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Abstract. In feature selection for high-dimensional data, in order to
select the minimum number of features that can well explain the target,
it requires finding the relevant features to the predictive target, as well as
removing the redundant information by discovering the feature interac-
tions. Existing approaches usually measure the feature interactions using
relevance between features without considering their joint dependencies
on the target. In this paper, we propose a new feature selection cri-
terion, Maximum-Relevance and Maximum-Complementarity (MRMC).
Besides the relevance with the target, MRMC takes into consideration
the complementary information of a candidate feature to a selected fea-
ture or feature subset when predicting the target. We then present an
efficient approach to calculate the information complementarity between
features with random forests. Finally we implement MRMC Feature
Selection using sequential forward search (SFS). Experimental results
on 18 data sets show that SFS-MRMC achieved the best overall per-
formances compared with other information-theoretical feature selection
methods and RF-RFE.
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1 Introduction

Feature selection is of crucial importance for high-dimensional data classification.
It can help reduce the size of the feature space, thereby reduce the computational
cost and time complexity of the learning model. Moreover, it aims to identify
the smallest subset of features that can explain the target, thus it can enhance
the model interpretability.

Information entropy based feature selection methods are widely used. They
are easy to interpret and implement, due to their information theoretical frame-
work. These approaches can always be classified as filter methods. They are
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independent of the subsequent learning algorithm, which facility reducing the
computational cost. Information entropy based methods generally use informa-
tion criteria to measure the relevance between features and target classes, and
the interaction within features. Mutual information is widely used to measure the
relevance between two variables in information entropy based feature selection.
For example, the Relevance criterion (REL) [1] considers the relevance between
features and the targets, while Maximum relevance and minimum redundancy
(mRMR) [2] and CIFE [3] utilizes mutual information to measure the relevance
between features and target class and the redundancy between features. How-
ever, most existing approaches usually measure the feature interactions only
using correlation between features without considering their joint dependencies
on the target. That is to say, they ignore the information of classification comple-
mentarity among the features. In contrast, the wrapper method and embedded
method, such as variable importance measures in random forests [4,5], consider
the feature interactions conditioned on the target classes. They always obtain
more satisfactory classification results along with the learning algorithm.

In this paper, we propose a new feature selection method, Maximum-
Relevance and Maximum-Complementarity (MRMC). The main contributions
are as follows.

1. We give the formal definition of information complementarity in the
information-theoretical framework. Besides the relevance with the target,
MRMC takes into consideration the complementary information of a can-
didate feature providing to a selected feature or a selected feature subset to
predict the target.

2. To efficiently measure the information complementarity conditioned on the
target classes, we present an efficient approach to approximate the comple-
mentarity between pairs of features with random forests. Thus it can be
viewed as a hybrid feature selection approach with takes the advantages of
both entropy based method and random forest.

3. Experiments results on 18 datasets in comparison with classical and state-
of-the-art approaches, i.e. CMIM [15], mRMR [2], DISR [16], JMI [17] and
RF-RFE [11], demonstrate the effectiveness and efficiency of our method.

The paper is structured as follows: in Sect. 2 we states the related work. In Sect. 3,
we describe the proposed feature selection algorithm. Extensive experimental
results are provided in Sect. 4. In Sect. 5, we summarize our work.

2 The Information-Theoretical Framework for Feature
Selection

In this section we review the related works on information entropy based feature
selection. To understand them, we first introduce some basic concepts of relevant
features and redundant features from the perspective of information theory.
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Definition 1. Given discrete random variable X and its probability distribution
p(x) = P (X = x) with domain X, the entropy of random variable X is defined
as:

H(X) = −
∑

x∈X

p(x) log2 p(x) (1)

H(X) indicates the amount of information needed to eliminate its uncertainty,
that is, the amount of information that X may contain.

Definition 2. Given discrete random variables X and Y with domain X and
Y and their joint probability distribution p(x, y) = P (X = x, Y = y), then the
conditional entropy of random variable Y given X is defined as:

H(Y |X) = −
∑

y∈Y

∑

x∈X

p(x, y) log2 p(y|x) (2)

In holds that 0 ≤ H(Y |X) ≤ H(Y ). H(Y |X) = 0 with the condition that
p(y|x) = 1 or p(y|x) = 0 for any pair x, y, in simple words, the value of Y is
determined given the value of X. H(Y |X) = H(Y ) with X and Y are indepen-
dent.

Definition 3. Given discrete random variables X and Y , then their mutual
information is defined as:

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(3)

I(X,Y ) can be interpreted as the amount of reduced uncertainty of Y due
to X. Therefore, I(X,Y ) represents the relevance between X and Y .

Definition 4. Given random variables X, Y and Z, then the conditional mutual
information of X and Y given Z is defined as:

I(X;Y |Z) = H(Y |Z) − H(Y |Z,X)
= H(X|Z) − H(X|Z, Y ) = I(Y ;X|Z)

(4)

The conditional mutual information quantifies the reduction of uncertainty
of Y(X) owing to the variable X(Y ) given Z is known.

Definition 5 (Chain rule for mutual information)
Given a set of random variables XS = {X1,X2, · · · ,Xn} and random vari-

able Y , then the mutual information of XS and Y is defined as:

I(XS ;Y ) = I(X1,X2, · · · ,Xn;Y )

=
n∑

i=1

I(Xi;Y |Xi−1,Xi−2, · · · ,X1)
(5)

The chain rule for mutual information indicates the amount of information
that the random variables set XS can provide for Y equals to the sum of pairwise
mutual information of Y and each variable under certain conditions. This is an
important trick which has been used in many feature selection methods when
considering the influence a feature subset on the target class.
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2.1 The Relevant Information of Features

In feature selection, the mutual information I(XS ;Y ) can be used to measure the
dependency between input feature subset XS and output target Y . Suppose Xk

be a candidate feature and XS ⊂ {X1, · · · ,Xk−1,Xk+1, · · · ,Xn} be a feature
subset selected, the relevance of Xk is calculates as:

I(Xk;Y |XS) = I({XS ,Xk};Y ) − I(XS ;Y ) (6)

It measures how much the candidate feature Xk is relevant to Y when XS

is given. From it, we can observe that the relevance in feature selection is con-
ditional, as pointed out by [18,19]. For a candidate feature, it may be strongly
relevant, weakly relevant or irrelevant when conditioned by different context XS .

The Relevance criterion (REL) use I(Xk;Y |XS) combined with forward fea-
ture selection directly, known as maximal dependency [1]. That is in each step
the feature Xk is selected which meets:

JREL(Xk) = max
Xk∈X−S

I(Xk;Y |XS) (7)

where X−S = X/XS . There is a major drawback that we need to estimate mul-
tivariate probability density to measure the feature subset-conditional mutual
information. It is almost impossible to estimate with limited data if features are
all correlated to each other. To solve those problem, the bi-variate or tri-variate
probability density is employed in existing methods [2,20]. For example, accord-
ing to Conditional Mutual Information Maximization criterion (CMIM) [15], in
each step, the candidate feature can be selected as follows:

JCMIM (Xk) = max
Xk∈X−S

min
Xj∈XS

I(Xk;Y |Xj) (8)

It can seen that CMIM uses minXj∈XS
I(Xk;Y |Xj) to replace I(Xk;Y |XS),

because the latter is hard to compute when the selected feature subset increases.

2.2 The Redundant Information Within Features

Neglecting the feature interactions may cause redundancy in the selected feature
subset. Some methods focus on removing feature redundancy when taking into
account feature relevance with predictive targets [19,21,22]. For example, it can
be computed through mutual information between the candidate feature and the
selected feature subset as follows,

R(XS ;Xk) = α
∑

Xj∈XS

I(Xj ;Xk) (9)

where XS is a feature subset selected, Xk is a candidate feature. This measure-
ment of redundancy has been applied in mRMR [2]. Its objective is as follows:

JMRMR(Xk) = I(Xk;Y ) − 1
|XS |

∑

Xj∈XS

I(Xk;Xj) (10)
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It considers the mutual information between features as redundant information.
However the target class Y is neglected in measuring the redundancy. Figure 1
gives a intuitive example. Two shadow parts in Fig. 1 represent I(X1;X2), but
only red shadow part kicks in classifying the target class Y . Therefore, some
methods, e.g. CIFE [23], MIFS-U [24], mIMR [25] and IGFS [26] all use joint
mutual information I(Xi;Xk;Y ) to measure the feature redundancy, which can
defined as follows:

I(Xi;Xk;Y ) = I(Xi;Y ) + I(Xk;Y ) − I(Xi,Xk;Y ) (11)

Similarly, given a selected feature subset XS , the joint mutual information
I(XS ;Xk;Y ) measures the feature redundancy of the candidate feature Xk when
given XS and Y . In this sense, the joint mutual information can be regarded as
the shared discriminative information of {XS ,Xk} about Y . However, similarly,
it is hard to compute I(XS ;Xk;Y ), so the sum of pairwise redundancies between
features is always calculated to approximate it. For example, the criterion of
CIFE is defined as:

JCIFE(Xk) = I(Xk;Y ) −
∑

Xj∈XS

I(Xk;Xj ;Y ) (12)

In [19,27], the markov blanket was also used to evaluate the redundancy
between features.

3 Maximum-Relevance and Maximum-Complementarity
Feature Selection

In this section, we first give the definition of feature complementarity. Two fea-
tures with more complementarity indicates less redundancy. Then we give the
objective of MRMC and propose to use random forests to approximate the com-
plementarity score between any pair of features. Finally, for simplicity, a sequen-
tial forward search strategy is employed to maximize the objective function.

3.1 The Complementary Information of Features

Besides relevancy and redundancy, there are some literature have proposed the
definition of complementarity from different aspect. Paper [16] proposes that
complementarity is the beneficial effect if feature interaction. From this part, the
complementary information is the negative interaction information. The defini-
tion is as follows,

Definition 6. Suppose X1,X2, · · · ,Xn are random variables, they are comple-
mentary if

(−1)nI(X1;X2; · · · ;n) > 0
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That is, for two variables, the classification information about target provided
by two features together is greater than the sum of the classification information
about provided by two features individual. If I(Xi,Xj ;Y ) > I(Xi;Y )+I(Xj ;Y ),
the features Xi and Xj are said to be complementary.

However, it is hard to compute the complementarity of a large feature set. In
[28], the authors proposed JMI, which defines the complementary information
as the shared information between two features Xi and Xj given the target, i.e.
I(Xi,Xj ;Y ). Thus they defined complementary information of Xk provided to
the selected subset XS as follows,

JJMI(Xk) =
∑

Xj∈XS

I(Xk,Xj ;Y )

In [29], the relevance and complementary score are estimated by using neural
network, which is highly time-consuming.

Unlike the negative interaction information and shared information, we for-
mally give the definition of feature complementarity from the perspective of
information entropy which is the sum of the unique information of two features
about target.

Definition 7. Suppose X1 and X2 are two random variables used for predicting
the target variable Y , their complementary classification information between
two variables (CCI) can be defined as follows,

CCI(X1,X2;Y ) =
I(X1;Y |X2) + I(X2;Y |X1)

2
(13)

Definition 8. Suppose Xk be a random variable and XS = {X1,X2, · · · ,Xk−1}
be a random variable subset, their complementary classification information
(CCI) for predicting the target variable Y can be defined as follows,

CCI(Xk,XS ;Y ) =
I(Xk;Y |XS) + I(XS ;Y |Xk)

|XS | + 1
(14)

CCI quantifies the new classification information provided by a feature when
another feature or subset is given. Suppose Xk is a candidate feature and XS

is selected feature subset, I(Xk;Y |XS) measures the amount of newly provided
classification information by the candidate feature Xk while I(XS ;Y |Xk) indi-
cates the amount of classification information preserved by the selected feature
set when the candidate feature is added. Hence CCI measures the classification
information of subset {Xk,XS}.

It is hard to compute the complementary information between feature and
a feature subset. We can also use sum of pairwise CCI between features to
approximate it. Assume that dataset X = {X1,X2, · · · ,Xn} characterized as an
n-dimensional vector and X is labeled with L classes Y = {yj}, j = 1, 2, · · · , L.
According to the definition of complementarity between features, we can obtain
the complementary matrix between any pair of features as follows:
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C = {ci,j}1≤i,j≤n =

⎡

⎢⎢⎢⎣

0 c12 · · · c1n
c21 0 · · · c2n
...

...
. . .

...
cn1 cn2 · · · 0

⎤

⎥⎥⎥⎦ (15)

where ci,j = CCI(Xi,Xj ;Y ), C carries all complementary information between
any pair of features. According to the definitions of CCI, C is a real symmetrical
matrix.

3.2 Maximum-Relevance and Maximum-Complementarity Based
Feature Selection

For high-dimensional data, it is infeasible to compute the joint mutual informa-
tion of many variables. Hence we use the pairwise complementarity of features
to help find the optimal feature subset. Suppose Xk is a candidate feature and
XS = {X1,X2, · · · ,Xk−1} is selected subset, the criterion of MRMC can be
defined as follows,

JMRMC(Xk) = I(Xk;Y ) + CCI(Xk,XS ;Y ) (16)

For simplicity, the criterion can be rewrite as follows,

JMRMC(Xk) = I(Xk;Y ) +
1

|XS |
∑

Xj∈XS

CCI(Xk,Xj ;Y ) (17)

where |XS | is the size of the current selected feature set.

3.3 Mining the Feature Complementarity with Random Forest

To efficiently estimate the feature complementarity, we propose to calculate the
complementary scores between any pair of features using random forest. Inspired
by the sample proximity matrix of random forest, we can also get the pairwise
complementarity matrix from random forests. The main assumption is that when
two features are used in the same tree, then they can be viewed as complementary
to each other, since a tree model naturally performs feature selection when it is
being built. The frequency of two features being used in the forest can naturally
used as an estimate of the feature complementarity.

Given a trained random forest {h1, h2, · · · , hntree
}, the complementarity

score of any pair of features is defined as:

c̃i,j = avkIdt(Xi,Xj ∈ hk), k = 1, 2, · · · , ntree (18)

where ntree is the number of trees in the forest, Idt(·) is the indicator function,
and av(·) is the mean operator. Its value is normalized to range [0, 1]. A value 0
of c̃i,jrepresents that there is no additional knowledge to predict Y when using
{Xi,Xj} compared with only using Xi or Xj . And value 1 reveals that Xi and
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Xj have the largest complementarity. The performance of combining Xi and Xj

is much better than only employing Xi or Xj .
An efficient greedy search method, Sequential Forward Search (SFS) was

employed to obtain a feature subset for MRMC. SFS-MRMC consists the fol-
lowing steps: 1) It starts from an empty feature subset and the relevance scores
of all features is calculated. The most relevant feature is selected at first; 2)
At each selection step, it expands feature subset with the feature with largest
MRMC score.; 3) Repeat step 2) until the stop conditions reached.

4 Experiment and Discussion

4.1 Datasets and Algorithms for Comparison

To evaluate the performance of SFS-MRMC, 18 datasets from different domains
are selected from http://featureselection.asu.edu/datasets.php, https://archive.
ics.uci.edu/ml/index.php and http://www.gems-system.org/. The description of
the datasets is summarized in Table 1. The number of features ranges from 44
to 10000 with categories varying from 2 to 15.

Table 1. Description of datasets

Data set Features Instances Classes Data set Features Instances Classes

Hearts 44 267 2 BASEHOCK 4862 1993 2

p gene 57 106 2 DLBCL 5470 77 2

Sonar 60 165 15 Brain Tumor1 5921 90 5

CHART 60 600 2 Prostate GE 5966 102 2

Colon 2000 62 2 Leukemia 7070 72 2

SRBCT 2309 83 4 ALLAML 7129 72 2

warpPIE10P 2420 210 10 Central 7129 60 2

Lung 3312 203 5 Carcinom 9182 174 11

Lymphoma 4026 96 9 Arcene 10000 200 2

SFS-MRMC is compared with one Relevance and Redundancy based meth-
ods mRMR, three Complementarity based methods CMIM, DISR and JMI, and
an embedded method RF-RFE. Note that RF-RFE always achieves state-of-the-
art performances on high-dimensional data.

For fair comparison, in RF-RFE and SFS-MRMC, the number of trees in
the forest is set to 1000, the number of splitting features per node is set to the
default value mtry =

√
p, where p is the total number of features of the dataset.

RF-RFE starts from the total set of features, prunes the least important
feature from the current feature subset and then retrains a random forest to
update the feature ranking at every iteration, so it is very time-consuming for
high-dimensional data. To accelerate the experimental process, when the size
of current feature subset is larger than 200, the least important 20 percent of

http://featureselection.asu.edu/datasets.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://www.gems-system.org/
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features will be removed at each iteration. When the size of current feature
subset reaches 200, the least important one will be eliminated at each iteration.

4.2 Evaluation Metrics

To evaluate the performances of different algorithms, the ten-fold cross-
validation (10-CV) is conducted for five times on each dataset. In each fold,
every algorithm is performed to obtain a feature ranking on the training set
respectively. Then the performances of the feature subset selected according to
the feature ranking are evaluated on the test set using the following metrics.

Note that our goal is to select a small feature subset for classification, so we
only record the results on the top 200 features selected by different algorithms.
For datasets with number of features smaller than 200, we record the results on
all sizes of selected feature sets, i.e. 1 ∼ m.

Average Test Accuracy. The classical classifier KNN is used to test the aver-
age performances of the selected features using different feature selection algo-
rithms in the five runs of 10-CV. For fair comparison, we set the same parameter
settings of the classifiers. For KNN, the parameter k is set to 3.

Average Size of Optimal Feature Subset. We aim to get a small feature
subset. For different classifiers, we find the optimal feature subset with the high-
est accuracy on each dataset. Then the proportion of the subset to the total
number of features is recorded, and is averaged over the five runs of 10-CV.

All the experiments are conducted on a PC with Intel CPU 8 GB RAM. We
use Python 2.7 for coding, as well as Scikit-Feature feature selection repository.

4.3 Results and Discussion

In this section, we present comparison of SFS-MRMC against other feature selec-
tion algorithms in terms of the following aspects.

Fig. 1. Accuracy comparison among different feature selection methods
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Table 2. The performances of KNN using different feature selection algorithms

Data set SFS-MRMC CMIM MRMR DISR JMI RF-RFE

Hearts 0.7925 ± 0.0141 0.7549 ± 0.0100 0.7836 ± 0.0066 0.7615 ± 0.0172 0.7595 ± 0.0195 0.7915 ± 0.0215

p gene 0.8658 ± 0.0050 0.8578 ± 0.0151 0.8658 ± 0.0050 0.8658 ± 0.0050 0.8658 ± 0.0050 0.8587 ± 0.0224

Sonar 0.8307 ± 0.0215 0.8153 ± 0.0082 0.8153 ± 0.0125 0.8202 ± 0.0122 0.8221 ± 0.0179 0.8335 ± 0.0168

CHART 0.9880 ± 0.0016 0.9627 ± 0.0023 0.9677 ± 0.0023 0.9670 ± 0.0022 0.9667 ± 0.0045 0.9850 ± 0.0024

Colon 0.8590 ± 0.0188 0.8619 ± 0.0232 0.8486 ± 0.0132 0.8524 ± 0.0197 0.8548 ± 0.023 0.8519 ± 0.0230

SRBCT 0.9950 ± 0.0061 0.8186 ± 0.0104 0.8428 ± 0.0239 0.7961 ± 0.0279 0.7672 ± 0.0378 1.0000 ± 0.0000

warpPIE10P 0.9629 ± 0.0070 0.9333 ± 0.0257 0.9781 ± 0.0023 0.9486 ± 0.0076 0.9286 ± 0.0186 0.9781 ± 0.0038

Lung 0.9597 ± 0.0048 0.9381 ± 0.0095 0.9341 ± 0.0067 0.9419 ± 0.0147 0.9340 ± 0.0066 0.9527 ± 0.0039

Lymphoma 0.8907 ± 0.0138 0.9260 ± 0.0111 0.9218 ± 0.0169 0.9218 ± 0.0103 0.9220 ± 0.0102 0.9216 ± 0.0120

BASEHOCK 0.9287 ± 0.0029 0.9344 ± 0.0017 0.9396 ± 0.0024 0.9448 ± 0.0028 0.9267 ± 0.0026 0.9004 ± 0.0032

DLBCL 0.9486 ± 0.0201 0.8168 ± 0.0257 0.7957 ± 0.0261 0.8107 ± 0.0206 0.8400 ± 0.0370 0.9582 ± 0.0156

Brain Tumor1 0.8667 ± 0.0199 0.7911 ± 0.0109 0.7333 ± 0.0141 0.7756 ± 0.0285 0.7956 ± 0.0269 0.8578 ± 0.0163

Prostate GE 0.9393 ± 0.0034 0.7755 ± 0.0340 0.8791 ± 0.0209 0.9116 ± 0.0108 0.8845 ± 0.0187 0.9333 ± 0.0108

Leukemia 0.9807 ± 0.0118 0.9807 ± 0.0069 0.9836 ± 0.0061 0.9826 ± 0.0061 0.9864 ± 0.0009 0.9864 ± 0.0009

ALLAML 0.9782 ± 0.0069 0.7882 ± 0.0126 0.7082 ± 0.0201 0.7604 ± 0.0358 0.7675 ± 0.0328 0.9654 ± 0.0111

Central 0.6333 ± 0.0365 0.6200 ± 0.0694 0.5867 ± 0.0267 0.5867 ± 0.0267 0.6000 ± 0.0483 0.6267 ± 0.0389

Carcinom 0.9108 ± 0.0041 0.7718 ± 0.0296 0.8520 ± 0.0172 0.7983 ± 0.0278 0.7567 ± 0.0136 0.9219 ± 0.0116

Arcene 0.8800 ± 0.0100 0.7440 ± 0.0146 0.6580 ± 0.0150 0.8550 ± 0.0089 0.8390 ± 0.0080 0.8710 ± 0.0107

Average 0.9006 ± 0.0116 0.8384 ± 0.0178 0.8386 ± 0.0132 0.8501 ± 0.0158 0.8454 ± 0.0184 0.8997 ± 0.0125

Average rank 1.8889 3.9444 3.9444 3.6111 3.8889 2.1667

Table 3. Average size of optimal feature subsets selected with different methods (%)

Method SFS-MRMC CMIM MRMR DISR JMI RF-RFE

KNN 12.7961 12.6372 13.8172 13.9300 11.9900 11.1372

Average Test Accuracy. Limited by length, we only show the results of the
average test accuracy of KNN on six datasets with different sizes of feature sets
selected by different feature selection algorithms in Fig. 1. The number of selected
features ranges from 1 to 200. Obviously, different datasets exhibits different
variations in terms of test accuracy. For some data sets, such as Prostate GE,
ALLAML, Brain Tumor1, all feature selection algorithms reach their best per-
formance only with a small number of features. In contrast, for some datasets,
such as sonar, the test accuracy exhibits a rising trend with the growth of selected
features. And for other datasets, such as hearts and p gene, more features may
deteriorate the performance. We can observe that in most cases SFS-MRMC and
RF-RFE are significantly better than other algorithms, while the performance
of SFS-MRMC is slightly better than RF-RFE.

Table 2 shows the mean and standard deviations of the best test accuracy of
KNN classifier over 5 runs of 10-CV, with different feature selection algorithms
respectively. The numbers in red indicate the largest value of each row, i.e. the
best results on each datasets, while the numbers in blue indicate the second
best accuracy on the datasets. In the bottom, we also display the average per-
formances in terms of accuracy and ranks of each algorithm over the datasets,
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which show that SFS-MRMC and RF-RFE outperform other algorithms. For all
the three classifiers, SFS-MRMC always achieves the highest average ranks.

Average Size of Optimal Feature Subset. Table 3 records the average pro-
portion of selected features over 18 data sets of the six feature selection algo-
rithms with KNN classifiers respectively. Generally, all the six feature selection
algorithms achieve remarkable reduction of feature dimension by only selecting
a small proportion of the original feature sets.

5 Conclusions

MRMC takes into consideration both the complementarity and relevance within
features. We approximate the complementarity between pairs of features using
random forests. Thus it can be viewed as a hybrid feature selection approach of
both entropy based method and random forest. Experiments results show that
SFS-MRMC outperforms four classical entropy based methods and state-of-the-
art RF-RFE in terms of classification accuracy, while it is efficient in terms of
time cost.
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Program under Grant No. JCYJ20190809161603551.
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