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Abstract. We present an approach simultaneously solving both swarm
target assignment and optimal motion control for large-scale swarms
to achieve autonomous air combat decision making. The swarm target
assignment is solved by using a modified k-means clustering algorithm
with balance degree, and our motion control adopts a particle swarm
optimization framework. Our approach scale well with a large number of
drones and is able to find policies in continuous action spaces. Our experi-
ments test our algorithm on clustering and decision-making, respectively.
We find that it is much simple to implement, scalable and outperforms
other algorithms we compare against.
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1 Introduction

In recent years, one of the things that has attracted enough attention in the
domain of military is the ability to gain an advantage in the swarm-on-swarm
air combat, and one primary challenge is to develop autonomous algorithms that
can operate in high-dynamic, unpredictable swarm air combat environment.

Numerous algorithms about swarm-on-swarm air combat decision are dis-
cussed in the previous literature. These algorithms can be classified into two
categories: target assignment and decision-making technology. Target assign-
ment is centered on the idea of allocation auction [1,2], cost minimization [3,4]
and optimal transition [5,6]. If these approach are used for large-scale swarms,
the computational complexity of allocating the optimal target to each agent
increases at least quadratically with the number of agents. Furthermore, some
algorithms are relatively complicated, and are not compatible with a variety
of environments. Decision-making technology such as matrix game [7], differ-
ential game [8,9], expert system [10] and deep reinforcement learning [11] are
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preferred on one-to-one air combat. However, the matrix game is suitable to low-
dimensional action spaces; the differential game is hard to be applied in practice
because of its complexity and enormous amount of calculation; the expert system
is not versatile; and the deep reinforcement learning is difficult to train.

This paper seeks to improve the current state of affairs by introducing an
approach that is effective and scalable for large-scale swarm air combat deci-
sion. We divide the whole problem into two parts: target assignment and air
combat decision-making (motion control). We propose a novel objective with
balance degree for k-means clustering, which guarantees that target assignment
is relatively balanced. We also present a decision-making algorithm based on
particle swarm optimization (PSO) which is easy to implement and have good
performance.

Our experiments compare the performance of various different versions of
k-means clustering, and find that the version with balance degree performs best.
We also compare the decision-making algorithm based on PSO to several algo-
rithms. It performs better than almost all the algorithms we compare against,
no matter in terms of time or performance.

2 Preliminaries

In this section, we first present the problem statement. We then present the
motion model of unmanned aerial vehicle (UAV) and the relative position rela-
tionship between two fighter aircrafts.

2.1 Problem Statement

Given the situation on the battlefield as follows: There are a population of n
aircrafts trying to destroy m target aircrafts, our aircrafts are numbered as
ui(i = 1, 2, · · · , n), and enemy aircrafts numbered as tj(j = 1, 2, · · · ,m). Let
xij be a decision variable. If the aircraft ui is assigned to attack the target tj ,
then xij = 1, otherwise xij = 0. We use pij to denote the probability that
agent ui destroys target tj successfully, which is related to the relative position
relationship between our aircraft and target aircraft. Any of the advantage and
cost for our aircrafts to targets and the total cost can be evaluated. Let vij , cij

denote the evaluated value and cost of our aircraft ui attacking the target tj ,
respectively.

The objectives of swarm-on-swarm air combat are as follows:
1) Determine the target assignment, so that the swarm of our drones destroys

as many enemy targets as possible and attaining best total benefit. The mathe-
matical model of the target assignment is that:
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maximize
xij

n∑

i=1

m∑

j=1

pijxij(vij − cij)

subject to
m∑

j=1

xij = 1, i = 1, 2, . . . , n,

n∑

i=1

xij = 1, j = 1, 2, . . . ,m,

xij = 0, 1.

(1)

2) After determining the target, the drone needs to make appropriate deci-
sions and take effective actions autonomously in complex air combat fighting
environment.

2.2 Aircraft Motion Model

Consider a two-dimensional continuous air combat environment, each aircraft is
assumed to be a mass point. The motion model of aircraft can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṗx = v cos ψ

ṗy = v sin ψ

v̇ = a

ψ̇ = ω

ω = g
v n

(2)

where p = [px, py]T is the position of the aircraft. ψ is the yaw angle. v and ω
are the linear velocity and the angular velocity, respectively. g is the acceleration
of gravity. a is the forward acceleration. n is the side load. Among them, a and
n are the control variables of the aircraft.

To ensure that the dynamic model is accurate, we added some constraints to
the state variables and control variables via the following inequalities:

⎧
⎪⎨

⎪⎩

vmin ≤ v ≤ vmax

|a| ≤ amax

|n| ≤ nmax

(3)

where the subscript “max” and “min” represent the lower and upper bounds of
corresponding variables.
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2.3 Air Combat Situation

As we mentioned above, the relative position relationship between our aircraft
and enemy aircraft has a vital influence on air-to-air combat. As shown in Fig. 1,
u is our aircraft, t is a target aircraft. �d is relative distance vector between the
two aircrafts, and α is called the line-of-sight (LOS) angle. �vt and �vu are the
velocity vector of our aircraft and the target aircraft, respectively. λu and λt

are the lead angles of u and t, which are defined by the angle between velocity
vector and line of target sight. Based on Fig. 1, there are:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�d = [xt − xu, yt − yu]T

α = arctan yt−yu

xt−xu
, α ∈ (−π, π]

λu = arccos �d· �vt

dvu
, λu ∈ [0, π]

λt = arccos �d· �vu

dvt
, λt ∈ [0, π]

(4)

3 Swarm Target Assignment

It is not possible to straightforwardly maximize the expected total profit of
the assignment, because the computation cost for generating all the possible
combinations of allocations one by one would be prohibitively expensive for a
large-scale swarm of autonomous agents. Instead, here we propose an modified
k-means clustering algorithm.

Fig. 1. Relative position diagram of the target aircraft and our aircraft.
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Our strategy is to break the intractable task into smaller, more manageable
pieces with our algorithm. In the modified k-means clustering algorithm, the
swarms of our aircrafts as well as target aircrafts are both classified into k differ-
ent clusters, depending on their respective states. Moreover, we use the balance
degree to guarantee that every cluster has about the same number of mem-
bers. After that, it is feasible to go ahead and solve this large-scale problem by
using a two-step target assignment method, or, to be more specific, we can first
implement inter-cluster allocation and then implement intra-cluster allocation.
Considering that the latter part is essentially just a simple sorting problem, we
will focus on how to achieve balanced clustering.

In the standard k-means algorithm, the objective is to divide the given data
objects into k partitions in such a way that the sum of the squared deviations
from the cluster focal points is minimal. Mathematically, this corresponds to the
optimization of the criterion function

Es =
k∑

i=1

∑

xj∈Cj

||xj − μi||2 (5)

where xj is the data point and μi is the centroid of the cluster Ci. In addition,
||xj − μi||2 is the squared Euclidean distance between xj and μi.

To address that the standard k-means does not consider the issue of “bal-
ance”, we define a new criterion function, which draw an anology from thermo-
dynamic system. Let pi denotes the population ratio of the cluster Ci to the
entire swarm, then the entropy of the clusters is defined as:

H(p) = −
k∑

i=1

pi log pi (6)

In classical thermodynamics, entropy is a measurable physical property that is
most commonly associated with a state of disorder, randomness, or uncertainty.
Similarly, the entropy of the clusters is a measure of equilibrium in the division
of clusters. The lower the entropy, the more disequilibrium the swarm is divided.
Since the number of clusters k has an influence on the entropy H(p), we use
balance degree B(p, k) instead of entropy H(p) as the final evaluation index:

B(p, k) =
H(p)
log k

=
−∑k

i=1 pi log pi

log k
,B(p, k) ∈ [0, 1] (7)

We therefore propose a new objective function of our modified k-means algo-
rithm. Specifically,
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Em = Es − βB(p, k)

=
k∑

i=1

∑

xj∈Cj

||xj − μi||2 + β

∑k
i=1 pi log pi

log k

(8)

where β is the weighting coefficient.
When dividing the swarm by the given data of UAVs’ states, the different

components of the states may have different physical units (for example, posi-
tions versus attitude angles) and the range may vary across environments. This
can make it difficult to accommodate clusters of variable size. One approach to
this problem is to manually scale the features so they are in similar range across
environments and units, and use the weighted distance as the similarity measure.
To rescale the features, we normalize each dimension across all data objects to
have unit mean and variance

x ← 1
n

n∑

j=1

xj

σ2
x ← 1

n

n∑

j=1

(xj − x)2

x̂j ← xj − x

σx

(9)

then, we use the weighted Euclidean distance for the preprocessed data x̂

dist(x̂j , μi) =
√

ω1 · |x̂j1 − μi1|2 + . . . + ωd · |x̂jd − μid|2 (10)

where ω1, . . . , ωd are weight coefficients, which represent the importance of dif-
ferent features, typically satisfying that ωi ≥ 0(i = 1, . . . , d) and

∑d
i=1 ωi = 1.

With the techniques of normalization and weighted distance measurement, we
are able to make our algorithm more versatile and robust, without needing to
pay attention to different types of units.

However, to minimize Eq. 5 is proved NP-hard [12]. In the standard k-means
algorithm, the greedy strategy is adopted to approximate the Eq. 5 by iterative
optimization. We continued with this strategy, moreover, we use the balance
degree to decide whether to accept the clusters formation or choose to improve
the clusters formation locally. Since a method of centroid initialization has an
important role to play in the clustering result, we adopt technologies of re-
initialization as well. The full algorithm, which we call the modified k-means
clustering for swarm target assignment, is presented in Algorithm 1.
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Algorithm 1. The modified k-means clustering for swarm target assignment
Input: the data points D = {x1, . . . , xn}; the number of clusters k; the threshold ε
Output: A set of k clusters

1: Normalize all the data points x to x̂
2: Choose the center μ1 uniformly at random among the data points x̂
3: for i = 2, . . . , k do
4: for each data point x̂ not chosen yet do
5: Compute the distance between x and the nearest center: d(x̂)
6: Set the probability of x̂ to be chosen proportional to d(x̂)2

7: end for
8: Choose one new data point x̂ as the new center μi

9: end for
10: repeat
11: Set Ci = ∅ (1 ≤ i ≤ k)
12: for j = 1, . . . , n do
13: Compute the distance between x̂j and μi(1 ≤ i ≤ k): dji = dist(x̂j , μi)
14: Assign each object x̂j to the closest clusters Cλj : λj = arg min

i∈{1,...,k}
dji

15: end for
16: for i = 1, . . . , k do
17: Updata center: μi = 1

|Ci|
∑

x̂∈Ci
x̂

18: end for
19: until the centers don’t change
20: Compute the balance degree B(p, k)
21: while B(p, k) < ε do
22: Choose a point x̂ farthest from the center of the largest cluster
23: Reassign the point to the second closest clusters
24: Compute the balance degree B(p, k)
25: end while

4 Autonomous Air Combat Decision

Now consider the decision-making on one-to-one air combat. Most techniques for
UAV air combat make use of differential game, which is a conservative strategy
and has difficulties in practical application and solution. Furthermore, expert
system and matrix game are also common on autonomous air combat decision,
while they can only handle discrete action spaces, such as maneuver decision.

To overcome the above challenges, we present an particle swarm optimiza-
tion based, intelligent air combat decision-making algorithm that can operate
in continuous action spaces. A key feature of the approach is its simplicity: it
requires only a straightforward particle swarm optimization architecture with
very few “moving parts”, making it easy to implement and scale to all kinds
of air combat environments. Interestingly, our algorithm performs significantly
better than any other swarm intelligence algorithm.
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In the previous section, we mentioned the importance of the relative position
relationship between the enemy and us. We now seeks to describe the air combat
situation with the advantage functions. Based on the operational application of
aerial combat, we designed three advantage functions, including angle advantage
function, distance advantage function and energy advantage function.

Among them, angle is the most critical factor in air combat. By optimizing
the relative angle relationship, UAV can gain a dominant position of stern attack,
and avoid being attacked by opponent aircraft in the tail. When the opponent
aircraft is within the angle of off-boresight launch, the UAV can launch an attack
from the rear of enemy. Based on the above analysis, the advantage function of
angle factor is built as follows:

ηa =

{
(1 − λu

π )(1 − λt

π ), λu ≤ λlimit

0, otherwise
(11)

where φlimit is the off-boresight launch angle of the UAV and ηa ∈ [0, 1].
To ensure the distance advantage and improve attack probability, the dis-

tance factor is considered. If the target is within the attack area, the UAV can
maintain an distance advantage. Therefore, the advantage function of distance
factor is built as follows:

ηd =

{
e
− 2d

dlimit , d ≤ dlimit

0, otherwise
(12)

where dlimit is the maximum range of UAV’s weapon and ηd ∈ [0, 1].
The goal of building the energy advantage function is to guide UAV entering

the advantage area in the shortest time. When UAV is far from the optimal
attack area, it should speed up its velocity to shorten the distance. Based on the
above analysis, the energy advantage function is designed as follows:

ηe =
ere

ere + e1−re
,

where re =
v2

u

v2
u + v2

t

(13)

here re indicates the relative magnitude of energy, and ηe ∈ [0, 1].
We now describe the procedure for autonomous air combat decision based on

particle swarm optimization. In our particle swarm, each particle represents a
point in the solution space, i.e., the UAV’s forward acceleration a and side load
n. And our goal is to find a pretty “good” solution as the UAV’s control input
so that the UAV can get the advantage over its opponent. To show how “good”
a solution is, we design a fitness function f based on our advantage functions
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f = α1 · ηa + α2 · ηd + α3 · ηe (14)

where α1, α2 and α3 are weight coefficients. Considering that the motion model
is second order, we use the predicted fitness value after the next three time steps
to evaluate the current control input. With regard to a given measure of quality,
that is, fitness function, each particles moves in the search-space according to
simple mathematical formula over the particle’s position and velocity [13]

vt+1 = cvt + c1r1(pi,t − xt) + c2r2(pg,t − xt) (15)
xt+1 = xt + vt+1 (16)

In the above, vt and xt are the velocity and position of particle i at time t,
respectively. pi,t is the best experienced position of particle i, and pg,t represents
the best experienced position of the swarm. c, c1, c2 are the respective cognition
coefficients, and r1, r2 are two random functions in the range [0, 1]. Equations 15
and 16 imply that each particle’s movement is influenced by its local best known
position, but is also guided toward the best known position. By iteratively trying
to improve the candidate solution, it is expected to move the swarm toward the
best solutions, among which the best solution experienced by the particle swarm
would be the UAV’s control input. The pseudocode of the intelligent air combat
decision-making algorithm is given in Algorithm2.

5 Experiments

5.1 Comparison to Other Versions in Clustering Algorithms

First, we compare our algorithm with the standard version (baseline) and its two
natural variations, including k-means algorithm with re-initialization, k-means
algorithm with normalization and weighted distance measurement.

We run each algorithm 10 times. In the experiments, the input was 1000 sets
of data, each containing five dimensions including px, py, ψ, v and ω. We consider
the following two metrics: (1) the sum of squared errors Es, and (2) the balance
degree B(p, k). Since the two types of results varies greatly, we shifted and scaled
the scores for each scoring metric so that the worst result was set to 0 and the
best result was set to 1, and averaged over these scores to produce a final score
for each algorithm setting.

As is shown in Table 1, our algorithm outperforms the previous versions on
all the evaluation indicators and achieved the highest score in the final grade.
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Algorithm 2. Air combat decision-making algorithm based on PSO
1: (One iteration during kth time instant for the aircraft ui with its target tj)
2: Set t = 0
3: for each particle i in the swarm do
4: Randomly initialize xi,t according to Eq. 3
5: Set vi,t = 0
6: Calculate fitness value fi of particle i according to Eq. 11–14
7: end for
8: Initialize pi,t = fi, pg,t = maxi fi

9: for t = 1, . . . , T do
10: for each particle i in the swarm do
11: Calculate vi,t according to Eq. 15
12: Calculate xi,t according to Eq. 16
13: Calculate fitness value fi of particle i according to Eq. 11–14
14: if pi,t−1 > fi then
15: Set pi,t = pi,t−1

16: else
17: Set pi,t = fi

18: end if
19: Set pg,t = maxi pi,t

20: end for
21: end for
22: Find the best solution: best = arg max

i
pi,T

23: return xbest,T

5.2 Comparison to Other Algorithms in One-to-One Air Combat
Domain

Next, we compare our algorithm to other algorithms based on different methods:
matrix game (MG), genetic algorithm (GA), simulated annealing (SA) and dif-
ferential evolution (DE). For matrix game method, we discretized the continuous
solution space in order to apply it to our problem. For all five algorithms, we
used the same algorithm framework.

Each algorithm was run 10 times. See Table 2 for the average time per step of
each algorithm. And the specific results are shown in Fig. 2. These results shows
that our algorithm can be implemented in real time to achieve autonomous air
combat decision-making. No matter in terms of effectiveness or efficiency, our
algorithm is superior to other algorithms.

We also run these autonomous decision-making algorithms in an adversarial
environment, where two drones using different algorithms tried to attack each
other. And the results are shown in Fig. 3. We can conclude that our algorithm
outperforms most algorithms in adversarial environments, only inferior to SA in
terms of fitness.
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Table 1. Average scores of 10 runs. We report the sum of squared errors (SSE) scores,
the balance degree (BD) scores and the final scores for the 4 algorithms. Note that all
score is normalized so that the worst result (across 10 runs) receives 0 and the best 1.

The SSE score The BD score The final score

Baseline 0.0852 0.6289 0.3571

Reinitialize 0.1117 0.7838 0.4477

Rescale + weighted 0.7224 0.6437 0.6830

Our algorithm 0.7778 0.9201 0.8489

Table 2. Average time per step (over 10 runs of the same algorithm framework, on
the same environment) for each algorithm.

Algorithm PSO MG SA DE GA

Average time 0.0910 1.4939 1.6273 1.3640 0.2706

(a) Time (b) Cumulative fitness

Fig. 2. Comparison of several algorithms on air combat environment. The left plot
shows the running time of each algorithm. The right plot shows the fitness of each
algorithm in air combat.

Fig. 3. Comparison with other algorithms on adversarial environment. The first three
plots show that our algorithm is better than GM, GA and DE, while the last plot
shows that our algorithm is sightly inferior to SA in terms of fitness.
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6 Conclusion

This paper introduced an effective and scalable approach for swarm-on-swarm
air combat decision, this approach combines target assignment based on the
modified k-means algorithm and one-to-one air combat decision-making based
on particle swarm optimation. Our approach is simple to implement, applicable
in high-dynamic, unpredictable swarm air combat environment and have better
overall performance.
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