to deal with this problem.
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The aforementioned methods were all for undirected graph. When the com-
munication capabilities between agents were inconsistent, the algorithm for undi-
rected graph would no longer be applicable. Therefore, algorithms suitable for
directed graphs need to be developed. The Push-sum method and the DGD
(distributed sub-gradient descent) method were introduced for directed graphs
in [7–10]. However, the effect of the reduction of the step size resulted in a rela-
tively slow convergence rate. Literature [11] assumed that the objective function
has a Lipschitz continuous gradient and is strongly convex. It was shown that
all agents would converge to the optimal value at geometrical rate. By con-
structing a row stochastic matrix and a column stochastic matrix, another type
of algorithm was proposed [12–14], where the row random matrix ensured the
consistency of the algorithm, and the column randomness matrix was used to
guarantee the optimality. In [12,13], the cases of fixed strong connectivity and
time-varying strong connectivity were considered, based on which, the gravity
ball was introduced to improve the convergence rate of algorithms.

For second order and heterogeneous multi-agent systems, some improve algo-
rithms were also proposed in [16,17]. Inspired by the literature [12], we studies
an improved fully distributed algorithm to optimize all objective functions in a
distributed manner, where the momentum term is borrowed to improve the con-
vergence rate. It is shown that the position states of every agents would converge
to the optimal solution of the objective function by the nature of the random
matrix.

In represents an n-dimensional unit matrix, and 1n represents a column vec-
tor whose components are all ones. ρ(x) represents the spectral radius of the
vector x, and X∞ represents the infinite power of the matrix X. For the row
random matrix A, πr and 1n to represent the left and right eigenvectors of A
respectively, such that πT

r 1n = 1. Similarly, for the column random matrix B,
1n and πc to represent the left and right eigenvectors of B respectively, such
that πT

c 1n = 1. ‖ · ‖2 represents the 2-Norm of the vector. |||·|||2 represents the
spectral norm of the matrix.

2 Graph Theory Foundation and Problem Description

G = (V, E) denotes a directed graph, where V = {1, 2, . . . , n} represents the
set of network agents, and E represents the set of edges between agents in the
network. (j, i) or j → i indicates that there is a directed edge that transmits
information from the agent j to the agent i. For ∀ i,j, if there is a directed
path (i1, is1), (is1, is2), . . . , (isk, j), then it is called a strongly connected graph.
In addition, N in

i = {j | (j, i) ∈ E} represents the into-neighbor set of the agent i,
that is the set of agents that the agent i can receives information from. Similarly,
Nout

i = {j | (i, j) ∈ E} represents the out-neighbors set of the agent i, that is
the set of agents that can receive information from agent i. Note that both N in

i

and Nout
i contain node i.
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In the distributed convex optimization problem, each agent i can access to
a local decision variable xi ∈ IRm and a convex cost function fi(x). The goal of
this problem is to minimize the following integral objective function.

min f(x) =
1
n

n∑

i=1

fi(x), x ∈ IRm (1)

Each agent i can only obtain its own cost function fi(x) : IRm → IR. Assume
that each cost function is strongly convex and its gradient is Lipschitz.

Assumption 1. G is directed strongly connected graph.

Assumption 2. The gradient of the objective function of each agent satisfies
Lipschitz condition, that is, for any agent i and x, y ∈ IRm, there is a constant
li such that:

‖∇fi(x) − ∇fi(y)‖ ≤ li‖x − y‖ (2)

Assumption 3. The cost function of each agent is strongly convex, that is, for
any agent i and x, y ∈ IRm, there is a positive constant μ such that:

fi(x) − fi(y) ≥ ∇fi(x)T(x − y) − μ

2
‖x − y‖22 (3)

Remark 1: Assumption 2 and Assumption 3 ensure that the global optimal
solution x∗ exists and is unique respectively. Assumption 3 is conducive to the
subsequent proof of the convergence of the algorithm.

3 Algorithm Design

We propose the following algorithm to solve problem (1) in this paper. Each
agent i contains two variables xi,k, si,k in the network, and k represents iteration
step, where i ∈ V, xi,k, si,k ∈ IRm. The system satisfies the initial state si,0 =
∇fi(xi,0), i ∈ V.

xi,k+1 =
n∑

j=1

aijxj,k − αisi,k + β[
n∑

j=1

aij(xj,k − xi,k)]− (4a)

si,k+1 =
n∑

j=1

bij [sj,k + ∇fj(xj,k+1) − ∇fj(xj,k)] (4b)

where αi and β are both positive constants. The weights aij and bij satisfy the
following:

aij =

{
> 0, j ∈ N in

i ,

0, j /∈ N in
i ,

n∑

j=1

aij = 1,∀i, (5)

bij =

{
> 0, i ∈ Nout

j ,

0, i /∈ Nout
j ,

n∑

i=1

bij = 1,∀j, (6)
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Ā = {aij} represents the row random matrix, and B̄ = {bij} represents the
column random matrix.

Denote xk = [xT
1,k, . . . , xT

n,k]T , sk = [sT
1,k,,. . . , sT

n,k]T , ∇f(xk) =
[∇f1(x1,k)T , . . . ,∇fn(xn,k)T ]T . LetA = Ā⊗ Im,B = B̄ ⊗ Im, then Eq. (4) can be
rewritten the following form:

xk+1 = Axk − Dαsk + β[Axk − xk]− (7a)

sk+1 = B[sk + ∇f(xk+1) − ∇f(xk)] (7b)

where Dα represents a diagonal matrix whose diagonal elements are αi, and
other elements are 0, where s0 = ∇f(x0), and x0 is arbitrary.

4 Algorithm Convergence Analysis

First, let us prove a key lemma, which involves the shrinkage of the consistency
process of the row and column random matrix respectively.

Lemma 1. A = Ā ⊗ Im and B = B̄ ⊗ Im are weight matrices, there are vector
norms ‖ · ‖A and ‖ · ‖B such that for ∀x ∈ IRmn ,

‖Ax − A∞‖A ≤ σA‖x − A∞x‖A (8)

‖Bx − B∞‖B ≤ σB‖x − B∞x‖B . (9)

Proof. Since Ā is irreducible, its diagonal elements are all positive, and the rows
are random. According to the Perro-Frobenius theorem, ρ(Ā) = 1. Every eigen-
value except 1 is strictly less than ρ(Ā), πT

r is a strictly positive left eigenvector
corresponding to eigenvalue 1, and πT

r 1n = 1. Therefore, lim
k→∞

Āk = 1nπT
r , and

A∞ = lim
k→∞

Ak = ( lim
k→∞

Āk) ⊗ Im = (1nπT
r ) ⊗ Im.

Then

AA∞ = (Ā ⊗ Im)((1nπT
r ) ⊗ Im) = A∞

A∞A∞ = ((1nπT
r ) ⊗ Im)((1nπT

r ) ⊗ Im) = A∞
Therefore,AA∞ − A∞A∞ = 0, then there are the following formulas

Ax − A∞x = (A − A∞)(x − A∞x). (10)

Because ρ(A − A∞) = ρ((Ā − 1nπT
r ) ⊗ Im) < 1, according to [15], there is a

matrix norm |||·|||A such that σA = |||A − A∞|||A < 1. In addition, according to
Theorem 5.7.13 in [15], there is a corresponding vector norm |||·|||A for any matrix
norm ‖ · ‖A, such that for all matrices Y and vectors y , ‖Y y‖A ≤ |||Y |||A‖y‖A .
Therefore, Eq. (10) leads to:

‖Ax − A∞x‖A = ‖(A − A∞)(x − A∞x)‖A

≤ |||A − A∞|||A‖x − A∞x‖A = σA‖x − A∞x‖A.

The Eq. (8) of Lemma 1 is proved. The same is true for Eq. (9).
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Lemma 2.
(1T

n ⊗ Im)sk = (1T
n ⊗ Im)∇f(xk),∀k.

Proof. (1T
n ⊗ Im)sk = (1T

n ⊗ Im)(B̄ ⊗ Im)[sk + ∇f(xk+1) − ∇f(xk)] = (1T
n ⊗

Im)sk + (1T
n ⊗ Im)(∇f(xk+1) − ∇f(xk)) = (1T

n ⊗ Im)(s0 − ∇f(x0)) + (1T
n ⊗

Im)∇f(xk) = (1T
n ⊗ Im)∇f(xk).

Lemma 3 [18]. If the function f satisfies Assumptions 2 and 3, and l and μ
are respectively strongly convex and Lipschitz continuous coefficients, then for
∀x ∈ IRm, 0 < α < 1

l ,

‖x − α∇f(x) − x∗‖ ≤ (1 − μα)‖x − x∗‖.

Lemma 4 [15]. Suppose W ∈ IRn×n is non-negative, and w ∈ IRn is positive.
If Ww < ζw with ζ > 0, then ρ(W ) < ζ.

The subsequent analysis of convergence is carried out from the contraction
relationship of the following four quantities.
1) ‖xk+1 − A∞xk+1‖A;
2) ‖xk+1 − Axk+1‖2;
3) ‖A∞xk+1 − 1n ⊗ x∗‖2;
4) ‖sk+1 − B∞sk+1‖B .

Norms in finite-dimensional linear space are equivalent, that is, there are
positive constants c, d, h, q, g, p such that the vector norm satisfies the following
inequality:

‖ · ‖A ≤ c‖ · ‖B , ‖ · ‖2 ≤ h‖ · ‖B , ‖ · ‖2 ≤ g‖ · ‖A,

‖ · ‖B ≤ d‖ · ‖A, ‖ · ‖B ≤ q‖ · ‖2, ‖ · ‖A ≤ p‖ · ‖2.
Lemma 5. For ∀k ≥ 0, the following inequality holds,

‖sk‖2 ≤ h‖sk‖B + |||B|||2 l̄g‖sk‖A + |||B|||2 l̄‖A∞xk − 1n ⊗ x∗‖2
where l̄ = max {li}.

Proof.

‖sk‖2 ≤ h‖sk − B∞sk‖B + ‖B∞sk‖2
‖B∞sk‖2 = ‖(πc ⊗ Im)(1T

n ⊗ Im)sk‖2 = ‖πc‖2‖(1T
n ⊗ Im)sk‖2 =

‖πc‖2‖
n∑

i=1

∇fi(xi,k) −
n∑

i=1

∇fi(x∗)‖2 ≤ ‖πc‖2 l̄
n∑

i=1

‖xi,k − x∗‖2 ≤ ‖πc‖2 l̄
√

n‖xk −
1n ⊗ x∗‖2 ≤ |||B|||2 l̄g‖xk − A∞xk‖A + |||B|||2 l̄‖A∞xk − 1n ⊗ x∗‖2.

The proof is completed.
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Lemma 6. For ∀k ≥ 0, we have the following inequality,
‖xk+1 − A∞xk+1‖A ≤ σA‖xk − A∞xk‖A + ᾱp|||Imn − A∞|||2‖sk‖2 +

β|||Imn − A∞|||A‖Axk − xk‖A.
where ᾱ = max {αi}.

Proof. ‖xk+1 − A∞xk+1‖A = ‖Axk − Dαsk + β[Axk − xk]− − A∞xk +
A∞Dαsk − βA∞[Axk − xk]−‖A ≤ σA‖xk − A∞xk‖A + ᾱ‖sk − A∞sk‖A +
β|||Imn − A∞|||A‖Axk − xk‖A ≤ σA‖xk − A∞xk‖A + ᾱp|||Imn − A∞|||2‖sk‖2 +
β|||Imn − A∞|||A‖Axk − xk‖A.

Lemma 7. For ∀k ≥ 0, we have the following inequality,
‖xk+1 − Axk+1‖2 ≤ (σA + σ2

A)g‖xk − A∞xk‖A + ᾱ|||Imn − A|||2‖sk‖2 +
β|||Imn − A|||2‖xk − Axk‖2.
Proof. ‖xk+1 − Axk+1‖2 = ‖Axk − Dαsk + β[Axk − xk]− − A2xk + ADαsk −
βA[Axk − xk]−‖A = ‖Axk − A∞xk − A2xk + A∞xk − Dαsk + ADαsk +
β[Axk − xk]− − βA[Axk − xk]−‖A ≤ σAg‖xk − A∞xk‖A + σ2

Ag‖xk − A∞xk‖A +
ᾱ‖sk − Ask‖2 + β|||Imn − A|||2‖xk − Axk‖2 ≤ (σA + σ2

A)g‖xk − A∞xk‖A +
ᾱ|||Imn − A|||2‖sk‖2 + β|||Imn − A|||2‖xk − Axk‖2.
Lemma 8. When 0 < ᾱ < 1

nlπT
r πc

, for ∀k ≥ 0, we have the following inequality:
‖A∞xk+1−1n⊗x∗‖2 ≤ (1−nμ(πT

r πc)ᾱ)‖A∞xk−1n⊗x∗‖2+ᾱ(πT
r πc)nlg‖xk−

A∞xk‖A + ᾱh‖sk − B∞sk‖B + β|||A∞|||2‖xk − Axk‖2
Proof. ‖A∞xk+1−1n⊗x∗‖2 = ‖A∞(Axk−Dαsk+(Dα−Dα)B∞s(k)+β[Axk−
xk]−) − 1n ⊗ x∗‖2 ≤ ‖A∞xk − A∞DαB∞∇f(xk) − (1n ⊗ Im)x∗‖2 + ᾱh‖sk −
B∞sk‖B + β|||A∞|||2‖xk − Axk‖2.

A∞B∞ = ((1nπT
r ) ⊗ Im)((πc1T

n ) ⊗ Im) = (πT
r πc)(1n1T

n ) ⊗ Im.
‖((1nπT

r ) ⊗ Im)xk − (1n ⊗ Im)x∗A∞DαB∞∇f(xk)‖2 = ‖(1n ⊗ Im)((πT
r ⊗

Im)xk − (πT
r diag(α)πc)(1T

n ⊗ Im)∇f(xk) − x∗‖2) ≤ ‖(1n ⊗ Im)((πT
r ⊗ Im)xk −

nπT
r πcᾱ∇f(πT

r ⊗ Imxk) − x∗)‖2 + nπT
r πcᾱ‖(1n ⊗ Im)(n∇f((πT

r ⊗ Im)xk − (1n ⊗
Im)∇fk)‖2 � s1 + s2.

From Lemma 3, if 0 < n(πT
r πc)ᾱ < 1

l .
s1 =

√
n‖(πT

r ⊗ Im)xk − nπT
r πcᾱ∇F ((πT

r ⊗ Im)xk) − x∗‖2 ≤ √
n(1 −

n(πT
r πc)ᾱ)‖(πT

r ⊗ Im)xk − x∗‖2 = (1 − nμ(πT
r πc)ᾱ)‖A∞xk − 1n ⊗ x∗‖2,

s2 ≤ ᾱ(πT
r πc)n‖∇f((1n ⊗ Im)(πT

r ⊗ Im)xk) − ∇f(xk)‖2 ≤ ᾱ(πT
r πc)nlg‖xk −

A∞xk‖A.

Lemma 9. For ∀k ≥ 0, we have the following inequality
‖sk+1 −B∞sk+1‖B ≤ σB‖sk −B∞sk‖B +σBql̄g|||A − Imn|||2‖xk −A∞xk‖2 +

σBql̄β‖xk − Axk‖2 + σBql̄ᾱ‖sk‖2.
Proof. ‖sk+1 − B∞sk+1‖B = ‖B[sk + ∇f(xk+1) − ∇f(xk)] − B∞B[sk +
∇f(xk+1) − ∇f(xk)]‖B ≤ σB‖sk − B∞sk‖B + σB l̄q‖xk+1 − xk‖2,

‖xk+1 − x(k)‖2 = ‖Axk − Dαs(k) + β[Axk − xk]− − xk‖2 ≤ ‖(A − Imn)(xk −
A∞xk)‖2 + β‖xk − Axk‖2 + ᾱ‖sk‖2.
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5 Analysis of Convergence Results

The analysis of the convergence results is given below.

Theorem 1.
tk+1 < Jᾱ,βtk,∀k ≥ 0

where tk ∈ R
4, Jᾱ,β ∈ R

4×4 are given by.

tk =

⎛

⎜
⎜
⎝

‖xk − A∞xk‖A

‖A∞xk − 1n ⊗ x∗‖2
‖xk − Axk‖2

‖sk − B∞sk‖B

⎞

⎟
⎟
⎠

Jᾱ,β =

⎛

⎜
⎜
⎝

σA + a1ᾱ a2ᾱ a3β a4ᾱ
a5ᾱ 1 − a6ᾱ a7β a8ᾱ

(σA + σ2
A)a9 + a10ᾱ a11ᾱ a12β a13ᾱ

σBa14 + σBa15ᾱ σBa16ᾱ σBa17β σB + σBa18ᾱ

⎞

⎟
⎟
⎠

where ai in the above expression are a1 = |||B|||2 l̄gm|||Imn − A∞|||2,
a2 = pl̄|||B|||2|||Imn − A∞|||2, a3 = |||Imn − A∞|||A, a4 = ph|||Imn − A∞|||2, a5 =
(πT

r πc)nlg, a6 = nμ(πT
r πc), a7 = |||A∞|||2, a8 = h, a9 = g, a10 =

l̄g|||B∞|||2|||Imn − A∞|||2, a11 = |||Imn − A∞|||2|||B∞|||2, a12 = |||Imn − A∞|||2,
a13 = h|||Imn − A∞|||2, a14 = l̄qg|||Imn − A∞|||2, a15 = l̄2qg|||B∞|||2, a16 =
l̄2q|||B∞|||2, a17 = l̄q, a18 = l̄qh

Define the positive vector δ = [δ1, δ2, δ3, δ4], where
δ1 = 1 − σB , δ2 = 2a5(a−σB)+2σBa14

a6
, δ3 = 2(σA + σ2

A)a9, δ4 = 2σBa14

If ᾱ and β are within:

0 < ᾱ < min{ 1
nlπT

r πc
,

(1 − σA)δ1
a1δ1 + a2δ2 + a4δ4

,
δ3 − (σA + σ2

A)a9

a10δ1 + a11δ2 + a13δ4
,

(1 − σB)δ4 − σBa14δ1
a15σBδ1 + a16σBδ2 + a18σBδ4

}
(11)

0 < β < min{ (1 − σA) − (a1δ1 + a2δ2 + a4δ4)ᾱ
a3δ3

,
a6δ2 − a5δ1 + a8δ4

a7δ3
,

δ3 − (σA + σ2
A)a9 − a10ᾱδ1 − (a11δ2 + a13δ4)ᾱ

a12δ3
,

(1 − σB)δ4 − σBa14δ1 − (a15σBδ1 + a16σBδ2 + a18σBδ4)ᾱ
σBa17δ3

}

(12)

then, ρ(Jᾱ,β) < 1. Therefore, ‖x(k) − 1n

⊗
x∗‖2 converges linearly to 0 at the

rate of O(ρ(Jᾱ,β))k.
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Proof. It is easy to verify tk+1 < Jᾱ,βtk,∀k ≥ 0 from Lemmas 5–9. To prove
that ‖xk − 1n

⊗
x∗‖2 linearly converges, just prove that there are ᾱ and β such

that ρ(Jᾱ,β) < 1. From Lemma 4, we need to proof there exist ᾱ and β that
satisfies Jᾱ,βδ < δ for some positive vector δ = [δ1, δ2, δ3, δ4] and solve the range
of ᾱ and β. The inequality is changed into.

a3δ3β < (1 − σA)δ1 − (a1δ1 + a2δ2 + a4δ4)ᾱ (13)

a7δ3β < (a6δ2 − a5δ1 − a8δ4)ᾱ (14)

a12δ3β < δ3 − ((σA + σ2
A)a9 + a10ᾱδ1) − a11δ2ᾱ − a13δ4ᾱ (15)

σBa17δ3β < −σBa14δ1 + (1 − σB)δ4 − (σBa18δ4 + σBa15δ1 + σBa16δ2)ᾱ. (16)

Since β > 0, the right side of the above four inequalities are positive, which can
derive the range of ᾱ, δ1, δ2, δ3, δ4.

ᾱ <
(1 − σA)δ1

a1δ1 + a2δ2 + a4δ4
(17)

ᾱ <
δ3 − (σA + σ2

A)a9

a10δ1 + a11δ2 + a13δ4
(18)

ᾱ <
(1 − σB)δ4 − σBa14δ1

a15σBδ1 + a16σBδ2 + a18σBδ4
(19)

δ2 >
a5δ1 + a8δ4

a6
(20)

Because ᾱ > 0, we can choose δ1, δ2, δ3, δ4 to make ᾱ positive. According
to formulas (17)–(20), select the value of δi as follows: δ1 = 1 − σB , δ2 =
2a5(a−σB)+2σBa14

a6
, δ3 = 2(σA + σ2

A)a9, δ4 = 2σBa14
After determining δi, the upper bound of ᾱ can be determined according to

inequality (13)–(16), and the upper bound of β can be determined according to
inequality (17)–(20). Theorem 1 is finally proved.

Remark 2: From the above theorem, we can obtain the linear convergence rate
of the algorithm. However, since the equivalent constants between σA and σB and
the norm are unknown, the boundary between α and β cannot be clearly given,
it is necessary to manually adjust the parameters to get the best performance.

6 Numerical Experiment

This paper use Matlab to demonstrate the simulation effect to check the effec-
tiveness of the algorithm.
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Fig. 1. Directed graph with six agents

Figure 1 denotes a communication topology between 6 agents. We consider
the distributed convex optimization problem in the directed strongly connected
network with 6 agents. And the local objective function of each agent is

f1(x1) = x2
1 − 2x1 + cos(x1) + 3, f2(x2) = x2

2 − 5x2 + e−0.1x2 − 1,
f3(x3) = x2

3 − 3x3 − 0.5sin(x3) − 3, f4(x4) = x2
4 + 2x4

4 − 3.
f5(x5) = x2

5 + 3x5 + 1, f6(x6) = 4x2
6 + 2x6 − cos(x6) + 3
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Fig. 2. Agent state trajectory
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Fig. 3. Agent state trajectory (extra)

The optimal solution in this case is x∗ = 0.2980. Figure 2 shows that the
algorithm proposed in this paper finally find the optimal value. Figure 3 is the
agent trajectory diagram of the algorithm proposed in [12], and shows that the
algorithm proposed in this article has a faster convergence rate. Distributed
optimization can also be applied to drone formation, if a drone wants to control
its own position, it can make a decision based on the position information of the
nearby drones to determine its own position.
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7 Conclusion

We proposed an improved fully distributed optimization algorithm for the
directed strongly connected graph in this paper. Assume that the objective
function is strongly convex with Lipschitz continuous gradient, all agents can be
forced to converge to the optimal point at geometric rate under the algorithm. By
introducing row stochastic, column stochastic matrix, and a momentum term,
the rate of convergence of our algorithm is higher than that of the literatures.
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